if_dge.c revision 1.50 1 /* $NetBSD: if_dge.c,v 1.50 2018/12/09 11:14:02 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 * All rights reserved.
6 *
7 * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * SUNET, Swedish University Computer Network.
21 * 4. The name of SUNET may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 *
75 * TODO (in no specific order):
76 * HW VLAN support.
77 * TSE offloading (needs kernel changes...)
78 * RAIDC (receive interrupt delay adaptation)
79 * Use memory > 4GB.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.50 2018/12/09 11:14:02 jdolecek Exp $");
84
85
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/ioctl.h>
95 #include <sys/errno.h>
96 #include <sys/device.h>
97 #include <sys/queue.h>
98
99 #include <sys/rndsource.h>
100
101 #include <net/if.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_ether.h>
105
106 #include <net/bpf.h>
107
108 #include <netinet/in.h> /* XXX for struct ip */
109 #include <netinet/in_systm.h> /* XXX for struct ip */
110 #include <netinet/ip.h> /* XXX for struct ip */
111 #include <netinet/tcp.h> /* XXX for struct tcphdr */
112
113 #include <sys/bus.h>
114 #include <sys/intr.h>
115 #include <machine/endian.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119 #include <dev/mii/mii_bitbang.h>
120
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 #include <dev/pci/pcidevs.h>
124
125 #include <dev/pci/if_dgereg.h>
126
127 /*
128 * The receive engine may sometimes become off-by-one when writing back
129 * chained descriptors. Avoid this by allocating a large chunk of
130 * memory and use if instead (to avoid chained descriptors).
131 * This only happens with chained descriptors under heavy load.
132 */
133 #define DGE_OFFBYONE_RXBUG
134
135 #define DGE_EVENT_COUNTERS
136 #define DGE_DEBUG
137
138 #ifdef DGE_DEBUG
139 #define DGE_DEBUG_LINK 0x01
140 #define DGE_DEBUG_TX 0x02
141 #define DGE_DEBUG_RX 0x04
142 #define DGE_DEBUG_CKSUM 0x08
143 int dge_debug = 0;
144
145 #define DPRINTF(x, y) if (dge_debug & (x)) printf y
146 #else
147 #define DPRINTF(x, y) /* nothing */
148 #endif /* DGE_DEBUG */
149
150 /*
151 * Transmit descriptor list size. We allow up to 100 DMA segments per
152 * packet (Intel reports of jumbo frame packets with as
153 * many as 80 DMA segments when using 16k buffers).
154 */
155 #define DGE_NTXSEGS 100
156 #define DGE_IFQUEUELEN 20000
157 #define DGE_TXQUEUELEN 2048
158 #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
159 #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
160 #define DGE_NTXDESC 1024
161 #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
162 #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
163 #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
164
165 /*
166 * Receive descriptor list size.
167 * Packet is of size MCLBYTES, and for jumbo packets buffers may
168 * be chained. Due to the nature of the card (high-speed), keep this
169 * ring large. With 2k buffers the ring can store 400 jumbo packets,
170 * which at full speed will be received in just under 3ms.
171 */
172 #define DGE_NRXDESC 2048
173 #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
174 #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
175 /*
176 * # of descriptors between head and written descriptors.
177 * This is to work-around two erratas.
178 */
179 #define DGE_RXSPACE 10
180 #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
181 /*
182 * Receive descriptor fetch threshholds. These are values recommended
183 * by Intel, do not touch them unless you know what you are doing.
184 */
185 #define RXDCTL_PTHRESH_VAL 128
186 #define RXDCTL_HTHRESH_VAL 16
187 #define RXDCTL_WTHRESH_VAL 16
188
189
190 /*
191 * Tweakable parameters; default values.
192 */
193 #define FCRTH 0x30000 /* Send XOFF water mark */
194 #define FCRTL 0x28000 /* Send XON water mark */
195 #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
196 #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
197
198 /*
199 * Control structures are DMA'd to the i82597 chip. We allocate them in
200 * a single clump that maps to a single DMA segment to make serveral things
201 * easier.
202 */
203 struct dge_control_data {
204 /*
205 * The transmit descriptors.
206 */
207 struct dge_tdes wcd_txdescs[DGE_NTXDESC];
208
209 /*
210 * The receive descriptors.
211 */
212 struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
213 };
214
215 #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
216 #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
217 #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
218
219 /*
220 * The DGE interface have a higher max MTU size than normal jumbo frames.
221 */
222 #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
223
224 /*
225 * Software state for transmit jobs.
226 */
227 struct dge_txsoft {
228 struct mbuf *txs_mbuf; /* head of our mbuf chain */
229 bus_dmamap_t txs_dmamap; /* our DMA map */
230 int txs_firstdesc; /* first descriptor in packet */
231 int txs_lastdesc; /* last descriptor in packet */
232 int txs_ndesc; /* # of descriptors used */
233 };
234
235 /*
236 * Software state for receive buffers. Each descriptor gets a
237 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
238 * more than one buffer, we chain them together.
239 */
240 struct dge_rxsoft {
241 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
242 bus_dmamap_t rxs_dmamap; /* our DMA map */
243 };
244
245 /*
246 * Software state per device.
247 */
248 struct dge_softc {
249 device_t sc_dev; /* generic device information */
250 bus_space_tag_t sc_st; /* bus space tag */
251 bus_space_handle_t sc_sh; /* bus space handle */
252 bus_dma_tag_t sc_dmat; /* bus DMA tag */
253 struct ethercom sc_ethercom; /* ethernet common data */
254
255 int sc_flags; /* flags; see below */
256 int sc_bus_speed; /* PCI/PCIX bus speed */
257 int sc_pcix_offset; /* PCIX capability register offset */
258
259 const struct dge_product *sc_dgep; /* Pointer to the dge_product entry */
260 pci_chipset_tag_t sc_pc;
261 pcitag_t sc_pt;
262 int sc_mmrbc; /* Max PCIX memory read byte count */
263
264 void *sc_ih; /* interrupt cookie */
265
266 struct ifmedia sc_media;
267
268 bus_dmamap_t sc_cddmamap; /* control data DMA map */
269 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
270
271 int sc_align_tweak;
272
273 /*
274 * Software state for the transmit and receive descriptors.
275 */
276 struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
277 struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
278
279 /*
280 * Control data structures.
281 */
282 struct dge_control_data *sc_control_data;
283 #define sc_txdescs sc_control_data->wcd_txdescs
284 #define sc_rxdescs sc_control_data->wcd_rxdescs
285
286 #ifdef DGE_EVENT_COUNTERS
287 /* Event counters. */
288 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
289 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
290 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
291 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
292 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
293 struct evcnt sc_ev_rxintr; /* Rx interrupts */
294 struct evcnt sc_ev_linkintr; /* Link interrupts */
295
296 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
297 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
298 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
299 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
300
301 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
302 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
303 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
304
305 struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
306 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
307 #endif /* DGE_EVENT_COUNTERS */
308
309 int sc_txfree; /* number of free Tx descriptors */
310 int sc_txnext; /* next ready Tx descriptor */
311
312 int sc_txsfree; /* number of free Tx jobs */
313 int sc_txsnext; /* next free Tx job */
314 int sc_txsdirty; /* dirty Tx jobs */
315
316 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
317 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
318
319 int sc_rxptr; /* next ready Rx descriptor/queue ent */
320 int sc_rxdiscard;
321 int sc_rxlen;
322 struct mbuf *sc_rxhead;
323 struct mbuf *sc_rxtail;
324 struct mbuf **sc_rxtailp;
325
326 uint32_t sc_ctrl0; /* prototype CTRL0 register */
327 uint32_t sc_icr; /* prototype interrupt bits */
328 uint32_t sc_tctl; /* prototype TCTL register */
329 uint32_t sc_rctl; /* prototype RCTL register */
330
331 int sc_mchash_type; /* multicast filter offset */
332
333 uint16_t sc_eeprom[EEPROM_SIZE];
334
335 krndsource_t rnd_source; /* random source */
336 #ifdef DGE_OFFBYONE_RXBUG
337 void *sc_bugbuf;
338 SLIST_HEAD(, rxbugentry) sc_buglist;
339 bus_dmamap_t sc_bugmap;
340 struct rxbugentry *sc_entry;
341 #endif
342 };
343
344 #define DGE_RXCHAIN_RESET(sc) \
345 do { \
346 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
347 *(sc)->sc_rxtailp = NULL; \
348 (sc)->sc_rxlen = 0; \
349 } while (/*CONSTCOND*/0)
350
351 #define DGE_RXCHAIN_LINK(sc, m) \
352 do { \
353 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
354 (sc)->sc_rxtailp = &(m)->m_next; \
355 } while (/*CONSTCOND*/0)
356
357 /* sc_flags */
358 #define DGE_F_BUS64 0x20 /* bus is 64-bit */
359 #define DGE_F_PCIX 0x40 /* bus is PCI-X */
360
361 #ifdef DGE_EVENT_COUNTERS
362 #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
363 #else
364 #define DGE_EVCNT_INCR(ev) /* nothing */
365 #endif
366
367 #define CSR_READ(sc, reg) \
368 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
369 #define CSR_WRITE(sc, reg, val) \
370 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
371
372 #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
373 #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
374
375 #define DGE_CDTXSYNC(sc, x, n, ops) \
376 do { \
377 int __x, __n; \
378 \
379 __x = (x); \
380 __n = (n); \
381 \
382 /* If it will wrap around, sync to the end of the ring. */ \
383 if ((__x + __n) > DGE_NTXDESC) { \
384 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
385 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
386 (DGE_NTXDESC - __x), (ops)); \
387 __n -= (DGE_NTXDESC - __x); \
388 __x = 0; \
389 } \
390 \
391 /* Now sync whatever is left. */ \
392 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
393 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
394 } while (/*CONSTCOND*/0)
395
396 #define DGE_CDRXSYNC(sc, x, ops) \
397 do { \
398 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
399 DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
400 } while (/*CONSTCOND*/0)
401
402 #ifdef DGE_OFFBYONE_RXBUG
403 #define DGE_INIT_RXDESC(sc, x) \
404 do { \
405 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
406 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
407 struct mbuf *__m = __rxs->rxs_mbuf; \
408 \
409 __rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
410 (mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
411 __rxd->dr_baddrh = 0; \
412 __rxd->dr_len = 0; \
413 __rxd->dr_cksum = 0; \
414 __rxd->dr_status = 0; \
415 __rxd->dr_errors = 0; \
416 __rxd->dr_special = 0; \
417 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
418 \
419 CSR_WRITE((sc), DGE_RDT, (x)); \
420 } while (/*CONSTCOND*/0)
421 #else
422 #define DGE_INIT_RXDESC(sc, x) \
423 do { \
424 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
425 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
426 struct mbuf *__m = __rxs->rxs_mbuf; \
427 \
428 /* \
429 * Note: We scoot the packet forward 2 bytes in the buffer \
430 * so that the payload after the Ethernet header is aligned \
431 * to a 4-byte boundary. \
432 * \
433 * XXX BRAINDAMAGE ALERT! \
434 * The stupid chip uses the same size for every buffer, which \
435 * is set in the Receive Control register. We are using the 2K \
436 * size option, but what we REALLY want is (2K - 2)! For this \
437 * reason, we can't "scoot" packets longer than the standard \
438 * Ethernet MTU. On strict-alignment platforms, if the total \
439 * size exceeds (2K - 2) we set align_tweak to 0 and let \
440 * the upper layer copy the headers. \
441 */ \
442 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
443 \
444 __rxd->dr_baddrl = \
445 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
446 (sc)->sc_align_tweak); \
447 __rxd->dr_baddrh = 0; \
448 __rxd->dr_len = 0; \
449 __rxd->dr_cksum = 0; \
450 __rxd->dr_status = 0; \
451 __rxd->dr_errors = 0; \
452 __rxd->dr_special = 0; \
453 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
454 \
455 CSR_WRITE((sc), DGE_RDT, (x)); \
456 } while (/*CONSTCOND*/0)
457 #endif
458
459 #ifdef DGE_OFFBYONE_RXBUG
460 /*
461 * Allocation constants. Much memory may be used for this.
462 */
463 #ifndef DGE_BUFFER_SIZE
464 #define DGE_BUFFER_SIZE DGE_MAX_MTU
465 #endif
466 #define DGE_NBUFFERS (4*DGE_NRXDESC)
467 #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
468
469 struct rxbugentry {
470 SLIST_ENTRY(rxbugentry) rb_entry;
471 int rb_slot;
472 };
473
474 static int
475 dge_alloc_rcvmem(struct dge_softc *sc)
476 {
477 char *kva;
478 bus_dma_segment_t seg;
479 int i, rseg, state, error;
480 struct rxbugentry *entry;
481
482 state = error = 0;
483
484 if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
485 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
486 aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n");
487 return ENOBUFS;
488 }
489
490 state = 1;
491 if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
492 BUS_DMA_NOWAIT)) {
493 aprint_error_dev(sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
494 (int)DGE_RXMEM);
495 error = ENOBUFS;
496 goto out;
497 }
498
499 state = 2;
500 if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
501 BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
502 aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
503 error = ENOBUFS;
504 goto out;
505 }
506
507 state = 3;
508 if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
509 kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
510 aprint_error_dev(sc->sc_dev, "can't load DMA map\n");
511 error = ENOBUFS;
512 goto out;
513 }
514
515 state = 4;
516 sc->sc_bugbuf = (void *)kva;
517 SLIST_INIT(&sc->sc_buglist);
518
519 /*
520 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
521 * in an array.
522 */
523 if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
524 M_DEVBUF, M_NOWAIT)) == NULL) {
525 error = ENOBUFS;
526 goto out;
527 }
528 sc->sc_entry = entry;
529 for (i = 0; i < DGE_NBUFFERS; i++) {
530 entry[i].rb_slot = i;
531 SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
532 }
533 out:
534 if (error != 0) {
535 switch (state) {
536 case 4:
537 bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
538 case 3:
539 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
540 case 2:
541 bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
542 case 1:
543 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
544 break;
545 default:
546 break;
547 }
548 }
549
550 return error;
551 }
552
553 /*
554 * Allocate a jumbo buffer.
555 */
556 static void *
557 dge_getbuf(struct dge_softc *sc)
558 {
559 struct rxbugentry *entry;
560
561 entry = SLIST_FIRST(&sc->sc_buglist);
562
563 if (entry == NULL) {
564 printf("%s: no free RX buffers\n", device_xname(sc->sc_dev));
565 return(NULL);
566 }
567
568 SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
569 return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
570 }
571
572 /*
573 * Release a jumbo buffer.
574 */
575 static void
576 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
577 {
578 struct rxbugentry *entry;
579 struct dge_softc *sc;
580 int i, s;
581
582 /* Extract the softc struct pointer. */
583 sc = (struct dge_softc *)arg;
584
585 if (sc == NULL)
586 panic("dge_freebuf: can't find softc pointer!");
587
588 /* calculate the slot this buffer belongs to */
589
590 i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
591
592 if ((i < 0) || (i >= DGE_NBUFFERS))
593 panic("dge_freebuf: asked to free buffer %d!", i);
594
595 s = splvm();
596 entry = sc->sc_entry + i;
597 SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
598
599 if (__predict_true(m != NULL))
600 pool_cache_put(mb_cache, m);
601 splx(s);
602 }
603 #endif
604
605 static void dge_start(struct ifnet *);
606 static void dge_watchdog(struct ifnet *);
607 static int dge_ioctl(struct ifnet *, u_long, void *);
608 static int dge_init(struct ifnet *);
609 static void dge_stop(struct ifnet *, int);
610
611 static bool dge_shutdown(device_t, int);
612
613 static void dge_reset(struct dge_softc *);
614 static void dge_rxdrain(struct dge_softc *);
615 static int dge_add_rxbuf(struct dge_softc *, int);
616
617 static void dge_set_filter(struct dge_softc *);
618
619 static int dge_intr(void *);
620 static void dge_txintr(struct dge_softc *);
621 static void dge_rxintr(struct dge_softc *);
622 static void dge_linkintr(struct dge_softc *, uint32_t);
623
624 static int dge_match(device_t, cfdata_t, void *);
625 static void dge_attach(device_t, device_t, void *);
626
627 static int dge_read_eeprom(struct dge_softc *sc);
628 static int dge_eeprom_clockin(struct dge_softc *sc);
629 static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
630 static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
631 static int dge_xgmii_mediachange(struct ifnet *);
632 static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
633 static void dge_xgmii_reset(struct dge_softc *);
634 static void dge_xgmii_writereg(struct dge_softc *, int, int, int);
635
636
637 CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc),
638 dge_match, dge_attach, NULL, NULL);
639
640 #ifdef DGE_EVENT_COUNTERS
641 #if DGE_NTXSEGS > 100
642 #error Update dge_txseg_evcnt_names
643 #endif
644 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
645 #endif /* DGE_EVENT_COUNTERS */
646
647 /*
648 * Devices supported by this driver.
649 */
650 static const struct dge_product {
651 pci_vendor_id_t dgep_vendor;
652 pci_product_id_t dgep_product;
653 const char *dgep_name;
654 int dgep_flags;
655 #define DGEP_F_10G_LR 0x01
656 #define DGEP_F_10G_SR 0x02
657 } dge_products[] = {
658 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82597EX,
659 "Intel i82597EX 10GbE-LR Ethernet",
660 DGEP_F_10G_LR },
661
662 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82597EX_SR,
663 "Intel i82597EX 10GbE-SR Ethernet",
664 DGEP_F_10G_SR },
665
666 { 0, 0,
667 NULL,
668 0 },
669 };
670
671 static const struct dge_product *
672 dge_lookup(const struct pci_attach_args *pa)
673 {
674 const struct dge_product *dgep;
675
676 for (dgep = dge_products; dgep->dgep_name != NULL; dgep++) {
677 if (PCI_VENDOR(pa->pa_id) == dgep->dgep_vendor &&
678 PCI_PRODUCT(pa->pa_id) == dgep->dgep_product)
679 return dgep;
680 }
681 return NULL;
682 }
683
684 static int
685 dge_match(device_t parent, cfdata_t cf, void *aux)
686 {
687 struct pci_attach_args *pa = aux;
688
689 if (dge_lookup(pa) != NULL)
690 return (1);
691
692 return (0);
693 }
694
695 static void
696 dge_attach(device_t parent, device_t self, void *aux)
697 {
698 struct dge_softc *sc = device_private(self);
699 struct pci_attach_args *pa = aux;
700 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
701 pci_chipset_tag_t pc = pa->pa_pc;
702 pci_intr_handle_t ih;
703 const char *intrstr = NULL;
704 bus_dma_segment_t seg;
705 int i, rseg, error;
706 uint8_t enaddr[ETHER_ADDR_LEN];
707 pcireg_t preg, memtype;
708 uint32_t reg;
709 char intrbuf[PCI_INTRSTR_LEN];
710 const struct dge_product *dgep;
711
712 sc->sc_dgep = dgep = dge_lookup(pa);
713 if (dgep == NULL) {
714 printf("\n");
715 panic("dge_attach: impossible");
716 }
717
718 sc->sc_dev = self;
719 sc->sc_dmat = pa->pa_dmat;
720 sc->sc_pc = pa->pa_pc;
721 sc->sc_pt = pa->pa_tag;
722
723 pci_aprint_devinfo_fancy(pa, "Ethernet controller",
724 dgep->dgep_name, 1);
725
726 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
727 if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
728 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
729 aprint_error_dev(sc->sc_dev,
730 "unable to map device registers\n");
731 return;
732 }
733
734 /* Enable bus mastering */
735 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
736 preg |= PCI_COMMAND_MASTER_ENABLE;
737 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
738
739 /*
740 * Map and establish our interrupt.
741 */
742 if (pci_intr_map(pa, &ih)) {
743 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
744 return;
745 }
746 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
747 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, dge_intr, sc,
748 device_xname(self));
749 if (sc->sc_ih == NULL) {
750 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
751 if (intrstr != NULL)
752 aprint_error(" at %s", intrstr);
753 aprint_error("\n");
754 return;
755 }
756 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
757
758 /*
759 * Determine a few things about the bus we're connected to.
760 */
761 reg = CSR_READ(sc, DGE_STATUS);
762 if (reg & STATUS_BUS64)
763 sc->sc_flags |= DGE_F_BUS64;
764
765 sc->sc_flags |= DGE_F_PCIX;
766 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
767 PCI_CAP_PCIX,
768 &sc->sc_pcix_offset, NULL) == 0)
769 aprint_error_dev(sc->sc_dev, "unable to find PCIX "
770 "capability\n");
771
772 if (sc->sc_flags & DGE_F_PCIX) {
773 switch (reg & STATUS_PCIX_MSK) {
774 case STATUS_PCIX_66:
775 sc->sc_bus_speed = 66;
776 break;
777 case STATUS_PCIX_100:
778 sc->sc_bus_speed = 100;
779 break;
780 case STATUS_PCIX_133:
781 sc->sc_bus_speed = 133;
782 break;
783 default:
784 aprint_error_dev(sc->sc_dev,
785 "unknown PCIXSPD %d; assuming 66MHz\n",
786 reg & STATUS_PCIX_MSK);
787 sc->sc_bus_speed = 66;
788 }
789 } else
790 sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
791 aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
792 (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
793 (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
794
795 /*
796 * Allocate the control data structures, and create and load the
797 * DMA map for it.
798 */
799 if ((error = bus_dmamem_alloc(sc->sc_dmat,
800 sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
801 0)) != 0) {
802 aprint_error_dev(sc->sc_dev,
803 "unable to allocate control data, error = %d\n",
804 error);
805 goto fail_0;
806 }
807
808 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
809 sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
810 0)) != 0) {
811 aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
812 error);
813 goto fail_1;
814 }
815
816 if ((error = bus_dmamap_create(sc->sc_dmat,
817 sizeof(struct dge_control_data), 1,
818 sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
819 aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
820 "error = %d\n", error);
821 goto fail_2;
822 }
823
824 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
825 sc->sc_control_data, sizeof(struct dge_control_data), NULL,
826 0)) != 0) {
827 aprint_error_dev(sc->sc_dev,
828 "unable to load control data DMA map, error = %d\n",
829 error);
830 goto fail_3;
831 }
832
833 #ifdef DGE_OFFBYONE_RXBUG
834 if (dge_alloc_rcvmem(sc) != 0)
835 return; /* Already complained */
836 #endif
837 /*
838 * Create the transmit buffer DMA maps.
839 */
840 for (i = 0; i < DGE_TXQUEUELEN; i++) {
841 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
842 DGE_NTXSEGS, MCLBYTES, 0, 0,
843 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
844 aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, "
845 "error = %d\n", i, error);
846 goto fail_4;
847 }
848 }
849
850 /*
851 * Create the receive buffer DMA maps.
852 */
853 for (i = 0; i < DGE_NRXDESC; i++) {
854 #ifdef DGE_OFFBYONE_RXBUG
855 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
856 DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
857 #else
858 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
859 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
860 #endif
861 aprint_error_dev(sc->sc_dev, "unable to create Rx DMA map %d, "
862 "error = %d\n", i, error);
863 goto fail_5;
864 }
865 sc->sc_rxsoft[i].rxs_mbuf = NULL;
866 }
867
868 /*
869 * Set bits in ctrl0 register.
870 * Should get the software defined pins out of EEPROM?
871 */
872 sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
873 sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
874 CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
875
876 /*
877 * Reset the chip to a known state.
878 */
879 dge_reset(sc);
880
881 /*
882 * Reset the PHY.
883 */
884 dge_xgmii_reset(sc);
885
886 /*
887 * Read in EEPROM data.
888 */
889 if (dge_read_eeprom(sc)) {
890 aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n");
891 return;
892 }
893
894 /*
895 * Get the ethernet address.
896 */
897 enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
898 enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
899 enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
900 enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
901 enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
902 enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
903
904 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
905 ether_sprintf(enaddr));
906
907 /*
908 * Setup media stuff.
909 */
910 ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
911 dge_xgmii_mediastatus);
912 if (dgep->dgep_flags & DGEP_F_10G_SR) {
913 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_SR, 0, NULL);
914 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_SR);
915 } else { /* XXX default is LR */
916 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
917 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
918 }
919
920 ifp = &sc->sc_ethercom.ec_if;
921 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
922 ifp->if_softc = sc;
923 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
924 ifp->if_ioctl = dge_ioctl;
925 ifp->if_start = dge_start;
926 ifp->if_watchdog = dge_watchdog;
927 ifp->if_init = dge_init;
928 ifp->if_stop = dge_stop;
929 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(DGE_IFQUEUELEN, IFQ_MAXLEN));
930 IFQ_SET_READY(&ifp->if_snd);
931
932 sc->sc_ethercom.ec_capabilities |=
933 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
934
935 /*
936 * We can perform TCPv4 and UDPv4 checkums in-bound.
937 */
938 ifp->if_capabilities |=
939 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
940 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
941 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
942
943 /*
944 * Attach the interface.
945 */
946 if_attach(ifp);
947 if_deferred_start_init(ifp, NULL);
948 ether_ifattach(ifp, enaddr);
949 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
950 RND_TYPE_NET, RND_FLAG_DEFAULT);
951
952 #ifdef DGE_EVENT_COUNTERS
953 /* Fix segment event naming */
954 if (dge_txseg_evcnt_names == NULL) {
955 dge_txseg_evcnt_names =
956 malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
957 for (i = 0; i < DGE_NTXSEGS; i++)
958 snprintf((*dge_txseg_evcnt_names)[i],
959 sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
960 }
961
962 /* Attach event counters. */
963 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
964 NULL, device_xname(sc->sc_dev), "txsstall");
965 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
966 NULL, device_xname(sc->sc_dev), "txdstall");
967 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
968 NULL, device_xname(sc->sc_dev), "txforceintr");
969 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
970 NULL, device_xname(sc->sc_dev), "txdw");
971 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
972 NULL, device_xname(sc->sc_dev), "txqe");
973 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
974 NULL, device_xname(sc->sc_dev), "rxintr");
975 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
976 NULL, device_xname(sc->sc_dev), "linkintr");
977
978 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
979 NULL, device_xname(sc->sc_dev), "rxipsum");
980 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
981 NULL, device_xname(sc->sc_dev), "rxtusum");
982 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
983 NULL, device_xname(sc->sc_dev), "txipsum");
984 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
985 NULL, device_xname(sc->sc_dev), "txtusum");
986
987 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
988 NULL, device_xname(sc->sc_dev), "txctx init");
989 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
990 NULL, device_xname(sc->sc_dev), "txctx hit");
991 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
992 NULL, device_xname(sc->sc_dev), "txctx miss");
993
994 for (i = 0; i < DGE_NTXSEGS; i++)
995 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
996 NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
997
998 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
999 NULL, device_xname(sc->sc_dev), "txdrop");
1000
1001 #endif /* DGE_EVENT_COUNTERS */
1002
1003 /*
1004 * Make sure the interface is shutdown during reboot.
1005 */
1006 if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
1007 pmf_class_network_register(self, ifp);
1008 else
1009 aprint_error_dev(self, "couldn't establish power handler\n");
1010
1011 return;
1012
1013 /*
1014 * Free any resources we've allocated during the failed attach
1015 * attempt. Do this in reverse order and fall through.
1016 */
1017 fail_5:
1018 for (i = 0; i < DGE_NRXDESC; i++) {
1019 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1020 bus_dmamap_destroy(sc->sc_dmat,
1021 sc->sc_rxsoft[i].rxs_dmamap);
1022 }
1023 fail_4:
1024 for (i = 0; i < DGE_TXQUEUELEN; i++) {
1025 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1026 bus_dmamap_destroy(sc->sc_dmat,
1027 sc->sc_txsoft[i].txs_dmamap);
1028 }
1029 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1030 fail_3:
1031 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1032 fail_2:
1033 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1034 sizeof(struct dge_control_data));
1035 fail_1:
1036 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1037 fail_0:
1038 return;
1039 }
1040
1041 /*
1042 * dge_shutdown:
1043 *
1044 * Make sure the interface is stopped at reboot time.
1045 */
1046 static bool
1047 dge_shutdown(device_t self, int howto)
1048 {
1049 struct dge_softc *sc;
1050
1051 sc = device_private(self);
1052 dge_stop(&sc->sc_ethercom.ec_if, 1);
1053
1054 return true;
1055 }
1056
1057 /*
1058 * dge_tx_cksum:
1059 *
1060 * Set up TCP/IP checksumming parameters for the
1061 * specified packet.
1062 */
1063 static int
1064 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1065 {
1066 struct mbuf *m0 = txs->txs_mbuf;
1067 struct dge_ctdes *t;
1068 uint32_t ipcs, tucs;
1069 struct ether_header *eh;
1070 int offset, iphl;
1071 uint8_t fields = 0;
1072
1073 /*
1074 * XXX It would be nice if the mbuf pkthdr had offset
1075 * fields for the protocol headers.
1076 */
1077
1078 eh = mtod(m0, struct ether_header *);
1079 switch (htons(eh->ether_type)) {
1080 case ETHERTYPE_IP:
1081 offset = ETHER_HDR_LEN;
1082 break;
1083
1084 case ETHERTYPE_VLAN:
1085 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1086 break;
1087
1088 default:
1089 /*
1090 * Don't support this protocol or encapsulation.
1091 */
1092 *fieldsp = 0;
1093 return (0);
1094 }
1095
1096 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1097
1098 /*
1099 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1100 * offload feature, if we load the context descriptor, we
1101 * MUST provide valid values for IPCSS and TUCSS fields.
1102 */
1103
1104 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1105 DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1106 fields |= TDESC_POPTS_IXSM;
1107 ipcs = DGE_TCPIP_IPCSS(offset) |
1108 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1109 DGE_TCPIP_IPCSE(offset + iphl - 1);
1110 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1111 /* Use the cached value. */
1112 ipcs = sc->sc_txctx_ipcs;
1113 } else {
1114 /* Just initialize it to the likely value anyway. */
1115 ipcs = DGE_TCPIP_IPCSS(offset) |
1116 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1117 DGE_TCPIP_IPCSE(offset + iphl - 1);
1118 }
1119 DPRINTF(DGE_DEBUG_CKSUM,
1120 ("%s: CKSUM: offset %d ipcs 0x%x\n",
1121 device_xname(sc->sc_dev), offset, ipcs));
1122
1123 offset += iphl;
1124
1125 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1126 DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1127 fields |= TDESC_POPTS_TXSM;
1128 tucs = DGE_TCPIP_TUCSS(offset) |
1129 DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1130 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1131 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1132 /* Use the cached value. */
1133 tucs = sc->sc_txctx_tucs;
1134 } else {
1135 /* Just initialize it to a valid TCP context. */
1136 tucs = DGE_TCPIP_TUCSS(offset) |
1137 DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1138 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1139 }
1140
1141 DPRINTF(DGE_DEBUG_CKSUM,
1142 ("%s: CKSUM: offset %d tucs 0x%x\n",
1143 device_xname(sc->sc_dev), offset, tucs));
1144
1145 if (sc->sc_txctx_ipcs == ipcs &&
1146 sc->sc_txctx_tucs == tucs) {
1147 /* Cached context is fine. */
1148 DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1149 } else {
1150 /* Fill in the context descriptor. */
1151 #ifdef DGE_EVENT_COUNTERS
1152 if (sc->sc_txctx_ipcs == 0xffffffff &&
1153 sc->sc_txctx_tucs == 0xffffffff)
1154 DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1155 else
1156 DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1157 #endif
1158 t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1159 t->dc_tcpip_ipcs = htole32(ipcs);
1160 t->dc_tcpip_tucs = htole32(tucs);
1161 t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1162 t->dc_tcpip_seg = 0;
1163 DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1164
1165 sc->sc_txctx_ipcs = ipcs;
1166 sc->sc_txctx_tucs = tucs;
1167
1168 sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1169 txs->txs_ndesc++;
1170 }
1171
1172 *fieldsp = fields;
1173
1174 return (0);
1175 }
1176
1177 /*
1178 * dge_start: [ifnet interface function]
1179 *
1180 * Start packet transmission on the interface.
1181 */
1182 static void
1183 dge_start(struct ifnet *ifp)
1184 {
1185 struct dge_softc *sc = ifp->if_softc;
1186 struct mbuf *m0;
1187 struct dge_txsoft *txs;
1188 bus_dmamap_t dmamap;
1189 int error, nexttx, lasttx = -1, ofree, seg;
1190 uint32_t cksumcmd;
1191 uint8_t cksumfields;
1192
1193 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1194 return;
1195
1196 /*
1197 * Remember the previous number of free descriptors.
1198 */
1199 ofree = sc->sc_txfree;
1200
1201 /*
1202 * Loop through the send queue, setting up transmit descriptors
1203 * until we drain the queue, or use up all available transmit
1204 * descriptors.
1205 */
1206 for (;;) {
1207 /* Grab a packet off the queue. */
1208 IFQ_POLL(&ifp->if_snd, m0);
1209 if (m0 == NULL)
1210 break;
1211
1212 DPRINTF(DGE_DEBUG_TX,
1213 ("%s: TX: have packet to transmit: %p\n",
1214 device_xname(sc->sc_dev), m0));
1215
1216 /* Get a work queue entry. */
1217 if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1218 dge_txintr(sc);
1219 if (sc->sc_txsfree == 0) {
1220 DPRINTF(DGE_DEBUG_TX,
1221 ("%s: TX: no free job descriptors\n",
1222 device_xname(sc->sc_dev)));
1223 DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1224 break;
1225 }
1226 }
1227
1228 txs = &sc->sc_txsoft[sc->sc_txsnext];
1229 dmamap = txs->txs_dmamap;
1230
1231 /*
1232 * Load the DMA map. If this fails, the packet either
1233 * didn't fit in the allotted number of segments, or we
1234 * were short on resources. For the too-many-segments
1235 * case, we simply report an error and drop the packet,
1236 * since we can't sanely copy a jumbo packet to a single
1237 * buffer.
1238 */
1239 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1240 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1241 if (error) {
1242 if (error == EFBIG) {
1243 DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1244 printf("%s: Tx packet consumes too many "
1245 "DMA segments, dropping...\n",
1246 device_xname(sc->sc_dev));
1247 IFQ_DEQUEUE(&ifp->if_snd, m0);
1248 m_freem(m0);
1249 continue;
1250 }
1251 /*
1252 * Short on resources, just stop for now.
1253 */
1254 DPRINTF(DGE_DEBUG_TX,
1255 ("%s: TX: dmamap load failed: %d\n",
1256 device_xname(sc->sc_dev), error));
1257 break;
1258 }
1259
1260 /*
1261 * Ensure we have enough descriptors free to describe
1262 * the packet. Note, we always reserve one descriptor
1263 * at the end of the ring due to the semantics of the
1264 * TDT register, plus one more in the event we need
1265 * to re-load checksum offload context.
1266 */
1267 if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1268 /*
1269 * Not enough free descriptors to transmit this
1270 * packet. We haven't committed anything yet,
1271 * so just unload the DMA map, put the packet
1272 * pack on the queue, and punt. Notify the upper
1273 * layer that there are no more slots left.
1274 */
1275 DPRINTF(DGE_DEBUG_TX,
1276 ("%s: TX: need %d descriptors, have %d\n",
1277 device_xname(sc->sc_dev), dmamap->dm_nsegs,
1278 sc->sc_txfree - 1));
1279 ifp->if_flags |= IFF_OACTIVE;
1280 bus_dmamap_unload(sc->sc_dmat, dmamap);
1281 DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1282 break;
1283 }
1284
1285 IFQ_DEQUEUE(&ifp->if_snd, m0);
1286
1287 /*
1288 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1289 */
1290
1291 /* Sync the DMA map. */
1292 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1293 BUS_DMASYNC_PREWRITE);
1294
1295 DPRINTF(DGE_DEBUG_TX,
1296 ("%s: TX: packet has %d DMA segments\n",
1297 device_xname(sc->sc_dev), dmamap->dm_nsegs));
1298
1299 DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1300
1301 /*
1302 * Store a pointer to the packet so that we can free it
1303 * later.
1304 *
1305 * Initially, we consider the number of descriptors the
1306 * packet uses the number of DMA segments. This may be
1307 * incremented by 1 if we do checksum offload (a descriptor
1308 * is used to set the checksum context).
1309 */
1310 txs->txs_mbuf = m0;
1311 txs->txs_firstdesc = sc->sc_txnext;
1312 txs->txs_ndesc = dmamap->dm_nsegs;
1313
1314 /*
1315 * Set up checksum offload parameters for
1316 * this packet.
1317 */
1318 if (m0->m_pkthdr.csum_flags &
1319 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1320 if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1321 /* Error message already displayed. */
1322 bus_dmamap_unload(sc->sc_dmat, dmamap);
1323 continue;
1324 }
1325 } else {
1326 cksumfields = 0;
1327 }
1328
1329 cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1330
1331 /*
1332 * Initialize the transmit descriptor.
1333 */
1334 for (nexttx = sc->sc_txnext, seg = 0;
1335 seg < dmamap->dm_nsegs;
1336 seg++, nexttx = DGE_NEXTTX(nexttx)) {
1337 /*
1338 * Note: we currently only use 32-bit DMA
1339 * addresses.
1340 */
1341 sc->sc_txdescs[nexttx].dt_baddrh = 0;
1342 sc->sc_txdescs[nexttx].dt_baddrl =
1343 htole32(dmamap->dm_segs[seg].ds_addr);
1344 sc->sc_txdescs[nexttx].dt_ctl =
1345 htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1346 sc->sc_txdescs[nexttx].dt_status = 0;
1347 sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1348 sc->sc_txdescs[nexttx].dt_vlan = 0;
1349 lasttx = nexttx;
1350
1351 DPRINTF(DGE_DEBUG_TX,
1352 ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1353 device_xname(sc->sc_dev), nexttx,
1354 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
1355 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
1356 }
1357
1358 KASSERT(lasttx != -1);
1359
1360 /*
1361 * Set up the command byte on the last descriptor of
1362 * the packet. If we're in the interrupt delay window,
1363 * delay the interrupt.
1364 */
1365 sc->sc_txdescs[lasttx].dt_ctl |=
1366 htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1367
1368 txs->txs_lastdesc = lasttx;
1369
1370 DPRINTF(DGE_DEBUG_TX,
1371 ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev),
1372 lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1373
1374 /* Sync the descriptors we're using. */
1375 DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1376 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1377
1378 /* Give the packet to the chip. */
1379 CSR_WRITE(sc, DGE_TDT, nexttx);
1380
1381 DPRINTF(DGE_DEBUG_TX,
1382 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
1383
1384 DPRINTF(DGE_DEBUG_TX,
1385 ("%s: TX: finished transmitting packet, job %d\n",
1386 device_xname(sc->sc_dev), sc->sc_txsnext));
1387
1388 /* Advance the tx pointer. */
1389 sc->sc_txfree -= txs->txs_ndesc;
1390 sc->sc_txnext = nexttx;
1391
1392 sc->sc_txsfree--;
1393 sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1394
1395 /* Pass the packet to any BPF listeners. */
1396 bpf_mtap(ifp, m0, BPF_D_OUT);
1397 }
1398
1399 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1400 /* No more slots; notify upper layer. */
1401 ifp->if_flags |= IFF_OACTIVE;
1402 }
1403
1404 if (sc->sc_txfree != ofree) {
1405 /* Set a watchdog timer in case the chip flakes out. */
1406 ifp->if_timer = 5;
1407 }
1408 }
1409
1410 /*
1411 * dge_watchdog: [ifnet interface function]
1412 *
1413 * Watchdog timer handler.
1414 */
1415 static void
1416 dge_watchdog(struct ifnet *ifp)
1417 {
1418 struct dge_softc *sc = ifp->if_softc;
1419
1420 /*
1421 * Since we're using delayed interrupts, sweep up
1422 * before we report an error.
1423 */
1424 dge_txintr(sc);
1425
1426 if (sc->sc_txfree != DGE_NTXDESC) {
1427 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1428 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1429 sc->sc_txnext);
1430 ifp->if_oerrors++;
1431
1432 /* Reset the interface. */
1433 (void) dge_init(ifp);
1434 }
1435
1436 /* Try to get more packets going. */
1437 dge_start(ifp);
1438 }
1439
1440 /*
1441 * dge_ioctl: [ifnet interface function]
1442 *
1443 * Handle control requests from the operator.
1444 */
1445 static int
1446 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1447 {
1448 struct dge_softc *sc = ifp->if_softc;
1449 struct ifreq *ifr = (struct ifreq *) data;
1450 pcireg_t preg;
1451 int s, error, mmrbc;
1452
1453 s = splnet();
1454
1455 switch (cmd) {
1456 case SIOCSIFMEDIA:
1457 case SIOCGIFMEDIA:
1458 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1459 break;
1460
1461 case SIOCSIFMTU:
1462 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1463 error = EINVAL;
1464 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1465 break;
1466 else if (ifp->if_flags & IFF_UP)
1467 error = (*ifp->if_init)(ifp);
1468 else
1469 error = 0;
1470 break;
1471
1472 case SIOCSIFFLAGS:
1473 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1474 break;
1475 /* extract link flags */
1476 if ((ifp->if_flags & IFF_LINK0) == 0 &&
1477 (ifp->if_flags & IFF_LINK1) == 0)
1478 mmrbc = PCIX_MMRBC_512;
1479 else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1480 (ifp->if_flags & IFF_LINK1) != 0)
1481 mmrbc = PCIX_MMRBC_1024;
1482 else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1483 (ifp->if_flags & IFF_LINK1) == 0)
1484 mmrbc = PCIX_MMRBC_2048;
1485 else
1486 mmrbc = PCIX_MMRBC_4096;
1487 if (mmrbc != sc->sc_mmrbc) {
1488 preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1489 preg &= ~PCIX_MMRBC_MSK;
1490 preg |= mmrbc;
1491 pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1492 sc->sc_mmrbc = mmrbc;
1493 }
1494 /* FALLTHROUGH */
1495 default:
1496 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1497 break;
1498
1499 error = 0;
1500
1501 if (cmd == SIOCSIFCAP)
1502 error = (*ifp->if_init)(ifp);
1503 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1504 ;
1505 else if (ifp->if_flags & IFF_RUNNING) {
1506 /*
1507 * Multicast list has changed; set the hardware filter
1508 * accordingly.
1509 */
1510 dge_set_filter(sc);
1511 }
1512 break;
1513 }
1514
1515 /* Try to get more packets going. */
1516 dge_start(ifp);
1517
1518 splx(s);
1519 return (error);
1520 }
1521
1522 /*
1523 * dge_intr:
1524 *
1525 * Interrupt service routine.
1526 */
1527 static int
1528 dge_intr(void *arg)
1529 {
1530 struct dge_softc *sc = arg;
1531 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1532 uint32_t icr;
1533 int wantinit, handled = 0;
1534
1535 for (wantinit = 0; wantinit == 0;) {
1536 icr = CSR_READ(sc, DGE_ICR);
1537 if ((icr & sc->sc_icr) == 0)
1538 break;
1539
1540 rnd_add_uint32(&sc->rnd_source, icr);
1541
1542 handled = 1;
1543
1544 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1545 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1546 DPRINTF(DGE_DEBUG_RX,
1547 ("%s: RX: got Rx intr 0x%08x\n",
1548 device_xname(sc->sc_dev),
1549 icr & (ICR_RXDMT0|ICR_RXT0)));
1550 DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1551 }
1552 #endif
1553 dge_rxintr(sc);
1554
1555 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1556 if (icr & ICR_TXDW) {
1557 DPRINTF(DGE_DEBUG_TX,
1558 ("%s: TX: got TXDW interrupt\n",
1559 device_xname(sc->sc_dev)));
1560 DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1561 }
1562 if (icr & ICR_TXQE)
1563 DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1564 #endif
1565 dge_txintr(sc);
1566
1567 if (icr & (ICR_LSC|ICR_RXSEQ)) {
1568 DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1569 dge_linkintr(sc, icr);
1570 }
1571
1572 if (icr & ICR_RXO) {
1573 printf("%s: Receive overrun\n", device_xname(sc->sc_dev));
1574 wantinit = 1;
1575 }
1576 }
1577
1578 if (handled) {
1579 if (wantinit)
1580 dge_init(ifp);
1581
1582 /* Try to get more packets going. */
1583 if_schedule_deferred_start(ifp);
1584 }
1585
1586 return (handled);
1587 }
1588
1589 /*
1590 * dge_txintr:
1591 *
1592 * Helper; handle transmit interrupts.
1593 */
1594 static void
1595 dge_txintr(struct dge_softc *sc)
1596 {
1597 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1598 struct dge_txsoft *txs;
1599 uint8_t status;
1600 int i;
1601
1602 ifp->if_flags &= ~IFF_OACTIVE;
1603
1604 /*
1605 * Go through the Tx list and free mbufs for those
1606 * frames which have been transmitted.
1607 */
1608 for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1609 i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1610 txs = &sc->sc_txsoft[i];
1611
1612 DPRINTF(DGE_DEBUG_TX,
1613 ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
1614
1615 DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1616 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1617
1618 status =
1619 sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1620 if ((status & TDESC_STA_DD) == 0) {
1621 DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1622 BUS_DMASYNC_PREREAD);
1623 break;
1624 }
1625
1626 DPRINTF(DGE_DEBUG_TX,
1627 ("%s: TX: job %d done: descs %d..%d\n",
1628 device_xname(sc->sc_dev), i, txs->txs_firstdesc,
1629 txs->txs_lastdesc));
1630
1631 ifp->if_opackets++;
1632 sc->sc_txfree += txs->txs_ndesc;
1633 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1634 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1635 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1636 m_freem(txs->txs_mbuf);
1637 txs->txs_mbuf = NULL;
1638 }
1639
1640 /* Update the dirty transmit buffer pointer. */
1641 sc->sc_txsdirty = i;
1642 DPRINTF(DGE_DEBUG_TX,
1643 ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
1644
1645 /*
1646 * If there are no more pending transmissions, cancel the watchdog
1647 * timer.
1648 */
1649 if (sc->sc_txsfree == DGE_TXQUEUELEN)
1650 ifp->if_timer = 0;
1651 }
1652
1653 /*
1654 * dge_rxintr:
1655 *
1656 * Helper; handle receive interrupts.
1657 */
1658 static void
1659 dge_rxintr(struct dge_softc *sc)
1660 {
1661 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1662 struct dge_rxsoft *rxs;
1663 struct mbuf *m;
1664 int i, len;
1665 uint8_t status, errors;
1666
1667 for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1668 rxs = &sc->sc_rxsoft[i];
1669
1670 DPRINTF(DGE_DEBUG_RX,
1671 ("%s: RX: checking descriptor %d\n",
1672 device_xname(sc->sc_dev), i));
1673
1674 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1675
1676 status = sc->sc_rxdescs[i].dr_status;
1677 errors = sc->sc_rxdescs[i].dr_errors;
1678 len = le16toh(sc->sc_rxdescs[i].dr_len);
1679
1680 if ((status & RDESC_STS_DD) == 0) {
1681 /*
1682 * We have processed all of the receive descriptors.
1683 */
1684 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1685 break;
1686 }
1687
1688 if (__predict_false(sc->sc_rxdiscard)) {
1689 DPRINTF(DGE_DEBUG_RX,
1690 ("%s: RX: discarding contents of descriptor %d\n",
1691 device_xname(sc->sc_dev), i));
1692 DGE_INIT_RXDESC(sc, i);
1693 if (status & RDESC_STS_EOP) {
1694 /* Reset our state. */
1695 DPRINTF(DGE_DEBUG_RX,
1696 ("%s: RX: resetting rxdiscard -> 0\n",
1697 device_xname(sc->sc_dev)));
1698 sc->sc_rxdiscard = 0;
1699 }
1700 continue;
1701 }
1702
1703 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1704 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1705
1706 m = rxs->rxs_mbuf;
1707
1708 /*
1709 * Add a new receive buffer to the ring.
1710 */
1711 if (dge_add_rxbuf(sc, i) != 0) {
1712 /*
1713 * Failed, throw away what we've done so
1714 * far, and discard the rest of the packet.
1715 */
1716 ifp->if_ierrors++;
1717 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1718 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1719 DGE_INIT_RXDESC(sc, i);
1720 if ((status & RDESC_STS_EOP) == 0)
1721 sc->sc_rxdiscard = 1;
1722 if (sc->sc_rxhead != NULL)
1723 m_freem(sc->sc_rxhead);
1724 DGE_RXCHAIN_RESET(sc);
1725 DPRINTF(DGE_DEBUG_RX,
1726 ("%s: RX: Rx buffer allocation failed, "
1727 "dropping packet%s\n", device_xname(sc->sc_dev),
1728 sc->sc_rxdiscard ? " (discard)" : ""));
1729 continue;
1730 }
1731 DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1732
1733 DGE_RXCHAIN_LINK(sc, m);
1734
1735 m->m_len = len;
1736
1737 DPRINTF(DGE_DEBUG_RX,
1738 ("%s: RX: buffer at %p len %d\n",
1739 device_xname(sc->sc_dev), m->m_data, len));
1740
1741 /*
1742 * If this is not the end of the packet, keep
1743 * looking.
1744 */
1745 if ((status & RDESC_STS_EOP) == 0) {
1746 sc->sc_rxlen += len;
1747 DPRINTF(DGE_DEBUG_RX,
1748 ("%s: RX: not yet EOP, rxlen -> %d\n",
1749 device_xname(sc->sc_dev), sc->sc_rxlen));
1750 continue;
1751 }
1752
1753 /*
1754 * Okay, we have the entire packet now...
1755 */
1756 *sc->sc_rxtailp = NULL;
1757 m = sc->sc_rxhead;
1758 len += sc->sc_rxlen;
1759
1760 DGE_RXCHAIN_RESET(sc);
1761
1762 DPRINTF(DGE_DEBUG_RX,
1763 ("%s: RX: have entire packet, len -> %d\n",
1764 device_xname(sc->sc_dev), len));
1765
1766 /*
1767 * If an error occurred, update stats and drop the packet.
1768 */
1769 if (errors &
1770 (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
1771 ifp->if_ierrors++;
1772 if (errors & RDESC_ERR_SE)
1773 printf("%s: symbol error\n",
1774 device_xname(sc->sc_dev));
1775 else if (errors & RDESC_ERR_P)
1776 printf("%s: parity error\n",
1777 device_xname(sc->sc_dev));
1778 else if (errors & RDESC_ERR_CE)
1779 printf("%s: CRC error\n",
1780 device_xname(sc->sc_dev));
1781 m_freem(m);
1782 continue;
1783 }
1784
1785 /*
1786 * No errors. Receive the packet.
1787 */
1788 m_set_rcvif(m, ifp);
1789 m->m_pkthdr.len = len;
1790
1791 /*
1792 * Set up checksum info for this packet.
1793 */
1794 if (status & RDESC_STS_IPCS) {
1795 DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1796 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1797 if (errors & RDESC_ERR_IPE)
1798 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1799 }
1800 if (status & RDESC_STS_TCPCS) {
1801 /*
1802 * Note: we don't know if this was TCP or UDP,
1803 * so we just set both bits, and expect the
1804 * upper layers to deal.
1805 */
1806 DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1807 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
1808 if (errors & RDESC_ERR_TCPE)
1809 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1810 }
1811
1812 /* Pass it on. */
1813 if_percpuq_enqueue(ifp->if_percpuq, m);
1814 }
1815
1816 /* Update the receive pointer. */
1817 sc->sc_rxptr = i;
1818
1819 DPRINTF(DGE_DEBUG_RX,
1820 ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
1821 }
1822
1823 /*
1824 * dge_linkintr:
1825 *
1826 * Helper; handle link interrupts.
1827 */
1828 static void
1829 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1830 {
1831 uint32_t status;
1832
1833 if (icr & ICR_LSC) {
1834 status = CSR_READ(sc, DGE_STATUS);
1835 if (status & STATUS_LINKUP) {
1836 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1837 device_xname(sc->sc_dev)));
1838 } else {
1839 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1840 device_xname(sc->sc_dev)));
1841 }
1842 } else if (icr & ICR_RXSEQ) {
1843 DPRINTF(DGE_DEBUG_LINK,
1844 ("%s: LINK: Receive sequence error\n",
1845 device_xname(sc->sc_dev)));
1846 }
1847 /* XXX - fix errata */
1848 }
1849
1850 /*
1851 * dge_reset:
1852 *
1853 * Reset the i82597 chip.
1854 */
1855 static void
1856 dge_reset(struct dge_softc *sc)
1857 {
1858 int i;
1859
1860 /*
1861 * Do a chip reset.
1862 */
1863 CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1864
1865 delay(10000);
1866
1867 for (i = 0; i < 1000; i++) {
1868 if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1869 break;
1870 delay(20);
1871 }
1872
1873 if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1874 printf("%s: WARNING: reset failed to complete\n",
1875 device_xname(sc->sc_dev));
1876 /*
1877 * Reset the EEPROM logic.
1878 * This will cause the chip to reread its default values,
1879 * which doesn't happen otherwise (errata).
1880 */
1881 CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1882 delay(10000);
1883 }
1884
1885 /*
1886 * dge_init: [ifnet interface function]
1887 *
1888 * Initialize the interface. Must be called at splnet().
1889 */
1890 static int
1891 dge_init(struct ifnet *ifp)
1892 {
1893 struct dge_softc *sc = ifp->if_softc;
1894 struct dge_rxsoft *rxs;
1895 int i, error = 0;
1896 uint32_t reg;
1897
1898 /*
1899 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1900 * There is a small but measurable benefit to avoiding the adjusment
1901 * of the descriptor so that the headers are aligned, for normal mtu,
1902 * on such platforms. One possibility is that the DMA itself is
1903 * slightly more efficient if the front of the entire packet (instead
1904 * of the front of the headers) is aligned.
1905 *
1906 * Note we must always set align_tweak to 0 if we are using
1907 * jumbo frames.
1908 */
1909 #ifdef __NO_STRICT_ALIGNMENT
1910 sc->sc_align_tweak = 0;
1911 #else
1912 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1913 sc->sc_align_tweak = 0;
1914 else
1915 sc->sc_align_tweak = 2;
1916 #endif /* __NO_STRICT_ALIGNMENT */
1917
1918 /* Cancel any pending I/O. */
1919 dge_stop(ifp, 0);
1920
1921 /* Reset the chip to a known state. */
1922 dge_reset(sc);
1923
1924 /* Initialize the transmit descriptor ring. */
1925 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1926 DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1927 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1928 sc->sc_txfree = DGE_NTXDESC;
1929 sc->sc_txnext = 0;
1930
1931 sc->sc_txctx_ipcs = 0xffffffff;
1932 sc->sc_txctx_tucs = 0xffffffff;
1933
1934 CSR_WRITE(sc, DGE_TDBAH, 0);
1935 CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1936 CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1937 CSR_WRITE(sc, DGE_TDH, 0);
1938 CSR_WRITE(sc, DGE_TDT, 0);
1939 CSR_WRITE(sc, DGE_TIDV, TIDV);
1940
1941 #if 0
1942 CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1943 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1944 #endif
1945 CSR_WRITE(sc, DGE_RXDCTL,
1946 RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1947 RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1948 RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1949
1950 /* Initialize the transmit job descriptors. */
1951 for (i = 0; i < DGE_TXQUEUELEN; i++)
1952 sc->sc_txsoft[i].txs_mbuf = NULL;
1953 sc->sc_txsfree = DGE_TXQUEUELEN;
1954 sc->sc_txsnext = 0;
1955 sc->sc_txsdirty = 0;
1956
1957 /*
1958 * Initialize the receive descriptor and receive job
1959 * descriptor rings.
1960 */
1961 CSR_WRITE(sc, DGE_RDBAH, 0);
1962 CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1963 CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1964 CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1965 CSR_WRITE(sc, DGE_RDT, 0);
1966 CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1967 CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1968 CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1969
1970 for (i = 0; i < DGE_NRXDESC; i++) {
1971 rxs = &sc->sc_rxsoft[i];
1972 if (rxs->rxs_mbuf == NULL) {
1973 if ((error = dge_add_rxbuf(sc, i)) != 0) {
1974 printf("%s: unable to allocate or map rx "
1975 "buffer %d, error = %d\n",
1976 device_xname(sc->sc_dev), i, error);
1977 /*
1978 * XXX Should attempt to run with fewer receive
1979 * XXX buffers instead of just failing.
1980 */
1981 dge_rxdrain(sc);
1982 goto out;
1983 }
1984 }
1985 DGE_INIT_RXDESC(sc, i);
1986 }
1987 sc->sc_rxptr = DGE_RXSPACE;
1988 sc->sc_rxdiscard = 0;
1989 DGE_RXCHAIN_RESET(sc);
1990
1991 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1992 sc->sc_ctrl0 |= CTRL0_JFE;
1993 CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1994 }
1995
1996 /* Write the control registers. */
1997 CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1998
1999 /*
2000 * Set up checksum offload parameters.
2001 */
2002 reg = CSR_READ(sc, DGE_RXCSUM);
2003 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2004 reg |= RXCSUM_IPOFL;
2005 else
2006 reg &= ~RXCSUM_IPOFL;
2007 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2008 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2009 else {
2010 reg &= ~RXCSUM_TUOFL;
2011 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2012 reg &= ~RXCSUM_IPOFL;
2013 }
2014 CSR_WRITE(sc, DGE_RXCSUM, reg);
2015
2016 /*
2017 * Set up the interrupt registers.
2018 */
2019 CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
2020 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2021 ICR_RXO | ICR_RXT0;
2022
2023 CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
2024
2025 /*
2026 * Set up the transmit control register.
2027 */
2028 sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
2029 CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
2030
2031 /*
2032 * Set up the receive control register; we actually program
2033 * the register when we set the receive filter. Use multicast
2034 * address offset type 0.
2035 */
2036 sc->sc_mchash_type = 0;
2037
2038 sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2039 RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2040
2041 #ifdef DGE_OFFBYONE_RXBUG
2042 sc->sc_rctl |= RCTL_BSIZE_16k;
2043 #else
2044 switch(MCLBYTES) {
2045 case 2048:
2046 sc->sc_rctl |= RCTL_BSIZE_2k;
2047 break;
2048 case 4096:
2049 sc->sc_rctl |= RCTL_BSIZE_4k;
2050 break;
2051 case 8192:
2052 sc->sc_rctl |= RCTL_BSIZE_8k;
2053 break;
2054 case 16384:
2055 sc->sc_rctl |= RCTL_BSIZE_16k;
2056 break;
2057 default:
2058 panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2059 }
2060 #endif
2061
2062 /* Set the receive filter. */
2063 /* Also sets RCTL */
2064 dge_set_filter(sc);
2065
2066 /* ...all done! */
2067 ifp->if_flags |= IFF_RUNNING;
2068 ifp->if_flags &= ~IFF_OACTIVE;
2069
2070 out:
2071 if (error)
2072 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2073 return (error);
2074 }
2075
2076 /*
2077 * dge_rxdrain:
2078 *
2079 * Drain the receive queue.
2080 */
2081 static void
2082 dge_rxdrain(struct dge_softc *sc)
2083 {
2084 struct dge_rxsoft *rxs;
2085 int i;
2086
2087 for (i = 0; i < DGE_NRXDESC; i++) {
2088 rxs = &sc->sc_rxsoft[i];
2089 if (rxs->rxs_mbuf != NULL) {
2090 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2091 m_freem(rxs->rxs_mbuf);
2092 rxs->rxs_mbuf = NULL;
2093 }
2094 }
2095 }
2096
2097 /*
2098 * dge_stop: [ifnet interface function]
2099 *
2100 * Stop transmission on the interface.
2101 */
2102 static void
2103 dge_stop(struct ifnet *ifp, int disable)
2104 {
2105 struct dge_softc *sc = ifp->if_softc;
2106 struct dge_txsoft *txs;
2107 int i;
2108
2109 /* Stop the transmit and receive processes. */
2110 CSR_WRITE(sc, DGE_TCTL, 0);
2111 CSR_WRITE(sc, DGE_RCTL, 0);
2112
2113 /* Release any queued transmit buffers. */
2114 for (i = 0; i < DGE_TXQUEUELEN; i++) {
2115 txs = &sc->sc_txsoft[i];
2116 if (txs->txs_mbuf != NULL) {
2117 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2118 m_freem(txs->txs_mbuf);
2119 txs->txs_mbuf = NULL;
2120 }
2121 }
2122
2123 /* Mark the interface as down and cancel the watchdog timer. */
2124 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2125 ifp->if_timer = 0;
2126
2127 if (disable)
2128 dge_rxdrain(sc);
2129 }
2130
2131 /*
2132 * dge_add_rxbuf:
2133 *
2134 * Add a receive buffer to the indiciated descriptor.
2135 */
2136 static int
2137 dge_add_rxbuf(struct dge_softc *sc, int idx)
2138 {
2139 struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2140 struct mbuf *m;
2141 int error;
2142 #ifdef DGE_OFFBYONE_RXBUG
2143 void *buf;
2144 #endif
2145
2146 MGETHDR(m, M_DONTWAIT, MT_DATA);
2147 if (m == NULL)
2148 return (ENOBUFS);
2149
2150 #ifdef DGE_OFFBYONE_RXBUG
2151 if ((buf = dge_getbuf(sc)) == NULL)
2152 return ENOBUFS;
2153
2154 m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2155 MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2156 m->m_flags |= M_EXT_RW;
2157
2158 if (rxs->rxs_mbuf != NULL)
2159 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2160 rxs->rxs_mbuf = m;
2161
2162 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2163 DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
2164 #else
2165 MCLGET(m, M_DONTWAIT);
2166 if ((m->m_flags & M_EXT) == 0) {
2167 m_freem(m);
2168 return (ENOBUFS);
2169 }
2170
2171 if (rxs->rxs_mbuf != NULL)
2172 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2173
2174 rxs->rxs_mbuf = m;
2175
2176 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2177 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2178 BUS_DMA_READ|BUS_DMA_NOWAIT);
2179 #endif
2180 if (error) {
2181 printf("%s: unable to load rx DMA map %d, error = %d\n",
2182 device_xname(sc->sc_dev), idx, error);
2183 panic("dge_add_rxbuf"); /* XXX XXX XXX */
2184 }
2185 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2186 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2187
2188 return (0);
2189 }
2190
2191 /*
2192 * dge_set_ral:
2193 *
2194 * Set an entry in the receive address list.
2195 */
2196 static void
2197 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2198 {
2199 uint32_t ral_lo, ral_hi;
2200
2201 if (enaddr != NULL) {
2202 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2203 (enaddr[3] << 24);
2204 ral_hi = enaddr[4] | (enaddr[5] << 8);
2205 ral_hi |= RAH_AV;
2206 } else {
2207 ral_lo = 0;
2208 ral_hi = 0;
2209 }
2210 CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2211 CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2212 }
2213
2214 /*
2215 * dge_mchash:
2216 *
2217 * Compute the hash of the multicast address for the 4096-bit
2218 * multicast filter.
2219 */
2220 static uint32_t
2221 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2222 {
2223 static const int lo_shift[4] = { 4, 3, 2, 0 };
2224 static const int hi_shift[4] = { 4, 5, 6, 8 };
2225 uint32_t hash;
2226
2227 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2228 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2229
2230 return (hash & 0xfff);
2231 }
2232
2233 /*
2234 * dge_set_filter:
2235 *
2236 * Set up the receive filter.
2237 */
2238 static void
2239 dge_set_filter(struct dge_softc *sc)
2240 {
2241 struct ethercom *ec = &sc->sc_ethercom;
2242 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2243 struct ether_multi *enm;
2244 struct ether_multistep step;
2245 uint32_t hash, reg, bit;
2246 int i;
2247
2248 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2249
2250 if (ifp->if_flags & IFF_BROADCAST)
2251 sc->sc_rctl |= RCTL_BAM;
2252 if (ifp->if_flags & IFF_PROMISC) {
2253 sc->sc_rctl |= RCTL_UPE;
2254 goto allmulti;
2255 }
2256
2257 /*
2258 * Set the station address in the first RAL slot, and
2259 * clear the remaining slots.
2260 */
2261 dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2262 for (i = 1; i < RA_TABSIZE; i++)
2263 dge_set_ral(sc, NULL, i);
2264
2265 /* Clear out the multicast table. */
2266 for (i = 0; i < MC_TABSIZE; i++)
2267 CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2268
2269 ETHER_FIRST_MULTI(step, ec, enm);
2270 while (enm != NULL) {
2271 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2272 /*
2273 * We must listen to a range of multicast addresses.
2274 * For now, just accept all multicasts, rather than
2275 * trying to set only those filter bits needed to match
2276 * the range. (At this time, the only use of address
2277 * ranges is for IP multicast routing, for which the
2278 * range is big enough to require all bits set.)
2279 */
2280 goto allmulti;
2281 }
2282
2283 hash = dge_mchash(sc, enm->enm_addrlo);
2284
2285 reg = (hash >> 5) & 0x7f;
2286 bit = hash & 0x1f;
2287
2288 hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2289 hash |= 1U << bit;
2290
2291 CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2292
2293 ETHER_NEXT_MULTI(step, enm);
2294 }
2295
2296 ifp->if_flags &= ~IFF_ALLMULTI;
2297 goto setit;
2298
2299 allmulti:
2300 ifp->if_flags |= IFF_ALLMULTI;
2301 sc->sc_rctl |= RCTL_MPE;
2302
2303 setit:
2304 CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2305 }
2306
2307 /*
2308 * Read in the EEPROM info and verify checksum.
2309 */
2310 int
2311 dge_read_eeprom(struct dge_softc *sc)
2312 {
2313 uint16_t cksum;
2314 int i;
2315
2316 cksum = 0;
2317 for (i = 0; i < EEPROM_SIZE; i++) {
2318 sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2319 cksum += sc->sc_eeprom[i];
2320 }
2321 return cksum != EEPROM_CKSUM;
2322 }
2323
2324
2325 /*
2326 * Read a 16-bit word from address addr in the serial EEPROM.
2327 */
2328 uint16_t
2329 dge_eeprom_word(struct dge_softc *sc, int addr)
2330 {
2331 uint32_t reg;
2332 uint16_t rval = 0;
2333 int i;
2334
2335 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
2336
2337 /* Lower clock pulse (and data in to chip) */
2338 CSR_WRITE(sc, DGE_EECD, reg);
2339 /* Select chip */
2340 CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
2341
2342 /* Send read command */
2343 dge_eeprom_clockout(sc, 1);
2344 dge_eeprom_clockout(sc, 1);
2345 dge_eeprom_clockout(sc, 0);
2346
2347 /* Send address */
2348 for (i = 5; i >= 0; i--)
2349 dge_eeprom_clockout(sc, (addr >> i) & 1);
2350
2351 /* Read data */
2352 for (i = 0; i < 16; i++) {
2353 rval <<= 1;
2354 rval |= dge_eeprom_clockin(sc);
2355 }
2356
2357 /* Deselect chip */
2358 CSR_WRITE(sc, DGE_EECD, reg);
2359
2360 return rval;
2361 }
2362
2363 /*
2364 * Clock out a single bit to the EEPROM.
2365 */
2366 void
2367 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2368 {
2369 int reg;
2370
2371 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
2372 if (bit)
2373 reg |= EECD_DI;
2374
2375 CSR_WRITE(sc, DGE_EECD, reg);
2376 delay(2);
2377 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
2378 delay(2);
2379 CSR_WRITE(sc, DGE_EECD, reg);
2380 delay(2);
2381 }
2382
2383 /*
2384 * Clock in a single bit from EEPROM.
2385 */
2386 int
2387 dge_eeprom_clockin(struct dge_softc *sc)
2388 {
2389 int reg, rv;
2390
2391 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
2392
2393 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
2394 delay(2);
2395 rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2396 CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2397 delay(2);
2398
2399 return rv;
2400 }
2401
2402 static void
2403 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2404 {
2405 struct dge_softc *sc = ifp->if_softc;
2406
2407 ifmr->ifm_status = IFM_AVALID;
2408 if (sc->sc_dgep->dgep_flags & DGEP_F_10G_SR ) {
2409 ifmr->ifm_active = IFM_ETHER|IFM_10G_SR;
2410 } else {
2411 ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
2412 }
2413
2414 if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2415 ifmr->ifm_status |= IFM_ACTIVE;
2416 }
2417
2418 static inline int
2419 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2420 {
2421 int i, mdic;
2422
2423 CSR_WRITE(sc, DGE_MDIO,
2424 MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2425 for (i = 0; i < 10; i++) {
2426 delay(10);
2427 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2428 break;
2429 }
2430 return mdic;
2431 }
2432
2433 static void
2434 dge_xgmii_writereg(struct dge_softc *sc, int phy, int reg, int val)
2435 {
2436 int mdic;
2437
2438 CSR_WRITE(sc, DGE_MDIRW, val);
2439 if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2440 printf("%s: address cycle timeout; phy %d reg %d\n",
2441 device_xname(sc->sc_dev), phy, reg);
2442 return;
2443 }
2444 if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2445 printf("%s: write cycle timeout; phy %d reg %d\n",
2446 device_xname(sc->sc_dev), phy, reg);
2447 return;
2448 }
2449 }
2450
2451 static void
2452 dge_xgmii_reset(struct dge_softc *sc)
2453 {
2454 dge_xgmii_writereg(sc, 0, 0, BMCR_RESET);
2455 }
2456
2457 static int
2458 dge_xgmii_mediachange(struct ifnet *ifp)
2459 {
2460 return 0;
2461 }
2462