if_dge.c revision 1.55 1 /* $NetBSD: if_dge.c,v 1.55 2019/05/29 10:07:29 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 * All rights reserved.
6 *
7 * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * SUNET, Swedish University Computer Network.
21 * 4. The name of SUNET may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 *
75 * TODO (in no specific order):
76 * HW VLAN support.
77 * TSE offloading (needs kernel changes...)
78 * RAIDC (receive interrupt delay adaptation)
79 * Use memory > 4GB.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.55 2019/05/29 10:07:29 msaitoh Exp $");
84
85
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/ioctl.h>
95 #include <sys/errno.h>
96 #include <sys/device.h>
97 #include <sys/queue.h>
98 #include <sys/rndsource.h>
99
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_ether.h>
104 #include <net/bpf.h>
105
106 #include <netinet/in.h> /* XXX for struct ip */
107 #include <netinet/in_systm.h> /* XXX for struct ip */
108 #include <netinet/ip.h> /* XXX for struct ip */
109 #include <netinet/tcp.h> /* XXX for struct tcphdr */
110
111 #include <sys/bus.h>
112 #include <sys/intr.h>
113 #include <machine/endian.h>
114
115 #include <dev/mii/mii.h>
116 #include <dev/mii/miivar.h>
117 #include <dev/mii/mii_bitbang.h>
118
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 #include <dev/pci/pcidevs.h>
122
123 #include <dev/pci/if_dgereg.h>
124
125 /*
126 * The receive engine may sometimes become off-by-one when writing back
127 * chained descriptors. Avoid this by allocating a large chunk of
128 * memory and use if instead (to avoid chained descriptors).
129 * This only happens with chained descriptors under heavy load.
130 */
131 #define DGE_OFFBYONE_RXBUG
132
133 #define DGE_EVENT_COUNTERS
134 #define DGE_DEBUG
135
136 #ifdef DGE_DEBUG
137 #define DGE_DEBUG_LINK 0x01
138 #define DGE_DEBUG_TX 0x02
139 #define DGE_DEBUG_RX 0x04
140 #define DGE_DEBUG_CKSUM 0x08
141 int dge_debug = 0;
142
143 #define DPRINTF(x, y) if (dge_debug & (x)) printf y
144 #else
145 #define DPRINTF(x, y) /* nothing */
146 #endif /* DGE_DEBUG */
147
148 /*
149 * Transmit descriptor list size. We allow up to 100 DMA segments per
150 * packet (Intel reports of jumbo frame packets with as
151 * many as 80 DMA segments when using 16k buffers).
152 */
153 #define DGE_NTXSEGS 100
154 #define DGE_IFQUEUELEN 20000
155 #define DGE_TXQUEUELEN 2048
156 #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
157 #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
158 #define DGE_NTXDESC 1024
159 #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
160 #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
161 #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
162
163 /*
164 * Receive descriptor list size.
165 * Packet is of size MCLBYTES, and for jumbo packets buffers may
166 * be chained. Due to the nature of the card (high-speed), keep this
167 * ring large. With 2k buffers the ring can store 400 jumbo packets,
168 * which at full speed will be received in just under 3ms.
169 */
170 #define DGE_NRXDESC 2048
171 #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
172 #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
173 /*
174 * # of descriptors between head and written descriptors.
175 * This is to work-around two erratas.
176 */
177 #define DGE_RXSPACE 10
178 #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
179 /*
180 * Receive descriptor fetch threshholds. These are values recommended
181 * by Intel, do not touch them unless you know what you are doing.
182 */
183 #define RXDCTL_PTHRESH_VAL 128
184 #define RXDCTL_HTHRESH_VAL 16
185 #define RXDCTL_WTHRESH_VAL 16
186
187
188 /*
189 * Tweakable parameters; default values.
190 */
191 #define FCRTH 0x30000 /* Send XOFF water mark */
192 #define FCRTL 0x28000 /* Send XON water mark */
193 #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
194 #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
195
196 /*
197 * Control structures are DMA'd to the i82597 chip. We allocate them in
198 * a single clump that maps to a single DMA segment to make serveral things
199 * easier.
200 */
201 struct dge_control_data {
202 /*
203 * The transmit descriptors.
204 */
205 struct dge_tdes wcd_txdescs[DGE_NTXDESC];
206
207 /*
208 * The receive descriptors.
209 */
210 struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
211 };
212
213 #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
214 #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
215 #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
216
217 /*
218 * The DGE interface have a higher max MTU size than normal jumbo frames.
219 */
220 #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
221
222 /*
223 * Software state for transmit jobs.
224 */
225 struct dge_txsoft {
226 struct mbuf *txs_mbuf; /* head of our mbuf chain */
227 bus_dmamap_t txs_dmamap; /* our DMA map */
228 int txs_firstdesc; /* first descriptor in packet */
229 int txs_lastdesc; /* last descriptor in packet */
230 int txs_ndesc; /* # of descriptors used */
231 };
232
233 /*
234 * Software state for receive buffers. Each descriptor gets a
235 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
236 * more than one buffer, we chain them together.
237 */
238 struct dge_rxsoft {
239 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
240 bus_dmamap_t rxs_dmamap; /* our DMA map */
241 };
242
243 /*
244 * Software state per device.
245 */
246 struct dge_softc {
247 device_t sc_dev; /* generic device information */
248 bus_space_tag_t sc_st; /* bus space tag */
249 bus_space_handle_t sc_sh; /* bus space handle */
250 bus_dma_tag_t sc_dmat; /* bus DMA tag */
251 struct ethercom sc_ethercom; /* ethernet common data */
252
253 int sc_flags; /* flags; see below */
254 int sc_bus_speed; /* PCI/PCIX bus speed */
255 int sc_pcix_offset; /* PCIX capability register offset */
256
257 const struct dge_product *sc_dgep; /* Pointer to the dge_product entry */
258 pci_chipset_tag_t sc_pc;
259 pcitag_t sc_pt;
260 int sc_mmrbc; /* Max PCIX memory read byte count */
261
262 void *sc_ih; /* interrupt cookie */
263
264 struct ifmedia sc_media;
265
266 bus_dmamap_t sc_cddmamap; /* control data DMA map */
267 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
268
269 int sc_align_tweak;
270
271 /*
272 * Software state for the transmit and receive descriptors.
273 */
274 struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
275 struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
276
277 /*
278 * Control data structures.
279 */
280 struct dge_control_data *sc_control_data;
281 #define sc_txdescs sc_control_data->wcd_txdescs
282 #define sc_rxdescs sc_control_data->wcd_rxdescs
283
284 #ifdef DGE_EVENT_COUNTERS
285 /* Event counters. */
286 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
287 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
288 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
289 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
290 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
291 struct evcnt sc_ev_rxintr; /* Rx interrupts */
292 struct evcnt sc_ev_linkintr; /* Link interrupts */
293
294 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
295 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
296 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
297 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
298
299 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
300 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
301 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
302
303 struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
304 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
305 #endif /* DGE_EVENT_COUNTERS */
306
307 int sc_txfree; /* number of free Tx descriptors */
308 int sc_txnext; /* next ready Tx descriptor */
309
310 int sc_txsfree; /* number of free Tx jobs */
311 int sc_txsnext; /* next free Tx job */
312 int sc_txsdirty; /* dirty Tx jobs */
313
314 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
315 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
316
317 int sc_rxptr; /* next ready Rx descriptor/queue ent */
318 int sc_rxdiscard;
319 int sc_rxlen;
320 struct mbuf *sc_rxhead;
321 struct mbuf *sc_rxtail;
322 struct mbuf **sc_rxtailp;
323
324 uint32_t sc_ctrl0; /* prototype CTRL0 register */
325 uint32_t sc_icr; /* prototype interrupt bits */
326 uint32_t sc_tctl; /* prototype TCTL register */
327 uint32_t sc_rctl; /* prototype RCTL register */
328
329 int sc_mchash_type; /* multicast filter offset */
330
331 uint16_t sc_eeprom[EEPROM_SIZE];
332
333 krndsource_t rnd_source; /* random source */
334 #ifdef DGE_OFFBYONE_RXBUG
335 void *sc_bugbuf;
336 SLIST_HEAD(, rxbugentry) sc_buglist;
337 bus_dmamap_t sc_bugmap;
338 struct rxbugentry *sc_entry;
339 #endif
340 };
341
342 #define DGE_RXCHAIN_RESET(sc) \
343 do { \
344 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
345 *(sc)->sc_rxtailp = NULL; \
346 (sc)->sc_rxlen = 0; \
347 } while (/*CONSTCOND*/0)
348
349 #define DGE_RXCHAIN_LINK(sc, m) \
350 do { \
351 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
352 (sc)->sc_rxtailp = &(m)->m_next; \
353 } while (/*CONSTCOND*/0)
354
355 /* sc_flags */
356 #define DGE_F_BUS64 0x20 /* bus is 64-bit */
357 #define DGE_F_PCIX 0x40 /* bus is PCI-X */
358
359 #ifdef DGE_EVENT_COUNTERS
360 #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
361 #else
362 #define DGE_EVCNT_INCR(ev) /* nothing */
363 #endif
364
365 #define CSR_READ(sc, reg) \
366 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
367 #define CSR_WRITE(sc, reg, val) \
368 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
369
370 #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
371 #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
372
373 #define DGE_CDTXSYNC(sc, x, n, ops) \
374 do { \
375 int __x, __n; \
376 \
377 __x = (x); \
378 __n = (n); \
379 \
380 /* If it will wrap around, sync to the end of the ring. */ \
381 if ((__x + __n) > DGE_NTXDESC) { \
382 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
383 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
384 (DGE_NTXDESC - __x), (ops)); \
385 __n -= (DGE_NTXDESC - __x); \
386 __x = 0; \
387 } \
388 \
389 /* Now sync whatever is left. */ \
390 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
391 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
392 } while (/*CONSTCOND*/0)
393
394 #define DGE_CDRXSYNC(sc, x, ops) \
395 do { \
396 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
397 DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
398 } while (/*CONSTCOND*/0)
399
400 #ifdef DGE_OFFBYONE_RXBUG
401 #define DGE_INIT_RXDESC(sc, x) \
402 do { \
403 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
404 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
405 struct mbuf *__m = __rxs->rxs_mbuf; \
406 \
407 __rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
408 (mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
409 __rxd->dr_baddrh = 0; \
410 __rxd->dr_len = 0; \
411 __rxd->dr_cksum = 0; \
412 __rxd->dr_status = 0; \
413 __rxd->dr_errors = 0; \
414 __rxd->dr_special = 0; \
415 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
416 \
417 CSR_WRITE((sc), DGE_RDT, (x)); \
418 } while (/*CONSTCOND*/0)
419 #else
420 #define DGE_INIT_RXDESC(sc, x) \
421 do { \
422 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
423 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
424 struct mbuf *__m = __rxs->rxs_mbuf; \
425 \
426 /* \
427 * Note: We scoot the packet forward 2 bytes in the buffer \
428 * so that the payload after the Ethernet header is aligned \
429 * to a 4-byte boundary. \
430 * \
431 * XXX BRAINDAMAGE ALERT! \
432 * The stupid chip uses the same size for every buffer, which \
433 * is set in the Receive Control register. We are using the 2K \
434 * size option, but what we REALLY want is (2K - 2)! For this \
435 * reason, we can't "scoot" packets longer than the standard \
436 * Ethernet MTU. On strict-alignment platforms, if the total \
437 * size exceeds (2K - 2) we set align_tweak to 0 and let \
438 * the upper layer copy the headers. \
439 */ \
440 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
441 \
442 __rxd->dr_baddrl = \
443 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
444 (sc)->sc_align_tweak); \
445 __rxd->dr_baddrh = 0; \
446 __rxd->dr_len = 0; \
447 __rxd->dr_cksum = 0; \
448 __rxd->dr_status = 0; \
449 __rxd->dr_errors = 0; \
450 __rxd->dr_special = 0; \
451 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
452 \
453 CSR_WRITE((sc), DGE_RDT, (x)); \
454 } while (/*CONSTCOND*/0)
455 #endif
456
457 #ifdef DGE_OFFBYONE_RXBUG
458 /*
459 * Allocation constants. Much memory may be used for this.
460 */
461 #ifndef DGE_BUFFER_SIZE
462 #define DGE_BUFFER_SIZE DGE_MAX_MTU
463 #endif
464 #define DGE_NBUFFERS (4*DGE_NRXDESC)
465 #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
466
467 struct rxbugentry {
468 SLIST_ENTRY(rxbugentry) rb_entry;
469 int rb_slot;
470 };
471
472 static int
473 dge_alloc_rcvmem(struct dge_softc *sc)
474 {
475 char *kva;
476 bus_dma_segment_t seg;
477 int i, rseg, state, error;
478 struct rxbugentry *entry;
479
480 state = error = 0;
481
482 if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
483 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
484 aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n");
485 return ENOBUFS;
486 }
487
488 state = 1;
489 if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
490 BUS_DMA_NOWAIT)) {
491 aprint_error_dev(sc->sc_dev,
492 "can't map DMA buffers (%d bytes)\n", (int)DGE_RXMEM);
493 error = ENOBUFS;
494 goto out;
495 }
496
497 state = 2;
498 if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
499 BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
500 aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
501 error = ENOBUFS;
502 goto out;
503 }
504
505 state = 3;
506 if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
507 kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
508 aprint_error_dev(sc->sc_dev, "can't load DMA map\n");
509 error = ENOBUFS;
510 goto out;
511 }
512
513 state = 4;
514 sc->sc_bugbuf = (void *)kva;
515 SLIST_INIT(&sc->sc_buglist);
516
517 /*
518 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
519 * in an array.
520 */
521 if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
522 M_DEVBUF, M_NOWAIT)) == NULL) {
523 error = ENOBUFS;
524 goto out;
525 }
526 sc->sc_entry = entry;
527 for (i = 0; i < DGE_NBUFFERS; i++) {
528 entry[i].rb_slot = i;
529 SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
530 }
531 out:
532 if (error != 0) {
533 switch (state) {
534 case 4:
535 bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
536 /* FALLTHROUGH */
537 case 3:
538 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
539 /* FALLTHROUGH */
540 case 2:
541 bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
542 /* FALLTHROUGH */
543 case 1:
544 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
545 break;
546 default:
547 break;
548 }
549 }
550
551 return error;
552 }
553
554 /*
555 * Allocate a jumbo buffer.
556 */
557 static void *
558 dge_getbuf(struct dge_softc *sc)
559 {
560 struct rxbugentry *entry;
561
562 entry = SLIST_FIRST(&sc->sc_buglist);
563
564 if (entry == NULL) {
565 printf("%s: no free RX buffers\n", device_xname(sc->sc_dev));
566 return NULL;
567 }
568
569 SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
570 return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
571 }
572
573 /*
574 * Release a jumbo buffer.
575 */
576 static void
577 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
578 {
579 struct rxbugentry *entry;
580 struct dge_softc *sc;
581 int i, s;
582
583 /* Extract the softc struct pointer. */
584 sc = (struct dge_softc *)arg;
585
586 if (sc == NULL)
587 panic("dge_freebuf: can't find softc pointer!");
588
589 /* calculate the slot this buffer belongs to */
590
591 i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
592
593 if ((i < 0) || (i >= DGE_NBUFFERS))
594 panic("dge_freebuf: asked to free buffer %d!", i);
595
596 s = splvm();
597 entry = sc->sc_entry + i;
598 SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
599
600 if (__predict_true(m != NULL))
601 pool_cache_put(mb_cache, m);
602 splx(s);
603 }
604 #endif
605
606 static void dge_start(struct ifnet *);
607 static void dge_watchdog(struct ifnet *);
608 static int dge_ioctl(struct ifnet *, u_long, void *);
609 static int dge_init(struct ifnet *);
610 static void dge_stop(struct ifnet *, int);
611
612 static bool dge_shutdown(device_t, int);
613
614 static void dge_reset(struct dge_softc *);
615 static void dge_rxdrain(struct dge_softc *);
616 static int dge_add_rxbuf(struct dge_softc *, int);
617
618 static void dge_set_filter(struct dge_softc *);
619
620 static int dge_intr(void *);
621 static void dge_txintr(struct dge_softc *);
622 static void dge_rxintr(struct dge_softc *);
623 static void dge_linkintr(struct dge_softc *, uint32_t);
624
625 static int dge_match(device_t, cfdata_t, void *);
626 static void dge_attach(device_t, device_t, void *);
627
628 static int dge_read_eeprom(struct dge_softc *sc);
629 static int dge_eeprom_clockin(struct dge_softc *sc);
630 static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
631 static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
632 static int dge_xgmii_mediachange(struct ifnet *);
633 static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
634 static void dge_xgmii_reset(struct dge_softc *);
635 static void dge_xgmii_writereg(struct dge_softc *, int, int, int);
636
637
638 CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc),
639 dge_match, dge_attach, NULL, NULL);
640
641 #ifdef DGE_EVENT_COUNTERS
642 #if DGE_NTXSEGS > 100
643 #error Update dge_txseg_evcnt_names
644 #endif
645 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
646 #endif /* DGE_EVENT_COUNTERS */
647
648 /*
649 * Devices supported by this driver.
650 */
651 static const struct dge_product {
652 pci_vendor_id_t dgep_vendor;
653 pci_product_id_t dgep_product;
654 const char *dgep_name;
655 int dgep_flags;
656 #define DGEP_F_10G_LR 0x01
657 #define DGEP_F_10G_SR 0x02
658 } dge_products[] = {
659 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82597EX,
660 "Intel i82597EX 10GbE-LR Ethernet",
661 DGEP_F_10G_LR },
662
663 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82597EX_SR,
664 "Intel i82597EX 10GbE-SR Ethernet",
665 DGEP_F_10G_SR },
666
667 { 0, 0,
668 NULL,
669 0 },
670 };
671
672 static const struct dge_product *
673 dge_lookup(const struct pci_attach_args *pa)
674 {
675 const struct dge_product *dgep;
676
677 for (dgep = dge_products; dgep->dgep_name != NULL; dgep++) {
678 if (PCI_VENDOR(pa->pa_id) == dgep->dgep_vendor &&
679 PCI_PRODUCT(pa->pa_id) == dgep->dgep_product)
680 return dgep;
681 }
682 return NULL;
683 }
684
685 static int
686 dge_match(device_t parent, cfdata_t cf, void *aux)
687 {
688 struct pci_attach_args *pa = aux;
689
690 if (dge_lookup(pa) != NULL)
691 return 1;
692
693 return 0;
694 }
695
696 static void
697 dge_attach(device_t parent, device_t self, void *aux)
698 {
699 struct dge_softc *sc = device_private(self);
700 struct pci_attach_args *pa = aux;
701 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
702 pci_chipset_tag_t pc = pa->pa_pc;
703 pci_intr_handle_t ih;
704 const char *intrstr = NULL;
705 bus_dma_segment_t seg;
706 int i, rseg, error;
707 uint8_t enaddr[ETHER_ADDR_LEN];
708 pcireg_t preg, memtype;
709 uint32_t reg;
710 char intrbuf[PCI_INTRSTR_LEN];
711 const struct dge_product *dgep;
712
713 sc->sc_dgep = dgep = dge_lookup(pa);
714 if (dgep == NULL) {
715 printf("\n");
716 panic("dge_attach: impossible");
717 }
718
719 sc->sc_dev = self;
720 sc->sc_dmat = pa->pa_dmat;
721 sc->sc_pc = pa->pa_pc;
722 sc->sc_pt = pa->pa_tag;
723
724 pci_aprint_devinfo_fancy(pa, "Ethernet controller",
725 dgep->dgep_name, 1);
726
727 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
728 if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
729 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
730 aprint_error_dev(sc->sc_dev,
731 "unable to map device registers\n");
732 return;
733 }
734
735 /* Enable bus mastering */
736 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
737 preg |= PCI_COMMAND_MASTER_ENABLE;
738 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
739
740 /*
741 * Map and establish our interrupt.
742 */
743 if (pci_intr_map(pa, &ih)) {
744 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
745 return;
746 }
747 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
748 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, dge_intr, sc,
749 device_xname(self));
750 if (sc->sc_ih == NULL) {
751 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
752 if (intrstr != NULL)
753 aprint_error(" at %s", intrstr);
754 aprint_error("\n");
755 return;
756 }
757 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
758
759 /*
760 * Determine a few things about the bus we're connected to.
761 */
762 reg = CSR_READ(sc, DGE_STATUS);
763 if (reg & STATUS_BUS64)
764 sc->sc_flags |= DGE_F_BUS64;
765
766 sc->sc_flags |= DGE_F_PCIX;
767 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
768 PCI_CAP_PCIX,
769 &sc->sc_pcix_offset, NULL) == 0)
770 aprint_error_dev(sc->sc_dev, "unable to find PCIX "
771 "capability\n");
772
773 if (sc->sc_flags & DGE_F_PCIX) {
774 switch (reg & STATUS_PCIX_MSK) {
775 case STATUS_PCIX_66:
776 sc->sc_bus_speed = 66;
777 break;
778 case STATUS_PCIX_100:
779 sc->sc_bus_speed = 100;
780 break;
781 case STATUS_PCIX_133:
782 sc->sc_bus_speed = 133;
783 break;
784 default:
785 aprint_error_dev(sc->sc_dev,
786 "unknown PCIXSPD %d; assuming 66MHz\n",
787 reg & STATUS_PCIX_MSK);
788 sc->sc_bus_speed = 66;
789 }
790 } else
791 sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
792 aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
793 (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
794 (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
795
796 /*
797 * Allocate the control data structures, and create and load the
798 * DMA map for it.
799 */
800 if ((error = bus_dmamem_alloc(sc->sc_dmat,
801 sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
802 0)) != 0) {
803 aprint_error_dev(sc->sc_dev,
804 "unable to allocate control data, error = %d\n",
805 error);
806 goto fail_0;
807 }
808
809 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
810 sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
811 0)) != 0) {
812 aprint_error_dev(sc->sc_dev,
813 "unable to map control data, error = %d\n", error);
814 goto fail_1;
815 }
816
817 if ((error = bus_dmamap_create(sc->sc_dmat,
818 sizeof(struct dge_control_data), 1,
819 sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
820 aprint_error_dev(sc->sc_dev, "unable to create control data "
821 "DMA map, error = %d\n", error);
822 goto fail_2;
823 }
824
825 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
826 sc->sc_control_data, sizeof(struct dge_control_data), NULL,
827 0)) != 0) {
828 aprint_error_dev(sc->sc_dev,
829 "unable to load control data DMA map, error = %d\n",
830 error);
831 goto fail_3;
832 }
833
834 #ifdef DGE_OFFBYONE_RXBUG
835 if (dge_alloc_rcvmem(sc) != 0)
836 return; /* Already complained */
837 #endif
838 /*
839 * Create the transmit buffer DMA maps.
840 */
841 for (i = 0; i < DGE_TXQUEUELEN; i++) {
842 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
843 DGE_NTXSEGS, MCLBYTES, 0, 0,
844 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
845 aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, "
846 "error = %d\n", i, error);
847 goto fail_4;
848 }
849 }
850
851 /*
852 * Create the receive buffer DMA maps.
853 */
854 for (i = 0; i < DGE_NRXDESC; i++) {
855 #ifdef DGE_OFFBYONE_RXBUG
856 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
857 DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
858 #else
859 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
860 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
861 #endif
862 aprint_error_dev(sc->sc_dev, "unable to create Rx DMA "
863 "map %d, error = %d\n", i, error);
864 goto fail_5;
865 }
866 sc->sc_rxsoft[i].rxs_mbuf = NULL;
867 }
868
869 /*
870 * Set bits in ctrl0 register.
871 * Should get the software defined pins out of EEPROM?
872 */
873 sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
874 sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
875 CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
876
877 /*
878 * Reset the chip to a known state.
879 */
880 dge_reset(sc);
881
882 /*
883 * Reset the PHY.
884 */
885 dge_xgmii_reset(sc);
886
887 /*
888 * Read in EEPROM data.
889 */
890 if (dge_read_eeprom(sc)) {
891 aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n");
892 return;
893 }
894
895 /*
896 * Get the ethernet address.
897 */
898 enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
899 enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
900 enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
901 enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
902 enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
903 enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
904
905 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
906 ether_sprintf(enaddr));
907
908 /*
909 * Setup media stuff.
910 */
911 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
912 ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
913 dge_xgmii_mediastatus);
914 if (dgep->dgep_flags & DGEP_F_10G_SR) {
915 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_SR, 0, NULL);
916 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_SR);
917 } else { /* XXX default is LR */
918 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_LR, 0, NULL);
919 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_LR);
920 }
921
922 ifp = &sc->sc_ethercom.ec_if;
923 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
924 ifp->if_softc = sc;
925 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
926 ifp->if_ioctl = dge_ioctl;
927 ifp->if_start = dge_start;
928 ifp->if_watchdog = dge_watchdog;
929 ifp->if_init = dge_init;
930 ifp->if_stop = dge_stop;
931 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(DGE_IFQUEUELEN, IFQ_MAXLEN));
932 IFQ_SET_READY(&ifp->if_snd);
933
934 sc->sc_ethercom.ec_capabilities |=
935 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
936
937 /*
938 * We can perform TCPv4 and UDPv4 checkums in-bound.
939 */
940 ifp->if_capabilities |=
941 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
942 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
943 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
944
945 /*
946 * Attach the interface.
947 */
948 if_attach(ifp);
949 if_deferred_start_init(ifp, NULL);
950 ether_ifattach(ifp, enaddr);
951 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
952 RND_TYPE_NET, RND_FLAG_DEFAULT);
953
954 #ifdef DGE_EVENT_COUNTERS
955 /* Fix segment event naming */
956 if (dge_txseg_evcnt_names == NULL) {
957 dge_txseg_evcnt_names =
958 malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
959 for (i = 0; i < DGE_NTXSEGS; i++)
960 snprintf((*dge_txseg_evcnt_names)[i],
961 sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
962 }
963
964 /* Attach event counters. */
965 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
966 NULL, device_xname(sc->sc_dev), "txsstall");
967 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
968 NULL, device_xname(sc->sc_dev), "txdstall");
969 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
970 NULL, device_xname(sc->sc_dev), "txforceintr");
971 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
972 NULL, device_xname(sc->sc_dev), "txdw");
973 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
974 NULL, device_xname(sc->sc_dev), "txqe");
975 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
976 NULL, device_xname(sc->sc_dev), "rxintr");
977 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
978 NULL, device_xname(sc->sc_dev), "linkintr");
979
980 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
981 NULL, device_xname(sc->sc_dev), "rxipsum");
982 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
983 NULL, device_xname(sc->sc_dev), "rxtusum");
984 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
985 NULL, device_xname(sc->sc_dev), "txipsum");
986 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
987 NULL, device_xname(sc->sc_dev), "txtusum");
988
989 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
990 NULL, device_xname(sc->sc_dev), "txctx init");
991 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
992 NULL, device_xname(sc->sc_dev), "txctx hit");
993 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
994 NULL, device_xname(sc->sc_dev), "txctx miss");
995
996 for (i = 0; i < DGE_NTXSEGS; i++)
997 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
998 NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
999
1000 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
1001 NULL, device_xname(sc->sc_dev), "txdrop");
1002
1003 #endif /* DGE_EVENT_COUNTERS */
1004
1005 /*
1006 * Make sure the interface is shutdown during reboot.
1007 */
1008 if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
1009 pmf_class_network_register(self, ifp);
1010 else
1011 aprint_error_dev(self, "couldn't establish power handler\n");
1012
1013 return;
1014
1015 /*
1016 * Free any resources we've allocated during the failed attach
1017 * attempt. Do this in reverse order and fall through.
1018 */
1019 fail_5:
1020 for (i = 0; i < DGE_NRXDESC; i++) {
1021 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1022 bus_dmamap_destroy(sc->sc_dmat,
1023 sc->sc_rxsoft[i].rxs_dmamap);
1024 }
1025 fail_4:
1026 for (i = 0; i < DGE_TXQUEUELEN; i++) {
1027 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1028 bus_dmamap_destroy(sc->sc_dmat,
1029 sc->sc_txsoft[i].txs_dmamap);
1030 }
1031 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1032 fail_3:
1033 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1034 fail_2:
1035 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1036 sizeof(struct dge_control_data));
1037 fail_1:
1038 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1039 fail_0:
1040 return;
1041 }
1042
1043 /*
1044 * dge_shutdown:
1045 *
1046 * Make sure the interface is stopped at reboot time.
1047 */
1048 static bool
1049 dge_shutdown(device_t self, int howto)
1050 {
1051 struct dge_softc *sc;
1052
1053 sc = device_private(self);
1054 dge_stop(&sc->sc_ethercom.ec_if, 1);
1055
1056 return true;
1057 }
1058
1059 /*
1060 * dge_tx_cksum:
1061 *
1062 * Set up TCP/IP checksumming parameters for the
1063 * specified packet.
1064 */
1065 static int
1066 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1067 {
1068 struct mbuf *m0 = txs->txs_mbuf;
1069 struct dge_ctdes *t;
1070 uint32_t ipcs, tucs;
1071 struct ether_header *eh;
1072 int offset, iphl;
1073 uint8_t fields = 0;
1074
1075 /*
1076 * XXX It would be nice if the mbuf pkthdr had offset
1077 * fields for the protocol headers.
1078 */
1079
1080 eh = mtod(m0, struct ether_header *);
1081 switch (htons(eh->ether_type)) {
1082 case ETHERTYPE_IP:
1083 offset = ETHER_HDR_LEN;
1084 break;
1085
1086 case ETHERTYPE_VLAN:
1087 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1088 break;
1089
1090 default:
1091 /*
1092 * Don't support this protocol or encapsulation.
1093 */
1094 *fieldsp = 0;
1095 return 0;
1096 }
1097
1098 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1099
1100 /*
1101 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1102 * offload feature, if we load the context descriptor, we
1103 * MUST provide valid values for IPCSS and TUCSS fields.
1104 */
1105
1106 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1107 DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1108 fields |= TDESC_POPTS_IXSM;
1109 ipcs = DGE_TCPIP_IPCSS(offset) |
1110 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1111 DGE_TCPIP_IPCSE(offset + iphl - 1);
1112 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1113 /* Use the cached value. */
1114 ipcs = sc->sc_txctx_ipcs;
1115 } else {
1116 /* Just initialize it to the likely value anyway. */
1117 ipcs = DGE_TCPIP_IPCSS(offset) |
1118 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1119 DGE_TCPIP_IPCSE(offset + iphl - 1);
1120 }
1121 DPRINTF(DGE_DEBUG_CKSUM,
1122 ("%s: CKSUM: offset %d ipcs 0x%x\n",
1123 device_xname(sc->sc_dev), offset, ipcs));
1124
1125 offset += iphl;
1126
1127 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1128 DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1129 fields |= TDESC_POPTS_TXSM;
1130 tucs = DGE_TCPIP_TUCSS(offset) |
1131 DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1132 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1133 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1134 /* Use the cached value. */
1135 tucs = sc->sc_txctx_tucs;
1136 } else {
1137 /* Just initialize it to a valid TCP context. */
1138 tucs = DGE_TCPIP_TUCSS(offset) |
1139 DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1140 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1141 }
1142
1143 DPRINTF(DGE_DEBUG_CKSUM,
1144 ("%s: CKSUM: offset %d tucs 0x%x\n",
1145 device_xname(sc->sc_dev), offset, tucs));
1146
1147 if (sc->sc_txctx_ipcs == ipcs &&
1148 sc->sc_txctx_tucs == tucs) {
1149 /* Cached context is fine. */
1150 DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1151 } else {
1152 /* Fill in the context descriptor. */
1153 #ifdef DGE_EVENT_COUNTERS
1154 if (sc->sc_txctx_ipcs == 0xffffffff &&
1155 sc->sc_txctx_tucs == 0xffffffff)
1156 DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1157 else
1158 DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1159 #endif
1160 t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1161 t->dc_tcpip_ipcs = htole32(ipcs);
1162 t->dc_tcpip_tucs = htole32(tucs);
1163 t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1164 t->dc_tcpip_seg = 0;
1165 DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1166
1167 sc->sc_txctx_ipcs = ipcs;
1168 sc->sc_txctx_tucs = tucs;
1169
1170 sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1171 txs->txs_ndesc++;
1172 }
1173
1174 *fieldsp = fields;
1175
1176 return 0;
1177 }
1178
1179 /*
1180 * dge_start: [ifnet interface function]
1181 *
1182 * Start packet transmission on the interface.
1183 */
1184 static void
1185 dge_start(struct ifnet *ifp)
1186 {
1187 struct dge_softc *sc = ifp->if_softc;
1188 struct mbuf *m0;
1189 struct dge_txsoft *txs;
1190 bus_dmamap_t dmamap;
1191 int error, nexttx, lasttx = -1, ofree, seg;
1192 uint32_t cksumcmd;
1193 uint8_t cksumfields;
1194
1195 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1196 return;
1197
1198 /*
1199 * Remember the previous number of free descriptors.
1200 */
1201 ofree = sc->sc_txfree;
1202
1203 /*
1204 * Loop through the send queue, setting up transmit descriptors
1205 * until we drain the queue, or use up all available transmit
1206 * descriptors.
1207 */
1208 for (;;) {
1209 /* Grab a packet off the queue. */
1210 IFQ_POLL(&ifp->if_snd, m0);
1211 if (m0 == NULL)
1212 break;
1213
1214 DPRINTF(DGE_DEBUG_TX,
1215 ("%s: TX: have packet to transmit: %p\n",
1216 device_xname(sc->sc_dev), m0));
1217
1218 /* Get a work queue entry. */
1219 if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1220 dge_txintr(sc);
1221 if (sc->sc_txsfree == 0) {
1222 DPRINTF(DGE_DEBUG_TX,
1223 ("%s: TX: no free job descriptors\n",
1224 device_xname(sc->sc_dev)));
1225 DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1226 break;
1227 }
1228 }
1229
1230 txs = &sc->sc_txsoft[sc->sc_txsnext];
1231 dmamap = txs->txs_dmamap;
1232
1233 /*
1234 * Load the DMA map. If this fails, the packet either
1235 * didn't fit in the allotted number of segments, or we
1236 * were short on resources. For the too-many-segments
1237 * case, we simply report an error and drop the packet,
1238 * since we can't sanely copy a jumbo packet to a single
1239 * buffer.
1240 */
1241 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1242 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1243 if (error) {
1244 if (error == EFBIG) {
1245 DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1246 printf("%s: Tx packet consumes too many "
1247 "DMA segments, dropping...\n",
1248 device_xname(sc->sc_dev));
1249 IFQ_DEQUEUE(&ifp->if_snd, m0);
1250 m_freem(m0);
1251 continue;
1252 }
1253 /*
1254 * Short on resources, just stop for now.
1255 */
1256 DPRINTF(DGE_DEBUG_TX,
1257 ("%s: TX: dmamap load failed: %d\n",
1258 device_xname(sc->sc_dev), error));
1259 break;
1260 }
1261
1262 /*
1263 * Ensure we have enough descriptors free to describe
1264 * the packet. Note, we always reserve one descriptor
1265 * at the end of the ring due to the semantics of the
1266 * TDT register, plus one more in the event we need
1267 * to re-load checksum offload context.
1268 */
1269 if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1270 /*
1271 * Not enough free descriptors to transmit this
1272 * packet. We haven't committed anything yet,
1273 * so just unload the DMA map, put the packet
1274 * pack on the queue, and punt. Notify the upper
1275 * layer that there are no more slots left.
1276 */
1277 DPRINTF(DGE_DEBUG_TX,
1278 ("%s: TX: need %d descriptors, have %d\n",
1279 device_xname(sc->sc_dev), dmamap->dm_nsegs,
1280 sc->sc_txfree - 1));
1281 ifp->if_flags |= IFF_OACTIVE;
1282 bus_dmamap_unload(sc->sc_dmat, dmamap);
1283 DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1284 break;
1285 }
1286
1287 IFQ_DEQUEUE(&ifp->if_snd, m0);
1288
1289 /*
1290 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1291 */
1292
1293 /* Sync the DMA map. */
1294 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1295 BUS_DMASYNC_PREWRITE);
1296
1297 DPRINTF(DGE_DEBUG_TX,
1298 ("%s: TX: packet has %d DMA segments\n",
1299 device_xname(sc->sc_dev), dmamap->dm_nsegs));
1300
1301 DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1302
1303 /*
1304 * Store a pointer to the packet so that we can free it
1305 * later.
1306 *
1307 * Initially, we consider the number of descriptors the
1308 * packet uses the number of DMA segments. This may be
1309 * incremented by 1 if we do checksum offload (a descriptor
1310 * is used to set the checksum context).
1311 */
1312 txs->txs_mbuf = m0;
1313 txs->txs_firstdesc = sc->sc_txnext;
1314 txs->txs_ndesc = dmamap->dm_nsegs;
1315
1316 /*
1317 * Set up checksum offload parameters for
1318 * this packet.
1319 */
1320 if (m0->m_pkthdr.csum_flags &
1321 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1322 if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1323 /* Error message already displayed. */
1324 bus_dmamap_unload(sc->sc_dmat, dmamap);
1325 continue;
1326 }
1327 } else {
1328 cksumfields = 0;
1329 }
1330
1331 cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1332
1333 /*
1334 * Initialize the transmit descriptor.
1335 */
1336 for (nexttx = sc->sc_txnext, seg = 0;
1337 seg < dmamap->dm_nsegs;
1338 seg++, nexttx = DGE_NEXTTX(nexttx)) {
1339 /*
1340 * Note: we currently only use 32-bit DMA
1341 * addresses.
1342 */
1343 sc->sc_txdescs[nexttx].dt_baddrh = 0;
1344 sc->sc_txdescs[nexttx].dt_baddrl =
1345 htole32(dmamap->dm_segs[seg].ds_addr);
1346 sc->sc_txdescs[nexttx].dt_ctl =
1347 htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1348 sc->sc_txdescs[nexttx].dt_status = 0;
1349 sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1350 sc->sc_txdescs[nexttx].dt_vlan = 0;
1351 lasttx = nexttx;
1352
1353 DPRINTF(DGE_DEBUG_TX,
1354 ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1355 device_xname(sc->sc_dev), nexttx,
1356 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
1357 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
1358 }
1359
1360 KASSERT(lasttx != -1);
1361
1362 /*
1363 * Set up the command byte on the last descriptor of
1364 * the packet. If we're in the interrupt delay window,
1365 * delay the interrupt.
1366 */
1367 sc->sc_txdescs[lasttx].dt_ctl |=
1368 htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1369
1370 txs->txs_lastdesc = lasttx;
1371
1372 DPRINTF(DGE_DEBUG_TX,
1373 ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev),
1374 lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1375
1376 /* Sync the descriptors we're using. */
1377 DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1378 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1379
1380 /* Give the packet to the chip. */
1381 CSR_WRITE(sc, DGE_TDT, nexttx);
1382
1383 DPRINTF(DGE_DEBUG_TX,
1384 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
1385
1386 DPRINTF(DGE_DEBUG_TX,
1387 ("%s: TX: finished transmitting packet, job %d\n",
1388 device_xname(sc->sc_dev), sc->sc_txsnext));
1389
1390 /* Advance the tx pointer. */
1391 sc->sc_txfree -= txs->txs_ndesc;
1392 sc->sc_txnext = nexttx;
1393
1394 sc->sc_txsfree--;
1395 sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1396
1397 /* Pass the packet to any BPF listeners. */
1398 bpf_mtap(ifp, m0, BPF_D_OUT);
1399 }
1400
1401 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1402 /* No more slots; notify upper layer. */
1403 ifp->if_flags |= IFF_OACTIVE;
1404 }
1405
1406 if (sc->sc_txfree != ofree) {
1407 /* Set a watchdog timer in case the chip flakes out. */
1408 ifp->if_timer = 5;
1409 }
1410 }
1411
1412 /*
1413 * dge_watchdog: [ifnet interface function]
1414 *
1415 * Watchdog timer handler.
1416 */
1417 static void
1418 dge_watchdog(struct ifnet *ifp)
1419 {
1420 struct dge_softc *sc = ifp->if_softc;
1421
1422 /*
1423 * Since we're using delayed interrupts, sweep up
1424 * before we report an error.
1425 */
1426 dge_txintr(sc);
1427
1428 if (sc->sc_txfree != DGE_NTXDESC) {
1429 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1430 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1431 sc->sc_txnext);
1432 ifp->if_oerrors++;
1433
1434 /* Reset the interface. */
1435 (void) dge_init(ifp);
1436 }
1437
1438 /* Try to get more packets going. */
1439 dge_start(ifp);
1440 }
1441
1442 /*
1443 * dge_ioctl: [ifnet interface function]
1444 *
1445 * Handle control requests from the operator.
1446 */
1447 static int
1448 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1449 {
1450 struct dge_softc *sc = ifp->if_softc;
1451 struct ifreq *ifr = (struct ifreq *) data;
1452 pcireg_t preg;
1453 int s, error, mmrbc;
1454
1455 s = splnet();
1456
1457 switch (cmd) {
1458 case SIOCSIFMTU:
1459 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1460 error = EINVAL;
1461 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1462 break;
1463 else if (ifp->if_flags & IFF_UP)
1464 error = (*ifp->if_init)(ifp);
1465 else
1466 error = 0;
1467 break;
1468
1469 case SIOCSIFFLAGS:
1470 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1471 break;
1472 /* extract link flags */
1473 if ((ifp->if_flags & IFF_LINK0) == 0 &&
1474 (ifp->if_flags & IFF_LINK1) == 0)
1475 mmrbc = PCIX_MMRBC_512;
1476 else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1477 (ifp->if_flags & IFF_LINK1) != 0)
1478 mmrbc = PCIX_MMRBC_1024;
1479 else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1480 (ifp->if_flags & IFF_LINK1) == 0)
1481 mmrbc = PCIX_MMRBC_2048;
1482 else
1483 mmrbc = PCIX_MMRBC_4096;
1484 if (mmrbc != sc->sc_mmrbc) {
1485 preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1486 preg &= ~PCIX_MMRBC_MSK;
1487 preg |= mmrbc;
1488 pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1489 sc->sc_mmrbc = mmrbc;
1490 }
1491 /* FALLTHROUGH */
1492 default:
1493 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1494 break;
1495
1496 error = 0;
1497
1498 if (cmd == SIOCSIFCAP)
1499 error = (*ifp->if_init)(ifp);
1500 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1501 ;
1502 else if (ifp->if_flags & IFF_RUNNING) {
1503 /*
1504 * Multicast list has changed; set the hardware filter
1505 * accordingly.
1506 */
1507 dge_set_filter(sc);
1508 }
1509 break;
1510 }
1511
1512 /* Try to get more packets going. */
1513 dge_start(ifp);
1514
1515 splx(s);
1516 return error;
1517 }
1518
1519 /*
1520 * dge_intr:
1521 *
1522 * Interrupt service routine.
1523 */
1524 static int
1525 dge_intr(void *arg)
1526 {
1527 struct dge_softc *sc = arg;
1528 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1529 uint32_t icr;
1530 int wantinit, handled = 0;
1531
1532 for (wantinit = 0; wantinit == 0;) {
1533 icr = CSR_READ(sc, DGE_ICR);
1534 if ((icr & sc->sc_icr) == 0)
1535 break;
1536
1537 rnd_add_uint32(&sc->rnd_source, icr);
1538
1539 handled = 1;
1540
1541 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1542 if (icr & (ICR_RXDMT0 | ICR_RXT0)) {
1543 DPRINTF(DGE_DEBUG_RX,
1544 ("%s: RX: got Rx intr 0x%08x\n",
1545 device_xname(sc->sc_dev),
1546 icr & (ICR_RXDMT0 | ICR_RXT0)));
1547 DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1548 }
1549 #endif
1550 dge_rxintr(sc);
1551
1552 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1553 if (icr & ICR_TXDW) {
1554 DPRINTF(DGE_DEBUG_TX,
1555 ("%s: TX: got TXDW interrupt\n",
1556 device_xname(sc->sc_dev)));
1557 DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1558 }
1559 if (icr & ICR_TXQE)
1560 DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1561 #endif
1562 dge_txintr(sc);
1563
1564 if (icr & (ICR_LSC | ICR_RXSEQ)) {
1565 DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1566 dge_linkintr(sc, icr);
1567 }
1568
1569 if (icr & ICR_RXO) {
1570 printf("%s: Receive overrun\n",
1571 device_xname(sc->sc_dev));
1572 wantinit = 1;
1573 }
1574 }
1575
1576 if (handled) {
1577 if (wantinit)
1578 dge_init(ifp);
1579
1580 /* Try to get more packets going. */
1581 if_schedule_deferred_start(ifp);
1582 }
1583
1584 return handled;
1585 }
1586
1587 /*
1588 * dge_txintr:
1589 *
1590 * Helper; handle transmit interrupts.
1591 */
1592 static void
1593 dge_txintr(struct dge_softc *sc)
1594 {
1595 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1596 struct dge_txsoft *txs;
1597 uint8_t status;
1598 int i;
1599
1600 ifp->if_flags &= ~IFF_OACTIVE;
1601
1602 /*
1603 * Go through the Tx list and free mbufs for those
1604 * frames which have been transmitted.
1605 */
1606 for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1607 i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1608 txs = &sc->sc_txsoft[i];
1609
1610 DPRINTF(DGE_DEBUG_TX,
1611 ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
1612
1613 DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1614 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1615
1616 status =
1617 sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1618 if ((status & TDESC_STA_DD) == 0) {
1619 DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1620 BUS_DMASYNC_PREREAD);
1621 break;
1622 }
1623
1624 DPRINTF(DGE_DEBUG_TX,
1625 ("%s: TX: job %d done: descs %d..%d\n",
1626 device_xname(sc->sc_dev), i, txs->txs_firstdesc,
1627 txs->txs_lastdesc));
1628
1629 ifp->if_opackets++;
1630 sc->sc_txfree += txs->txs_ndesc;
1631 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1632 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1633 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1634 m_freem(txs->txs_mbuf);
1635 txs->txs_mbuf = NULL;
1636 }
1637
1638 /* Update the dirty transmit buffer pointer. */
1639 sc->sc_txsdirty = i;
1640 DPRINTF(DGE_DEBUG_TX,
1641 ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
1642
1643 /*
1644 * If there are no more pending transmissions, cancel the watchdog
1645 * timer.
1646 */
1647 if (sc->sc_txsfree == DGE_TXQUEUELEN)
1648 ifp->if_timer = 0;
1649 }
1650
1651 /*
1652 * dge_rxintr:
1653 *
1654 * Helper; handle receive interrupts.
1655 */
1656 static void
1657 dge_rxintr(struct dge_softc *sc)
1658 {
1659 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1660 struct dge_rxsoft *rxs;
1661 struct mbuf *m;
1662 int i, len;
1663 uint8_t status, errors;
1664
1665 for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1666 rxs = &sc->sc_rxsoft[i];
1667
1668 DPRINTF(DGE_DEBUG_RX,
1669 ("%s: RX: checking descriptor %d\n",
1670 device_xname(sc->sc_dev), i));
1671
1672 DGE_CDRXSYNC(sc, i,
1673 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1674
1675 status = sc->sc_rxdescs[i].dr_status;
1676 errors = sc->sc_rxdescs[i].dr_errors;
1677 len = le16toh(sc->sc_rxdescs[i].dr_len);
1678
1679 if ((status & RDESC_STS_DD) == 0) {
1680 /* We have processed all of the receive descriptors. */
1681 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1682 break;
1683 }
1684
1685 if (__predict_false(sc->sc_rxdiscard)) {
1686 DPRINTF(DGE_DEBUG_RX,
1687 ("%s: RX: discarding contents of descriptor %d\n",
1688 device_xname(sc->sc_dev), i));
1689 DGE_INIT_RXDESC(sc, i);
1690 if (status & RDESC_STS_EOP) {
1691 /* Reset our state. */
1692 DPRINTF(DGE_DEBUG_RX,
1693 ("%s: RX: resetting rxdiscard -> 0\n",
1694 device_xname(sc->sc_dev)));
1695 sc->sc_rxdiscard = 0;
1696 }
1697 continue;
1698 }
1699
1700 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1701 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1702
1703 m = rxs->rxs_mbuf;
1704
1705 /*
1706 * Add a new receive buffer to the ring.
1707 */
1708 if (dge_add_rxbuf(sc, i) != 0) {
1709 /*
1710 * Failed, throw away what we've done so
1711 * far, and discard the rest of the packet.
1712 */
1713 ifp->if_ierrors++;
1714 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1715 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1716 DGE_INIT_RXDESC(sc, i);
1717 if ((status & RDESC_STS_EOP) == 0)
1718 sc->sc_rxdiscard = 1;
1719 if (sc->sc_rxhead != NULL)
1720 m_freem(sc->sc_rxhead);
1721 DGE_RXCHAIN_RESET(sc);
1722 DPRINTF(DGE_DEBUG_RX,
1723 ("%s: RX: Rx buffer allocation failed, "
1724 "dropping packet%s\n", device_xname(sc->sc_dev),
1725 sc->sc_rxdiscard ? " (discard)" : ""));
1726 continue;
1727 }
1728 DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1729
1730 DGE_RXCHAIN_LINK(sc, m);
1731
1732 m->m_len = len;
1733
1734 DPRINTF(DGE_DEBUG_RX,
1735 ("%s: RX: buffer at %p len %d\n",
1736 device_xname(sc->sc_dev), m->m_data, len));
1737
1738 /*
1739 * If this is not the end of the packet, keep
1740 * looking.
1741 */
1742 if ((status & RDESC_STS_EOP) == 0) {
1743 sc->sc_rxlen += len;
1744 DPRINTF(DGE_DEBUG_RX,
1745 ("%s: RX: not yet EOP, rxlen -> %d\n",
1746 device_xname(sc->sc_dev), sc->sc_rxlen));
1747 continue;
1748 }
1749
1750 /*
1751 * Okay, we have the entire packet now...
1752 */
1753 *sc->sc_rxtailp = NULL;
1754 m = sc->sc_rxhead;
1755 len += sc->sc_rxlen;
1756
1757 DGE_RXCHAIN_RESET(sc);
1758
1759 DPRINTF(DGE_DEBUG_RX,
1760 ("%s: RX: have entire packet, len -> %d\n",
1761 device_xname(sc->sc_dev), len));
1762
1763 /*
1764 * If an error occurred, update stats and drop the packet.
1765 */
1766 if (errors & (RDESC_ERR_CE | RDESC_ERR_SE | RDESC_ERR_P |
1767 RDESC_ERR_RXE)) {
1768 ifp->if_ierrors++;
1769 if (errors & RDESC_ERR_SE)
1770 printf("%s: symbol error\n",
1771 device_xname(sc->sc_dev));
1772 else if (errors & RDESC_ERR_P)
1773 printf("%s: parity error\n",
1774 device_xname(sc->sc_dev));
1775 else if (errors & RDESC_ERR_CE)
1776 printf("%s: CRC error\n",
1777 device_xname(sc->sc_dev));
1778 m_freem(m);
1779 continue;
1780 }
1781
1782 /*
1783 * No errors. Receive the packet.
1784 */
1785 m_set_rcvif(m, ifp);
1786 m->m_pkthdr.len = len;
1787
1788 /*
1789 * Set up checksum info for this packet.
1790 */
1791 if (status & RDESC_STS_IPCS) {
1792 DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1793 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1794 if (errors & RDESC_ERR_IPE)
1795 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1796 }
1797 if (status & RDESC_STS_TCPCS) {
1798 /*
1799 * Note: we don't know if this was TCP or UDP,
1800 * so we just set both bits, and expect the
1801 * upper layers to deal.
1802 */
1803 DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1804 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
1805 if (errors & RDESC_ERR_TCPE)
1806 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1807 }
1808
1809 /* Pass it on. */
1810 if_percpuq_enqueue(ifp->if_percpuq, m);
1811 }
1812
1813 /* Update the receive pointer. */
1814 sc->sc_rxptr = i;
1815
1816 DPRINTF(DGE_DEBUG_RX,
1817 ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
1818 }
1819
1820 /*
1821 * dge_linkintr:
1822 *
1823 * Helper; handle link interrupts.
1824 */
1825 static void
1826 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1827 {
1828 uint32_t status;
1829
1830 if (icr & ICR_LSC) {
1831 status = CSR_READ(sc, DGE_STATUS);
1832 if (status & STATUS_LINKUP) {
1833 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1834 device_xname(sc->sc_dev)));
1835 } else {
1836 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1837 device_xname(sc->sc_dev)));
1838 }
1839 } else if (icr & ICR_RXSEQ) {
1840 DPRINTF(DGE_DEBUG_LINK,
1841 ("%s: LINK: Receive sequence error\n",
1842 device_xname(sc->sc_dev)));
1843 }
1844 /* XXX - fix errata */
1845 }
1846
1847 /*
1848 * dge_reset:
1849 *
1850 * Reset the i82597 chip.
1851 */
1852 static void
1853 dge_reset(struct dge_softc *sc)
1854 {
1855 int i;
1856
1857 /*
1858 * Do a chip reset.
1859 */
1860 CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1861
1862 delay(10000);
1863
1864 for (i = 0; i < 1000; i++) {
1865 if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1866 break;
1867 delay(20);
1868 }
1869
1870 if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1871 printf("%s: WARNING: reset failed to complete\n",
1872 device_xname(sc->sc_dev));
1873 /*
1874 * Reset the EEPROM logic.
1875 * This will cause the chip to reread its default values,
1876 * which doesn't happen otherwise (errata).
1877 */
1878 CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1879 delay(10000);
1880 }
1881
1882 /*
1883 * dge_init: [ifnet interface function]
1884 *
1885 * Initialize the interface. Must be called at splnet().
1886 */
1887 static int
1888 dge_init(struct ifnet *ifp)
1889 {
1890 struct dge_softc *sc = ifp->if_softc;
1891 struct dge_rxsoft *rxs;
1892 int i, error = 0;
1893 uint32_t reg;
1894
1895 /*
1896 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1897 * There is a small but measurable benefit to avoiding the adjusment
1898 * of the descriptor so that the headers are aligned, for normal mtu,
1899 * on such platforms. One possibility is that the DMA itself is
1900 * slightly more efficient if the front of the entire packet (instead
1901 * of the front of the headers) is aligned.
1902 *
1903 * Note we must always set align_tweak to 0 if we are using
1904 * jumbo frames.
1905 */
1906 #ifdef __NO_STRICT_ALIGNMENT
1907 sc->sc_align_tweak = 0;
1908 #else
1909 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1910 sc->sc_align_tweak = 0;
1911 else
1912 sc->sc_align_tweak = 2;
1913 #endif /* __NO_STRICT_ALIGNMENT */
1914
1915 /* Cancel any pending I/O. */
1916 dge_stop(ifp, 0);
1917
1918 /* Reset the chip to a known state. */
1919 dge_reset(sc);
1920
1921 /* Initialize the transmit descriptor ring. */
1922 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1923 DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1924 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1925 sc->sc_txfree = DGE_NTXDESC;
1926 sc->sc_txnext = 0;
1927
1928 sc->sc_txctx_ipcs = 0xffffffff;
1929 sc->sc_txctx_tucs = 0xffffffff;
1930
1931 CSR_WRITE(sc, DGE_TDBAH, 0);
1932 CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1933 CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1934 CSR_WRITE(sc, DGE_TDH, 0);
1935 CSR_WRITE(sc, DGE_TDT, 0);
1936 CSR_WRITE(sc, DGE_TIDV, TIDV);
1937
1938 #if 0
1939 CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1940 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1941 #endif
1942 CSR_WRITE(sc, DGE_RXDCTL,
1943 RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1944 RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1945 RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1946
1947 /* Initialize the transmit job descriptors. */
1948 for (i = 0; i < DGE_TXQUEUELEN; i++)
1949 sc->sc_txsoft[i].txs_mbuf = NULL;
1950 sc->sc_txsfree = DGE_TXQUEUELEN;
1951 sc->sc_txsnext = 0;
1952 sc->sc_txsdirty = 0;
1953
1954 /*
1955 * Initialize the receive descriptor and receive job
1956 * descriptor rings.
1957 */
1958 CSR_WRITE(sc, DGE_RDBAH, 0);
1959 CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1960 CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1961 CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1962 CSR_WRITE(sc, DGE_RDT, 0);
1963 CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1964 CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1965 CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1966
1967 for (i = 0; i < DGE_NRXDESC; i++) {
1968 rxs = &sc->sc_rxsoft[i];
1969 if (rxs->rxs_mbuf == NULL) {
1970 if ((error = dge_add_rxbuf(sc, i)) != 0) {
1971 printf("%s: unable to allocate or map rx "
1972 "buffer %d, error = %d\n",
1973 device_xname(sc->sc_dev), i, error);
1974 /*
1975 * XXX Should attempt to run with fewer receive
1976 * XXX buffers instead of just failing.
1977 */
1978 dge_rxdrain(sc);
1979 goto out;
1980 }
1981 }
1982 DGE_INIT_RXDESC(sc, i);
1983 }
1984 sc->sc_rxptr = DGE_RXSPACE;
1985 sc->sc_rxdiscard = 0;
1986 DGE_RXCHAIN_RESET(sc);
1987
1988 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1989 sc->sc_ctrl0 |= CTRL0_JFE;
1990 CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1991 }
1992
1993 /* Write the control registers. */
1994 CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1995
1996 /*
1997 * Set up checksum offload parameters.
1998 */
1999 reg = CSR_READ(sc, DGE_RXCSUM);
2000 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2001 reg |= RXCSUM_IPOFL;
2002 else
2003 reg &= ~RXCSUM_IPOFL;
2004 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2005 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2006 else {
2007 reg &= ~RXCSUM_TUOFL;
2008 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2009 reg &= ~RXCSUM_IPOFL;
2010 }
2011 CSR_WRITE(sc, DGE_RXCSUM, reg);
2012
2013 /*
2014 * Set up the interrupt registers.
2015 */
2016 CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
2017 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2018 ICR_RXO | ICR_RXT0;
2019
2020 CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
2021
2022 /*
2023 * Set up the transmit control register.
2024 */
2025 sc->sc_tctl = TCTL_TCE | TCTL_TPDE | TCTL_TXEN;
2026 CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
2027
2028 /*
2029 * Set up the receive control register; we actually program
2030 * the register when we set the receive filter. Use multicast
2031 * address offset type 0.
2032 */
2033 sc->sc_mchash_type = 0;
2034
2035 sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2036 RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2037
2038 #ifdef DGE_OFFBYONE_RXBUG
2039 sc->sc_rctl |= RCTL_BSIZE_16k;
2040 #else
2041 switch (MCLBYTES) {
2042 case 2048:
2043 sc->sc_rctl |= RCTL_BSIZE_2k;
2044 break;
2045 case 4096:
2046 sc->sc_rctl |= RCTL_BSIZE_4k;
2047 break;
2048 case 8192:
2049 sc->sc_rctl |= RCTL_BSIZE_8k;
2050 break;
2051 case 16384:
2052 sc->sc_rctl |= RCTL_BSIZE_16k;
2053 break;
2054 default:
2055 panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2056 }
2057 #endif
2058
2059 /* Set the receive filter. */
2060 /* Also sets RCTL */
2061 dge_set_filter(sc);
2062
2063 /* ...all done! */
2064 ifp->if_flags |= IFF_RUNNING;
2065 ifp->if_flags &= ~IFF_OACTIVE;
2066
2067 out:
2068 if (error)
2069 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2070 return error;
2071 }
2072
2073 /*
2074 * dge_rxdrain:
2075 *
2076 * Drain the receive queue.
2077 */
2078 static void
2079 dge_rxdrain(struct dge_softc *sc)
2080 {
2081 struct dge_rxsoft *rxs;
2082 int i;
2083
2084 for (i = 0; i < DGE_NRXDESC; i++) {
2085 rxs = &sc->sc_rxsoft[i];
2086 if (rxs->rxs_mbuf != NULL) {
2087 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2088 m_freem(rxs->rxs_mbuf);
2089 rxs->rxs_mbuf = NULL;
2090 }
2091 }
2092 }
2093
2094 /*
2095 * dge_stop: [ifnet interface function]
2096 *
2097 * Stop transmission on the interface.
2098 */
2099 static void
2100 dge_stop(struct ifnet *ifp, int disable)
2101 {
2102 struct dge_softc *sc = ifp->if_softc;
2103 struct dge_txsoft *txs;
2104 int i;
2105
2106 /* Stop the transmit and receive processes. */
2107 CSR_WRITE(sc, DGE_TCTL, 0);
2108 CSR_WRITE(sc, DGE_RCTL, 0);
2109
2110 /* Release any queued transmit buffers. */
2111 for (i = 0; i < DGE_TXQUEUELEN; i++) {
2112 txs = &sc->sc_txsoft[i];
2113 if (txs->txs_mbuf != NULL) {
2114 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2115 m_freem(txs->txs_mbuf);
2116 txs->txs_mbuf = NULL;
2117 }
2118 }
2119
2120 /* Mark the interface as down and cancel the watchdog timer. */
2121 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2122 ifp->if_timer = 0;
2123
2124 if (disable)
2125 dge_rxdrain(sc);
2126 }
2127
2128 /*
2129 * dge_add_rxbuf:
2130 *
2131 * Add a receive buffer to the indiciated descriptor.
2132 */
2133 static int
2134 dge_add_rxbuf(struct dge_softc *sc, int idx)
2135 {
2136 struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2137 struct mbuf *m;
2138 int error;
2139 #ifdef DGE_OFFBYONE_RXBUG
2140 void *buf;
2141 #endif
2142
2143 MGETHDR(m, M_DONTWAIT, MT_DATA);
2144 if (m == NULL)
2145 return ENOBUFS;
2146
2147 #ifdef DGE_OFFBYONE_RXBUG
2148 if ((buf = dge_getbuf(sc)) == NULL)
2149 return ENOBUFS;
2150
2151 m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2152 MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2153 m->m_flags |= M_EXT_RW;
2154
2155 if (rxs->rxs_mbuf != NULL)
2156 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2157 rxs->rxs_mbuf = m;
2158
2159 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2160 DGE_BUFFER_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
2161 #else
2162 MCLGET(m, M_DONTWAIT);
2163 if ((m->m_flags & M_EXT) == 0) {
2164 m_freem(m);
2165 return ENOBUFS;
2166 }
2167
2168 if (rxs->rxs_mbuf != NULL)
2169 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2170
2171 rxs->rxs_mbuf = m;
2172
2173 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2174 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2175 BUS_DMA_READ | BUS_DMA_NOWAIT);
2176 #endif
2177 if (error) {
2178 printf("%s: unable to load rx DMA map %d, error = %d\n",
2179 device_xname(sc->sc_dev), idx, error);
2180 panic("dge_add_rxbuf"); /* XXX XXX XXX */
2181 }
2182 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2183 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2184
2185 return 0;
2186 }
2187
2188 /*
2189 * dge_set_ral:
2190 *
2191 * Set an entry in the receive address list.
2192 */
2193 static void
2194 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2195 {
2196 uint32_t ral_lo, ral_hi;
2197
2198 if (enaddr != NULL) {
2199 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2200 (enaddr[3] << 24);
2201 ral_hi = enaddr[4] | (enaddr[5] << 8);
2202 ral_hi |= RAH_AV;
2203 } else {
2204 ral_lo = 0;
2205 ral_hi = 0;
2206 }
2207 CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2208 CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2209 }
2210
2211 /*
2212 * dge_mchash:
2213 *
2214 * Compute the hash of the multicast address for the 4096-bit
2215 * multicast filter.
2216 */
2217 static uint32_t
2218 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2219 {
2220 static const int lo_shift[4] = { 4, 3, 2, 0 };
2221 static const int hi_shift[4] = { 4, 5, 6, 8 };
2222 uint32_t hash;
2223
2224 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2225 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2226
2227 return (hash & 0xfff);
2228 }
2229
2230 /*
2231 * dge_set_filter:
2232 *
2233 * Set up the receive filter.
2234 */
2235 static void
2236 dge_set_filter(struct dge_softc *sc)
2237 {
2238 struct ethercom *ec = &sc->sc_ethercom;
2239 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2240 struct ether_multi *enm;
2241 struct ether_multistep step;
2242 uint32_t hash, reg, bit;
2243 int i;
2244
2245 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2246
2247 if (ifp->if_flags & IFF_BROADCAST)
2248 sc->sc_rctl |= RCTL_BAM;
2249 if (ifp->if_flags & IFF_PROMISC) {
2250 sc->sc_rctl |= RCTL_UPE;
2251 goto allmulti;
2252 }
2253
2254 /*
2255 * Set the station address in the first RAL slot, and
2256 * clear the remaining slots.
2257 */
2258 dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2259 for (i = 1; i < RA_TABSIZE; i++)
2260 dge_set_ral(sc, NULL, i);
2261
2262 /* Clear out the multicast table. */
2263 for (i = 0; i < MC_TABSIZE; i++)
2264 CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2265
2266 ETHER_LOCK(ec);
2267 ETHER_FIRST_MULTI(step, ec, enm);
2268 while (enm != NULL) {
2269 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2270 /*
2271 * We must listen to a range of multicast addresses.
2272 * For now, just accept all multicasts, rather than
2273 * trying to set only those filter bits needed to match
2274 * the range. (At this time, the only use of address
2275 * ranges is for IP multicast routing, for which the
2276 * range is big enough to require all bits set.)
2277 */
2278 ETHER_UNLOCK(ec);
2279 goto allmulti;
2280 }
2281
2282 hash = dge_mchash(sc, enm->enm_addrlo);
2283
2284 reg = (hash >> 5) & 0x7f;
2285 bit = hash & 0x1f;
2286
2287 hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2288 hash |= 1U << bit;
2289
2290 CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2291
2292 ETHER_NEXT_MULTI(step, enm);
2293 }
2294 ETHER_UNLOCK(ec);
2295
2296 ifp->if_flags &= ~IFF_ALLMULTI;
2297 goto setit;
2298
2299 allmulti:
2300 ifp->if_flags |= IFF_ALLMULTI;
2301 sc->sc_rctl |= RCTL_MPE;
2302
2303 setit:
2304 CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2305 }
2306
2307 /*
2308 * Read in the EEPROM info and verify checksum.
2309 */
2310 int
2311 dge_read_eeprom(struct dge_softc *sc)
2312 {
2313 uint16_t cksum;
2314 int i;
2315
2316 cksum = 0;
2317 for (i = 0; i < EEPROM_SIZE; i++) {
2318 sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2319 cksum += sc->sc_eeprom[i];
2320 }
2321 return cksum != EEPROM_CKSUM;
2322 }
2323
2324
2325 /*
2326 * Read a 16-bit word from address addr in the serial EEPROM.
2327 */
2328 uint16_t
2329 dge_eeprom_word(struct dge_softc *sc, int addr)
2330 {
2331 uint32_t reg;
2332 uint16_t rval = 0;
2333 int i;
2334
2335 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK | EECD_DI | EECD_CS);
2336
2337 /* Lower clock pulse (and data in to chip) */
2338 CSR_WRITE(sc, DGE_EECD, reg);
2339 /* Select chip */
2340 CSR_WRITE(sc, DGE_EECD, reg | EECD_CS);
2341
2342 /* Send read command */
2343 dge_eeprom_clockout(sc, 1);
2344 dge_eeprom_clockout(sc, 1);
2345 dge_eeprom_clockout(sc, 0);
2346
2347 /* Send address */
2348 for (i = 5; i >= 0; i--)
2349 dge_eeprom_clockout(sc, (addr >> i) & 1);
2350
2351 /* Read data */
2352 for (i = 0; i < 16; i++) {
2353 rval <<= 1;
2354 rval |= dge_eeprom_clockin(sc);
2355 }
2356
2357 /* Deselect chip */
2358 CSR_WRITE(sc, DGE_EECD, reg);
2359
2360 return rval;
2361 }
2362
2363 /*
2364 * Clock out a single bit to the EEPROM.
2365 */
2366 void
2367 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2368 {
2369 int reg;
2370
2371 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_SK);
2372 if (bit)
2373 reg |= EECD_DI;
2374
2375 CSR_WRITE(sc, DGE_EECD, reg);
2376 delay(2);
2377 CSR_WRITE(sc, DGE_EECD, reg | EECD_SK);
2378 delay(2);
2379 CSR_WRITE(sc, DGE_EECD, reg);
2380 delay(2);
2381 }
2382
2383 /*
2384 * Clock in a single bit from EEPROM.
2385 */
2386 int
2387 dge_eeprom_clockin(struct dge_softc *sc)
2388 {
2389 int reg, rv;
2390
2391 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_DO | EECD_SK);
2392
2393 CSR_WRITE(sc, DGE_EECD, reg | EECD_SK); /* Raise clock */
2394 delay(2);
2395 rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2396 CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2397 delay(2);
2398
2399 return rv;
2400 }
2401
2402 static void
2403 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2404 {
2405 struct dge_softc *sc = ifp->if_softc;
2406
2407 ifmr->ifm_status = IFM_AVALID;
2408 if (sc->sc_dgep->dgep_flags & DGEP_F_10G_SR ) {
2409 ifmr->ifm_active = IFM_ETHER | IFM_10G_SR;
2410 } else {
2411 ifmr->ifm_active = IFM_ETHER | IFM_10G_LR;
2412 }
2413
2414 if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2415 ifmr->ifm_status |= IFM_ACTIVE;
2416 }
2417
2418 static inline int
2419 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2420 {
2421 int i, mdic;
2422
2423 CSR_WRITE(sc, DGE_MDIO,
2424 MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2425 for (i = 0; i < 10; i++) {
2426 delay(10);
2427 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2428 break;
2429 }
2430 return mdic;
2431 }
2432
2433 static void
2434 dge_xgmii_writereg(struct dge_softc *sc, int phy, int reg, int val)
2435 {
2436 int mdic;
2437
2438 CSR_WRITE(sc, DGE_MDIRW, val);
2439 if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2440 printf("%s: address cycle timeout; phy %d reg %d\n",
2441 device_xname(sc->sc_dev), phy, reg);
2442 return;
2443 }
2444 if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2445 printf("%s: write cycle timeout; phy %d reg %d\n",
2446 device_xname(sc->sc_dev), phy, reg);
2447 return;
2448 }
2449 }
2450
2451 static void
2452 dge_xgmii_reset(struct dge_softc *sc)
2453 {
2454 dge_xgmii_writereg(sc, 0, 0, BMCR_RESET);
2455 }
2456
2457 static int
2458 dge_xgmii_mediachange(struct ifnet *ifp)
2459 {
2460 return 0;
2461 }
2462