if_dge.c revision 1.48 1 /* $NetBSD: if_dge.c,v 1.48 2018/06/26 06:48:01 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 * All rights reserved.
6 *
7 * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * SUNET, Swedish University Computer Network.
21 * 4. The name of SUNET may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 *
75 * TODO (in no specific order):
76 * HW VLAN support.
77 * TSE offloading (needs kernel changes...)
78 * RAIDC (receive interrupt delay adaptation)
79 * Use memory > 4GB.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.48 2018/06/26 06:48:01 msaitoh Exp $");
84
85
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/ioctl.h>
95 #include <sys/errno.h>
96 #include <sys/device.h>
97 #include <sys/queue.h>
98
99 #include <sys/rndsource.h>
100
101 #include <net/if.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_ether.h>
105
106 #include <net/bpf.h>
107
108 #include <netinet/in.h> /* XXX for struct ip */
109 #include <netinet/in_systm.h> /* XXX for struct ip */
110 #include <netinet/ip.h> /* XXX for struct ip */
111 #include <netinet/tcp.h> /* XXX for struct tcphdr */
112
113 #include <sys/bus.h>
114 #include <sys/intr.h>
115 #include <machine/endian.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119 #include <dev/mii/mii_bitbang.h>
120
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 #include <dev/pci/pcidevs.h>
124
125 #include <dev/pci/if_dgereg.h>
126
127 /*
128 * The receive engine may sometimes become off-by-one when writing back
129 * chained descriptors. Avoid this by allocating a large chunk of
130 * memory and use if instead (to avoid chained descriptors).
131 * This only happens with chained descriptors under heavy load.
132 */
133 #define DGE_OFFBYONE_RXBUG
134
135 #define DGE_EVENT_COUNTERS
136 #define DGE_DEBUG
137
138 #ifdef DGE_DEBUG
139 #define DGE_DEBUG_LINK 0x01
140 #define DGE_DEBUG_TX 0x02
141 #define DGE_DEBUG_RX 0x04
142 #define DGE_DEBUG_CKSUM 0x08
143 int dge_debug = 0;
144
145 #define DPRINTF(x, y) if (dge_debug & (x)) printf y
146 #else
147 #define DPRINTF(x, y) /* nothing */
148 #endif /* DGE_DEBUG */
149
150 /*
151 * Transmit descriptor list size. We allow up to 100 DMA segments per
152 * packet (Intel reports of jumbo frame packets with as
153 * many as 80 DMA segments when using 16k buffers).
154 */
155 #define DGE_NTXSEGS 100
156 #define DGE_IFQUEUELEN 20000
157 #define DGE_TXQUEUELEN 2048
158 #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
159 #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
160 #define DGE_NTXDESC 1024
161 #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
162 #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
163 #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
164
165 /*
166 * Receive descriptor list size.
167 * Packet is of size MCLBYTES, and for jumbo packets buffers may
168 * be chained. Due to the nature of the card (high-speed), keep this
169 * ring large. With 2k buffers the ring can store 400 jumbo packets,
170 * which at full speed will be received in just under 3ms.
171 */
172 #define DGE_NRXDESC 2048
173 #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
174 #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
175 /*
176 * # of descriptors between head and written descriptors.
177 * This is to work-around two erratas.
178 */
179 #define DGE_RXSPACE 10
180 #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
181 /*
182 * Receive descriptor fetch threshholds. These are values recommended
183 * by Intel, do not touch them unless you know what you are doing.
184 */
185 #define RXDCTL_PTHRESH_VAL 128
186 #define RXDCTL_HTHRESH_VAL 16
187 #define RXDCTL_WTHRESH_VAL 16
188
189
190 /*
191 * Tweakable parameters; default values.
192 */
193 #define FCRTH 0x30000 /* Send XOFF water mark */
194 #define FCRTL 0x28000 /* Send XON water mark */
195 #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
196 #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
197
198 /*
199 * Control structures are DMA'd to the i82597 chip. We allocate them in
200 * a single clump that maps to a single DMA segment to make serveral things
201 * easier.
202 */
203 struct dge_control_data {
204 /*
205 * The transmit descriptors.
206 */
207 struct dge_tdes wcd_txdescs[DGE_NTXDESC];
208
209 /*
210 * The receive descriptors.
211 */
212 struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
213 };
214
215 #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
216 #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
217 #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
218
219 /*
220 * The DGE interface have a higher max MTU size than normal jumbo frames.
221 */
222 #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
223
224 /*
225 * Software state for transmit jobs.
226 */
227 struct dge_txsoft {
228 struct mbuf *txs_mbuf; /* head of our mbuf chain */
229 bus_dmamap_t txs_dmamap; /* our DMA map */
230 int txs_firstdesc; /* first descriptor in packet */
231 int txs_lastdesc; /* last descriptor in packet */
232 int txs_ndesc; /* # of descriptors used */
233 };
234
235 /*
236 * Software state for receive buffers. Each descriptor gets a
237 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
238 * more than one buffer, we chain them together.
239 */
240 struct dge_rxsoft {
241 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
242 bus_dmamap_t rxs_dmamap; /* our DMA map */
243 };
244
245 /*
246 * Software state per device.
247 */
248 struct dge_softc {
249 device_t sc_dev; /* generic device information */
250 bus_space_tag_t sc_st; /* bus space tag */
251 bus_space_handle_t sc_sh; /* bus space handle */
252 bus_dma_tag_t sc_dmat; /* bus DMA tag */
253 struct ethercom sc_ethercom; /* ethernet common data */
254
255 int sc_flags; /* flags; see below */
256 int sc_bus_speed; /* PCI/PCIX bus speed */
257 int sc_pcix_offset; /* PCIX capability register offset */
258
259 const struct dge_product *sc_dgep; /* Pointer to the dge_product entry */
260 pci_chipset_tag_t sc_pc;
261 pcitag_t sc_pt;
262 int sc_mmrbc; /* Max PCIX memory read byte count */
263
264 void *sc_ih; /* interrupt cookie */
265
266 struct ifmedia sc_media;
267
268 bus_dmamap_t sc_cddmamap; /* control data DMA map */
269 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
270
271 int sc_align_tweak;
272
273 /*
274 * Software state for the transmit and receive descriptors.
275 */
276 struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
277 struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
278
279 /*
280 * Control data structures.
281 */
282 struct dge_control_data *sc_control_data;
283 #define sc_txdescs sc_control_data->wcd_txdescs
284 #define sc_rxdescs sc_control_data->wcd_rxdescs
285
286 #ifdef DGE_EVENT_COUNTERS
287 /* Event counters. */
288 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
289 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
290 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
291 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
292 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
293 struct evcnt sc_ev_rxintr; /* Rx interrupts */
294 struct evcnt sc_ev_linkintr; /* Link interrupts */
295
296 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
297 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
298 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
299 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
300
301 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
302 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
303 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
304
305 struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
306 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
307 #endif /* DGE_EVENT_COUNTERS */
308
309 int sc_txfree; /* number of free Tx descriptors */
310 int sc_txnext; /* next ready Tx descriptor */
311
312 int sc_txsfree; /* number of free Tx jobs */
313 int sc_txsnext; /* next free Tx job */
314 int sc_txsdirty; /* dirty Tx jobs */
315
316 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
317 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
318
319 int sc_rxptr; /* next ready Rx descriptor/queue ent */
320 int sc_rxdiscard;
321 int sc_rxlen;
322 struct mbuf *sc_rxhead;
323 struct mbuf *sc_rxtail;
324 struct mbuf **sc_rxtailp;
325
326 uint32_t sc_ctrl0; /* prototype CTRL0 register */
327 uint32_t sc_icr; /* prototype interrupt bits */
328 uint32_t sc_tctl; /* prototype TCTL register */
329 uint32_t sc_rctl; /* prototype RCTL register */
330
331 int sc_mchash_type; /* multicast filter offset */
332
333 uint16_t sc_eeprom[EEPROM_SIZE];
334
335 krndsource_t rnd_source; /* random source */
336 #ifdef DGE_OFFBYONE_RXBUG
337 void *sc_bugbuf;
338 SLIST_HEAD(, rxbugentry) sc_buglist;
339 bus_dmamap_t sc_bugmap;
340 struct rxbugentry *sc_entry;
341 #endif
342 };
343
344 #define DGE_RXCHAIN_RESET(sc) \
345 do { \
346 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
347 *(sc)->sc_rxtailp = NULL; \
348 (sc)->sc_rxlen = 0; \
349 } while (/*CONSTCOND*/0)
350
351 #define DGE_RXCHAIN_LINK(sc, m) \
352 do { \
353 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
354 (sc)->sc_rxtailp = &(m)->m_next; \
355 } while (/*CONSTCOND*/0)
356
357 /* sc_flags */
358 #define DGE_F_BUS64 0x20 /* bus is 64-bit */
359 #define DGE_F_PCIX 0x40 /* bus is PCI-X */
360
361 #ifdef DGE_EVENT_COUNTERS
362 #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
363 #else
364 #define DGE_EVCNT_INCR(ev) /* nothing */
365 #endif
366
367 #define CSR_READ(sc, reg) \
368 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
369 #define CSR_WRITE(sc, reg, val) \
370 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
371
372 #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
373 #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
374
375 #define DGE_CDTXSYNC(sc, x, n, ops) \
376 do { \
377 int __x, __n; \
378 \
379 __x = (x); \
380 __n = (n); \
381 \
382 /* If it will wrap around, sync to the end of the ring. */ \
383 if ((__x + __n) > DGE_NTXDESC) { \
384 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
385 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
386 (DGE_NTXDESC - __x), (ops)); \
387 __n -= (DGE_NTXDESC - __x); \
388 __x = 0; \
389 } \
390 \
391 /* Now sync whatever is left. */ \
392 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
393 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
394 } while (/*CONSTCOND*/0)
395
396 #define DGE_CDRXSYNC(sc, x, ops) \
397 do { \
398 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
399 DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
400 } while (/*CONSTCOND*/0)
401
402 #ifdef DGE_OFFBYONE_RXBUG
403 #define DGE_INIT_RXDESC(sc, x) \
404 do { \
405 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
406 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
407 struct mbuf *__m = __rxs->rxs_mbuf; \
408 \
409 __rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
410 (mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
411 __rxd->dr_baddrh = 0; \
412 __rxd->dr_len = 0; \
413 __rxd->dr_cksum = 0; \
414 __rxd->dr_status = 0; \
415 __rxd->dr_errors = 0; \
416 __rxd->dr_special = 0; \
417 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
418 \
419 CSR_WRITE((sc), DGE_RDT, (x)); \
420 } while (/*CONSTCOND*/0)
421 #else
422 #define DGE_INIT_RXDESC(sc, x) \
423 do { \
424 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
425 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
426 struct mbuf *__m = __rxs->rxs_mbuf; \
427 \
428 /* \
429 * Note: We scoot the packet forward 2 bytes in the buffer \
430 * so that the payload after the Ethernet header is aligned \
431 * to a 4-byte boundary. \
432 * \
433 * XXX BRAINDAMAGE ALERT! \
434 * The stupid chip uses the same size for every buffer, which \
435 * is set in the Receive Control register. We are using the 2K \
436 * size option, but what we REALLY want is (2K - 2)! For this \
437 * reason, we can't "scoot" packets longer than the standard \
438 * Ethernet MTU. On strict-alignment platforms, if the total \
439 * size exceeds (2K - 2) we set align_tweak to 0 and let \
440 * the upper layer copy the headers. \
441 */ \
442 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
443 \
444 __rxd->dr_baddrl = \
445 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
446 (sc)->sc_align_tweak); \
447 __rxd->dr_baddrh = 0; \
448 __rxd->dr_len = 0; \
449 __rxd->dr_cksum = 0; \
450 __rxd->dr_status = 0; \
451 __rxd->dr_errors = 0; \
452 __rxd->dr_special = 0; \
453 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
454 \
455 CSR_WRITE((sc), DGE_RDT, (x)); \
456 } while (/*CONSTCOND*/0)
457 #endif
458
459 #ifdef DGE_OFFBYONE_RXBUG
460 /*
461 * Allocation constants. Much memory may be used for this.
462 */
463 #ifndef DGE_BUFFER_SIZE
464 #define DGE_BUFFER_SIZE DGE_MAX_MTU
465 #endif
466 #define DGE_NBUFFERS (4*DGE_NRXDESC)
467 #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
468
469 struct rxbugentry {
470 SLIST_ENTRY(rxbugentry) rb_entry;
471 int rb_slot;
472 };
473
474 static int
475 dge_alloc_rcvmem(struct dge_softc *sc)
476 {
477 char *kva;
478 bus_dma_segment_t seg;
479 int i, rseg, state, error;
480 struct rxbugentry *entry;
481
482 state = error = 0;
483
484 if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
485 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
486 aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n");
487 return ENOBUFS;
488 }
489
490 state = 1;
491 if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
492 BUS_DMA_NOWAIT)) {
493 aprint_error_dev(sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
494 (int)DGE_RXMEM);
495 error = ENOBUFS;
496 goto out;
497 }
498
499 state = 2;
500 if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
501 BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
502 aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
503 error = ENOBUFS;
504 goto out;
505 }
506
507 state = 3;
508 if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
509 kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
510 aprint_error_dev(sc->sc_dev, "can't load DMA map\n");
511 error = ENOBUFS;
512 goto out;
513 }
514
515 state = 4;
516 sc->sc_bugbuf = (void *)kva;
517 SLIST_INIT(&sc->sc_buglist);
518
519 /*
520 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
521 * in an array.
522 */
523 if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
524 M_DEVBUF, M_NOWAIT)) == NULL) {
525 error = ENOBUFS;
526 goto out;
527 }
528 sc->sc_entry = entry;
529 for (i = 0; i < DGE_NBUFFERS; i++) {
530 entry[i].rb_slot = i;
531 SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
532 }
533 out:
534 if (error != 0) {
535 switch (state) {
536 case 4:
537 bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
538 case 3:
539 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
540 case 2:
541 bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
542 case 1:
543 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
544 break;
545 default:
546 break;
547 }
548 }
549
550 return error;
551 }
552
553 /*
554 * Allocate a jumbo buffer.
555 */
556 static void *
557 dge_getbuf(struct dge_softc *sc)
558 {
559 struct rxbugentry *entry;
560
561 entry = SLIST_FIRST(&sc->sc_buglist);
562
563 if (entry == NULL) {
564 printf("%s: no free RX buffers\n", device_xname(sc->sc_dev));
565 return(NULL);
566 }
567
568 SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
569 return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
570 }
571
572 /*
573 * Release a jumbo buffer.
574 */
575 static void
576 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
577 {
578 struct rxbugentry *entry;
579 struct dge_softc *sc;
580 int i, s;
581
582 /* Extract the softc struct pointer. */
583 sc = (struct dge_softc *)arg;
584
585 if (sc == NULL)
586 panic("dge_freebuf: can't find softc pointer!");
587
588 /* calculate the slot this buffer belongs to */
589
590 i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
591
592 if ((i < 0) || (i >= DGE_NBUFFERS))
593 panic("dge_freebuf: asked to free buffer %d!", i);
594
595 s = splvm();
596 entry = sc->sc_entry + i;
597 SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
598
599 if (__predict_true(m != NULL))
600 pool_cache_put(mb_cache, m);
601 splx(s);
602 }
603 #endif
604
605 static void dge_start(struct ifnet *);
606 static void dge_watchdog(struct ifnet *);
607 static int dge_ioctl(struct ifnet *, u_long, void *);
608 static int dge_init(struct ifnet *);
609 static void dge_stop(struct ifnet *, int);
610
611 static bool dge_shutdown(device_t, int);
612
613 static void dge_reset(struct dge_softc *);
614 static void dge_rxdrain(struct dge_softc *);
615 static int dge_add_rxbuf(struct dge_softc *, int);
616
617 static void dge_set_filter(struct dge_softc *);
618
619 static int dge_intr(void *);
620 static void dge_txintr(struct dge_softc *);
621 static void dge_rxintr(struct dge_softc *);
622 static void dge_linkintr(struct dge_softc *, uint32_t);
623
624 static int dge_match(device_t, cfdata_t, void *);
625 static void dge_attach(device_t, device_t, void *);
626
627 static int dge_read_eeprom(struct dge_softc *sc);
628 static int dge_eeprom_clockin(struct dge_softc *sc);
629 static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
630 static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
631 static int dge_xgmii_mediachange(struct ifnet *);
632 static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
633 static void dge_xgmii_reset(struct dge_softc *);
634 static void dge_xgmii_writereg(struct dge_softc *, int, int, int);
635
636
637 CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc),
638 dge_match, dge_attach, NULL, NULL);
639
640 #ifdef DGE_EVENT_COUNTERS
641 #if DGE_NTXSEGS > 100
642 #error Update dge_txseg_evcnt_names
643 #endif
644 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
645 #endif /* DGE_EVENT_COUNTERS */
646
647 /*
648 * Devices supported by this driver.
649 */
650 static const struct dge_product {
651 pci_vendor_id_t dgep_vendor;
652 pci_product_id_t dgep_product;
653 const char *dgep_name;
654 int dgep_flags;
655 #define DGEP_F_10G_LR 0x01
656 #define DGEP_F_10G_SR 0x02
657 } dge_products[] = {
658 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82597EX,
659 "Intel i82597EX 10GbE-LR Ethernet",
660 DGEP_F_10G_LR },
661
662 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82597EX_SR,
663 "Intel i82597EX 10GbE-SR Ethernet",
664 DGEP_F_10G_SR },
665
666 { 0, 0,
667 NULL,
668 0 },
669 };
670
671 static const struct dge_product *
672 dge_lookup(const struct pci_attach_args *pa)
673 {
674 const struct dge_product *dgep;
675
676 for (dgep = dge_products; dgep->dgep_name != NULL; dgep++) {
677 if (PCI_VENDOR(pa->pa_id) == dgep->dgep_vendor &&
678 PCI_PRODUCT(pa->pa_id) == dgep->dgep_product)
679 return dgep;
680 }
681 return NULL;
682 }
683
684 static int
685 dge_match(device_t parent, cfdata_t cf, void *aux)
686 {
687 struct pci_attach_args *pa = aux;
688
689 if (dge_lookup(pa) != NULL)
690 return (1);
691
692 return (0);
693 }
694
695 static void
696 dge_attach(device_t parent, device_t self, void *aux)
697 {
698 struct dge_softc *sc = device_private(self);
699 struct pci_attach_args *pa = aux;
700 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
701 pci_chipset_tag_t pc = pa->pa_pc;
702 pci_intr_handle_t ih;
703 const char *intrstr = NULL;
704 bus_dma_segment_t seg;
705 int i, rseg, error;
706 uint8_t enaddr[ETHER_ADDR_LEN];
707 pcireg_t preg, memtype;
708 uint32_t reg;
709 char intrbuf[PCI_INTRSTR_LEN];
710 const struct dge_product *dgep;
711
712 sc->sc_dgep = dgep = dge_lookup(pa);
713 if (dgep == NULL) {
714 printf("\n");
715 panic("dge_attach: impossible");
716 }
717
718 sc->sc_dev = self;
719 sc->sc_dmat = pa->pa_dmat;
720 sc->sc_pc = pa->pa_pc;
721 sc->sc_pt = pa->pa_tag;
722
723 pci_aprint_devinfo_fancy(pa, "Ethernet controller",
724 dgep->dgep_name, 1);
725
726 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
727 if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
728 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
729 aprint_error_dev(sc->sc_dev,
730 "unable to map device registers\n");
731 return;
732 }
733
734 /* Enable bus mastering */
735 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
736 preg |= PCI_COMMAND_MASTER_ENABLE;
737 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
738
739 /*
740 * Map and establish our interrupt.
741 */
742 if (pci_intr_map(pa, &ih)) {
743 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
744 return;
745 }
746 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
747 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
748 if (sc->sc_ih == NULL) {
749 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
750 if (intrstr != NULL)
751 aprint_error(" at %s", intrstr);
752 aprint_error("\n");
753 return;
754 }
755 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
756
757 /*
758 * Determine a few things about the bus we're connected to.
759 */
760 reg = CSR_READ(sc, DGE_STATUS);
761 if (reg & STATUS_BUS64)
762 sc->sc_flags |= DGE_F_BUS64;
763
764 sc->sc_flags |= DGE_F_PCIX;
765 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
766 PCI_CAP_PCIX,
767 &sc->sc_pcix_offset, NULL) == 0)
768 aprint_error_dev(sc->sc_dev, "unable to find PCIX "
769 "capability\n");
770
771 if (sc->sc_flags & DGE_F_PCIX) {
772 switch (reg & STATUS_PCIX_MSK) {
773 case STATUS_PCIX_66:
774 sc->sc_bus_speed = 66;
775 break;
776 case STATUS_PCIX_100:
777 sc->sc_bus_speed = 100;
778 break;
779 case STATUS_PCIX_133:
780 sc->sc_bus_speed = 133;
781 break;
782 default:
783 aprint_error_dev(sc->sc_dev,
784 "unknown PCIXSPD %d; assuming 66MHz\n",
785 reg & STATUS_PCIX_MSK);
786 sc->sc_bus_speed = 66;
787 }
788 } else
789 sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
790 aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
791 (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
792 (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
793
794 /*
795 * Allocate the control data structures, and create and load the
796 * DMA map for it.
797 */
798 if ((error = bus_dmamem_alloc(sc->sc_dmat,
799 sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
800 0)) != 0) {
801 aprint_error_dev(sc->sc_dev,
802 "unable to allocate control data, error = %d\n",
803 error);
804 goto fail_0;
805 }
806
807 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
808 sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
809 0)) != 0) {
810 aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
811 error);
812 goto fail_1;
813 }
814
815 if ((error = bus_dmamap_create(sc->sc_dmat,
816 sizeof(struct dge_control_data), 1,
817 sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
818 aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
819 "error = %d\n", error);
820 goto fail_2;
821 }
822
823 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
824 sc->sc_control_data, sizeof(struct dge_control_data), NULL,
825 0)) != 0) {
826 aprint_error_dev(sc->sc_dev,
827 "unable to load control data DMA map, error = %d\n",
828 error);
829 goto fail_3;
830 }
831
832 #ifdef DGE_OFFBYONE_RXBUG
833 if (dge_alloc_rcvmem(sc) != 0)
834 return; /* Already complained */
835 #endif
836 /*
837 * Create the transmit buffer DMA maps.
838 */
839 for (i = 0; i < DGE_TXQUEUELEN; i++) {
840 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
841 DGE_NTXSEGS, MCLBYTES, 0, 0,
842 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
843 aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, "
844 "error = %d\n", i, error);
845 goto fail_4;
846 }
847 }
848
849 /*
850 * Create the receive buffer DMA maps.
851 */
852 for (i = 0; i < DGE_NRXDESC; i++) {
853 #ifdef DGE_OFFBYONE_RXBUG
854 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
855 DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
856 #else
857 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
858 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
859 #endif
860 aprint_error_dev(sc->sc_dev, "unable to create Rx DMA map %d, "
861 "error = %d\n", i, error);
862 goto fail_5;
863 }
864 sc->sc_rxsoft[i].rxs_mbuf = NULL;
865 }
866
867 /*
868 * Set bits in ctrl0 register.
869 * Should get the software defined pins out of EEPROM?
870 */
871 sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
872 sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
873 CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
874
875 /*
876 * Reset the chip to a known state.
877 */
878 dge_reset(sc);
879
880 /*
881 * Reset the PHY.
882 */
883 dge_xgmii_reset(sc);
884
885 /*
886 * Read in EEPROM data.
887 */
888 if (dge_read_eeprom(sc)) {
889 aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n");
890 return;
891 }
892
893 /*
894 * Get the ethernet address.
895 */
896 enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
897 enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
898 enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
899 enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
900 enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
901 enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
902
903 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
904 ether_sprintf(enaddr));
905
906 /*
907 * Setup media stuff.
908 */
909 ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
910 dge_xgmii_mediastatus);
911 if (dgep->dgep_flags & DGEP_F_10G_SR) {
912 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_SR, 0, NULL);
913 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_SR);
914 } else { /* XXX default is LR */
915 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
916 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
917 }
918
919 ifp = &sc->sc_ethercom.ec_if;
920 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
921 ifp->if_softc = sc;
922 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
923 ifp->if_ioctl = dge_ioctl;
924 ifp->if_start = dge_start;
925 ifp->if_watchdog = dge_watchdog;
926 ifp->if_init = dge_init;
927 ifp->if_stop = dge_stop;
928 IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
929 IFQ_SET_READY(&ifp->if_snd);
930
931 sc->sc_ethercom.ec_capabilities |=
932 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
933
934 /*
935 * We can perform TCPv4 and UDPv4 checkums in-bound.
936 */
937 ifp->if_capabilities |=
938 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
939 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
940 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
941
942 /*
943 * Attach the interface.
944 */
945 if_attach(ifp);
946 if_deferred_start_init(ifp, NULL);
947 ether_ifattach(ifp, enaddr);
948 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
949 RND_TYPE_NET, RND_FLAG_DEFAULT);
950
951 #ifdef DGE_EVENT_COUNTERS
952 /* Fix segment event naming */
953 if (dge_txseg_evcnt_names == NULL) {
954 dge_txseg_evcnt_names =
955 malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
956 for (i = 0; i < DGE_NTXSEGS; i++)
957 snprintf((*dge_txseg_evcnt_names)[i],
958 sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
959 }
960
961 /* Attach event counters. */
962 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
963 NULL, device_xname(sc->sc_dev), "txsstall");
964 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
965 NULL, device_xname(sc->sc_dev), "txdstall");
966 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
967 NULL, device_xname(sc->sc_dev), "txforceintr");
968 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
969 NULL, device_xname(sc->sc_dev), "txdw");
970 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
971 NULL, device_xname(sc->sc_dev), "txqe");
972 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
973 NULL, device_xname(sc->sc_dev), "rxintr");
974 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
975 NULL, device_xname(sc->sc_dev), "linkintr");
976
977 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
978 NULL, device_xname(sc->sc_dev), "rxipsum");
979 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
980 NULL, device_xname(sc->sc_dev), "rxtusum");
981 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
982 NULL, device_xname(sc->sc_dev), "txipsum");
983 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
984 NULL, device_xname(sc->sc_dev), "txtusum");
985
986 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
987 NULL, device_xname(sc->sc_dev), "txctx init");
988 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
989 NULL, device_xname(sc->sc_dev), "txctx hit");
990 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
991 NULL, device_xname(sc->sc_dev), "txctx miss");
992
993 for (i = 0; i < DGE_NTXSEGS; i++)
994 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
995 NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
996
997 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
998 NULL, device_xname(sc->sc_dev), "txdrop");
999
1000 #endif /* DGE_EVENT_COUNTERS */
1001
1002 /*
1003 * Make sure the interface is shutdown during reboot.
1004 */
1005 if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
1006 pmf_class_network_register(self, ifp);
1007 else
1008 aprint_error_dev(self, "couldn't establish power handler\n");
1009
1010 return;
1011
1012 /*
1013 * Free any resources we've allocated during the failed attach
1014 * attempt. Do this in reverse order and fall through.
1015 */
1016 fail_5:
1017 for (i = 0; i < DGE_NRXDESC; i++) {
1018 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1019 bus_dmamap_destroy(sc->sc_dmat,
1020 sc->sc_rxsoft[i].rxs_dmamap);
1021 }
1022 fail_4:
1023 for (i = 0; i < DGE_TXQUEUELEN; i++) {
1024 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1025 bus_dmamap_destroy(sc->sc_dmat,
1026 sc->sc_txsoft[i].txs_dmamap);
1027 }
1028 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1029 fail_3:
1030 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1031 fail_2:
1032 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1033 sizeof(struct dge_control_data));
1034 fail_1:
1035 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1036 fail_0:
1037 return;
1038 }
1039
1040 /*
1041 * dge_shutdown:
1042 *
1043 * Make sure the interface is stopped at reboot time.
1044 */
1045 static bool
1046 dge_shutdown(device_t self, int howto)
1047 {
1048 struct dge_softc *sc;
1049
1050 sc = device_private(self);
1051 dge_stop(&sc->sc_ethercom.ec_if, 1);
1052
1053 return true;
1054 }
1055
1056 /*
1057 * dge_tx_cksum:
1058 *
1059 * Set up TCP/IP checksumming parameters for the
1060 * specified packet.
1061 */
1062 static int
1063 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1064 {
1065 struct mbuf *m0 = txs->txs_mbuf;
1066 struct dge_ctdes *t;
1067 uint32_t ipcs, tucs;
1068 struct ether_header *eh;
1069 int offset, iphl;
1070 uint8_t fields = 0;
1071
1072 /*
1073 * XXX It would be nice if the mbuf pkthdr had offset
1074 * fields for the protocol headers.
1075 */
1076
1077 eh = mtod(m0, struct ether_header *);
1078 switch (htons(eh->ether_type)) {
1079 case ETHERTYPE_IP:
1080 offset = ETHER_HDR_LEN;
1081 break;
1082
1083 case ETHERTYPE_VLAN:
1084 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1085 break;
1086
1087 default:
1088 /*
1089 * Don't support this protocol or encapsulation.
1090 */
1091 *fieldsp = 0;
1092 return (0);
1093 }
1094
1095 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1096
1097 /*
1098 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1099 * offload feature, if we load the context descriptor, we
1100 * MUST provide valid values for IPCSS and TUCSS fields.
1101 */
1102
1103 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1104 DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1105 fields |= TDESC_POPTS_IXSM;
1106 ipcs = DGE_TCPIP_IPCSS(offset) |
1107 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1108 DGE_TCPIP_IPCSE(offset + iphl - 1);
1109 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1110 /* Use the cached value. */
1111 ipcs = sc->sc_txctx_ipcs;
1112 } else {
1113 /* Just initialize it to the likely value anyway. */
1114 ipcs = DGE_TCPIP_IPCSS(offset) |
1115 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1116 DGE_TCPIP_IPCSE(offset + iphl - 1);
1117 }
1118 DPRINTF(DGE_DEBUG_CKSUM,
1119 ("%s: CKSUM: offset %d ipcs 0x%x\n",
1120 device_xname(sc->sc_dev), offset, ipcs));
1121
1122 offset += iphl;
1123
1124 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1125 DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1126 fields |= TDESC_POPTS_TXSM;
1127 tucs = DGE_TCPIP_TUCSS(offset) |
1128 DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1129 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1130 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1131 /* Use the cached value. */
1132 tucs = sc->sc_txctx_tucs;
1133 } else {
1134 /* Just initialize it to a valid TCP context. */
1135 tucs = DGE_TCPIP_TUCSS(offset) |
1136 DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1137 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1138 }
1139
1140 DPRINTF(DGE_DEBUG_CKSUM,
1141 ("%s: CKSUM: offset %d tucs 0x%x\n",
1142 device_xname(sc->sc_dev), offset, tucs));
1143
1144 if (sc->sc_txctx_ipcs == ipcs &&
1145 sc->sc_txctx_tucs == tucs) {
1146 /* Cached context is fine. */
1147 DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1148 } else {
1149 /* Fill in the context descriptor. */
1150 #ifdef DGE_EVENT_COUNTERS
1151 if (sc->sc_txctx_ipcs == 0xffffffff &&
1152 sc->sc_txctx_tucs == 0xffffffff)
1153 DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1154 else
1155 DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1156 #endif
1157 t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1158 t->dc_tcpip_ipcs = htole32(ipcs);
1159 t->dc_tcpip_tucs = htole32(tucs);
1160 t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1161 t->dc_tcpip_seg = 0;
1162 DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1163
1164 sc->sc_txctx_ipcs = ipcs;
1165 sc->sc_txctx_tucs = tucs;
1166
1167 sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1168 txs->txs_ndesc++;
1169 }
1170
1171 *fieldsp = fields;
1172
1173 return (0);
1174 }
1175
1176 /*
1177 * dge_start: [ifnet interface function]
1178 *
1179 * Start packet transmission on the interface.
1180 */
1181 static void
1182 dge_start(struct ifnet *ifp)
1183 {
1184 struct dge_softc *sc = ifp->if_softc;
1185 struct mbuf *m0;
1186 struct dge_txsoft *txs;
1187 bus_dmamap_t dmamap;
1188 int error, nexttx, lasttx = -1, ofree, seg;
1189 uint32_t cksumcmd;
1190 uint8_t cksumfields;
1191
1192 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1193 return;
1194
1195 /*
1196 * Remember the previous number of free descriptors.
1197 */
1198 ofree = sc->sc_txfree;
1199
1200 /*
1201 * Loop through the send queue, setting up transmit descriptors
1202 * until we drain the queue, or use up all available transmit
1203 * descriptors.
1204 */
1205 for (;;) {
1206 /* Grab a packet off the queue. */
1207 IFQ_POLL(&ifp->if_snd, m0);
1208 if (m0 == NULL)
1209 break;
1210
1211 DPRINTF(DGE_DEBUG_TX,
1212 ("%s: TX: have packet to transmit: %p\n",
1213 device_xname(sc->sc_dev), m0));
1214
1215 /* Get a work queue entry. */
1216 if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1217 dge_txintr(sc);
1218 if (sc->sc_txsfree == 0) {
1219 DPRINTF(DGE_DEBUG_TX,
1220 ("%s: TX: no free job descriptors\n",
1221 device_xname(sc->sc_dev)));
1222 DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1223 break;
1224 }
1225 }
1226
1227 txs = &sc->sc_txsoft[sc->sc_txsnext];
1228 dmamap = txs->txs_dmamap;
1229
1230 /*
1231 * Load the DMA map. If this fails, the packet either
1232 * didn't fit in the allotted number of segments, or we
1233 * were short on resources. For the too-many-segments
1234 * case, we simply report an error and drop the packet,
1235 * since we can't sanely copy a jumbo packet to a single
1236 * buffer.
1237 */
1238 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1239 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1240 if (error) {
1241 if (error == EFBIG) {
1242 DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1243 printf("%s: Tx packet consumes too many "
1244 "DMA segments, dropping...\n",
1245 device_xname(sc->sc_dev));
1246 IFQ_DEQUEUE(&ifp->if_snd, m0);
1247 m_freem(m0);
1248 continue;
1249 }
1250 /*
1251 * Short on resources, just stop for now.
1252 */
1253 DPRINTF(DGE_DEBUG_TX,
1254 ("%s: TX: dmamap load failed: %d\n",
1255 device_xname(sc->sc_dev), error));
1256 break;
1257 }
1258
1259 /*
1260 * Ensure we have enough descriptors free to describe
1261 * the packet. Note, we always reserve one descriptor
1262 * at the end of the ring due to the semantics of the
1263 * TDT register, plus one more in the event we need
1264 * to re-load checksum offload context.
1265 */
1266 if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1267 /*
1268 * Not enough free descriptors to transmit this
1269 * packet. We haven't committed anything yet,
1270 * so just unload the DMA map, put the packet
1271 * pack on the queue, and punt. Notify the upper
1272 * layer that there are no more slots left.
1273 */
1274 DPRINTF(DGE_DEBUG_TX,
1275 ("%s: TX: need %d descriptors, have %d\n",
1276 device_xname(sc->sc_dev), dmamap->dm_nsegs,
1277 sc->sc_txfree - 1));
1278 ifp->if_flags |= IFF_OACTIVE;
1279 bus_dmamap_unload(sc->sc_dmat, dmamap);
1280 DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1281 break;
1282 }
1283
1284 IFQ_DEQUEUE(&ifp->if_snd, m0);
1285
1286 /*
1287 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1288 */
1289
1290 /* Sync the DMA map. */
1291 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1292 BUS_DMASYNC_PREWRITE);
1293
1294 DPRINTF(DGE_DEBUG_TX,
1295 ("%s: TX: packet has %d DMA segments\n",
1296 device_xname(sc->sc_dev), dmamap->dm_nsegs));
1297
1298 DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1299
1300 /*
1301 * Store a pointer to the packet so that we can free it
1302 * later.
1303 *
1304 * Initially, we consider the number of descriptors the
1305 * packet uses the number of DMA segments. This may be
1306 * incremented by 1 if we do checksum offload (a descriptor
1307 * is used to set the checksum context).
1308 */
1309 txs->txs_mbuf = m0;
1310 txs->txs_firstdesc = sc->sc_txnext;
1311 txs->txs_ndesc = dmamap->dm_nsegs;
1312
1313 /*
1314 * Set up checksum offload parameters for
1315 * this packet.
1316 */
1317 if (m0->m_pkthdr.csum_flags &
1318 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1319 if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1320 /* Error message already displayed. */
1321 bus_dmamap_unload(sc->sc_dmat, dmamap);
1322 continue;
1323 }
1324 } else {
1325 cksumfields = 0;
1326 }
1327
1328 cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1329
1330 /*
1331 * Initialize the transmit descriptor.
1332 */
1333 for (nexttx = sc->sc_txnext, seg = 0;
1334 seg < dmamap->dm_nsegs;
1335 seg++, nexttx = DGE_NEXTTX(nexttx)) {
1336 /*
1337 * Note: we currently only use 32-bit DMA
1338 * addresses.
1339 */
1340 sc->sc_txdescs[nexttx].dt_baddrh = 0;
1341 sc->sc_txdescs[nexttx].dt_baddrl =
1342 htole32(dmamap->dm_segs[seg].ds_addr);
1343 sc->sc_txdescs[nexttx].dt_ctl =
1344 htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1345 sc->sc_txdescs[nexttx].dt_status = 0;
1346 sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1347 sc->sc_txdescs[nexttx].dt_vlan = 0;
1348 lasttx = nexttx;
1349
1350 DPRINTF(DGE_DEBUG_TX,
1351 ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1352 device_xname(sc->sc_dev), nexttx,
1353 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
1354 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
1355 }
1356
1357 KASSERT(lasttx != -1);
1358
1359 /*
1360 * Set up the command byte on the last descriptor of
1361 * the packet. If we're in the interrupt delay window,
1362 * delay the interrupt.
1363 */
1364 sc->sc_txdescs[lasttx].dt_ctl |=
1365 htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1366
1367 txs->txs_lastdesc = lasttx;
1368
1369 DPRINTF(DGE_DEBUG_TX,
1370 ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev),
1371 lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1372
1373 /* Sync the descriptors we're using. */
1374 DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1375 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1376
1377 /* Give the packet to the chip. */
1378 CSR_WRITE(sc, DGE_TDT, nexttx);
1379
1380 DPRINTF(DGE_DEBUG_TX,
1381 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
1382
1383 DPRINTF(DGE_DEBUG_TX,
1384 ("%s: TX: finished transmitting packet, job %d\n",
1385 device_xname(sc->sc_dev), sc->sc_txsnext));
1386
1387 /* Advance the tx pointer. */
1388 sc->sc_txfree -= txs->txs_ndesc;
1389 sc->sc_txnext = nexttx;
1390
1391 sc->sc_txsfree--;
1392 sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1393
1394 /* Pass the packet to any BPF listeners. */
1395 bpf_mtap(ifp, m0, BPF_D_OUT);
1396 }
1397
1398 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1399 /* No more slots; notify upper layer. */
1400 ifp->if_flags |= IFF_OACTIVE;
1401 }
1402
1403 if (sc->sc_txfree != ofree) {
1404 /* Set a watchdog timer in case the chip flakes out. */
1405 ifp->if_timer = 5;
1406 }
1407 }
1408
1409 /*
1410 * dge_watchdog: [ifnet interface function]
1411 *
1412 * Watchdog timer handler.
1413 */
1414 static void
1415 dge_watchdog(struct ifnet *ifp)
1416 {
1417 struct dge_softc *sc = ifp->if_softc;
1418
1419 /*
1420 * Since we're using delayed interrupts, sweep up
1421 * before we report an error.
1422 */
1423 dge_txintr(sc);
1424
1425 if (sc->sc_txfree != DGE_NTXDESC) {
1426 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1427 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1428 sc->sc_txnext);
1429 ifp->if_oerrors++;
1430
1431 /* Reset the interface. */
1432 (void) dge_init(ifp);
1433 }
1434
1435 /* Try to get more packets going. */
1436 dge_start(ifp);
1437 }
1438
1439 /*
1440 * dge_ioctl: [ifnet interface function]
1441 *
1442 * Handle control requests from the operator.
1443 */
1444 static int
1445 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1446 {
1447 struct dge_softc *sc = ifp->if_softc;
1448 struct ifreq *ifr = (struct ifreq *) data;
1449 pcireg_t preg;
1450 int s, error, mmrbc;
1451
1452 s = splnet();
1453
1454 switch (cmd) {
1455 case SIOCSIFMEDIA:
1456 case SIOCGIFMEDIA:
1457 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1458 break;
1459
1460 case SIOCSIFMTU:
1461 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1462 error = EINVAL;
1463 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1464 break;
1465 else if (ifp->if_flags & IFF_UP)
1466 error = (*ifp->if_init)(ifp);
1467 else
1468 error = 0;
1469 break;
1470
1471 case SIOCSIFFLAGS:
1472 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1473 break;
1474 /* extract link flags */
1475 if ((ifp->if_flags & IFF_LINK0) == 0 &&
1476 (ifp->if_flags & IFF_LINK1) == 0)
1477 mmrbc = PCIX_MMRBC_512;
1478 else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1479 (ifp->if_flags & IFF_LINK1) != 0)
1480 mmrbc = PCIX_MMRBC_1024;
1481 else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1482 (ifp->if_flags & IFF_LINK1) == 0)
1483 mmrbc = PCIX_MMRBC_2048;
1484 else
1485 mmrbc = PCIX_MMRBC_4096;
1486 if (mmrbc != sc->sc_mmrbc) {
1487 preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1488 preg &= ~PCIX_MMRBC_MSK;
1489 preg |= mmrbc;
1490 pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1491 sc->sc_mmrbc = mmrbc;
1492 }
1493 /* FALLTHROUGH */
1494 default:
1495 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1496 break;
1497
1498 error = 0;
1499
1500 if (cmd == SIOCSIFCAP)
1501 error = (*ifp->if_init)(ifp);
1502 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1503 ;
1504 else if (ifp->if_flags & IFF_RUNNING) {
1505 /*
1506 * Multicast list has changed; set the hardware filter
1507 * accordingly.
1508 */
1509 dge_set_filter(sc);
1510 }
1511 break;
1512 }
1513
1514 /* Try to get more packets going. */
1515 dge_start(ifp);
1516
1517 splx(s);
1518 return (error);
1519 }
1520
1521 /*
1522 * dge_intr:
1523 *
1524 * Interrupt service routine.
1525 */
1526 static int
1527 dge_intr(void *arg)
1528 {
1529 struct dge_softc *sc = arg;
1530 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1531 uint32_t icr;
1532 int wantinit, handled = 0;
1533
1534 for (wantinit = 0; wantinit == 0;) {
1535 icr = CSR_READ(sc, DGE_ICR);
1536 if ((icr & sc->sc_icr) == 0)
1537 break;
1538
1539 rnd_add_uint32(&sc->rnd_source, icr);
1540
1541 handled = 1;
1542
1543 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1544 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1545 DPRINTF(DGE_DEBUG_RX,
1546 ("%s: RX: got Rx intr 0x%08x\n",
1547 device_xname(sc->sc_dev),
1548 icr & (ICR_RXDMT0|ICR_RXT0)));
1549 DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1550 }
1551 #endif
1552 dge_rxintr(sc);
1553
1554 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1555 if (icr & ICR_TXDW) {
1556 DPRINTF(DGE_DEBUG_TX,
1557 ("%s: TX: got TXDW interrupt\n",
1558 device_xname(sc->sc_dev)));
1559 DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1560 }
1561 if (icr & ICR_TXQE)
1562 DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1563 #endif
1564 dge_txintr(sc);
1565
1566 if (icr & (ICR_LSC|ICR_RXSEQ)) {
1567 DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1568 dge_linkintr(sc, icr);
1569 }
1570
1571 if (icr & ICR_RXO) {
1572 printf("%s: Receive overrun\n", device_xname(sc->sc_dev));
1573 wantinit = 1;
1574 }
1575 }
1576
1577 if (handled) {
1578 if (wantinit)
1579 dge_init(ifp);
1580
1581 /* Try to get more packets going. */
1582 if_schedule_deferred_start(ifp);
1583 }
1584
1585 return (handled);
1586 }
1587
1588 /*
1589 * dge_txintr:
1590 *
1591 * Helper; handle transmit interrupts.
1592 */
1593 static void
1594 dge_txintr(struct dge_softc *sc)
1595 {
1596 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1597 struct dge_txsoft *txs;
1598 uint8_t status;
1599 int i;
1600
1601 ifp->if_flags &= ~IFF_OACTIVE;
1602
1603 /*
1604 * Go through the Tx list and free mbufs for those
1605 * frames which have been transmitted.
1606 */
1607 for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1608 i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1609 txs = &sc->sc_txsoft[i];
1610
1611 DPRINTF(DGE_DEBUG_TX,
1612 ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
1613
1614 DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1615 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1616
1617 status =
1618 sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1619 if ((status & TDESC_STA_DD) == 0) {
1620 DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1621 BUS_DMASYNC_PREREAD);
1622 break;
1623 }
1624
1625 DPRINTF(DGE_DEBUG_TX,
1626 ("%s: TX: job %d done: descs %d..%d\n",
1627 device_xname(sc->sc_dev), i, txs->txs_firstdesc,
1628 txs->txs_lastdesc));
1629
1630 ifp->if_opackets++;
1631 sc->sc_txfree += txs->txs_ndesc;
1632 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1633 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1634 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1635 m_freem(txs->txs_mbuf);
1636 txs->txs_mbuf = NULL;
1637 }
1638
1639 /* Update the dirty transmit buffer pointer. */
1640 sc->sc_txsdirty = i;
1641 DPRINTF(DGE_DEBUG_TX,
1642 ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
1643
1644 /*
1645 * If there are no more pending transmissions, cancel the watchdog
1646 * timer.
1647 */
1648 if (sc->sc_txsfree == DGE_TXQUEUELEN)
1649 ifp->if_timer = 0;
1650 }
1651
1652 /*
1653 * dge_rxintr:
1654 *
1655 * Helper; handle receive interrupts.
1656 */
1657 static void
1658 dge_rxintr(struct dge_softc *sc)
1659 {
1660 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1661 struct dge_rxsoft *rxs;
1662 struct mbuf *m;
1663 int i, len;
1664 uint8_t status, errors;
1665
1666 for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1667 rxs = &sc->sc_rxsoft[i];
1668
1669 DPRINTF(DGE_DEBUG_RX,
1670 ("%s: RX: checking descriptor %d\n",
1671 device_xname(sc->sc_dev), i));
1672
1673 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1674
1675 status = sc->sc_rxdescs[i].dr_status;
1676 errors = sc->sc_rxdescs[i].dr_errors;
1677 len = le16toh(sc->sc_rxdescs[i].dr_len);
1678
1679 if ((status & RDESC_STS_DD) == 0) {
1680 /*
1681 * We have processed all of the receive descriptors.
1682 */
1683 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1684 break;
1685 }
1686
1687 if (__predict_false(sc->sc_rxdiscard)) {
1688 DPRINTF(DGE_DEBUG_RX,
1689 ("%s: RX: discarding contents of descriptor %d\n",
1690 device_xname(sc->sc_dev), i));
1691 DGE_INIT_RXDESC(sc, i);
1692 if (status & RDESC_STS_EOP) {
1693 /* Reset our state. */
1694 DPRINTF(DGE_DEBUG_RX,
1695 ("%s: RX: resetting rxdiscard -> 0\n",
1696 device_xname(sc->sc_dev)));
1697 sc->sc_rxdiscard = 0;
1698 }
1699 continue;
1700 }
1701
1702 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1703 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1704
1705 m = rxs->rxs_mbuf;
1706
1707 /*
1708 * Add a new receive buffer to the ring.
1709 */
1710 if (dge_add_rxbuf(sc, i) != 0) {
1711 /*
1712 * Failed, throw away what we've done so
1713 * far, and discard the rest of the packet.
1714 */
1715 ifp->if_ierrors++;
1716 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1717 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1718 DGE_INIT_RXDESC(sc, i);
1719 if ((status & RDESC_STS_EOP) == 0)
1720 sc->sc_rxdiscard = 1;
1721 if (sc->sc_rxhead != NULL)
1722 m_freem(sc->sc_rxhead);
1723 DGE_RXCHAIN_RESET(sc);
1724 DPRINTF(DGE_DEBUG_RX,
1725 ("%s: RX: Rx buffer allocation failed, "
1726 "dropping packet%s\n", device_xname(sc->sc_dev),
1727 sc->sc_rxdiscard ? " (discard)" : ""));
1728 continue;
1729 }
1730 DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1731
1732 DGE_RXCHAIN_LINK(sc, m);
1733
1734 m->m_len = len;
1735
1736 DPRINTF(DGE_DEBUG_RX,
1737 ("%s: RX: buffer at %p len %d\n",
1738 device_xname(sc->sc_dev), m->m_data, len));
1739
1740 /*
1741 * If this is not the end of the packet, keep
1742 * looking.
1743 */
1744 if ((status & RDESC_STS_EOP) == 0) {
1745 sc->sc_rxlen += len;
1746 DPRINTF(DGE_DEBUG_RX,
1747 ("%s: RX: not yet EOP, rxlen -> %d\n",
1748 device_xname(sc->sc_dev), sc->sc_rxlen));
1749 continue;
1750 }
1751
1752 /*
1753 * Okay, we have the entire packet now...
1754 */
1755 *sc->sc_rxtailp = NULL;
1756 m = sc->sc_rxhead;
1757 len += sc->sc_rxlen;
1758
1759 DGE_RXCHAIN_RESET(sc);
1760
1761 DPRINTF(DGE_DEBUG_RX,
1762 ("%s: RX: have entire packet, len -> %d\n",
1763 device_xname(sc->sc_dev), len));
1764
1765 /*
1766 * If an error occurred, update stats and drop the packet.
1767 */
1768 if (errors &
1769 (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
1770 ifp->if_ierrors++;
1771 if (errors & RDESC_ERR_SE)
1772 printf("%s: symbol error\n",
1773 device_xname(sc->sc_dev));
1774 else if (errors & RDESC_ERR_P)
1775 printf("%s: parity error\n",
1776 device_xname(sc->sc_dev));
1777 else if (errors & RDESC_ERR_CE)
1778 printf("%s: CRC error\n",
1779 device_xname(sc->sc_dev));
1780 m_freem(m);
1781 continue;
1782 }
1783
1784 /*
1785 * No errors. Receive the packet.
1786 */
1787 m_set_rcvif(m, ifp);
1788 m->m_pkthdr.len = len;
1789
1790 /*
1791 * Set up checksum info for this packet.
1792 */
1793 if (status & RDESC_STS_IPCS) {
1794 DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1795 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1796 if (errors & RDESC_ERR_IPE)
1797 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1798 }
1799 if (status & RDESC_STS_TCPCS) {
1800 /*
1801 * Note: we don't know if this was TCP or UDP,
1802 * so we just set both bits, and expect the
1803 * upper layers to deal.
1804 */
1805 DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1806 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
1807 if (errors & RDESC_ERR_TCPE)
1808 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1809 }
1810
1811 /* Pass it on. */
1812 if_percpuq_enqueue(ifp->if_percpuq, m);
1813 }
1814
1815 /* Update the receive pointer. */
1816 sc->sc_rxptr = i;
1817
1818 DPRINTF(DGE_DEBUG_RX,
1819 ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
1820 }
1821
1822 /*
1823 * dge_linkintr:
1824 *
1825 * Helper; handle link interrupts.
1826 */
1827 static void
1828 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1829 {
1830 uint32_t status;
1831
1832 if (icr & ICR_LSC) {
1833 status = CSR_READ(sc, DGE_STATUS);
1834 if (status & STATUS_LINKUP) {
1835 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1836 device_xname(sc->sc_dev)));
1837 } else {
1838 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1839 device_xname(sc->sc_dev)));
1840 }
1841 } else if (icr & ICR_RXSEQ) {
1842 DPRINTF(DGE_DEBUG_LINK,
1843 ("%s: LINK: Receive sequence error\n",
1844 device_xname(sc->sc_dev)));
1845 }
1846 /* XXX - fix errata */
1847 }
1848
1849 /*
1850 * dge_reset:
1851 *
1852 * Reset the i82597 chip.
1853 */
1854 static void
1855 dge_reset(struct dge_softc *sc)
1856 {
1857 int i;
1858
1859 /*
1860 * Do a chip reset.
1861 */
1862 CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1863
1864 delay(10000);
1865
1866 for (i = 0; i < 1000; i++) {
1867 if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1868 break;
1869 delay(20);
1870 }
1871
1872 if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1873 printf("%s: WARNING: reset failed to complete\n",
1874 device_xname(sc->sc_dev));
1875 /*
1876 * Reset the EEPROM logic.
1877 * This will cause the chip to reread its default values,
1878 * which doesn't happen otherwise (errata).
1879 */
1880 CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1881 delay(10000);
1882 }
1883
1884 /*
1885 * dge_init: [ifnet interface function]
1886 *
1887 * Initialize the interface. Must be called at splnet().
1888 */
1889 static int
1890 dge_init(struct ifnet *ifp)
1891 {
1892 struct dge_softc *sc = ifp->if_softc;
1893 struct dge_rxsoft *rxs;
1894 int i, error = 0;
1895 uint32_t reg;
1896
1897 /*
1898 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1899 * There is a small but measurable benefit to avoiding the adjusment
1900 * of the descriptor so that the headers are aligned, for normal mtu,
1901 * on such platforms. One possibility is that the DMA itself is
1902 * slightly more efficient if the front of the entire packet (instead
1903 * of the front of the headers) is aligned.
1904 *
1905 * Note we must always set align_tweak to 0 if we are using
1906 * jumbo frames.
1907 */
1908 #ifdef __NO_STRICT_ALIGNMENT
1909 sc->sc_align_tweak = 0;
1910 #else
1911 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1912 sc->sc_align_tweak = 0;
1913 else
1914 sc->sc_align_tweak = 2;
1915 #endif /* __NO_STRICT_ALIGNMENT */
1916
1917 /* Cancel any pending I/O. */
1918 dge_stop(ifp, 0);
1919
1920 /* Reset the chip to a known state. */
1921 dge_reset(sc);
1922
1923 /* Initialize the transmit descriptor ring. */
1924 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1925 DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1926 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1927 sc->sc_txfree = DGE_NTXDESC;
1928 sc->sc_txnext = 0;
1929
1930 sc->sc_txctx_ipcs = 0xffffffff;
1931 sc->sc_txctx_tucs = 0xffffffff;
1932
1933 CSR_WRITE(sc, DGE_TDBAH, 0);
1934 CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1935 CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1936 CSR_WRITE(sc, DGE_TDH, 0);
1937 CSR_WRITE(sc, DGE_TDT, 0);
1938 CSR_WRITE(sc, DGE_TIDV, TIDV);
1939
1940 #if 0
1941 CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1942 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1943 #endif
1944 CSR_WRITE(sc, DGE_RXDCTL,
1945 RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1946 RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1947 RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1948
1949 /* Initialize the transmit job descriptors. */
1950 for (i = 0; i < DGE_TXQUEUELEN; i++)
1951 sc->sc_txsoft[i].txs_mbuf = NULL;
1952 sc->sc_txsfree = DGE_TXQUEUELEN;
1953 sc->sc_txsnext = 0;
1954 sc->sc_txsdirty = 0;
1955
1956 /*
1957 * Initialize the receive descriptor and receive job
1958 * descriptor rings.
1959 */
1960 CSR_WRITE(sc, DGE_RDBAH, 0);
1961 CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1962 CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1963 CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1964 CSR_WRITE(sc, DGE_RDT, 0);
1965 CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1966 CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1967 CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1968
1969 for (i = 0; i < DGE_NRXDESC; i++) {
1970 rxs = &sc->sc_rxsoft[i];
1971 if (rxs->rxs_mbuf == NULL) {
1972 if ((error = dge_add_rxbuf(sc, i)) != 0) {
1973 printf("%s: unable to allocate or map rx "
1974 "buffer %d, error = %d\n",
1975 device_xname(sc->sc_dev), i, error);
1976 /*
1977 * XXX Should attempt to run with fewer receive
1978 * XXX buffers instead of just failing.
1979 */
1980 dge_rxdrain(sc);
1981 goto out;
1982 }
1983 }
1984 DGE_INIT_RXDESC(sc, i);
1985 }
1986 sc->sc_rxptr = DGE_RXSPACE;
1987 sc->sc_rxdiscard = 0;
1988 DGE_RXCHAIN_RESET(sc);
1989
1990 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1991 sc->sc_ctrl0 |= CTRL0_JFE;
1992 CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1993 }
1994
1995 /* Write the control registers. */
1996 CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1997
1998 /*
1999 * Set up checksum offload parameters.
2000 */
2001 reg = CSR_READ(sc, DGE_RXCSUM);
2002 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2003 reg |= RXCSUM_IPOFL;
2004 else
2005 reg &= ~RXCSUM_IPOFL;
2006 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2007 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2008 else {
2009 reg &= ~RXCSUM_TUOFL;
2010 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2011 reg &= ~RXCSUM_IPOFL;
2012 }
2013 CSR_WRITE(sc, DGE_RXCSUM, reg);
2014
2015 /*
2016 * Set up the interrupt registers.
2017 */
2018 CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
2019 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2020 ICR_RXO | ICR_RXT0;
2021
2022 CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
2023
2024 /*
2025 * Set up the transmit control register.
2026 */
2027 sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
2028 CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
2029
2030 /*
2031 * Set up the receive control register; we actually program
2032 * the register when we set the receive filter. Use multicast
2033 * address offset type 0.
2034 */
2035 sc->sc_mchash_type = 0;
2036
2037 sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2038 RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2039
2040 #ifdef DGE_OFFBYONE_RXBUG
2041 sc->sc_rctl |= RCTL_BSIZE_16k;
2042 #else
2043 switch(MCLBYTES) {
2044 case 2048:
2045 sc->sc_rctl |= RCTL_BSIZE_2k;
2046 break;
2047 case 4096:
2048 sc->sc_rctl |= RCTL_BSIZE_4k;
2049 break;
2050 case 8192:
2051 sc->sc_rctl |= RCTL_BSIZE_8k;
2052 break;
2053 case 16384:
2054 sc->sc_rctl |= RCTL_BSIZE_16k;
2055 break;
2056 default:
2057 panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2058 }
2059 #endif
2060
2061 /* Set the receive filter. */
2062 /* Also sets RCTL */
2063 dge_set_filter(sc);
2064
2065 /* ...all done! */
2066 ifp->if_flags |= IFF_RUNNING;
2067 ifp->if_flags &= ~IFF_OACTIVE;
2068
2069 out:
2070 if (error)
2071 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2072 return (error);
2073 }
2074
2075 /*
2076 * dge_rxdrain:
2077 *
2078 * Drain the receive queue.
2079 */
2080 static void
2081 dge_rxdrain(struct dge_softc *sc)
2082 {
2083 struct dge_rxsoft *rxs;
2084 int i;
2085
2086 for (i = 0; i < DGE_NRXDESC; i++) {
2087 rxs = &sc->sc_rxsoft[i];
2088 if (rxs->rxs_mbuf != NULL) {
2089 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2090 m_freem(rxs->rxs_mbuf);
2091 rxs->rxs_mbuf = NULL;
2092 }
2093 }
2094 }
2095
2096 /*
2097 * dge_stop: [ifnet interface function]
2098 *
2099 * Stop transmission on the interface.
2100 */
2101 static void
2102 dge_stop(struct ifnet *ifp, int disable)
2103 {
2104 struct dge_softc *sc = ifp->if_softc;
2105 struct dge_txsoft *txs;
2106 int i;
2107
2108 /* Stop the transmit and receive processes. */
2109 CSR_WRITE(sc, DGE_TCTL, 0);
2110 CSR_WRITE(sc, DGE_RCTL, 0);
2111
2112 /* Release any queued transmit buffers. */
2113 for (i = 0; i < DGE_TXQUEUELEN; i++) {
2114 txs = &sc->sc_txsoft[i];
2115 if (txs->txs_mbuf != NULL) {
2116 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2117 m_freem(txs->txs_mbuf);
2118 txs->txs_mbuf = NULL;
2119 }
2120 }
2121
2122 /* Mark the interface as down and cancel the watchdog timer. */
2123 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2124 ifp->if_timer = 0;
2125
2126 if (disable)
2127 dge_rxdrain(sc);
2128 }
2129
2130 /*
2131 * dge_add_rxbuf:
2132 *
2133 * Add a receive buffer to the indiciated descriptor.
2134 */
2135 static int
2136 dge_add_rxbuf(struct dge_softc *sc, int idx)
2137 {
2138 struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2139 struct mbuf *m;
2140 int error;
2141 #ifdef DGE_OFFBYONE_RXBUG
2142 void *buf;
2143 #endif
2144
2145 MGETHDR(m, M_DONTWAIT, MT_DATA);
2146 if (m == NULL)
2147 return (ENOBUFS);
2148
2149 #ifdef DGE_OFFBYONE_RXBUG
2150 if ((buf = dge_getbuf(sc)) == NULL)
2151 return ENOBUFS;
2152
2153 m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2154 MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2155 m->m_flags |= M_EXT_RW;
2156
2157 if (rxs->rxs_mbuf != NULL)
2158 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2159 rxs->rxs_mbuf = m;
2160
2161 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2162 DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
2163 #else
2164 MCLGET(m, M_DONTWAIT);
2165 if ((m->m_flags & M_EXT) == 0) {
2166 m_freem(m);
2167 return (ENOBUFS);
2168 }
2169
2170 if (rxs->rxs_mbuf != NULL)
2171 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2172
2173 rxs->rxs_mbuf = m;
2174
2175 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2176 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2177 BUS_DMA_READ|BUS_DMA_NOWAIT);
2178 #endif
2179 if (error) {
2180 printf("%s: unable to load rx DMA map %d, error = %d\n",
2181 device_xname(sc->sc_dev), idx, error);
2182 panic("dge_add_rxbuf"); /* XXX XXX XXX */
2183 }
2184 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2185 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2186
2187 return (0);
2188 }
2189
2190 /*
2191 * dge_set_ral:
2192 *
2193 * Set an entry in the receive address list.
2194 */
2195 static void
2196 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2197 {
2198 uint32_t ral_lo, ral_hi;
2199
2200 if (enaddr != NULL) {
2201 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2202 (enaddr[3] << 24);
2203 ral_hi = enaddr[4] | (enaddr[5] << 8);
2204 ral_hi |= RAH_AV;
2205 } else {
2206 ral_lo = 0;
2207 ral_hi = 0;
2208 }
2209 CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2210 CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2211 }
2212
2213 /*
2214 * dge_mchash:
2215 *
2216 * Compute the hash of the multicast address for the 4096-bit
2217 * multicast filter.
2218 */
2219 static uint32_t
2220 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2221 {
2222 static const int lo_shift[4] = { 4, 3, 2, 0 };
2223 static const int hi_shift[4] = { 4, 5, 6, 8 };
2224 uint32_t hash;
2225
2226 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2227 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2228
2229 return (hash & 0xfff);
2230 }
2231
2232 /*
2233 * dge_set_filter:
2234 *
2235 * Set up the receive filter.
2236 */
2237 static void
2238 dge_set_filter(struct dge_softc *sc)
2239 {
2240 struct ethercom *ec = &sc->sc_ethercom;
2241 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2242 struct ether_multi *enm;
2243 struct ether_multistep step;
2244 uint32_t hash, reg, bit;
2245 int i;
2246
2247 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2248
2249 if (ifp->if_flags & IFF_BROADCAST)
2250 sc->sc_rctl |= RCTL_BAM;
2251 if (ifp->if_flags & IFF_PROMISC) {
2252 sc->sc_rctl |= RCTL_UPE;
2253 goto allmulti;
2254 }
2255
2256 /*
2257 * Set the station address in the first RAL slot, and
2258 * clear the remaining slots.
2259 */
2260 dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2261 for (i = 1; i < RA_TABSIZE; i++)
2262 dge_set_ral(sc, NULL, i);
2263
2264 /* Clear out the multicast table. */
2265 for (i = 0; i < MC_TABSIZE; i++)
2266 CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2267
2268 ETHER_FIRST_MULTI(step, ec, enm);
2269 while (enm != NULL) {
2270 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2271 /*
2272 * We must listen to a range of multicast addresses.
2273 * For now, just accept all multicasts, rather than
2274 * trying to set only those filter bits needed to match
2275 * the range. (At this time, the only use of address
2276 * ranges is for IP multicast routing, for which the
2277 * range is big enough to require all bits set.)
2278 */
2279 goto allmulti;
2280 }
2281
2282 hash = dge_mchash(sc, enm->enm_addrlo);
2283
2284 reg = (hash >> 5) & 0x7f;
2285 bit = hash & 0x1f;
2286
2287 hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2288 hash |= 1U << bit;
2289
2290 CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2291
2292 ETHER_NEXT_MULTI(step, enm);
2293 }
2294
2295 ifp->if_flags &= ~IFF_ALLMULTI;
2296 goto setit;
2297
2298 allmulti:
2299 ifp->if_flags |= IFF_ALLMULTI;
2300 sc->sc_rctl |= RCTL_MPE;
2301
2302 setit:
2303 CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2304 }
2305
2306 /*
2307 * Read in the EEPROM info and verify checksum.
2308 */
2309 int
2310 dge_read_eeprom(struct dge_softc *sc)
2311 {
2312 uint16_t cksum;
2313 int i;
2314
2315 cksum = 0;
2316 for (i = 0; i < EEPROM_SIZE; i++) {
2317 sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2318 cksum += sc->sc_eeprom[i];
2319 }
2320 return cksum != EEPROM_CKSUM;
2321 }
2322
2323
2324 /*
2325 * Read a 16-bit word from address addr in the serial EEPROM.
2326 */
2327 uint16_t
2328 dge_eeprom_word(struct dge_softc *sc, int addr)
2329 {
2330 uint32_t reg;
2331 uint16_t rval = 0;
2332 int i;
2333
2334 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
2335
2336 /* Lower clock pulse (and data in to chip) */
2337 CSR_WRITE(sc, DGE_EECD, reg);
2338 /* Select chip */
2339 CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
2340
2341 /* Send read command */
2342 dge_eeprom_clockout(sc, 1);
2343 dge_eeprom_clockout(sc, 1);
2344 dge_eeprom_clockout(sc, 0);
2345
2346 /* Send address */
2347 for (i = 5; i >= 0; i--)
2348 dge_eeprom_clockout(sc, (addr >> i) & 1);
2349
2350 /* Read data */
2351 for (i = 0; i < 16; i++) {
2352 rval <<= 1;
2353 rval |= dge_eeprom_clockin(sc);
2354 }
2355
2356 /* Deselect chip */
2357 CSR_WRITE(sc, DGE_EECD, reg);
2358
2359 return rval;
2360 }
2361
2362 /*
2363 * Clock out a single bit to the EEPROM.
2364 */
2365 void
2366 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2367 {
2368 int reg;
2369
2370 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
2371 if (bit)
2372 reg |= EECD_DI;
2373
2374 CSR_WRITE(sc, DGE_EECD, reg);
2375 delay(2);
2376 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
2377 delay(2);
2378 CSR_WRITE(sc, DGE_EECD, reg);
2379 delay(2);
2380 }
2381
2382 /*
2383 * Clock in a single bit from EEPROM.
2384 */
2385 int
2386 dge_eeprom_clockin(struct dge_softc *sc)
2387 {
2388 int reg, rv;
2389
2390 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
2391
2392 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
2393 delay(2);
2394 rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2395 CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2396 delay(2);
2397
2398 return rv;
2399 }
2400
2401 static void
2402 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2403 {
2404 struct dge_softc *sc = ifp->if_softc;
2405
2406 ifmr->ifm_status = IFM_AVALID;
2407 if (sc->sc_dgep->dgep_flags & DGEP_F_10G_SR ) {
2408 ifmr->ifm_active = IFM_ETHER|IFM_10G_SR;
2409 } else {
2410 ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
2411 }
2412
2413 if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2414 ifmr->ifm_status |= IFM_ACTIVE;
2415 }
2416
2417 static inline int
2418 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2419 {
2420 int i, mdic;
2421
2422 CSR_WRITE(sc, DGE_MDIO,
2423 MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2424 for (i = 0; i < 10; i++) {
2425 delay(10);
2426 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2427 break;
2428 }
2429 return mdic;
2430 }
2431
2432 static void
2433 dge_xgmii_writereg(struct dge_softc *sc, int phy, int reg, int val)
2434 {
2435 int mdic;
2436
2437 CSR_WRITE(sc, DGE_MDIRW, val);
2438 if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2439 printf("%s: address cycle timeout; phy %d reg %d\n",
2440 device_xname(sc->sc_dev), phy, reg);
2441 return;
2442 }
2443 if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2444 printf("%s: write cycle timeout; phy %d reg %d\n",
2445 device_xname(sc->sc_dev), phy, reg);
2446 return;
2447 }
2448 }
2449
2450 static void
2451 dge_xgmii_reset(struct dge_softc *sc)
2452 {
2453 dge_xgmii_writereg(sc, 0, 0, BMCR_RESET);
2454 }
2455
2456 static int
2457 dge_xgmii_mediachange(struct ifnet *ifp)
2458 {
2459 return 0;
2460 }
2461