Home | History | Annotate | Line # | Download | only in pci
if_dge.c revision 1.8
      1 /*	$NetBSD: if_dge.c,v 1.8 2005/02/18 01:21:02 heas Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
      5  * All rights reserved.
      6  *
      7  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	SUNET, Swedish University Computer Network.
     21  * 4. The name of SUNET may not be used to endorse or promote products
     22  *    derived from this software without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  * POSSIBILITY OF SUCH DAMAGE.
     35  */
     36 
     37 /*
     38  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
     39  * All rights reserved.
     40  *
     41  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed for the NetBSD Project by
     54  *	Wasabi Systems, Inc.
     55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56  *    or promote products derived from this software without specific prior
     57  *    written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69  * POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 /*
     73  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
     74  *
     75  * TODO (in no specific order):
     76  *	HW VLAN support.
     77  *	TSE offloading (needs kernel changes...)
     78  *	RAIDC (receive interrupt delay adaptation)
     79  *	Use memory > 4GB.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.8 2005/02/18 01:21:02 heas Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <netinet/in.h>			/* XXX for struct ip */
    116 #include <netinet/in_systm.h>		/* XXX for struct ip */
    117 #include <netinet/ip.h>			/* XXX for struct ip */
    118 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    119 
    120 #include <machine/bus.h>
    121 #include <machine/intr.h>
    122 #include <machine/endian.h>
    123 
    124 #include <dev/mii/mii.h>
    125 #include <dev/mii/miivar.h>
    126 #include <dev/mii/mii_bitbang.h>
    127 
    128 #include <dev/pci/pcireg.h>
    129 #include <dev/pci/pcivar.h>
    130 #include <dev/pci/pcidevs.h>
    131 
    132 #include <dev/pci/if_dgereg.h>
    133 
    134 /*
    135  * The receive engine may sometimes become off-by-one when writing back
    136  * chained descriptors.	 Avoid this by allocating a large chunk of
    137  * memory and use if instead (to avoid chained descriptors).
    138  * This only happens with chained descriptors under heavy load.
    139  */
    140 #define DGE_OFFBYONE_RXBUG
    141 
    142 #define DGE_EVENT_COUNTERS
    143 #define DGE_DEBUG
    144 
    145 #ifdef DGE_DEBUG
    146 #define DGE_DEBUG_LINK		0x01
    147 #define DGE_DEBUG_TX		0x02
    148 #define DGE_DEBUG_RX		0x04
    149 #define DGE_DEBUG_CKSUM		0x08
    150 int	dge_debug = 0;
    151 
    152 #define DPRINTF(x, y)	if (dge_debug & (x)) printf y
    153 #else
    154 #define DPRINTF(x, y)	/* nothing */
    155 #endif /* DGE_DEBUG */
    156 
    157 /*
    158  * Transmit descriptor list size. We allow up to 100 DMA segments per
    159  * packet (Intel reports of jumbo frame packets with as
    160  * many as 80 DMA segments when using 16k buffers).
    161  */
    162 #define DGE_NTXSEGS		100
    163 #define DGE_IFQUEUELEN		20000
    164 #define DGE_TXQUEUELEN		2048
    165 #define DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
    166 #define DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
    167 #define DGE_NTXDESC		1024
    168 #define DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
    169 #define DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
    170 #define DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
    171 
    172 /*
    173  * Receive descriptor list size.
    174  * Packet is of size MCLBYTES, and for jumbo packets buffers may
    175  * be chained.	Due to the nature of the card (high-speed), keep this
    176  * ring large. With 2k buffers the ring can store 400 jumbo packets,
    177  * which at full speed will be received in just under 3ms.
    178  */
    179 #define DGE_NRXDESC		2048
    180 #define DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
    181 #define DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
    182 /*
    183  * # of descriptors between head and written descriptors.
    184  * This is to work-around two erratas.
    185  */
    186 #define DGE_RXSPACE		10
    187 #define DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
    188 /*
    189  * Receive descriptor fetch threshholds. These are values recommended
    190  * by Intel, do not touch them unless you know what you are doing.
    191  */
    192 #define RXDCTL_PTHRESH_VAL	128
    193 #define RXDCTL_HTHRESH_VAL	16
    194 #define RXDCTL_WTHRESH_VAL	16
    195 
    196 
    197 /*
    198  * Tweakable parameters; default values.
    199  */
    200 #define FCRTH	0x30000 /* Send XOFF water mark */
    201 #define FCRTL	0x28000 /* Send XON water mark */
    202 #define RDTR	0x20	/* Interrupt delay after receive, .8192us units */
    203 #define TIDV	0x20	/* Interrupt delay after send, .8192us units */
    204 
    205 /*
    206  * Control structures are DMA'd to the i82597 chip.  We allocate them in
    207  * a single clump that maps to a single DMA segment to make serveral things
    208  * easier.
    209  */
    210 struct dge_control_data {
    211 	/*
    212 	 * The transmit descriptors.
    213 	 */
    214 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
    215 
    216 	/*
    217 	 * The receive descriptors.
    218 	 */
    219 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
    220 };
    221 
    222 #define DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
    223 #define DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
    224 #define DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
    225 
    226 /*
    227  * The DGE interface have a higher max MTU size than normal jumbo frames.
    228  */
    229 #define DGE_MAX_MTU	16288	/* Max MTU size for this interface */
    230 
    231 /*
    232  * Software state for transmit jobs.
    233  */
    234 struct dge_txsoft {
    235 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    236 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    237 	int txs_firstdesc;		/* first descriptor in packet */
    238 	int txs_lastdesc;		/* last descriptor in packet */
    239 	int txs_ndesc;			/* # of descriptors used */
    240 };
    241 
    242 /*
    243  * Software state for receive buffers.	Each descriptor gets a
    244  * 2k (MCLBYTES) buffer and a DMA map.	For packets which fill
    245  * more than one buffer, we chain them together.
    246  */
    247 struct dge_rxsoft {
    248 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    249 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    250 };
    251 
    252 /*
    253  * Software state per device.
    254  */
    255 struct dge_softc {
    256 	struct device sc_dev;		/* generic device information */
    257 	bus_space_tag_t sc_st;		/* bus space tag */
    258 	bus_space_handle_t sc_sh;	/* bus space handle */
    259 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    260 	struct ethercom sc_ethercom;	/* ethernet common data */
    261 	void *sc_sdhook;		/* shutdown hook */
    262 
    263 	int sc_flags;			/* flags; see below */
    264 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    265 	int sc_pcix_offset;		/* PCIX capability register offset */
    266 
    267 	pci_chipset_tag_t sc_pc;
    268 	pcitag_t sc_pt;
    269 	int sc_mmrbc;			/* Max PCIX memory read byte count */
    270 
    271 	void *sc_ih;			/* interrupt cookie */
    272 
    273 	struct ifmedia sc_media;
    274 
    275 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    276 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    277 
    278 	int		sc_align_tweak;
    279 
    280 	/*
    281 	 * Software state for the transmit and receive descriptors.
    282 	 */
    283 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
    284 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
    285 
    286 	/*
    287 	 * Control data structures.
    288 	 */
    289 	struct dge_control_data *sc_control_data;
    290 #define sc_txdescs	sc_control_data->wcd_txdescs
    291 #define sc_rxdescs	sc_control_data->wcd_rxdescs
    292 
    293 #ifdef DGE_EVENT_COUNTERS
    294 	/* Event counters. */
    295 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    296 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    297 	struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
    298 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    299 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    300 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    301 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    302 
    303 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    304 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    305 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    306 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    307 
    308 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    309 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    310 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    311 
    312 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
    313 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    314 #endif /* DGE_EVENT_COUNTERS */
    315 
    316 	int	sc_txfree;		/* number of free Tx descriptors */
    317 	int	sc_txnext;		/* next ready Tx descriptor */
    318 
    319 	int	sc_txsfree;		/* number of free Tx jobs */
    320 	int	sc_txsnext;		/* next free Tx job */
    321 	int	sc_txsdirty;		/* dirty Tx jobs */
    322 
    323 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    324 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    325 
    326 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    327 	int	sc_rxdiscard;
    328 	int	sc_rxlen;
    329 	struct mbuf *sc_rxhead;
    330 	struct mbuf *sc_rxtail;
    331 	struct mbuf **sc_rxtailp;
    332 
    333 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
    334 	uint32_t sc_icr;		/* prototype interrupt bits */
    335 	uint32_t sc_tctl;		/* prototype TCTL register */
    336 	uint32_t sc_rctl;		/* prototype RCTL register */
    337 
    338 	int sc_mchash_type;		/* multicast filter offset */
    339 
    340 	uint16_t sc_eeprom[EEPROM_SIZE];
    341 
    342 #if NRND > 0
    343 	rndsource_element_t rnd_source; /* random source */
    344 #endif
    345 #ifdef DGE_OFFBYONE_RXBUG
    346 	caddr_t sc_bugbuf;
    347 	SLIST_HEAD(, rxbugentry) sc_buglist;
    348 	bus_dmamap_t sc_bugmap;
    349 	struct rxbugentry *sc_entry;
    350 #endif
    351 };
    352 
    353 #define DGE_RXCHAIN_RESET(sc)						\
    354 do {									\
    355 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    356 	*(sc)->sc_rxtailp = NULL;					\
    357 	(sc)->sc_rxlen = 0;						\
    358 } while (/*CONSTCOND*/0)
    359 
    360 #define DGE_RXCHAIN_LINK(sc, m)						\
    361 do {									\
    362 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    363 	(sc)->sc_rxtailp = &(m)->m_next;				\
    364 } while (/*CONSTCOND*/0)
    365 
    366 /* sc_flags */
    367 #define DGE_F_BUS64		0x20	/* bus is 64-bit */
    368 #define DGE_F_PCIX		0x40	/* bus is PCI-X */
    369 
    370 #ifdef DGE_EVENT_COUNTERS
    371 #define DGE_EVCNT_INCR(ev)	(ev)->ev_count++
    372 #else
    373 #define DGE_EVCNT_INCR(ev)	/* nothing */
    374 #endif
    375 
    376 #define CSR_READ(sc, reg)						\
    377 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    378 #define CSR_WRITE(sc, reg, val)						\
    379 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    380 
    381 #define DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
    382 #define DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
    383 
    384 #define DGE_CDTXSYNC(sc, x, n, ops)					\
    385 do {									\
    386 	int __x, __n;							\
    387 									\
    388 	__x = (x);							\
    389 	__n = (n);							\
    390 									\
    391 	/* If it will wrap around, sync to the end of the ring. */	\
    392 	if ((__x + __n) > DGE_NTXDESC) {				\
    393 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    394 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
    395 		    (DGE_NTXDESC - __x), (ops));			\
    396 		__n -= (DGE_NTXDESC - __x);				\
    397 		__x = 0;						\
    398 	}								\
    399 									\
    400 	/* Now sync whatever is left. */				\
    401 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    402 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
    403 } while (/*CONSTCOND*/0)
    404 
    405 #define DGE_CDRXSYNC(sc, x, ops)						\
    406 do {									\
    407 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    408 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
    409 } while (/*CONSTCOND*/0)
    410 
    411 #ifdef DGE_OFFBYONE_RXBUG
    412 #define DGE_INIT_RXDESC(sc, x)						\
    413 do {									\
    414 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    415 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    416 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    417 									\
    418 	__rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr +	\
    419 	    (mtod((__m), char *) - (char *)sc->sc_bugbuf));		\
    420 	__rxd->dr_baddrh = 0;						\
    421 	__rxd->dr_len = 0;						\
    422 	__rxd->dr_cksum = 0;						\
    423 	__rxd->dr_status = 0;						\
    424 	__rxd->dr_errors = 0;						\
    425 	__rxd->dr_special = 0;						\
    426 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    427 									\
    428 	CSR_WRITE((sc), DGE_RDT, (x));					\
    429 } while (/*CONSTCOND*/0)
    430 #else
    431 #define DGE_INIT_RXDESC(sc, x)						\
    432 do {									\
    433 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    434 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    435 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    436 									\
    437 	/*								\
    438 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    439 	 * so that the payload after the Ethernet header is aligned	\
    440 	 * to a 4-byte boundary.					\
    441 	 *								\
    442 	 * XXX BRAINDAMAGE ALERT!					\
    443 	 * The stupid chip uses the same size for every buffer, which	\
    444 	 * is set in the Receive Control register.  We are using the 2K \
    445 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    446 	 * reason, we can't "scoot" packets longer than the standard	\
    447 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    448 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    449 	 * the upper layer copy the headers.				\
    450 	 */								\
    451 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    452 									\
    453 	__rxd->dr_baddrl =						\
    454 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr +		\
    455 		(sc)->sc_align_tweak);					\
    456 	__rxd->dr_baddrh = 0;						\
    457 	__rxd->dr_len = 0;						\
    458 	__rxd->dr_cksum = 0;						\
    459 	__rxd->dr_status = 0;						\
    460 	__rxd->dr_errors = 0;						\
    461 	__rxd->dr_special = 0;						\
    462 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    463 									\
    464 	CSR_WRITE((sc), DGE_RDT, (x));					\
    465 } while (/*CONSTCOND*/0)
    466 #endif
    467 
    468 #ifdef DGE_OFFBYONE_RXBUG
    469 /*
    470  * Allocation constants.  Much memory may be used for this.
    471  */
    472 #ifndef DGE_BUFFER_SIZE
    473 #define DGE_BUFFER_SIZE DGE_MAX_MTU
    474 #endif
    475 #define DGE_NBUFFERS	(4*DGE_NRXDESC)
    476 #define DGE_RXMEM	(DGE_NBUFFERS*DGE_BUFFER_SIZE)
    477 
    478 struct rxbugentry {
    479 	SLIST_ENTRY(rxbugentry) rb_entry;
    480 	int rb_slot;
    481 };
    482 
    483 static int
    484 dge_alloc_rcvmem(struct dge_softc *sc)
    485 {
    486 	caddr_t	ptr, kva;
    487 	bus_dma_segment_t seg;
    488 	int i, rseg, state, error;
    489 	struct rxbugentry *entry;
    490 
    491 	state = error = 0;
    492 
    493 	if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
    494 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    495 		printf("%s: can't alloc rx buffers\n", sc->sc_dev.dv_xname);
    496 		return ENOBUFS;
    497 	}
    498 
    499 	state = 1;
    500 	if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, &kva,
    501 	    BUS_DMA_NOWAIT)) {
    502 		printf("%s: can't map DMA buffers (%d bytes)\n",
    503 		    sc->sc_dev.dv_xname, (int)DGE_RXMEM);
    504 		error = ENOBUFS;
    505 		goto out;
    506 	}
    507 
    508 	state = 2;
    509 	if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
    510 	    BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
    511 		printf("%s: can't create DMA map\n", sc->sc_dev.dv_xname);
    512 		error = ENOBUFS;
    513 		goto out;
    514 	}
    515 
    516 	state = 3;
    517 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
    518 	    kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
    519 		printf("%s: can't load DMA map\n", sc->sc_dev.dv_xname);
    520 		error = ENOBUFS;
    521 		goto out;
    522 	}
    523 
    524 	state = 4;
    525 	sc->sc_bugbuf = (caddr_t)kva;
    526 	SLIST_INIT(&sc->sc_buglist);
    527 
    528 	/*
    529 	 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
    530 	 * in an array.
    531 	 */
    532 	ptr = sc->sc_bugbuf;
    533 	if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
    534 	    M_DEVBUF, M_NOWAIT)) == NULL) {
    535 		error = ENOBUFS;
    536 		goto out;
    537 	}
    538 	sc->sc_entry = entry;
    539 	for (i = 0; i < DGE_NBUFFERS; i++) {
    540 		entry[i].rb_slot = i;
    541 		SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
    542 	}
    543 out:
    544 	if (error != 0) {
    545 		switch (state) {
    546 		case 4:
    547 			bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
    548 		case 3:
    549 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
    550 		case 2:
    551 			bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
    552 		case 1:
    553 			bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    554 			break;
    555 		default:
    556 			break;
    557 		}
    558 	}
    559 
    560 	return error;
    561 }
    562 
    563 /*
    564  * Allocate a jumbo buffer.
    565  */
    566 static void *
    567 dge_getbuf(struct dge_softc *sc)
    568 {
    569 	struct rxbugentry *entry;
    570 
    571 	entry = SLIST_FIRST(&sc->sc_buglist);
    572 
    573 	if (entry == NULL) {
    574 		printf("%s: no free RX buffers\n", sc->sc_dev.dv_xname);
    575 		return(NULL);
    576 	}
    577 
    578 	SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
    579 	return sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
    580 }
    581 
    582 /*
    583  * Release a jumbo buffer.
    584  */
    585 static void
    586 dge_freebuf(struct mbuf *m, caddr_t buf, size_t size, void *arg)
    587 {
    588 	struct rxbugentry *entry;
    589 	struct dge_softc *sc;
    590 	int i, s;
    591 
    592 	/* Extract the softc struct pointer. */
    593 	sc = (struct dge_softc *)arg;
    594 
    595 	if (sc == NULL)
    596 		panic("dge_freebuf: can't find softc pointer!");
    597 
    598 	/* calculate the slot this buffer belongs to */
    599 
    600 	i = (buf - sc->sc_bugbuf) / DGE_BUFFER_SIZE;
    601 
    602 	if ((i < 0) || (i >= DGE_NBUFFERS))
    603 		panic("dge_freebuf: asked to free buffer %d!", i);
    604 
    605 	s = splvm();
    606 	entry = sc->sc_entry + i;
    607 	SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
    608 
    609 	if (__predict_true(m != NULL))
    610 		pool_cache_put(&mbpool_cache, m);
    611 	splx(s);
    612 }
    613 #endif
    614 
    615 static void	dge_start(struct ifnet *);
    616 static void	dge_watchdog(struct ifnet *);
    617 static int	dge_ioctl(struct ifnet *, u_long, caddr_t);
    618 static int	dge_init(struct ifnet *);
    619 static void	dge_stop(struct ifnet *, int);
    620 
    621 static void	dge_shutdown(void *);
    622 
    623 static void	dge_reset(struct dge_softc *);
    624 static void	dge_rxdrain(struct dge_softc *);
    625 static int	dge_add_rxbuf(struct dge_softc *, int);
    626 
    627 static void	dge_set_filter(struct dge_softc *);
    628 
    629 static int	dge_intr(void *);
    630 static void	dge_txintr(struct dge_softc *);
    631 static void	dge_rxintr(struct dge_softc *);
    632 static void	dge_linkintr(struct dge_softc *, uint32_t);
    633 
    634 static int	dge_match(struct device *, struct cfdata *, void *);
    635 static void	dge_attach(struct device *, struct device *, void *);
    636 
    637 static int	dge_read_eeprom(struct dge_softc *sc);
    638 static int	dge_eeprom_clockin(struct dge_softc *sc);
    639 static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
    640 static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
    641 static int	dge_xgmii_mediachange(struct ifnet *);
    642 static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
    643 static void	dge_xgmii_reset(struct dge_softc *);
    644 static void	dge_xgmii_writereg(struct device *, int, int, int);
    645 
    646 
    647 CFATTACH_DECL(dge, sizeof(struct dge_softc),
    648     dge_match, dge_attach, NULL, NULL);
    649 
    650 #ifdef DGE_EVENT_COUNTERS
    651 #if DGE_NTXSEGS > 100
    652 #error Update dge_txseg_evcnt_names
    653 #endif
    654 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
    655 #endif /* DGE_EVENT_COUNTERS */
    656 
    657 static int
    658 dge_match(struct device *parent, struct cfdata *cf, void *aux)
    659 {
    660 	struct pci_attach_args *pa = aux;
    661 
    662 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
    663 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
    664 		return (1);
    665 
    666 	return (0);
    667 }
    668 
    669 static void
    670 dge_attach(struct device *parent, struct device *self, void *aux)
    671 {
    672 	struct dge_softc *sc = (void *) self;
    673 	struct pci_attach_args *pa = aux;
    674 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    675 	pci_chipset_tag_t pc = pa->pa_pc;
    676 	pci_intr_handle_t ih;
    677 	const char *intrstr = NULL;
    678 	bus_dma_segment_t seg;
    679 	int i, rseg, error;
    680 	uint8_t enaddr[ETHER_ADDR_LEN];
    681 	pcireg_t preg, memtype;
    682 	uint32_t reg;
    683 
    684 	sc->sc_dmat = pa->pa_dmat;
    685 	sc->sc_pc = pa->pa_pc;
    686 	sc->sc_pt = pa->pa_tag;
    687 
    688 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    689 	aprint_naive(": Ethernet controller\n");
    690 	aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
    691 
    692 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
    693         if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
    694             &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
    695                 aprint_error("%s: unable to map device registers\n",
    696                     sc->sc_dev.dv_xname);
    697                 return;
    698         }
    699 
    700 	/* Enable bus mastering */
    701 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    702 	preg |= PCI_COMMAND_MASTER_ENABLE;
    703 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    704 
    705 	/*
    706 	 * Map and establish our interrupt.
    707 	 */
    708 	if (pci_intr_map(pa, &ih)) {
    709 		aprint_error("%s: unable to map interrupt\n",
    710 		    sc->sc_dev.dv_xname);
    711 		return;
    712 	}
    713 	intrstr = pci_intr_string(pc, ih);
    714 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
    715 	if (sc->sc_ih == NULL) {
    716 		aprint_error("%s: unable to establish interrupt",
    717 		    sc->sc_dev.dv_xname);
    718 		if (intrstr != NULL)
    719 			aprint_normal(" at %s", intrstr);
    720 		aprint_normal("\n");
    721 		return;
    722 	}
    723 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    724 
    725 	/*
    726 	 * Determine a few things about the bus we're connected to.
    727 	 */
    728 	reg = CSR_READ(sc, DGE_STATUS);
    729 	if (reg & STATUS_BUS64)
    730 		sc->sc_flags |= DGE_F_BUS64;
    731 
    732 	sc->sc_flags |= DGE_F_PCIX;
    733 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    734 			       PCI_CAP_PCIX,
    735 			       &sc->sc_pcix_offset, NULL) == 0)
    736 		aprint_error("%s: unable to find PCIX "
    737 		    "capability\n", sc->sc_dev.dv_xname);
    738 
    739 	if (sc->sc_flags & DGE_F_PCIX) {
    740 		switch (reg & STATUS_PCIX_MSK) {
    741 		case STATUS_PCIX_66:
    742 			sc->sc_bus_speed = 66;
    743 			break;
    744 		case STATUS_PCIX_100:
    745 			sc->sc_bus_speed = 100;
    746 			break;
    747 		case STATUS_PCIX_133:
    748 			sc->sc_bus_speed = 133;
    749 			break;
    750 		default:
    751 			aprint_error(
    752 			    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
    753 			    sc->sc_dev.dv_xname,
    754 			    reg & STATUS_PCIX_MSK);
    755 			sc->sc_bus_speed = 66;
    756 		}
    757 	} else
    758 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
    759 	aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
    760 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    761 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
    762 
    763 	/*
    764 	 * Allocate the control data structures, and create and load the
    765 	 * DMA map for it.
    766 	 */
    767 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    768 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    769 	    0)) != 0) {
    770 		aprint_error(
    771 		    "%s: unable to allocate control data, error = %d\n",
    772 		    sc->sc_dev.dv_xname, error);
    773 		goto fail_0;
    774 	}
    775 
    776 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    777 	    sizeof(struct dge_control_data), (caddr_t *)&sc->sc_control_data,
    778 	    0)) != 0) {
    779 		aprint_error("%s: unable to map control data, error = %d\n",
    780 		    sc->sc_dev.dv_xname, error);
    781 		goto fail_1;
    782 	}
    783 
    784 	if ((error = bus_dmamap_create(sc->sc_dmat,
    785 	    sizeof(struct dge_control_data), 1,
    786 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    787 		aprint_error("%s: unable to create control data DMA map, "
    788 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    789 		goto fail_2;
    790 	}
    791 
    792 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    793 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
    794 	    0)) != 0) {
    795 		aprint_error(
    796 		    "%s: unable to load control data DMA map, error = %d\n",
    797 		    sc->sc_dev.dv_xname, error);
    798 		goto fail_3;
    799 	}
    800 
    801 #ifdef DGE_OFFBYONE_RXBUG
    802 	if (dge_alloc_rcvmem(sc) != 0)
    803 		return; /* Already complained */
    804 #endif
    805 	/*
    806 	 * Create the transmit buffer DMA maps.
    807 	 */
    808 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    809 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
    810 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
    811 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    812 			aprint_error("%s: unable to create Tx DMA map %d, "
    813 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    814 			goto fail_4;
    815 		}
    816 	}
    817 
    818 	/*
    819 	 * Create the receive buffer DMA maps.
    820 	 */
    821 	for (i = 0; i < DGE_NRXDESC; i++) {
    822 #ifdef DGE_OFFBYONE_RXBUG
    823 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
    824 		    DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    825 #else
    826 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    827 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    828 #endif
    829 			aprint_error("%s: unable to create Rx DMA map %d, "
    830 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    831 			goto fail_5;
    832 		}
    833 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    834 	}
    835 
    836 	/*
    837 	 * Set bits in ctrl0 register.
    838 	 * Should get the software defined pins out of EEPROM?
    839 	 */
    840 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
    841 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
    842 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
    843 
    844 	/*
    845 	 * Reset the chip to a known state.
    846 	 */
    847 	dge_reset(sc);
    848 
    849 	/*
    850 	 * Reset the PHY.
    851 	 */
    852 	dge_xgmii_reset(sc);
    853 
    854 	/*
    855 	 * Read in EEPROM data.
    856 	 */
    857 	if (dge_read_eeprom(sc)) {
    858 		aprint_error("%s: couldn't read EEPROM\n", sc->sc_dev.dv_xname);
    859 		return;
    860 	}
    861 
    862 	/*
    863 	 * Get the ethernet address.
    864 	 */
    865 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
    866 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
    867 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
    868 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
    869 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
    870 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
    871 
    872 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    873 	    ether_sprintf(enaddr));
    874 
    875 	/*
    876 	 * Setup media stuff.
    877 	 */
    878         ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
    879             dge_xgmii_mediastatus);
    880         ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
    881         ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
    882 
    883 	ifp = &sc->sc_ethercom.ec_if;
    884 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    885 	ifp->if_softc = sc;
    886 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    887 	ifp->if_ioctl = dge_ioctl;
    888 	ifp->if_start = dge_start;
    889 	ifp->if_watchdog = dge_watchdog;
    890 	ifp->if_init = dge_init;
    891 	ifp->if_stop = dge_stop;
    892 	IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
    893 	IFQ_SET_READY(&ifp->if_snd);
    894 
    895 	sc->sc_ethercom.ec_capabilities |=
    896 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
    897 
    898 	/*
    899 	 * We can perform TCPv4 and UDPv4 checkums in-bound.
    900 	 */
    901 	ifp->if_capabilities |=
    902 	    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    903 
    904 	/*
    905 	 * Attach the interface.
    906 	 */
    907 	if_attach(ifp);
    908 	ether_ifattach(ifp, enaddr);
    909 #if NRND > 0
    910 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    911 	    RND_TYPE_NET, 0);
    912 #endif
    913 
    914 #ifdef DGE_EVENT_COUNTERS
    915 	/* Fix segment event naming */
    916 	if (dge_txseg_evcnt_names == NULL) {
    917 		dge_txseg_evcnt_names =
    918 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
    919 		for (i = 0; i < DGE_NTXSEGS; i++)
    920 			snprintf((*dge_txseg_evcnt_names)[i],
    921 			    sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
    922 	}
    923 
    924 	/* Attach event counters. */
    925 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    926 	    NULL, sc->sc_dev.dv_xname, "txsstall");
    927 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    928 	    NULL, sc->sc_dev.dv_xname, "txdstall");
    929 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    930 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
    931 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    932 	    NULL, sc->sc_dev.dv_xname, "txdw");
    933 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    934 	    NULL, sc->sc_dev.dv_xname, "txqe");
    935 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    936 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    937 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    938 	    NULL, sc->sc_dev.dv_xname, "linkintr");
    939 
    940 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    941 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    942 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    943 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
    944 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    945 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    946 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    947 	    NULL, sc->sc_dev.dv_xname, "txtusum");
    948 
    949 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    950 	    NULL, sc->sc_dev.dv_xname, "txctx init");
    951 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    952 	    NULL, sc->sc_dev.dv_xname, "txctx hit");
    953 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    954 	    NULL, sc->sc_dev.dv_xname, "txctx miss");
    955 
    956 	for (i = 0; i < DGE_NTXSEGS; i++)
    957 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    958 		    NULL, sc->sc_dev.dv_xname, (*dge_txseg_evcnt_names)[i]);
    959 
    960 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    961 	    NULL, sc->sc_dev.dv_xname, "txdrop");
    962 
    963 #endif /* DGE_EVENT_COUNTERS */
    964 
    965 	/*
    966 	 * Make sure the interface is shutdown during reboot.
    967 	 */
    968 	sc->sc_sdhook = shutdownhook_establish(dge_shutdown, sc);
    969 	if (sc->sc_sdhook == NULL)
    970 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    971 		    sc->sc_dev.dv_xname);
    972 	return;
    973 
    974 	/*
    975 	 * Free any resources we've allocated during the failed attach
    976 	 * attempt.  Do this in reverse order and fall through.
    977 	 */
    978  fail_5:
    979 	for (i = 0; i < DGE_NRXDESC; i++) {
    980 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    981 			bus_dmamap_destroy(sc->sc_dmat,
    982 			    sc->sc_rxsoft[i].rxs_dmamap);
    983 	}
    984  fail_4:
    985 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    986 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    987 			bus_dmamap_destroy(sc->sc_dmat,
    988 			    sc->sc_txsoft[i].txs_dmamap);
    989 	}
    990 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    991  fail_3:
    992 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    993  fail_2:
    994 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    995 	    sizeof(struct dge_control_data));
    996  fail_1:
    997 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    998  fail_0:
    999 	return;
   1000 }
   1001 
   1002 /*
   1003  * dge_shutdown:
   1004  *
   1005  *	Make sure the interface is stopped at reboot time.
   1006  */
   1007 static void
   1008 dge_shutdown(void *arg)
   1009 {
   1010 	struct dge_softc *sc = arg;
   1011 
   1012 	dge_stop(&sc->sc_ethercom.ec_if, 1);
   1013 }
   1014 
   1015 /*
   1016  * dge_tx_cksum:
   1017  *
   1018  *	Set up TCP/IP checksumming parameters for the
   1019  *	specified packet.
   1020  */
   1021 static int
   1022 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
   1023 {
   1024 	struct mbuf *m0 = txs->txs_mbuf;
   1025 	struct dge_ctdes *t;
   1026 	uint32_t ipcs, tucs;
   1027 	struct ether_header *eh;
   1028 	int offset, iphl;
   1029 	uint8_t fields = 0;
   1030 
   1031 	/*
   1032 	 * XXX It would be nice if the mbuf pkthdr had offset
   1033 	 * fields for the protocol headers.
   1034 	 */
   1035 
   1036 	eh = mtod(m0, struct ether_header *);
   1037 	switch (htons(eh->ether_type)) {
   1038 	case ETHERTYPE_IP:
   1039 		offset = ETHER_HDR_LEN;
   1040 		break;
   1041 
   1042 	case ETHERTYPE_VLAN:
   1043 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1044 		break;
   1045 
   1046 	default:
   1047 		/*
   1048 		 * Don't support this protocol or encapsulation.
   1049 		 */
   1050 		*fieldsp = 0;
   1051 		return (0);
   1052 	}
   1053 
   1054 	iphl = m0->m_pkthdr.csum_data >> 16;
   1055 
   1056 	/*
   1057 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1058 	 * offload feature, if we load the context descriptor, we
   1059 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1060 	 */
   1061 
   1062 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1063 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
   1064 		fields |= TDESC_POPTS_IXSM;
   1065 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1066 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1067 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1068 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
   1069 		/* Use the cached value. */
   1070 		ipcs = sc->sc_txctx_ipcs;
   1071 	} else {
   1072 		/* Just initialize it to the likely value anyway. */
   1073 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1074 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1075 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1076 	}
   1077 	DPRINTF(DGE_DEBUG_CKSUM,
   1078 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
   1079 	    sc->sc_dev.dv_xname, offset, ipcs));
   1080 
   1081 	offset += iphl;
   1082 
   1083 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1084 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
   1085 		fields |= TDESC_POPTS_TXSM;
   1086 		tucs = DGE_TCPIP_TUCSS(offset) |
   1087 		   DGE_TCPIP_TUCSO(offset + (m0->m_pkthdr.csum_data & 0xffff)) |
   1088 		   DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1089 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
   1090 		/* Use the cached value. */
   1091 		tucs = sc->sc_txctx_tucs;
   1092 	} else {
   1093 		/* Just initialize it to a valid TCP context. */
   1094 		tucs = DGE_TCPIP_TUCSS(offset) |
   1095 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1096 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1097 	}
   1098 
   1099 	DPRINTF(DGE_DEBUG_CKSUM,
   1100 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
   1101 	    sc->sc_dev.dv_xname, offset, tucs));
   1102 
   1103 	if (sc->sc_txctx_ipcs == ipcs &&
   1104 	    sc->sc_txctx_tucs == tucs) {
   1105 		/* Cached context is fine. */
   1106 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
   1107 	} else {
   1108 		/* Fill in the context descriptor. */
   1109 #ifdef DGE_EVENT_COUNTERS
   1110 		if (sc->sc_txctx_ipcs == 0xffffffff &&
   1111 		    sc->sc_txctx_tucs == 0xffffffff)
   1112 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
   1113 		else
   1114 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1115 #endif
   1116 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
   1117 		t->dc_tcpip_ipcs = htole32(ipcs);
   1118 		t->dc_tcpip_tucs = htole32(tucs);
   1119 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
   1120 		t->dc_tcpip_seg = 0;
   1121 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1122 
   1123 		sc->sc_txctx_ipcs = ipcs;
   1124 		sc->sc_txctx_tucs = tucs;
   1125 
   1126 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
   1127 		txs->txs_ndesc++;
   1128 	}
   1129 
   1130 	*fieldsp = fields;
   1131 
   1132 	return (0);
   1133 }
   1134 
   1135 /*
   1136  * dge_start:		[ifnet interface function]
   1137  *
   1138  *	Start packet transmission on the interface.
   1139  */
   1140 static void
   1141 dge_start(struct ifnet *ifp)
   1142 {
   1143 	struct dge_softc *sc = ifp->if_softc;
   1144 	struct mbuf *m0;
   1145 	struct dge_txsoft *txs;
   1146 	bus_dmamap_t dmamap;
   1147 	int error, nexttx, lasttx = -1, ofree, seg;
   1148 	uint32_t cksumcmd;
   1149 	uint8_t cksumfields;
   1150 
   1151 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1152 		return;
   1153 
   1154 	/*
   1155 	 * Remember the previous number of free descriptors.
   1156 	 */
   1157 	ofree = sc->sc_txfree;
   1158 
   1159 	/*
   1160 	 * Loop through the send queue, setting up transmit descriptors
   1161 	 * until we drain the queue, or use up all available transmit
   1162 	 * descriptors.
   1163 	 */
   1164 	for (;;) {
   1165 		/* Grab a packet off the queue. */
   1166 		IFQ_POLL(&ifp->if_snd, m0);
   1167 		if (m0 == NULL)
   1168 			break;
   1169 
   1170 		DPRINTF(DGE_DEBUG_TX,
   1171 		    ("%s: TX: have packet to transmit: %p\n",
   1172 		    sc->sc_dev.dv_xname, m0));
   1173 
   1174 		/* Get a work queue entry. */
   1175 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
   1176 			dge_txintr(sc);
   1177 			if (sc->sc_txsfree == 0) {
   1178 				DPRINTF(DGE_DEBUG_TX,
   1179 				    ("%s: TX: no free job descriptors\n",
   1180 					sc->sc_dev.dv_xname));
   1181 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
   1182 				break;
   1183 			}
   1184 		}
   1185 
   1186 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1187 		dmamap = txs->txs_dmamap;
   1188 
   1189 		/*
   1190 		 * Load the DMA map.  If this fails, the packet either
   1191 		 * didn't fit in the allotted number of segments, or we
   1192 		 * were short on resources.  For the too-many-segments
   1193 		 * case, we simply report an error and drop the packet,
   1194 		 * since we can't sanely copy a jumbo packet to a single
   1195 		 * buffer.
   1196 		 */
   1197 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1198 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1199 		if (error) {
   1200 			if (error == EFBIG) {
   1201 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
   1202 				printf("%s: Tx packet consumes too many "
   1203 				    "DMA segments, dropping...\n",
   1204 				    sc->sc_dev.dv_xname);
   1205 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1206 				m_freem(m0);
   1207 				continue;
   1208 			}
   1209 			/*
   1210 			 * Short on resources, just stop for now.
   1211 			 */
   1212 			DPRINTF(DGE_DEBUG_TX,
   1213 			    ("%s: TX: dmamap load failed: %d\n",
   1214 			    sc->sc_dev.dv_xname, error));
   1215 			break;
   1216 		}
   1217 
   1218 		/*
   1219 		 * Ensure we have enough descriptors free to describe
   1220 		 * the packet.  Note, we always reserve one descriptor
   1221 		 * at the end of the ring due to the semantics of the
   1222 		 * TDT register, plus one more in the event we need
   1223 		 * to re-load checksum offload context.
   1224 		 */
   1225 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1226 			/*
   1227 			 * Not enough free descriptors to transmit this
   1228 			 * packet.  We haven't committed anything yet,
   1229 			 * so just unload the DMA map, put the packet
   1230 			 * pack on the queue, and punt.  Notify the upper
   1231 			 * layer that there are no more slots left.
   1232 			 */
   1233 			DPRINTF(DGE_DEBUG_TX,
   1234 			    ("%s: TX: need %d descriptors, have %d\n",
   1235 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs,
   1236 			    sc->sc_txfree - 1));
   1237 			ifp->if_flags |= IFF_OACTIVE;
   1238 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1239 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
   1240 			break;
   1241 		}
   1242 
   1243 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1244 
   1245 		/*
   1246 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1247 		 */
   1248 
   1249 		/* Sync the DMA map. */
   1250 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1251 		    BUS_DMASYNC_PREWRITE);
   1252 
   1253 		DPRINTF(DGE_DEBUG_TX,
   1254 		    ("%s: TX: packet has %d DMA segments\n",
   1255 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs));
   1256 
   1257 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1258 
   1259 		/*
   1260 		 * Store a pointer to the packet so that we can free it
   1261 		 * later.
   1262 		 *
   1263 		 * Initially, we consider the number of descriptors the
   1264 		 * packet uses the number of DMA segments.  This may be
   1265 		 * incremented by 1 if we do checksum offload (a descriptor
   1266 		 * is used to set the checksum context).
   1267 		 */
   1268 		txs->txs_mbuf = m0;
   1269 		txs->txs_firstdesc = sc->sc_txnext;
   1270 		txs->txs_ndesc = dmamap->dm_nsegs;
   1271 
   1272 		/*
   1273 		 * Set up checksum offload parameters for
   1274 		 * this packet.
   1275 		 */
   1276 		if (m0->m_pkthdr.csum_flags &
   1277 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1278 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
   1279 				/* Error message already displayed. */
   1280 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1281 				continue;
   1282 			}
   1283 		} else {
   1284 			cksumfields = 0;
   1285 		}
   1286 
   1287 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
   1288 
   1289 		/*
   1290 		 * Initialize the transmit descriptor.
   1291 		 */
   1292 		for (nexttx = sc->sc_txnext, seg = 0;
   1293 		     seg < dmamap->dm_nsegs;
   1294 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
   1295 			/*
   1296 			 * Note: we currently only use 32-bit DMA
   1297 			 * addresses.
   1298 			 */
   1299 			sc->sc_txdescs[nexttx].dt_baddrh = 0;
   1300 			sc->sc_txdescs[nexttx].dt_baddrl =
   1301 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1302 			sc->sc_txdescs[nexttx].dt_ctl =
   1303 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
   1304 			sc->sc_txdescs[nexttx].dt_status = 0;
   1305 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
   1306 			sc->sc_txdescs[nexttx].dt_vlan = 0;
   1307 			lasttx = nexttx;
   1308 
   1309 			DPRINTF(DGE_DEBUG_TX,
   1310 			    ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
   1311 			    sc->sc_dev.dv_xname, nexttx,
   1312 			    le32toh(dmamap->dm_segs[seg].ds_addr),
   1313 			    le32toh(dmamap->dm_segs[seg].ds_len)));
   1314 		}
   1315 
   1316 		KASSERT(lasttx != -1);
   1317 
   1318 		/*
   1319 		 * Set up the command byte on the last descriptor of
   1320 		 * the packet.  If we're in the interrupt delay window,
   1321 		 * delay the interrupt.
   1322 		 */
   1323 		sc->sc_txdescs[lasttx].dt_ctl |=
   1324 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
   1325 
   1326 		txs->txs_lastdesc = lasttx;
   1327 
   1328 		DPRINTF(DGE_DEBUG_TX,
   1329 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1330 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
   1331 
   1332 		/* Sync the descriptors we're using. */
   1333 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1334 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1335 
   1336 		/* Give the packet to the chip. */
   1337 		CSR_WRITE(sc, DGE_TDT, nexttx);
   1338 
   1339 		DPRINTF(DGE_DEBUG_TX,
   1340 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1341 
   1342 		DPRINTF(DGE_DEBUG_TX,
   1343 		    ("%s: TX: finished transmitting packet, job %d\n",
   1344 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1345 
   1346 		/* Advance the tx pointer. */
   1347 		sc->sc_txfree -= txs->txs_ndesc;
   1348 		sc->sc_txnext = nexttx;
   1349 
   1350 		sc->sc_txsfree--;
   1351 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
   1352 
   1353 #if NBPFILTER > 0
   1354 		/* Pass the packet to any BPF listeners. */
   1355 		if (ifp->if_bpf)
   1356 			bpf_mtap(ifp->if_bpf, m0);
   1357 #endif /* NBPFILTER > 0 */
   1358 	}
   1359 
   1360 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1361 		/* No more slots; notify upper layer. */
   1362 		ifp->if_flags |= IFF_OACTIVE;
   1363 	}
   1364 
   1365 	if (sc->sc_txfree != ofree) {
   1366 		/* Set a watchdog timer in case the chip flakes out. */
   1367 		ifp->if_timer = 5;
   1368 	}
   1369 }
   1370 
   1371 /*
   1372  * dge_watchdog:		[ifnet interface function]
   1373  *
   1374  *	Watchdog timer handler.
   1375  */
   1376 static void
   1377 dge_watchdog(struct ifnet *ifp)
   1378 {
   1379 	struct dge_softc *sc = ifp->if_softc;
   1380 
   1381 	/*
   1382 	 * Since we're using delayed interrupts, sweep up
   1383 	 * before we report an error.
   1384 	 */
   1385 	dge_txintr(sc);
   1386 
   1387 	if (sc->sc_txfree != DGE_NTXDESC) {
   1388 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1389 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1390 		    sc->sc_txnext);
   1391 		ifp->if_oerrors++;
   1392 
   1393 		/* Reset the interface. */
   1394 		(void) dge_init(ifp);
   1395 	}
   1396 
   1397 	/* Try to get more packets going. */
   1398 	dge_start(ifp);
   1399 }
   1400 
   1401 /*
   1402  * dge_ioctl:		[ifnet interface function]
   1403  *
   1404  *	Handle control requests from the operator.
   1405  */
   1406 static int
   1407 dge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1408 {
   1409 	struct dge_softc *sc = ifp->if_softc;
   1410 	struct ifreq *ifr = (struct ifreq *) data;
   1411 	pcireg_t preg;
   1412 	int s, error, mmrbc;
   1413 
   1414 	s = splnet();
   1415 
   1416 	switch (cmd) {
   1417 	case SIOCSIFMEDIA:
   1418 	case SIOCGIFMEDIA:
   1419 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1420 		break;
   1421 
   1422 	case SIOCSIFMTU:
   1423 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU) {
   1424 			error = EINVAL;
   1425 		} else {
   1426 			error = 0;
   1427 			ifp->if_mtu = ifr->ifr_mtu;
   1428 			if (ifp->if_flags & IFF_UP)
   1429 				error = (*ifp->if_init)(ifp);
   1430 		}
   1431 		break;
   1432 
   1433         case SIOCSIFFLAGS:
   1434 		/* extract link flags */
   1435 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1436 		    (ifp->if_flags & IFF_LINK1) == 0)
   1437 			mmrbc = PCIX_MMRBC_512;
   1438 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1439 		    (ifp->if_flags & IFF_LINK1) != 0)
   1440 			mmrbc = PCIX_MMRBC_1024;
   1441 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
   1442 		    (ifp->if_flags & IFF_LINK1) == 0)
   1443 			mmrbc = PCIX_MMRBC_2048;
   1444 		else
   1445 			mmrbc = PCIX_MMRBC_4096;
   1446 		if (mmrbc != sc->sc_mmrbc) {
   1447 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
   1448 			preg &= ~PCIX_MMRBC_MSK;
   1449 			preg |= mmrbc;
   1450 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
   1451 			sc->sc_mmrbc = mmrbc;
   1452 		}
   1453                 /* FALLTHROUGH */
   1454 	default:
   1455 		error = ether_ioctl(ifp, cmd, data);
   1456 		if (error == ENETRESET) {
   1457 			/*
   1458 			 * Multicast list has changed; set the hardware filter
   1459 			 * accordingly.
   1460 			 */
   1461 			if (ifp->if_flags & IFF_RUNNING)
   1462 				dge_set_filter(sc);
   1463 			error = 0;
   1464 		}
   1465 		break;
   1466 	}
   1467 
   1468 	/* Try to get more packets going. */
   1469 	dge_start(ifp);
   1470 
   1471 	splx(s);
   1472 	return (error);
   1473 }
   1474 
   1475 /*
   1476  * dge_intr:
   1477  *
   1478  *	Interrupt service routine.
   1479  */
   1480 static int
   1481 dge_intr(void *arg)
   1482 {
   1483 	struct dge_softc *sc = arg;
   1484 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1485 	uint32_t icr;
   1486 	int wantinit, handled = 0;
   1487 
   1488 	for (wantinit = 0; wantinit == 0;) {
   1489 		icr = CSR_READ(sc, DGE_ICR);
   1490 		if ((icr & sc->sc_icr) == 0)
   1491 			break;
   1492 
   1493 #if 0 /*NRND > 0*/
   1494 		if (RND_ENABLED(&sc->rnd_source))
   1495 			rnd_add_uint32(&sc->rnd_source, icr);
   1496 #endif
   1497 
   1498 		handled = 1;
   1499 
   1500 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1501 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1502 			DPRINTF(DGE_DEBUG_RX,
   1503 			    ("%s: RX: got Rx intr 0x%08x\n",
   1504 			    sc->sc_dev.dv_xname,
   1505 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1506 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1507 		}
   1508 #endif
   1509 		dge_rxintr(sc);
   1510 
   1511 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1512 		if (icr & ICR_TXDW) {
   1513 			DPRINTF(DGE_DEBUG_TX,
   1514 			    ("%s: TX: got TXDW interrupt\n",
   1515 			    sc->sc_dev.dv_xname));
   1516 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
   1517 		}
   1518 		if (icr & ICR_TXQE)
   1519 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
   1520 #endif
   1521 		dge_txintr(sc);
   1522 
   1523 		if (icr & (ICR_LSC|ICR_RXSEQ)) {
   1524 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
   1525 			dge_linkintr(sc, icr);
   1526 		}
   1527 
   1528 		if (icr & ICR_RXO) {
   1529 			printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
   1530 			wantinit = 1;
   1531 		}
   1532 	}
   1533 
   1534 	if (handled) {
   1535 		if (wantinit)
   1536 			dge_init(ifp);
   1537 
   1538 		/* Try to get more packets going. */
   1539 		dge_start(ifp);
   1540 	}
   1541 
   1542 	return (handled);
   1543 }
   1544 
   1545 /*
   1546  * dge_txintr:
   1547  *
   1548  *	Helper; handle transmit interrupts.
   1549  */
   1550 static void
   1551 dge_txintr(struct dge_softc *sc)
   1552 {
   1553 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1554 	struct dge_txsoft *txs;
   1555 	uint8_t status;
   1556 	int i;
   1557 
   1558 	ifp->if_flags &= ~IFF_OACTIVE;
   1559 
   1560 	/*
   1561 	 * Go through the Tx list and free mbufs for those
   1562 	 * frames which have been transmitted.
   1563 	 */
   1564 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
   1565 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
   1566 		txs = &sc->sc_txsoft[i];
   1567 
   1568 		DPRINTF(DGE_DEBUG_TX,
   1569 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   1570 
   1571 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1572 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1573 
   1574 		status =
   1575 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
   1576 		if ((status & TDESC_STA_DD) == 0) {
   1577 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1578 			    BUS_DMASYNC_PREREAD);
   1579 			break;
   1580 		}
   1581 
   1582 		DPRINTF(DGE_DEBUG_TX,
   1583 		    ("%s: TX: job %d done: descs %d..%d\n",
   1584 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   1585 		    txs->txs_lastdesc));
   1586 
   1587 		ifp->if_opackets++;
   1588 		sc->sc_txfree += txs->txs_ndesc;
   1589 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1590 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1591 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1592 		m_freem(txs->txs_mbuf);
   1593 		txs->txs_mbuf = NULL;
   1594 	}
   1595 
   1596 	/* Update the dirty transmit buffer pointer. */
   1597 	sc->sc_txsdirty = i;
   1598 	DPRINTF(DGE_DEBUG_TX,
   1599 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   1600 
   1601 	/*
   1602 	 * If there are no more pending transmissions, cancel the watchdog
   1603 	 * timer.
   1604 	 */
   1605 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
   1606 		ifp->if_timer = 0;
   1607 }
   1608 
   1609 /*
   1610  * dge_rxintr:
   1611  *
   1612  *	Helper; handle receive interrupts.
   1613  */
   1614 static void
   1615 dge_rxintr(struct dge_softc *sc)
   1616 {
   1617 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1618 	struct dge_rxsoft *rxs;
   1619 	struct mbuf *m;
   1620 	int i, len;
   1621 	uint8_t status, errors;
   1622 
   1623 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
   1624 		rxs = &sc->sc_rxsoft[i];
   1625 
   1626 		DPRINTF(DGE_DEBUG_RX,
   1627 		    ("%s: RX: checking descriptor %d\n",
   1628 		    sc->sc_dev.dv_xname, i));
   1629 
   1630 		DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1631 
   1632 		status = sc->sc_rxdescs[i].dr_status;
   1633 		errors = sc->sc_rxdescs[i].dr_errors;
   1634 		len = le16toh(sc->sc_rxdescs[i].dr_len);
   1635 
   1636 		if ((status & RDESC_STS_DD) == 0) {
   1637 			/*
   1638 			 * We have processed all of the receive descriptors.
   1639 			 */
   1640 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1641 			break;
   1642 		}
   1643 
   1644 		if (__predict_false(sc->sc_rxdiscard)) {
   1645 			DPRINTF(DGE_DEBUG_RX,
   1646 			    ("%s: RX: discarding contents of descriptor %d\n",
   1647 			    sc->sc_dev.dv_xname, i));
   1648 			DGE_INIT_RXDESC(sc, i);
   1649 			if (status & RDESC_STS_EOP) {
   1650 				/* Reset our state. */
   1651 				DPRINTF(DGE_DEBUG_RX,
   1652 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1653 				    sc->sc_dev.dv_xname));
   1654 				sc->sc_rxdiscard = 0;
   1655 			}
   1656 			continue;
   1657 		}
   1658 
   1659 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1660 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1661 
   1662 		m = rxs->rxs_mbuf;
   1663 
   1664 		/*
   1665 		 * Add a new receive buffer to the ring.
   1666 		 */
   1667 		if (dge_add_rxbuf(sc, i) != 0) {
   1668 			/*
   1669 			 * Failed, throw away what we've done so
   1670 			 * far, and discard the rest of the packet.
   1671 			 */
   1672 			ifp->if_ierrors++;
   1673 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1674 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1675 			DGE_INIT_RXDESC(sc, i);
   1676 			if ((status & RDESC_STS_EOP) == 0)
   1677 				sc->sc_rxdiscard = 1;
   1678 			if (sc->sc_rxhead != NULL)
   1679 				m_freem(sc->sc_rxhead);
   1680 			DGE_RXCHAIN_RESET(sc);
   1681 			DPRINTF(DGE_DEBUG_RX,
   1682 			    ("%s: RX: Rx buffer allocation failed, "
   1683 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   1684 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1685 			continue;
   1686 		}
   1687 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
   1688 
   1689 		DGE_RXCHAIN_LINK(sc, m);
   1690 
   1691 		m->m_len = len;
   1692 
   1693 		DPRINTF(DGE_DEBUG_RX,
   1694 		    ("%s: RX: buffer at %p len %d\n",
   1695 		    sc->sc_dev.dv_xname, m->m_data, len));
   1696 
   1697 		/*
   1698 		 * If this is not the end of the packet, keep
   1699 		 * looking.
   1700 		 */
   1701 		if ((status & RDESC_STS_EOP) == 0) {
   1702 			sc->sc_rxlen += len;
   1703 			DPRINTF(DGE_DEBUG_RX,
   1704 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1705 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   1706 			continue;
   1707 		}
   1708 
   1709 		/*
   1710 		 * Okay, we have the entire packet now...
   1711 		 */
   1712 		*sc->sc_rxtailp = NULL;
   1713 		m = sc->sc_rxhead;
   1714 		len += sc->sc_rxlen;
   1715 
   1716 		DGE_RXCHAIN_RESET(sc);
   1717 
   1718 		DPRINTF(DGE_DEBUG_RX,
   1719 		    ("%s: RX: have entire packet, len -> %d\n",
   1720 		    sc->sc_dev.dv_xname, len));
   1721 
   1722 		/*
   1723 		 * If an error occurred, update stats and drop the packet.
   1724 		 */
   1725 		if (errors &
   1726 		     (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
   1727 			ifp->if_ierrors++;
   1728 			if (errors & RDESC_ERR_SE)
   1729 				printf("%s: symbol error\n",
   1730 				    sc->sc_dev.dv_xname);
   1731 			else if (errors & RDESC_ERR_P)
   1732 				printf("%s: parity error\n",
   1733 				    sc->sc_dev.dv_xname);
   1734 			else if (errors & RDESC_ERR_CE)
   1735 				printf("%s: CRC error\n",
   1736 				    sc->sc_dev.dv_xname);
   1737 			m_freem(m);
   1738 			continue;
   1739 		}
   1740 
   1741 		/*
   1742 		 * No errors.  Receive the packet.
   1743 		 */
   1744 		m->m_pkthdr.rcvif = ifp;
   1745 		m->m_pkthdr.len = len;
   1746 
   1747 		/*
   1748 		 * Set up checksum info for this packet.
   1749 		 */
   1750 		if (status & RDESC_STS_IPCS) {
   1751 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1752 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1753 			if (errors & RDESC_ERR_IPE)
   1754 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1755 		}
   1756 		if (status & RDESC_STS_TCPCS) {
   1757 			/*
   1758 			 * Note: we don't know if this was TCP or UDP,
   1759 			 * so we just set both bits, and expect the
   1760 			 * upper layers to deal.
   1761 			 */
   1762 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1763 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1764 			if (errors & RDESC_ERR_TCPE)
   1765 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1766 		}
   1767 
   1768 		ifp->if_ipackets++;
   1769 
   1770 #if NBPFILTER > 0
   1771 		/* Pass this up to any BPF listeners. */
   1772 		if (ifp->if_bpf)
   1773 			bpf_mtap(ifp->if_bpf, m);
   1774 #endif /* NBPFILTER > 0 */
   1775 
   1776 		/* Pass it on. */
   1777 		(*ifp->if_input)(ifp, m);
   1778 	}
   1779 
   1780 	/* Update the receive pointer. */
   1781 	sc->sc_rxptr = i;
   1782 
   1783 	DPRINTF(DGE_DEBUG_RX,
   1784 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   1785 }
   1786 
   1787 /*
   1788  * dge_linkintr:
   1789  *
   1790  *	Helper; handle link interrupts.
   1791  */
   1792 static void
   1793 dge_linkintr(struct dge_softc *sc, uint32_t icr)
   1794 {
   1795 	uint32_t status;
   1796 
   1797 	if (icr & ICR_LSC) {
   1798 		status = CSR_READ(sc, DGE_STATUS);
   1799 		if (status & STATUS_LINKUP) {
   1800 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
   1801 			    sc->sc_dev.dv_xname));
   1802 		} else {
   1803 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1804 			    sc->sc_dev.dv_xname));
   1805 		}
   1806 	} else if (icr & ICR_RXSEQ) {
   1807 		DPRINTF(DGE_DEBUG_LINK,
   1808 		    ("%s: LINK: Receive sequence error\n",
   1809 		    sc->sc_dev.dv_xname));
   1810 	}
   1811 	/* XXX - fix errata */
   1812 }
   1813 
   1814 /*
   1815  * dge_reset:
   1816  *
   1817  *	Reset the i82597 chip.
   1818  */
   1819 static void
   1820 dge_reset(struct dge_softc *sc)
   1821 {
   1822 	int i;
   1823 
   1824 	/*
   1825 	 * Do a chip reset.
   1826 	 */
   1827 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
   1828 
   1829 	delay(10000);
   1830 
   1831 	for (i = 0; i < 1000; i++) {
   1832 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
   1833 			break;
   1834 		delay(20);
   1835 	}
   1836 
   1837 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
   1838 		printf("%s: WARNING: reset failed to complete\n",
   1839 		    sc->sc_dev.dv_xname);
   1840         /*
   1841          * Reset the EEPROM logic.
   1842          * This will cause the chip to reread its default values,
   1843 	 * which doesn't happen otherwise (errata).
   1844          */
   1845         CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
   1846         delay(10000);
   1847 }
   1848 
   1849 /*
   1850  * dge_init:		[ifnet interface function]
   1851  *
   1852  *	Initialize the interface.  Must be called at splnet().
   1853  */
   1854 static int
   1855 dge_init(struct ifnet *ifp)
   1856 {
   1857 	struct dge_softc *sc = ifp->if_softc;
   1858 	struct dge_rxsoft *rxs;
   1859 	int i, error = 0;
   1860 	uint32_t reg;
   1861 
   1862 	/*
   1863 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   1864 	 * There is a small but measurable benefit to avoiding the adjusment
   1865 	 * of the descriptor so that the headers are aligned, for normal mtu,
   1866 	 * on such platforms.  One possibility is that the DMA itself is
   1867 	 * slightly more efficient if the front of the entire packet (instead
   1868 	 * of the front of the headers) is aligned.
   1869 	 *
   1870 	 * Note we must always set align_tweak to 0 if we are using
   1871 	 * jumbo frames.
   1872 	 */
   1873 #ifdef __NO_STRICT_ALIGNMENT
   1874 	sc->sc_align_tweak = 0;
   1875 #else
   1876 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   1877 		sc->sc_align_tweak = 0;
   1878 	else
   1879 		sc->sc_align_tweak = 2;
   1880 #endif /* __NO_STRICT_ALIGNMENT */
   1881 
   1882 	/* Cancel any pending I/O. */
   1883 	dge_stop(ifp, 0);
   1884 
   1885 	/* Reset the chip to a known state. */
   1886 	dge_reset(sc);
   1887 
   1888 	/* Initialize the transmit descriptor ring. */
   1889 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1890 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
   1891 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1892 	sc->sc_txfree = DGE_NTXDESC;
   1893 	sc->sc_txnext = 0;
   1894 
   1895 	sc->sc_txctx_ipcs = 0xffffffff;
   1896 	sc->sc_txctx_tucs = 0xffffffff;
   1897 
   1898 	CSR_WRITE(sc, DGE_TDBAH, 0);
   1899 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
   1900 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
   1901 	CSR_WRITE(sc, DGE_TDH, 0);
   1902 	CSR_WRITE(sc, DGE_TDT, 0);
   1903 	CSR_WRITE(sc, DGE_TIDV, TIDV);
   1904 
   1905 #if 0
   1906 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
   1907 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1908 #endif
   1909 	CSR_WRITE(sc, DGE_RXDCTL,
   1910 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
   1911 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
   1912 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
   1913 
   1914 	/* Initialize the transmit job descriptors. */
   1915 	for (i = 0; i < DGE_TXQUEUELEN; i++)
   1916 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1917 	sc->sc_txsfree = DGE_TXQUEUELEN;
   1918 	sc->sc_txsnext = 0;
   1919 	sc->sc_txsdirty = 0;
   1920 
   1921 	/*
   1922 	 * Initialize the receive descriptor and receive job
   1923 	 * descriptor rings.
   1924 	 */
   1925 	CSR_WRITE(sc, DGE_RDBAH, 0);
   1926 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
   1927 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
   1928 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
   1929 	CSR_WRITE(sc, DGE_RDT, 0);
   1930 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
   1931 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
   1932 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
   1933 
   1934 	for (i = 0; i < DGE_NRXDESC; i++) {
   1935 		rxs = &sc->sc_rxsoft[i];
   1936 		if (rxs->rxs_mbuf == NULL) {
   1937 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
   1938 				printf("%s: unable to allocate or map rx "
   1939 				    "buffer %d, error = %d\n",
   1940 				    sc->sc_dev.dv_xname, i, error);
   1941 				/*
   1942 				 * XXX Should attempt to run with fewer receive
   1943 				 * XXX buffers instead of just failing.
   1944 				 */
   1945 				dge_rxdrain(sc);
   1946 				goto out;
   1947 			}
   1948 		}
   1949 		DGE_INIT_RXDESC(sc, i);
   1950 	}
   1951 	sc->sc_rxptr = DGE_RXSPACE;
   1952 	sc->sc_rxdiscard = 0;
   1953 	DGE_RXCHAIN_RESET(sc);
   1954 
   1955 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
   1956 		sc->sc_ctrl0 |= CTRL0_JFE;
   1957 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
   1958 	}
   1959 
   1960 	/* Write the control registers. */
   1961 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
   1962 
   1963 	/*
   1964 	 * Set up checksum offload parameters.
   1965 	 */
   1966 	reg = CSR_READ(sc, DGE_RXCSUM);
   1967 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   1968 		reg |= RXCSUM_IPOFL;
   1969 	else
   1970 		reg &= ~RXCSUM_IPOFL;
   1971 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
   1972 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   1973 	else {
   1974 		reg &= ~RXCSUM_TUOFL;
   1975 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
   1976 			reg &= ~RXCSUM_IPOFL;
   1977 	}
   1978 	CSR_WRITE(sc, DGE_RXCSUM, reg);
   1979 
   1980 	/*
   1981 	 * Set up the interrupt registers.
   1982 	 */
   1983 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
   1984 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   1985 	    ICR_RXO | ICR_RXT0;
   1986 
   1987 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
   1988 
   1989 	/*
   1990 	 * Set up the transmit control register.
   1991 	 */
   1992 	sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
   1993 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
   1994 
   1995 	/*
   1996 	 * Set up the receive control register; we actually program
   1997 	 * the register when we set the receive filter.  Use multicast
   1998 	 * address offset type 0.
   1999 	 */
   2000 	sc->sc_mchash_type = 0;
   2001 
   2002 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
   2003 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
   2004 
   2005 #ifdef DGE_OFFBYONE_RXBUG
   2006 	sc->sc_rctl |= RCTL_BSIZE_16k;
   2007 #else
   2008 	switch(MCLBYTES) {
   2009 	case 2048:
   2010 		sc->sc_rctl |= RCTL_BSIZE_2k;
   2011 		break;
   2012 	case 4096:
   2013 		sc->sc_rctl |= RCTL_BSIZE_4k;
   2014 		break;
   2015 	case 8192:
   2016 		sc->sc_rctl |= RCTL_BSIZE_8k;
   2017 		break;
   2018 	case 16384:
   2019 		sc->sc_rctl |= RCTL_BSIZE_16k;
   2020 		break;
   2021 	default:
   2022 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
   2023 	}
   2024 #endif
   2025 
   2026 	/* Set the receive filter. */
   2027 	/* Also sets RCTL */
   2028 	dge_set_filter(sc);
   2029 
   2030 	/* ...all done! */
   2031 	ifp->if_flags |= IFF_RUNNING;
   2032 	ifp->if_flags &= ~IFF_OACTIVE;
   2033 
   2034  out:
   2035 	if (error)
   2036 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2037 	return (error);
   2038 }
   2039 
   2040 /*
   2041  * dge_rxdrain:
   2042  *
   2043  *	Drain the receive queue.
   2044  */
   2045 static void
   2046 dge_rxdrain(struct dge_softc *sc)
   2047 {
   2048 	struct dge_rxsoft *rxs;
   2049 	int i;
   2050 
   2051 	for (i = 0; i < DGE_NRXDESC; i++) {
   2052 		rxs = &sc->sc_rxsoft[i];
   2053 		if (rxs->rxs_mbuf != NULL) {
   2054 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2055 			m_freem(rxs->rxs_mbuf);
   2056 			rxs->rxs_mbuf = NULL;
   2057 		}
   2058 	}
   2059 }
   2060 
   2061 /*
   2062  * dge_stop:		[ifnet interface function]
   2063  *
   2064  *	Stop transmission on the interface.
   2065  */
   2066 static void
   2067 dge_stop(struct ifnet *ifp, int disable)
   2068 {
   2069 	struct dge_softc *sc = ifp->if_softc;
   2070 	struct dge_txsoft *txs;
   2071 	int i;
   2072 
   2073 	/* Stop the transmit and receive processes. */
   2074 	CSR_WRITE(sc, DGE_TCTL, 0);
   2075 	CSR_WRITE(sc, DGE_RCTL, 0);
   2076 
   2077 	/* Release any queued transmit buffers. */
   2078 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
   2079 		txs = &sc->sc_txsoft[i];
   2080 		if (txs->txs_mbuf != NULL) {
   2081 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2082 			m_freem(txs->txs_mbuf);
   2083 			txs->txs_mbuf = NULL;
   2084 		}
   2085 	}
   2086 
   2087 	if (disable)
   2088 		dge_rxdrain(sc);
   2089 
   2090 	/* Mark the interface as down and cancel the watchdog timer. */
   2091 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2092 	ifp->if_timer = 0;
   2093 }
   2094 
   2095 /*
   2096  * dge_add_rxbuf:
   2097  *
   2098  *	Add a receive buffer to the indiciated descriptor.
   2099  */
   2100 static int
   2101 dge_add_rxbuf(struct dge_softc *sc, int idx)
   2102 {
   2103 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2104 	struct mbuf *m;
   2105 	int error;
   2106 #ifdef DGE_OFFBYONE_RXBUG
   2107 	caddr_t buf;
   2108 #endif
   2109 
   2110 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2111 	if (m == NULL)
   2112 		return (ENOBUFS);
   2113 
   2114 #ifdef DGE_OFFBYONE_RXBUG
   2115 	if ((buf = dge_getbuf(sc)) == NULL)
   2116 		return ENOBUFS;
   2117 
   2118 	m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
   2119 	MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
   2120 	m->m_flags |= M_EXT_RW;
   2121 
   2122 	if (rxs->rxs_mbuf != NULL)
   2123 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2124 	rxs->rxs_mbuf = m;
   2125 
   2126 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
   2127 	    DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
   2128 #else
   2129 	MCLGET(m, M_DONTWAIT);
   2130 	if ((m->m_flags & M_EXT) == 0) {
   2131 		m_freem(m);
   2132 		return (ENOBUFS);
   2133 	}
   2134 
   2135 	if (rxs->rxs_mbuf != NULL)
   2136 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2137 
   2138 	rxs->rxs_mbuf = m;
   2139 
   2140 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2141 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   2142 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2143 #endif
   2144 	if (error) {
   2145 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2146 		    sc->sc_dev.dv_xname, idx, error);
   2147 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
   2148 	}
   2149 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2150 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2151 
   2152 	return (0);
   2153 }
   2154 
   2155 /*
   2156  * dge_set_ral:
   2157  *
   2158  *	Set an entry in the receive address list.
   2159  */
   2160 static void
   2161 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
   2162 {
   2163 	uint32_t ral_lo, ral_hi;
   2164 
   2165 	if (enaddr != NULL) {
   2166 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2167 		    (enaddr[3] << 24);
   2168 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2169 		ral_hi |= RAH_AV;
   2170 	} else {
   2171 		ral_lo = 0;
   2172 		ral_hi = 0;
   2173 	}
   2174 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
   2175 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
   2176 }
   2177 
   2178 /*
   2179  * dge_mchash:
   2180  *
   2181  *	Compute the hash of the multicast address for the 4096-bit
   2182  *	multicast filter.
   2183  */
   2184 static uint32_t
   2185 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
   2186 {
   2187 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2188 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2189 	uint32_t hash;
   2190 
   2191 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2192 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2193 
   2194 	return (hash & 0xfff);
   2195 }
   2196 
   2197 /*
   2198  * dge_set_filter:
   2199  *
   2200  *	Set up the receive filter.
   2201  */
   2202 static void
   2203 dge_set_filter(struct dge_softc *sc)
   2204 {
   2205 	struct ethercom *ec = &sc->sc_ethercom;
   2206 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2207 	struct ether_multi *enm;
   2208 	struct ether_multistep step;
   2209 	uint32_t hash, reg, bit;
   2210 	int i;
   2211 
   2212 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2213 
   2214 	if (ifp->if_flags & IFF_BROADCAST)
   2215 		sc->sc_rctl |= RCTL_BAM;
   2216 	if (ifp->if_flags & IFF_PROMISC) {
   2217 		sc->sc_rctl |= RCTL_UPE;
   2218 		goto allmulti;
   2219 	}
   2220 
   2221 	/*
   2222 	 * Set the station address in the first RAL slot, and
   2223 	 * clear the remaining slots.
   2224 	 */
   2225 	dge_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   2226 	for (i = 1; i < RA_TABSIZE; i++)
   2227 		dge_set_ral(sc, NULL, i);
   2228 
   2229 	/* Clear out the multicast table. */
   2230 	for (i = 0; i < MC_TABSIZE; i++)
   2231 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
   2232 
   2233 	ETHER_FIRST_MULTI(step, ec, enm);
   2234 	while (enm != NULL) {
   2235 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2236 			/*
   2237 			 * We must listen to a range of multicast addresses.
   2238 			 * For now, just accept all multicasts, rather than
   2239 			 * trying to set only those filter bits needed to match
   2240 			 * the range.  (At this time, the only use of address
   2241 			 * ranges is for IP multicast routing, for which the
   2242 			 * range is big enough to require all bits set.)
   2243 			 */
   2244 			goto allmulti;
   2245 		}
   2246 
   2247 		hash = dge_mchash(sc, enm->enm_addrlo);
   2248 
   2249 		reg = (hash >> 5) & 0x7f;
   2250 		bit = hash & 0x1f;
   2251 
   2252 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
   2253 		hash |= 1U << bit;
   2254 
   2255 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
   2256 
   2257 		ETHER_NEXT_MULTI(step, enm);
   2258 	}
   2259 
   2260 	ifp->if_flags &= ~IFF_ALLMULTI;
   2261 	goto setit;
   2262 
   2263  allmulti:
   2264 	ifp->if_flags |= IFF_ALLMULTI;
   2265 	sc->sc_rctl |= RCTL_MPE;
   2266 
   2267  setit:
   2268 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
   2269 }
   2270 
   2271 /*
   2272  * Read in the EEPROM info and verify checksum.
   2273  */
   2274 int
   2275 dge_read_eeprom(struct dge_softc *sc)
   2276 {
   2277 	uint16_t cksum;
   2278 	int i;
   2279 
   2280 	cksum = 0;
   2281 	for (i = 0; i < EEPROM_SIZE; i++) {
   2282 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
   2283 		cksum += sc->sc_eeprom[i];
   2284 	}
   2285 	return cksum != EEPROM_CKSUM;
   2286 }
   2287 
   2288 
   2289 /*
   2290  * Read a 16-bit word from address addr in the serial EEPROM.
   2291  */
   2292 uint16_t
   2293 dge_eeprom_word(struct dge_softc *sc, int addr)
   2294 {
   2295 	uint32_t reg;
   2296 	uint16_t rval = 0;
   2297 	int i;
   2298 
   2299 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
   2300 
   2301 	/* Lower clock pulse (and data in to chip) */
   2302 	CSR_WRITE(sc, DGE_EECD, reg);
   2303 	/* Select chip */
   2304 	CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
   2305 
   2306 	/* Send read command */
   2307 	dge_eeprom_clockout(sc, 1);
   2308 	dge_eeprom_clockout(sc, 1);
   2309 	dge_eeprom_clockout(sc, 0);
   2310 
   2311 	/* Send address */
   2312 	for (i = 5; i >= 0; i--)
   2313 		dge_eeprom_clockout(sc, (addr >> i) & 1);
   2314 
   2315 	/* Read data */
   2316 	for (i = 0; i < 16; i++) {
   2317 		rval <<= 1;
   2318 		rval |= dge_eeprom_clockin(sc);
   2319 	}
   2320 
   2321 	/* Deselect chip */
   2322 	CSR_WRITE(sc, DGE_EECD, reg);
   2323 
   2324 	return rval;
   2325 }
   2326 
   2327 /*
   2328  * Clock out a single bit to the EEPROM.
   2329  */
   2330 void
   2331 dge_eeprom_clockout(struct dge_softc *sc, int bit)
   2332 {
   2333 	int reg;
   2334 
   2335 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
   2336 	if (bit)
   2337 		reg |= EECD_DI;
   2338 
   2339 	CSR_WRITE(sc, DGE_EECD, reg);
   2340 	delay(2);
   2341 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
   2342 	delay(2);
   2343 	CSR_WRITE(sc, DGE_EECD, reg);
   2344 	delay(2);
   2345 }
   2346 
   2347 /*
   2348  * Clock in a single bit from EEPROM.
   2349  */
   2350 int
   2351 dge_eeprom_clockin(struct dge_softc *sc)
   2352 {
   2353 	int reg, rv;
   2354 
   2355 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
   2356 
   2357 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
   2358 	delay(2);
   2359 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
   2360 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
   2361 	delay(2);
   2362 
   2363 	return rv;
   2364 }
   2365 
   2366 static void
   2367 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2368 {
   2369 	struct dge_softc *sc = ifp->if_softc;
   2370 
   2371 	ifmr->ifm_status = IFM_AVALID;
   2372 	ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
   2373 
   2374 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
   2375 		ifmr->ifm_status |= IFM_ACTIVE;
   2376 }
   2377 
   2378 static inline int
   2379 phwait(struct dge_softc *sc, int p, int r, int d, int type)
   2380 {
   2381         int i, mdic;
   2382 
   2383         CSR_WRITE(sc, DGE_MDIO,
   2384 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
   2385         for (i = 0; i < 10; i++) {
   2386                 delay(10);
   2387                 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
   2388                         break;
   2389         }
   2390         return mdic;
   2391 }
   2392 
   2393 
   2394 static void
   2395 dge_xgmii_writereg(struct device *self, int phy, int reg, int val)
   2396 {
   2397 	struct dge_softc *sc = (void *) self;
   2398 	int mdic;
   2399 
   2400 	CSR_WRITE(sc, DGE_MDIRW, val);
   2401 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
   2402 		printf("%s: address cycle timeout; phy %d reg %d\n",
   2403 		    sc->sc_dev.dv_xname, phy, reg);
   2404 		return;
   2405 	}
   2406 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
   2407 		printf("%s: read cycle timeout; phy %d reg %d\n",
   2408 		    sc->sc_dev.dv_xname, phy, reg);
   2409 		return;
   2410 	}
   2411 }
   2412 
   2413 static void
   2414 dge_xgmii_reset(struct dge_softc *sc)
   2415 {
   2416 	dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
   2417 }
   2418 
   2419 static int
   2420 dge_xgmii_mediachange(struct ifnet *ifp)
   2421 {
   2422 	return 0;
   2423 }
   2424