Home | History | Annotate | Line # | Download | only in pci
if_dge.c revision 1.45
      1 /*	$NetBSD: if_dge.c,v 1.45 2016/07/07 06:55:41 msaitoh Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
      5  * All rights reserved.
      6  *
      7  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	SUNET, Swedish University Computer Network.
     21  * 4. The name of SUNET may not be used to endorse or promote products
     22  *    derived from this software without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  * POSSIBILITY OF SUCH DAMAGE.
     35  */
     36 
     37 /*
     38  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
     39  * All rights reserved.
     40  *
     41  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed for the NetBSD Project by
     54  *	Wasabi Systems, Inc.
     55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56  *    or promote products derived from this software without specific prior
     57  *    written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69  * POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 /*
     73  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
     74  *
     75  * TODO (in no specific order):
     76  *	HW VLAN support.
     77  *	TSE offloading (needs kernel changes...)
     78  *	RAIDC (receive interrupt delay adaptation)
     79  *	Use memory > 4GB.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.45 2016/07/07 06:55:41 msaitoh Exp $");
     84 
     85 
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/socket.h>
     94 #include <sys/ioctl.h>
     95 #include <sys/errno.h>
     96 #include <sys/device.h>
     97 #include <sys/queue.h>
     98 
     99 #include <sys/rndsource.h>
    100 
    101 #include <net/if.h>
    102 #include <net/if_dl.h>
    103 #include <net/if_media.h>
    104 #include <net/if_ether.h>
    105 
    106 #include <net/bpf.h>
    107 
    108 #include <netinet/in.h>			/* XXX for struct ip */
    109 #include <netinet/in_systm.h>		/* XXX for struct ip */
    110 #include <netinet/ip.h>			/* XXX for struct ip */
    111 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    112 
    113 #include <sys/bus.h>
    114 #include <sys/intr.h>
    115 #include <machine/endian.h>
    116 
    117 #include <dev/mii/mii.h>
    118 #include <dev/mii/miivar.h>
    119 #include <dev/mii/mii_bitbang.h>
    120 
    121 #include <dev/pci/pcireg.h>
    122 #include <dev/pci/pcivar.h>
    123 #include <dev/pci/pcidevs.h>
    124 
    125 #include <dev/pci/if_dgereg.h>
    126 
    127 /*
    128  * The receive engine may sometimes become off-by-one when writing back
    129  * chained descriptors.	 Avoid this by allocating a large chunk of
    130  * memory and use if instead (to avoid chained descriptors).
    131  * This only happens with chained descriptors under heavy load.
    132  */
    133 #define DGE_OFFBYONE_RXBUG
    134 
    135 #define DGE_EVENT_COUNTERS
    136 #define DGE_DEBUG
    137 
    138 #ifdef DGE_DEBUG
    139 #define DGE_DEBUG_LINK		0x01
    140 #define DGE_DEBUG_TX		0x02
    141 #define DGE_DEBUG_RX		0x04
    142 #define DGE_DEBUG_CKSUM		0x08
    143 int	dge_debug = 0;
    144 
    145 #define DPRINTF(x, y)	if (dge_debug & (x)) printf y
    146 #else
    147 #define DPRINTF(x, y)	/* nothing */
    148 #endif /* DGE_DEBUG */
    149 
    150 /*
    151  * Transmit descriptor list size. We allow up to 100 DMA segments per
    152  * packet (Intel reports of jumbo frame packets with as
    153  * many as 80 DMA segments when using 16k buffers).
    154  */
    155 #define DGE_NTXSEGS		100
    156 #define DGE_IFQUEUELEN		20000
    157 #define DGE_TXQUEUELEN		2048
    158 #define DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
    159 #define DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
    160 #define DGE_NTXDESC		1024
    161 #define DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
    162 #define DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
    163 #define DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
    164 
    165 /*
    166  * Receive descriptor list size.
    167  * Packet is of size MCLBYTES, and for jumbo packets buffers may
    168  * be chained.	Due to the nature of the card (high-speed), keep this
    169  * ring large. With 2k buffers the ring can store 400 jumbo packets,
    170  * which at full speed will be received in just under 3ms.
    171  */
    172 #define DGE_NRXDESC		2048
    173 #define DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
    174 #define DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
    175 /*
    176  * # of descriptors between head and written descriptors.
    177  * This is to work-around two erratas.
    178  */
    179 #define DGE_RXSPACE		10
    180 #define DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
    181 /*
    182  * Receive descriptor fetch threshholds. These are values recommended
    183  * by Intel, do not touch them unless you know what you are doing.
    184  */
    185 #define RXDCTL_PTHRESH_VAL	128
    186 #define RXDCTL_HTHRESH_VAL	16
    187 #define RXDCTL_WTHRESH_VAL	16
    188 
    189 
    190 /*
    191  * Tweakable parameters; default values.
    192  */
    193 #define FCRTH	0x30000 /* Send XOFF water mark */
    194 #define FCRTL	0x28000 /* Send XON water mark */
    195 #define RDTR	0x20	/* Interrupt delay after receive, .8192us units */
    196 #define TIDV	0x20	/* Interrupt delay after send, .8192us units */
    197 
    198 /*
    199  * Control structures are DMA'd to the i82597 chip.  We allocate them in
    200  * a single clump that maps to a single DMA segment to make serveral things
    201  * easier.
    202  */
    203 struct dge_control_data {
    204 	/*
    205 	 * The transmit descriptors.
    206 	 */
    207 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
    208 
    209 	/*
    210 	 * The receive descriptors.
    211 	 */
    212 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
    213 };
    214 
    215 #define DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
    216 #define DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
    217 #define DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
    218 
    219 /*
    220  * The DGE interface have a higher max MTU size than normal jumbo frames.
    221  */
    222 #define DGE_MAX_MTU	16288	/* Max MTU size for this interface */
    223 
    224 /*
    225  * Software state for transmit jobs.
    226  */
    227 struct dge_txsoft {
    228 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    229 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    230 	int txs_firstdesc;		/* first descriptor in packet */
    231 	int txs_lastdesc;		/* last descriptor in packet */
    232 	int txs_ndesc;			/* # of descriptors used */
    233 };
    234 
    235 /*
    236  * Software state for receive buffers.	Each descriptor gets a
    237  * 2k (MCLBYTES) buffer and a DMA map.	For packets which fill
    238  * more than one buffer, we chain them together.
    239  */
    240 struct dge_rxsoft {
    241 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    242 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    243 };
    244 
    245 /*
    246  * Software state per device.
    247  */
    248 struct dge_softc {
    249 	device_t sc_dev;		/* generic device information */
    250 	bus_space_tag_t sc_st;		/* bus space tag */
    251 	bus_space_handle_t sc_sh;	/* bus space handle */
    252 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    253 	struct ethercom sc_ethercom;	/* ethernet common data */
    254 
    255 	int sc_flags;			/* flags; see below */
    256 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    257 	int sc_pcix_offset;		/* PCIX capability register offset */
    258 
    259 	const struct dge_product *sc_dgep; /* Pointer to the dge_product entry */
    260 	pci_chipset_tag_t sc_pc;
    261 	pcitag_t sc_pt;
    262 	int sc_mmrbc;			/* Max PCIX memory read byte count */
    263 
    264 	void *sc_ih;			/* interrupt cookie */
    265 
    266 	struct ifmedia sc_media;
    267 
    268 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    269 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    270 
    271 	int		sc_align_tweak;
    272 
    273 	/*
    274 	 * Software state for the transmit and receive descriptors.
    275 	 */
    276 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
    277 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
    278 
    279 	/*
    280 	 * Control data structures.
    281 	 */
    282 	struct dge_control_data *sc_control_data;
    283 #define sc_txdescs	sc_control_data->wcd_txdescs
    284 #define sc_rxdescs	sc_control_data->wcd_rxdescs
    285 
    286 #ifdef DGE_EVENT_COUNTERS
    287 	/* Event counters. */
    288 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    289 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    290 	struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
    291 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    292 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    293 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    294 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    295 
    296 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    297 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    298 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    299 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    300 
    301 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    302 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    303 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    304 
    305 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
    306 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    307 #endif /* DGE_EVENT_COUNTERS */
    308 
    309 	int	sc_txfree;		/* number of free Tx descriptors */
    310 	int	sc_txnext;		/* next ready Tx descriptor */
    311 
    312 	int	sc_txsfree;		/* number of free Tx jobs */
    313 	int	sc_txsnext;		/* next free Tx job */
    314 	int	sc_txsdirty;		/* dirty Tx jobs */
    315 
    316 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    317 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    318 
    319 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    320 	int	sc_rxdiscard;
    321 	int	sc_rxlen;
    322 	struct mbuf *sc_rxhead;
    323 	struct mbuf *sc_rxtail;
    324 	struct mbuf **sc_rxtailp;
    325 
    326 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
    327 	uint32_t sc_icr;		/* prototype interrupt bits */
    328 	uint32_t sc_tctl;		/* prototype TCTL register */
    329 	uint32_t sc_rctl;		/* prototype RCTL register */
    330 
    331 	int sc_mchash_type;		/* multicast filter offset */
    332 
    333 	uint16_t sc_eeprom[EEPROM_SIZE];
    334 
    335 	krndsource_t rnd_source; /* random source */
    336 #ifdef DGE_OFFBYONE_RXBUG
    337 	void *sc_bugbuf;
    338 	SLIST_HEAD(, rxbugentry) sc_buglist;
    339 	bus_dmamap_t sc_bugmap;
    340 	struct rxbugentry *sc_entry;
    341 #endif
    342 };
    343 
    344 #define DGE_RXCHAIN_RESET(sc)						\
    345 do {									\
    346 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    347 	*(sc)->sc_rxtailp = NULL;					\
    348 	(sc)->sc_rxlen = 0;						\
    349 } while (/*CONSTCOND*/0)
    350 
    351 #define DGE_RXCHAIN_LINK(sc, m)						\
    352 do {									\
    353 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    354 	(sc)->sc_rxtailp = &(m)->m_next;				\
    355 } while (/*CONSTCOND*/0)
    356 
    357 /* sc_flags */
    358 #define DGE_F_BUS64		0x20	/* bus is 64-bit */
    359 #define DGE_F_PCIX		0x40	/* bus is PCI-X */
    360 
    361 #ifdef DGE_EVENT_COUNTERS
    362 #define DGE_EVCNT_INCR(ev)	(ev)->ev_count++
    363 #else
    364 #define DGE_EVCNT_INCR(ev)	/* nothing */
    365 #endif
    366 
    367 #define CSR_READ(sc, reg)						\
    368 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    369 #define CSR_WRITE(sc, reg, val)						\
    370 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    371 
    372 #define DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
    373 #define DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
    374 
    375 #define DGE_CDTXSYNC(sc, x, n, ops)					\
    376 do {									\
    377 	int __x, __n;							\
    378 									\
    379 	__x = (x);							\
    380 	__n = (n);							\
    381 									\
    382 	/* If it will wrap around, sync to the end of the ring. */	\
    383 	if ((__x + __n) > DGE_NTXDESC) {				\
    384 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    385 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
    386 		    (DGE_NTXDESC - __x), (ops));			\
    387 		__n -= (DGE_NTXDESC - __x);				\
    388 		__x = 0;						\
    389 	}								\
    390 									\
    391 	/* Now sync whatever is left. */				\
    392 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    393 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
    394 } while (/*CONSTCOND*/0)
    395 
    396 #define DGE_CDRXSYNC(sc, x, ops)						\
    397 do {									\
    398 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    399 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
    400 } while (/*CONSTCOND*/0)
    401 
    402 #ifdef DGE_OFFBYONE_RXBUG
    403 #define DGE_INIT_RXDESC(sc, x)						\
    404 do {									\
    405 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    406 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    407 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    408 									\
    409 	__rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr +	\
    410 	    (mtod((__m), char *) - (char *)sc->sc_bugbuf));		\
    411 	__rxd->dr_baddrh = 0;						\
    412 	__rxd->dr_len = 0;						\
    413 	__rxd->dr_cksum = 0;						\
    414 	__rxd->dr_status = 0;						\
    415 	__rxd->dr_errors = 0;						\
    416 	__rxd->dr_special = 0;						\
    417 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    418 									\
    419 	CSR_WRITE((sc), DGE_RDT, (x));					\
    420 } while (/*CONSTCOND*/0)
    421 #else
    422 #define DGE_INIT_RXDESC(sc, x)						\
    423 do {									\
    424 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    425 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    426 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    427 									\
    428 	/*								\
    429 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    430 	 * so that the payload after the Ethernet header is aligned	\
    431 	 * to a 4-byte boundary.					\
    432 	 *								\
    433 	 * XXX BRAINDAMAGE ALERT!					\
    434 	 * The stupid chip uses the same size for every buffer, which	\
    435 	 * is set in the Receive Control register.  We are using the 2K \
    436 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    437 	 * reason, we can't "scoot" packets longer than the standard	\
    438 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    439 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    440 	 * the upper layer copy the headers.				\
    441 	 */								\
    442 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    443 									\
    444 	__rxd->dr_baddrl =						\
    445 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr +		\
    446 		(sc)->sc_align_tweak);					\
    447 	__rxd->dr_baddrh = 0;						\
    448 	__rxd->dr_len = 0;						\
    449 	__rxd->dr_cksum = 0;						\
    450 	__rxd->dr_status = 0;						\
    451 	__rxd->dr_errors = 0;						\
    452 	__rxd->dr_special = 0;						\
    453 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    454 									\
    455 	CSR_WRITE((sc), DGE_RDT, (x));					\
    456 } while (/*CONSTCOND*/0)
    457 #endif
    458 
    459 #ifdef DGE_OFFBYONE_RXBUG
    460 /*
    461  * Allocation constants.  Much memory may be used for this.
    462  */
    463 #ifndef DGE_BUFFER_SIZE
    464 #define DGE_BUFFER_SIZE DGE_MAX_MTU
    465 #endif
    466 #define DGE_NBUFFERS	(4*DGE_NRXDESC)
    467 #define DGE_RXMEM	(DGE_NBUFFERS*DGE_BUFFER_SIZE)
    468 
    469 struct rxbugentry {
    470 	SLIST_ENTRY(rxbugentry) rb_entry;
    471 	int rb_slot;
    472 };
    473 
    474 static int
    475 dge_alloc_rcvmem(struct dge_softc *sc)
    476 {
    477 	char *kva;
    478 	bus_dma_segment_t seg;
    479 	int i, rseg, state, error;
    480 	struct rxbugentry *entry;
    481 
    482 	state = error = 0;
    483 
    484 	if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
    485 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    486 		aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n");
    487 		return ENOBUFS;
    488 	}
    489 
    490 	state = 1;
    491 	if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
    492 	    BUS_DMA_NOWAIT)) {
    493 		aprint_error_dev(sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
    494 		    (int)DGE_RXMEM);
    495 		error = ENOBUFS;
    496 		goto out;
    497 	}
    498 
    499 	state = 2;
    500 	if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
    501 	    BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
    502 		aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
    503 		error = ENOBUFS;
    504 		goto out;
    505 	}
    506 
    507 	state = 3;
    508 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
    509 	    kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
    510 		aprint_error_dev(sc->sc_dev, "can't load DMA map\n");
    511 		error = ENOBUFS;
    512 		goto out;
    513 	}
    514 
    515 	state = 4;
    516 	sc->sc_bugbuf = (void *)kva;
    517 	SLIST_INIT(&sc->sc_buglist);
    518 
    519 	/*
    520 	 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
    521 	 * in an array.
    522 	 */
    523 	if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
    524 	    M_DEVBUF, M_NOWAIT)) == NULL) {
    525 		error = ENOBUFS;
    526 		goto out;
    527 	}
    528 	sc->sc_entry = entry;
    529 	for (i = 0; i < DGE_NBUFFERS; i++) {
    530 		entry[i].rb_slot = i;
    531 		SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
    532 	}
    533 out:
    534 	if (error != 0) {
    535 		switch (state) {
    536 		case 4:
    537 			bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
    538 		case 3:
    539 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
    540 		case 2:
    541 			bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
    542 		case 1:
    543 			bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    544 			break;
    545 		default:
    546 			break;
    547 		}
    548 	}
    549 
    550 	return error;
    551 }
    552 
    553 /*
    554  * Allocate a jumbo buffer.
    555  */
    556 static void *
    557 dge_getbuf(struct dge_softc *sc)
    558 {
    559 	struct rxbugentry *entry;
    560 
    561 	entry = SLIST_FIRST(&sc->sc_buglist);
    562 
    563 	if (entry == NULL) {
    564 		printf("%s: no free RX buffers\n", device_xname(sc->sc_dev));
    565 		return(NULL);
    566 	}
    567 
    568 	SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
    569 	return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
    570 }
    571 
    572 /*
    573  * Release a jumbo buffer.
    574  */
    575 static void
    576 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
    577 {
    578 	struct rxbugentry *entry;
    579 	struct dge_softc *sc;
    580 	int i, s;
    581 
    582 	/* Extract the softc struct pointer. */
    583 	sc = (struct dge_softc *)arg;
    584 
    585 	if (sc == NULL)
    586 		panic("dge_freebuf: can't find softc pointer!");
    587 
    588 	/* calculate the slot this buffer belongs to */
    589 
    590 	i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
    591 
    592 	if ((i < 0) || (i >= DGE_NBUFFERS))
    593 		panic("dge_freebuf: asked to free buffer %d!", i);
    594 
    595 	s = splvm();
    596 	entry = sc->sc_entry + i;
    597 	SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
    598 
    599 	if (__predict_true(m != NULL))
    600 		pool_cache_put(mb_cache, m);
    601 	splx(s);
    602 }
    603 #endif
    604 
    605 static void	dge_start(struct ifnet *);
    606 static void	dge_watchdog(struct ifnet *);
    607 static int	dge_ioctl(struct ifnet *, u_long, void *);
    608 static int	dge_init(struct ifnet *);
    609 static void	dge_stop(struct ifnet *, int);
    610 
    611 static bool	dge_shutdown(device_t, int);
    612 
    613 static void	dge_reset(struct dge_softc *);
    614 static void	dge_rxdrain(struct dge_softc *);
    615 static int	dge_add_rxbuf(struct dge_softc *, int);
    616 
    617 static void	dge_set_filter(struct dge_softc *);
    618 
    619 static int	dge_intr(void *);
    620 static void	dge_txintr(struct dge_softc *);
    621 static void	dge_rxintr(struct dge_softc *);
    622 static void	dge_linkintr(struct dge_softc *, uint32_t);
    623 
    624 static int	dge_match(device_t, cfdata_t, void *);
    625 static void	dge_attach(device_t, device_t, void *);
    626 
    627 static int	dge_read_eeprom(struct dge_softc *sc);
    628 static int	dge_eeprom_clockin(struct dge_softc *sc);
    629 static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
    630 static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
    631 static int	dge_xgmii_mediachange(struct ifnet *);
    632 static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
    633 static void	dge_xgmii_reset(struct dge_softc *);
    634 static void	dge_xgmii_writereg(struct dge_softc *, int, int, int);
    635 
    636 
    637 CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc),
    638     dge_match, dge_attach, NULL, NULL);
    639 
    640 #ifdef DGE_EVENT_COUNTERS
    641 #if DGE_NTXSEGS > 100
    642 #error Update dge_txseg_evcnt_names
    643 #endif
    644 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
    645 #endif /* DGE_EVENT_COUNTERS */
    646 
    647 /*
    648  * Devices supported by this driver.
    649  */
    650 static const struct dge_product {
    651   pci_vendor_id_t      dgep_vendor;
    652   pci_product_id_t  dgep_product;
    653   const char     *dgep_name;
    654   int         dgep_flags;
    655 #define DGEP_F_10G_LR     0x01
    656 #define DGEP_F_10G_SR     0x02
    657 } dge_products[] = {
    658   { PCI_VENDOR_INTEL,  PCI_PRODUCT_INTEL_82597EX,
    659     "Intel i82597EX 10GbE-LR Ethernet",
    660     DGEP_F_10G_LR },
    661 
    662   { PCI_VENDOR_INTEL,  PCI_PRODUCT_INTEL_82597EX_SR,
    663     "Intel i82597EX 10GbE-SR Ethernet",
    664     DGEP_F_10G_SR },
    665 
    666   { 0,        0,
    667     NULL,
    668     0 },
    669 };
    670 
    671 static const struct dge_product *
    672 dge_lookup(const struct pci_attach_args *pa)
    673 {
    674 	const struct dge_product *dgep;
    675 
    676 	for (dgep = dge_products; dgep->dgep_name != NULL; dgep++) {
    677 		if (PCI_VENDOR(pa->pa_id) == dgep->dgep_vendor &&
    678 		    PCI_PRODUCT(pa->pa_id) == dgep->dgep_product)
    679 			return dgep;
    680 		}
    681 	return NULL;
    682 }
    683 
    684 static int
    685 dge_match(device_t parent, cfdata_t cf, void *aux)
    686 {
    687 	struct pci_attach_args *pa = aux;
    688 
    689 	if (dge_lookup(pa) != NULL)
    690 		return (1);
    691 
    692 	return (0);
    693 }
    694 
    695 static void
    696 dge_attach(device_t parent, device_t self, void *aux)
    697 {
    698 	struct dge_softc *sc = device_private(self);
    699 	struct pci_attach_args *pa = aux;
    700 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    701 	pci_chipset_tag_t pc = pa->pa_pc;
    702 	pci_intr_handle_t ih;
    703 	const char *intrstr = NULL;
    704 	bus_dma_segment_t seg;
    705 	int i, rseg, error;
    706 	uint8_t enaddr[ETHER_ADDR_LEN];
    707 	pcireg_t preg, memtype;
    708 	uint32_t reg;
    709 	char intrbuf[PCI_INTRSTR_LEN];
    710 	const struct dge_product *dgep;
    711 
    712 	sc->sc_dgep = dgep = dge_lookup(pa);
    713 	if (dgep == NULL) {
    714 		printf("\n");
    715 		panic("dge_attach: impossible");
    716 	}
    717 
    718 	sc->sc_dev = self;
    719 	sc->sc_dmat = pa->pa_dmat;
    720 	sc->sc_pc = pa->pa_pc;
    721 	sc->sc_pt = pa->pa_tag;
    722 
    723 	pci_aprint_devinfo_fancy(pa, "Ethernet controller",
    724 		dgep->dgep_name, 1);
    725 
    726 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
    727         if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
    728             &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
    729                 aprint_error_dev(sc->sc_dev,
    730 		    "unable to map device registers\n");
    731                 return;
    732         }
    733 
    734 	/* Enable bus mastering */
    735 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    736 	preg |= PCI_COMMAND_MASTER_ENABLE;
    737 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    738 
    739 	/*
    740 	 * Map and establish our interrupt.
    741 	 */
    742 	if (pci_intr_map(pa, &ih)) {
    743 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
    744 		return;
    745 	}
    746 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    747 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
    748 	if (sc->sc_ih == NULL) {
    749 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
    750 		if (intrstr != NULL)
    751 			aprint_error(" at %s", intrstr);
    752 		aprint_error("\n");
    753 		return;
    754 	}
    755 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
    756 
    757 	/*
    758 	 * Determine a few things about the bus we're connected to.
    759 	 */
    760 	reg = CSR_READ(sc, DGE_STATUS);
    761 	if (reg & STATUS_BUS64)
    762 		sc->sc_flags |= DGE_F_BUS64;
    763 
    764 	sc->sc_flags |= DGE_F_PCIX;
    765 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    766 			       PCI_CAP_PCIX,
    767 			       &sc->sc_pcix_offset, NULL) == 0)
    768 		aprint_error_dev(sc->sc_dev, "unable to find PCIX "
    769 		    "capability\n");
    770 
    771 	if (sc->sc_flags & DGE_F_PCIX) {
    772 		switch (reg & STATUS_PCIX_MSK) {
    773 		case STATUS_PCIX_66:
    774 			sc->sc_bus_speed = 66;
    775 			break;
    776 		case STATUS_PCIX_100:
    777 			sc->sc_bus_speed = 100;
    778 			break;
    779 		case STATUS_PCIX_133:
    780 			sc->sc_bus_speed = 133;
    781 			break;
    782 		default:
    783 			aprint_error_dev(sc->sc_dev,
    784 			    "unknown PCIXSPD %d; assuming 66MHz\n",
    785 			    reg & STATUS_PCIX_MSK);
    786 			sc->sc_bus_speed = 66;
    787 		}
    788 	} else
    789 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
    790 	aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
    791 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    792 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
    793 
    794 	/*
    795 	 * Allocate the control data structures, and create and load the
    796 	 * DMA map for it.
    797 	 */
    798 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    799 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    800 	    0)) != 0) {
    801 		aprint_error_dev(sc->sc_dev,
    802 		    "unable to allocate control data, error = %d\n",
    803 		    error);
    804 		goto fail_0;
    805 	}
    806 
    807 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    808 	    sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
    809 	    0)) != 0) {
    810 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
    811 		    error);
    812 		goto fail_1;
    813 	}
    814 
    815 	if ((error = bus_dmamap_create(sc->sc_dmat,
    816 	    sizeof(struct dge_control_data), 1,
    817 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    818 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
    819 		    "error = %d\n", error);
    820 		goto fail_2;
    821 	}
    822 
    823 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    824 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
    825 	    0)) != 0) {
    826 		aprint_error_dev(sc->sc_dev,
    827 		    "unable to load control data DMA map, error = %d\n",
    828 		    error);
    829 		goto fail_3;
    830 	}
    831 
    832 #ifdef DGE_OFFBYONE_RXBUG
    833 	if (dge_alloc_rcvmem(sc) != 0)
    834 		return; /* Already complained */
    835 #endif
    836 	/*
    837 	 * Create the transmit buffer DMA maps.
    838 	 */
    839 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    840 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
    841 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
    842 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    843 			aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, "
    844 			    "error = %d\n", i, error);
    845 			goto fail_4;
    846 		}
    847 	}
    848 
    849 	/*
    850 	 * Create the receive buffer DMA maps.
    851 	 */
    852 	for (i = 0; i < DGE_NRXDESC; i++) {
    853 #ifdef DGE_OFFBYONE_RXBUG
    854 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
    855 		    DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    856 #else
    857 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    858 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    859 #endif
    860 			aprint_error_dev(sc->sc_dev, "unable to create Rx DMA map %d, "
    861 			    "error = %d\n", i, error);
    862 			goto fail_5;
    863 		}
    864 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    865 	}
    866 
    867 	/*
    868 	 * Set bits in ctrl0 register.
    869 	 * Should get the software defined pins out of EEPROM?
    870 	 */
    871 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
    872 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
    873 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
    874 
    875 	/*
    876 	 * Reset the chip to a known state.
    877 	 */
    878 	dge_reset(sc);
    879 
    880 	/*
    881 	 * Reset the PHY.
    882 	 */
    883 	dge_xgmii_reset(sc);
    884 
    885 	/*
    886 	 * Read in EEPROM data.
    887 	 */
    888 	if (dge_read_eeprom(sc)) {
    889 		aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n");
    890 		return;
    891 	}
    892 
    893 	/*
    894 	 * Get the ethernet address.
    895 	 */
    896 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
    897 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
    898 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
    899 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
    900 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
    901 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
    902 
    903 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    904 	    ether_sprintf(enaddr));
    905 
    906 	/*
    907 	 * Setup media stuff.
    908 	 */
    909         ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
    910             dge_xgmii_mediastatus);
    911 	if (dgep->dgep_flags & DGEP_F_10G_SR) {
    912 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_SR, 0, NULL);
    913 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_SR);
    914 	} else { /* XXX default is LR */
    915 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
    916 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
    917 	}
    918 
    919 	ifp = &sc->sc_ethercom.ec_if;
    920 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    921 	ifp->if_softc = sc;
    922 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    923 	ifp->if_ioctl = dge_ioctl;
    924 	ifp->if_start = dge_start;
    925 	ifp->if_watchdog = dge_watchdog;
    926 	ifp->if_init = dge_init;
    927 	ifp->if_stop = dge_stop;
    928 	IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
    929 	IFQ_SET_READY(&ifp->if_snd);
    930 
    931 	sc->sc_ethercom.ec_capabilities |=
    932 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
    933 
    934 	/*
    935 	 * We can perform TCPv4 and UDPv4 checkums in-bound.
    936 	 */
    937 	ifp->if_capabilities |=
    938 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    939 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    940 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    941 
    942 	/*
    943 	 * Attach the interface.
    944 	 */
    945 	if_attach(ifp);
    946 	ether_ifattach(ifp, enaddr);
    947 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    948 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    949 
    950 #ifdef DGE_EVENT_COUNTERS
    951 	/* Fix segment event naming */
    952 	if (dge_txseg_evcnt_names == NULL) {
    953 		dge_txseg_evcnt_names =
    954 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
    955 		for (i = 0; i < DGE_NTXSEGS; i++)
    956 			snprintf((*dge_txseg_evcnt_names)[i],
    957 			    sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
    958 	}
    959 
    960 	/* Attach event counters. */
    961 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    962 	    NULL, device_xname(sc->sc_dev), "txsstall");
    963 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    964 	    NULL, device_xname(sc->sc_dev), "txdstall");
    965 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    966 	    NULL, device_xname(sc->sc_dev), "txforceintr");
    967 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    968 	    NULL, device_xname(sc->sc_dev), "txdw");
    969 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    970 	    NULL, device_xname(sc->sc_dev), "txqe");
    971 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    972 	    NULL, device_xname(sc->sc_dev), "rxintr");
    973 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    974 	    NULL, device_xname(sc->sc_dev), "linkintr");
    975 
    976 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    977 	    NULL, device_xname(sc->sc_dev), "rxipsum");
    978 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    979 	    NULL, device_xname(sc->sc_dev), "rxtusum");
    980 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    981 	    NULL, device_xname(sc->sc_dev), "txipsum");
    982 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    983 	    NULL, device_xname(sc->sc_dev), "txtusum");
    984 
    985 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    986 	    NULL, device_xname(sc->sc_dev), "txctx init");
    987 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    988 	    NULL, device_xname(sc->sc_dev), "txctx hit");
    989 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    990 	    NULL, device_xname(sc->sc_dev), "txctx miss");
    991 
    992 	for (i = 0; i < DGE_NTXSEGS; i++)
    993 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    994 		    NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
    995 
    996 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    997 	    NULL, device_xname(sc->sc_dev), "txdrop");
    998 
    999 #endif /* DGE_EVENT_COUNTERS */
   1000 
   1001 	/*
   1002 	 * Make sure the interface is shutdown during reboot.
   1003 	 */
   1004 	if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
   1005 		pmf_class_network_register(self, ifp);
   1006 	else
   1007 		aprint_error_dev(self, "couldn't establish power handler\n");
   1008 
   1009 	return;
   1010 
   1011 	/*
   1012 	 * Free any resources we've allocated during the failed attach
   1013 	 * attempt.  Do this in reverse order and fall through.
   1014 	 */
   1015  fail_5:
   1016 	for (i = 0; i < DGE_NRXDESC; i++) {
   1017 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1018 			bus_dmamap_destroy(sc->sc_dmat,
   1019 			    sc->sc_rxsoft[i].rxs_dmamap);
   1020 	}
   1021  fail_4:
   1022 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
   1023 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1024 			bus_dmamap_destroy(sc->sc_dmat,
   1025 			    sc->sc_txsoft[i].txs_dmamap);
   1026 	}
   1027 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1028  fail_3:
   1029 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1030  fail_2:
   1031 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   1032 	    sizeof(struct dge_control_data));
   1033  fail_1:
   1034 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1035  fail_0:
   1036 	return;
   1037 }
   1038 
   1039 /*
   1040  * dge_shutdown:
   1041  *
   1042  *	Make sure the interface is stopped at reboot time.
   1043  */
   1044 static bool
   1045 dge_shutdown(device_t self, int howto)
   1046 {
   1047 	struct dge_softc *sc;
   1048 
   1049 	sc = device_private(self);
   1050 	dge_stop(&sc->sc_ethercom.ec_if, 1);
   1051 
   1052 	return true;
   1053 }
   1054 
   1055 /*
   1056  * dge_tx_cksum:
   1057  *
   1058  *	Set up TCP/IP checksumming parameters for the
   1059  *	specified packet.
   1060  */
   1061 static int
   1062 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
   1063 {
   1064 	struct mbuf *m0 = txs->txs_mbuf;
   1065 	struct dge_ctdes *t;
   1066 	uint32_t ipcs, tucs;
   1067 	struct ether_header *eh;
   1068 	int offset, iphl;
   1069 	uint8_t fields = 0;
   1070 
   1071 	/*
   1072 	 * XXX It would be nice if the mbuf pkthdr had offset
   1073 	 * fields for the protocol headers.
   1074 	 */
   1075 
   1076 	eh = mtod(m0, struct ether_header *);
   1077 	switch (htons(eh->ether_type)) {
   1078 	case ETHERTYPE_IP:
   1079 		offset = ETHER_HDR_LEN;
   1080 		break;
   1081 
   1082 	case ETHERTYPE_VLAN:
   1083 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1084 		break;
   1085 
   1086 	default:
   1087 		/*
   1088 		 * Don't support this protocol or encapsulation.
   1089 		 */
   1090 		*fieldsp = 0;
   1091 		return (0);
   1092 	}
   1093 
   1094 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1095 
   1096 	/*
   1097 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1098 	 * offload feature, if we load the context descriptor, we
   1099 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1100 	 */
   1101 
   1102 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1103 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
   1104 		fields |= TDESC_POPTS_IXSM;
   1105 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1106 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1107 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1108 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
   1109 		/* Use the cached value. */
   1110 		ipcs = sc->sc_txctx_ipcs;
   1111 	} else {
   1112 		/* Just initialize it to the likely value anyway. */
   1113 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1114 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1115 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1116 	}
   1117 	DPRINTF(DGE_DEBUG_CKSUM,
   1118 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
   1119 	    device_xname(sc->sc_dev), offset, ipcs));
   1120 
   1121 	offset += iphl;
   1122 
   1123 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1124 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
   1125 		fields |= TDESC_POPTS_TXSM;
   1126 		tucs = DGE_TCPIP_TUCSS(offset) |
   1127 		   DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1128 		   DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1129 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
   1130 		/* Use the cached value. */
   1131 		tucs = sc->sc_txctx_tucs;
   1132 	} else {
   1133 		/* Just initialize it to a valid TCP context. */
   1134 		tucs = DGE_TCPIP_TUCSS(offset) |
   1135 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1136 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1137 	}
   1138 
   1139 	DPRINTF(DGE_DEBUG_CKSUM,
   1140 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
   1141 	    device_xname(sc->sc_dev), offset, tucs));
   1142 
   1143 	if (sc->sc_txctx_ipcs == ipcs &&
   1144 	    sc->sc_txctx_tucs == tucs) {
   1145 		/* Cached context is fine. */
   1146 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
   1147 	} else {
   1148 		/* Fill in the context descriptor. */
   1149 #ifdef DGE_EVENT_COUNTERS
   1150 		if (sc->sc_txctx_ipcs == 0xffffffff &&
   1151 		    sc->sc_txctx_tucs == 0xffffffff)
   1152 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
   1153 		else
   1154 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1155 #endif
   1156 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
   1157 		t->dc_tcpip_ipcs = htole32(ipcs);
   1158 		t->dc_tcpip_tucs = htole32(tucs);
   1159 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
   1160 		t->dc_tcpip_seg = 0;
   1161 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1162 
   1163 		sc->sc_txctx_ipcs = ipcs;
   1164 		sc->sc_txctx_tucs = tucs;
   1165 
   1166 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
   1167 		txs->txs_ndesc++;
   1168 	}
   1169 
   1170 	*fieldsp = fields;
   1171 
   1172 	return (0);
   1173 }
   1174 
   1175 /*
   1176  * dge_start:		[ifnet interface function]
   1177  *
   1178  *	Start packet transmission on the interface.
   1179  */
   1180 static void
   1181 dge_start(struct ifnet *ifp)
   1182 {
   1183 	struct dge_softc *sc = ifp->if_softc;
   1184 	struct mbuf *m0;
   1185 	struct dge_txsoft *txs;
   1186 	bus_dmamap_t dmamap;
   1187 	int error, nexttx, lasttx = -1, ofree, seg;
   1188 	uint32_t cksumcmd;
   1189 	uint8_t cksumfields;
   1190 
   1191 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1192 		return;
   1193 
   1194 	/*
   1195 	 * Remember the previous number of free descriptors.
   1196 	 */
   1197 	ofree = sc->sc_txfree;
   1198 
   1199 	/*
   1200 	 * Loop through the send queue, setting up transmit descriptors
   1201 	 * until we drain the queue, or use up all available transmit
   1202 	 * descriptors.
   1203 	 */
   1204 	for (;;) {
   1205 		/* Grab a packet off the queue. */
   1206 		IFQ_POLL(&ifp->if_snd, m0);
   1207 		if (m0 == NULL)
   1208 			break;
   1209 
   1210 		DPRINTF(DGE_DEBUG_TX,
   1211 		    ("%s: TX: have packet to transmit: %p\n",
   1212 		    device_xname(sc->sc_dev), m0));
   1213 
   1214 		/* Get a work queue entry. */
   1215 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
   1216 			dge_txintr(sc);
   1217 			if (sc->sc_txsfree == 0) {
   1218 				DPRINTF(DGE_DEBUG_TX,
   1219 				    ("%s: TX: no free job descriptors\n",
   1220 					device_xname(sc->sc_dev)));
   1221 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
   1222 				break;
   1223 			}
   1224 		}
   1225 
   1226 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1227 		dmamap = txs->txs_dmamap;
   1228 
   1229 		/*
   1230 		 * Load the DMA map.  If this fails, the packet either
   1231 		 * didn't fit in the allotted number of segments, or we
   1232 		 * were short on resources.  For the too-many-segments
   1233 		 * case, we simply report an error and drop the packet,
   1234 		 * since we can't sanely copy a jumbo packet to a single
   1235 		 * buffer.
   1236 		 */
   1237 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1238 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1239 		if (error) {
   1240 			if (error == EFBIG) {
   1241 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
   1242 				printf("%s: Tx packet consumes too many "
   1243 				    "DMA segments, dropping...\n",
   1244 				    device_xname(sc->sc_dev));
   1245 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1246 				m_freem(m0);
   1247 				continue;
   1248 			}
   1249 			/*
   1250 			 * Short on resources, just stop for now.
   1251 			 */
   1252 			DPRINTF(DGE_DEBUG_TX,
   1253 			    ("%s: TX: dmamap load failed: %d\n",
   1254 			    device_xname(sc->sc_dev), error));
   1255 			break;
   1256 		}
   1257 
   1258 		/*
   1259 		 * Ensure we have enough descriptors free to describe
   1260 		 * the packet.  Note, we always reserve one descriptor
   1261 		 * at the end of the ring due to the semantics of the
   1262 		 * TDT register, plus one more in the event we need
   1263 		 * to re-load checksum offload context.
   1264 		 */
   1265 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1266 			/*
   1267 			 * Not enough free descriptors to transmit this
   1268 			 * packet.  We haven't committed anything yet,
   1269 			 * so just unload the DMA map, put the packet
   1270 			 * pack on the queue, and punt.  Notify the upper
   1271 			 * layer that there are no more slots left.
   1272 			 */
   1273 			DPRINTF(DGE_DEBUG_TX,
   1274 			    ("%s: TX: need %d descriptors, have %d\n",
   1275 			    device_xname(sc->sc_dev), dmamap->dm_nsegs,
   1276 			    sc->sc_txfree - 1));
   1277 			ifp->if_flags |= IFF_OACTIVE;
   1278 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1279 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
   1280 			break;
   1281 		}
   1282 
   1283 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1284 
   1285 		/*
   1286 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1287 		 */
   1288 
   1289 		/* Sync the DMA map. */
   1290 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1291 		    BUS_DMASYNC_PREWRITE);
   1292 
   1293 		DPRINTF(DGE_DEBUG_TX,
   1294 		    ("%s: TX: packet has %d DMA segments\n",
   1295 		    device_xname(sc->sc_dev), dmamap->dm_nsegs));
   1296 
   1297 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1298 
   1299 		/*
   1300 		 * Store a pointer to the packet so that we can free it
   1301 		 * later.
   1302 		 *
   1303 		 * Initially, we consider the number of descriptors the
   1304 		 * packet uses the number of DMA segments.  This may be
   1305 		 * incremented by 1 if we do checksum offload (a descriptor
   1306 		 * is used to set the checksum context).
   1307 		 */
   1308 		txs->txs_mbuf = m0;
   1309 		txs->txs_firstdesc = sc->sc_txnext;
   1310 		txs->txs_ndesc = dmamap->dm_nsegs;
   1311 
   1312 		/*
   1313 		 * Set up checksum offload parameters for
   1314 		 * this packet.
   1315 		 */
   1316 		if (m0->m_pkthdr.csum_flags &
   1317 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1318 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
   1319 				/* Error message already displayed. */
   1320 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1321 				continue;
   1322 			}
   1323 		} else {
   1324 			cksumfields = 0;
   1325 		}
   1326 
   1327 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
   1328 
   1329 		/*
   1330 		 * Initialize the transmit descriptor.
   1331 		 */
   1332 		for (nexttx = sc->sc_txnext, seg = 0;
   1333 		     seg < dmamap->dm_nsegs;
   1334 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
   1335 			/*
   1336 			 * Note: we currently only use 32-bit DMA
   1337 			 * addresses.
   1338 			 */
   1339 			sc->sc_txdescs[nexttx].dt_baddrh = 0;
   1340 			sc->sc_txdescs[nexttx].dt_baddrl =
   1341 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1342 			sc->sc_txdescs[nexttx].dt_ctl =
   1343 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
   1344 			sc->sc_txdescs[nexttx].dt_status = 0;
   1345 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
   1346 			sc->sc_txdescs[nexttx].dt_vlan = 0;
   1347 			lasttx = nexttx;
   1348 
   1349 			DPRINTF(DGE_DEBUG_TX,
   1350 			    ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
   1351 			    device_xname(sc->sc_dev), nexttx,
   1352 			    (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
   1353 			    (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
   1354 		}
   1355 
   1356 		KASSERT(lasttx != -1);
   1357 
   1358 		/*
   1359 		 * Set up the command byte on the last descriptor of
   1360 		 * the packet.  If we're in the interrupt delay window,
   1361 		 * delay the interrupt.
   1362 		 */
   1363 		sc->sc_txdescs[lasttx].dt_ctl |=
   1364 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
   1365 
   1366 		txs->txs_lastdesc = lasttx;
   1367 
   1368 		DPRINTF(DGE_DEBUG_TX,
   1369 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev),
   1370 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
   1371 
   1372 		/* Sync the descriptors we're using. */
   1373 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1374 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1375 
   1376 		/* Give the packet to the chip. */
   1377 		CSR_WRITE(sc, DGE_TDT, nexttx);
   1378 
   1379 		DPRINTF(DGE_DEBUG_TX,
   1380 		    ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
   1381 
   1382 		DPRINTF(DGE_DEBUG_TX,
   1383 		    ("%s: TX: finished transmitting packet, job %d\n",
   1384 		    device_xname(sc->sc_dev), sc->sc_txsnext));
   1385 
   1386 		/* Advance the tx pointer. */
   1387 		sc->sc_txfree -= txs->txs_ndesc;
   1388 		sc->sc_txnext = nexttx;
   1389 
   1390 		sc->sc_txsfree--;
   1391 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
   1392 
   1393 		/* Pass the packet to any BPF listeners. */
   1394 		bpf_mtap(ifp, m0);
   1395 	}
   1396 
   1397 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1398 		/* No more slots; notify upper layer. */
   1399 		ifp->if_flags |= IFF_OACTIVE;
   1400 	}
   1401 
   1402 	if (sc->sc_txfree != ofree) {
   1403 		/* Set a watchdog timer in case the chip flakes out. */
   1404 		ifp->if_timer = 5;
   1405 	}
   1406 }
   1407 
   1408 /*
   1409  * dge_watchdog:		[ifnet interface function]
   1410  *
   1411  *	Watchdog timer handler.
   1412  */
   1413 static void
   1414 dge_watchdog(struct ifnet *ifp)
   1415 {
   1416 	struct dge_softc *sc = ifp->if_softc;
   1417 
   1418 	/*
   1419 	 * Since we're using delayed interrupts, sweep up
   1420 	 * before we report an error.
   1421 	 */
   1422 	dge_txintr(sc);
   1423 
   1424 	if (sc->sc_txfree != DGE_NTXDESC) {
   1425 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1426 		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
   1427 		    sc->sc_txnext);
   1428 		ifp->if_oerrors++;
   1429 
   1430 		/* Reset the interface. */
   1431 		(void) dge_init(ifp);
   1432 	}
   1433 
   1434 	/* Try to get more packets going. */
   1435 	dge_start(ifp);
   1436 }
   1437 
   1438 /*
   1439  * dge_ioctl:		[ifnet interface function]
   1440  *
   1441  *	Handle control requests from the operator.
   1442  */
   1443 static int
   1444 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1445 {
   1446 	struct dge_softc *sc = ifp->if_softc;
   1447 	struct ifreq *ifr = (struct ifreq *) data;
   1448 	pcireg_t preg;
   1449 	int s, error, mmrbc;
   1450 
   1451 	s = splnet();
   1452 
   1453 	switch (cmd) {
   1454 	case SIOCSIFMEDIA:
   1455 	case SIOCGIFMEDIA:
   1456 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1457 		break;
   1458 
   1459 	case SIOCSIFMTU:
   1460 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
   1461 			error = EINVAL;
   1462 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
   1463 			break;
   1464 		else if (ifp->if_flags & IFF_UP)
   1465 			error = (*ifp->if_init)(ifp);
   1466 		else
   1467 			error = 0;
   1468 		break;
   1469 
   1470         case SIOCSIFFLAGS:
   1471 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1472 			break;
   1473 		/* extract link flags */
   1474 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1475 		    (ifp->if_flags & IFF_LINK1) == 0)
   1476 			mmrbc = PCIX_MMRBC_512;
   1477 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1478 		    (ifp->if_flags & IFF_LINK1) != 0)
   1479 			mmrbc = PCIX_MMRBC_1024;
   1480 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
   1481 		    (ifp->if_flags & IFF_LINK1) == 0)
   1482 			mmrbc = PCIX_MMRBC_2048;
   1483 		else
   1484 			mmrbc = PCIX_MMRBC_4096;
   1485 		if (mmrbc != sc->sc_mmrbc) {
   1486 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
   1487 			preg &= ~PCIX_MMRBC_MSK;
   1488 			preg |= mmrbc;
   1489 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
   1490 			sc->sc_mmrbc = mmrbc;
   1491 		}
   1492                 /* FALLTHROUGH */
   1493 	default:
   1494 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1495 			break;
   1496 
   1497 		error = 0;
   1498 
   1499 		if (cmd == SIOCSIFCAP)
   1500 			error = (*ifp->if_init)(ifp);
   1501 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1502 			;
   1503 		else if (ifp->if_flags & IFF_RUNNING) {
   1504 			/*
   1505 			 * Multicast list has changed; set the hardware filter
   1506 			 * accordingly.
   1507 			 */
   1508 			dge_set_filter(sc);
   1509 		}
   1510 		break;
   1511 	}
   1512 
   1513 	/* Try to get more packets going. */
   1514 	dge_start(ifp);
   1515 
   1516 	splx(s);
   1517 	return (error);
   1518 }
   1519 
   1520 /*
   1521  * dge_intr:
   1522  *
   1523  *	Interrupt service routine.
   1524  */
   1525 static int
   1526 dge_intr(void *arg)
   1527 {
   1528 	struct dge_softc *sc = arg;
   1529 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1530 	uint32_t icr;
   1531 	int wantinit, handled = 0;
   1532 
   1533 	for (wantinit = 0; wantinit == 0;) {
   1534 		icr = CSR_READ(sc, DGE_ICR);
   1535 		if ((icr & sc->sc_icr) == 0)
   1536 			break;
   1537 
   1538 		rnd_add_uint32(&sc->rnd_source, icr);
   1539 
   1540 		handled = 1;
   1541 
   1542 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1543 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1544 			DPRINTF(DGE_DEBUG_RX,
   1545 			    ("%s: RX: got Rx intr 0x%08x\n",
   1546 			    device_xname(sc->sc_dev),
   1547 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1548 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1549 		}
   1550 #endif
   1551 		dge_rxintr(sc);
   1552 
   1553 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1554 		if (icr & ICR_TXDW) {
   1555 			DPRINTF(DGE_DEBUG_TX,
   1556 			    ("%s: TX: got TXDW interrupt\n",
   1557 			    device_xname(sc->sc_dev)));
   1558 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
   1559 		}
   1560 		if (icr & ICR_TXQE)
   1561 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
   1562 #endif
   1563 		dge_txintr(sc);
   1564 
   1565 		if (icr & (ICR_LSC|ICR_RXSEQ)) {
   1566 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
   1567 			dge_linkintr(sc, icr);
   1568 		}
   1569 
   1570 		if (icr & ICR_RXO) {
   1571 			printf("%s: Receive overrun\n", device_xname(sc->sc_dev));
   1572 			wantinit = 1;
   1573 		}
   1574 	}
   1575 
   1576 	if (handled) {
   1577 		if (wantinit)
   1578 			dge_init(ifp);
   1579 
   1580 		/* Try to get more packets going. */
   1581 		dge_start(ifp);
   1582 	}
   1583 
   1584 	return (handled);
   1585 }
   1586 
   1587 /*
   1588  * dge_txintr:
   1589  *
   1590  *	Helper; handle transmit interrupts.
   1591  */
   1592 static void
   1593 dge_txintr(struct dge_softc *sc)
   1594 {
   1595 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1596 	struct dge_txsoft *txs;
   1597 	uint8_t status;
   1598 	int i;
   1599 
   1600 	ifp->if_flags &= ~IFF_OACTIVE;
   1601 
   1602 	/*
   1603 	 * Go through the Tx list and free mbufs for those
   1604 	 * frames which have been transmitted.
   1605 	 */
   1606 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
   1607 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
   1608 		txs = &sc->sc_txsoft[i];
   1609 
   1610 		DPRINTF(DGE_DEBUG_TX,
   1611 		    ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
   1612 
   1613 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1614 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1615 
   1616 		status =
   1617 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
   1618 		if ((status & TDESC_STA_DD) == 0) {
   1619 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1620 			    BUS_DMASYNC_PREREAD);
   1621 			break;
   1622 		}
   1623 
   1624 		DPRINTF(DGE_DEBUG_TX,
   1625 		    ("%s: TX: job %d done: descs %d..%d\n",
   1626 		    device_xname(sc->sc_dev), i, txs->txs_firstdesc,
   1627 		    txs->txs_lastdesc));
   1628 
   1629 		ifp->if_opackets++;
   1630 		sc->sc_txfree += txs->txs_ndesc;
   1631 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1632 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1633 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1634 		m_freem(txs->txs_mbuf);
   1635 		txs->txs_mbuf = NULL;
   1636 	}
   1637 
   1638 	/* Update the dirty transmit buffer pointer. */
   1639 	sc->sc_txsdirty = i;
   1640 	DPRINTF(DGE_DEBUG_TX,
   1641 	    ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
   1642 
   1643 	/*
   1644 	 * If there are no more pending transmissions, cancel the watchdog
   1645 	 * timer.
   1646 	 */
   1647 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
   1648 		ifp->if_timer = 0;
   1649 }
   1650 
   1651 /*
   1652  * dge_rxintr:
   1653  *
   1654  *	Helper; handle receive interrupts.
   1655  */
   1656 static void
   1657 dge_rxintr(struct dge_softc *sc)
   1658 {
   1659 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1660 	struct dge_rxsoft *rxs;
   1661 	struct mbuf *m;
   1662 	int i, len;
   1663 	uint8_t status, errors;
   1664 
   1665 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
   1666 		rxs = &sc->sc_rxsoft[i];
   1667 
   1668 		DPRINTF(DGE_DEBUG_RX,
   1669 		    ("%s: RX: checking descriptor %d\n",
   1670 		    device_xname(sc->sc_dev), i));
   1671 
   1672 		DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1673 
   1674 		status = sc->sc_rxdescs[i].dr_status;
   1675 		errors = sc->sc_rxdescs[i].dr_errors;
   1676 		len = le16toh(sc->sc_rxdescs[i].dr_len);
   1677 
   1678 		if ((status & RDESC_STS_DD) == 0) {
   1679 			/*
   1680 			 * We have processed all of the receive descriptors.
   1681 			 */
   1682 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1683 			break;
   1684 		}
   1685 
   1686 		if (__predict_false(sc->sc_rxdiscard)) {
   1687 			DPRINTF(DGE_DEBUG_RX,
   1688 			    ("%s: RX: discarding contents of descriptor %d\n",
   1689 			    device_xname(sc->sc_dev), i));
   1690 			DGE_INIT_RXDESC(sc, i);
   1691 			if (status & RDESC_STS_EOP) {
   1692 				/* Reset our state. */
   1693 				DPRINTF(DGE_DEBUG_RX,
   1694 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1695 				    device_xname(sc->sc_dev)));
   1696 				sc->sc_rxdiscard = 0;
   1697 			}
   1698 			continue;
   1699 		}
   1700 
   1701 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1702 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1703 
   1704 		m = rxs->rxs_mbuf;
   1705 
   1706 		/*
   1707 		 * Add a new receive buffer to the ring.
   1708 		 */
   1709 		if (dge_add_rxbuf(sc, i) != 0) {
   1710 			/*
   1711 			 * Failed, throw away what we've done so
   1712 			 * far, and discard the rest of the packet.
   1713 			 */
   1714 			ifp->if_ierrors++;
   1715 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1716 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1717 			DGE_INIT_RXDESC(sc, i);
   1718 			if ((status & RDESC_STS_EOP) == 0)
   1719 				sc->sc_rxdiscard = 1;
   1720 			if (sc->sc_rxhead != NULL)
   1721 				m_freem(sc->sc_rxhead);
   1722 			DGE_RXCHAIN_RESET(sc);
   1723 			DPRINTF(DGE_DEBUG_RX,
   1724 			    ("%s: RX: Rx buffer allocation failed, "
   1725 			    "dropping packet%s\n", device_xname(sc->sc_dev),
   1726 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1727 			continue;
   1728 		}
   1729 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
   1730 
   1731 		DGE_RXCHAIN_LINK(sc, m);
   1732 
   1733 		m->m_len = len;
   1734 
   1735 		DPRINTF(DGE_DEBUG_RX,
   1736 		    ("%s: RX: buffer at %p len %d\n",
   1737 		    device_xname(sc->sc_dev), m->m_data, len));
   1738 
   1739 		/*
   1740 		 * If this is not the end of the packet, keep
   1741 		 * looking.
   1742 		 */
   1743 		if ((status & RDESC_STS_EOP) == 0) {
   1744 			sc->sc_rxlen += len;
   1745 			DPRINTF(DGE_DEBUG_RX,
   1746 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1747 			    device_xname(sc->sc_dev), sc->sc_rxlen));
   1748 			continue;
   1749 		}
   1750 
   1751 		/*
   1752 		 * Okay, we have the entire packet now...
   1753 		 */
   1754 		*sc->sc_rxtailp = NULL;
   1755 		m = sc->sc_rxhead;
   1756 		len += sc->sc_rxlen;
   1757 
   1758 		DGE_RXCHAIN_RESET(sc);
   1759 
   1760 		DPRINTF(DGE_DEBUG_RX,
   1761 		    ("%s: RX: have entire packet, len -> %d\n",
   1762 		    device_xname(sc->sc_dev), len));
   1763 
   1764 		/*
   1765 		 * If an error occurred, update stats and drop the packet.
   1766 		 */
   1767 		if (errors &
   1768 		     (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
   1769 			ifp->if_ierrors++;
   1770 			if (errors & RDESC_ERR_SE)
   1771 				printf("%s: symbol error\n",
   1772 				    device_xname(sc->sc_dev));
   1773 			else if (errors & RDESC_ERR_P)
   1774 				printf("%s: parity error\n",
   1775 				    device_xname(sc->sc_dev));
   1776 			else if (errors & RDESC_ERR_CE)
   1777 				printf("%s: CRC error\n",
   1778 				    device_xname(sc->sc_dev));
   1779 			m_freem(m);
   1780 			continue;
   1781 		}
   1782 
   1783 		/*
   1784 		 * No errors.  Receive the packet.
   1785 		 */
   1786 		m_set_rcvif(m, ifp);
   1787 		m->m_pkthdr.len = len;
   1788 
   1789 		/*
   1790 		 * Set up checksum info for this packet.
   1791 		 */
   1792 		if (status & RDESC_STS_IPCS) {
   1793 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1794 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1795 			if (errors & RDESC_ERR_IPE)
   1796 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1797 		}
   1798 		if (status & RDESC_STS_TCPCS) {
   1799 			/*
   1800 			 * Note: we don't know if this was TCP or UDP,
   1801 			 * so we just set both bits, and expect the
   1802 			 * upper layers to deal.
   1803 			 */
   1804 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1805 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1806 			if (errors & RDESC_ERR_TCPE)
   1807 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1808 		}
   1809 
   1810 		ifp->if_ipackets++;
   1811 
   1812 		/* Pass this up to any BPF listeners. */
   1813 		bpf_mtap(ifp, m);
   1814 
   1815 		/* Pass it on. */
   1816 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1817 	}
   1818 
   1819 	/* Update the receive pointer. */
   1820 	sc->sc_rxptr = i;
   1821 
   1822 	DPRINTF(DGE_DEBUG_RX,
   1823 	    ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
   1824 }
   1825 
   1826 /*
   1827  * dge_linkintr:
   1828  *
   1829  *	Helper; handle link interrupts.
   1830  */
   1831 static void
   1832 dge_linkintr(struct dge_softc *sc, uint32_t icr)
   1833 {
   1834 	uint32_t status;
   1835 
   1836 	if (icr & ICR_LSC) {
   1837 		status = CSR_READ(sc, DGE_STATUS);
   1838 		if (status & STATUS_LINKUP) {
   1839 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
   1840 			    device_xname(sc->sc_dev)));
   1841 		} else {
   1842 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1843 			    device_xname(sc->sc_dev)));
   1844 		}
   1845 	} else if (icr & ICR_RXSEQ) {
   1846 		DPRINTF(DGE_DEBUG_LINK,
   1847 		    ("%s: LINK: Receive sequence error\n",
   1848 		    device_xname(sc->sc_dev)));
   1849 	}
   1850 	/* XXX - fix errata */
   1851 }
   1852 
   1853 /*
   1854  * dge_reset:
   1855  *
   1856  *	Reset the i82597 chip.
   1857  */
   1858 static void
   1859 dge_reset(struct dge_softc *sc)
   1860 {
   1861 	int i;
   1862 
   1863 	/*
   1864 	 * Do a chip reset.
   1865 	 */
   1866 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
   1867 
   1868 	delay(10000);
   1869 
   1870 	for (i = 0; i < 1000; i++) {
   1871 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
   1872 			break;
   1873 		delay(20);
   1874 	}
   1875 
   1876 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
   1877 		printf("%s: WARNING: reset failed to complete\n",
   1878 		    device_xname(sc->sc_dev));
   1879         /*
   1880          * Reset the EEPROM logic.
   1881          * This will cause the chip to reread its default values,
   1882 	 * which doesn't happen otherwise (errata).
   1883          */
   1884         CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
   1885         delay(10000);
   1886 }
   1887 
   1888 /*
   1889  * dge_init:		[ifnet interface function]
   1890  *
   1891  *	Initialize the interface.  Must be called at splnet().
   1892  */
   1893 static int
   1894 dge_init(struct ifnet *ifp)
   1895 {
   1896 	struct dge_softc *sc = ifp->if_softc;
   1897 	struct dge_rxsoft *rxs;
   1898 	int i, error = 0;
   1899 	uint32_t reg;
   1900 
   1901 	/*
   1902 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   1903 	 * There is a small but measurable benefit to avoiding the adjusment
   1904 	 * of the descriptor so that the headers are aligned, for normal mtu,
   1905 	 * on such platforms.  One possibility is that the DMA itself is
   1906 	 * slightly more efficient if the front of the entire packet (instead
   1907 	 * of the front of the headers) is aligned.
   1908 	 *
   1909 	 * Note we must always set align_tweak to 0 if we are using
   1910 	 * jumbo frames.
   1911 	 */
   1912 #ifdef __NO_STRICT_ALIGNMENT
   1913 	sc->sc_align_tweak = 0;
   1914 #else
   1915 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   1916 		sc->sc_align_tweak = 0;
   1917 	else
   1918 		sc->sc_align_tweak = 2;
   1919 #endif /* __NO_STRICT_ALIGNMENT */
   1920 
   1921 	/* Cancel any pending I/O. */
   1922 	dge_stop(ifp, 0);
   1923 
   1924 	/* Reset the chip to a known state. */
   1925 	dge_reset(sc);
   1926 
   1927 	/* Initialize the transmit descriptor ring. */
   1928 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1929 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
   1930 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1931 	sc->sc_txfree = DGE_NTXDESC;
   1932 	sc->sc_txnext = 0;
   1933 
   1934 	sc->sc_txctx_ipcs = 0xffffffff;
   1935 	sc->sc_txctx_tucs = 0xffffffff;
   1936 
   1937 	CSR_WRITE(sc, DGE_TDBAH, 0);
   1938 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
   1939 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
   1940 	CSR_WRITE(sc, DGE_TDH, 0);
   1941 	CSR_WRITE(sc, DGE_TDT, 0);
   1942 	CSR_WRITE(sc, DGE_TIDV, TIDV);
   1943 
   1944 #if 0
   1945 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
   1946 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1947 #endif
   1948 	CSR_WRITE(sc, DGE_RXDCTL,
   1949 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
   1950 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
   1951 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
   1952 
   1953 	/* Initialize the transmit job descriptors. */
   1954 	for (i = 0; i < DGE_TXQUEUELEN; i++)
   1955 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1956 	sc->sc_txsfree = DGE_TXQUEUELEN;
   1957 	sc->sc_txsnext = 0;
   1958 	sc->sc_txsdirty = 0;
   1959 
   1960 	/*
   1961 	 * Initialize the receive descriptor and receive job
   1962 	 * descriptor rings.
   1963 	 */
   1964 	CSR_WRITE(sc, DGE_RDBAH, 0);
   1965 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
   1966 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
   1967 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
   1968 	CSR_WRITE(sc, DGE_RDT, 0);
   1969 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
   1970 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
   1971 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
   1972 
   1973 	for (i = 0; i < DGE_NRXDESC; i++) {
   1974 		rxs = &sc->sc_rxsoft[i];
   1975 		if (rxs->rxs_mbuf == NULL) {
   1976 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
   1977 				printf("%s: unable to allocate or map rx "
   1978 				    "buffer %d, error = %d\n",
   1979 				    device_xname(sc->sc_dev), i, error);
   1980 				/*
   1981 				 * XXX Should attempt to run with fewer receive
   1982 				 * XXX buffers instead of just failing.
   1983 				 */
   1984 				dge_rxdrain(sc);
   1985 				goto out;
   1986 			}
   1987 		}
   1988 		DGE_INIT_RXDESC(sc, i);
   1989 	}
   1990 	sc->sc_rxptr = DGE_RXSPACE;
   1991 	sc->sc_rxdiscard = 0;
   1992 	DGE_RXCHAIN_RESET(sc);
   1993 
   1994 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
   1995 		sc->sc_ctrl0 |= CTRL0_JFE;
   1996 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
   1997 	}
   1998 
   1999 	/* Write the control registers. */
   2000 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
   2001 
   2002 	/*
   2003 	 * Set up checksum offload parameters.
   2004 	 */
   2005 	reg = CSR_READ(sc, DGE_RXCSUM);
   2006 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   2007 		reg |= RXCSUM_IPOFL;
   2008 	else
   2009 		reg &= ~RXCSUM_IPOFL;
   2010 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   2011 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   2012 	else {
   2013 		reg &= ~RXCSUM_TUOFL;
   2014 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
   2015 			reg &= ~RXCSUM_IPOFL;
   2016 	}
   2017 	CSR_WRITE(sc, DGE_RXCSUM, reg);
   2018 
   2019 	/*
   2020 	 * Set up the interrupt registers.
   2021 	 */
   2022 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
   2023 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   2024 	    ICR_RXO | ICR_RXT0;
   2025 
   2026 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
   2027 
   2028 	/*
   2029 	 * Set up the transmit control register.
   2030 	 */
   2031 	sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
   2032 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
   2033 
   2034 	/*
   2035 	 * Set up the receive control register; we actually program
   2036 	 * the register when we set the receive filter.  Use multicast
   2037 	 * address offset type 0.
   2038 	 */
   2039 	sc->sc_mchash_type = 0;
   2040 
   2041 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
   2042 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
   2043 
   2044 #ifdef DGE_OFFBYONE_RXBUG
   2045 	sc->sc_rctl |= RCTL_BSIZE_16k;
   2046 #else
   2047 	switch(MCLBYTES) {
   2048 	case 2048:
   2049 		sc->sc_rctl |= RCTL_BSIZE_2k;
   2050 		break;
   2051 	case 4096:
   2052 		sc->sc_rctl |= RCTL_BSIZE_4k;
   2053 		break;
   2054 	case 8192:
   2055 		sc->sc_rctl |= RCTL_BSIZE_8k;
   2056 		break;
   2057 	case 16384:
   2058 		sc->sc_rctl |= RCTL_BSIZE_16k;
   2059 		break;
   2060 	default:
   2061 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
   2062 	}
   2063 #endif
   2064 
   2065 	/* Set the receive filter. */
   2066 	/* Also sets RCTL */
   2067 	dge_set_filter(sc);
   2068 
   2069 	/* ...all done! */
   2070 	ifp->if_flags |= IFF_RUNNING;
   2071 	ifp->if_flags &= ~IFF_OACTIVE;
   2072 
   2073  out:
   2074 	if (error)
   2075 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   2076 	return (error);
   2077 }
   2078 
   2079 /*
   2080  * dge_rxdrain:
   2081  *
   2082  *	Drain the receive queue.
   2083  */
   2084 static void
   2085 dge_rxdrain(struct dge_softc *sc)
   2086 {
   2087 	struct dge_rxsoft *rxs;
   2088 	int i;
   2089 
   2090 	for (i = 0; i < DGE_NRXDESC; i++) {
   2091 		rxs = &sc->sc_rxsoft[i];
   2092 		if (rxs->rxs_mbuf != NULL) {
   2093 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2094 			m_freem(rxs->rxs_mbuf);
   2095 			rxs->rxs_mbuf = NULL;
   2096 		}
   2097 	}
   2098 }
   2099 
   2100 /*
   2101  * dge_stop:		[ifnet interface function]
   2102  *
   2103  *	Stop transmission on the interface.
   2104  */
   2105 static void
   2106 dge_stop(struct ifnet *ifp, int disable)
   2107 {
   2108 	struct dge_softc *sc = ifp->if_softc;
   2109 	struct dge_txsoft *txs;
   2110 	int i;
   2111 
   2112 	/* Stop the transmit and receive processes. */
   2113 	CSR_WRITE(sc, DGE_TCTL, 0);
   2114 	CSR_WRITE(sc, DGE_RCTL, 0);
   2115 
   2116 	/* Release any queued transmit buffers. */
   2117 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
   2118 		txs = &sc->sc_txsoft[i];
   2119 		if (txs->txs_mbuf != NULL) {
   2120 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2121 			m_freem(txs->txs_mbuf);
   2122 			txs->txs_mbuf = NULL;
   2123 		}
   2124 	}
   2125 
   2126 	/* Mark the interface as down and cancel the watchdog timer. */
   2127 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2128 	ifp->if_timer = 0;
   2129 
   2130 	if (disable)
   2131 		dge_rxdrain(sc);
   2132 }
   2133 
   2134 /*
   2135  * dge_add_rxbuf:
   2136  *
   2137  *	Add a receive buffer to the indiciated descriptor.
   2138  */
   2139 static int
   2140 dge_add_rxbuf(struct dge_softc *sc, int idx)
   2141 {
   2142 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2143 	struct mbuf *m;
   2144 	int error;
   2145 #ifdef DGE_OFFBYONE_RXBUG
   2146 	void *buf;
   2147 #endif
   2148 
   2149 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2150 	if (m == NULL)
   2151 		return (ENOBUFS);
   2152 
   2153 #ifdef DGE_OFFBYONE_RXBUG
   2154 	if ((buf = dge_getbuf(sc)) == NULL)
   2155 		return ENOBUFS;
   2156 
   2157 	m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
   2158 	MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
   2159 	m->m_flags |= M_EXT_RW;
   2160 
   2161 	if (rxs->rxs_mbuf != NULL)
   2162 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2163 	rxs->rxs_mbuf = m;
   2164 
   2165 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
   2166 	    DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
   2167 #else
   2168 	MCLGET(m, M_DONTWAIT);
   2169 	if ((m->m_flags & M_EXT) == 0) {
   2170 		m_freem(m);
   2171 		return (ENOBUFS);
   2172 	}
   2173 
   2174 	if (rxs->rxs_mbuf != NULL)
   2175 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2176 
   2177 	rxs->rxs_mbuf = m;
   2178 
   2179 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2180 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   2181 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2182 #endif
   2183 	if (error) {
   2184 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2185 		    device_xname(sc->sc_dev), idx, error);
   2186 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
   2187 	}
   2188 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2189 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2190 
   2191 	return (0);
   2192 }
   2193 
   2194 /*
   2195  * dge_set_ral:
   2196  *
   2197  *	Set an entry in the receive address list.
   2198  */
   2199 static void
   2200 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
   2201 {
   2202 	uint32_t ral_lo, ral_hi;
   2203 
   2204 	if (enaddr != NULL) {
   2205 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2206 		    (enaddr[3] << 24);
   2207 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2208 		ral_hi |= RAH_AV;
   2209 	} else {
   2210 		ral_lo = 0;
   2211 		ral_hi = 0;
   2212 	}
   2213 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
   2214 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
   2215 }
   2216 
   2217 /*
   2218  * dge_mchash:
   2219  *
   2220  *	Compute the hash of the multicast address for the 4096-bit
   2221  *	multicast filter.
   2222  */
   2223 static uint32_t
   2224 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
   2225 {
   2226 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2227 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2228 	uint32_t hash;
   2229 
   2230 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2231 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2232 
   2233 	return (hash & 0xfff);
   2234 }
   2235 
   2236 /*
   2237  * dge_set_filter:
   2238  *
   2239  *	Set up the receive filter.
   2240  */
   2241 static void
   2242 dge_set_filter(struct dge_softc *sc)
   2243 {
   2244 	struct ethercom *ec = &sc->sc_ethercom;
   2245 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2246 	struct ether_multi *enm;
   2247 	struct ether_multistep step;
   2248 	uint32_t hash, reg, bit;
   2249 	int i;
   2250 
   2251 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2252 
   2253 	if (ifp->if_flags & IFF_BROADCAST)
   2254 		sc->sc_rctl |= RCTL_BAM;
   2255 	if (ifp->if_flags & IFF_PROMISC) {
   2256 		sc->sc_rctl |= RCTL_UPE;
   2257 		goto allmulti;
   2258 	}
   2259 
   2260 	/*
   2261 	 * Set the station address in the first RAL slot, and
   2262 	 * clear the remaining slots.
   2263 	 */
   2264 	dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
   2265 	for (i = 1; i < RA_TABSIZE; i++)
   2266 		dge_set_ral(sc, NULL, i);
   2267 
   2268 	/* Clear out the multicast table. */
   2269 	for (i = 0; i < MC_TABSIZE; i++)
   2270 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
   2271 
   2272 	ETHER_FIRST_MULTI(step, ec, enm);
   2273 	while (enm != NULL) {
   2274 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2275 			/*
   2276 			 * We must listen to a range of multicast addresses.
   2277 			 * For now, just accept all multicasts, rather than
   2278 			 * trying to set only those filter bits needed to match
   2279 			 * the range.  (At this time, the only use of address
   2280 			 * ranges is for IP multicast routing, for which the
   2281 			 * range is big enough to require all bits set.)
   2282 			 */
   2283 			goto allmulti;
   2284 		}
   2285 
   2286 		hash = dge_mchash(sc, enm->enm_addrlo);
   2287 
   2288 		reg = (hash >> 5) & 0x7f;
   2289 		bit = hash & 0x1f;
   2290 
   2291 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
   2292 		hash |= 1U << bit;
   2293 
   2294 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
   2295 
   2296 		ETHER_NEXT_MULTI(step, enm);
   2297 	}
   2298 
   2299 	ifp->if_flags &= ~IFF_ALLMULTI;
   2300 	goto setit;
   2301 
   2302  allmulti:
   2303 	ifp->if_flags |= IFF_ALLMULTI;
   2304 	sc->sc_rctl |= RCTL_MPE;
   2305 
   2306  setit:
   2307 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
   2308 }
   2309 
   2310 /*
   2311  * Read in the EEPROM info and verify checksum.
   2312  */
   2313 int
   2314 dge_read_eeprom(struct dge_softc *sc)
   2315 {
   2316 	uint16_t cksum;
   2317 	int i;
   2318 
   2319 	cksum = 0;
   2320 	for (i = 0; i < EEPROM_SIZE; i++) {
   2321 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
   2322 		cksum += sc->sc_eeprom[i];
   2323 	}
   2324 	return cksum != EEPROM_CKSUM;
   2325 }
   2326 
   2327 
   2328 /*
   2329  * Read a 16-bit word from address addr in the serial EEPROM.
   2330  */
   2331 uint16_t
   2332 dge_eeprom_word(struct dge_softc *sc, int addr)
   2333 {
   2334 	uint32_t reg;
   2335 	uint16_t rval = 0;
   2336 	int i;
   2337 
   2338 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
   2339 
   2340 	/* Lower clock pulse (and data in to chip) */
   2341 	CSR_WRITE(sc, DGE_EECD, reg);
   2342 	/* Select chip */
   2343 	CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
   2344 
   2345 	/* Send read command */
   2346 	dge_eeprom_clockout(sc, 1);
   2347 	dge_eeprom_clockout(sc, 1);
   2348 	dge_eeprom_clockout(sc, 0);
   2349 
   2350 	/* Send address */
   2351 	for (i = 5; i >= 0; i--)
   2352 		dge_eeprom_clockout(sc, (addr >> i) & 1);
   2353 
   2354 	/* Read data */
   2355 	for (i = 0; i < 16; i++) {
   2356 		rval <<= 1;
   2357 		rval |= dge_eeprom_clockin(sc);
   2358 	}
   2359 
   2360 	/* Deselect chip */
   2361 	CSR_WRITE(sc, DGE_EECD, reg);
   2362 
   2363 	return rval;
   2364 }
   2365 
   2366 /*
   2367  * Clock out a single bit to the EEPROM.
   2368  */
   2369 void
   2370 dge_eeprom_clockout(struct dge_softc *sc, int bit)
   2371 {
   2372 	int reg;
   2373 
   2374 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
   2375 	if (bit)
   2376 		reg |= EECD_DI;
   2377 
   2378 	CSR_WRITE(sc, DGE_EECD, reg);
   2379 	delay(2);
   2380 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
   2381 	delay(2);
   2382 	CSR_WRITE(sc, DGE_EECD, reg);
   2383 	delay(2);
   2384 }
   2385 
   2386 /*
   2387  * Clock in a single bit from EEPROM.
   2388  */
   2389 int
   2390 dge_eeprom_clockin(struct dge_softc *sc)
   2391 {
   2392 	int reg, rv;
   2393 
   2394 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
   2395 
   2396 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
   2397 	delay(2);
   2398 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
   2399 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
   2400 	delay(2);
   2401 
   2402 	return rv;
   2403 }
   2404 
   2405 static void
   2406 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2407 {
   2408 	struct dge_softc *sc = ifp->if_softc;
   2409 
   2410 	ifmr->ifm_status = IFM_AVALID;
   2411 	if (sc->sc_dgep->dgep_flags & DGEP_F_10G_SR ) {
   2412 		ifmr->ifm_active = IFM_ETHER|IFM_10G_SR;
   2413 	} else {
   2414 		ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
   2415 	}
   2416 
   2417 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
   2418 		ifmr->ifm_status |= IFM_ACTIVE;
   2419 }
   2420 
   2421 static inline int
   2422 phwait(struct dge_softc *sc, int p, int r, int d, int type)
   2423 {
   2424         int i, mdic;
   2425 
   2426         CSR_WRITE(sc, DGE_MDIO,
   2427 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
   2428         for (i = 0; i < 10; i++) {
   2429                 delay(10);
   2430                 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
   2431                         break;
   2432         }
   2433         return mdic;
   2434 }
   2435 
   2436 static void
   2437 dge_xgmii_writereg(struct dge_softc *sc, int phy, int reg, int val)
   2438 {
   2439 	int mdic;
   2440 
   2441 	CSR_WRITE(sc, DGE_MDIRW, val);
   2442 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
   2443 		printf("%s: address cycle timeout; phy %d reg %d\n",
   2444 		    device_xname(sc->sc_dev), phy, reg);
   2445 		return;
   2446 	}
   2447 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
   2448 		printf("%s: write cycle timeout; phy %d reg %d\n",
   2449 		    device_xname(sc->sc_dev), phy, reg);
   2450 		return;
   2451 	}
   2452 }
   2453 
   2454 static void
   2455 dge_xgmii_reset(struct dge_softc *sc)
   2456 {
   2457 	dge_xgmii_writereg(sc, 0, 0, BMCR_RESET);
   2458 }
   2459 
   2460 static int
   2461 dge_xgmii_mediachange(struct ifnet *ifp)
   2462 {
   2463 	return 0;
   2464 }
   2465