if_dge.c revision 1.56 1 /* $NetBSD: if_dge.c,v 1.56 2019/11/10 21:16:36 chs Exp $ */
2
3 /*
4 * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 * All rights reserved.
6 *
7 * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * SUNET, Swedish University Computer Network.
21 * 4. The name of SUNET may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 *
75 * TODO (in no specific order):
76 * HW VLAN support.
77 * TSE offloading (needs kernel changes...)
78 * RAIDC (receive interrupt delay adaptation)
79 * Use memory > 4GB.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.56 2019/11/10 21:16:36 chs Exp $");
84
85
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/ioctl.h>
95 #include <sys/errno.h>
96 #include <sys/device.h>
97 #include <sys/queue.h>
98 #include <sys/rndsource.h>
99
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_ether.h>
104 #include <net/bpf.h>
105
106 #include <netinet/in.h> /* XXX for struct ip */
107 #include <netinet/in_systm.h> /* XXX for struct ip */
108 #include <netinet/ip.h> /* XXX for struct ip */
109 #include <netinet/tcp.h> /* XXX for struct tcphdr */
110
111 #include <sys/bus.h>
112 #include <sys/intr.h>
113 #include <machine/endian.h>
114
115 #include <dev/mii/mii.h>
116 #include <dev/mii/miivar.h>
117 #include <dev/mii/mii_bitbang.h>
118
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 #include <dev/pci/pcidevs.h>
122
123 #include <dev/pci/if_dgereg.h>
124
125 /*
126 * The receive engine may sometimes become off-by-one when writing back
127 * chained descriptors. Avoid this by allocating a large chunk of
128 * memory and use if instead (to avoid chained descriptors).
129 * This only happens with chained descriptors under heavy load.
130 */
131 #define DGE_OFFBYONE_RXBUG
132
133 #define DGE_EVENT_COUNTERS
134 #define DGE_DEBUG
135
136 #ifdef DGE_DEBUG
137 #define DGE_DEBUG_LINK 0x01
138 #define DGE_DEBUG_TX 0x02
139 #define DGE_DEBUG_RX 0x04
140 #define DGE_DEBUG_CKSUM 0x08
141 int dge_debug = 0;
142
143 #define DPRINTF(x, y) if (dge_debug & (x)) printf y
144 #else
145 #define DPRINTF(x, y) /* nothing */
146 #endif /* DGE_DEBUG */
147
148 /*
149 * Transmit descriptor list size. We allow up to 100 DMA segments per
150 * packet (Intel reports of jumbo frame packets with as
151 * many as 80 DMA segments when using 16k buffers).
152 */
153 #define DGE_NTXSEGS 100
154 #define DGE_IFQUEUELEN 20000
155 #define DGE_TXQUEUELEN 2048
156 #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
157 #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
158 #define DGE_NTXDESC 1024
159 #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
160 #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
161 #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
162
163 /*
164 * Receive descriptor list size.
165 * Packet is of size MCLBYTES, and for jumbo packets buffers may
166 * be chained. Due to the nature of the card (high-speed), keep this
167 * ring large. With 2k buffers the ring can store 400 jumbo packets,
168 * which at full speed will be received in just under 3ms.
169 */
170 #define DGE_NRXDESC 2048
171 #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
172 #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
173 /*
174 * # of descriptors between head and written descriptors.
175 * This is to work-around two erratas.
176 */
177 #define DGE_RXSPACE 10
178 #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
179 /*
180 * Receive descriptor fetch threshholds. These are values recommended
181 * by Intel, do not touch them unless you know what you are doing.
182 */
183 #define RXDCTL_PTHRESH_VAL 128
184 #define RXDCTL_HTHRESH_VAL 16
185 #define RXDCTL_WTHRESH_VAL 16
186
187
188 /*
189 * Tweakable parameters; default values.
190 */
191 #define FCRTH 0x30000 /* Send XOFF water mark */
192 #define FCRTL 0x28000 /* Send XON water mark */
193 #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
194 #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
195
196 /*
197 * Control structures are DMA'd to the i82597 chip. We allocate them in
198 * a single clump that maps to a single DMA segment to make serveral things
199 * easier.
200 */
201 struct dge_control_data {
202 /*
203 * The transmit descriptors.
204 */
205 struct dge_tdes wcd_txdescs[DGE_NTXDESC];
206
207 /*
208 * The receive descriptors.
209 */
210 struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
211 };
212
213 #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
214 #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
215 #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
216
217 /*
218 * The DGE interface have a higher max MTU size than normal jumbo frames.
219 */
220 #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
221
222 /*
223 * Software state for transmit jobs.
224 */
225 struct dge_txsoft {
226 struct mbuf *txs_mbuf; /* head of our mbuf chain */
227 bus_dmamap_t txs_dmamap; /* our DMA map */
228 int txs_firstdesc; /* first descriptor in packet */
229 int txs_lastdesc; /* last descriptor in packet */
230 int txs_ndesc; /* # of descriptors used */
231 };
232
233 /*
234 * Software state for receive buffers. Each descriptor gets a
235 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
236 * more than one buffer, we chain them together.
237 */
238 struct dge_rxsoft {
239 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
240 bus_dmamap_t rxs_dmamap; /* our DMA map */
241 };
242
243 /*
244 * Software state per device.
245 */
246 struct dge_softc {
247 device_t sc_dev; /* generic device information */
248 bus_space_tag_t sc_st; /* bus space tag */
249 bus_space_handle_t sc_sh; /* bus space handle */
250 bus_dma_tag_t sc_dmat; /* bus DMA tag */
251 struct ethercom sc_ethercom; /* ethernet common data */
252
253 int sc_flags; /* flags; see below */
254 int sc_bus_speed; /* PCI/PCIX bus speed */
255 int sc_pcix_offset; /* PCIX capability register offset */
256
257 const struct dge_product *sc_dgep; /* Pointer to the dge_product entry */
258 pci_chipset_tag_t sc_pc;
259 pcitag_t sc_pt;
260 int sc_mmrbc; /* Max PCIX memory read byte count */
261
262 void *sc_ih; /* interrupt cookie */
263
264 struct ifmedia sc_media;
265
266 bus_dmamap_t sc_cddmamap; /* control data DMA map */
267 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
268
269 int sc_align_tweak;
270
271 /*
272 * Software state for the transmit and receive descriptors.
273 */
274 struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
275 struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
276
277 /*
278 * Control data structures.
279 */
280 struct dge_control_data *sc_control_data;
281 #define sc_txdescs sc_control_data->wcd_txdescs
282 #define sc_rxdescs sc_control_data->wcd_rxdescs
283
284 #ifdef DGE_EVENT_COUNTERS
285 /* Event counters. */
286 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
287 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
288 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
289 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
290 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
291 struct evcnt sc_ev_rxintr; /* Rx interrupts */
292 struct evcnt sc_ev_linkintr; /* Link interrupts */
293
294 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
295 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
296 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
297 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
298
299 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
300 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
301 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
302
303 struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
304 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
305 #endif /* DGE_EVENT_COUNTERS */
306
307 int sc_txfree; /* number of free Tx descriptors */
308 int sc_txnext; /* next ready Tx descriptor */
309
310 int sc_txsfree; /* number of free Tx jobs */
311 int sc_txsnext; /* next free Tx job */
312 int sc_txsdirty; /* dirty Tx jobs */
313
314 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
315 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
316
317 int sc_rxptr; /* next ready Rx descriptor/queue ent */
318 int sc_rxdiscard;
319 int sc_rxlen;
320 struct mbuf *sc_rxhead;
321 struct mbuf *sc_rxtail;
322 struct mbuf **sc_rxtailp;
323
324 uint32_t sc_ctrl0; /* prototype CTRL0 register */
325 uint32_t sc_icr; /* prototype interrupt bits */
326 uint32_t sc_tctl; /* prototype TCTL register */
327 uint32_t sc_rctl; /* prototype RCTL register */
328
329 int sc_mchash_type; /* multicast filter offset */
330
331 uint16_t sc_eeprom[EEPROM_SIZE];
332
333 krndsource_t rnd_source; /* random source */
334 #ifdef DGE_OFFBYONE_RXBUG
335 void *sc_bugbuf;
336 SLIST_HEAD(, rxbugentry) sc_buglist;
337 bus_dmamap_t sc_bugmap;
338 struct rxbugentry *sc_entry;
339 #endif
340 };
341
342 #define DGE_RXCHAIN_RESET(sc) \
343 do { \
344 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
345 *(sc)->sc_rxtailp = NULL; \
346 (sc)->sc_rxlen = 0; \
347 } while (/*CONSTCOND*/0)
348
349 #define DGE_RXCHAIN_LINK(sc, m) \
350 do { \
351 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
352 (sc)->sc_rxtailp = &(m)->m_next; \
353 } while (/*CONSTCOND*/0)
354
355 /* sc_flags */
356 #define DGE_F_BUS64 0x20 /* bus is 64-bit */
357 #define DGE_F_PCIX 0x40 /* bus is PCI-X */
358
359 #ifdef DGE_EVENT_COUNTERS
360 #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
361 #else
362 #define DGE_EVCNT_INCR(ev) /* nothing */
363 #endif
364
365 #define CSR_READ(sc, reg) \
366 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
367 #define CSR_WRITE(sc, reg, val) \
368 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
369
370 #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
371 #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
372
373 #define DGE_CDTXSYNC(sc, x, n, ops) \
374 do { \
375 int __x, __n; \
376 \
377 __x = (x); \
378 __n = (n); \
379 \
380 /* If it will wrap around, sync to the end of the ring. */ \
381 if ((__x + __n) > DGE_NTXDESC) { \
382 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
383 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
384 (DGE_NTXDESC - __x), (ops)); \
385 __n -= (DGE_NTXDESC - __x); \
386 __x = 0; \
387 } \
388 \
389 /* Now sync whatever is left. */ \
390 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
391 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
392 } while (/*CONSTCOND*/0)
393
394 #define DGE_CDRXSYNC(sc, x, ops) \
395 do { \
396 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
397 DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
398 } while (/*CONSTCOND*/0)
399
400 #ifdef DGE_OFFBYONE_RXBUG
401 #define DGE_INIT_RXDESC(sc, x) \
402 do { \
403 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
404 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
405 struct mbuf *__m = __rxs->rxs_mbuf; \
406 \
407 __rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
408 (mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
409 __rxd->dr_baddrh = 0; \
410 __rxd->dr_len = 0; \
411 __rxd->dr_cksum = 0; \
412 __rxd->dr_status = 0; \
413 __rxd->dr_errors = 0; \
414 __rxd->dr_special = 0; \
415 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
416 \
417 CSR_WRITE((sc), DGE_RDT, (x)); \
418 } while (/*CONSTCOND*/0)
419 #else
420 #define DGE_INIT_RXDESC(sc, x) \
421 do { \
422 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
423 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
424 struct mbuf *__m = __rxs->rxs_mbuf; \
425 \
426 /* \
427 * Note: We scoot the packet forward 2 bytes in the buffer \
428 * so that the payload after the Ethernet header is aligned \
429 * to a 4-byte boundary. \
430 * \
431 * XXX BRAINDAMAGE ALERT! \
432 * The stupid chip uses the same size for every buffer, which \
433 * is set in the Receive Control register. We are using the 2K \
434 * size option, but what we REALLY want is (2K - 2)! For this \
435 * reason, we can't "scoot" packets longer than the standard \
436 * Ethernet MTU. On strict-alignment platforms, if the total \
437 * size exceeds (2K - 2) we set align_tweak to 0 and let \
438 * the upper layer copy the headers. \
439 */ \
440 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
441 \
442 __rxd->dr_baddrl = \
443 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
444 (sc)->sc_align_tweak); \
445 __rxd->dr_baddrh = 0; \
446 __rxd->dr_len = 0; \
447 __rxd->dr_cksum = 0; \
448 __rxd->dr_status = 0; \
449 __rxd->dr_errors = 0; \
450 __rxd->dr_special = 0; \
451 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
452 \
453 CSR_WRITE((sc), DGE_RDT, (x)); \
454 } while (/*CONSTCOND*/0)
455 #endif
456
457 #ifdef DGE_OFFBYONE_RXBUG
458 /*
459 * Allocation constants. Much memory may be used for this.
460 */
461 #ifndef DGE_BUFFER_SIZE
462 #define DGE_BUFFER_SIZE DGE_MAX_MTU
463 #endif
464 #define DGE_NBUFFERS (4*DGE_NRXDESC)
465 #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
466
467 struct rxbugentry {
468 SLIST_ENTRY(rxbugentry) rb_entry;
469 int rb_slot;
470 };
471
472 static int
473 dge_alloc_rcvmem(struct dge_softc *sc)
474 {
475 char *kva;
476 bus_dma_segment_t seg;
477 int i, rseg, state, error;
478 struct rxbugentry *entry;
479
480 state = error = 0;
481
482 if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
483 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
484 aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n");
485 return ENOBUFS;
486 }
487
488 state = 1;
489 if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
490 BUS_DMA_NOWAIT)) {
491 aprint_error_dev(sc->sc_dev,
492 "can't map DMA buffers (%d bytes)\n", (int)DGE_RXMEM);
493 error = ENOBUFS;
494 goto out;
495 }
496
497 state = 2;
498 if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
499 BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
500 aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
501 error = ENOBUFS;
502 goto out;
503 }
504
505 state = 3;
506 if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
507 kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
508 aprint_error_dev(sc->sc_dev, "can't load DMA map\n");
509 error = ENOBUFS;
510 goto out;
511 }
512
513 state = 4;
514 sc->sc_bugbuf = (void *)kva;
515 SLIST_INIT(&sc->sc_buglist);
516
517 /*
518 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
519 * in an array.
520 */
521 entry = malloc(sizeof(*entry) * DGE_NBUFFERS, M_DEVBUF, M_WAITOK);
522 sc->sc_entry = entry;
523 for (i = 0; i < DGE_NBUFFERS; i++) {
524 entry[i].rb_slot = i;
525 SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
526 }
527 out:
528 if (error != 0) {
529 switch (state) {
530 case 4:
531 bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
532 /* FALLTHROUGH */
533 case 3:
534 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
535 /* FALLTHROUGH */
536 case 2:
537 bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
538 /* FALLTHROUGH */
539 case 1:
540 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
541 break;
542 default:
543 break;
544 }
545 }
546
547 return error;
548 }
549
550 /*
551 * Allocate a jumbo buffer.
552 */
553 static void *
554 dge_getbuf(struct dge_softc *sc)
555 {
556 struct rxbugentry *entry;
557
558 entry = SLIST_FIRST(&sc->sc_buglist);
559
560 if (entry == NULL) {
561 printf("%s: no free RX buffers\n", device_xname(sc->sc_dev));
562 return NULL;
563 }
564
565 SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
566 return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
567 }
568
569 /*
570 * Release a jumbo buffer.
571 */
572 static void
573 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
574 {
575 struct rxbugentry *entry;
576 struct dge_softc *sc;
577 int i, s;
578
579 /* Extract the softc struct pointer. */
580 sc = (struct dge_softc *)arg;
581
582 if (sc == NULL)
583 panic("dge_freebuf: can't find softc pointer!");
584
585 /* calculate the slot this buffer belongs to */
586
587 i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
588
589 if ((i < 0) || (i >= DGE_NBUFFERS))
590 panic("dge_freebuf: asked to free buffer %d!", i);
591
592 s = splvm();
593 entry = sc->sc_entry + i;
594 SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
595
596 if (__predict_true(m != NULL))
597 pool_cache_put(mb_cache, m);
598 splx(s);
599 }
600 #endif
601
602 static void dge_start(struct ifnet *);
603 static void dge_watchdog(struct ifnet *);
604 static int dge_ioctl(struct ifnet *, u_long, void *);
605 static int dge_init(struct ifnet *);
606 static void dge_stop(struct ifnet *, int);
607
608 static bool dge_shutdown(device_t, int);
609
610 static void dge_reset(struct dge_softc *);
611 static void dge_rxdrain(struct dge_softc *);
612 static int dge_add_rxbuf(struct dge_softc *, int);
613
614 static void dge_set_filter(struct dge_softc *);
615
616 static int dge_intr(void *);
617 static void dge_txintr(struct dge_softc *);
618 static void dge_rxintr(struct dge_softc *);
619 static void dge_linkintr(struct dge_softc *, uint32_t);
620
621 static int dge_match(device_t, cfdata_t, void *);
622 static void dge_attach(device_t, device_t, void *);
623
624 static int dge_read_eeprom(struct dge_softc *sc);
625 static int dge_eeprom_clockin(struct dge_softc *sc);
626 static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
627 static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
628 static int dge_xgmii_mediachange(struct ifnet *);
629 static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
630 static void dge_xgmii_reset(struct dge_softc *);
631 static void dge_xgmii_writereg(struct dge_softc *, int, int, int);
632
633
634 CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc),
635 dge_match, dge_attach, NULL, NULL);
636
637 #ifdef DGE_EVENT_COUNTERS
638 #if DGE_NTXSEGS > 100
639 #error Update dge_txseg_evcnt_names
640 #endif
641 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
642 #endif /* DGE_EVENT_COUNTERS */
643
644 /*
645 * Devices supported by this driver.
646 */
647 static const struct dge_product {
648 pci_vendor_id_t dgep_vendor;
649 pci_product_id_t dgep_product;
650 const char *dgep_name;
651 int dgep_flags;
652 #define DGEP_F_10G_LR 0x01
653 #define DGEP_F_10G_SR 0x02
654 } dge_products[] = {
655 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82597EX,
656 "Intel i82597EX 10GbE-LR Ethernet",
657 DGEP_F_10G_LR },
658
659 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82597EX_SR,
660 "Intel i82597EX 10GbE-SR Ethernet",
661 DGEP_F_10G_SR },
662
663 { 0, 0,
664 NULL,
665 0 },
666 };
667
668 static const struct dge_product *
669 dge_lookup(const struct pci_attach_args *pa)
670 {
671 const struct dge_product *dgep;
672
673 for (dgep = dge_products; dgep->dgep_name != NULL; dgep++) {
674 if (PCI_VENDOR(pa->pa_id) == dgep->dgep_vendor &&
675 PCI_PRODUCT(pa->pa_id) == dgep->dgep_product)
676 return dgep;
677 }
678 return NULL;
679 }
680
681 static int
682 dge_match(device_t parent, cfdata_t cf, void *aux)
683 {
684 struct pci_attach_args *pa = aux;
685
686 if (dge_lookup(pa) != NULL)
687 return 1;
688
689 return 0;
690 }
691
692 static void
693 dge_attach(device_t parent, device_t self, void *aux)
694 {
695 struct dge_softc *sc = device_private(self);
696 struct pci_attach_args *pa = aux;
697 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
698 pci_chipset_tag_t pc = pa->pa_pc;
699 pci_intr_handle_t ih;
700 const char *intrstr = NULL;
701 bus_dma_segment_t seg;
702 int i, rseg, error;
703 uint8_t enaddr[ETHER_ADDR_LEN];
704 pcireg_t preg, memtype;
705 uint32_t reg;
706 char intrbuf[PCI_INTRSTR_LEN];
707 const struct dge_product *dgep;
708
709 sc->sc_dgep = dgep = dge_lookup(pa);
710 if (dgep == NULL) {
711 printf("\n");
712 panic("dge_attach: impossible");
713 }
714
715 sc->sc_dev = self;
716 sc->sc_dmat = pa->pa_dmat;
717 sc->sc_pc = pa->pa_pc;
718 sc->sc_pt = pa->pa_tag;
719
720 pci_aprint_devinfo_fancy(pa, "Ethernet controller",
721 dgep->dgep_name, 1);
722
723 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
724 if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
725 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
726 aprint_error_dev(sc->sc_dev,
727 "unable to map device registers\n");
728 return;
729 }
730
731 /* Enable bus mastering */
732 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
733 preg |= PCI_COMMAND_MASTER_ENABLE;
734 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
735
736 /*
737 * Map and establish our interrupt.
738 */
739 if (pci_intr_map(pa, &ih)) {
740 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
741 return;
742 }
743 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
744 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, dge_intr, sc,
745 device_xname(self));
746 if (sc->sc_ih == NULL) {
747 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
748 if (intrstr != NULL)
749 aprint_error(" at %s", intrstr);
750 aprint_error("\n");
751 return;
752 }
753 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
754
755 /*
756 * Determine a few things about the bus we're connected to.
757 */
758 reg = CSR_READ(sc, DGE_STATUS);
759 if (reg & STATUS_BUS64)
760 sc->sc_flags |= DGE_F_BUS64;
761
762 sc->sc_flags |= DGE_F_PCIX;
763 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
764 PCI_CAP_PCIX,
765 &sc->sc_pcix_offset, NULL) == 0)
766 aprint_error_dev(sc->sc_dev, "unable to find PCIX "
767 "capability\n");
768
769 if (sc->sc_flags & DGE_F_PCIX) {
770 switch (reg & STATUS_PCIX_MSK) {
771 case STATUS_PCIX_66:
772 sc->sc_bus_speed = 66;
773 break;
774 case STATUS_PCIX_100:
775 sc->sc_bus_speed = 100;
776 break;
777 case STATUS_PCIX_133:
778 sc->sc_bus_speed = 133;
779 break;
780 default:
781 aprint_error_dev(sc->sc_dev,
782 "unknown PCIXSPD %d; assuming 66MHz\n",
783 reg & STATUS_PCIX_MSK);
784 sc->sc_bus_speed = 66;
785 }
786 } else
787 sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
788 aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
789 (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
790 (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
791
792 /*
793 * Allocate the control data structures, and create and load the
794 * DMA map for it.
795 */
796 if ((error = bus_dmamem_alloc(sc->sc_dmat,
797 sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
798 0)) != 0) {
799 aprint_error_dev(sc->sc_dev,
800 "unable to allocate control data, error = %d\n",
801 error);
802 goto fail_0;
803 }
804
805 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
806 sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
807 0)) != 0) {
808 aprint_error_dev(sc->sc_dev,
809 "unable to map control data, error = %d\n", error);
810 goto fail_1;
811 }
812
813 if ((error = bus_dmamap_create(sc->sc_dmat,
814 sizeof(struct dge_control_data), 1,
815 sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
816 aprint_error_dev(sc->sc_dev, "unable to create control data "
817 "DMA map, error = %d\n", error);
818 goto fail_2;
819 }
820
821 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
822 sc->sc_control_data, sizeof(struct dge_control_data), NULL,
823 0)) != 0) {
824 aprint_error_dev(sc->sc_dev,
825 "unable to load control data DMA map, error = %d\n",
826 error);
827 goto fail_3;
828 }
829
830 #ifdef DGE_OFFBYONE_RXBUG
831 if (dge_alloc_rcvmem(sc) != 0)
832 return; /* Already complained */
833 #endif
834 /*
835 * Create the transmit buffer DMA maps.
836 */
837 for (i = 0; i < DGE_TXQUEUELEN; i++) {
838 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
839 DGE_NTXSEGS, MCLBYTES, 0, 0,
840 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
841 aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, "
842 "error = %d\n", i, error);
843 goto fail_4;
844 }
845 }
846
847 /*
848 * Create the receive buffer DMA maps.
849 */
850 for (i = 0; i < DGE_NRXDESC; i++) {
851 #ifdef DGE_OFFBYONE_RXBUG
852 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
853 DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
854 #else
855 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
856 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
857 #endif
858 aprint_error_dev(sc->sc_dev, "unable to create Rx DMA "
859 "map %d, error = %d\n", i, error);
860 goto fail_5;
861 }
862 sc->sc_rxsoft[i].rxs_mbuf = NULL;
863 }
864
865 /*
866 * Set bits in ctrl0 register.
867 * Should get the software defined pins out of EEPROM?
868 */
869 sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
870 sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
871 CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
872
873 /*
874 * Reset the chip to a known state.
875 */
876 dge_reset(sc);
877
878 /*
879 * Reset the PHY.
880 */
881 dge_xgmii_reset(sc);
882
883 /*
884 * Read in EEPROM data.
885 */
886 if (dge_read_eeprom(sc)) {
887 aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n");
888 return;
889 }
890
891 /*
892 * Get the ethernet address.
893 */
894 enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
895 enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
896 enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
897 enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
898 enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
899 enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
900
901 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
902 ether_sprintf(enaddr));
903
904 /*
905 * Setup media stuff.
906 */
907 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
908 ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
909 dge_xgmii_mediastatus);
910 if (dgep->dgep_flags & DGEP_F_10G_SR) {
911 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_SR, 0, NULL);
912 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_SR);
913 } else { /* XXX default is LR */
914 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_LR, 0, NULL);
915 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_LR);
916 }
917
918 ifp = &sc->sc_ethercom.ec_if;
919 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
920 ifp->if_softc = sc;
921 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
922 ifp->if_ioctl = dge_ioctl;
923 ifp->if_start = dge_start;
924 ifp->if_watchdog = dge_watchdog;
925 ifp->if_init = dge_init;
926 ifp->if_stop = dge_stop;
927 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(DGE_IFQUEUELEN, IFQ_MAXLEN));
928 IFQ_SET_READY(&ifp->if_snd);
929
930 sc->sc_ethercom.ec_capabilities |=
931 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
932
933 /*
934 * We can perform TCPv4 and UDPv4 checkums in-bound.
935 */
936 ifp->if_capabilities |=
937 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
938 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
939 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
940
941 /*
942 * Attach the interface.
943 */
944 if_attach(ifp);
945 if_deferred_start_init(ifp, NULL);
946 ether_ifattach(ifp, enaddr);
947 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
948 RND_TYPE_NET, RND_FLAG_DEFAULT);
949
950 #ifdef DGE_EVENT_COUNTERS
951 /* Fix segment event naming */
952 if (dge_txseg_evcnt_names == NULL) {
953 dge_txseg_evcnt_names =
954 malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
955 for (i = 0; i < DGE_NTXSEGS; i++)
956 snprintf((*dge_txseg_evcnt_names)[i],
957 sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
958 }
959
960 /* Attach event counters. */
961 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
962 NULL, device_xname(sc->sc_dev), "txsstall");
963 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
964 NULL, device_xname(sc->sc_dev), "txdstall");
965 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
966 NULL, device_xname(sc->sc_dev), "txforceintr");
967 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
968 NULL, device_xname(sc->sc_dev), "txdw");
969 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
970 NULL, device_xname(sc->sc_dev), "txqe");
971 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
972 NULL, device_xname(sc->sc_dev), "rxintr");
973 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
974 NULL, device_xname(sc->sc_dev), "linkintr");
975
976 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
977 NULL, device_xname(sc->sc_dev), "rxipsum");
978 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
979 NULL, device_xname(sc->sc_dev), "rxtusum");
980 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
981 NULL, device_xname(sc->sc_dev), "txipsum");
982 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
983 NULL, device_xname(sc->sc_dev), "txtusum");
984
985 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
986 NULL, device_xname(sc->sc_dev), "txctx init");
987 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
988 NULL, device_xname(sc->sc_dev), "txctx hit");
989 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
990 NULL, device_xname(sc->sc_dev), "txctx miss");
991
992 for (i = 0; i < DGE_NTXSEGS; i++)
993 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
994 NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
995
996 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
997 NULL, device_xname(sc->sc_dev), "txdrop");
998
999 #endif /* DGE_EVENT_COUNTERS */
1000
1001 /*
1002 * Make sure the interface is shutdown during reboot.
1003 */
1004 if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
1005 pmf_class_network_register(self, ifp);
1006 else
1007 aprint_error_dev(self, "couldn't establish power handler\n");
1008
1009 return;
1010
1011 /*
1012 * Free any resources we've allocated during the failed attach
1013 * attempt. Do this in reverse order and fall through.
1014 */
1015 fail_5:
1016 for (i = 0; i < DGE_NRXDESC; i++) {
1017 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1018 bus_dmamap_destroy(sc->sc_dmat,
1019 sc->sc_rxsoft[i].rxs_dmamap);
1020 }
1021 fail_4:
1022 for (i = 0; i < DGE_TXQUEUELEN; i++) {
1023 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1024 bus_dmamap_destroy(sc->sc_dmat,
1025 sc->sc_txsoft[i].txs_dmamap);
1026 }
1027 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1028 fail_3:
1029 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1030 fail_2:
1031 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1032 sizeof(struct dge_control_data));
1033 fail_1:
1034 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1035 fail_0:
1036 return;
1037 }
1038
1039 /*
1040 * dge_shutdown:
1041 *
1042 * Make sure the interface is stopped at reboot time.
1043 */
1044 static bool
1045 dge_shutdown(device_t self, int howto)
1046 {
1047 struct dge_softc *sc;
1048
1049 sc = device_private(self);
1050 dge_stop(&sc->sc_ethercom.ec_if, 1);
1051
1052 return true;
1053 }
1054
1055 /*
1056 * dge_tx_cksum:
1057 *
1058 * Set up TCP/IP checksumming parameters for the
1059 * specified packet.
1060 */
1061 static int
1062 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1063 {
1064 struct mbuf *m0 = txs->txs_mbuf;
1065 struct dge_ctdes *t;
1066 uint32_t ipcs, tucs;
1067 struct ether_header *eh;
1068 int offset, iphl;
1069 uint8_t fields = 0;
1070
1071 /*
1072 * XXX It would be nice if the mbuf pkthdr had offset
1073 * fields for the protocol headers.
1074 */
1075
1076 eh = mtod(m0, struct ether_header *);
1077 switch (htons(eh->ether_type)) {
1078 case ETHERTYPE_IP:
1079 offset = ETHER_HDR_LEN;
1080 break;
1081
1082 case ETHERTYPE_VLAN:
1083 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1084 break;
1085
1086 default:
1087 /*
1088 * Don't support this protocol or encapsulation.
1089 */
1090 *fieldsp = 0;
1091 return 0;
1092 }
1093
1094 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1095
1096 /*
1097 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1098 * offload feature, if we load the context descriptor, we
1099 * MUST provide valid values for IPCSS and TUCSS fields.
1100 */
1101
1102 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1103 DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1104 fields |= TDESC_POPTS_IXSM;
1105 ipcs = DGE_TCPIP_IPCSS(offset) |
1106 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1107 DGE_TCPIP_IPCSE(offset + iphl - 1);
1108 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1109 /* Use the cached value. */
1110 ipcs = sc->sc_txctx_ipcs;
1111 } else {
1112 /* Just initialize it to the likely value anyway. */
1113 ipcs = DGE_TCPIP_IPCSS(offset) |
1114 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1115 DGE_TCPIP_IPCSE(offset + iphl - 1);
1116 }
1117 DPRINTF(DGE_DEBUG_CKSUM,
1118 ("%s: CKSUM: offset %d ipcs 0x%x\n",
1119 device_xname(sc->sc_dev), offset, ipcs));
1120
1121 offset += iphl;
1122
1123 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1124 DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1125 fields |= TDESC_POPTS_TXSM;
1126 tucs = DGE_TCPIP_TUCSS(offset) |
1127 DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1128 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1129 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1130 /* Use the cached value. */
1131 tucs = sc->sc_txctx_tucs;
1132 } else {
1133 /* Just initialize it to a valid TCP context. */
1134 tucs = DGE_TCPIP_TUCSS(offset) |
1135 DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1136 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1137 }
1138
1139 DPRINTF(DGE_DEBUG_CKSUM,
1140 ("%s: CKSUM: offset %d tucs 0x%x\n",
1141 device_xname(sc->sc_dev), offset, tucs));
1142
1143 if (sc->sc_txctx_ipcs == ipcs &&
1144 sc->sc_txctx_tucs == tucs) {
1145 /* Cached context is fine. */
1146 DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1147 } else {
1148 /* Fill in the context descriptor. */
1149 #ifdef DGE_EVENT_COUNTERS
1150 if (sc->sc_txctx_ipcs == 0xffffffff &&
1151 sc->sc_txctx_tucs == 0xffffffff)
1152 DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1153 else
1154 DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1155 #endif
1156 t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1157 t->dc_tcpip_ipcs = htole32(ipcs);
1158 t->dc_tcpip_tucs = htole32(tucs);
1159 t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1160 t->dc_tcpip_seg = 0;
1161 DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1162
1163 sc->sc_txctx_ipcs = ipcs;
1164 sc->sc_txctx_tucs = tucs;
1165
1166 sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1167 txs->txs_ndesc++;
1168 }
1169
1170 *fieldsp = fields;
1171
1172 return 0;
1173 }
1174
1175 /*
1176 * dge_start: [ifnet interface function]
1177 *
1178 * Start packet transmission on the interface.
1179 */
1180 static void
1181 dge_start(struct ifnet *ifp)
1182 {
1183 struct dge_softc *sc = ifp->if_softc;
1184 struct mbuf *m0;
1185 struct dge_txsoft *txs;
1186 bus_dmamap_t dmamap;
1187 int error, nexttx, lasttx = -1, ofree, seg;
1188 uint32_t cksumcmd;
1189 uint8_t cksumfields;
1190
1191 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1192 return;
1193
1194 /*
1195 * Remember the previous number of free descriptors.
1196 */
1197 ofree = sc->sc_txfree;
1198
1199 /*
1200 * Loop through the send queue, setting up transmit descriptors
1201 * until we drain the queue, or use up all available transmit
1202 * descriptors.
1203 */
1204 for (;;) {
1205 /* Grab a packet off the queue. */
1206 IFQ_POLL(&ifp->if_snd, m0);
1207 if (m0 == NULL)
1208 break;
1209
1210 DPRINTF(DGE_DEBUG_TX,
1211 ("%s: TX: have packet to transmit: %p\n",
1212 device_xname(sc->sc_dev), m0));
1213
1214 /* Get a work queue entry. */
1215 if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1216 dge_txintr(sc);
1217 if (sc->sc_txsfree == 0) {
1218 DPRINTF(DGE_DEBUG_TX,
1219 ("%s: TX: no free job descriptors\n",
1220 device_xname(sc->sc_dev)));
1221 DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1222 break;
1223 }
1224 }
1225
1226 txs = &sc->sc_txsoft[sc->sc_txsnext];
1227 dmamap = txs->txs_dmamap;
1228
1229 /*
1230 * Load the DMA map. If this fails, the packet either
1231 * didn't fit in the allotted number of segments, or we
1232 * were short on resources. For the too-many-segments
1233 * case, we simply report an error and drop the packet,
1234 * since we can't sanely copy a jumbo packet to a single
1235 * buffer.
1236 */
1237 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1238 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1239 if (error) {
1240 if (error == EFBIG) {
1241 DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1242 printf("%s: Tx packet consumes too many "
1243 "DMA segments, dropping...\n",
1244 device_xname(sc->sc_dev));
1245 IFQ_DEQUEUE(&ifp->if_snd, m0);
1246 m_freem(m0);
1247 continue;
1248 }
1249 /*
1250 * Short on resources, just stop for now.
1251 */
1252 DPRINTF(DGE_DEBUG_TX,
1253 ("%s: TX: dmamap load failed: %d\n",
1254 device_xname(sc->sc_dev), error));
1255 break;
1256 }
1257
1258 /*
1259 * Ensure we have enough descriptors free to describe
1260 * the packet. Note, we always reserve one descriptor
1261 * at the end of the ring due to the semantics of the
1262 * TDT register, plus one more in the event we need
1263 * to re-load checksum offload context.
1264 */
1265 if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1266 /*
1267 * Not enough free descriptors to transmit this
1268 * packet. We haven't committed anything yet,
1269 * so just unload the DMA map, put the packet
1270 * pack on the queue, and punt. Notify the upper
1271 * layer that there are no more slots left.
1272 */
1273 DPRINTF(DGE_DEBUG_TX,
1274 ("%s: TX: need %d descriptors, have %d\n",
1275 device_xname(sc->sc_dev), dmamap->dm_nsegs,
1276 sc->sc_txfree - 1));
1277 ifp->if_flags |= IFF_OACTIVE;
1278 bus_dmamap_unload(sc->sc_dmat, dmamap);
1279 DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1280 break;
1281 }
1282
1283 IFQ_DEQUEUE(&ifp->if_snd, m0);
1284
1285 /*
1286 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1287 */
1288
1289 /* Sync the DMA map. */
1290 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1291 BUS_DMASYNC_PREWRITE);
1292
1293 DPRINTF(DGE_DEBUG_TX,
1294 ("%s: TX: packet has %d DMA segments\n",
1295 device_xname(sc->sc_dev), dmamap->dm_nsegs));
1296
1297 DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1298
1299 /*
1300 * Store a pointer to the packet so that we can free it
1301 * later.
1302 *
1303 * Initially, we consider the number of descriptors the
1304 * packet uses the number of DMA segments. This may be
1305 * incremented by 1 if we do checksum offload (a descriptor
1306 * is used to set the checksum context).
1307 */
1308 txs->txs_mbuf = m0;
1309 txs->txs_firstdesc = sc->sc_txnext;
1310 txs->txs_ndesc = dmamap->dm_nsegs;
1311
1312 /*
1313 * Set up checksum offload parameters for
1314 * this packet.
1315 */
1316 if (m0->m_pkthdr.csum_flags &
1317 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1318 if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1319 /* Error message already displayed. */
1320 bus_dmamap_unload(sc->sc_dmat, dmamap);
1321 continue;
1322 }
1323 } else {
1324 cksumfields = 0;
1325 }
1326
1327 cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1328
1329 /*
1330 * Initialize the transmit descriptor.
1331 */
1332 for (nexttx = sc->sc_txnext, seg = 0;
1333 seg < dmamap->dm_nsegs;
1334 seg++, nexttx = DGE_NEXTTX(nexttx)) {
1335 /*
1336 * Note: we currently only use 32-bit DMA
1337 * addresses.
1338 */
1339 sc->sc_txdescs[nexttx].dt_baddrh = 0;
1340 sc->sc_txdescs[nexttx].dt_baddrl =
1341 htole32(dmamap->dm_segs[seg].ds_addr);
1342 sc->sc_txdescs[nexttx].dt_ctl =
1343 htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1344 sc->sc_txdescs[nexttx].dt_status = 0;
1345 sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1346 sc->sc_txdescs[nexttx].dt_vlan = 0;
1347 lasttx = nexttx;
1348
1349 DPRINTF(DGE_DEBUG_TX,
1350 ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1351 device_xname(sc->sc_dev), nexttx,
1352 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
1353 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
1354 }
1355
1356 KASSERT(lasttx != -1);
1357
1358 /*
1359 * Set up the command byte on the last descriptor of
1360 * the packet. If we're in the interrupt delay window,
1361 * delay the interrupt.
1362 */
1363 sc->sc_txdescs[lasttx].dt_ctl |=
1364 htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1365
1366 txs->txs_lastdesc = lasttx;
1367
1368 DPRINTF(DGE_DEBUG_TX,
1369 ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev),
1370 lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1371
1372 /* Sync the descriptors we're using. */
1373 DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1374 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1375
1376 /* Give the packet to the chip. */
1377 CSR_WRITE(sc, DGE_TDT, nexttx);
1378
1379 DPRINTF(DGE_DEBUG_TX,
1380 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
1381
1382 DPRINTF(DGE_DEBUG_TX,
1383 ("%s: TX: finished transmitting packet, job %d\n",
1384 device_xname(sc->sc_dev), sc->sc_txsnext));
1385
1386 /* Advance the tx pointer. */
1387 sc->sc_txfree -= txs->txs_ndesc;
1388 sc->sc_txnext = nexttx;
1389
1390 sc->sc_txsfree--;
1391 sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1392
1393 /* Pass the packet to any BPF listeners. */
1394 bpf_mtap(ifp, m0, BPF_D_OUT);
1395 }
1396
1397 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1398 /* No more slots; notify upper layer. */
1399 ifp->if_flags |= IFF_OACTIVE;
1400 }
1401
1402 if (sc->sc_txfree != ofree) {
1403 /* Set a watchdog timer in case the chip flakes out. */
1404 ifp->if_timer = 5;
1405 }
1406 }
1407
1408 /*
1409 * dge_watchdog: [ifnet interface function]
1410 *
1411 * Watchdog timer handler.
1412 */
1413 static void
1414 dge_watchdog(struct ifnet *ifp)
1415 {
1416 struct dge_softc *sc = ifp->if_softc;
1417
1418 /*
1419 * Since we're using delayed interrupts, sweep up
1420 * before we report an error.
1421 */
1422 dge_txintr(sc);
1423
1424 if (sc->sc_txfree != DGE_NTXDESC) {
1425 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1426 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1427 sc->sc_txnext);
1428 ifp->if_oerrors++;
1429
1430 /* Reset the interface. */
1431 (void) dge_init(ifp);
1432 }
1433
1434 /* Try to get more packets going. */
1435 dge_start(ifp);
1436 }
1437
1438 /*
1439 * dge_ioctl: [ifnet interface function]
1440 *
1441 * Handle control requests from the operator.
1442 */
1443 static int
1444 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1445 {
1446 struct dge_softc *sc = ifp->if_softc;
1447 struct ifreq *ifr = (struct ifreq *) data;
1448 pcireg_t preg;
1449 int s, error, mmrbc;
1450
1451 s = splnet();
1452
1453 switch (cmd) {
1454 case SIOCSIFMTU:
1455 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1456 error = EINVAL;
1457 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1458 break;
1459 else if (ifp->if_flags & IFF_UP)
1460 error = (*ifp->if_init)(ifp);
1461 else
1462 error = 0;
1463 break;
1464
1465 case SIOCSIFFLAGS:
1466 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1467 break;
1468 /* extract link flags */
1469 if ((ifp->if_flags & IFF_LINK0) == 0 &&
1470 (ifp->if_flags & IFF_LINK1) == 0)
1471 mmrbc = PCIX_MMRBC_512;
1472 else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1473 (ifp->if_flags & IFF_LINK1) != 0)
1474 mmrbc = PCIX_MMRBC_1024;
1475 else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1476 (ifp->if_flags & IFF_LINK1) == 0)
1477 mmrbc = PCIX_MMRBC_2048;
1478 else
1479 mmrbc = PCIX_MMRBC_4096;
1480 if (mmrbc != sc->sc_mmrbc) {
1481 preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1482 preg &= ~PCIX_MMRBC_MSK;
1483 preg |= mmrbc;
1484 pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1485 sc->sc_mmrbc = mmrbc;
1486 }
1487 /* FALLTHROUGH */
1488 default:
1489 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1490 break;
1491
1492 error = 0;
1493
1494 if (cmd == SIOCSIFCAP)
1495 error = (*ifp->if_init)(ifp);
1496 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1497 ;
1498 else if (ifp->if_flags & IFF_RUNNING) {
1499 /*
1500 * Multicast list has changed; set the hardware filter
1501 * accordingly.
1502 */
1503 dge_set_filter(sc);
1504 }
1505 break;
1506 }
1507
1508 /* Try to get more packets going. */
1509 dge_start(ifp);
1510
1511 splx(s);
1512 return error;
1513 }
1514
1515 /*
1516 * dge_intr:
1517 *
1518 * Interrupt service routine.
1519 */
1520 static int
1521 dge_intr(void *arg)
1522 {
1523 struct dge_softc *sc = arg;
1524 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1525 uint32_t icr;
1526 int wantinit, handled = 0;
1527
1528 for (wantinit = 0; wantinit == 0;) {
1529 icr = CSR_READ(sc, DGE_ICR);
1530 if ((icr & sc->sc_icr) == 0)
1531 break;
1532
1533 rnd_add_uint32(&sc->rnd_source, icr);
1534
1535 handled = 1;
1536
1537 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1538 if (icr & (ICR_RXDMT0 | ICR_RXT0)) {
1539 DPRINTF(DGE_DEBUG_RX,
1540 ("%s: RX: got Rx intr 0x%08x\n",
1541 device_xname(sc->sc_dev),
1542 icr & (ICR_RXDMT0 | ICR_RXT0)));
1543 DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1544 }
1545 #endif
1546 dge_rxintr(sc);
1547
1548 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1549 if (icr & ICR_TXDW) {
1550 DPRINTF(DGE_DEBUG_TX,
1551 ("%s: TX: got TXDW interrupt\n",
1552 device_xname(sc->sc_dev)));
1553 DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1554 }
1555 if (icr & ICR_TXQE)
1556 DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1557 #endif
1558 dge_txintr(sc);
1559
1560 if (icr & (ICR_LSC | ICR_RXSEQ)) {
1561 DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1562 dge_linkintr(sc, icr);
1563 }
1564
1565 if (icr & ICR_RXO) {
1566 printf("%s: Receive overrun\n",
1567 device_xname(sc->sc_dev));
1568 wantinit = 1;
1569 }
1570 }
1571
1572 if (handled) {
1573 if (wantinit)
1574 dge_init(ifp);
1575
1576 /* Try to get more packets going. */
1577 if_schedule_deferred_start(ifp);
1578 }
1579
1580 return handled;
1581 }
1582
1583 /*
1584 * dge_txintr:
1585 *
1586 * Helper; handle transmit interrupts.
1587 */
1588 static void
1589 dge_txintr(struct dge_softc *sc)
1590 {
1591 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1592 struct dge_txsoft *txs;
1593 uint8_t status;
1594 int i;
1595
1596 ifp->if_flags &= ~IFF_OACTIVE;
1597
1598 /*
1599 * Go through the Tx list and free mbufs for those
1600 * frames which have been transmitted.
1601 */
1602 for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1603 i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1604 txs = &sc->sc_txsoft[i];
1605
1606 DPRINTF(DGE_DEBUG_TX,
1607 ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
1608
1609 DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1610 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1611
1612 status =
1613 sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1614 if ((status & TDESC_STA_DD) == 0) {
1615 DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1616 BUS_DMASYNC_PREREAD);
1617 break;
1618 }
1619
1620 DPRINTF(DGE_DEBUG_TX,
1621 ("%s: TX: job %d done: descs %d..%d\n",
1622 device_xname(sc->sc_dev), i, txs->txs_firstdesc,
1623 txs->txs_lastdesc));
1624
1625 ifp->if_opackets++;
1626 sc->sc_txfree += txs->txs_ndesc;
1627 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1628 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1629 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1630 m_freem(txs->txs_mbuf);
1631 txs->txs_mbuf = NULL;
1632 }
1633
1634 /* Update the dirty transmit buffer pointer. */
1635 sc->sc_txsdirty = i;
1636 DPRINTF(DGE_DEBUG_TX,
1637 ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
1638
1639 /*
1640 * If there are no more pending transmissions, cancel the watchdog
1641 * timer.
1642 */
1643 if (sc->sc_txsfree == DGE_TXQUEUELEN)
1644 ifp->if_timer = 0;
1645 }
1646
1647 /*
1648 * dge_rxintr:
1649 *
1650 * Helper; handle receive interrupts.
1651 */
1652 static void
1653 dge_rxintr(struct dge_softc *sc)
1654 {
1655 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1656 struct dge_rxsoft *rxs;
1657 struct mbuf *m;
1658 int i, len;
1659 uint8_t status, errors;
1660
1661 for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1662 rxs = &sc->sc_rxsoft[i];
1663
1664 DPRINTF(DGE_DEBUG_RX,
1665 ("%s: RX: checking descriptor %d\n",
1666 device_xname(sc->sc_dev), i));
1667
1668 DGE_CDRXSYNC(sc, i,
1669 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1670
1671 status = sc->sc_rxdescs[i].dr_status;
1672 errors = sc->sc_rxdescs[i].dr_errors;
1673 len = le16toh(sc->sc_rxdescs[i].dr_len);
1674
1675 if ((status & RDESC_STS_DD) == 0) {
1676 /* We have processed all of the receive descriptors. */
1677 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1678 break;
1679 }
1680
1681 if (__predict_false(sc->sc_rxdiscard)) {
1682 DPRINTF(DGE_DEBUG_RX,
1683 ("%s: RX: discarding contents of descriptor %d\n",
1684 device_xname(sc->sc_dev), i));
1685 DGE_INIT_RXDESC(sc, i);
1686 if (status & RDESC_STS_EOP) {
1687 /* Reset our state. */
1688 DPRINTF(DGE_DEBUG_RX,
1689 ("%s: RX: resetting rxdiscard -> 0\n",
1690 device_xname(sc->sc_dev)));
1691 sc->sc_rxdiscard = 0;
1692 }
1693 continue;
1694 }
1695
1696 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1697 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1698
1699 m = rxs->rxs_mbuf;
1700
1701 /*
1702 * Add a new receive buffer to the ring.
1703 */
1704 if (dge_add_rxbuf(sc, i) != 0) {
1705 /*
1706 * Failed, throw away what we've done so
1707 * far, and discard the rest of the packet.
1708 */
1709 ifp->if_ierrors++;
1710 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1711 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1712 DGE_INIT_RXDESC(sc, i);
1713 if ((status & RDESC_STS_EOP) == 0)
1714 sc->sc_rxdiscard = 1;
1715 if (sc->sc_rxhead != NULL)
1716 m_freem(sc->sc_rxhead);
1717 DGE_RXCHAIN_RESET(sc);
1718 DPRINTF(DGE_DEBUG_RX,
1719 ("%s: RX: Rx buffer allocation failed, "
1720 "dropping packet%s\n", device_xname(sc->sc_dev),
1721 sc->sc_rxdiscard ? " (discard)" : ""));
1722 continue;
1723 }
1724 DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1725
1726 DGE_RXCHAIN_LINK(sc, m);
1727
1728 m->m_len = len;
1729
1730 DPRINTF(DGE_DEBUG_RX,
1731 ("%s: RX: buffer at %p len %d\n",
1732 device_xname(sc->sc_dev), m->m_data, len));
1733
1734 /*
1735 * If this is not the end of the packet, keep
1736 * looking.
1737 */
1738 if ((status & RDESC_STS_EOP) == 0) {
1739 sc->sc_rxlen += len;
1740 DPRINTF(DGE_DEBUG_RX,
1741 ("%s: RX: not yet EOP, rxlen -> %d\n",
1742 device_xname(sc->sc_dev), sc->sc_rxlen));
1743 continue;
1744 }
1745
1746 /*
1747 * Okay, we have the entire packet now...
1748 */
1749 *sc->sc_rxtailp = NULL;
1750 m = sc->sc_rxhead;
1751 len += sc->sc_rxlen;
1752
1753 DGE_RXCHAIN_RESET(sc);
1754
1755 DPRINTF(DGE_DEBUG_RX,
1756 ("%s: RX: have entire packet, len -> %d\n",
1757 device_xname(sc->sc_dev), len));
1758
1759 /*
1760 * If an error occurred, update stats and drop the packet.
1761 */
1762 if (errors & (RDESC_ERR_CE | RDESC_ERR_SE | RDESC_ERR_P |
1763 RDESC_ERR_RXE)) {
1764 ifp->if_ierrors++;
1765 if (errors & RDESC_ERR_SE)
1766 printf("%s: symbol error\n",
1767 device_xname(sc->sc_dev));
1768 else if (errors & RDESC_ERR_P)
1769 printf("%s: parity error\n",
1770 device_xname(sc->sc_dev));
1771 else if (errors & RDESC_ERR_CE)
1772 printf("%s: CRC error\n",
1773 device_xname(sc->sc_dev));
1774 m_freem(m);
1775 continue;
1776 }
1777
1778 /*
1779 * No errors. Receive the packet.
1780 */
1781 m_set_rcvif(m, ifp);
1782 m->m_pkthdr.len = len;
1783
1784 /*
1785 * Set up checksum info for this packet.
1786 */
1787 if (status & RDESC_STS_IPCS) {
1788 DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1789 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1790 if (errors & RDESC_ERR_IPE)
1791 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1792 }
1793 if (status & RDESC_STS_TCPCS) {
1794 /*
1795 * Note: we don't know if this was TCP or UDP,
1796 * so we just set both bits, and expect the
1797 * upper layers to deal.
1798 */
1799 DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1800 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
1801 if (errors & RDESC_ERR_TCPE)
1802 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1803 }
1804
1805 /* Pass it on. */
1806 if_percpuq_enqueue(ifp->if_percpuq, m);
1807 }
1808
1809 /* Update the receive pointer. */
1810 sc->sc_rxptr = i;
1811
1812 DPRINTF(DGE_DEBUG_RX,
1813 ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
1814 }
1815
1816 /*
1817 * dge_linkintr:
1818 *
1819 * Helper; handle link interrupts.
1820 */
1821 static void
1822 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1823 {
1824 uint32_t status;
1825
1826 if (icr & ICR_LSC) {
1827 status = CSR_READ(sc, DGE_STATUS);
1828 if (status & STATUS_LINKUP) {
1829 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1830 device_xname(sc->sc_dev)));
1831 } else {
1832 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1833 device_xname(sc->sc_dev)));
1834 }
1835 } else if (icr & ICR_RXSEQ) {
1836 DPRINTF(DGE_DEBUG_LINK,
1837 ("%s: LINK: Receive sequence error\n",
1838 device_xname(sc->sc_dev)));
1839 }
1840 /* XXX - fix errata */
1841 }
1842
1843 /*
1844 * dge_reset:
1845 *
1846 * Reset the i82597 chip.
1847 */
1848 static void
1849 dge_reset(struct dge_softc *sc)
1850 {
1851 int i;
1852
1853 /*
1854 * Do a chip reset.
1855 */
1856 CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1857
1858 delay(10000);
1859
1860 for (i = 0; i < 1000; i++) {
1861 if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1862 break;
1863 delay(20);
1864 }
1865
1866 if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1867 printf("%s: WARNING: reset failed to complete\n",
1868 device_xname(sc->sc_dev));
1869 /*
1870 * Reset the EEPROM logic.
1871 * This will cause the chip to reread its default values,
1872 * which doesn't happen otherwise (errata).
1873 */
1874 CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1875 delay(10000);
1876 }
1877
1878 /*
1879 * dge_init: [ifnet interface function]
1880 *
1881 * Initialize the interface. Must be called at splnet().
1882 */
1883 static int
1884 dge_init(struct ifnet *ifp)
1885 {
1886 struct dge_softc *sc = ifp->if_softc;
1887 struct dge_rxsoft *rxs;
1888 int i, error = 0;
1889 uint32_t reg;
1890
1891 /*
1892 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1893 * There is a small but measurable benefit to avoiding the adjusment
1894 * of the descriptor so that the headers are aligned, for normal mtu,
1895 * on such platforms. One possibility is that the DMA itself is
1896 * slightly more efficient if the front of the entire packet (instead
1897 * of the front of the headers) is aligned.
1898 *
1899 * Note we must always set align_tweak to 0 if we are using
1900 * jumbo frames.
1901 */
1902 #ifdef __NO_STRICT_ALIGNMENT
1903 sc->sc_align_tweak = 0;
1904 #else
1905 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1906 sc->sc_align_tweak = 0;
1907 else
1908 sc->sc_align_tweak = 2;
1909 #endif /* __NO_STRICT_ALIGNMENT */
1910
1911 /* Cancel any pending I/O. */
1912 dge_stop(ifp, 0);
1913
1914 /* Reset the chip to a known state. */
1915 dge_reset(sc);
1916
1917 /* Initialize the transmit descriptor ring. */
1918 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1919 DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1920 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1921 sc->sc_txfree = DGE_NTXDESC;
1922 sc->sc_txnext = 0;
1923
1924 sc->sc_txctx_ipcs = 0xffffffff;
1925 sc->sc_txctx_tucs = 0xffffffff;
1926
1927 CSR_WRITE(sc, DGE_TDBAH, 0);
1928 CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1929 CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1930 CSR_WRITE(sc, DGE_TDH, 0);
1931 CSR_WRITE(sc, DGE_TDT, 0);
1932 CSR_WRITE(sc, DGE_TIDV, TIDV);
1933
1934 #if 0
1935 CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1936 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1937 #endif
1938 CSR_WRITE(sc, DGE_RXDCTL,
1939 RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1940 RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1941 RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1942
1943 /* Initialize the transmit job descriptors. */
1944 for (i = 0; i < DGE_TXQUEUELEN; i++)
1945 sc->sc_txsoft[i].txs_mbuf = NULL;
1946 sc->sc_txsfree = DGE_TXQUEUELEN;
1947 sc->sc_txsnext = 0;
1948 sc->sc_txsdirty = 0;
1949
1950 /*
1951 * Initialize the receive descriptor and receive job
1952 * descriptor rings.
1953 */
1954 CSR_WRITE(sc, DGE_RDBAH, 0);
1955 CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1956 CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1957 CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1958 CSR_WRITE(sc, DGE_RDT, 0);
1959 CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1960 CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1961 CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1962
1963 for (i = 0; i < DGE_NRXDESC; i++) {
1964 rxs = &sc->sc_rxsoft[i];
1965 if (rxs->rxs_mbuf == NULL) {
1966 if ((error = dge_add_rxbuf(sc, i)) != 0) {
1967 printf("%s: unable to allocate or map rx "
1968 "buffer %d, error = %d\n",
1969 device_xname(sc->sc_dev), i, error);
1970 /*
1971 * XXX Should attempt to run with fewer receive
1972 * XXX buffers instead of just failing.
1973 */
1974 dge_rxdrain(sc);
1975 goto out;
1976 }
1977 }
1978 DGE_INIT_RXDESC(sc, i);
1979 }
1980 sc->sc_rxptr = DGE_RXSPACE;
1981 sc->sc_rxdiscard = 0;
1982 DGE_RXCHAIN_RESET(sc);
1983
1984 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1985 sc->sc_ctrl0 |= CTRL0_JFE;
1986 CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1987 }
1988
1989 /* Write the control registers. */
1990 CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1991
1992 /*
1993 * Set up checksum offload parameters.
1994 */
1995 reg = CSR_READ(sc, DGE_RXCSUM);
1996 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1997 reg |= RXCSUM_IPOFL;
1998 else
1999 reg &= ~RXCSUM_IPOFL;
2000 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2001 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2002 else {
2003 reg &= ~RXCSUM_TUOFL;
2004 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2005 reg &= ~RXCSUM_IPOFL;
2006 }
2007 CSR_WRITE(sc, DGE_RXCSUM, reg);
2008
2009 /*
2010 * Set up the interrupt registers.
2011 */
2012 CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
2013 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2014 ICR_RXO | ICR_RXT0;
2015
2016 CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
2017
2018 /*
2019 * Set up the transmit control register.
2020 */
2021 sc->sc_tctl = TCTL_TCE | TCTL_TPDE | TCTL_TXEN;
2022 CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
2023
2024 /*
2025 * Set up the receive control register; we actually program
2026 * the register when we set the receive filter. Use multicast
2027 * address offset type 0.
2028 */
2029 sc->sc_mchash_type = 0;
2030
2031 sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2032 RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2033
2034 #ifdef DGE_OFFBYONE_RXBUG
2035 sc->sc_rctl |= RCTL_BSIZE_16k;
2036 #else
2037 switch (MCLBYTES) {
2038 case 2048:
2039 sc->sc_rctl |= RCTL_BSIZE_2k;
2040 break;
2041 case 4096:
2042 sc->sc_rctl |= RCTL_BSIZE_4k;
2043 break;
2044 case 8192:
2045 sc->sc_rctl |= RCTL_BSIZE_8k;
2046 break;
2047 case 16384:
2048 sc->sc_rctl |= RCTL_BSIZE_16k;
2049 break;
2050 default:
2051 panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2052 }
2053 #endif
2054
2055 /* Set the receive filter. */
2056 /* Also sets RCTL */
2057 dge_set_filter(sc);
2058
2059 /* ...all done! */
2060 ifp->if_flags |= IFF_RUNNING;
2061 ifp->if_flags &= ~IFF_OACTIVE;
2062
2063 out:
2064 if (error)
2065 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2066 return error;
2067 }
2068
2069 /*
2070 * dge_rxdrain:
2071 *
2072 * Drain the receive queue.
2073 */
2074 static void
2075 dge_rxdrain(struct dge_softc *sc)
2076 {
2077 struct dge_rxsoft *rxs;
2078 int i;
2079
2080 for (i = 0; i < DGE_NRXDESC; i++) {
2081 rxs = &sc->sc_rxsoft[i];
2082 if (rxs->rxs_mbuf != NULL) {
2083 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2084 m_freem(rxs->rxs_mbuf);
2085 rxs->rxs_mbuf = NULL;
2086 }
2087 }
2088 }
2089
2090 /*
2091 * dge_stop: [ifnet interface function]
2092 *
2093 * Stop transmission on the interface.
2094 */
2095 static void
2096 dge_stop(struct ifnet *ifp, int disable)
2097 {
2098 struct dge_softc *sc = ifp->if_softc;
2099 struct dge_txsoft *txs;
2100 int i;
2101
2102 /* Stop the transmit and receive processes. */
2103 CSR_WRITE(sc, DGE_TCTL, 0);
2104 CSR_WRITE(sc, DGE_RCTL, 0);
2105
2106 /* Release any queued transmit buffers. */
2107 for (i = 0; i < DGE_TXQUEUELEN; i++) {
2108 txs = &sc->sc_txsoft[i];
2109 if (txs->txs_mbuf != NULL) {
2110 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2111 m_freem(txs->txs_mbuf);
2112 txs->txs_mbuf = NULL;
2113 }
2114 }
2115
2116 /* Mark the interface as down and cancel the watchdog timer. */
2117 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2118 ifp->if_timer = 0;
2119
2120 if (disable)
2121 dge_rxdrain(sc);
2122 }
2123
2124 /*
2125 * dge_add_rxbuf:
2126 *
2127 * Add a receive buffer to the indiciated descriptor.
2128 */
2129 static int
2130 dge_add_rxbuf(struct dge_softc *sc, int idx)
2131 {
2132 struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2133 struct mbuf *m;
2134 int error;
2135 #ifdef DGE_OFFBYONE_RXBUG
2136 void *buf;
2137 #endif
2138
2139 MGETHDR(m, M_DONTWAIT, MT_DATA);
2140 if (m == NULL)
2141 return ENOBUFS;
2142
2143 #ifdef DGE_OFFBYONE_RXBUG
2144 if ((buf = dge_getbuf(sc)) == NULL)
2145 return ENOBUFS;
2146
2147 m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2148 MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2149 m->m_flags |= M_EXT_RW;
2150
2151 if (rxs->rxs_mbuf != NULL)
2152 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2153 rxs->rxs_mbuf = m;
2154
2155 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2156 DGE_BUFFER_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
2157 #else
2158 MCLGET(m, M_DONTWAIT);
2159 if ((m->m_flags & M_EXT) == 0) {
2160 m_freem(m);
2161 return ENOBUFS;
2162 }
2163
2164 if (rxs->rxs_mbuf != NULL)
2165 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2166
2167 rxs->rxs_mbuf = m;
2168
2169 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2170 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2171 BUS_DMA_READ | BUS_DMA_NOWAIT);
2172 #endif
2173 if (error) {
2174 printf("%s: unable to load rx DMA map %d, error = %d\n",
2175 device_xname(sc->sc_dev), idx, error);
2176 panic("dge_add_rxbuf"); /* XXX XXX XXX */
2177 }
2178 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2179 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2180
2181 return 0;
2182 }
2183
2184 /*
2185 * dge_set_ral:
2186 *
2187 * Set an entry in the receive address list.
2188 */
2189 static void
2190 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2191 {
2192 uint32_t ral_lo, ral_hi;
2193
2194 if (enaddr != NULL) {
2195 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2196 (enaddr[3] << 24);
2197 ral_hi = enaddr[4] | (enaddr[5] << 8);
2198 ral_hi |= RAH_AV;
2199 } else {
2200 ral_lo = 0;
2201 ral_hi = 0;
2202 }
2203 CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2204 CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2205 }
2206
2207 /*
2208 * dge_mchash:
2209 *
2210 * Compute the hash of the multicast address for the 4096-bit
2211 * multicast filter.
2212 */
2213 static uint32_t
2214 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2215 {
2216 static const int lo_shift[4] = { 4, 3, 2, 0 };
2217 static const int hi_shift[4] = { 4, 5, 6, 8 };
2218 uint32_t hash;
2219
2220 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2221 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2222
2223 return (hash & 0xfff);
2224 }
2225
2226 /*
2227 * dge_set_filter:
2228 *
2229 * Set up the receive filter.
2230 */
2231 static void
2232 dge_set_filter(struct dge_softc *sc)
2233 {
2234 struct ethercom *ec = &sc->sc_ethercom;
2235 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2236 struct ether_multi *enm;
2237 struct ether_multistep step;
2238 uint32_t hash, reg, bit;
2239 int i;
2240
2241 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2242
2243 if (ifp->if_flags & IFF_BROADCAST)
2244 sc->sc_rctl |= RCTL_BAM;
2245 if (ifp->if_flags & IFF_PROMISC) {
2246 sc->sc_rctl |= RCTL_UPE;
2247 goto allmulti;
2248 }
2249
2250 /*
2251 * Set the station address in the first RAL slot, and
2252 * clear the remaining slots.
2253 */
2254 dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2255 for (i = 1; i < RA_TABSIZE; i++)
2256 dge_set_ral(sc, NULL, i);
2257
2258 /* Clear out the multicast table. */
2259 for (i = 0; i < MC_TABSIZE; i++)
2260 CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2261
2262 ETHER_LOCK(ec);
2263 ETHER_FIRST_MULTI(step, ec, enm);
2264 while (enm != NULL) {
2265 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2266 /*
2267 * We must listen to a range of multicast addresses.
2268 * For now, just accept all multicasts, rather than
2269 * trying to set only those filter bits needed to match
2270 * the range. (At this time, the only use of address
2271 * ranges is for IP multicast routing, for which the
2272 * range is big enough to require all bits set.)
2273 */
2274 ETHER_UNLOCK(ec);
2275 goto allmulti;
2276 }
2277
2278 hash = dge_mchash(sc, enm->enm_addrlo);
2279
2280 reg = (hash >> 5) & 0x7f;
2281 bit = hash & 0x1f;
2282
2283 hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2284 hash |= 1U << bit;
2285
2286 CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2287
2288 ETHER_NEXT_MULTI(step, enm);
2289 }
2290 ETHER_UNLOCK(ec);
2291
2292 ifp->if_flags &= ~IFF_ALLMULTI;
2293 goto setit;
2294
2295 allmulti:
2296 ifp->if_flags |= IFF_ALLMULTI;
2297 sc->sc_rctl |= RCTL_MPE;
2298
2299 setit:
2300 CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2301 }
2302
2303 /*
2304 * Read in the EEPROM info and verify checksum.
2305 */
2306 int
2307 dge_read_eeprom(struct dge_softc *sc)
2308 {
2309 uint16_t cksum;
2310 int i;
2311
2312 cksum = 0;
2313 for (i = 0; i < EEPROM_SIZE; i++) {
2314 sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2315 cksum += sc->sc_eeprom[i];
2316 }
2317 return cksum != EEPROM_CKSUM;
2318 }
2319
2320
2321 /*
2322 * Read a 16-bit word from address addr in the serial EEPROM.
2323 */
2324 uint16_t
2325 dge_eeprom_word(struct dge_softc *sc, int addr)
2326 {
2327 uint32_t reg;
2328 uint16_t rval = 0;
2329 int i;
2330
2331 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK | EECD_DI | EECD_CS);
2332
2333 /* Lower clock pulse (and data in to chip) */
2334 CSR_WRITE(sc, DGE_EECD, reg);
2335 /* Select chip */
2336 CSR_WRITE(sc, DGE_EECD, reg | EECD_CS);
2337
2338 /* Send read command */
2339 dge_eeprom_clockout(sc, 1);
2340 dge_eeprom_clockout(sc, 1);
2341 dge_eeprom_clockout(sc, 0);
2342
2343 /* Send address */
2344 for (i = 5; i >= 0; i--)
2345 dge_eeprom_clockout(sc, (addr >> i) & 1);
2346
2347 /* Read data */
2348 for (i = 0; i < 16; i++) {
2349 rval <<= 1;
2350 rval |= dge_eeprom_clockin(sc);
2351 }
2352
2353 /* Deselect chip */
2354 CSR_WRITE(sc, DGE_EECD, reg);
2355
2356 return rval;
2357 }
2358
2359 /*
2360 * Clock out a single bit to the EEPROM.
2361 */
2362 void
2363 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2364 {
2365 int reg;
2366
2367 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_SK);
2368 if (bit)
2369 reg |= EECD_DI;
2370
2371 CSR_WRITE(sc, DGE_EECD, reg);
2372 delay(2);
2373 CSR_WRITE(sc, DGE_EECD, reg | EECD_SK);
2374 delay(2);
2375 CSR_WRITE(sc, DGE_EECD, reg);
2376 delay(2);
2377 }
2378
2379 /*
2380 * Clock in a single bit from EEPROM.
2381 */
2382 int
2383 dge_eeprom_clockin(struct dge_softc *sc)
2384 {
2385 int reg, rv;
2386
2387 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_DO | EECD_SK);
2388
2389 CSR_WRITE(sc, DGE_EECD, reg | EECD_SK); /* Raise clock */
2390 delay(2);
2391 rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2392 CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2393 delay(2);
2394
2395 return rv;
2396 }
2397
2398 static void
2399 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2400 {
2401 struct dge_softc *sc = ifp->if_softc;
2402
2403 ifmr->ifm_status = IFM_AVALID;
2404 if (sc->sc_dgep->dgep_flags & DGEP_F_10G_SR ) {
2405 ifmr->ifm_active = IFM_ETHER | IFM_10G_SR;
2406 } else {
2407 ifmr->ifm_active = IFM_ETHER | IFM_10G_LR;
2408 }
2409
2410 if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2411 ifmr->ifm_status |= IFM_ACTIVE;
2412 }
2413
2414 static inline int
2415 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2416 {
2417 int i, mdic;
2418
2419 CSR_WRITE(sc, DGE_MDIO,
2420 MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2421 for (i = 0; i < 10; i++) {
2422 delay(10);
2423 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2424 break;
2425 }
2426 return mdic;
2427 }
2428
2429 static void
2430 dge_xgmii_writereg(struct dge_softc *sc, int phy, int reg, int val)
2431 {
2432 int mdic;
2433
2434 CSR_WRITE(sc, DGE_MDIRW, val);
2435 if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2436 printf("%s: address cycle timeout; phy %d reg %d\n",
2437 device_xname(sc->sc_dev), phy, reg);
2438 return;
2439 }
2440 if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2441 printf("%s: write cycle timeout; phy %d reg %d\n",
2442 device_xname(sc->sc_dev), phy, reg);
2443 return;
2444 }
2445 }
2446
2447 static void
2448 dge_xgmii_reset(struct dge_softc *sc)
2449 {
2450 dge_xgmii_writereg(sc, 0, 0, BMCR_RESET);
2451 }
2452
2453 static int
2454 dge_xgmii_mediachange(struct ifnet *ifp)
2455 {
2456 return 0;
2457 }
2458