if_dge.c revision 1.51 1 /* $NetBSD: if_dge.c,v 1.51 2019/02/03 03:19:27 mrg Exp $ */
2
3 /*
4 * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 * All rights reserved.
6 *
7 * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * SUNET, Swedish University Computer Network.
21 * 4. The name of SUNET may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 *
75 * TODO (in no specific order):
76 * HW VLAN support.
77 * TSE offloading (needs kernel changes...)
78 * RAIDC (receive interrupt delay adaptation)
79 * Use memory > 4GB.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.51 2019/02/03 03:19:27 mrg Exp $");
84
85
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/ioctl.h>
95 #include <sys/errno.h>
96 #include <sys/device.h>
97 #include <sys/queue.h>
98
99 #include <sys/rndsource.h>
100
101 #include <net/if.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_ether.h>
105
106 #include <net/bpf.h>
107
108 #include <netinet/in.h> /* XXX for struct ip */
109 #include <netinet/in_systm.h> /* XXX for struct ip */
110 #include <netinet/ip.h> /* XXX for struct ip */
111 #include <netinet/tcp.h> /* XXX for struct tcphdr */
112
113 #include <sys/bus.h>
114 #include <sys/intr.h>
115 #include <machine/endian.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119 #include <dev/mii/mii_bitbang.h>
120
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 #include <dev/pci/pcidevs.h>
124
125 #include <dev/pci/if_dgereg.h>
126
127 /*
128 * The receive engine may sometimes become off-by-one when writing back
129 * chained descriptors. Avoid this by allocating a large chunk of
130 * memory and use if instead (to avoid chained descriptors).
131 * This only happens with chained descriptors under heavy load.
132 */
133 #define DGE_OFFBYONE_RXBUG
134
135 #define DGE_EVENT_COUNTERS
136 #define DGE_DEBUG
137
138 #ifdef DGE_DEBUG
139 #define DGE_DEBUG_LINK 0x01
140 #define DGE_DEBUG_TX 0x02
141 #define DGE_DEBUG_RX 0x04
142 #define DGE_DEBUG_CKSUM 0x08
143 int dge_debug = 0;
144
145 #define DPRINTF(x, y) if (dge_debug & (x)) printf y
146 #else
147 #define DPRINTF(x, y) /* nothing */
148 #endif /* DGE_DEBUG */
149
150 /*
151 * Transmit descriptor list size. We allow up to 100 DMA segments per
152 * packet (Intel reports of jumbo frame packets with as
153 * many as 80 DMA segments when using 16k buffers).
154 */
155 #define DGE_NTXSEGS 100
156 #define DGE_IFQUEUELEN 20000
157 #define DGE_TXQUEUELEN 2048
158 #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
159 #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
160 #define DGE_NTXDESC 1024
161 #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
162 #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
163 #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
164
165 /*
166 * Receive descriptor list size.
167 * Packet is of size MCLBYTES, and for jumbo packets buffers may
168 * be chained. Due to the nature of the card (high-speed), keep this
169 * ring large. With 2k buffers the ring can store 400 jumbo packets,
170 * which at full speed will be received in just under 3ms.
171 */
172 #define DGE_NRXDESC 2048
173 #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
174 #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
175 /*
176 * # of descriptors between head and written descriptors.
177 * This is to work-around two erratas.
178 */
179 #define DGE_RXSPACE 10
180 #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
181 /*
182 * Receive descriptor fetch threshholds. These are values recommended
183 * by Intel, do not touch them unless you know what you are doing.
184 */
185 #define RXDCTL_PTHRESH_VAL 128
186 #define RXDCTL_HTHRESH_VAL 16
187 #define RXDCTL_WTHRESH_VAL 16
188
189
190 /*
191 * Tweakable parameters; default values.
192 */
193 #define FCRTH 0x30000 /* Send XOFF water mark */
194 #define FCRTL 0x28000 /* Send XON water mark */
195 #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
196 #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
197
198 /*
199 * Control structures are DMA'd to the i82597 chip. We allocate them in
200 * a single clump that maps to a single DMA segment to make serveral things
201 * easier.
202 */
203 struct dge_control_data {
204 /*
205 * The transmit descriptors.
206 */
207 struct dge_tdes wcd_txdescs[DGE_NTXDESC];
208
209 /*
210 * The receive descriptors.
211 */
212 struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
213 };
214
215 #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
216 #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
217 #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
218
219 /*
220 * The DGE interface have a higher max MTU size than normal jumbo frames.
221 */
222 #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
223
224 /*
225 * Software state for transmit jobs.
226 */
227 struct dge_txsoft {
228 struct mbuf *txs_mbuf; /* head of our mbuf chain */
229 bus_dmamap_t txs_dmamap; /* our DMA map */
230 int txs_firstdesc; /* first descriptor in packet */
231 int txs_lastdesc; /* last descriptor in packet */
232 int txs_ndesc; /* # of descriptors used */
233 };
234
235 /*
236 * Software state for receive buffers. Each descriptor gets a
237 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
238 * more than one buffer, we chain them together.
239 */
240 struct dge_rxsoft {
241 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
242 bus_dmamap_t rxs_dmamap; /* our DMA map */
243 };
244
245 /*
246 * Software state per device.
247 */
248 struct dge_softc {
249 device_t sc_dev; /* generic device information */
250 bus_space_tag_t sc_st; /* bus space tag */
251 bus_space_handle_t sc_sh; /* bus space handle */
252 bus_dma_tag_t sc_dmat; /* bus DMA tag */
253 struct ethercom sc_ethercom; /* ethernet common data */
254
255 int sc_flags; /* flags; see below */
256 int sc_bus_speed; /* PCI/PCIX bus speed */
257 int sc_pcix_offset; /* PCIX capability register offset */
258
259 const struct dge_product *sc_dgep; /* Pointer to the dge_product entry */
260 pci_chipset_tag_t sc_pc;
261 pcitag_t sc_pt;
262 int sc_mmrbc; /* Max PCIX memory read byte count */
263
264 void *sc_ih; /* interrupt cookie */
265
266 struct ifmedia sc_media;
267
268 bus_dmamap_t sc_cddmamap; /* control data DMA map */
269 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
270
271 int sc_align_tweak;
272
273 /*
274 * Software state for the transmit and receive descriptors.
275 */
276 struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
277 struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
278
279 /*
280 * Control data structures.
281 */
282 struct dge_control_data *sc_control_data;
283 #define sc_txdescs sc_control_data->wcd_txdescs
284 #define sc_rxdescs sc_control_data->wcd_rxdescs
285
286 #ifdef DGE_EVENT_COUNTERS
287 /* Event counters. */
288 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
289 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
290 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
291 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
292 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
293 struct evcnt sc_ev_rxintr; /* Rx interrupts */
294 struct evcnt sc_ev_linkintr; /* Link interrupts */
295
296 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
297 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
298 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
299 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
300
301 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
302 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
303 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
304
305 struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
306 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
307 #endif /* DGE_EVENT_COUNTERS */
308
309 int sc_txfree; /* number of free Tx descriptors */
310 int sc_txnext; /* next ready Tx descriptor */
311
312 int sc_txsfree; /* number of free Tx jobs */
313 int sc_txsnext; /* next free Tx job */
314 int sc_txsdirty; /* dirty Tx jobs */
315
316 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
317 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
318
319 int sc_rxptr; /* next ready Rx descriptor/queue ent */
320 int sc_rxdiscard;
321 int sc_rxlen;
322 struct mbuf *sc_rxhead;
323 struct mbuf *sc_rxtail;
324 struct mbuf **sc_rxtailp;
325
326 uint32_t sc_ctrl0; /* prototype CTRL0 register */
327 uint32_t sc_icr; /* prototype interrupt bits */
328 uint32_t sc_tctl; /* prototype TCTL register */
329 uint32_t sc_rctl; /* prototype RCTL register */
330
331 int sc_mchash_type; /* multicast filter offset */
332
333 uint16_t sc_eeprom[EEPROM_SIZE];
334
335 krndsource_t rnd_source; /* random source */
336 #ifdef DGE_OFFBYONE_RXBUG
337 void *sc_bugbuf;
338 SLIST_HEAD(, rxbugentry) sc_buglist;
339 bus_dmamap_t sc_bugmap;
340 struct rxbugentry *sc_entry;
341 #endif
342 };
343
344 #define DGE_RXCHAIN_RESET(sc) \
345 do { \
346 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
347 *(sc)->sc_rxtailp = NULL; \
348 (sc)->sc_rxlen = 0; \
349 } while (/*CONSTCOND*/0)
350
351 #define DGE_RXCHAIN_LINK(sc, m) \
352 do { \
353 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
354 (sc)->sc_rxtailp = &(m)->m_next; \
355 } while (/*CONSTCOND*/0)
356
357 /* sc_flags */
358 #define DGE_F_BUS64 0x20 /* bus is 64-bit */
359 #define DGE_F_PCIX 0x40 /* bus is PCI-X */
360
361 #ifdef DGE_EVENT_COUNTERS
362 #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
363 #else
364 #define DGE_EVCNT_INCR(ev) /* nothing */
365 #endif
366
367 #define CSR_READ(sc, reg) \
368 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
369 #define CSR_WRITE(sc, reg, val) \
370 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
371
372 #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
373 #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
374
375 #define DGE_CDTXSYNC(sc, x, n, ops) \
376 do { \
377 int __x, __n; \
378 \
379 __x = (x); \
380 __n = (n); \
381 \
382 /* If it will wrap around, sync to the end of the ring. */ \
383 if ((__x + __n) > DGE_NTXDESC) { \
384 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
385 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
386 (DGE_NTXDESC - __x), (ops)); \
387 __n -= (DGE_NTXDESC - __x); \
388 __x = 0; \
389 } \
390 \
391 /* Now sync whatever is left. */ \
392 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
393 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
394 } while (/*CONSTCOND*/0)
395
396 #define DGE_CDRXSYNC(sc, x, ops) \
397 do { \
398 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
399 DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
400 } while (/*CONSTCOND*/0)
401
402 #ifdef DGE_OFFBYONE_RXBUG
403 #define DGE_INIT_RXDESC(sc, x) \
404 do { \
405 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
406 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
407 struct mbuf *__m = __rxs->rxs_mbuf; \
408 \
409 __rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
410 (mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
411 __rxd->dr_baddrh = 0; \
412 __rxd->dr_len = 0; \
413 __rxd->dr_cksum = 0; \
414 __rxd->dr_status = 0; \
415 __rxd->dr_errors = 0; \
416 __rxd->dr_special = 0; \
417 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
418 \
419 CSR_WRITE((sc), DGE_RDT, (x)); \
420 } while (/*CONSTCOND*/0)
421 #else
422 #define DGE_INIT_RXDESC(sc, x) \
423 do { \
424 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
425 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
426 struct mbuf *__m = __rxs->rxs_mbuf; \
427 \
428 /* \
429 * Note: We scoot the packet forward 2 bytes in the buffer \
430 * so that the payload after the Ethernet header is aligned \
431 * to a 4-byte boundary. \
432 * \
433 * XXX BRAINDAMAGE ALERT! \
434 * The stupid chip uses the same size for every buffer, which \
435 * is set in the Receive Control register. We are using the 2K \
436 * size option, but what we REALLY want is (2K - 2)! For this \
437 * reason, we can't "scoot" packets longer than the standard \
438 * Ethernet MTU. On strict-alignment platforms, if the total \
439 * size exceeds (2K - 2) we set align_tweak to 0 and let \
440 * the upper layer copy the headers. \
441 */ \
442 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
443 \
444 __rxd->dr_baddrl = \
445 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
446 (sc)->sc_align_tweak); \
447 __rxd->dr_baddrh = 0; \
448 __rxd->dr_len = 0; \
449 __rxd->dr_cksum = 0; \
450 __rxd->dr_status = 0; \
451 __rxd->dr_errors = 0; \
452 __rxd->dr_special = 0; \
453 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
454 \
455 CSR_WRITE((sc), DGE_RDT, (x)); \
456 } while (/*CONSTCOND*/0)
457 #endif
458
459 #ifdef DGE_OFFBYONE_RXBUG
460 /*
461 * Allocation constants. Much memory may be used for this.
462 */
463 #ifndef DGE_BUFFER_SIZE
464 #define DGE_BUFFER_SIZE DGE_MAX_MTU
465 #endif
466 #define DGE_NBUFFERS (4*DGE_NRXDESC)
467 #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
468
469 struct rxbugentry {
470 SLIST_ENTRY(rxbugentry) rb_entry;
471 int rb_slot;
472 };
473
474 static int
475 dge_alloc_rcvmem(struct dge_softc *sc)
476 {
477 char *kva;
478 bus_dma_segment_t seg;
479 int i, rseg, state, error;
480 struct rxbugentry *entry;
481
482 state = error = 0;
483
484 if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
485 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
486 aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n");
487 return ENOBUFS;
488 }
489
490 state = 1;
491 if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
492 BUS_DMA_NOWAIT)) {
493 aprint_error_dev(sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
494 (int)DGE_RXMEM);
495 error = ENOBUFS;
496 goto out;
497 }
498
499 state = 2;
500 if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
501 BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
502 aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
503 error = ENOBUFS;
504 goto out;
505 }
506
507 state = 3;
508 if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
509 kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
510 aprint_error_dev(sc->sc_dev, "can't load DMA map\n");
511 error = ENOBUFS;
512 goto out;
513 }
514
515 state = 4;
516 sc->sc_bugbuf = (void *)kva;
517 SLIST_INIT(&sc->sc_buglist);
518
519 /*
520 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
521 * in an array.
522 */
523 if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
524 M_DEVBUF, M_NOWAIT)) == NULL) {
525 error = ENOBUFS;
526 goto out;
527 }
528 sc->sc_entry = entry;
529 for (i = 0; i < DGE_NBUFFERS; i++) {
530 entry[i].rb_slot = i;
531 SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
532 }
533 out:
534 if (error != 0) {
535 switch (state) {
536 case 4:
537 bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
538 /* FALLTHROUGH */
539 case 3:
540 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
541 /* FALLTHROUGH */
542 case 2:
543 bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
544 /* FALLTHROUGH */
545 case 1:
546 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
547 break;
548 default:
549 break;
550 }
551 }
552
553 return error;
554 }
555
556 /*
557 * Allocate a jumbo buffer.
558 */
559 static void *
560 dge_getbuf(struct dge_softc *sc)
561 {
562 struct rxbugentry *entry;
563
564 entry = SLIST_FIRST(&sc->sc_buglist);
565
566 if (entry == NULL) {
567 printf("%s: no free RX buffers\n", device_xname(sc->sc_dev));
568 return(NULL);
569 }
570
571 SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
572 return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
573 }
574
575 /*
576 * Release a jumbo buffer.
577 */
578 static void
579 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
580 {
581 struct rxbugentry *entry;
582 struct dge_softc *sc;
583 int i, s;
584
585 /* Extract the softc struct pointer. */
586 sc = (struct dge_softc *)arg;
587
588 if (sc == NULL)
589 panic("dge_freebuf: can't find softc pointer!");
590
591 /* calculate the slot this buffer belongs to */
592
593 i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
594
595 if ((i < 0) || (i >= DGE_NBUFFERS))
596 panic("dge_freebuf: asked to free buffer %d!", i);
597
598 s = splvm();
599 entry = sc->sc_entry + i;
600 SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
601
602 if (__predict_true(m != NULL))
603 pool_cache_put(mb_cache, m);
604 splx(s);
605 }
606 #endif
607
608 static void dge_start(struct ifnet *);
609 static void dge_watchdog(struct ifnet *);
610 static int dge_ioctl(struct ifnet *, u_long, void *);
611 static int dge_init(struct ifnet *);
612 static void dge_stop(struct ifnet *, int);
613
614 static bool dge_shutdown(device_t, int);
615
616 static void dge_reset(struct dge_softc *);
617 static void dge_rxdrain(struct dge_softc *);
618 static int dge_add_rxbuf(struct dge_softc *, int);
619
620 static void dge_set_filter(struct dge_softc *);
621
622 static int dge_intr(void *);
623 static void dge_txintr(struct dge_softc *);
624 static void dge_rxintr(struct dge_softc *);
625 static void dge_linkintr(struct dge_softc *, uint32_t);
626
627 static int dge_match(device_t, cfdata_t, void *);
628 static void dge_attach(device_t, device_t, void *);
629
630 static int dge_read_eeprom(struct dge_softc *sc);
631 static int dge_eeprom_clockin(struct dge_softc *sc);
632 static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
633 static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
634 static int dge_xgmii_mediachange(struct ifnet *);
635 static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
636 static void dge_xgmii_reset(struct dge_softc *);
637 static void dge_xgmii_writereg(struct dge_softc *, int, int, int);
638
639
640 CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc),
641 dge_match, dge_attach, NULL, NULL);
642
643 #ifdef DGE_EVENT_COUNTERS
644 #if DGE_NTXSEGS > 100
645 #error Update dge_txseg_evcnt_names
646 #endif
647 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
648 #endif /* DGE_EVENT_COUNTERS */
649
650 /*
651 * Devices supported by this driver.
652 */
653 static const struct dge_product {
654 pci_vendor_id_t dgep_vendor;
655 pci_product_id_t dgep_product;
656 const char *dgep_name;
657 int dgep_flags;
658 #define DGEP_F_10G_LR 0x01
659 #define DGEP_F_10G_SR 0x02
660 } dge_products[] = {
661 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82597EX,
662 "Intel i82597EX 10GbE-LR Ethernet",
663 DGEP_F_10G_LR },
664
665 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82597EX_SR,
666 "Intel i82597EX 10GbE-SR Ethernet",
667 DGEP_F_10G_SR },
668
669 { 0, 0,
670 NULL,
671 0 },
672 };
673
674 static const struct dge_product *
675 dge_lookup(const struct pci_attach_args *pa)
676 {
677 const struct dge_product *dgep;
678
679 for (dgep = dge_products; dgep->dgep_name != NULL; dgep++) {
680 if (PCI_VENDOR(pa->pa_id) == dgep->dgep_vendor &&
681 PCI_PRODUCT(pa->pa_id) == dgep->dgep_product)
682 return dgep;
683 }
684 return NULL;
685 }
686
687 static int
688 dge_match(device_t parent, cfdata_t cf, void *aux)
689 {
690 struct pci_attach_args *pa = aux;
691
692 if (dge_lookup(pa) != NULL)
693 return (1);
694
695 return (0);
696 }
697
698 static void
699 dge_attach(device_t parent, device_t self, void *aux)
700 {
701 struct dge_softc *sc = device_private(self);
702 struct pci_attach_args *pa = aux;
703 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
704 pci_chipset_tag_t pc = pa->pa_pc;
705 pci_intr_handle_t ih;
706 const char *intrstr = NULL;
707 bus_dma_segment_t seg;
708 int i, rseg, error;
709 uint8_t enaddr[ETHER_ADDR_LEN];
710 pcireg_t preg, memtype;
711 uint32_t reg;
712 char intrbuf[PCI_INTRSTR_LEN];
713 const struct dge_product *dgep;
714
715 sc->sc_dgep = dgep = dge_lookup(pa);
716 if (dgep == NULL) {
717 printf("\n");
718 panic("dge_attach: impossible");
719 }
720
721 sc->sc_dev = self;
722 sc->sc_dmat = pa->pa_dmat;
723 sc->sc_pc = pa->pa_pc;
724 sc->sc_pt = pa->pa_tag;
725
726 pci_aprint_devinfo_fancy(pa, "Ethernet controller",
727 dgep->dgep_name, 1);
728
729 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
730 if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
731 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
732 aprint_error_dev(sc->sc_dev,
733 "unable to map device registers\n");
734 return;
735 }
736
737 /* Enable bus mastering */
738 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
739 preg |= PCI_COMMAND_MASTER_ENABLE;
740 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
741
742 /*
743 * Map and establish our interrupt.
744 */
745 if (pci_intr_map(pa, &ih)) {
746 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
747 return;
748 }
749 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
750 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, dge_intr, sc,
751 device_xname(self));
752 if (sc->sc_ih == NULL) {
753 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
754 if (intrstr != NULL)
755 aprint_error(" at %s", intrstr);
756 aprint_error("\n");
757 return;
758 }
759 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
760
761 /*
762 * Determine a few things about the bus we're connected to.
763 */
764 reg = CSR_READ(sc, DGE_STATUS);
765 if (reg & STATUS_BUS64)
766 sc->sc_flags |= DGE_F_BUS64;
767
768 sc->sc_flags |= DGE_F_PCIX;
769 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
770 PCI_CAP_PCIX,
771 &sc->sc_pcix_offset, NULL) == 0)
772 aprint_error_dev(sc->sc_dev, "unable to find PCIX "
773 "capability\n");
774
775 if (sc->sc_flags & DGE_F_PCIX) {
776 switch (reg & STATUS_PCIX_MSK) {
777 case STATUS_PCIX_66:
778 sc->sc_bus_speed = 66;
779 break;
780 case STATUS_PCIX_100:
781 sc->sc_bus_speed = 100;
782 break;
783 case STATUS_PCIX_133:
784 sc->sc_bus_speed = 133;
785 break;
786 default:
787 aprint_error_dev(sc->sc_dev,
788 "unknown PCIXSPD %d; assuming 66MHz\n",
789 reg & STATUS_PCIX_MSK);
790 sc->sc_bus_speed = 66;
791 }
792 } else
793 sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
794 aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
795 (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
796 (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
797
798 /*
799 * Allocate the control data structures, and create and load the
800 * DMA map for it.
801 */
802 if ((error = bus_dmamem_alloc(sc->sc_dmat,
803 sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
804 0)) != 0) {
805 aprint_error_dev(sc->sc_dev,
806 "unable to allocate control data, error = %d\n",
807 error);
808 goto fail_0;
809 }
810
811 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
812 sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
813 0)) != 0) {
814 aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
815 error);
816 goto fail_1;
817 }
818
819 if ((error = bus_dmamap_create(sc->sc_dmat,
820 sizeof(struct dge_control_data), 1,
821 sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
822 aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
823 "error = %d\n", error);
824 goto fail_2;
825 }
826
827 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
828 sc->sc_control_data, sizeof(struct dge_control_data), NULL,
829 0)) != 0) {
830 aprint_error_dev(sc->sc_dev,
831 "unable to load control data DMA map, error = %d\n",
832 error);
833 goto fail_3;
834 }
835
836 #ifdef DGE_OFFBYONE_RXBUG
837 if (dge_alloc_rcvmem(sc) != 0)
838 return; /* Already complained */
839 #endif
840 /*
841 * Create the transmit buffer DMA maps.
842 */
843 for (i = 0; i < DGE_TXQUEUELEN; i++) {
844 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
845 DGE_NTXSEGS, MCLBYTES, 0, 0,
846 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
847 aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, "
848 "error = %d\n", i, error);
849 goto fail_4;
850 }
851 }
852
853 /*
854 * Create the receive buffer DMA maps.
855 */
856 for (i = 0; i < DGE_NRXDESC; i++) {
857 #ifdef DGE_OFFBYONE_RXBUG
858 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
859 DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
860 #else
861 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
862 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
863 #endif
864 aprint_error_dev(sc->sc_dev, "unable to create Rx DMA map %d, "
865 "error = %d\n", i, error);
866 goto fail_5;
867 }
868 sc->sc_rxsoft[i].rxs_mbuf = NULL;
869 }
870
871 /*
872 * Set bits in ctrl0 register.
873 * Should get the software defined pins out of EEPROM?
874 */
875 sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
876 sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
877 CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
878
879 /*
880 * Reset the chip to a known state.
881 */
882 dge_reset(sc);
883
884 /*
885 * Reset the PHY.
886 */
887 dge_xgmii_reset(sc);
888
889 /*
890 * Read in EEPROM data.
891 */
892 if (dge_read_eeprom(sc)) {
893 aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n");
894 return;
895 }
896
897 /*
898 * Get the ethernet address.
899 */
900 enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
901 enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
902 enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
903 enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
904 enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
905 enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
906
907 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
908 ether_sprintf(enaddr));
909
910 /*
911 * Setup media stuff.
912 */
913 ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
914 dge_xgmii_mediastatus);
915 if (dgep->dgep_flags & DGEP_F_10G_SR) {
916 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_SR, 0, NULL);
917 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_SR);
918 } else { /* XXX default is LR */
919 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
920 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
921 }
922
923 ifp = &sc->sc_ethercom.ec_if;
924 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
925 ifp->if_softc = sc;
926 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
927 ifp->if_ioctl = dge_ioctl;
928 ifp->if_start = dge_start;
929 ifp->if_watchdog = dge_watchdog;
930 ifp->if_init = dge_init;
931 ifp->if_stop = dge_stop;
932 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(DGE_IFQUEUELEN, IFQ_MAXLEN));
933 IFQ_SET_READY(&ifp->if_snd);
934
935 sc->sc_ethercom.ec_capabilities |=
936 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
937
938 /*
939 * We can perform TCPv4 and UDPv4 checkums in-bound.
940 */
941 ifp->if_capabilities |=
942 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
943 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
944 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
945
946 /*
947 * Attach the interface.
948 */
949 if_attach(ifp);
950 if_deferred_start_init(ifp, NULL);
951 ether_ifattach(ifp, enaddr);
952 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
953 RND_TYPE_NET, RND_FLAG_DEFAULT);
954
955 #ifdef DGE_EVENT_COUNTERS
956 /* Fix segment event naming */
957 if (dge_txseg_evcnt_names == NULL) {
958 dge_txseg_evcnt_names =
959 malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
960 for (i = 0; i < DGE_NTXSEGS; i++)
961 snprintf((*dge_txseg_evcnt_names)[i],
962 sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
963 }
964
965 /* Attach event counters. */
966 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
967 NULL, device_xname(sc->sc_dev), "txsstall");
968 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
969 NULL, device_xname(sc->sc_dev), "txdstall");
970 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
971 NULL, device_xname(sc->sc_dev), "txforceintr");
972 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
973 NULL, device_xname(sc->sc_dev), "txdw");
974 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
975 NULL, device_xname(sc->sc_dev), "txqe");
976 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
977 NULL, device_xname(sc->sc_dev), "rxintr");
978 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
979 NULL, device_xname(sc->sc_dev), "linkintr");
980
981 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
982 NULL, device_xname(sc->sc_dev), "rxipsum");
983 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
984 NULL, device_xname(sc->sc_dev), "rxtusum");
985 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
986 NULL, device_xname(sc->sc_dev), "txipsum");
987 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
988 NULL, device_xname(sc->sc_dev), "txtusum");
989
990 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
991 NULL, device_xname(sc->sc_dev), "txctx init");
992 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
993 NULL, device_xname(sc->sc_dev), "txctx hit");
994 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
995 NULL, device_xname(sc->sc_dev), "txctx miss");
996
997 for (i = 0; i < DGE_NTXSEGS; i++)
998 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
999 NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
1000
1001 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1002 NULL, device_xname(sc->sc_dev), "txdrop");
1003
1004 #endif /* DGE_EVENT_COUNTERS */
1005
1006 /*
1007 * Make sure the interface is shutdown during reboot.
1008 */
1009 if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
1010 pmf_class_network_register(self, ifp);
1011 else
1012 aprint_error_dev(self, "couldn't establish power handler\n");
1013
1014 return;
1015
1016 /*
1017 * Free any resources we've allocated during the failed attach
1018 * attempt. Do this in reverse order and fall through.
1019 */
1020 fail_5:
1021 for (i = 0; i < DGE_NRXDESC; i++) {
1022 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1023 bus_dmamap_destroy(sc->sc_dmat,
1024 sc->sc_rxsoft[i].rxs_dmamap);
1025 }
1026 fail_4:
1027 for (i = 0; i < DGE_TXQUEUELEN; i++) {
1028 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1029 bus_dmamap_destroy(sc->sc_dmat,
1030 sc->sc_txsoft[i].txs_dmamap);
1031 }
1032 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1033 fail_3:
1034 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1035 fail_2:
1036 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1037 sizeof(struct dge_control_data));
1038 fail_1:
1039 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1040 fail_0:
1041 return;
1042 }
1043
1044 /*
1045 * dge_shutdown:
1046 *
1047 * Make sure the interface is stopped at reboot time.
1048 */
1049 static bool
1050 dge_shutdown(device_t self, int howto)
1051 {
1052 struct dge_softc *sc;
1053
1054 sc = device_private(self);
1055 dge_stop(&sc->sc_ethercom.ec_if, 1);
1056
1057 return true;
1058 }
1059
1060 /*
1061 * dge_tx_cksum:
1062 *
1063 * Set up TCP/IP checksumming parameters for the
1064 * specified packet.
1065 */
1066 static int
1067 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1068 {
1069 struct mbuf *m0 = txs->txs_mbuf;
1070 struct dge_ctdes *t;
1071 uint32_t ipcs, tucs;
1072 struct ether_header *eh;
1073 int offset, iphl;
1074 uint8_t fields = 0;
1075
1076 /*
1077 * XXX It would be nice if the mbuf pkthdr had offset
1078 * fields for the protocol headers.
1079 */
1080
1081 eh = mtod(m0, struct ether_header *);
1082 switch (htons(eh->ether_type)) {
1083 case ETHERTYPE_IP:
1084 offset = ETHER_HDR_LEN;
1085 break;
1086
1087 case ETHERTYPE_VLAN:
1088 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1089 break;
1090
1091 default:
1092 /*
1093 * Don't support this protocol or encapsulation.
1094 */
1095 *fieldsp = 0;
1096 return (0);
1097 }
1098
1099 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1100
1101 /*
1102 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1103 * offload feature, if we load the context descriptor, we
1104 * MUST provide valid values for IPCSS and TUCSS fields.
1105 */
1106
1107 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1108 DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1109 fields |= TDESC_POPTS_IXSM;
1110 ipcs = DGE_TCPIP_IPCSS(offset) |
1111 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1112 DGE_TCPIP_IPCSE(offset + iphl - 1);
1113 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1114 /* Use the cached value. */
1115 ipcs = sc->sc_txctx_ipcs;
1116 } else {
1117 /* Just initialize it to the likely value anyway. */
1118 ipcs = DGE_TCPIP_IPCSS(offset) |
1119 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1120 DGE_TCPIP_IPCSE(offset + iphl - 1);
1121 }
1122 DPRINTF(DGE_DEBUG_CKSUM,
1123 ("%s: CKSUM: offset %d ipcs 0x%x\n",
1124 device_xname(sc->sc_dev), offset, ipcs));
1125
1126 offset += iphl;
1127
1128 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1129 DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1130 fields |= TDESC_POPTS_TXSM;
1131 tucs = DGE_TCPIP_TUCSS(offset) |
1132 DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1133 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1134 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1135 /* Use the cached value. */
1136 tucs = sc->sc_txctx_tucs;
1137 } else {
1138 /* Just initialize it to a valid TCP context. */
1139 tucs = DGE_TCPIP_TUCSS(offset) |
1140 DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1141 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1142 }
1143
1144 DPRINTF(DGE_DEBUG_CKSUM,
1145 ("%s: CKSUM: offset %d tucs 0x%x\n",
1146 device_xname(sc->sc_dev), offset, tucs));
1147
1148 if (sc->sc_txctx_ipcs == ipcs &&
1149 sc->sc_txctx_tucs == tucs) {
1150 /* Cached context is fine. */
1151 DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1152 } else {
1153 /* Fill in the context descriptor. */
1154 #ifdef DGE_EVENT_COUNTERS
1155 if (sc->sc_txctx_ipcs == 0xffffffff &&
1156 sc->sc_txctx_tucs == 0xffffffff)
1157 DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1158 else
1159 DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1160 #endif
1161 t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1162 t->dc_tcpip_ipcs = htole32(ipcs);
1163 t->dc_tcpip_tucs = htole32(tucs);
1164 t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1165 t->dc_tcpip_seg = 0;
1166 DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1167
1168 sc->sc_txctx_ipcs = ipcs;
1169 sc->sc_txctx_tucs = tucs;
1170
1171 sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1172 txs->txs_ndesc++;
1173 }
1174
1175 *fieldsp = fields;
1176
1177 return (0);
1178 }
1179
1180 /*
1181 * dge_start: [ifnet interface function]
1182 *
1183 * Start packet transmission on the interface.
1184 */
1185 static void
1186 dge_start(struct ifnet *ifp)
1187 {
1188 struct dge_softc *sc = ifp->if_softc;
1189 struct mbuf *m0;
1190 struct dge_txsoft *txs;
1191 bus_dmamap_t dmamap;
1192 int error, nexttx, lasttx = -1, ofree, seg;
1193 uint32_t cksumcmd;
1194 uint8_t cksumfields;
1195
1196 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1197 return;
1198
1199 /*
1200 * Remember the previous number of free descriptors.
1201 */
1202 ofree = sc->sc_txfree;
1203
1204 /*
1205 * Loop through the send queue, setting up transmit descriptors
1206 * until we drain the queue, or use up all available transmit
1207 * descriptors.
1208 */
1209 for (;;) {
1210 /* Grab a packet off the queue. */
1211 IFQ_POLL(&ifp->if_snd, m0);
1212 if (m0 == NULL)
1213 break;
1214
1215 DPRINTF(DGE_DEBUG_TX,
1216 ("%s: TX: have packet to transmit: %p\n",
1217 device_xname(sc->sc_dev), m0));
1218
1219 /* Get a work queue entry. */
1220 if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1221 dge_txintr(sc);
1222 if (sc->sc_txsfree == 0) {
1223 DPRINTF(DGE_DEBUG_TX,
1224 ("%s: TX: no free job descriptors\n",
1225 device_xname(sc->sc_dev)));
1226 DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1227 break;
1228 }
1229 }
1230
1231 txs = &sc->sc_txsoft[sc->sc_txsnext];
1232 dmamap = txs->txs_dmamap;
1233
1234 /*
1235 * Load the DMA map. If this fails, the packet either
1236 * didn't fit in the allotted number of segments, or we
1237 * were short on resources. For the too-many-segments
1238 * case, we simply report an error and drop the packet,
1239 * since we can't sanely copy a jumbo packet to a single
1240 * buffer.
1241 */
1242 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1243 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1244 if (error) {
1245 if (error == EFBIG) {
1246 DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1247 printf("%s: Tx packet consumes too many "
1248 "DMA segments, dropping...\n",
1249 device_xname(sc->sc_dev));
1250 IFQ_DEQUEUE(&ifp->if_snd, m0);
1251 m_freem(m0);
1252 continue;
1253 }
1254 /*
1255 * Short on resources, just stop for now.
1256 */
1257 DPRINTF(DGE_DEBUG_TX,
1258 ("%s: TX: dmamap load failed: %d\n",
1259 device_xname(sc->sc_dev), error));
1260 break;
1261 }
1262
1263 /*
1264 * Ensure we have enough descriptors free to describe
1265 * the packet. Note, we always reserve one descriptor
1266 * at the end of the ring due to the semantics of the
1267 * TDT register, plus one more in the event we need
1268 * to re-load checksum offload context.
1269 */
1270 if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1271 /*
1272 * Not enough free descriptors to transmit this
1273 * packet. We haven't committed anything yet,
1274 * so just unload the DMA map, put the packet
1275 * pack on the queue, and punt. Notify the upper
1276 * layer that there are no more slots left.
1277 */
1278 DPRINTF(DGE_DEBUG_TX,
1279 ("%s: TX: need %d descriptors, have %d\n",
1280 device_xname(sc->sc_dev), dmamap->dm_nsegs,
1281 sc->sc_txfree - 1));
1282 ifp->if_flags |= IFF_OACTIVE;
1283 bus_dmamap_unload(sc->sc_dmat, dmamap);
1284 DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1285 break;
1286 }
1287
1288 IFQ_DEQUEUE(&ifp->if_snd, m0);
1289
1290 /*
1291 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1292 */
1293
1294 /* Sync the DMA map. */
1295 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1296 BUS_DMASYNC_PREWRITE);
1297
1298 DPRINTF(DGE_DEBUG_TX,
1299 ("%s: TX: packet has %d DMA segments\n",
1300 device_xname(sc->sc_dev), dmamap->dm_nsegs));
1301
1302 DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1303
1304 /*
1305 * Store a pointer to the packet so that we can free it
1306 * later.
1307 *
1308 * Initially, we consider the number of descriptors the
1309 * packet uses the number of DMA segments. This may be
1310 * incremented by 1 if we do checksum offload (a descriptor
1311 * is used to set the checksum context).
1312 */
1313 txs->txs_mbuf = m0;
1314 txs->txs_firstdesc = sc->sc_txnext;
1315 txs->txs_ndesc = dmamap->dm_nsegs;
1316
1317 /*
1318 * Set up checksum offload parameters for
1319 * this packet.
1320 */
1321 if (m0->m_pkthdr.csum_flags &
1322 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1323 if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1324 /* Error message already displayed. */
1325 bus_dmamap_unload(sc->sc_dmat, dmamap);
1326 continue;
1327 }
1328 } else {
1329 cksumfields = 0;
1330 }
1331
1332 cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1333
1334 /*
1335 * Initialize the transmit descriptor.
1336 */
1337 for (nexttx = sc->sc_txnext, seg = 0;
1338 seg < dmamap->dm_nsegs;
1339 seg++, nexttx = DGE_NEXTTX(nexttx)) {
1340 /*
1341 * Note: we currently only use 32-bit DMA
1342 * addresses.
1343 */
1344 sc->sc_txdescs[nexttx].dt_baddrh = 0;
1345 sc->sc_txdescs[nexttx].dt_baddrl =
1346 htole32(dmamap->dm_segs[seg].ds_addr);
1347 sc->sc_txdescs[nexttx].dt_ctl =
1348 htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1349 sc->sc_txdescs[nexttx].dt_status = 0;
1350 sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1351 sc->sc_txdescs[nexttx].dt_vlan = 0;
1352 lasttx = nexttx;
1353
1354 DPRINTF(DGE_DEBUG_TX,
1355 ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1356 device_xname(sc->sc_dev), nexttx,
1357 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
1358 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
1359 }
1360
1361 KASSERT(lasttx != -1);
1362
1363 /*
1364 * Set up the command byte on the last descriptor of
1365 * the packet. If we're in the interrupt delay window,
1366 * delay the interrupt.
1367 */
1368 sc->sc_txdescs[lasttx].dt_ctl |=
1369 htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1370
1371 txs->txs_lastdesc = lasttx;
1372
1373 DPRINTF(DGE_DEBUG_TX,
1374 ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev),
1375 lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1376
1377 /* Sync the descriptors we're using. */
1378 DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1379 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1380
1381 /* Give the packet to the chip. */
1382 CSR_WRITE(sc, DGE_TDT, nexttx);
1383
1384 DPRINTF(DGE_DEBUG_TX,
1385 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
1386
1387 DPRINTF(DGE_DEBUG_TX,
1388 ("%s: TX: finished transmitting packet, job %d\n",
1389 device_xname(sc->sc_dev), sc->sc_txsnext));
1390
1391 /* Advance the tx pointer. */
1392 sc->sc_txfree -= txs->txs_ndesc;
1393 sc->sc_txnext = nexttx;
1394
1395 sc->sc_txsfree--;
1396 sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1397
1398 /* Pass the packet to any BPF listeners. */
1399 bpf_mtap(ifp, m0, BPF_D_OUT);
1400 }
1401
1402 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1403 /* No more slots; notify upper layer. */
1404 ifp->if_flags |= IFF_OACTIVE;
1405 }
1406
1407 if (sc->sc_txfree != ofree) {
1408 /* Set a watchdog timer in case the chip flakes out. */
1409 ifp->if_timer = 5;
1410 }
1411 }
1412
1413 /*
1414 * dge_watchdog: [ifnet interface function]
1415 *
1416 * Watchdog timer handler.
1417 */
1418 static void
1419 dge_watchdog(struct ifnet *ifp)
1420 {
1421 struct dge_softc *sc = ifp->if_softc;
1422
1423 /*
1424 * Since we're using delayed interrupts, sweep up
1425 * before we report an error.
1426 */
1427 dge_txintr(sc);
1428
1429 if (sc->sc_txfree != DGE_NTXDESC) {
1430 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1431 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1432 sc->sc_txnext);
1433 ifp->if_oerrors++;
1434
1435 /* Reset the interface. */
1436 (void) dge_init(ifp);
1437 }
1438
1439 /* Try to get more packets going. */
1440 dge_start(ifp);
1441 }
1442
1443 /*
1444 * dge_ioctl: [ifnet interface function]
1445 *
1446 * Handle control requests from the operator.
1447 */
1448 static int
1449 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1450 {
1451 struct dge_softc *sc = ifp->if_softc;
1452 struct ifreq *ifr = (struct ifreq *) data;
1453 pcireg_t preg;
1454 int s, error, mmrbc;
1455
1456 s = splnet();
1457
1458 switch (cmd) {
1459 case SIOCSIFMEDIA:
1460 case SIOCGIFMEDIA:
1461 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1462 break;
1463
1464 case SIOCSIFMTU:
1465 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1466 error = EINVAL;
1467 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1468 break;
1469 else if (ifp->if_flags & IFF_UP)
1470 error = (*ifp->if_init)(ifp);
1471 else
1472 error = 0;
1473 break;
1474
1475 case SIOCSIFFLAGS:
1476 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1477 break;
1478 /* extract link flags */
1479 if ((ifp->if_flags & IFF_LINK0) == 0 &&
1480 (ifp->if_flags & IFF_LINK1) == 0)
1481 mmrbc = PCIX_MMRBC_512;
1482 else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1483 (ifp->if_flags & IFF_LINK1) != 0)
1484 mmrbc = PCIX_MMRBC_1024;
1485 else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1486 (ifp->if_flags & IFF_LINK1) == 0)
1487 mmrbc = PCIX_MMRBC_2048;
1488 else
1489 mmrbc = PCIX_MMRBC_4096;
1490 if (mmrbc != sc->sc_mmrbc) {
1491 preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1492 preg &= ~PCIX_MMRBC_MSK;
1493 preg |= mmrbc;
1494 pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1495 sc->sc_mmrbc = mmrbc;
1496 }
1497 /* FALLTHROUGH */
1498 default:
1499 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1500 break;
1501
1502 error = 0;
1503
1504 if (cmd == SIOCSIFCAP)
1505 error = (*ifp->if_init)(ifp);
1506 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1507 ;
1508 else if (ifp->if_flags & IFF_RUNNING) {
1509 /*
1510 * Multicast list has changed; set the hardware filter
1511 * accordingly.
1512 */
1513 dge_set_filter(sc);
1514 }
1515 break;
1516 }
1517
1518 /* Try to get more packets going. */
1519 dge_start(ifp);
1520
1521 splx(s);
1522 return (error);
1523 }
1524
1525 /*
1526 * dge_intr:
1527 *
1528 * Interrupt service routine.
1529 */
1530 static int
1531 dge_intr(void *arg)
1532 {
1533 struct dge_softc *sc = arg;
1534 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1535 uint32_t icr;
1536 int wantinit, handled = 0;
1537
1538 for (wantinit = 0; wantinit == 0;) {
1539 icr = CSR_READ(sc, DGE_ICR);
1540 if ((icr & sc->sc_icr) == 0)
1541 break;
1542
1543 rnd_add_uint32(&sc->rnd_source, icr);
1544
1545 handled = 1;
1546
1547 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1548 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1549 DPRINTF(DGE_DEBUG_RX,
1550 ("%s: RX: got Rx intr 0x%08x\n",
1551 device_xname(sc->sc_dev),
1552 icr & (ICR_RXDMT0|ICR_RXT0)));
1553 DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1554 }
1555 #endif
1556 dge_rxintr(sc);
1557
1558 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1559 if (icr & ICR_TXDW) {
1560 DPRINTF(DGE_DEBUG_TX,
1561 ("%s: TX: got TXDW interrupt\n",
1562 device_xname(sc->sc_dev)));
1563 DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1564 }
1565 if (icr & ICR_TXQE)
1566 DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1567 #endif
1568 dge_txintr(sc);
1569
1570 if (icr & (ICR_LSC|ICR_RXSEQ)) {
1571 DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1572 dge_linkintr(sc, icr);
1573 }
1574
1575 if (icr & ICR_RXO) {
1576 printf("%s: Receive overrun\n", device_xname(sc->sc_dev));
1577 wantinit = 1;
1578 }
1579 }
1580
1581 if (handled) {
1582 if (wantinit)
1583 dge_init(ifp);
1584
1585 /* Try to get more packets going. */
1586 if_schedule_deferred_start(ifp);
1587 }
1588
1589 return (handled);
1590 }
1591
1592 /*
1593 * dge_txintr:
1594 *
1595 * Helper; handle transmit interrupts.
1596 */
1597 static void
1598 dge_txintr(struct dge_softc *sc)
1599 {
1600 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1601 struct dge_txsoft *txs;
1602 uint8_t status;
1603 int i;
1604
1605 ifp->if_flags &= ~IFF_OACTIVE;
1606
1607 /*
1608 * Go through the Tx list and free mbufs for those
1609 * frames which have been transmitted.
1610 */
1611 for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1612 i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1613 txs = &sc->sc_txsoft[i];
1614
1615 DPRINTF(DGE_DEBUG_TX,
1616 ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
1617
1618 DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1619 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1620
1621 status =
1622 sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1623 if ((status & TDESC_STA_DD) == 0) {
1624 DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1625 BUS_DMASYNC_PREREAD);
1626 break;
1627 }
1628
1629 DPRINTF(DGE_DEBUG_TX,
1630 ("%s: TX: job %d done: descs %d..%d\n",
1631 device_xname(sc->sc_dev), i, txs->txs_firstdesc,
1632 txs->txs_lastdesc));
1633
1634 ifp->if_opackets++;
1635 sc->sc_txfree += txs->txs_ndesc;
1636 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1637 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1638 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1639 m_freem(txs->txs_mbuf);
1640 txs->txs_mbuf = NULL;
1641 }
1642
1643 /* Update the dirty transmit buffer pointer. */
1644 sc->sc_txsdirty = i;
1645 DPRINTF(DGE_DEBUG_TX,
1646 ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
1647
1648 /*
1649 * If there are no more pending transmissions, cancel the watchdog
1650 * timer.
1651 */
1652 if (sc->sc_txsfree == DGE_TXQUEUELEN)
1653 ifp->if_timer = 0;
1654 }
1655
1656 /*
1657 * dge_rxintr:
1658 *
1659 * Helper; handle receive interrupts.
1660 */
1661 static void
1662 dge_rxintr(struct dge_softc *sc)
1663 {
1664 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1665 struct dge_rxsoft *rxs;
1666 struct mbuf *m;
1667 int i, len;
1668 uint8_t status, errors;
1669
1670 for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1671 rxs = &sc->sc_rxsoft[i];
1672
1673 DPRINTF(DGE_DEBUG_RX,
1674 ("%s: RX: checking descriptor %d\n",
1675 device_xname(sc->sc_dev), i));
1676
1677 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1678
1679 status = sc->sc_rxdescs[i].dr_status;
1680 errors = sc->sc_rxdescs[i].dr_errors;
1681 len = le16toh(sc->sc_rxdescs[i].dr_len);
1682
1683 if ((status & RDESC_STS_DD) == 0) {
1684 /*
1685 * We have processed all of the receive descriptors.
1686 */
1687 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1688 break;
1689 }
1690
1691 if (__predict_false(sc->sc_rxdiscard)) {
1692 DPRINTF(DGE_DEBUG_RX,
1693 ("%s: RX: discarding contents of descriptor %d\n",
1694 device_xname(sc->sc_dev), i));
1695 DGE_INIT_RXDESC(sc, i);
1696 if (status & RDESC_STS_EOP) {
1697 /* Reset our state. */
1698 DPRINTF(DGE_DEBUG_RX,
1699 ("%s: RX: resetting rxdiscard -> 0\n",
1700 device_xname(sc->sc_dev)));
1701 sc->sc_rxdiscard = 0;
1702 }
1703 continue;
1704 }
1705
1706 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1707 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1708
1709 m = rxs->rxs_mbuf;
1710
1711 /*
1712 * Add a new receive buffer to the ring.
1713 */
1714 if (dge_add_rxbuf(sc, i) != 0) {
1715 /*
1716 * Failed, throw away what we've done so
1717 * far, and discard the rest of the packet.
1718 */
1719 ifp->if_ierrors++;
1720 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1721 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1722 DGE_INIT_RXDESC(sc, i);
1723 if ((status & RDESC_STS_EOP) == 0)
1724 sc->sc_rxdiscard = 1;
1725 if (sc->sc_rxhead != NULL)
1726 m_freem(sc->sc_rxhead);
1727 DGE_RXCHAIN_RESET(sc);
1728 DPRINTF(DGE_DEBUG_RX,
1729 ("%s: RX: Rx buffer allocation failed, "
1730 "dropping packet%s\n", device_xname(sc->sc_dev),
1731 sc->sc_rxdiscard ? " (discard)" : ""));
1732 continue;
1733 }
1734 DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1735
1736 DGE_RXCHAIN_LINK(sc, m);
1737
1738 m->m_len = len;
1739
1740 DPRINTF(DGE_DEBUG_RX,
1741 ("%s: RX: buffer at %p len %d\n",
1742 device_xname(sc->sc_dev), m->m_data, len));
1743
1744 /*
1745 * If this is not the end of the packet, keep
1746 * looking.
1747 */
1748 if ((status & RDESC_STS_EOP) == 0) {
1749 sc->sc_rxlen += len;
1750 DPRINTF(DGE_DEBUG_RX,
1751 ("%s: RX: not yet EOP, rxlen -> %d\n",
1752 device_xname(sc->sc_dev), sc->sc_rxlen));
1753 continue;
1754 }
1755
1756 /*
1757 * Okay, we have the entire packet now...
1758 */
1759 *sc->sc_rxtailp = NULL;
1760 m = sc->sc_rxhead;
1761 len += sc->sc_rxlen;
1762
1763 DGE_RXCHAIN_RESET(sc);
1764
1765 DPRINTF(DGE_DEBUG_RX,
1766 ("%s: RX: have entire packet, len -> %d\n",
1767 device_xname(sc->sc_dev), len));
1768
1769 /*
1770 * If an error occurred, update stats and drop the packet.
1771 */
1772 if (errors &
1773 (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
1774 ifp->if_ierrors++;
1775 if (errors & RDESC_ERR_SE)
1776 printf("%s: symbol error\n",
1777 device_xname(sc->sc_dev));
1778 else if (errors & RDESC_ERR_P)
1779 printf("%s: parity error\n",
1780 device_xname(sc->sc_dev));
1781 else if (errors & RDESC_ERR_CE)
1782 printf("%s: CRC error\n",
1783 device_xname(sc->sc_dev));
1784 m_freem(m);
1785 continue;
1786 }
1787
1788 /*
1789 * No errors. Receive the packet.
1790 */
1791 m_set_rcvif(m, ifp);
1792 m->m_pkthdr.len = len;
1793
1794 /*
1795 * Set up checksum info for this packet.
1796 */
1797 if (status & RDESC_STS_IPCS) {
1798 DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1799 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1800 if (errors & RDESC_ERR_IPE)
1801 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1802 }
1803 if (status & RDESC_STS_TCPCS) {
1804 /*
1805 * Note: we don't know if this was TCP or UDP,
1806 * so we just set both bits, and expect the
1807 * upper layers to deal.
1808 */
1809 DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1810 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
1811 if (errors & RDESC_ERR_TCPE)
1812 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1813 }
1814
1815 /* Pass it on. */
1816 if_percpuq_enqueue(ifp->if_percpuq, m);
1817 }
1818
1819 /* Update the receive pointer. */
1820 sc->sc_rxptr = i;
1821
1822 DPRINTF(DGE_DEBUG_RX,
1823 ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
1824 }
1825
1826 /*
1827 * dge_linkintr:
1828 *
1829 * Helper; handle link interrupts.
1830 */
1831 static void
1832 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1833 {
1834 uint32_t status;
1835
1836 if (icr & ICR_LSC) {
1837 status = CSR_READ(sc, DGE_STATUS);
1838 if (status & STATUS_LINKUP) {
1839 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1840 device_xname(sc->sc_dev)));
1841 } else {
1842 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1843 device_xname(sc->sc_dev)));
1844 }
1845 } else if (icr & ICR_RXSEQ) {
1846 DPRINTF(DGE_DEBUG_LINK,
1847 ("%s: LINK: Receive sequence error\n",
1848 device_xname(sc->sc_dev)));
1849 }
1850 /* XXX - fix errata */
1851 }
1852
1853 /*
1854 * dge_reset:
1855 *
1856 * Reset the i82597 chip.
1857 */
1858 static void
1859 dge_reset(struct dge_softc *sc)
1860 {
1861 int i;
1862
1863 /*
1864 * Do a chip reset.
1865 */
1866 CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1867
1868 delay(10000);
1869
1870 for (i = 0; i < 1000; i++) {
1871 if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1872 break;
1873 delay(20);
1874 }
1875
1876 if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1877 printf("%s: WARNING: reset failed to complete\n",
1878 device_xname(sc->sc_dev));
1879 /*
1880 * Reset the EEPROM logic.
1881 * This will cause the chip to reread its default values,
1882 * which doesn't happen otherwise (errata).
1883 */
1884 CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1885 delay(10000);
1886 }
1887
1888 /*
1889 * dge_init: [ifnet interface function]
1890 *
1891 * Initialize the interface. Must be called at splnet().
1892 */
1893 static int
1894 dge_init(struct ifnet *ifp)
1895 {
1896 struct dge_softc *sc = ifp->if_softc;
1897 struct dge_rxsoft *rxs;
1898 int i, error = 0;
1899 uint32_t reg;
1900
1901 /*
1902 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1903 * There is a small but measurable benefit to avoiding the adjusment
1904 * of the descriptor so that the headers are aligned, for normal mtu,
1905 * on such platforms. One possibility is that the DMA itself is
1906 * slightly more efficient if the front of the entire packet (instead
1907 * of the front of the headers) is aligned.
1908 *
1909 * Note we must always set align_tweak to 0 if we are using
1910 * jumbo frames.
1911 */
1912 #ifdef __NO_STRICT_ALIGNMENT
1913 sc->sc_align_tweak = 0;
1914 #else
1915 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1916 sc->sc_align_tweak = 0;
1917 else
1918 sc->sc_align_tweak = 2;
1919 #endif /* __NO_STRICT_ALIGNMENT */
1920
1921 /* Cancel any pending I/O. */
1922 dge_stop(ifp, 0);
1923
1924 /* Reset the chip to a known state. */
1925 dge_reset(sc);
1926
1927 /* Initialize the transmit descriptor ring. */
1928 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1929 DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1930 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1931 sc->sc_txfree = DGE_NTXDESC;
1932 sc->sc_txnext = 0;
1933
1934 sc->sc_txctx_ipcs = 0xffffffff;
1935 sc->sc_txctx_tucs = 0xffffffff;
1936
1937 CSR_WRITE(sc, DGE_TDBAH, 0);
1938 CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1939 CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1940 CSR_WRITE(sc, DGE_TDH, 0);
1941 CSR_WRITE(sc, DGE_TDT, 0);
1942 CSR_WRITE(sc, DGE_TIDV, TIDV);
1943
1944 #if 0
1945 CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1946 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1947 #endif
1948 CSR_WRITE(sc, DGE_RXDCTL,
1949 RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1950 RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1951 RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1952
1953 /* Initialize the transmit job descriptors. */
1954 for (i = 0; i < DGE_TXQUEUELEN; i++)
1955 sc->sc_txsoft[i].txs_mbuf = NULL;
1956 sc->sc_txsfree = DGE_TXQUEUELEN;
1957 sc->sc_txsnext = 0;
1958 sc->sc_txsdirty = 0;
1959
1960 /*
1961 * Initialize the receive descriptor and receive job
1962 * descriptor rings.
1963 */
1964 CSR_WRITE(sc, DGE_RDBAH, 0);
1965 CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1966 CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1967 CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1968 CSR_WRITE(sc, DGE_RDT, 0);
1969 CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1970 CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1971 CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1972
1973 for (i = 0; i < DGE_NRXDESC; i++) {
1974 rxs = &sc->sc_rxsoft[i];
1975 if (rxs->rxs_mbuf == NULL) {
1976 if ((error = dge_add_rxbuf(sc, i)) != 0) {
1977 printf("%s: unable to allocate or map rx "
1978 "buffer %d, error = %d\n",
1979 device_xname(sc->sc_dev), i, error);
1980 /*
1981 * XXX Should attempt to run with fewer receive
1982 * XXX buffers instead of just failing.
1983 */
1984 dge_rxdrain(sc);
1985 goto out;
1986 }
1987 }
1988 DGE_INIT_RXDESC(sc, i);
1989 }
1990 sc->sc_rxptr = DGE_RXSPACE;
1991 sc->sc_rxdiscard = 0;
1992 DGE_RXCHAIN_RESET(sc);
1993
1994 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1995 sc->sc_ctrl0 |= CTRL0_JFE;
1996 CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1997 }
1998
1999 /* Write the control registers. */
2000 CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
2001
2002 /*
2003 * Set up checksum offload parameters.
2004 */
2005 reg = CSR_READ(sc, DGE_RXCSUM);
2006 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2007 reg |= RXCSUM_IPOFL;
2008 else
2009 reg &= ~RXCSUM_IPOFL;
2010 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2011 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2012 else {
2013 reg &= ~RXCSUM_TUOFL;
2014 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2015 reg &= ~RXCSUM_IPOFL;
2016 }
2017 CSR_WRITE(sc, DGE_RXCSUM, reg);
2018
2019 /*
2020 * Set up the interrupt registers.
2021 */
2022 CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
2023 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2024 ICR_RXO | ICR_RXT0;
2025
2026 CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
2027
2028 /*
2029 * Set up the transmit control register.
2030 */
2031 sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
2032 CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
2033
2034 /*
2035 * Set up the receive control register; we actually program
2036 * the register when we set the receive filter. Use multicast
2037 * address offset type 0.
2038 */
2039 sc->sc_mchash_type = 0;
2040
2041 sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2042 RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2043
2044 #ifdef DGE_OFFBYONE_RXBUG
2045 sc->sc_rctl |= RCTL_BSIZE_16k;
2046 #else
2047 switch(MCLBYTES) {
2048 case 2048:
2049 sc->sc_rctl |= RCTL_BSIZE_2k;
2050 break;
2051 case 4096:
2052 sc->sc_rctl |= RCTL_BSIZE_4k;
2053 break;
2054 case 8192:
2055 sc->sc_rctl |= RCTL_BSIZE_8k;
2056 break;
2057 case 16384:
2058 sc->sc_rctl |= RCTL_BSIZE_16k;
2059 break;
2060 default:
2061 panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2062 }
2063 #endif
2064
2065 /* Set the receive filter. */
2066 /* Also sets RCTL */
2067 dge_set_filter(sc);
2068
2069 /* ...all done! */
2070 ifp->if_flags |= IFF_RUNNING;
2071 ifp->if_flags &= ~IFF_OACTIVE;
2072
2073 out:
2074 if (error)
2075 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2076 return (error);
2077 }
2078
2079 /*
2080 * dge_rxdrain:
2081 *
2082 * Drain the receive queue.
2083 */
2084 static void
2085 dge_rxdrain(struct dge_softc *sc)
2086 {
2087 struct dge_rxsoft *rxs;
2088 int i;
2089
2090 for (i = 0; i < DGE_NRXDESC; i++) {
2091 rxs = &sc->sc_rxsoft[i];
2092 if (rxs->rxs_mbuf != NULL) {
2093 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2094 m_freem(rxs->rxs_mbuf);
2095 rxs->rxs_mbuf = NULL;
2096 }
2097 }
2098 }
2099
2100 /*
2101 * dge_stop: [ifnet interface function]
2102 *
2103 * Stop transmission on the interface.
2104 */
2105 static void
2106 dge_stop(struct ifnet *ifp, int disable)
2107 {
2108 struct dge_softc *sc = ifp->if_softc;
2109 struct dge_txsoft *txs;
2110 int i;
2111
2112 /* Stop the transmit and receive processes. */
2113 CSR_WRITE(sc, DGE_TCTL, 0);
2114 CSR_WRITE(sc, DGE_RCTL, 0);
2115
2116 /* Release any queued transmit buffers. */
2117 for (i = 0; i < DGE_TXQUEUELEN; i++) {
2118 txs = &sc->sc_txsoft[i];
2119 if (txs->txs_mbuf != NULL) {
2120 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2121 m_freem(txs->txs_mbuf);
2122 txs->txs_mbuf = NULL;
2123 }
2124 }
2125
2126 /* Mark the interface as down and cancel the watchdog timer. */
2127 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2128 ifp->if_timer = 0;
2129
2130 if (disable)
2131 dge_rxdrain(sc);
2132 }
2133
2134 /*
2135 * dge_add_rxbuf:
2136 *
2137 * Add a receive buffer to the indiciated descriptor.
2138 */
2139 static int
2140 dge_add_rxbuf(struct dge_softc *sc, int idx)
2141 {
2142 struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2143 struct mbuf *m;
2144 int error;
2145 #ifdef DGE_OFFBYONE_RXBUG
2146 void *buf;
2147 #endif
2148
2149 MGETHDR(m, M_DONTWAIT, MT_DATA);
2150 if (m == NULL)
2151 return (ENOBUFS);
2152
2153 #ifdef DGE_OFFBYONE_RXBUG
2154 if ((buf = dge_getbuf(sc)) == NULL)
2155 return ENOBUFS;
2156
2157 m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2158 MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2159 m->m_flags |= M_EXT_RW;
2160
2161 if (rxs->rxs_mbuf != NULL)
2162 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2163 rxs->rxs_mbuf = m;
2164
2165 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2166 DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
2167 #else
2168 MCLGET(m, M_DONTWAIT);
2169 if ((m->m_flags & M_EXT) == 0) {
2170 m_freem(m);
2171 return (ENOBUFS);
2172 }
2173
2174 if (rxs->rxs_mbuf != NULL)
2175 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2176
2177 rxs->rxs_mbuf = m;
2178
2179 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2180 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2181 BUS_DMA_READ|BUS_DMA_NOWAIT);
2182 #endif
2183 if (error) {
2184 printf("%s: unable to load rx DMA map %d, error = %d\n",
2185 device_xname(sc->sc_dev), idx, error);
2186 panic("dge_add_rxbuf"); /* XXX XXX XXX */
2187 }
2188 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2189 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2190
2191 return (0);
2192 }
2193
2194 /*
2195 * dge_set_ral:
2196 *
2197 * Set an entry in the receive address list.
2198 */
2199 static void
2200 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2201 {
2202 uint32_t ral_lo, ral_hi;
2203
2204 if (enaddr != NULL) {
2205 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2206 (enaddr[3] << 24);
2207 ral_hi = enaddr[4] | (enaddr[5] << 8);
2208 ral_hi |= RAH_AV;
2209 } else {
2210 ral_lo = 0;
2211 ral_hi = 0;
2212 }
2213 CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2214 CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2215 }
2216
2217 /*
2218 * dge_mchash:
2219 *
2220 * Compute the hash of the multicast address for the 4096-bit
2221 * multicast filter.
2222 */
2223 static uint32_t
2224 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2225 {
2226 static const int lo_shift[4] = { 4, 3, 2, 0 };
2227 static const int hi_shift[4] = { 4, 5, 6, 8 };
2228 uint32_t hash;
2229
2230 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2231 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2232
2233 return (hash & 0xfff);
2234 }
2235
2236 /*
2237 * dge_set_filter:
2238 *
2239 * Set up the receive filter.
2240 */
2241 static void
2242 dge_set_filter(struct dge_softc *sc)
2243 {
2244 struct ethercom *ec = &sc->sc_ethercom;
2245 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2246 struct ether_multi *enm;
2247 struct ether_multistep step;
2248 uint32_t hash, reg, bit;
2249 int i;
2250
2251 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2252
2253 if (ifp->if_flags & IFF_BROADCAST)
2254 sc->sc_rctl |= RCTL_BAM;
2255 if (ifp->if_flags & IFF_PROMISC) {
2256 sc->sc_rctl |= RCTL_UPE;
2257 goto allmulti;
2258 }
2259
2260 /*
2261 * Set the station address in the first RAL slot, and
2262 * clear the remaining slots.
2263 */
2264 dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2265 for (i = 1; i < RA_TABSIZE; i++)
2266 dge_set_ral(sc, NULL, i);
2267
2268 /* Clear out the multicast table. */
2269 for (i = 0; i < MC_TABSIZE; i++)
2270 CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2271
2272 ETHER_FIRST_MULTI(step, ec, enm);
2273 while (enm != NULL) {
2274 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2275 /*
2276 * We must listen to a range of multicast addresses.
2277 * For now, just accept all multicasts, rather than
2278 * trying to set only those filter bits needed to match
2279 * the range. (At this time, the only use of address
2280 * ranges is for IP multicast routing, for which the
2281 * range is big enough to require all bits set.)
2282 */
2283 goto allmulti;
2284 }
2285
2286 hash = dge_mchash(sc, enm->enm_addrlo);
2287
2288 reg = (hash >> 5) & 0x7f;
2289 bit = hash & 0x1f;
2290
2291 hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2292 hash |= 1U << bit;
2293
2294 CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2295
2296 ETHER_NEXT_MULTI(step, enm);
2297 }
2298
2299 ifp->if_flags &= ~IFF_ALLMULTI;
2300 goto setit;
2301
2302 allmulti:
2303 ifp->if_flags |= IFF_ALLMULTI;
2304 sc->sc_rctl |= RCTL_MPE;
2305
2306 setit:
2307 CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2308 }
2309
2310 /*
2311 * Read in the EEPROM info and verify checksum.
2312 */
2313 int
2314 dge_read_eeprom(struct dge_softc *sc)
2315 {
2316 uint16_t cksum;
2317 int i;
2318
2319 cksum = 0;
2320 for (i = 0; i < EEPROM_SIZE; i++) {
2321 sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2322 cksum += sc->sc_eeprom[i];
2323 }
2324 return cksum != EEPROM_CKSUM;
2325 }
2326
2327
2328 /*
2329 * Read a 16-bit word from address addr in the serial EEPROM.
2330 */
2331 uint16_t
2332 dge_eeprom_word(struct dge_softc *sc, int addr)
2333 {
2334 uint32_t reg;
2335 uint16_t rval = 0;
2336 int i;
2337
2338 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
2339
2340 /* Lower clock pulse (and data in to chip) */
2341 CSR_WRITE(sc, DGE_EECD, reg);
2342 /* Select chip */
2343 CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
2344
2345 /* Send read command */
2346 dge_eeprom_clockout(sc, 1);
2347 dge_eeprom_clockout(sc, 1);
2348 dge_eeprom_clockout(sc, 0);
2349
2350 /* Send address */
2351 for (i = 5; i >= 0; i--)
2352 dge_eeprom_clockout(sc, (addr >> i) & 1);
2353
2354 /* Read data */
2355 for (i = 0; i < 16; i++) {
2356 rval <<= 1;
2357 rval |= dge_eeprom_clockin(sc);
2358 }
2359
2360 /* Deselect chip */
2361 CSR_WRITE(sc, DGE_EECD, reg);
2362
2363 return rval;
2364 }
2365
2366 /*
2367 * Clock out a single bit to the EEPROM.
2368 */
2369 void
2370 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2371 {
2372 int reg;
2373
2374 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
2375 if (bit)
2376 reg |= EECD_DI;
2377
2378 CSR_WRITE(sc, DGE_EECD, reg);
2379 delay(2);
2380 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
2381 delay(2);
2382 CSR_WRITE(sc, DGE_EECD, reg);
2383 delay(2);
2384 }
2385
2386 /*
2387 * Clock in a single bit from EEPROM.
2388 */
2389 int
2390 dge_eeprom_clockin(struct dge_softc *sc)
2391 {
2392 int reg, rv;
2393
2394 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
2395
2396 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
2397 delay(2);
2398 rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2399 CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2400 delay(2);
2401
2402 return rv;
2403 }
2404
2405 static void
2406 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2407 {
2408 struct dge_softc *sc = ifp->if_softc;
2409
2410 ifmr->ifm_status = IFM_AVALID;
2411 if (sc->sc_dgep->dgep_flags & DGEP_F_10G_SR ) {
2412 ifmr->ifm_active = IFM_ETHER|IFM_10G_SR;
2413 } else {
2414 ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
2415 }
2416
2417 if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2418 ifmr->ifm_status |= IFM_ACTIVE;
2419 }
2420
2421 static inline int
2422 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2423 {
2424 int i, mdic;
2425
2426 CSR_WRITE(sc, DGE_MDIO,
2427 MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2428 for (i = 0; i < 10; i++) {
2429 delay(10);
2430 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2431 break;
2432 }
2433 return mdic;
2434 }
2435
2436 static void
2437 dge_xgmii_writereg(struct dge_softc *sc, int phy, int reg, int val)
2438 {
2439 int mdic;
2440
2441 CSR_WRITE(sc, DGE_MDIRW, val);
2442 if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2443 printf("%s: address cycle timeout; phy %d reg %d\n",
2444 device_xname(sc->sc_dev), phy, reg);
2445 return;
2446 }
2447 if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2448 printf("%s: write cycle timeout; phy %d reg %d\n",
2449 device_xname(sc->sc_dev), phy, reg);
2450 return;
2451 }
2452 }
2453
2454 static void
2455 dge_xgmii_reset(struct dge_softc *sc)
2456 {
2457 dge_xgmii_writereg(sc, 0, 0, BMCR_RESET);
2458 }
2459
2460 static int
2461 dge_xgmii_mediachange(struct ifnet *ifp)
2462 {
2463 return 0;
2464 }
2465