if_dge.c revision 1.48.2.2 1 /* $NetBSD: if_dge.c,v 1.48.2.2 2020/04/08 14:08:09 martin Exp $ */
2
3 /*
4 * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 * All rights reserved.
6 *
7 * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * SUNET, Swedish University Computer Network.
21 * 4. The name of SUNET may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 *
75 * TODO (in no specific order):
76 * HW VLAN support.
77 * TSE offloading (needs kernel changes...)
78 * RAIDC (receive interrupt delay adaptation)
79 * Use memory > 4GB.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.48.2.2 2020/04/08 14:08:09 martin Exp $");
84
85
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/ioctl.h>
95 #include <sys/errno.h>
96 #include <sys/device.h>
97 #include <sys/queue.h>
98 #include <sys/rndsource.h>
99
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_ether.h>
104 #include <net/bpf.h>
105
106 #include <netinet/in.h> /* XXX for struct ip */
107 #include <netinet/in_systm.h> /* XXX for struct ip */
108 #include <netinet/ip.h> /* XXX for struct ip */
109 #include <netinet/tcp.h> /* XXX for struct tcphdr */
110
111 #include <sys/bus.h>
112 #include <sys/intr.h>
113 #include <machine/endian.h>
114
115 #include <dev/mii/mii.h>
116 #include <dev/mii/miivar.h>
117 #include <dev/mii/mii_bitbang.h>
118
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 #include <dev/pci/pcidevs.h>
122
123 #include <dev/pci/if_dgereg.h>
124
125 /*
126 * The receive engine may sometimes become off-by-one when writing back
127 * chained descriptors. Avoid this by allocating a large chunk of
128 * memory and use if instead (to avoid chained descriptors).
129 * This only happens with chained descriptors under heavy load.
130 */
131 #define DGE_OFFBYONE_RXBUG
132
133 #define DGE_EVENT_COUNTERS
134 #define DGE_DEBUG
135
136 #ifdef DGE_DEBUG
137 #define DGE_DEBUG_LINK 0x01
138 #define DGE_DEBUG_TX 0x02
139 #define DGE_DEBUG_RX 0x04
140 #define DGE_DEBUG_CKSUM 0x08
141 int dge_debug = 0;
142
143 #define DPRINTF(x, y) if (dge_debug & (x)) printf y
144 #else
145 #define DPRINTF(x, y) /* nothing */
146 #endif /* DGE_DEBUG */
147
148 /*
149 * Transmit descriptor list size. We allow up to 100 DMA segments per
150 * packet (Intel reports of jumbo frame packets with as
151 * many as 80 DMA segments when using 16k buffers).
152 */
153 #define DGE_NTXSEGS 100
154 #define DGE_IFQUEUELEN 20000
155 #define DGE_TXQUEUELEN 2048
156 #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
157 #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
158 #define DGE_NTXDESC 1024
159 #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
160 #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
161 #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
162
163 /*
164 * Receive descriptor list size.
165 * Packet is of size MCLBYTES, and for jumbo packets buffers may
166 * be chained. Due to the nature of the card (high-speed), keep this
167 * ring large. With 2k buffers the ring can store 400 jumbo packets,
168 * which at full speed will be received in just under 3ms.
169 */
170 #define DGE_NRXDESC 2048
171 #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
172 #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
173 /*
174 * # of descriptors between head and written descriptors.
175 * This is to work-around two erratas.
176 */
177 #define DGE_RXSPACE 10
178 #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
179 /*
180 * Receive descriptor fetch threshholds. These are values recommended
181 * by Intel, do not touch them unless you know what you are doing.
182 */
183 #define RXDCTL_PTHRESH_VAL 128
184 #define RXDCTL_HTHRESH_VAL 16
185 #define RXDCTL_WTHRESH_VAL 16
186
187
188 /*
189 * Tweakable parameters; default values.
190 */
191 #define FCRTH 0x30000 /* Send XOFF water mark */
192 #define FCRTL 0x28000 /* Send XON water mark */
193 #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
194 #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
195
196 /*
197 * Control structures are DMA'd to the i82597 chip. We allocate them in
198 * a single clump that maps to a single DMA segment to make serveral things
199 * easier.
200 */
201 struct dge_control_data {
202 /*
203 * The transmit descriptors.
204 */
205 struct dge_tdes wcd_txdescs[DGE_NTXDESC];
206
207 /*
208 * The receive descriptors.
209 */
210 struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
211 };
212
213 #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
214 #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
215 #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
216
217 /*
218 * The DGE interface have a higher max MTU size than normal jumbo frames.
219 */
220 #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
221
222 /*
223 * Software state for transmit jobs.
224 */
225 struct dge_txsoft {
226 struct mbuf *txs_mbuf; /* head of our mbuf chain */
227 bus_dmamap_t txs_dmamap; /* our DMA map */
228 int txs_firstdesc; /* first descriptor in packet */
229 int txs_lastdesc; /* last descriptor in packet */
230 int txs_ndesc; /* # of descriptors used */
231 };
232
233 /*
234 * Software state for receive buffers. Each descriptor gets a
235 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
236 * more than one buffer, we chain them together.
237 */
238 struct dge_rxsoft {
239 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
240 bus_dmamap_t rxs_dmamap; /* our DMA map */
241 };
242
243 /*
244 * Software state per device.
245 */
246 struct dge_softc {
247 device_t sc_dev; /* generic device information */
248 bus_space_tag_t sc_st; /* bus space tag */
249 bus_space_handle_t sc_sh; /* bus space handle */
250 bus_dma_tag_t sc_dmat; /* bus DMA tag */
251 struct ethercom sc_ethercom; /* ethernet common data */
252
253 int sc_flags; /* flags; see below */
254 int sc_bus_speed; /* PCI/PCIX bus speed */
255 int sc_pcix_offset; /* PCIX capability register offset */
256
257 const struct dge_product *sc_dgep; /* Pointer to the dge_product entry */
258 pci_chipset_tag_t sc_pc;
259 pcitag_t sc_pt;
260 int sc_mmrbc; /* Max PCIX memory read byte count */
261
262 void *sc_ih; /* interrupt cookie */
263
264 struct ifmedia sc_media;
265
266 bus_dmamap_t sc_cddmamap; /* control data DMA map */
267 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
268
269 int sc_align_tweak;
270
271 /*
272 * Software state for the transmit and receive descriptors.
273 */
274 struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
275 struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
276
277 /*
278 * Control data structures.
279 */
280 struct dge_control_data *sc_control_data;
281 #define sc_txdescs sc_control_data->wcd_txdescs
282 #define sc_rxdescs sc_control_data->wcd_rxdescs
283
284 #ifdef DGE_EVENT_COUNTERS
285 /* Event counters. */
286 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
287 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
288 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
289 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
290 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
291 struct evcnt sc_ev_rxintr; /* Rx interrupts */
292 struct evcnt sc_ev_linkintr; /* Link interrupts */
293
294 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
295 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
296 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
297 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
298
299 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
300 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
301 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
302
303 struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
304 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
305 #endif /* DGE_EVENT_COUNTERS */
306
307 int sc_txfree; /* number of free Tx descriptors */
308 int sc_txnext; /* next ready Tx descriptor */
309
310 int sc_txsfree; /* number of free Tx jobs */
311 int sc_txsnext; /* next free Tx job */
312 int sc_txsdirty; /* dirty Tx jobs */
313
314 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
315 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
316
317 int sc_rxptr; /* next ready Rx descriptor/queue ent */
318 int sc_rxdiscard;
319 int sc_rxlen;
320 struct mbuf *sc_rxhead;
321 struct mbuf *sc_rxtail;
322 struct mbuf **sc_rxtailp;
323
324 uint32_t sc_ctrl0; /* prototype CTRL0 register */
325 uint32_t sc_icr; /* prototype interrupt bits */
326 uint32_t sc_tctl; /* prototype TCTL register */
327 uint32_t sc_rctl; /* prototype RCTL register */
328
329 int sc_mchash_type; /* multicast filter offset */
330
331 uint16_t sc_eeprom[EEPROM_SIZE];
332
333 krndsource_t rnd_source; /* random source */
334 #ifdef DGE_OFFBYONE_RXBUG
335 void *sc_bugbuf;
336 SLIST_HEAD(, rxbugentry) sc_buglist;
337 bus_dmamap_t sc_bugmap;
338 struct rxbugentry *sc_entry;
339 #endif
340 };
341
342 #define DGE_RXCHAIN_RESET(sc) \
343 do { \
344 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
345 *(sc)->sc_rxtailp = NULL; \
346 (sc)->sc_rxlen = 0; \
347 } while (/*CONSTCOND*/0)
348
349 #define DGE_RXCHAIN_LINK(sc, m) \
350 do { \
351 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
352 (sc)->sc_rxtailp = &(m)->m_next; \
353 } while (/*CONSTCOND*/0)
354
355 /* sc_flags */
356 #define DGE_F_BUS64 0x20 /* bus is 64-bit */
357 #define DGE_F_PCIX 0x40 /* bus is PCI-X */
358
359 #ifdef DGE_EVENT_COUNTERS
360 #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
361 #else
362 #define DGE_EVCNT_INCR(ev) /* nothing */
363 #endif
364
365 #define CSR_READ(sc, reg) \
366 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
367 #define CSR_WRITE(sc, reg, val) \
368 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
369
370 #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
371 #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
372
373 #define DGE_CDTXSYNC(sc, x, n, ops) \
374 do { \
375 int __x, __n; \
376 \
377 __x = (x); \
378 __n = (n); \
379 \
380 /* If it will wrap around, sync to the end of the ring. */ \
381 if ((__x + __n) > DGE_NTXDESC) { \
382 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
383 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
384 (DGE_NTXDESC - __x), (ops)); \
385 __n -= (DGE_NTXDESC - __x); \
386 __x = 0; \
387 } \
388 \
389 /* Now sync whatever is left. */ \
390 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
391 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
392 } while (/*CONSTCOND*/0)
393
394 #define DGE_CDRXSYNC(sc, x, ops) \
395 do { \
396 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
397 DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
398 } while (/*CONSTCOND*/0)
399
400 #ifdef DGE_OFFBYONE_RXBUG
401 #define DGE_INIT_RXDESC(sc, x) \
402 do { \
403 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
404 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
405 struct mbuf *__m = __rxs->rxs_mbuf; \
406 const bus_addr_t __rxaddr = sc->sc_bugmap->dm_segs[0].ds_addr + \
407 (mtod((__m), char *) - (char *)sc->sc_bugbuf); \
408 \
409 __rxd->dr_baddrl = htole32(__rxaddr); \
410 __rxd->dr_baddrh = htole32(((uint64_t)__rxaddr) >> 32); \
411 __rxd->dr_len = 0; \
412 __rxd->dr_cksum = 0; \
413 __rxd->dr_status = 0; \
414 __rxd->dr_errors = 0; \
415 __rxd->dr_special = 0; \
416 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
417 \
418 CSR_WRITE((sc), DGE_RDT, (x)); \
419 } while (/*CONSTCOND*/0)
420 #else
421 #define DGE_INIT_RXDESC(sc, x) \
422 do { \
423 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
424 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
425 struct mbuf *__m = __rxs->rxs_mbuf; \
426 \
427 /* \
428 * Note: We scoot the packet forward 2 bytes in the buffer \
429 * so that the payload after the Ethernet header is aligned \
430 * to a 4-byte boundary. \
431 * \
432 * XXX BRAINDAMAGE ALERT! \
433 * The stupid chip uses the same size for every buffer, which \
434 * is set in the Receive Control register. We are using the 2K \
435 * size option, but what we REALLY want is (2K - 2)! For this \
436 * reason, we can't "scoot" packets longer than the standard \
437 * Ethernet MTU. On strict-alignment platforms, if the total \
438 * size exceeds (2K - 2) we set align_tweak to 0 and let \
439 * the upper layer copy the headers. \
440 */ \
441 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
442 \
443 const bus_addr_t __rxaddr = \
444 __rxs->rxs_dmamap->dm_segs[0].ds_addr + \
445 (sc)->sc_align_tweak; \
446 \
447 __rxd->dr_baddrl = htole32(__rxaddr); \
448 __rxd->dr_baddrh = htole32(((uint64_t)__rxaddr) >> 32); \
449 __rxd->dr_len = 0; \
450 __rxd->dr_cksum = 0; \
451 __rxd->dr_status = 0; \
452 __rxd->dr_errors = 0; \
453 __rxd->dr_special = 0; \
454 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
455 \
456 CSR_WRITE((sc), DGE_RDT, (x)); \
457 } while (/*CONSTCOND*/0)
458 #endif
459
460 #ifdef DGE_OFFBYONE_RXBUG
461 /*
462 * Allocation constants. Much memory may be used for this.
463 */
464 #ifndef DGE_BUFFER_SIZE
465 #define DGE_BUFFER_SIZE DGE_MAX_MTU
466 #endif
467 #define DGE_NBUFFERS (4*DGE_NRXDESC)
468 #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
469
470 struct rxbugentry {
471 SLIST_ENTRY(rxbugentry) rb_entry;
472 int rb_slot;
473 };
474
475 static int
476 dge_alloc_rcvmem(struct dge_softc *sc)
477 {
478 char *kva;
479 bus_dma_segment_t seg;
480 int i, rseg, state, error;
481 struct rxbugentry *entry;
482
483 state = error = 0;
484
485 if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
486 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
487 aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n");
488 return ENOBUFS;
489 }
490
491 state = 1;
492 if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
493 BUS_DMA_NOWAIT)) {
494 aprint_error_dev(sc->sc_dev,
495 "can't map DMA buffers (%d bytes)\n", (int)DGE_RXMEM);
496 error = ENOBUFS;
497 goto out;
498 }
499
500 state = 2;
501 if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
502 BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
503 aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
504 error = ENOBUFS;
505 goto out;
506 }
507
508 state = 3;
509 if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
510 kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
511 aprint_error_dev(sc->sc_dev, "can't load DMA map\n");
512 error = ENOBUFS;
513 goto out;
514 }
515
516 state = 4;
517 sc->sc_bugbuf = (void *)kva;
518 SLIST_INIT(&sc->sc_buglist);
519
520 /*
521 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
522 * in an array.
523 */
524 if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
525 M_DEVBUF, M_NOWAIT)) == NULL) {
526 error = ENOBUFS;
527 goto out;
528 }
529 sc->sc_entry = entry;
530 for (i = 0; i < DGE_NBUFFERS; i++) {
531 entry[i].rb_slot = i;
532 SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
533 }
534 out:
535 if (error != 0) {
536 switch (state) {
537 case 4:
538 bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
539 /* FALLTHROUGH */
540 case 3:
541 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
542 /* FALLTHROUGH */
543 case 2:
544 bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
545 /* FALLTHROUGH */
546 case 1:
547 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
548 break;
549 default:
550 break;
551 }
552 }
553
554 return error;
555 }
556
557 /*
558 * Allocate a jumbo buffer.
559 */
560 static void *
561 dge_getbuf(struct dge_softc *sc)
562 {
563 struct rxbugentry *entry;
564
565 entry = SLIST_FIRST(&sc->sc_buglist);
566
567 if (entry == NULL) {
568 printf("%s: no free RX buffers\n", device_xname(sc->sc_dev));
569 return NULL;
570 }
571
572 SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
573 return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
574 }
575
576 /*
577 * Release a jumbo buffer.
578 */
579 static void
580 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
581 {
582 struct rxbugentry *entry;
583 struct dge_softc *sc;
584 int i, s;
585
586 /* Extract the softc struct pointer. */
587 sc = (struct dge_softc *)arg;
588
589 if (sc == NULL)
590 panic("dge_freebuf: can't find softc pointer!");
591
592 /* calculate the slot this buffer belongs to */
593
594 i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
595
596 if ((i < 0) || (i >= DGE_NBUFFERS))
597 panic("dge_freebuf: asked to free buffer %d!", i);
598
599 s = splvm();
600 entry = sc->sc_entry + i;
601 SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
602
603 if (__predict_true(m != NULL))
604 pool_cache_put(mb_cache, m);
605 splx(s);
606 }
607 #endif
608
609 static void dge_start(struct ifnet *);
610 static void dge_watchdog(struct ifnet *);
611 static int dge_ioctl(struct ifnet *, u_long, void *);
612 static int dge_init(struct ifnet *);
613 static void dge_stop(struct ifnet *, int);
614
615 static bool dge_shutdown(device_t, int);
616
617 static void dge_reset(struct dge_softc *);
618 static void dge_rxdrain(struct dge_softc *);
619 static int dge_add_rxbuf(struct dge_softc *, int);
620
621 static void dge_set_filter(struct dge_softc *);
622
623 static int dge_intr(void *);
624 static void dge_txintr(struct dge_softc *);
625 static void dge_rxintr(struct dge_softc *);
626 static void dge_linkintr(struct dge_softc *, uint32_t);
627
628 static int dge_match(device_t, cfdata_t, void *);
629 static void dge_attach(device_t, device_t, void *);
630
631 static int dge_read_eeprom(struct dge_softc *sc);
632 static int dge_eeprom_clockin(struct dge_softc *sc);
633 static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
634 static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
635 static int dge_xgmii_mediachange(struct ifnet *);
636 static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
637 static void dge_xgmii_reset(struct dge_softc *);
638 static void dge_xgmii_writereg(struct dge_softc *, int, int, int);
639
640
641 CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc),
642 dge_match, dge_attach, NULL, NULL);
643
644 #ifdef DGE_EVENT_COUNTERS
645 #if DGE_NTXSEGS > 100
646 #error Update dge_txseg_evcnt_names
647 #endif
648 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
649 #endif /* DGE_EVENT_COUNTERS */
650
651 /*
652 * Devices supported by this driver.
653 */
654 static const struct dge_product {
655 pci_vendor_id_t dgep_vendor;
656 pci_product_id_t dgep_product;
657 const char *dgep_name;
658 int dgep_flags;
659 #define DGEP_F_10G_LR 0x01
660 #define DGEP_F_10G_SR 0x02
661 } dge_products[] = {
662 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82597EX,
663 "Intel i82597EX 10GbE-LR Ethernet",
664 DGEP_F_10G_LR },
665
666 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82597EX_SR,
667 "Intel i82597EX 10GbE-SR Ethernet",
668 DGEP_F_10G_SR },
669
670 { 0, 0,
671 NULL,
672 0 },
673 };
674
675 static const struct dge_product *
676 dge_lookup(const struct pci_attach_args *pa)
677 {
678 const struct dge_product *dgep;
679
680 for (dgep = dge_products; dgep->dgep_name != NULL; dgep++) {
681 if (PCI_VENDOR(pa->pa_id) == dgep->dgep_vendor &&
682 PCI_PRODUCT(pa->pa_id) == dgep->dgep_product)
683 return dgep;
684 }
685 return NULL;
686 }
687
688 static int
689 dge_match(device_t parent, cfdata_t cf, void *aux)
690 {
691 struct pci_attach_args *pa = aux;
692
693 if (dge_lookup(pa) != NULL)
694 return 1;
695
696 return 0;
697 }
698
699 static void
700 dge_attach(device_t parent, device_t self, void *aux)
701 {
702 struct dge_softc *sc = device_private(self);
703 struct pci_attach_args *pa = aux;
704 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
705 pci_chipset_tag_t pc = pa->pa_pc;
706 pci_intr_handle_t ih;
707 const char *intrstr = NULL;
708 bus_dma_segment_t seg;
709 int i, rseg, error;
710 uint8_t enaddr[ETHER_ADDR_LEN];
711 pcireg_t preg, memtype;
712 uint32_t reg;
713 char intrbuf[PCI_INTRSTR_LEN];
714 const struct dge_product *dgep;
715
716 sc->sc_dgep = dgep = dge_lookup(pa);
717 if (dgep == NULL) {
718 printf("\n");
719 panic("dge_attach: impossible");
720 }
721
722 sc->sc_dev = self;
723 sc->sc_pc = pa->pa_pc;
724 sc->sc_pt = pa->pa_tag;
725
726 if (pci_dma64_available(pa))
727 sc->sc_dmat = pa->pa_dmat64;
728 else
729 sc->sc_dmat = pa->pa_dmat;
730
731 pci_aprint_devinfo_fancy(pa, "Ethernet controller",
732 dgep->dgep_name, 1);
733
734 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
735 if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
736 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
737 aprint_error_dev(sc->sc_dev,
738 "unable to map device registers\n");
739 return;
740 }
741
742 /* Enable bus mastering */
743 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
744 preg |= PCI_COMMAND_MASTER_ENABLE;
745 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
746
747 /*
748 * Map and establish our interrupt.
749 */
750 if (pci_intr_map(pa, &ih)) {
751 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
752 return;
753 }
754 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
755 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, dge_intr, sc,
756 device_xname(self));
757 if (sc->sc_ih == NULL) {
758 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
759 if (intrstr != NULL)
760 aprint_error(" at %s", intrstr);
761 aprint_error("\n");
762 return;
763 }
764 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
765
766 /*
767 * Determine a few things about the bus we're connected to.
768 */
769 reg = CSR_READ(sc, DGE_STATUS);
770 if (reg & STATUS_BUS64)
771 sc->sc_flags |= DGE_F_BUS64;
772
773 sc->sc_flags |= DGE_F_PCIX;
774 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
775 PCI_CAP_PCIX,
776 &sc->sc_pcix_offset, NULL) == 0)
777 aprint_error_dev(sc->sc_dev, "unable to find PCIX "
778 "capability\n");
779
780 if (sc->sc_flags & DGE_F_PCIX) {
781 switch (reg & STATUS_PCIX_MSK) {
782 case STATUS_PCIX_66:
783 sc->sc_bus_speed = 66;
784 break;
785 case STATUS_PCIX_100:
786 sc->sc_bus_speed = 100;
787 break;
788 case STATUS_PCIX_133:
789 sc->sc_bus_speed = 133;
790 break;
791 default:
792 aprint_error_dev(sc->sc_dev,
793 "unknown PCIXSPD %d; assuming 66MHz\n",
794 reg & STATUS_PCIX_MSK);
795 sc->sc_bus_speed = 66;
796 }
797 } else
798 sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
799 aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
800 (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
801 (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
802
803 /*
804 * Allocate the control data structures, and create and load the
805 * DMA map for it.
806 */
807 if ((error = bus_dmamem_alloc(sc->sc_dmat,
808 sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
809 0)) != 0) {
810 aprint_error_dev(sc->sc_dev,
811 "unable to allocate control data, error = %d\n",
812 error);
813 goto fail_0;
814 }
815
816 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
817 sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
818 0)) != 0) {
819 aprint_error_dev(sc->sc_dev,
820 "unable to map control data, error = %d\n", error);
821 goto fail_1;
822 }
823
824 if ((error = bus_dmamap_create(sc->sc_dmat,
825 sizeof(struct dge_control_data), 1,
826 sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
827 aprint_error_dev(sc->sc_dev, "unable to create control data "
828 "DMA map, error = %d\n", error);
829 goto fail_2;
830 }
831
832 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
833 sc->sc_control_data, sizeof(struct dge_control_data), NULL,
834 0)) != 0) {
835 aprint_error_dev(sc->sc_dev,
836 "unable to load control data DMA map, error = %d\n",
837 error);
838 goto fail_3;
839 }
840
841 #ifdef DGE_OFFBYONE_RXBUG
842 if (dge_alloc_rcvmem(sc) != 0)
843 return; /* Already complained */
844 #endif
845 /*
846 * Create the transmit buffer DMA maps.
847 */
848 for (i = 0; i < DGE_TXQUEUELEN; i++) {
849 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
850 DGE_NTXSEGS, MCLBYTES, 0, 0,
851 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
852 aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, "
853 "error = %d\n", i, error);
854 goto fail_4;
855 }
856 }
857
858 /*
859 * Create the receive buffer DMA maps.
860 */
861 for (i = 0; i < DGE_NRXDESC; i++) {
862 #ifdef DGE_OFFBYONE_RXBUG
863 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
864 DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
865 #else
866 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
867 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
868 #endif
869 aprint_error_dev(sc->sc_dev, "unable to create Rx DMA "
870 "map %d, error = %d\n", i, error);
871 goto fail_5;
872 }
873 sc->sc_rxsoft[i].rxs_mbuf = NULL;
874 }
875
876 /*
877 * Set bits in ctrl0 register.
878 * Should get the software defined pins out of EEPROM?
879 */
880 sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
881 sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
882 CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
883
884 /*
885 * Reset the chip to a known state.
886 */
887 dge_reset(sc);
888
889 /*
890 * Reset the PHY.
891 */
892 dge_xgmii_reset(sc);
893
894 /*
895 * Read in EEPROM data.
896 */
897 if (dge_read_eeprom(sc)) {
898 aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n");
899 return;
900 }
901
902 /*
903 * Get the ethernet address.
904 */
905 enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
906 enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
907 enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
908 enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
909 enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
910 enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
911
912 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
913 ether_sprintf(enaddr));
914
915 /*
916 * Setup media stuff.
917 */
918 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
919 ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
920 dge_xgmii_mediastatus);
921 if (dgep->dgep_flags & DGEP_F_10G_SR) {
922 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_SR, 0, NULL);
923 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_SR);
924 } else { /* XXX default is LR */
925 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_LR, 0, NULL);
926 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_LR);
927 }
928
929 ifp = &sc->sc_ethercom.ec_if;
930 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
931 ifp->if_softc = sc;
932 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
933 ifp->if_ioctl = dge_ioctl;
934 ifp->if_start = dge_start;
935 ifp->if_watchdog = dge_watchdog;
936 ifp->if_init = dge_init;
937 ifp->if_stop = dge_stop;
938 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(DGE_IFQUEUELEN, IFQ_MAXLEN));
939 IFQ_SET_READY(&ifp->if_snd);
940
941 sc->sc_ethercom.ec_capabilities |=
942 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
943
944 /*
945 * We can perform TCPv4 and UDPv4 checkums in-bound.
946 */
947 ifp->if_capabilities |=
948 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
949 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
950 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
951
952 /*
953 * Attach the interface.
954 */
955 if_attach(ifp);
956 if_deferred_start_init(ifp, NULL);
957 ether_ifattach(ifp, enaddr);
958 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
959 RND_TYPE_NET, RND_FLAG_DEFAULT);
960
961 #ifdef DGE_EVENT_COUNTERS
962 /* Fix segment event naming */
963 if (dge_txseg_evcnt_names == NULL) {
964 dge_txseg_evcnt_names =
965 malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
966 for (i = 0; i < DGE_NTXSEGS; i++)
967 snprintf((*dge_txseg_evcnt_names)[i],
968 sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
969 }
970
971 /* Attach event counters. */
972 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
973 NULL, device_xname(sc->sc_dev), "txsstall");
974 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
975 NULL, device_xname(sc->sc_dev), "txdstall");
976 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
977 NULL, device_xname(sc->sc_dev), "txforceintr");
978 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
979 NULL, device_xname(sc->sc_dev), "txdw");
980 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
981 NULL, device_xname(sc->sc_dev), "txqe");
982 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
983 NULL, device_xname(sc->sc_dev), "rxintr");
984 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
985 NULL, device_xname(sc->sc_dev), "linkintr");
986
987 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
988 NULL, device_xname(sc->sc_dev), "rxipsum");
989 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
990 NULL, device_xname(sc->sc_dev), "rxtusum");
991 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
992 NULL, device_xname(sc->sc_dev), "txipsum");
993 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
994 NULL, device_xname(sc->sc_dev), "txtusum");
995
996 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
997 NULL, device_xname(sc->sc_dev), "txctx init");
998 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
999 NULL, device_xname(sc->sc_dev), "txctx hit");
1000 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
1001 NULL, device_xname(sc->sc_dev), "txctx miss");
1002
1003 for (i = 0; i < DGE_NTXSEGS; i++)
1004 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
1005 NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
1006
1007 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1008 NULL, device_xname(sc->sc_dev), "txdrop");
1009
1010 #endif /* DGE_EVENT_COUNTERS */
1011
1012 /*
1013 * Make sure the interface is shutdown during reboot.
1014 */
1015 if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
1016 pmf_class_network_register(self, ifp);
1017 else
1018 aprint_error_dev(self, "couldn't establish power handler\n");
1019
1020 return;
1021
1022 /*
1023 * Free any resources we've allocated during the failed attach
1024 * attempt. Do this in reverse order and fall through.
1025 */
1026 fail_5:
1027 for (i = 0; i < DGE_NRXDESC; i++) {
1028 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1029 bus_dmamap_destroy(sc->sc_dmat,
1030 sc->sc_rxsoft[i].rxs_dmamap);
1031 }
1032 fail_4:
1033 for (i = 0; i < DGE_TXQUEUELEN; i++) {
1034 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1035 bus_dmamap_destroy(sc->sc_dmat,
1036 sc->sc_txsoft[i].txs_dmamap);
1037 }
1038 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1039 fail_3:
1040 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1041 fail_2:
1042 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1043 sizeof(struct dge_control_data));
1044 fail_1:
1045 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1046 fail_0:
1047 return;
1048 }
1049
1050 /*
1051 * dge_shutdown:
1052 *
1053 * Make sure the interface is stopped at reboot time.
1054 */
1055 static bool
1056 dge_shutdown(device_t self, int howto)
1057 {
1058 struct dge_softc *sc;
1059
1060 sc = device_private(self);
1061 dge_stop(&sc->sc_ethercom.ec_if, 1);
1062
1063 return true;
1064 }
1065
1066 /*
1067 * dge_tx_cksum:
1068 *
1069 * Set up TCP/IP checksumming parameters for the
1070 * specified packet.
1071 */
1072 static int
1073 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1074 {
1075 struct mbuf *m0 = txs->txs_mbuf;
1076 struct dge_ctdes *t;
1077 uint32_t ipcs, tucs;
1078 struct ether_header *eh;
1079 int offset, iphl;
1080 uint8_t fields = 0;
1081
1082 /*
1083 * XXX It would be nice if the mbuf pkthdr had offset
1084 * fields for the protocol headers.
1085 */
1086
1087 eh = mtod(m0, struct ether_header *);
1088 switch (htons(eh->ether_type)) {
1089 case ETHERTYPE_IP:
1090 offset = ETHER_HDR_LEN;
1091 break;
1092
1093 case ETHERTYPE_VLAN:
1094 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1095 break;
1096
1097 default:
1098 /*
1099 * Don't support this protocol or encapsulation.
1100 */
1101 *fieldsp = 0;
1102 return 0;
1103 }
1104
1105 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1106
1107 /*
1108 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1109 * offload feature, if we load the context descriptor, we
1110 * MUST provide valid values for IPCSS and TUCSS fields.
1111 */
1112
1113 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1114 DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1115 fields |= TDESC_POPTS_IXSM;
1116 ipcs = DGE_TCPIP_IPCSS(offset) |
1117 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1118 DGE_TCPIP_IPCSE(offset + iphl - 1);
1119 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1120 /* Use the cached value. */
1121 ipcs = sc->sc_txctx_ipcs;
1122 } else {
1123 /* Just initialize it to the likely value anyway. */
1124 ipcs = DGE_TCPIP_IPCSS(offset) |
1125 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1126 DGE_TCPIP_IPCSE(offset + iphl - 1);
1127 }
1128 DPRINTF(DGE_DEBUG_CKSUM,
1129 ("%s: CKSUM: offset %d ipcs 0x%x\n",
1130 device_xname(sc->sc_dev), offset, ipcs));
1131
1132 offset += iphl;
1133
1134 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1135 DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1136 fields |= TDESC_POPTS_TXSM;
1137 tucs = DGE_TCPIP_TUCSS(offset) |
1138 DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1139 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1140 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1141 /* Use the cached value. */
1142 tucs = sc->sc_txctx_tucs;
1143 } else {
1144 /* Just initialize it to a valid TCP context. */
1145 tucs = DGE_TCPIP_TUCSS(offset) |
1146 DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1147 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1148 }
1149
1150 DPRINTF(DGE_DEBUG_CKSUM,
1151 ("%s: CKSUM: offset %d tucs 0x%x\n",
1152 device_xname(sc->sc_dev), offset, tucs));
1153
1154 if (sc->sc_txctx_ipcs == ipcs &&
1155 sc->sc_txctx_tucs == tucs) {
1156 /* Cached context is fine. */
1157 DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1158 } else {
1159 /* Fill in the context descriptor. */
1160 #ifdef DGE_EVENT_COUNTERS
1161 if (sc->sc_txctx_ipcs == 0xffffffff &&
1162 sc->sc_txctx_tucs == 0xffffffff)
1163 DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1164 else
1165 DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1166 #endif
1167 t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1168 t->dc_tcpip_ipcs = htole32(ipcs);
1169 t->dc_tcpip_tucs = htole32(tucs);
1170 t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1171 t->dc_tcpip_seg = 0;
1172 DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1173
1174 sc->sc_txctx_ipcs = ipcs;
1175 sc->sc_txctx_tucs = tucs;
1176
1177 sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1178 txs->txs_ndesc++;
1179 }
1180
1181 *fieldsp = fields;
1182
1183 return 0;
1184 }
1185
1186 /*
1187 * dge_start: [ifnet interface function]
1188 *
1189 * Start packet transmission on the interface.
1190 */
1191 static void
1192 dge_start(struct ifnet *ifp)
1193 {
1194 struct dge_softc *sc = ifp->if_softc;
1195 struct mbuf *m0;
1196 struct dge_txsoft *txs;
1197 bus_dmamap_t dmamap;
1198 int error, nexttx, lasttx = -1, ofree, seg;
1199 uint32_t cksumcmd;
1200 uint8_t cksumfields;
1201
1202 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1203 return;
1204
1205 /*
1206 * Remember the previous number of free descriptors.
1207 */
1208 ofree = sc->sc_txfree;
1209
1210 /*
1211 * Loop through the send queue, setting up transmit descriptors
1212 * until we drain the queue, or use up all available transmit
1213 * descriptors.
1214 */
1215 for (;;) {
1216 /* Grab a packet off the queue. */
1217 IFQ_POLL(&ifp->if_snd, m0);
1218 if (m0 == NULL)
1219 break;
1220
1221 DPRINTF(DGE_DEBUG_TX,
1222 ("%s: TX: have packet to transmit: %p\n",
1223 device_xname(sc->sc_dev), m0));
1224
1225 /* Get a work queue entry. */
1226 if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1227 dge_txintr(sc);
1228 if (sc->sc_txsfree == 0) {
1229 DPRINTF(DGE_DEBUG_TX,
1230 ("%s: TX: no free job descriptors\n",
1231 device_xname(sc->sc_dev)));
1232 DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1233 break;
1234 }
1235 }
1236
1237 txs = &sc->sc_txsoft[sc->sc_txsnext];
1238 dmamap = txs->txs_dmamap;
1239
1240 /*
1241 * Load the DMA map. If this fails, the packet either
1242 * didn't fit in the allotted number of segments, or we
1243 * were short on resources. For the too-many-segments
1244 * case, we simply report an error and drop the packet,
1245 * since we can't sanely copy a jumbo packet to a single
1246 * buffer.
1247 */
1248 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1249 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1250 if (error) {
1251 if (error == EFBIG) {
1252 DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1253 printf("%s: Tx packet consumes too many "
1254 "DMA segments, dropping...\n",
1255 device_xname(sc->sc_dev));
1256 IFQ_DEQUEUE(&ifp->if_snd, m0);
1257 m_freem(m0);
1258 continue;
1259 }
1260 /*
1261 * Short on resources, just stop for now.
1262 */
1263 DPRINTF(DGE_DEBUG_TX,
1264 ("%s: TX: dmamap load failed: %d\n",
1265 device_xname(sc->sc_dev), error));
1266 break;
1267 }
1268
1269 /*
1270 * Ensure we have enough descriptors free to describe
1271 * the packet. Note, we always reserve one descriptor
1272 * at the end of the ring due to the semantics of the
1273 * TDT register, plus one more in the event we need
1274 * to re-load checksum offload context.
1275 */
1276 if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1277 /*
1278 * Not enough free descriptors to transmit this
1279 * packet. We haven't committed anything yet,
1280 * so just unload the DMA map, put the packet
1281 * pack on the queue, and punt. Notify the upper
1282 * layer that there are no more slots left.
1283 */
1284 DPRINTF(DGE_DEBUG_TX,
1285 ("%s: TX: need %d descriptors, have %d\n",
1286 device_xname(sc->sc_dev), dmamap->dm_nsegs,
1287 sc->sc_txfree - 1));
1288 ifp->if_flags |= IFF_OACTIVE;
1289 bus_dmamap_unload(sc->sc_dmat, dmamap);
1290 DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1291 break;
1292 }
1293
1294 IFQ_DEQUEUE(&ifp->if_snd, m0);
1295
1296 /*
1297 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1298 */
1299
1300 /* Sync the DMA map. */
1301 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1302 BUS_DMASYNC_PREWRITE);
1303
1304 DPRINTF(DGE_DEBUG_TX,
1305 ("%s: TX: packet has %d DMA segments\n",
1306 device_xname(sc->sc_dev), dmamap->dm_nsegs));
1307
1308 DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1309
1310 /*
1311 * Store a pointer to the packet so that we can free it
1312 * later.
1313 *
1314 * Initially, we consider the number of descriptors the
1315 * packet uses the number of DMA segments. This may be
1316 * incremented by 1 if we do checksum offload (a descriptor
1317 * is used to set the checksum context).
1318 */
1319 txs->txs_mbuf = m0;
1320 txs->txs_firstdesc = sc->sc_txnext;
1321 txs->txs_ndesc = dmamap->dm_nsegs;
1322
1323 /*
1324 * Set up checksum offload parameters for
1325 * this packet.
1326 */
1327 if (m0->m_pkthdr.csum_flags &
1328 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1329 if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1330 /* Error message already displayed. */
1331 bus_dmamap_unload(sc->sc_dmat, dmamap);
1332 continue;
1333 }
1334 } else {
1335 cksumfields = 0;
1336 }
1337
1338 cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1339
1340 /*
1341 * Initialize the transmit descriptor.
1342 */
1343 for (nexttx = sc->sc_txnext, seg = 0;
1344 seg < dmamap->dm_nsegs;
1345 seg++, nexttx = DGE_NEXTTX(nexttx)) {
1346 sc->sc_txdescs[nexttx].dt_baddrh =
1347 htole32(((uint64_t)dmamap->dm_segs[seg].ds_addr) >> 32);
1348 sc->sc_txdescs[nexttx].dt_baddrl =
1349 htole32(dmamap->dm_segs[seg].ds_addr);
1350 sc->sc_txdescs[nexttx].dt_ctl =
1351 htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1352 sc->sc_txdescs[nexttx].dt_status = 0;
1353 sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1354 sc->sc_txdescs[nexttx].dt_vlan = 0;
1355 lasttx = nexttx;
1356
1357 DPRINTF(DGE_DEBUG_TX,
1358 ("%s: TX: desc %d: high 0x%08lx, low 0x%08lx, len 0x%04lx\n",
1359 device_xname(sc->sc_dev), nexttx,
1360 (unsigned long)(((uint64_t)dmamap->dm_segs[seg].ds_addr) >> 32),
1361 (unsigned long)((uint32_t)dmamap->dm_segs[seg].ds_addr),
1362 (unsigned long)dmamap->dm_segs[seg].ds_len));
1363 }
1364
1365 KASSERT(lasttx != -1);
1366
1367 /*
1368 * Set up the command byte on the last descriptor of
1369 * the packet. If we're in the interrupt delay window,
1370 * delay the interrupt.
1371 */
1372 sc->sc_txdescs[lasttx].dt_ctl |=
1373 htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1374
1375 txs->txs_lastdesc = lasttx;
1376
1377 DPRINTF(DGE_DEBUG_TX,
1378 ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev),
1379 lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1380
1381 /* Sync the descriptors we're using. */
1382 DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1383 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1384
1385 /* Give the packet to the chip. */
1386 CSR_WRITE(sc, DGE_TDT, nexttx);
1387
1388 DPRINTF(DGE_DEBUG_TX,
1389 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
1390
1391 DPRINTF(DGE_DEBUG_TX,
1392 ("%s: TX: finished transmitting packet, job %d\n",
1393 device_xname(sc->sc_dev), sc->sc_txsnext));
1394
1395 /* Advance the tx pointer. */
1396 sc->sc_txfree -= txs->txs_ndesc;
1397 sc->sc_txnext = nexttx;
1398
1399 sc->sc_txsfree--;
1400 sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1401
1402 /* Pass the packet to any BPF listeners. */
1403 bpf_mtap(ifp, m0, BPF_D_OUT);
1404 }
1405
1406 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1407 /* No more slots; notify upper layer. */
1408 ifp->if_flags |= IFF_OACTIVE;
1409 }
1410
1411 if (sc->sc_txfree != ofree) {
1412 /* Set a watchdog timer in case the chip flakes out. */
1413 ifp->if_timer = 5;
1414 }
1415 }
1416
1417 /*
1418 * dge_watchdog: [ifnet interface function]
1419 *
1420 * Watchdog timer handler.
1421 */
1422 static void
1423 dge_watchdog(struct ifnet *ifp)
1424 {
1425 struct dge_softc *sc = ifp->if_softc;
1426
1427 /*
1428 * Since we're using delayed interrupts, sweep up
1429 * before we report an error.
1430 */
1431 dge_txintr(sc);
1432
1433 if (sc->sc_txfree != DGE_NTXDESC) {
1434 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1435 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1436 sc->sc_txnext);
1437 if_statinc(ifp, if_oerrors);
1438
1439 /* Reset the interface. */
1440 (void) dge_init(ifp);
1441 }
1442
1443 /* Try to get more packets going. */
1444 dge_start(ifp);
1445 }
1446
1447 /*
1448 * dge_ioctl: [ifnet interface function]
1449 *
1450 * Handle control requests from the operator.
1451 */
1452 static int
1453 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1454 {
1455 struct dge_softc *sc = ifp->if_softc;
1456 struct ifreq *ifr = (struct ifreq *) data;
1457 pcireg_t preg;
1458 int s, error, mmrbc;
1459
1460 s = splnet();
1461
1462 switch (cmd) {
1463 case SIOCSIFMTU:
1464 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1465 error = EINVAL;
1466 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1467 break;
1468 else if (ifp->if_flags & IFF_UP)
1469 error = (*ifp->if_init)(ifp);
1470 else
1471 error = 0;
1472 break;
1473
1474 case SIOCSIFFLAGS:
1475 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1476 break;
1477 /* extract link flags */
1478 if ((ifp->if_flags & IFF_LINK0) == 0 &&
1479 (ifp->if_flags & IFF_LINK1) == 0)
1480 mmrbc = PCIX_MMRBC_512;
1481 else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1482 (ifp->if_flags & IFF_LINK1) != 0)
1483 mmrbc = PCIX_MMRBC_1024;
1484 else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1485 (ifp->if_flags & IFF_LINK1) == 0)
1486 mmrbc = PCIX_MMRBC_2048;
1487 else
1488 mmrbc = PCIX_MMRBC_4096;
1489 if (mmrbc != sc->sc_mmrbc) {
1490 preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1491 preg &= ~PCIX_MMRBC_MSK;
1492 preg |= mmrbc;
1493 pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1494 sc->sc_mmrbc = mmrbc;
1495 }
1496 /* FALLTHROUGH */
1497 default:
1498 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1499 break;
1500
1501 error = 0;
1502
1503 if (cmd == SIOCSIFCAP)
1504 error = (*ifp->if_init)(ifp);
1505 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1506 ;
1507 else if (ifp->if_flags & IFF_RUNNING) {
1508 /*
1509 * Multicast list has changed; set the hardware filter
1510 * accordingly.
1511 */
1512 dge_set_filter(sc);
1513 }
1514 break;
1515 }
1516
1517 /* Try to get more packets going. */
1518 dge_start(ifp);
1519
1520 splx(s);
1521 return error;
1522 }
1523
1524 /*
1525 * dge_intr:
1526 *
1527 * Interrupt service routine.
1528 */
1529 static int
1530 dge_intr(void *arg)
1531 {
1532 struct dge_softc *sc = arg;
1533 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1534 uint32_t icr;
1535 int wantinit, handled = 0;
1536
1537 for (wantinit = 0; wantinit == 0;) {
1538 icr = CSR_READ(sc, DGE_ICR);
1539 if ((icr & sc->sc_icr) == 0)
1540 break;
1541
1542 rnd_add_uint32(&sc->rnd_source, icr);
1543
1544 handled = 1;
1545
1546 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1547 if (icr & (ICR_RXDMT0 | ICR_RXT0)) {
1548 DPRINTF(DGE_DEBUG_RX,
1549 ("%s: RX: got Rx intr 0x%08x\n",
1550 device_xname(sc->sc_dev),
1551 icr & (ICR_RXDMT0 | ICR_RXT0)));
1552 DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1553 }
1554 #endif
1555 dge_rxintr(sc);
1556
1557 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1558 if (icr & ICR_TXDW) {
1559 DPRINTF(DGE_DEBUG_TX,
1560 ("%s: TX: got TXDW interrupt\n",
1561 device_xname(sc->sc_dev)));
1562 DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1563 }
1564 if (icr & ICR_TXQE)
1565 DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1566 #endif
1567 dge_txintr(sc);
1568
1569 if (icr & (ICR_LSC | ICR_RXSEQ)) {
1570 DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1571 dge_linkintr(sc, icr);
1572 }
1573
1574 if (icr & ICR_RXO) {
1575 printf("%s: Receive overrun\n",
1576 device_xname(sc->sc_dev));
1577 wantinit = 1;
1578 }
1579 }
1580
1581 if (handled) {
1582 if (wantinit)
1583 dge_init(ifp);
1584
1585 /* Try to get more packets going. */
1586 if_schedule_deferred_start(ifp);
1587 }
1588
1589 return handled;
1590 }
1591
1592 /*
1593 * dge_txintr:
1594 *
1595 * Helper; handle transmit interrupts.
1596 */
1597 static void
1598 dge_txintr(struct dge_softc *sc)
1599 {
1600 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1601 struct dge_txsoft *txs;
1602 uint8_t status;
1603 int i;
1604
1605 ifp->if_flags &= ~IFF_OACTIVE;
1606
1607 /*
1608 * Go through the Tx list and free mbufs for those
1609 * frames which have been transmitted.
1610 */
1611 for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1612 i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1613 txs = &sc->sc_txsoft[i];
1614
1615 DPRINTF(DGE_DEBUG_TX,
1616 ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
1617
1618 DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1619 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1620
1621 status =
1622 sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1623 if ((status & TDESC_STA_DD) == 0) {
1624 DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1625 BUS_DMASYNC_PREREAD);
1626 break;
1627 }
1628
1629 DPRINTF(DGE_DEBUG_TX,
1630 ("%s: TX: job %d done: descs %d..%d\n",
1631 device_xname(sc->sc_dev), i, txs->txs_firstdesc,
1632 txs->txs_lastdesc));
1633
1634 if_statinc(ifp, if_opackets);
1635 sc->sc_txfree += txs->txs_ndesc;
1636 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1637 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1638 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1639 m_freem(txs->txs_mbuf);
1640 txs->txs_mbuf = NULL;
1641 }
1642
1643 /* Update the dirty transmit buffer pointer. */
1644 sc->sc_txsdirty = i;
1645 DPRINTF(DGE_DEBUG_TX,
1646 ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
1647
1648 /*
1649 * If there are no more pending transmissions, cancel the watchdog
1650 * timer.
1651 */
1652 if (sc->sc_txsfree == DGE_TXQUEUELEN)
1653 ifp->if_timer = 0;
1654 }
1655
1656 /*
1657 * dge_rxintr:
1658 *
1659 * Helper; handle receive interrupts.
1660 */
1661 static void
1662 dge_rxintr(struct dge_softc *sc)
1663 {
1664 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1665 struct dge_rxsoft *rxs;
1666 struct mbuf *m;
1667 int i, len;
1668 uint8_t status, errors;
1669
1670 for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1671 rxs = &sc->sc_rxsoft[i];
1672
1673 DPRINTF(DGE_DEBUG_RX,
1674 ("%s: RX: checking descriptor %d\n",
1675 device_xname(sc->sc_dev), i));
1676
1677 DGE_CDRXSYNC(sc, i,
1678 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1679
1680 status = sc->sc_rxdescs[i].dr_status;
1681 errors = sc->sc_rxdescs[i].dr_errors;
1682 len = le16toh(sc->sc_rxdescs[i].dr_len);
1683
1684 if ((status & RDESC_STS_DD) == 0) {
1685 /* We have processed all of the receive descriptors. */
1686 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1687 break;
1688 }
1689
1690 if (__predict_false(sc->sc_rxdiscard)) {
1691 DPRINTF(DGE_DEBUG_RX,
1692 ("%s: RX: discarding contents of descriptor %d\n",
1693 device_xname(sc->sc_dev), i));
1694 DGE_INIT_RXDESC(sc, i);
1695 if (status & RDESC_STS_EOP) {
1696 /* Reset our state. */
1697 DPRINTF(DGE_DEBUG_RX,
1698 ("%s: RX: resetting rxdiscard -> 0\n",
1699 device_xname(sc->sc_dev)));
1700 sc->sc_rxdiscard = 0;
1701 }
1702 continue;
1703 }
1704
1705 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1706 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1707
1708 m = rxs->rxs_mbuf;
1709
1710 /*
1711 * Add a new receive buffer to the ring.
1712 */
1713 if (dge_add_rxbuf(sc, i) != 0) {
1714 /*
1715 * Failed, throw away what we've done so
1716 * far, and discard the rest of the packet.
1717 */
1718 if_statinc(ifp, if_ierrors);
1719 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1720 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1721 DGE_INIT_RXDESC(sc, i);
1722 if ((status & RDESC_STS_EOP) == 0)
1723 sc->sc_rxdiscard = 1;
1724 if (sc->sc_rxhead != NULL)
1725 m_freem(sc->sc_rxhead);
1726 DGE_RXCHAIN_RESET(sc);
1727 DPRINTF(DGE_DEBUG_RX,
1728 ("%s: RX: Rx buffer allocation failed, "
1729 "dropping packet%s\n", device_xname(sc->sc_dev),
1730 sc->sc_rxdiscard ? " (discard)" : ""));
1731 continue;
1732 }
1733 DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1734
1735 DGE_RXCHAIN_LINK(sc, m);
1736
1737 m->m_len = len;
1738
1739 DPRINTF(DGE_DEBUG_RX,
1740 ("%s: RX: buffer at %p len %d\n",
1741 device_xname(sc->sc_dev), m->m_data, len));
1742
1743 /*
1744 * If this is not the end of the packet, keep
1745 * looking.
1746 */
1747 if ((status & RDESC_STS_EOP) == 0) {
1748 sc->sc_rxlen += len;
1749 DPRINTF(DGE_DEBUG_RX,
1750 ("%s: RX: not yet EOP, rxlen -> %d\n",
1751 device_xname(sc->sc_dev), sc->sc_rxlen));
1752 continue;
1753 }
1754
1755 /*
1756 * Okay, we have the entire packet now...
1757 */
1758 *sc->sc_rxtailp = NULL;
1759 m = sc->sc_rxhead;
1760 len += sc->sc_rxlen;
1761
1762 DGE_RXCHAIN_RESET(sc);
1763
1764 DPRINTF(DGE_DEBUG_RX,
1765 ("%s: RX: have entire packet, len -> %d\n",
1766 device_xname(sc->sc_dev), len));
1767
1768 /*
1769 * If an error occurred, update stats and drop the packet.
1770 */
1771 if (errors & (RDESC_ERR_CE | RDESC_ERR_SE | RDESC_ERR_P |
1772 RDESC_ERR_RXE)) {
1773 if_statinc(ifp, if_ierrors);
1774 if (errors & RDESC_ERR_SE)
1775 printf("%s: symbol error\n",
1776 device_xname(sc->sc_dev));
1777 else if (errors & RDESC_ERR_P)
1778 printf("%s: parity error\n",
1779 device_xname(sc->sc_dev));
1780 else if (errors & RDESC_ERR_CE)
1781 printf("%s: CRC error\n",
1782 device_xname(sc->sc_dev));
1783 m_freem(m);
1784 continue;
1785 }
1786
1787 /*
1788 * No errors. Receive the packet.
1789 */
1790 m_set_rcvif(m, ifp);
1791 m->m_pkthdr.len = len;
1792
1793 /*
1794 * Set up checksum info for this packet.
1795 */
1796 if (status & RDESC_STS_IPCS) {
1797 DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1798 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1799 if (errors & RDESC_ERR_IPE)
1800 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1801 }
1802 if (status & RDESC_STS_TCPCS) {
1803 /*
1804 * Note: we don't know if this was TCP or UDP,
1805 * so we just set both bits, and expect the
1806 * upper layers to deal.
1807 */
1808 DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1809 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
1810 if (errors & RDESC_ERR_TCPE)
1811 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1812 }
1813
1814 /* Pass it on. */
1815 if_percpuq_enqueue(ifp->if_percpuq, m);
1816 }
1817
1818 /* Update the receive pointer. */
1819 sc->sc_rxptr = i;
1820
1821 DPRINTF(DGE_DEBUG_RX,
1822 ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
1823 }
1824
1825 /*
1826 * dge_linkintr:
1827 *
1828 * Helper; handle link interrupts.
1829 */
1830 static void
1831 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1832 {
1833 uint32_t status;
1834
1835 if (icr & ICR_LSC) {
1836 status = CSR_READ(sc, DGE_STATUS);
1837 if (status & STATUS_LINKUP) {
1838 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1839 device_xname(sc->sc_dev)));
1840 } else {
1841 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1842 device_xname(sc->sc_dev)));
1843 }
1844 } else if (icr & ICR_RXSEQ) {
1845 DPRINTF(DGE_DEBUG_LINK,
1846 ("%s: LINK: Receive sequence error\n",
1847 device_xname(sc->sc_dev)));
1848 }
1849 /* XXX - fix errata */
1850 }
1851
1852 /*
1853 * dge_reset:
1854 *
1855 * Reset the i82597 chip.
1856 */
1857 static void
1858 dge_reset(struct dge_softc *sc)
1859 {
1860 int i;
1861
1862 /*
1863 * Do a chip reset.
1864 */
1865 CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1866
1867 delay(10000);
1868
1869 for (i = 0; i < 1000; i++) {
1870 if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1871 break;
1872 delay(20);
1873 }
1874
1875 if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1876 printf("%s: WARNING: reset failed to complete\n",
1877 device_xname(sc->sc_dev));
1878 /*
1879 * Reset the EEPROM logic.
1880 * This will cause the chip to reread its default values,
1881 * which doesn't happen otherwise (errata).
1882 */
1883 CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1884 delay(10000);
1885 }
1886
1887 /*
1888 * dge_init: [ifnet interface function]
1889 *
1890 * Initialize the interface. Must be called at splnet().
1891 */
1892 static int
1893 dge_init(struct ifnet *ifp)
1894 {
1895 struct dge_softc *sc = ifp->if_softc;
1896 struct dge_rxsoft *rxs;
1897 int i, error = 0;
1898 uint32_t reg;
1899
1900 /*
1901 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1902 * There is a small but measurable benefit to avoiding the adjusment
1903 * of the descriptor so that the headers are aligned, for normal mtu,
1904 * on such platforms. One possibility is that the DMA itself is
1905 * slightly more efficient if the front of the entire packet (instead
1906 * of the front of the headers) is aligned.
1907 *
1908 * Note we must always set align_tweak to 0 if we are using
1909 * jumbo frames.
1910 */
1911 #ifdef __NO_STRICT_ALIGNMENT
1912 sc->sc_align_tweak = 0;
1913 #else
1914 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1915 sc->sc_align_tweak = 0;
1916 else
1917 sc->sc_align_tweak = 2;
1918 #endif /* __NO_STRICT_ALIGNMENT */
1919
1920 /* Cancel any pending I/O. */
1921 dge_stop(ifp, 0);
1922
1923 /* Reset the chip to a known state. */
1924 dge_reset(sc);
1925
1926 /* Initialize the transmit descriptor ring. */
1927 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1928 DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1929 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1930 sc->sc_txfree = DGE_NTXDESC;
1931 sc->sc_txnext = 0;
1932
1933 sc->sc_txctx_ipcs = 0xffffffff;
1934 sc->sc_txctx_tucs = 0xffffffff;
1935
1936 CSR_WRITE(sc, DGE_TDBAH, ((uint64_t)DGE_CDTXADDR(sc, 0)) >> 32);
1937 CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1938 CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1939 CSR_WRITE(sc, DGE_TDH, 0);
1940 CSR_WRITE(sc, DGE_TDT, 0);
1941 CSR_WRITE(sc, DGE_TIDV, TIDV);
1942
1943 #if 0
1944 CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1945 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1946 #endif
1947 CSR_WRITE(sc, DGE_RXDCTL,
1948 RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1949 RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1950 RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1951
1952 /* Initialize the transmit job descriptors. */
1953 for (i = 0; i < DGE_TXQUEUELEN; i++)
1954 sc->sc_txsoft[i].txs_mbuf = NULL;
1955 sc->sc_txsfree = DGE_TXQUEUELEN;
1956 sc->sc_txsnext = 0;
1957 sc->sc_txsdirty = 0;
1958
1959 /*
1960 * Initialize the receive descriptor and receive job
1961 * descriptor rings.
1962 */
1963 CSR_WRITE(sc, DGE_RDBAH, ((uint64_t)DGE_CDRXADDR(sc, 0)) >> 32);
1964 CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1965 CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1966 CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1967 CSR_WRITE(sc, DGE_RDT, 0);
1968 CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1969 CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1970 CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1971
1972 for (i = 0; i < DGE_NRXDESC; i++) {
1973 rxs = &sc->sc_rxsoft[i];
1974 if (rxs->rxs_mbuf == NULL) {
1975 if ((error = dge_add_rxbuf(sc, i)) != 0) {
1976 printf("%s: unable to allocate or map rx "
1977 "buffer %d, error = %d\n",
1978 device_xname(sc->sc_dev), i, error);
1979 /*
1980 * XXX Should attempt to run with fewer receive
1981 * XXX buffers instead of just failing.
1982 */
1983 dge_rxdrain(sc);
1984 goto out;
1985 }
1986 }
1987 DGE_INIT_RXDESC(sc, i);
1988 }
1989 sc->sc_rxptr = DGE_RXSPACE;
1990 sc->sc_rxdiscard = 0;
1991 DGE_RXCHAIN_RESET(sc);
1992
1993 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1994 sc->sc_ctrl0 |= CTRL0_JFE;
1995 CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1996 }
1997
1998 /* Write the control registers. */
1999 CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
2000
2001 /*
2002 * Set up checksum offload parameters.
2003 */
2004 reg = CSR_READ(sc, DGE_RXCSUM);
2005 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2006 reg |= RXCSUM_IPOFL;
2007 else
2008 reg &= ~RXCSUM_IPOFL;
2009 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2010 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2011 else {
2012 reg &= ~RXCSUM_TUOFL;
2013 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2014 reg &= ~RXCSUM_IPOFL;
2015 }
2016 CSR_WRITE(sc, DGE_RXCSUM, reg);
2017
2018 /*
2019 * Set up the interrupt registers.
2020 */
2021 CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
2022 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2023 ICR_RXO | ICR_RXT0;
2024
2025 CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
2026
2027 /*
2028 * Set up the transmit control register.
2029 */
2030 sc->sc_tctl = TCTL_TCE | TCTL_TPDE | TCTL_TXEN;
2031 CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
2032
2033 /*
2034 * Set up the receive control register; we actually program
2035 * the register when we set the receive filter. Use multicast
2036 * address offset type 0.
2037 */
2038 sc->sc_mchash_type = 0;
2039
2040 sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2041 RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2042
2043 #ifdef DGE_OFFBYONE_RXBUG
2044 sc->sc_rctl |= RCTL_BSIZE_16k;
2045 #else
2046 switch (MCLBYTES) {
2047 case 2048:
2048 sc->sc_rctl |= RCTL_BSIZE_2k;
2049 break;
2050 case 4096:
2051 sc->sc_rctl |= RCTL_BSIZE_4k;
2052 break;
2053 case 8192:
2054 sc->sc_rctl |= RCTL_BSIZE_8k;
2055 break;
2056 case 16384:
2057 sc->sc_rctl |= RCTL_BSIZE_16k;
2058 break;
2059 default:
2060 panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2061 }
2062 #endif
2063
2064 /* Set the receive filter. */
2065 /* Also sets RCTL */
2066 dge_set_filter(sc);
2067
2068 /* ...all done! */
2069 ifp->if_flags |= IFF_RUNNING;
2070 ifp->if_flags &= ~IFF_OACTIVE;
2071
2072 out:
2073 if (error)
2074 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2075 return error;
2076 }
2077
2078 /*
2079 * dge_rxdrain:
2080 *
2081 * Drain the receive queue.
2082 */
2083 static void
2084 dge_rxdrain(struct dge_softc *sc)
2085 {
2086 struct dge_rxsoft *rxs;
2087 int i;
2088
2089 for (i = 0; i < DGE_NRXDESC; i++) {
2090 rxs = &sc->sc_rxsoft[i];
2091 if (rxs->rxs_mbuf != NULL) {
2092 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2093 m_freem(rxs->rxs_mbuf);
2094 rxs->rxs_mbuf = NULL;
2095 }
2096 }
2097 }
2098
2099 /*
2100 * dge_stop: [ifnet interface function]
2101 *
2102 * Stop transmission on the interface.
2103 */
2104 static void
2105 dge_stop(struct ifnet *ifp, int disable)
2106 {
2107 struct dge_softc *sc = ifp->if_softc;
2108 struct dge_txsoft *txs;
2109 int i;
2110
2111 /* Stop the transmit and receive processes. */
2112 CSR_WRITE(sc, DGE_TCTL, 0);
2113 CSR_WRITE(sc, DGE_RCTL, 0);
2114
2115 /* Release any queued transmit buffers. */
2116 for (i = 0; i < DGE_TXQUEUELEN; i++) {
2117 txs = &sc->sc_txsoft[i];
2118 if (txs->txs_mbuf != NULL) {
2119 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2120 m_freem(txs->txs_mbuf);
2121 txs->txs_mbuf = NULL;
2122 }
2123 }
2124
2125 /* Mark the interface as down and cancel the watchdog timer. */
2126 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2127 ifp->if_timer = 0;
2128
2129 if (disable)
2130 dge_rxdrain(sc);
2131 }
2132
2133 /*
2134 * dge_add_rxbuf:
2135 *
2136 * Add a receive buffer to the indiciated descriptor.
2137 */
2138 static int
2139 dge_add_rxbuf(struct dge_softc *sc, int idx)
2140 {
2141 struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2142 struct mbuf *m;
2143 int error;
2144 #ifdef DGE_OFFBYONE_RXBUG
2145 void *buf;
2146 #endif
2147
2148 MGETHDR(m, M_DONTWAIT, MT_DATA);
2149 if (m == NULL)
2150 return ENOBUFS;
2151
2152 #ifdef DGE_OFFBYONE_RXBUG
2153 if ((buf = dge_getbuf(sc)) == NULL)
2154 return ENOBUFS;
2155
2156 m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2157 MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2158 m->m_flags |= M_EXT_RW;
2159
2160 if (rxs->rxs_mbuf != NULL)
2161 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2162 rxs->rxs_mbuf = m;
2163
2164 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2165 DGE_BUFFER_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
2166 #else
2167 MCLGET(m, M_DONTWAIT);
2168 if ((m->m_flags & M_EXT) == 0) {
2169 m_freem(m);
2170 return ENOBUFS;
2171 }
2172
2173 if (rxs->rxs_mbuf != NULL)
2174 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2175
2176 rxs->rxs_mbuf = m;
2177
2178 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2179 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2180 BUS_DMA_READ | BUS_DMA_NOWAIT);
2181 #endif
2182 if (error) {
2183 printf("%s: unable to load rx DMA map %d, error = %d\n",
2184 device_xname(sc->sc_dev), idx, error);
2185 panic("dge_add_rxbuf"); /* XXX XXX XXX */
2186 }
2187 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2188 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2189
2190 return 0;
2191 }
2192
2193 /*
2194 * dge_set_ral:
2195 *
2196 * Set an entry in the receive address list.
2197 */
2198 static void
2199 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2200 {
2201 uint32_t ral_lo, ral_hi;
2202
2203 if (enaddr != NULL) {
2204 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2205 (enaddr[3] << 24);
2206 ral_hi = enaddr[4] | (enaddr[5] << 8);
2207 ral_hi |= RAH_AV;
2208 } else {
2209 ral_lo = 0;
2210 ral_hi = 0;
2211 }
2212 CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2213 CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2214 }
2215
2216 /*
2217 * dge_mchash:
2218 *
2219 * Compute the hash of the multicast address for the 4096-bit
2220 * multicast filter.
2221 */
2222 static uint32_t
2223 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2224 {
2225 static const int lo_shift[4] = { 4, 3, 2, 0 };
2226 static const int hi_shift[4] = { 4, 5, 6, 8 };
2227 uint32_t hash;
2228
2229 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2230 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2231
2232 return (hash & 0xfff);
2233 }
2234
2235 /*
2236 * dge_set_filter:
2237 *
2238 * Set up the receive filter.
2239 */
2240 static void
2241 dge_set_filter(struct dge_softc *sc)
2242 {
2243 struct ethercom *ec = &sc->sc_ethercom;
2244 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2245 struct ether_multi *enm;
2246 struct ether_multistep step;
2247 uint32_t hash, reg, bit;
2248 int i;
2249
2250 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2251
2252 if (ifp->if_flags & IFF_BROADCAST)
2253 sc->sc_rctl |= RCTL_BAM;
2254 if (ifp->if_flags & IFF_PROMISC) {
2255 sc->sc_rctl |= RCTL_UPE;
2256 goto allmulti;
2257 }
2258
2259 /*
2260 * Set the station address in the first RAL slot, and
2261 * clear the remaining slots.
2262 */
2263 dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2264 for (i = 1; i < RA_TABSIZE; i++)
2265 dge_set_ral(sc, NULL, i);
2266
2267 /* Clear out the multicast table. */
2268 for (i = 0; i < MC_TABSIZE; i++)
2269 CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2270
2271 ETHER_LOCK(ec);
2272 ETHER_FIRST_MULTI(step, ec, enm);
2273 while (enm != NULL) {
2274 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2275 /*
2276 * We must listen to a range of multicast addresses.
2277 * For now, just accept all multicasts, rather than
2278 * trying to set only those filter bits needed to match
2279 * the range. (At this time, the only use of address
2280 * ranges is for IP multicast routing, for which the
2281 * range is big enough to require all bits set.)
2282 */
2283 ETHER_UNLOCK(ec);
2284 goto allmulti;
2285 }
2286
2287 hash = dge_mchash(sc, enm->enm_addrlo);
2288
2289 reg = (hash >> 5) & 0x7f;
2290 bit = hash & 0x1f;
2291
2292 hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2293 hash |= 1U << bit;
2294
2295 CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2296
2297 ETHER_NEXT_MULTI(step, enm);
2298 }
2299 ETHER_UNLOCK(ec);
2300
2301 ifp->if_flags &= ~IFF_ALLMULTI;
2302 goto setit;
2303
2304 allmulti:
2305 ifp->if_flags |= IFF_ALLMULTI;
2306 sc->sc_rctl |= RCTL_MPE;
2307
2308 setit:
2309 CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2310 }
2311
2312 /*
2313 * Read in the EEPROM info and verify checksum.
2314 */
2315 int
2316 dge_read_eeprom(struct dge_softc *sc)
2317 {
2318 uint16_t cksum;
2319 int i;
2320
2321 cksum = 0;
2322 for (i = 0; i < EEPROM_SIZE; i++) {
2323 sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2324 cksum += sc->sc_eeprom[i];
2325 }
2326 return cksum != EEPROM_CKSUM;
2327 }
2328
2329
2330 /*
2331 * Read a 16-bit word from address addr in the serial EEPROM.
2332 */
2333 uint16_t
2334 dge_eeprom_word(struct dge_softc *sc, int addr)
2335 {
2336 uint32_t reg;
2337 uint16_t rval = 0;
2338 int i;
2339
2340 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK | EECD_DI | EECD_CS);
2341
2342 /* Lower clock pulse (and data in to chip) */
2343 CSR_WRITE(sc, DGE_EECD, reg);
2344 /* Select chip */
2345 CSR_WRITE(sc, DGE_EECD, reg | EECD_CS);
2346
2347 /* Send read command */
2348 dge_eeprom_clockout(sc, 1);
2349 dge_eeprom_clockout(sc, 1);
2350 dge_eeprom_clockout(sc, 0);
2351
2352 /* Send address */
2353 for (i = 5; i >= 0; i--)
2354 dge_eeprom_clockout(sc, (addr >> i) & 1);
2355
2356 /* Read data */
2357 for (i = 0; i < 16; i++) {
2358 rval <<= 1;
2359 rval |= dge_eeprom_clockin(sc);
2360 }
2361
2362 /* Deselect chip */
2363 CSR_WRITE(sc, DGE_EECD, reg);
2364
2365 return rval;
2366 }
2367
2368 /*
2369 * Clock out a single bit to the EEPROM.
2370 */
2371 void
2372 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2373 {
2374 int reg;
2375
2376 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_SK);
2377 if (bit)
2378 reg |= EECD_DI;
2379
2380 CSR_WRITE(sc, DGE_EECD, reg);
2381 delay(2);
2382 CSR_WRITE(sc, DGE_EECD, reg | EECD_SK);
2383 delay(2);
2384 CSR_WRITE(sc, DGE_EECD, reg);
2385 delay(2);
2386 }
2387
2388 /*
2389 * Clock in a single bit from EEPROM.
2390 */
2391 int
2392 dge_eeprom_clockin(struct dge_softc *sc)
2393 {
2394 int reg, rv;
2395
2396 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_DO | EECD_SK);
2397
2398 CSR_WRITE(sc, DGE_EECD, reg | EECD_SK); /* Raise clock */
2399 delay(2);
2400 rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2401 CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2402 delay(2);
2403
2404 return rv;
2405 }
2406
2407 static void
2408 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2409 {
2410 struct dge_softc *sc = ifp->if_softc;
2411
2412 ifmr->ifm_status = IFM_AVALID;
2413 if (sc->sc_dgep->dgep_flags & DGEP_F_10G_SR ) {
2414 ifmr->ifm_active = IFM_ETHER | IFM_10G_SR;
2415 } else {
2416 ifmr->ifm_active = IFM_ETHER | IFM_10G_LR;
2417 }
2418
2419 if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2420 ifmr->ifm_status |= IFM_ACTIVE;
2421 }
2422
2423 static inline int
2424 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2425 {
2426 int i, mdic;
2427
2428 CSR_WRITE(sc, DGE_MDIO,
2429 MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2430 for (i = 0; i < 10; i++) {
2431 delay(10);
2432 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2433 break;
2434 }
2435 return mdic;
2436 }
2437
2438 static void
2439 dge_xgmii_writereg(struct dge_softc *sc, int phy, int reg, int val)
2440 {
2441 int mdic;
2442
2443 CSR_WRITE(sc, DGE_MDIRW, val);
2444 if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2445 printf("%s: address cycle timeout; phy %d reg %d\n",
2446 device_xname(sc->sc_dev), phy, reg);
2447 return;
2448 }
2449 if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2450 printf("%s: write cycle timeout; phy %d reg %d\n",
2451 device_xname(sc->sc_dev), phy, reg);
2452 return;
2453 }
2454 }
2455
2456 static void
2457 dge_xgmii_reset(struct dge_softc *sc)
2458 {
2459 dge_xgmii_writereg(sc, 0, 0, BMCR_RESET);
2460 }
2461
2462 static int
2463 dge_xgmii_mediachange(struct ifnet *ifp)
2464 {
2465 return 0;
2466 }
2467