if_dge.c revision 1.9 1 /* $NetBSD: if_dge.c,v 1.9 2005/02/21 02:12:48 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 * All rights reserved.
6 *
7 * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * SUNET, Swedish University Computer Network.
21 * 4. The name of SUNET may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 *
75 * TODO (in no specific order):
76 * HW VLAN support.
77 * TSE offloading (needs kernel changes...)
78 * RAIDC (receive interrupt delay adaptation)
79 * Use memory > 4GB.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.9 2005/02/21 02:12:48 thorpej Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <netinet/in.h> /* XXX for struct ip */
116 #include <netinet/in_systm.h> /* XXX for struct ip */
117 #include <netinet/ip.h> /* XXX for struct ip */
118 #include <netinet/tcp.h> /* XXX for struct tcphdr */
119
120 #include <machine/bus.h>
121 #include <machine/intr.h>
122 #include <machine/endian.h>
123
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/mii_bitbang.h>
127
128 #include <dev/pci/pcireg.h>
129 #include <dev/pci/pcivar.h>
130 #include <dev/pci/pcidevs.h>
131
132 #include <dev/pci/if_dgereg.h>
133
134 /*
135 * The receive engine may sometimes become off-by-one when writing back
136 * chained descriptors. Avoid this by allocating a large chunk of
137 * memory and use if instead (to avoid chained descriptors).
138 * This only happens with chained descriptors under heavy load.
139 */
140 #define DGE_OFFBYONE_RXBUG
141
142 #define DGE_EVENT_COUNTERS
143 #define DGE_DEBUG
144
145 #ifdef DGE_DEBUG
146 #define DGE_DEBUG_LINK 0x01
147 #define DGE_DEBUG_TX 0x02
148 #define DGE_DEBUG_RX 0x04
149 #define DGE_DEBUG_CKSUM 0x08
150 int dge_debug = 0;
151
152 #define DPRINTF(x, y) if (dge_debug & (x)) printf y
153 #else
154 #define DPRINTF(x, y) /* nothing */
155 #endif /* DGE_DEBUG */
156
157 /*
158 * Transmit descriptor list size. We allow up to 100 DMA segments per
159 * packet (Intel reports of jumbo frame packets with as
160 * many as 80 DMA segments when using 16k buffers).
161 */
162 #define DGE_NTXSEGS 100
163 #define DGE_IFQUEUELEN 20000
164 #define DGE_TXQUEUELEN 2048
165 #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
166 #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
167 #define DGE_NTXDESC 1024
168 #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
169 #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
170 #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
171
172 /*
173 * Receive descriptor list size.
174 * Packet is of size MCLBYTES, and for jumbo packets buffers may
175 * be chained. Due to the nature of the card (high-speed), keep this
176 * ring large. With 2k buffers the ring can store 400 jumbo packets,
177 * which at full speed will be received in just under 3ms.
178 */
179 #define DGE_NRXDESC 2048
180 #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
181 #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
182 /*
183 * # of descriptors between head and written descriptors.
184 * This is to work-around two erratas.
185 */
186 #define DGE_RXSPACE 10
187 #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
188 /*
189 * Receive descriptor fetch threshholds. These are values recommended
190 * by Intel, do not touch them unless you know what you are doing.
191 */
192 #define RXDCTL_PTHRESH_VAL 128
193 #define RXDCTL_HTHRESH_VAL 16
194 #define RXDCTL_WTHRESH_VAL 16
195
196
197 /*
198 * Tweakable parameters; default values.
199 */
200 #define FCRTH 0x30000 /* Send XOFF water mark */
201 #define FCRTL 0x28000 /* Send XON water mark */
202 #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
203 #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
204
205 /*
206 * Control structures are DMA'd to the i82597 chip. We allocate them in
207 * a single clump that maps to a single DMA segment to make serveral things
208 * easier.
209 */
210 struct dge_control_data {
211 /*
212 * The transmit descriptors.
213 */
214 struct dge_tdes wcd_txdescs[DGE_NTXDESC];
215
216 /*
217 * The receive descriptors.
218 */
219 struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
220 };
221
222 #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
223 #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
224 #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
225
226 /*
227 * The DGE interface have a higher max MTU size than normal jumbo frames.
228 */
229 #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
230
231 /*
232 * Software state for transmit jobs.
233 */
234 struct dge_txsoft {
235 struct mbuf *txs_mbuf; /* head of our mbuf chain */
236 bus_dmamap_t txs_dmamap; /* our DMA map */
237 int txs_firstdesc; /* first descriptor in packet */
238 int txs_lastdesc; /* last descriptor in packet */
239 int txs_ndesc; /* # of descriptors used */
240 };
241
242 /*
243 * Software state for receive buffers. Each descriptor gets a
244 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
245 * more than one buffer, we chain them together.
246 */
247 struct dge_rxsoft {
248 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
249 bus_dmamap_t rxs_dmamap; /* our DMA map */
250 };
251
252 /*
253 * Software state per device.
254 */
255 struct dge_softc {
256 struct device sc_dev; /* generic device information */
257 bus_space_tag_t sc_st; /* bus space tag */
258 bus_space_handle_t sc_sh; /* bus space handle */
259 bus_dma_tag_t sc_dmat; /* bus DMA tag */
260 struct ethercom sc_ethercom; /* ethernet common data */
261 void *sc_sdhook; /* shutdown hook */
262
263 int sc_flags; /* flags; see below */
264 int sc_bus_speed; /* PCI/PCIX bus speed */
265 int sc_pcix_offset; /* PCIX capability register offset */
266
267 pci_chipset_tag_t sc_pc;
268 pcitag_t sc_pt;
269 int sc_mmrbc; /* Max PCIX memory read byte count */
270
271 void *sc_ih; /* interrupt cookie */
272
273 struct ifmedia sc_media;
274
275 bus_dmamap_t sc_cddmamap; /* control data DMA map */
276 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
277
278 int sc_align_tweak;
279
280 /*
281 * Software state for the transmit and receive descriptors.
282 */
283 struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
284 struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
285
286 /*
287 * Control data structures.
288 */
289 struct dge_control_data *sc_control_data;
290 #define sc_txdescs sc_control_data->wcd_txdescs
291 #define sc_rxdescs sc_control_data->wcd_rxdescs
292
293 #ifdef DGE_EVENT_COUNTERS
294 /* Event counters. */
295 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
296 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
297 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
298 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
299 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
300 struct evcnt sc_ev_rxintr; /* Rx interrupts */
301 struct evcnt sc_ev_linkintr; /* Link interrupts */
302
303 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
304 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
305 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
306 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
307
308 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
309 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
310 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
311
312 struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
313 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
314 #endif /* DGE_EVENT_COUNTERS */
315
316 int sc_txfree; /* number of free Tx descriptors */
317 int sc_txnext; /* next ready Tx descriptor */
318
319 int sc_txsfree; /* number of free Tx jobs */
320 int sc_txsnext; /* next free Tx job */
321 int sc_txsdirty; /* dirty Tx jobs */
322
323 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
324 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
325
326 int sc_rxptr; /* next ready Rx descriptor/queue ent */
327 int sc_rxdiscard;
328 int sc_rxlen;
329 struct mbuf *sc_rxhead;
330 struct mbuf *sc_rxtail;
331 struct mbuf **sc_rxtailp;
332
333 uint32_t sc_ctrl0; /* prototype CTRL0 register */
334 uint32_t sc_icr; /* prototype interrupt bits */
335 uint32_t sc_tctl; /* prototype TCTL register */
336 uint32_t sc_rctl; /* prototype RCTL register */
337
338 int sc_mchash_type; /* multicast filter offset */
339
340 uint16_t sc_eeprom[EEPROM_SIZE];
341
342 #if NRND > 0
343 rndsource_element_t rnd_source; /* random source */
344 #endif
345 #ifdef DGE_OFFBYONE_RXBUG
346 caddr_t sc_bugbuf;
347 SLIST_HEAD(, rxbugentry) sc_buglist;
348 bus_dmamap_t sc_bugmap;
349 struct rxbugentry *sc_entry;
350 #endif
351 };
352
353 #define DGE_RXCHAIN_RESET(sc) \
354 do { \
355 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
356 *(sc)->sc_rxtailp = NULL; \
357 (sc)->sc_rxlen = 0; \
358 } while (/*CONSTCOND*/0)
359
360 #define DGE_RXCHAIN_LINK(sc, m) \
361 do { \
362 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
363 (sc)->sc_rxtailp = &(m)->m_next; \
364 } while (/*CONSTCOND*/0)
365
366 /* sc_flags */
367 #define DGE_F_BUS64 0x20 /* bus is 64-bit */
368 #define DGE_F_PCIX 0x40 /* bus is PCI-X */
369
370 #ifdef DGE_EVENT_COUNTERS
371 #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
372 #else
373 #define DGE_EVCNT_INCR(ev) /* nothing */
374 #endif
375
376 #define CSR_READ(sc, reg) \
377 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
378 #define CSR_WRITE(sc, reg, val) \
379 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
380
381 #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
382 #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
383
384 #define DGE_CDTXSYNC(sc, x, n, ops) \
385 do { \
386 int __x, __n; \
387 \
388 __x = (x); \
389 __n = (n); \
390 \
391 /* If it will wrap around, sync to the end of the ring. */ \
392 if ((__x + __n) > DGE_NTXDESC) { \
393 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
394 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
395 (DGE_NTXDESC - __x), (ops)); \
396 __n -= (DGE_NTXDESC - __x); \
397 __x = 0; \
398 } \
399 \
400 /* Now sync whatever is left. */ \
401 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
402 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
403 } while (/*CONSTCOND*/0)
404
405 #define DGE_CDRXSYNC(sc, x, ops) \
406 do { \
407 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
408 DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
409 } while (/*CONSTCOND*/0)
410
411 #ifdef DGE_OFFBYONE_RXBUG
412 #define DGE_INIT_RXDESC(sc, x) \
413 do { \
414 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
415 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
416 struct mbuf *__m = __rxs->rxs_mbuf; \
417 \
418 __rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
419 (mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
420 __rxd->dr_baddrh = 0; \
421 __rxd->dr_len = 0; \
422 __rxd->dr_cksum = 0; \
423 __rxd->dr_status = 0; \
424 __rxd->dr_errors = 0; \
425 __rxd->dr_special = 0; \
426 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
427 \
428 CSR_WRITE((sc), DGE_RDT, (x)); \
429 } while (/*CONSTCOND*/0)
430 #else
431 #define DGE_INIT_RXDESC(sc, x) \
432 do { \
433 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
434 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
435 struct mbuf *__m = __rxs->rxs_mbuf; \
436 \
437 /* \
438 * Note: We scoot the packet forward 2 bytes in the buffer \
439 * so that the payload after the Ethernet header is aligned \
440 * to a 4-byte boundary. \
441 * \
442 * XXX BRAINDAMAGE ALERT! \
443 * The stupid chip uses the same size for every buffer, which \
444 * is set in the Receive Control register. We are using the 2K \
445 * size option, but what we REALLY want is (2K - 2)! For this \
446 * reason, we can't "scoot" packets longer than the standard \
447 * Ethernet MTU. On strict-alignment platforms, if the total \
448 * size exceeds (2K - 2) we set align_tweak to 0 and let \
449 * the upper layer copy the headers. \
450 */ \
451 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
452 \
453 __rxd->dr_baddrl = \
454 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
455 (sc)->sc_align_tweak); \
456 __rxd->dr_baddrh = 0; \
457 __rxd->dr_len = 0; \
458 __rxd->dr_cksum = 0; \
459 __rxd->dr_status = 0; \
460 __rxd->dr_errors = 0; \
461 __rxd->dr_special = 0; \
462 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
463 \
464 CSR_WRITE((sc), DGE_RDT, (x)); \
465 } while (/*CONSTCOND*/0)
466 #endif
467
468 #ifdef DGE_OFFBYONE_RXBUG
469 /*
470 * Allocation constants. Much memory may be used for this.
471 */
472 #ifndef DGE_BUFFER_SIZE
473 #define DGE_BUFFER_SIZE DGE_MAX_MTU
474 #endif
475 #define DGE_NBUFFERS (4*DGE_NRXDESC)
476 #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
477
478 struct rxbugentry {
479 SLIST_ENTRY(rxbugentry) rb_entry;
480 int rb_slot;
481 };
482
483 static int
484 dge_alloc_rcvmem(struct dge_softc *sc)
485 {
486 caddr_t ptr, kva;
487 bus_dma_segment_t seg;
488 int i, rseg, state, error;
489 struct rxbugentry *entry;
490
491 state = error = 0;
492
493 if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
494 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
495 printf("%s: can't alloc rx buffers\n", sc->sc_dev.dv_xname);
496 return ENOBUFS;
497 }
498
499 state = 1;
500 if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, &kva,
501 BUS_DMA_NOWAIT)) {
502 printf("%s: can't map DMA buffers (%d bytes)\n",
503 sc->sc_dev.dv_xname, (int)DGE_RXMEM);
504 error = ENOBUFS;
505 goto out;
506 }
507
508 state = 2;
509 if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
510 BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
511 printf("%s: can't create DMA map\n", sc->sc_dev.dv_xname);
512 error = ENOBUFS;
513 goto out;
514 }
515
516 state = 3;
517 if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
518 kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
519 printf("%s: can't load DMA map\n", sc->sc_dev.dv_xname);
520 error = ENOBUFS;
521 goto out;
522 }
523
524 state = 4;
525 sc->sc_bugbuf = (caddr_t)kva;
526 SLIST_INIT(&sc->sc_buglist);
527
528 /*
529 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
530 * in an array.
531 */
532 ptr = sc->sc_bugbuf;
533 if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
534 M_DEVBUF, M_NOWAIT)) == NULL) {
535 error = ENOBUFS;
536 goto out;
537 }
538 sc->sc_entry = entry;
539 for (i = 0; i < DGE_NBUFFERS; i++) {
540 entry[i].rb_slot = i;
541 SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
542 }
543 out:
544 if (error != 0) {
545 switch (state) {
546 case 4:
547 bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
548 case 3:
549 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
550 case 2:
551 bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
552 case 1:
553 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
554 break;
555 default:
556 break;
557 }
558 }
559
560 return error;
561 }
562
563 /*
564 * Allocate a jumbo buffer.
565 */
566 static void *
567 dge_getbuf(struct dge_softc *sc)
568 {
569 struct rxbugentry *entry;
570
571 entry = SLIST_FIRST(&sc->sc_buglist);
572
573 if (entry == NULL) {
574 printf("%s: no free RX buffers\n", sc->sc_dev.dv_xname);
575 return(NULL);
576 }
577
578 SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
579 return sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
580 }
581
582 /*
583 * Release a jumbo buffer.
584 */
585 static void
586 dge_freebuf(struct mbuf *m, caddr_t buf, size_t size, void *arg)
587 {
588 struct rxbugentry *entry;
589 struct dge_softc *sc;
590 int i, s;
591
592 /* Extract the softc struct pointer. */
593 sc = (struct dge_softc *)arg;
594
595 if (sc == NULL)
596 panic("dge_freebuf: can't find softc pointer!");
597
598 /* calculate the slot this buffer belongs to */
599
600 i = (buf - sc->sc_bugbuf) / DGE_BUFFER_SIZE;
601
602 if ((i < 0) || (i >= DGE_NBUFFERS))
603 panic("dge_freebuf: asked to free buffer %d!", i);
604
605 s = splvm();
606 entry = sc->sc_entry + i;
607 SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
608
609 if (__predict_true(m != NULL))
610 pool_cache_put(&mbpool_cache, m);
611 splx(s);
612 }
613 #endif
614
615 static void dge_start(struct ifnet *);
616 static void dge_watchdog(struct ifnet *);
617 static int dge_ioctl(struct ifnet *, u_long, caddr_t);
618 static int dge_init(struct ifnet *);
619 static void dge_stop(struct ifnet *, int);
620
621 static void dge_shutdown(void *);
622
623 static void dge_reset(struct dge_softc *);
624 static void dge_rxdrain(struct dge_softc *);
625 static int dge_add_rxbuf(struct dge_softc *, int);
626
627 static void dge_set_filter(struct dge_softc *);
628
629 static int dge_intr(void *);
630 static void dge_txintr(struct dge_softc *);
631 static void dge_rxintr(struct dge_softc *);
632 static void dge_linkintr(struct dge_softc *, uint32_t);
633
634 static int dge_match(struct device *, struct cfdata *, void *);
635 static void dge_attach(struct device *, struct device *, void *);
636
637 static int dge_read_eeprom(struct dge_softc *sc);
638 static int dge_eeprom_clockin(struct dge_softc *sc);
639 static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
640 static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
641 static int dge_xgmii_mediachange(struct ifnet *);
642 static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
643 static void dge_xgmii_reset(struct dge_softc *);
644 static void dge_xgmii_writereg(struct device *, int, int, int);
645
646
647 CFATTACH_DECL(dge, sizeof(struct dge_softc),
648 dge_match, dge_attach, NULL, NULL);
649
650 #ifdef DGE_EVENT_COUNTERS
651 #if DGE_NTXSEGS > 100
652 #error Update dge_txseg_evcnt_names
653 #endif
654 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
655 #endif /* DGE_EVENT_COUNTERS */
656
657 static int
658 dge_match(struct device *parent, struct cfdata *cf, void *aux)
659 {
660 struct pci_attach_args *pa = aux;
661
662 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
663 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
664 return (1);
665
666 return (0);
667 }
668
669 static void
670 dge_attach(struct device *parent, struct device *self, void *aux)
671 {
672 struct dge_softc *sc = (void *) self;
673 struct pci_attach_args *pa = aux;
674 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
675 pci_chipset_tag_t pc = pa->pa_pc;
676 pci_intr_handle_t ih;
677 const char *intrstr = NULL;
678 bus_dma_segment_t seg;
679 int i, rseg, error;
680 uint8_t enaddr[ETHER_ADDR_LEN];
681 pcireg_t preg, memtype;
682 uint32_t reg;
683
684 sc->sc_dmat = pa->pa_dmat;
685 sc->sc_pc = pa->pa_pc;
686 sc->sc_pt = pa->pa_tag;
687
688 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
689 aprint_naive(": Ethernet controller\n");
690 aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
691
692 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
693 if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
694 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
695 aprint_error("%s: unable to map device registers\n",
696 sc->sc_dev.dv_xname);
697 return;
698 }
699
700 /* Enable bus mastering */
701 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
702 preg |= PCI_COMMAND_MASTER_ENABLE;
703 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
704
705 /*
706 * Map and establish our interrupt.
707 */
708 if (pci_intr_map(pa, &ih)) {
709 aprint_error("%s: unable to map interrupt\n",
710 sc->sc_dev.dv_xname);
711 return;
712 }
713 intrstr = pci_intr_string(pc, ih);
714 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
715 if (sc->sc_ih == NULL) {
716 aprint_error("%s: unable to establish interrupt",
717 sc->sc_dev.dv_xname);
718 if (intrstr != NULL)
719 aprint_normal(" at %s", intrstr);
720 aprint_normal("\n");
721 return;
722 }
723 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
724
725 /*
726 * Determine a few things about the bus we're connected to.
727 */
728 reg = CSR_READ(sc, DGE_STATUS);
729 if (reg & STATUS_BUS64)
730 sc->sc_flags |= DGE_F_BUS64;
731
732 sc->sc_flags |= DGE_F_PCIX;
733 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
734 PCI_CAP_PCIX,
735 &sc->sc_pcix_offset, NULL) == 0)
736 aprint_error("%s: unable to find PCIX "
737 "capability\n", sc->sc_dev.dv_xname);
738
739 if (sc->sc_flags & DGE_F_PCIX) {
740 switch (reg & STATUS_PCIX_MSK) {
741 case STATUS_PCIX_66:
742 sc->sc_bus_speed = 66;
743 break;
744 case STATUS_PCIX_100:
745 sc->sc_bus_speed = 100;
746 break;
747 case STATUS_PCIX_133:
748 sc->sc_bus_speed = 133;
749 break;
750 default:
751 aprint_error(
752 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
753 sc->sc_dev.dv_xname,
754 reg & STATUS_PCIX_MSK);
755 sc->sc_bus_speed = 66;
756 }
757 } else
758 sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
759 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
760 (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
761 (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
762
763 /*
764 * Allocate the control data structures, and create and load the
765 * DMA map for it.
766 */
767 if ((error = bus_dmamem_alloc(sc->sc_dmat,
768 sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
769 0)) != 0) {
770 aprint_error(
771 "%s: unable to allocate control data, error = %d\n",
772 sc->sc_dev.dv_xname, error);
773 goto fail_0;
774 }
775
776 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
777 sizeof(struct dge_control_data), (caddr_t *)&sc->sc_control_data,
778 0)) != 0) {
779 aprint_error("%s: unable to map control data, error = %d\n",
780 sc->sc_dev.dv_xname, error);
781 goto fail_1;
782 }
783
784 if ((error = bus_dmamap_create(sc->sc_dmat,
785 sizeof(struct dge_control_data), 1,
786 sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
787 aprint_error("%s: unable to create control data DMA map, "
788 "error = %d\n", sc->sc_dev.dv_xname, error);
789 goto fail_2;
790 }
791
792 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
793 sc->sc_control_data, sizeof(struct dge_control_data), NULL,
794 0)) != 0) {
795 aprint_error(
796 "%s: unable to load control data DMA map, error = %d\n",
797 sc->sc_dev.dv_xname, error);
798 goto fail_3;
799 }
800
801 #ifdef DGE_OFFBYONE_RXBUG
802 if (dge_alloc_rcvmem(sc) != 0)
803 return; /* Already complained */
804 #endif
805 /*
806 * Create the transmit buffer DMA maps.
807 */
808 for (i = 0; i < DGE_TXQUEUELEN; i++) {
809 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
810 DGE_NTXSEGS, MCLBYTES, 0, 0,
811 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
812 aprint_error("%s: unable to create Tx DMA map %d, "
813 "error = %d\n", sc->sc_dev.dv_xname, i, error);
814 goto fail_4;
815 }
816 }
817
818 /*
819 * Create the receive buffer DMA maps.
820 */
821 for (i = 0; i < DGE_NRXDESC; i++) {
822 #ifdef DGE_OFFBYONE_RXBUG
823 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
824 DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
825 #else
826 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
827 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
828 #endif
829 aprint_error("%s: unable to create Rx DMA map %d, "
830 "error = %d\n", sc->sc_dev.dv_xname, i, error);
831 goto fail_5;
832 }
833 sc->sc_rxsoft[i].rxs_mbuf = NULL;
834 }
835
836 /*
837 * Set bits in ctrl0 register.
838 * Should get the software defined pins out of EEPROM?
839 */
840 sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
841 sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
842 CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
843
844 /*
845 * Reset the chip to a known state.
846 */
847 dge_reset(sc);
848
849 /*
850 * Reset the PHY.
851 */
852 dge_xgmii_reset(sc);
853
854 /*
855 * Read in EEPROM data.
856 */
857 if (dge_read_eeprom(sc)) {
858 aprint_error("%s: couldn't read EEPROM\n", sc->sc_dev.dv_xname);
859 return;
860 }
861
862 /*
863 * Get the ethernet address.
864 */
865 enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
866 enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
867 enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
868 enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
869 enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
870 enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
871
872 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
873 ether_sprintf(enaddr));
874
875 /*
876 * Setup media stuff.
877 */
878 ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
879 dge_xgmii_mediastatus);
880 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
881 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
882
883 ifp = &sc->sc_ethercom.ec_if;
884 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
885 ifp->if_softc = sc;
886 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
887 ifp->if_ioctl = dge_ioctl;
888 ifp->if_start = dge_start;
889 ifp->if_watchdog = dge_watchdog;
890 ifp->if_init = dge_init;
891 ifp->if_stop = dge_stop;
892 IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
893 IFQ_SET_READY(&ifp->if_snd);
894
895 sc->sc_ethercom.ec_capabilities |=
896 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
897
898 /*
899 * We can perform TCPv4 and UDPv4 checkums in-bound.
900 */
901 ifp->if_capabilities |=
902 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
903
904 /*
905 * Attach the interface.
906 */
907 if_attach(ifp);
908 ether_ifattach(ifp, enaddr);
909 #if NRND > 0
910 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
911 RND_TYPE_NET, 0);
912 #endif
913
914 #ifdef DGE_EVENT_COUNTERS
915 /* Fix segment event naming */
916 if (dge_txseg_evcnt_names == NULL) {
917 dge_txseg_evcnt_names =
918 malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
919 for (i = 0; i < DGE_NTXSEGS; i++)
920 snprintf((*dge_txseg_evcnt_names)[i],
921 sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
922 }
923
924 /* Attach event counters. */
925 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
926 NULL, sc->sc_dev.dv_xname, "txsstall");
927 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
928 NULL, sc->sc_dev.dv_xname, "txdstall");
929 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
930 NULL, sc->sc_dev.dv_xname, "txforceintr");
931 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
932 NULL, sc->sc_dev.dv_xname, "txdw");
933 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
934 NULL, sc->sc_dev.dv_xname, "txqe");
935 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
936 NULL, sc->sc_dev.dv_xname, "rxintr");
937 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
938 NULL, sc->sc_dev.dv_xname, "linkintr");
939
940 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
941 NULL, sc->sc_dev.dv_xname, "rxipsum");
942 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
943 NULL, sc->sc_dev.dv_xname, "rxtusum");
944 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
945 NULL, sc->sc_dev.dv_xname, "txipsum");
946 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
947 NULL, sc->sc_dev.dv_xname, "txtusum");
948
949 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
950 NULL, sc->sc_dev.dv_xname, "txctx init");
951 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
952 NULL, sc->sc_dev.dv_xname, "txctx hit");
953 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
954 NULL, sc->sc_dev.dv_xname, "txctx miss");
955
956 for (i = 0; i < DGE_NTXSEGS; i++)
957 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
958 NULL, sc->sc_dev.dv_xname, (*dge_txseg_evcnt_names)[i]);
959
960 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
961 NULL, sc->sc_dev.dv_xname, "txdrop");
962
963 #endif /* DGE_EVENT_COUNTERS */
964
965 /*
966 * Make sure the interface is shutdown during reboot.
967 */
968 sc->sc_sdhook = shutdownhook_establish(dge_shutdown, sc);
969 if (sc->sc_sdhook == NULL)
970 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
971 sc->sc_dev.dv_xname);
972 return;
973
974 /*
975 * Free any resources we've allocated during the failed attach
976 * attempt. Do this in reverse order and fall through.
977 */
978 fail_5:
979 for (i = 0; i < DGE_NRXDESC; i++) {
980 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
981 bus_dmamap_destroy(sc->sc_dmat,
982 sc->sc_rxsoft[i].rxs_dmamap);
983 }
984 fail_4:
985 for (i = 0; i < DGE_TXQUEUELEN; i++) {
986 if (sc->sc_txsoft[i].txs_dmamap != NULL)
987 bus_dmamap_destroy(sc->sc_dmat,
988 sc->sc_txsoft[i].txs_dmamap);
989 }
990 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
991 fail_3:
992 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
993 fail_2:
994 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
995 sizeof(struct dge_control_data));
996 fail_1:
997 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
998 fail_0:
999 return;
1000 }
1001
1002 /*
1003 * dge_shutdown:
1004 *
1005 * Make sure the interface is stopped at reboot time.
1006 */
1007 static void
1008 dge_shutdown(void *arg)
1009 {
1010 struct dge_softc *sc = arg;
1011
1012 dge_stop(&sc->sc_ethercom.ec_if, 1);
1013 }
1014
1015 /*
1016 * dge_tx_cksum:
1017 *
1018 * Set up TCP/IP checksumming parameters for the
1019 * specified packet.
1020 */
1021 static int
1022 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1023 {
1024 struct mbuf *m0 = txs->txs_mbuf;
1025 struct dge_ctdes *t;
1026 uint32_t ipcs, tucs;
1027 struct ether_header *eh;
1028 int offset, iphl;
1029 uint8_t fields = 0;
1030
1031 /*
1032 * XXX It would be nice if the mbuf pkthdr had offset
1033 * fields for the protocol headers.
1034 */
1035
1036 eh = mtod(m0, struct ether_header *);
1037 switch (htons(eh->ether_type)) {
1038 case ETHERTYPE_IP:
1039 offset = ETHER_HDR_LEN;
1040 break;
1041
1042 case ETHERTYPE_VLAN:
1043 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1044 break;
1045
1046 default:
1047 /*
1048 * Don't support this protocol or encapsulation.
1049 */
1050 *fieldsp = 0;
1051 return (0);
1052 }
1053
1054 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1055
1056 /*
1057 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1058 * offload feature, if we load the context descriptor, we
1059 * MUST provide valid values for IPCSS and TUCSS fields.
1060 */
1061
1062 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1063 DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1064 fields |= TDESC_POPTS_IXSM;
1065 ipcs = DGE_TCPIP_IPCSS(offset) |
1066 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1067 DGE_TCPIP_IPCSE(offset + iphl - 1);
1068 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1069 /* Use the cached value. */
1070 ipcs = sc->sc_txctx_ipcs;
1071 } else {
1072 /* Just initialize it to the likely value anyway. */
1073 ipcs = DGE_TCPIP_IPCSS(offset) |
1074 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1075 DGE_TCPIP_IPCSE(offset + iphl - 1);
1076 }
1077 DPRINTF(DGE_DEBUG_CKSUM,
1078 ("%s: CKSUM: offset %d ipcs 0x%x\n",
1079 sc->sc_dev.dv_xname, offset, ipcs));
1080
1081 offset += iphl;
1082
1083 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1084 DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1085 fields |= TDESC_POPTS_TXSM;
1086 tucs = DGE_TCPIP_TUCSS(offset) |
1087 DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1088 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1089 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1090 /* Use the cached value. */
1091 tucs = sc->sc_txctx_tucs;
1092 } else {
1093 /* Just initialize it to a valid TCP context. */
1094 tucs = DGE_TCPIP_TUCSS(offset) |
1095 DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1096 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1097 }
1098
1099 DPRINTF(DGE_DEBUG_CKSUM,
1100 ("%s: CKSUM: offset %d tucs 0x%x\n",
1101 sc->sc_dev.dv_xname, offset, tucs));
1102
1103 if (sc->sc_txctx_ipcs == ipcs &&
1104 sc->sc_txctx_tucs == tucs) {
1105 /* Cached context is fine. */
1106 DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1107 } else {
1108 /* Fill in the context descriptor. */
1109 #ifdef DGE_EVENT_COUNTERS
1110 if (sc->sc_txctx_ipcs == 0xffffffff &&
1111 sc->sc_txctx_tucs == 0xffffffff)
1112 DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1113 else
1114 DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1115 #endif
1116 t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1117 t->dc_tcpip_ipcs = htole32(ipcs);
1118 t->dc_tcpip_tucs = htole32(tucs);
1119 t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1120 t->dc_tcpip_seg = 0;
1121 DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1122
1123 sc->sc_txctx_ipcs = ipcs;
1124 sc->sc_txctx_tucs = tucs;
1125
1126 sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1127 txs->txs_ndesc++;
1128 }
1129
1130 *fieldsp = fields;
1131
1132 return (0);
1133 }
1134
1135 /*
1136 * dge_start: [ifnet interface function]
1137 *
1138 * Start packet transmission on the interface.
1139 */
1140 static void
1141 dge_start(struct ifnet *ifp)
1142 {
1143 struct dge_softc *sc = ifp->if_softc;
1144 struct mbuf *m0;
1145 struct dge_txsoft *txs;
1146 bus_dmamap_t dmamap;
1147 int error, nexttx, lasttx = -1, ofree, seg;
1148 uint32_t cksumcmd;
1149 uint8_t cksumfields;
1150
1151 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1152 return;
1153
1154 /*
1155 * Remember the previous number of free descriptors.
1156 */
1157 ofree = sc->sc_txfree;
1158
1159 /*
1160 * Loop through the send queue, setting up transmit descriptors
1161 * until we drain the queue, or use up all available transmit
1162 * descriptors.
1163 */
1164 for (;;) {
1165 /* Grab a packet off the queue. */
1166 IFQ_POLL(&ifp->if_snd, m0);
1167 if (m0 == NULL)
1168 break;
1169
1170 DPRINTF(DGE_DEBUG_TX,
1171 ("%s: TX: have packet to transmit: %p\n",
1172 sc->sc_dev.dv_xname, m0));
1173
1174 /* Get a work queue entry. */
1175 if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1176 dge_txintr(sc);
1177 if (sc->sc_txsfree == 0) {
1178 DPRINTF(DGE_DEBUG_TX,
1179 ("%s: TX: no free job descriptors\n",
1180 sc->sc_dev.dv_xname));
1181 DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1182 break;
1183 }
1184 }
1185
1186 txs = &sc->sc_txsoft[sc->sc_txsnext];
1187 dmamap = txs->txs_dmamap;
1188
1189 /*
1190 * Load the DMA map. If this fails, the packet either
1191 * didn't fit in the allotted number of segments, or we
1192 * were short on resources. For the too-many-segments
1193 * case, we simply report an error and drop the packet,
1194 * since we can't sanely copy a jumbo packet to a single
1195 * buffer.
1196 */
1197 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1198 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1199 if (error) {
1200 if (error == EFBIG) {
1201 DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1202 printf("%s: Tx packet consumes too many "
1203 "DMA segments, dropping...\n",
1204 sc->sc_dev.dv_xname);
1205 IFQ_DEQUEUE(&ifp->if_snd, m0);
1206 m_freem(m0);
1207 continue;
1208 }
1209 /*
1210 * Short on resources, just stop for now.
1211 */
1212 DPRINTF(DGE_DEBUG_TX,
1213 ("%s: TX: dmamap load failed: %d\n",
1214 sc->sc_dev.dv_xname, error));
1215 break;
1216 }
1217
1218 /*
1219 * Ensure we have enough descriptors free to describe
1220 * the packet. Note, we always reserve one descriptor
1221 * at the end of the ring due to the semantics of the
1222 * TDT register, plus one more in the event we need
1223 * to re-load checksum offload context.
1224 */
1225 if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1226 /*
1227 * Not enough free descriptors to transmit this
1228 * packet. We haven't committed anything yet,
1229 * so just unload the DMA map, put the packet
1230 * pack on the queue, and punt. Notify the upper
1231 * layer that there are no more slots left.
1232 */
1233 DPRINTF(DGE_DEBUG_TX,
1234 ("%s: TX: need %d descriptors, have %d\n",
1235 sc->sc_dev.dv_xname, dmamap->dm_nsegs,
1236 sc->sc_txfree - 1));
1237 ifp->if_flags |= IFF_OACTIVE;
1238 bus_dmamap_unload(sc->sc_dmat, dmamap);
1239 DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1240 break;
1241 }
1242
1243 IFQ_DEQUEUE(&ifp->if_snd, m0);
1244
1245 /*
1246 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1247 */
1248
1249 /* Sync the DMA map. */
1250 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1251 BUS_DMASYNC_PREWRITE);
1252
1253 DPRINTF(DGE_DEBUG_TX,
1254 ("%s: TX: packet has %d DMA segments\n",
1255 sc->sc_dev.dv_xname, dmamap->dm_nsegs));
1256
1257 DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1258
1259 /*
1260 * Store a pointer to the packet so that we can free it
1261 * later.
1262 *
1263 * Initially, we consider the number of descriptors the
1264 * packet uses the number of DMA segments. This may be
1265 * incremented by 1 if we do checksum offload (a descriptor
1266 * is used to set the checksum context).
1267 */
1268 txs->txs_mbuf = m0;
1269 txs->txs_firstdesc = sc->sc_txnext;
1270 txs->txs_ndesc = dmamap->dm_nsegs;
1271
1272 /*
1273 * Set up checksum offload parameters for
1274 * this packet.
1275 */
1276 if (m0->m_pkthdr.csum_flags &
1277 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1278 if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1279 /* Error message already displayed. */
1280 bus_dmamap_unload(sc->sc_dmat, dmamap);
1281 continue;
1282 }
1283 } else {
1284 cksumfields = 0;
1285 }
1286
1287 cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1288
1289 /*
1290 * Initialize the transmit descriptor.
1291 */
1292 for (nexttx = sc->sc_txnext, seg = 0;
1293 seg < dmamap->dm_nsegs;
1294 seg++, nexttx = DGE_NEXTTX(nexttx)) {
1295 /*
1296 * Note: we currently only use 32-bit DMA
1297 * addresses.
1298 */
1299 sc->sc_txdescs[nexttx].dt_baddrh = 0;
1300 sc->sc_txdescs[nexttx].dt_baddrl =
1301 htole32(dmamap->dm_segs[seg].ds_addr);
1302 sc->sc_txdescs[nexttx].dt_ctl =
1303 htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1304 sc->sc_txdescs[nexttx].dt_status = 0;
1305 sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1306 sc->sc_txdescs[nexttx].dt_vlan = 0;
1307 lasttx = nexttx;
1308
1309 DPRINTF(DGE_DEBUG_TX,
1310 ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1311 sc->sc_dev.dv_xname, nexttx,
1312 le32toh(dmamap->dm_segs[seg].ds_addr),
1313 le32toh(dmamap->dm_segs[seg].ds_len)));
1314 }
1315
1316 KASSERT(lasttx != -1);
1317
1318 /*
1319 * Set up the command byte on the last descriptor of
1320 * the packet. If we're in the interrupt delay window,
1321 * delay the interrupt.
1322 */
1323 sc->sc_txdescs[lasttx].dt_ctl |=
1324 htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1325
1326 txs->txs_lastdesc = lasttx;
1327
1328 DPRINTF(DGE_DEBUG_TX,
1329 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1330 lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1331
1332 /* Sync the descriptors we're using. */
1333 DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1334 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1335
1336 /* Give the packet to the chip. */
1337 CSR_WRITE(sc, DGE_TDT, nexttx);
1338
1339 DPRINTF(DGE_DEBUG_TX,
1340 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1341
1342 DPRINTF(DGE_DEBUG_TX,
1343 ("%s: TX: finished transmitting packet, job %d\n",
1344 sc->sc_dev.dv_xname, sc->sc_txsnext));
1345
1346 /* Advance the tx pointer. */
1347 sc->sc_txfree -= txs->txs_ndesc;
1348 sc->sc_txnext = nexttx;
1349
1350 sc->sc_txsfree--;
1351 sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1352
1353 #if NBPFILTER > 0
1354 /* Pass the packet to any BPF listeners. */
1355 if (ifp->if_bpf)
1356 bpf_mtap(ifp->if_bpf, m0);
1357 #endif /* NBPFILTER > 0 */
1358 }
1359
1360 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1361 /* No more slots; notify upper layer. */
1362 ifp->if_flags |= IFF_OACTIVE;
1363 }
1364
1365 if (sc->sc_txfree != ofree) {
1366 /* Set a watchdog timer in case the chip flakes out. */
1367 ifp->if_timer = 5;
1368 }
1369 }
1370
1371 /*
1372 * dge_watchdog: [ifnet interface function]
1373 *
1374 * Watchdog timer handler.
1375 */
1376 static void
1377 dge_watchdog(struct ifnet *ifp)
1378 {
1379 struct dge_softc *sc = ifp->if_softc;
1380
1381 /*
1382 * Since we're using delayed interrupts, sweep up
1383 * before we report an error.
1384 */
1385 dge_txintr(sc);
1386
1387 if (sc->sc_txfree != DGE_NTXDESC) {
1388 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1389 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1390 sc->sc_txnext);
1391 ifp->if_oerrors++;
1392
1393 /* Reset the interface. */
1394 (void) dge_init(ifp);
1395 }
1396
1397 /* Try to get more packets going. */
1398 dge_start(ifp);
1399 }
1400
1401 /*
1402 * dge_ioctl: [ifnet interface function]
1403 *
1404 * Handle control requests from the operator.
1405 */
1406 static int
1407 dge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1408 {
1409 struct dge_softc *sc = ifp->if_softc;
1410 struct ifreq *ifr = (struct ifreq *) data;
1411 pcireg_t preg;
1412 int s, error, mmrbc;
1413
1414 s = splnet();
1415
1416 switch (cmd) {
1417 case SIOCSIFMEDIA:
1418 case SIOCGIFMEDIA:
1419 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1420 break;
1421
1422 case SIOCSIFMTU:
1423 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU) {
1424 error = EINVAL;
1425 } else {
1426 error = 0;
1427 ifp->if_mtu = ifr->ifr_mtu;
1428 if (ifp->if_flags & IFF_UP)
1429 error = (*ifp->if_init)(ifp);
1430 }
1431 break;
1432
1433 case SIOCSIFFLAGS:
1434 /* extract link flags */
1435 if ((ifp->if_flags & IFF_LINK0) == 0 &&
1436 (ifp->if_flags & IFF_LINK1) == 0)
1437 mmrbc = PCIX_MMRBC_512;
1438 else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1439 (ifp->if_flags & IFF_LINK1) != 0)
1440 mmrbc = PCIX_MMRBC_1024;
1441 else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1442 (ifp->if_flags & IFF_LINK1) == 0)
1443 mmrbc = PCIX_MMRBC_2048;
1444 else
1445 mmrbc = PCIX_MMRBC_4096;
1446 if (mmrbc != sc->sc_mmrbc) {
1447 preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1448 preg &= ~PCIX_MMRBC_MSK;
1449 preg |= mmrbc;
1450 pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1451 sc->sc_mmrbc = mmrbc;
1452 }
1453 /* FALLTHROUGH */
1454 default:
1455 error = ether_ioctl(ifp, cmd, data);
1456 if (error == ENETRESET) {
1457 /*
1458 * Multicast list has changed; set the hardware filter
1459 * accordingly.
1460 */
1461 if (ifp->if_flags & IFF_RUNNING)
1462 dge_set_filter(sc);
1463 error = 0;
1464 }
1465 break;
1466 }
1467
1468 /* Try to get more packets going. */
1469 dge_start(ifp);
1470
1471 splx(s);
1472 return (error);
1473 }
1474
1475 /*
1476 * dge_intr:
1477 *
1478 * Interrupt service routine.
1479 */
1480 static int
1481 dge_intr(void *arg)
1482 {
1483 struct dge_softc *sc = arg;
1484 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1485 uint32_t icr;
1486 int wantinit, handled = 0;
1487
1488 for (wantinit = 0; wantinit == 0;) {
1489 icr = CSR_READ(sc, DGE_ICR);
1490 if ((icr & sc->sc_icr) == 0)
1491 break;
1492
1493 #if 0 /*NRND > 0*/
1494 if (RND_ENABLED(&sc->rnd_source))
1495 rnd_add_uint32(&sc->rnd_source, icr);
1496 #endif
1497
1498 handled = 1;
1499
1500 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1501 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1502 DPRINTF(DGE_DEBUG_RX,
1503 ("%s: RX: got Rx intr 0x%08x\n",
1504 sc->sc_dev.dv_xname,
1505 icr & (ICR_RXDMT0|ICR_RXT0)));
1506 DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1507 }
1508 #endif
1509 dge_rxintr(sc);
1510
1511 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1512 if (icr & ICR_TXDW) {
1513 DPRINTF(DGE_DEBUG_TX,
1514 ("%s: TX: got TXDW interrupt\n",
1515 sc->sc_dev.dv_xname));
1516 DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1517 }
1518 if (icr & ICR_TXQE)
1519 DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1520 #endif
1521 dge_txintr(sc);
1522
1523 if (icr & (ICR_LSC|ICR_RXSEQ)) {
1524 DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1525 dge_linkintr(sc, icr);
1526 }
1527
1528 if (icr & ICR_RXO) {
1529 printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
1530 wantinit = 1;
1531 }
1532 }
1533
1534 if (handled) {
1535 if (wantinit)
1536 dge_init(ifp);
1537
1538 /* Try to get more packets going. */
1539 dge_start(ifp);
1540 }
1541
1542 return (handled);
1543 }
1544
1545 /*
1546 * dge_txintr:
1547 *
1548 * Helper; handle transmit interrupts.
1549 */
1550 static void
1551 dge_txintr(struct dge_softc *sc)
1552 {
1553 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1554 struct dge_txsoft *txs;
1555 uint8_t status;
1556 int i;
1557
1558 ifp->if_flags &= ~IFF_OACTIVE;
1559
1560 /*
1561 * Go through the Tx list and free mbufs for those
1562 * frames which have been transmitted.
1563 */
1564 for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1565 i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1566 txs = &sc->sc_txsoft[i];
1567
1568 DPRINTF(DGE_DEBUG_TX,
1569 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
1570
1571 DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1572 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1573
1574 status =
1575 sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1576 if ((status & TDESC_STA_DD) == 0) {
1577 DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1578 BUS_DMASYNC_PREREAD);
1579 break;
1580 }
1581
1582 DPRINTF(DGE_DEBUG_TX,
1583 ("%s: TX: job %d done: descs %d..%d\n",
1584 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
1585 txs->txs_lastdesc));
1586
1587 ifp->if_opackets++;
1588 sc->sc_txfree += txs->txs_ndesc;
1589 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1590 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1591 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1592 m_freem(txs->txs_mbuf);
1593 txs->txs_mbuf = NULL;
1594 }
1595
1596 /* Update the dirty transmit buffer pointer. */
1597 sc->sc_txsdirty = i;
1598 DPRINTF(DGE_DEBUG_TX,
1599 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
1600
1601 /*
1602 * If there are no more pending transmissions, cancel the watchdog
1603 * timer.
1604 */
1605 if (sc->sc_txsfree == DGE_TXQUEUELEN)
1606 ifp->if_timer = 0;
1607 }
1608
1609 /*
1610 * dge_rxintr:
1611 *
1612 * Helper; handle receive interrupts.
1613 */
1614 static void
1615 dge_rxintr(struct dge_softc *sc)
1616 {
1617 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1618 struct dge_rxsoft *rxs;
1619 struct mbuf *m;
1620 int i, len;
1621 uint8_t status, errors;
1622
1623 for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1624 rxs = &sc->sc_rxsoft[i];
1625
1626 DPRINTF(DGE_DEBUG_RX,
1627 ("%s: RX: checking descriptor %d\n",
1628 sc->sc_dev.dv_xname, i));
1629
1630 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1631
1632 status = sc->sc_rxdescs[i].dr_status;
1633 errors = sc->sc_rxdescs[i].dr_errors;
1634 len = le16toh(sc->sc_rxdescs[i].dr_len);
1635
1636 if ((status & RDESC_STS_DD) == 0) {
1637 /*
1638 * We have processed all of the receive descriptors.
1639 */
1640 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1641 break;
1642 }
1643
1644 if (__predict_false(sc->sc_rxdiscard)) {
1645 DPRINTF(DGE_DEBUG_RX,
1646 ("%s: RX: discarding contents of descriptor %d\n",
1647 sc->sc_dev.dv_xname, i));
1648 DGE_INIT_RXDESC(sc, i);
1649 if (status & RDESC_STS_EOP) {
1650 /* Reset our state. */
1651 DPRINTF(DGE_DEBUG_RX,
1652 ("%s: RX: resetting rxdiscard -> 0\n",
1653 sc->sc_dev.dv_xname));
1654 sc->sc_rxdiscard = 0;
1655 }
1656 continue;
1657 }
1658
1659 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1660 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1661
1662 m = rxs->rxs_mbuf;
1663
1664 /*
1665 * Add a new receive buffer to the ring.
1666 */
1667 if (dge_add_rxbuf(sc, i) != 0) {
1668 /*
1669 * Failed, throw away what we've done so
1670 * far, and discard the rest of the packet.
1671 */
1672 ifp->if_ierrors++;
1673 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1674 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1675 DGE_INIT_RXDESC(sc, i);
1676 if ((status & RDESC_STS_EOP) == 0)
1677 sc->sc_rxdiscard = 1;
1678 if (sc->sc_rxhead != NULL)
1679 m_freem(sc->sc_rxhead);
1680 DGE_RXCHAIN_RESET(sc);
1681 DPRINTF(DGE_DEBUG_RX,
1682 ("%s: RX: Rx buffer allocation failed, "
1683 "dropping packet%s\n", sc->sc_dev.dv_xname,
1684 sc->sc_rxdiscard ? " (discard)" : ""));
1685 continue;
1686 }
1687 DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1688
1689 DGE_RXCHAIN_LINK(sc, m);
1690
1691 m->m_len = len;
1692
1693 DPRINTF(DGE_DEBUG_RX,
1694 ("%s: RX: buffer at %p len %d\n",
1695 sc->sc_dev.dv_xname, m->m_data, len));
1696
1697 /*
1698 * If this is not the end of the packet, keep
1699 * looking.
1700 */
1701 if ((status & RDESC_STS_EOP) == 0) {
1702 sc->sc_rxlen += len;
1703 DPRINTF(DGE_DEBUG_RX,
1704 ("%s: RX: not yet EOP, rxlen -> %d\n",
1705 sc->sc_dev.dv_xname, sc->sc_rxlen));
1706 continue;
1707 }
1708
1709 /*
1710 * Okay, we have the entire packet now...
1711 */
1712 *sc->sc_rxtailp = NULL;
1713 m = sc->sc_rxhead;
1714 len += sc->sc_rxlen;
1715
1716 DGE_RXCHAIN_RESET(sc);
1717
1718 DPRINTF(DGE_DEBUG_RX,
1719 ("%s: RX: have entire packet, len -> %d\n",
1720 sc->sc_dev.dv_xname, len));
1721
1722 /*
1723 * If an error occurred, update stats and drop the packet.
1724 */
1725 if (errors &
1726 (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
1727 ifp->if_ierrors++;
1728 if (errors & RDESC_ERR_SE)
1729 printf("%s: symbol error\n",
1730 sc->sc_dev.dv_xname);
1731 else if (errors & RDESC_ERR_P)
1732 printf("%s: parity error\n",
1733 sc->sc_dev.dv_xname);
1734 else if (errors & RDESC_ERR_CE)
1735 printf("%s: CRC error\n",
1736 sc->sc_dev.dv_xname);
1737 m_freem(m);
1738 continue;
1739 }
1740
1741 /*
1742 * No errors. Receive the packet.
1743 */
1744 m->m_pkthdr.rcvif = ifp;
1745 m->m_pkthdr.len = len;
1746
1747 /*
1748 * Set up checksum info for this packet.
1749 */
1750 if (status & RDESC_STS_IPCS) {
1751 DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1752 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1753 if (errors & RDESC_ERR_IPE)
1754 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1755 }
1756 if (status & RDESC_STS_TCPCS) {
1757 /*
1758 * Note: we don't know if this was TCP or UDP,
1759 * so we just set both bits, and expect the
1760 * upper layers to deal.
1761 */
1762 DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1763 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
1764 if (errors & RDESC_ERR_TCPE)
1765 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1766 }
1767
1768 ifp->if_ipackets++;
1769
1770 #if NBPFILTER > 0
1771 /* Pass this up to any BPF listeners. */
1772 if (ifp->if_bpf)
1773 bpf_mtap(ifp->if_bpf, m);
1774 #endif /* NBPFILTER > 0 */
1775
1776 /* Pass it on. */
1777 (*ifp->if_input)(ifp, m);
1778 }
1779
1780 /* Update the receive pointer. */
1781 sc->sc_rxptr = i;
1782
1783 DPRINTF(DGE_DEBUG_RX,
1784 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
1785 }
1786
1787 /*
1788 * dge_linkintr:
1789 *
1790 * Helper; handle link interrupts.
1791 */
1792 static void
1793 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1794 {
1795 uint32_t status;
1796
1797 if (icr & ICR_LSC) {
1798 status = CSR_READ(sc, DGE_STATUS);
1799 if (status & STATUS_LINKUP) {
1800 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1801 sc->sc_dev.dv_xname));
1802 } else {
1803 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1804 sc->sc_dev.dv_xname));
1805 }
1806 } else if (icr & ICR_RXSEQ) {
1807 DPRINTF(DGE_DEBUG_LINK,
1808 ("%s: LINK: Receive sequence error\n",
1809 sc->sc_dev.dv_xname));
1810 }
1811 /* XXX - fix errata */
1812 }
1813
1814 /*
1815 * dge_reset:
1816 *
1817 * Reset the i82597 chip.
1818 */
1819 static void
1820 dge_reset(struct dge_softc *sc)
1821 {
1822 int i;
1823
1824 /*
1825 * Do a chip reset.
1826 */
1827 CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1828
1829 delay(10000);
1830
1831 for (i = 0; i < 1000; i++) {
1832 if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1833 break;
1834 delay(20);
1835 }
1836
1837 if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1838 printf("%s: WARNING: reset failed to complete\n",
1839 sc->sc_dev.dv_xname);
1840 /*
1841 * Reset the EEPROM logic.
1842 * This will cause the chip to reread its default values,
1843 * which doesn't happen otherwise (errata).
1844 */
1845 CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1846 delay(10000);
1847 }
1848
1849 /*
1850 * dge_init: [ifnet interface function]
1851 *
1852 * Initialize the interface. Must be called at splnet().
1853 */
1854 static int
1855 dge_init(struct ifnet *ifp)
1856 {
1857 struct dge_softc *sc = ifp->if_softc;
1858 struct dge_rxsoft *rxs;
1859 int i, error = 0;
1860 uint32_t reg;
1861
1862 /*
1863 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1864 * There is a small but measurable benefit to avoiding the adjusment
1865 * of the descriptor so that the headers are aligned, for normal mtu,
1866 * on such platforms. One possibility is that the DMA itself is
1867 * slightly more efficient if the front of the entire packet (instead
1868 * of the front of the headers) is aligned.
1869 *
1870 * Note we must always set align_tweak to 0 if we are using
1871 * jumbo frames.
1872 */
1873 #ifdef __NO_STRICT_ALIGNMENT
1874 sc->sc_align_tweak = 0;
1875 #else
1876 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1877 sc->sc_align_tweak = 0;
1878 else
1879 sc->sc_align_tweak = 2;
1880 #endif /* __NO_STRICT_ALIGNMENT */
1881
1882 /* Cancel any pending I/O. */
1883 dge_stop(ifp, 0);
1884
1885 /* Reset the chip to a known state. */
1886 dge_reset(sc);
1887
1888 /* Initialize the transmit descriptor ring. */
1889 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1890 DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1891 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1892 sc->sc_txfree = DGE_NTXDESC;
1893 sc->sc_txnext = 0;
1894
1895 sc->sc_txctx_ipcs = 0xffffffff;
1896 sc->sc_txctx_tucs = 0xffffffff;
1897
1898 CSR_WRITE(sc, DGE_TDBAH, 0);
1899 CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1900 CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1901 CSR_WRITE(sc, DGE_TDH, 0);
1902 CSR_WRITE(sc, DGE_TDT, 0);
1903 CSR_WRITE(sc, DGE_TIDV, TIDV);
1904
1905 #if 0
1906 CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1907 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1908 #endif
1909 CSR_WRITE(sc, DGE_RXDCTL,
1910 RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1911 RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1912 RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1913
1914 /* Initialize the transmit job descriptors. */
1915 for (i = 0; i < DGE_TXQUEUELEN; i++)
1916 sc->sc_txsoft[i].txs_mbuf = NULL;
1917 sc->sc_txsfree = DGE_TXQUEUELEN;
1918 sc->sc_txsnext = 0;
1919 sc->sc_txsdirty = 0;
1920
1921 /*
1922 * Initialize the receive descriptor and receive job
1923 * descriptor rings.
1924 */
1925 CSR_WRITE(sc, DGE_RDBAH, 0);
1926 CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1927 CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1928 CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1929 CSR_WRITE(sc, DGE_RDT, 0);
1930 CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1931 CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1932 CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1933
1934 for (i = 0; i < DGE_NRXDESC; i++) {
1935 rxs = &sc->sc_rxsoft[i];
1936 if (rxs->rxs_mbuf == NULL) {
1937 if ((error = dge_add_rxbuf(sc, i)) != 0) {
1938 printf("%s: unable to allocate or map rx "
1939 "buffer %d, error = %d\n",
1940 sc->sc_dev.dv_xname, i, error);
1941 /*
1942 * XXX Should attempt to run with fewer receive
1943 * XXX buffers instead of just failing.
1944 */
1945 dge_rxdrain(sc);
1946 goto out;
1947 }
1948 }
1949 DGE_INIT_RXDESC(sc, i);
1950 }
1951 sc->sc_rxptr = DGE_RXSPACE;
1952 sc->sc_rxdiscard = 0;
1953 DGE_RXCHAIN_RESET(sc);
1954
1955 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1956 sc->sc_ctrl0 |= CTRL0_JFE;
1957 CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1958 }
1959
1960 /* Write the control registers. */
1961 CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1962
1963 /*
1964 * Set up checksum offload parameters.
1965 */
1966 reg = CSR_READ(sc, DGE_RXCSUM);
1967 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1968 reg |= RXCSUM_IPOFL;
1969 else
1970 reg &= ~RXCSUM_IPOFL;
1971 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
1972 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
1973 else {
1974 reg &= ~RXCSUM_TUOFL;
1975 if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
1976 reg &= ~RXCSUM_IPOFL;
1977 }
1978 CSR_WRITE(sc, DGE_RXCSUM, reg);
1979
1980 /*
1981 * Set up the interrupt registers.
1982 */
1983 CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
1984 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
1985 ICR_RXO | ICR_RXT0;
1986
1987 CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
1988
1989 /*
1990 * Set up the transmit control register.
1991 */
1992 sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
1993 CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
1994
1995 /*
1996 * Set up the receive control register; we actually program
1997 * the register when we set the receive filter. Use multicast
1998 * address offset type 0.
1999 */
2000 sc->sc_mchash_type = 0;
2001
2002 sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2003 RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2004
2005 #ifdef DGE_OFFBYONE_RXBUG
2006 sc->sc_rctl |= RCTL_BSIZE_16k;
2007 #else
2008 switch(MCLBYTES) {
2009 case 2048:
2010 sc->sc_rctl |= RCTL_BSIZE_2k;
2011 break;
2012 case 4096:
2013 sc->sc_rctl |= RCTL_BSIZE_4k;
2014 break;
2015 case 8192:
2016 sc->sc_rctl |= RCTL_BSIZE_8k;
2017 break;
2018 case 16384:
2019 sc->sc_rctl |= RCTL_BSIZE_16k;
2020 break;
2021 default:
2022 panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2023 }
2024 #endif
2025
2026 /* Set the receive filter. */
2027 /* Also sets RCTL */
2028 dge_set_filter(sc);
2029
2030 /* ...all done! */
2031 ifp->if_flags |= IFF_RUNNING;
2032 ifp->if_flags &= ~IFF_OACTIVE;
2033
2034 out:
2035 if (error)
2036 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2037 return (error);
2038 }
2039
2040 /*
2041 * dge_rxdrain:
2042 *
2043 * Drain the receive queue.
2044 */
2045 static void
2046 dge_rxdrain(struct dge_softc *sc)
2047 {
2048 struct dge_rxsoft *rxs;
2049 int i;
2050
2051 for (i = 0; i < DGE_NRXDESC; i++) {
2052 rxs = &sc->sc_rxsoft[i];
2053 if (rxs->rxs_mbuf != NULL) {
2054 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2055 m_freem(rxs->rxs_mbuf);
2056 rxs->rxs_mbuf = NULL;
2057 }
2058 }
2059 }
2060
2061 /*
2062 * dge_stop: [ifnet interface function]
2063 *
2064 * Stop transmission on the interface.
2065 */
2066 static void
2067 dge_stop(struct ifnet *ifp, int disable)
2068 {
2069 struct dge_softc *sc = ifp->if_softc;
2070 struct dge_txsoft *txs;
2071 int i;
2072
2073 /* Stop the transmit and receive processes. */
2074 CSR_WRITE(sc, DGE_TCTL, 0);
2075 CSR_WRITE(sc, DGE_RCTL, 0);
2076
2077 /* Release any queued transmit buffers. */
2078 for (i = 0; i < DGE_TXQUEUELEN; i++) {
2079 txs = &sc->sc_txsoft[i];
2080 if (txs->txs_mbuf != NULL) {
2081 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2082 m_freem(txs->txs_mbuf);
2083 txs->txs_mbuf = NULL;
2084 }
2085 }
2086
2087 if (disable)
2088 dge_rxdrain(sc);
2089
2090 /* Mark the interface as down and cancel the watchdog timer. */
2091 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2092 ifp->if_timer = 0;
2093 }
2094
2095 /*
2096 * dge_add_rxbuf:
2097 *
2098 * Add a receive buffer to the indiciated descriptor.
2099 */
2100 static int
2101 dge_add_rxbuf(struct dge_softc *sc, int idx)
2102 {
2103 struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2104 struct mbuf *m;
2105 int error;
2106 #ifdef DGE_OFFBYONE_RXBUG
2107 caddr_t buf;
2108 #endif
2109
2110 MGETHDR(m, M_DONTWAIT, MT_DATA);
2111 if (m == NULL)
2112 return (ENOBUFS);
2113
2114 #ifdef DGE_OFFBYONE_RXBUG
2115 if ((buf = dge_getbuf(sc)) == NULL)
2116 return ENOBUFS;
2117
2118 m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2119 MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2120 m->m_flags |= M_EXT_RW;
2121
2122 if (rxs->rxs_mbuf != NULL)
2123 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2124 rxs->rxs_mbuf = m;
2125
2126 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2127 DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
2128 #else
2129 MCLGET(m, M_DONTWAIT);
2130 if ((m->m_flags & M_EXT) == 0) {
2131 m_freem(m);
2132 return (ENOBUFS);
2133 }
2134
2135 if (rxs->rxs_mbuf != NULL)
2136 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2137
2138 rxs->rxs_mbuf = m;
2139
2140 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2141 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2142 BUS_DMA_READ|BUS_DMA_NOWAIT);
2143 #endif
2144 if (error) {
2145 printf("%s: unable to load rx DMA map %d, error = %d\n",
2146 sc->sc_dev.dv_xname, idx, error);
2147 panic("dge_add_rxbuf"); /* XXX XXX XXX */
2148 }
2149 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2150 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2151
2152 return (0);
2153 }
2154
2155 /*
2156 * dge_set_ral:
2157 *
2158 * Set an entry in the receive address list.
2159 */
2160 static void
2161 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2162 {
2163 uint32_t ral_lo, ral_hi;
2164
2165 if (enaddr != NULL) {
2166 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2167 (enaddr[3] << 24);
2168 ral_hi = enaddr[4] | (enaddr[5] << 8);
2169 ral_hi |= RAH_AV;
2170 } else {
2171 ral_lo = 0;
2172 ral_hi = 0;
2173 }
2174 CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2175 CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2176 }
2177
2178 /*
2179 * dge_mchash:
2180 *
2181 * Compute the hash of the multicast address for the 4096-bit
2182 * multicast filter.
2183 */
2184 static uint32_t
2185 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2186 {
2187 static const int lo_shift[4] = { 4, 3, 2, 0 };
2188 static const int hi_shift[4] = { 4, 5, 6, 8 };
2189 uint32_t hash;
2190
2191 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2192 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2193
2194 return (hash & 0xfff);
2195 }
2196
2197 /*
2198 * dge_set_filter:
2199 *
2200 * Set up the receive filter.
2201 */
2202 static void
2203 dge_set_filter(struct dge_softc *sc)
2204 {
2205 struct ethercom *ec = &sc->sc_ethercom;
2206 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2207 struct ether_multi *enm;
2208 struct ether_multistep step;
2209 uint32_t hash, reg, bit;
2210 int i;
2211
2212 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2213
2214 if (ifp->if_flags & IFF_BROADCAST)
2215 sc->sc_rctl |= RCTL_BAM;
2216 if (ifp->if_flags & IFF_PROMISC) {
2217 sc->sc_rctl |= RCTL_UPE;
2218 goto allmulti;
2219 }
2220
2221 /*
2222 * Set the station address in the first RAL slot, and
2223 * clear the remaining slots.
2224 */
2225 dge_set_ral(sc, LLADDR(ifp->if_sadl), 0);
2226 for (i = 1; i < RA_TABSIZE; i++)
2227 dge_set_ral(sc, NULL, i);
2228
2229 /* Clear out the multicast table. */
2230 for (i = 0; i < MC_TABSIZE; i++)
2231 CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2232
2233 ETHER_FIRST_MULTI(step, ec, enm);
2234 while (enm != NULL) {
2235 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2236 /*
2237 * We must listen to a range of multicast addresses.
2238 * For now, just accept all multicasts, rather than
2239 * trying to set only those filter bits needed to match
2240 * the range. (At this time, the only use of address
2241 * ranges is for IP multicast routing, for which the
2242 * range is big enough to require all bits set.)
2243 */
2244 goto allmulti;
2245 }
2246
2247 hash = dge_mchash(sc, enm->enm_addrlo);
2248
2249 reg = (hash >> 5) & 0x7f;
2250 bit = hash & 0x1f;
2251
2252 hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2253 hash |= 1U << bit;
2254
2255 CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2256
2257 ETHER_NEXT_MULTI(step, enm);
2258 }
2259
2260 ifp->if_flags &= ~IFF_ALLMULTI;
2261 goto setit;
2262
2263 allmulti:
2264 ifp->if_flags |= IFF_ALLMULTI;
2265 sc->sc_rctl |= RCTL_MPE;
2266
2267 setit:
2268 CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2269 }
2270
2271 /*
2272 * Read in the EEPROM info and verify checksum.
2273 */
2274 int
2275 dge_read_eeprom(struct dge_softc *sc)
2276 {
2277 uint16_t cksum;
2278 int i;
2279
2280 cksum = 0;
2281 for (i = 0; i < EEPROM_SIZE; i++) {
2282 sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2283 cksum += sc->sc_eeprom[i];
2284 }
2285 return cksum != EEPROM_CKSUM;
2286 }
2287
2288
2289 /*
2290 * Read a 16-bit word from address addr in the serial EEPROM.
2291 */
2292 uint16_t
2293 dge_eeprom_word(struct dge_softc *sc, int addr)
2294 {
2295 uint32_t reg;
2296 uint16_t rval = 0;
2297 int i;
2298
2299 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
2300
2301 /* Lower clock pulse (and data in to chip) */
2302 CSR_WRITE(sc, DGE_EECD, reg);
2303 /* Select chip */
2304 CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
2305
2306 /* Send read command */
2307 dge_eeprom_clockout(sc, 1);
2308 dge_eeprom_clockout(sc, 1);
2309 dge_eeprom_clockout(sc, 0);
2310
2311 /* Send address */
2312 for (i = 5; i >= 0; i--)
2313 dge_eeprom_clockout(sc, (addr >> i) & 1);
2314
2315 /* Read data */
2316 for (i = 0; i < 16; i++) {
2317 rval <<= 1;
2318 rval |= dge_eeprom_clockin(sc);
2319 }
2320
2321 /* Deselect chip */
2322 CSR_WRITE(sc, DGE_EECD, reg);
2323
2324 return rval;
2325 }
2326
2327 /*
2328 * Clock out a single bit to the EEPROM.
2329 */
2330 void
2331 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2332 {
2333 int reg;
2334
2335 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
2336 if (bit)
2337 reg |= EECD_DI;
2338
2339 CSR_WRITE(sc, DGE_EECD, reg);
2340 delay(2);
2341 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
2342 delay(2);
2343 CSR_WRITE(sc, DGE_EECD, reg);
2344 delay(2);
2345 }
2346
2347 /*
2348 * Clock in a single bit from EEPROM.
2349 */
2350 int
2351 dge_eeprom_clockin(struct dge_softc *sc)
2352 {
2353 int reg, rv;
2354
2355 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
2356
2357 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
2358 delay(2);
2359 rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2360 CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2361 delay(2);
2362
2363 return rv;
2364 }
2365
2366 static void
2367 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2368 {
2369 struct dge_softc *sc = ifp->if_softc;
2370
2371 ifmr->ifm_status = IFM_AVALID;
2372 ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
2373
2374 if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2375 ifmr->ifm_status |= IFM_ACTIVE;
2376 }
2377
2378 static inline int
2379 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2380 {
2381 int i, mdic;
2382
2383 CSR_WRITE(sc, DGE_MDIO,
2384 MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2385 for (i = 0; i < 10; i++) {
2386 delay(10);
2387 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2388 break;
2389 }
2390 return mdic;
2391 }
2392
2393
2394 static void
2395 dge_xgmii_writereg(struct device *self, int phy, int reg, int val)
2396 {
2397 struct dge_softc *sc = (void *) self;
2398 int mdic;
2399
2400 CSR_WRITE(sc, DGE_MDIRW, val);
2401 if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2402 printf("%s: address cycle timeout; phy %d reg %d\n",
2403 sc->sc_dev.dv_xname, phy, reg);
2404 return;
2405 }
2406 if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2407 printf("%s: read cycle timeout; phy %d reg %d\n",
2408 sc->sc_dev.dv_xname, phy, reg);
2409 return;
2410 }
2411 }
2412
2413 static void
2414 dge_xgmii_reset(struct dge_softc *sc)
2415 {
2416 dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
2417 }
2418
2419 static int
2420 dge_xgmii_mediachange(struct ifnet *ifp)
2421 {
2422 return 0;
2423 }
2424