if_ena.c revision 1.13 1 /*-
2 * BSD LICENSE
3 *
4 * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30 #include <sys/cdefs.h>
31 #if 0
32 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
33 #endif
34 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.13 2019/01/23 11:15:11 ryoon Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/module.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/time.h>
49 #include <sys/workqueue.h>
50 #include <sys/callout.h>
51 #include <sys/interrupt.h>
52 #include <sys/cpu.h>
53
54 #include <sys/bus.h>
55
56 #include <net/if_ether.h>
57 #include <net/if_vlanvar.h>
58
59 #include <dev/pci/if_enavar.h>
60
61 /*********************************************************
62 * Function prototypes
63 *********************************************************/
64 static int ena_probe(device_t, cfdata_t, void *);
65 static int ena_intr_msix_mgmnt(void *);
66 static int ena_allocate_pci_resources(struct pci_attach_args *,
67 struct ena_adapter *);
68 static void ena_free_pci_resources(struct ena_adapter *);
69 static int ena_change_mtu(struct ifnet *, int);
70 static void ena_init_io_rings_common(struct ena_adapter *,
71 struct ena_ring *, uint16_t);
72 static void ena_init_io_rings(struct ena_adapter *);
73 static void ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
74 static void ena_free_all_io_rings_resources(struct ena_adapter *);
75 #if 0
76 static int ena_setup_tx_dma_tag(struct ena_adapter *);
77 static int ena_free_tx_dma_tag(struct ena_adapter *);
78 static int ena_setup_rx_dma_tag(struct ena_adapter *);
79 static int ena_free_rx_dma_tag(struct ena_adapter *);
80 #endif
81 static int ena_setup_tx_resources(struct ena_adapter *, int);
82 static void ena_free_tx_resources(struct ena_adapter *, int);
83 static int ena_setup_all_tx_resources(struct ena_adapter *);
84 static void ena_free_all_tx_resources(struct ena_adapter *);
85 static inline int validate_rx_req_id(struct ena_ring *, uint16_t);
86 static int ena_setup_rx_resources(struct ena_adapter *, unsigned int);
87 static void ena_free_rx_resources(struct ena_adapter *, unsigned int);
88 static int ena_setup_all_rx_resources(struct ena_adapter *);
89 static void ena_free_all_rx_resources(struct ena_adapter *);
90 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *,
91 struct ena_rx_buffer *);
92 static void ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
93 struct ena_rx_buffer *);
94 static int ena_refill_rx_bufs(struct ena_ring *, uint32_t);
95 static void ena_free_rx_bufs(struct ena_adapter *, unsigned int);
96 static void ena_refill_all_rx_bufs(struct ena_adapter *);
97 static void ena_free_all_rx_bufs(struct ena_adapter *);
98 static void ena_free_tx_bufs(struct ena_adapter *, unsigned int);
99 static void ena_free_all_tx_bufs(struct ena_adapter *);
100 static void ena_destroy_all_tx_queues(struct ena_adapter *);
101 static void ena_destroy_all_rx_queues(struct ena_adapter *);
102 static void ena_destroy_all_io_queues(struct ena_adapter *);
103 static int ena_create_io_queues(struct ena_adapter *);
104 static int ena_tx_cleanup(struct ena_ring *);
105 static void ena_deferred_rx_cleanup(struct work *, void *);
106 static int ena_rx_cleanup(struct ena_ring *);
107 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
108 #if 0
109 static void ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
110 struct mbuf *);
111 #endif
112 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
113 struct ena_com_rx_ctx *, uint16_t *);
114 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
115 struct mbuf *);
116 static int ena_handle_msix(void *);
117 static int ena_enable_msix(struct ena_adapter *);
118 static int ena_request_mgmnt_irq(struct ena_adapter *);
119 static int ena_request_io_irq(struct ena_adapter *);
120 static void ena_free_mgmnt_irq(struct ena_adapter *);
121 static void ena_free_io_irq(struct ena_adapter *);
122 static void ena_free_irqs(struct ena_adapter*);
123 static void ena_disable_msix(struct ena_adapter *);
124 static void ena_unmask_all_io_irqs(struct ena_adapter *);
125 static int ena_rss_configure(struct ena_adapter *);
126 static int ena_up_complete(struct ena_adapter *);
127 static int ena_up(struct ena_adapter *);
128 static void ena_down(struct ena_adapter *);
129 #if 0
130 static uint64_t ena_get_counter(struct ifnet *, ift_counter);
131 #endif
132 static int ena_media_change(struct ifnet *);
133 static void ena_media_status(struct ifnet *, struct ifmediareq *);
134 static int ena_init(struct ifnet *);
135 static int ena_ioctl(struct ifnet *, u_long, void *);
136 static int ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
137 static void ena_update_host_info(struct ena_admin_host_info *, struct ifnet *);
138 static void ena_update_hwassist(struct ena_adapter *);
139 static int ena_setup_ifnet(device_t, struct ena_adapter *,
140 struct ena_com_dev_get_features_ctx *);
141 static void ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
142 static int ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
143 struct mbuf **mbuf);
144 static int ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
145 static void ena_start_xmit(struct ena_ring *);
146 static int ena_mq_start(struct ifnet *, struct mbuf *);
147 static void ena_deferred_mq_start(struct work *, void *);
148 #if 0
149 static void ena_qflush(struct ifnet *);
150 #endif
151 static int ena_calc_io_queue_num(struct pci_attach_args *,
152 struct ena_adapter *, struct ena_com_dev_get_features_ctx *);
153 static int ena_calc_queue_size(struct ena_adapter *, uint16_t *,
154 uint16_t *, struct ena_com_dev_get_features_ctx *);
155 #if 0
156 static int ena_rss_init_default(struct ena_adapter *);
157 static void ena_rss_init_default_deferred(void *);
158 #endif
159 static void ena_config_host_info(struct ena_com_dev *);
160 static void ena_attach(device_t, device_t, void *);
161 static int ena_detach(device_t, int);
162 static int ena_device_init(struct ena_adapter *, device_t,
163 struct ena_com_dev_get_features_ctx *, int *);
164 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
165 int);
166 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *);
167 static void unimplemented_aenq_handler(void *,
168 struct ena_admin_aenq_entry *);
169 static void ena_timer_service(void *);
170
171 static const char ena_version[] =
172 DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
173
174 #if 0
175 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
176 #endif
177
178 /*
179 * Tuneable number of buffers in the buf-ring (drbr)
180 */
181 static int ena_buf_ring_size = 4096;
182 #if 0
183 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
184 &ena_buf_ring_size, 0, "Size of the bufring");
185 #endif
186
187 /*
188 * Logging level for changing verbosity of the output
189 */
190 int ena_log_level = ENA_ALERT | ENA_WARNING;
191 #if 0
192 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
193 &ena_log_level, 0, "Logging level indicating verbosity of the logs");
194 #endif
195
196 static const ena_vendor_info_t ena_vendor_info_array[] = {
197 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
198 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
199 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
200 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
201 /* Last entry */
202 { 0, 0, 0 }
203 };
204
205 /*
206 * Contains pointers to event handlers, e.g. link state chage.
207 */
208 static struct ena_aenq_handlers aenq_handlers;
209
210 int
211 ena_dma_alloc(device_t dmadev, bus_size_t size,
212 ena_mem_handle_t *dma , int mapflags)
213 {
214 struct ena_adapter *adapter = device_private(dmadev);
215 uint32_t maxsize;
216 bus_dma_segment_t seg;
217 int error, nsegs;
218
219 maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
220
221 #if 0
222 /* XXX what is this needed for ? */
223 dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
224 if (unlikely(dma_space_addr == 0))
225 dma_space_addr = BUS_SPACE_MAXADDR;
226 #endif
227
228 dma->tag = adapter->sc_dmat;
229
230 if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
231 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
232 ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
233 (uintmax_t)maxsize, error);
234 goto fail_create;
235 }
236
237 error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &seg, 1, &nsegs,
238 BUS_DMA_ALLOCNOW);
239 if (error) {
240 ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
241 (uintmax_t)maxsize, error);
242 goto fail_alloc;
243 }
244
245 error = bus_dmamem_map(dma->tag, &seg, nsegs, maxsize,
246 &dma->vaddr, BUS_DMA_COHERENT);
247 if (error) {
248 ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
249 (uintmax_t)maxsize, error);
250 goto fail_map;
251 }
252 memset(dma->vaddr, 0, maxsize);
253
254 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
255 maxsize, NULL, mapflags);
256 if (error) {
257 ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
258 goto fail_load;
259 }
260 dma->paddr = dma->map->dm_segs[0].ds_addr;
261
262 return (0);
263
264 fail_load:
265 bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
266 fail_map:
267 bus_dmamem_free(dma->tag, &seg, nsegs);
268 fail_alloc:
269 bus_dmamap_destroy(adapter->sc_dmat, dma->map);
270 fail_create:
271 return (error);
272 }
273
274 static int
275 ena_allocate_pci_resources(struct pci_attach_args *pa,
276 struct ena_adapter *adapter)
277 {
278 bus_size_t size;
279
280 /*
281 * Map control/status registers.
282 */
283 pcireg_t memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
284 if (pci_mapreg_map(pa, ENA_REG_BAR, memtype, 0, &adapter->sc_btag,
285 &adapter->sc_bhandle, NULL, &size)) {
286 aprint_error(": can't map mem space\n");
287 return ENXIO;
288 }
289
290 return (0);
291 }
292
293 static void
294 ena_free_pci_resources(struct ena_adapter *adapter)
295 {
296 /* Nothing to do */
297 }
298
299 static int
300 ena_probe(device_t parent, cfdata_t match, void *aux)
301 {
302 struct pci_attach_args *pa = aux;
303 const ena_vendor_info_t *ent;
304
305 for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
306 ent = &ena_vendor_info_array[i];
307
308 if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
309 (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
310 return 1;
311 }
312 }
313
314 return 0;
315 }
316
317 static int
318 ena_change_mtu(struct ifnet *ifp, int new_mtu)
319 {
320 struct ena_adapter *adapter = if_getsoftc(ifp);
321 int rc;
322
323 if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
324 device_printf(adapter->pdev, "Invalid MTU setting. "
325 "new_mtu: %d max mtu: %d min mtu: %d\n",
326 new_mtu, adapter->max_mtu, ENA_MIN_MTU);
327 return (EINVAL);
328 }
329
330 rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
331 if (likely(rc == 0)) {
332 ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
333 if_setmtu(ifp, new_mtu);
334 } else {
335 device_printf(adapter->pdev, "Failed to set MTU to %d\n",
336 new_mtu);
337 }
338
339 return (rc);
340 }
341
342 #define EVCNT_INIT(st, f) \
343 do { \
344 evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL, \
345 st->name, #f); \
346 } while (0)
347
348 static inline void
349 ena_alloc_counters_rx(struct ena_stats_rx *st, int queue)
350 {
351 snprintf(st->name, sizeof(st->name), "ena rxq%d", queue);
352
353 EVCNT_INIT(st, cnt);
354 EVCNT_INIT(st, bytes);
355 EVCNT_INIT(st, refil_partial);
356 EVCNT_INIT(st, bad_csum);
357 EVCNT_INIT(st, mjum_alloc_fail);
358 EVCNT_INIT(st, mbuf_alloc_fail);
359 EVCNT_INIT(st, dma_mapping_err);
360 EVCNT_INIT(st, bad_desc_num);
361 EVCNT_INIT(st, bad_req_id);
362 EVCNT_INIT(st, empty_rx_ring);
363
364 /* Make sure all code is updated when new fields added */
365 CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
366 + sizeof(st->empty_rx_ring) == sizeof(*st));
367 }
368
369 static inline void
370 ena_alloc_counters_tx(struct ena_stats_tx *st, int queue)
371 {
372 snprintf(st->name, sizeof(st->name), "ena txq%d", queue);
373
374 EVCNT_INIT(st, cnt);
375 EVCNT_INIT(st, bytes);
376 EVCNT_INIT(st, prepare_ctx_err);
377 EVCNT_INIT(st, dma_mapping_err);
378 EVCNT_INIT(st, doorbells);
379 EVCNT_INIT(st, missing_tx_comp);
380 EVCNT_INIT(st, bad_req_id);
381 EVCNT_INIT(st, collapse);
382 EVCNT_INIT(st, collapse_err);
383
384 /* Make sure all code is updated when new fields added */
385 CTASSERT(offsetof(struct ena_stats_tx, collapse_err)
386 + sizeof(st->collapse_err) == sizeof(*st));
387 }
388
389 static inline void
390 ena_alloc_counters_dev(struct ena_stats_dev *st, int queue)
391 {
392 snprintf(st->name, sizeof(st->name), "ena dev ioq%d", queue);
393
394 EVCNT_INIT(st, wd_expired);
395 EVCNT_INIT(st, interface_up);
396 EVCNT_INIT(st, interface_down);
397 EVCNT_INIT(st, admin_q_pause);
398
399 /* Make sure all code is updated when new fields added */
400 CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
401 + sizeof(st->admin_q_pause) == sizeof(*st));
402 }
403
404 static inline void
405 ena_alloc_counters_hwstats(struct ena_hw_stats *st, int queue)
406 {
407 snprintf(st->name, sizeof(st->name), "ena hw ioq%d", queue);
408
409 EVCNT_INIT(st, rx_packets);
410 EVCNT_INIT(st, tx_packets);
411 EVCNT_INIT(st, rx_bytes);
412 EVCNT_INIT(st, tx_bytes);
413 EVCNT_INIT(st, rx_drops);
414
415 /* Make sure all code is updated when new fields added */
416 CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
417 + sizeof(st->rx_drops) == sizeof(*st));
418 }
419 static inline void
420 ena_free_counters(struct evcnt *begin, int size)
421 {
422 struct evcnt *end = (struct evcnt *)((char *)begin + size);
423
424 for (; begin < end; ++begin)
425 counter_u64_free(*begin);
426 }
427
428 static inline void
429 ena_reset_counters(struct evcnt *begin, int size)
430 {
431 struct evcnt *end = (struct evcnt *)((char *)begin + size);
432
433 for (; begin < end; ++begin)
434 counter_u64_zero(*begin);
435 }
436
437 static void
438 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
439 uint16_t qid)
440 {
441
442 ring->qid = qid;
443 ring->adapter = adapter;
444 ring->ena_dev = adapter->ena_dev;
445 }
446
447 static void
448 ena_init_io_rings(struct ena_adapter *adapter)
449 {
450 struct ena_com_dev *ena_dev;
451 struct ena_ring *txr, *rxr;
452 struct ena_que *que;
453 int i;
454
455 ena_dev = adapter->ena_dev;
456
457 for (i = 0; i < adapter->num_queues; i++) {
458 txr = &adapter->tx_ring[i];
459 rxr = &adapter->rx_ring[i];
460
461 /* TX/RX common ring state */
462 ena_init_io_rings_common(adapter, txr, i);
463 ena_init_io_rings_common(adapter, rxr, i);
464
465 /* TX specific ring state */
466 txr->ring_size = adapter->tx_ring_size;
467 txr->tx_max_header_size = ena_dev->tx_max_header_size;
468 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
469 txr->smoothed_interval =
470 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
471
472 /* Allocate a buf ring */
473 txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
474 M_WAITOK, &txr->ring_mtx);
475
476 /* Alloc TX statistics. */
477 ena_alloc_counters_tx(&txr->tx_stats, i);
478
479 /* RX specific ring state */
480 rxr->ring_size = adapter->rx_ring_size;
481 rxr->smoothed_interval =
482 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
483
484 /* Alloc RX statistics. */
485 ena_alloc_counters_rx(&rxr->rx_stats, i);
486
487 /* Initialize locks */
488 snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
489 device_xname(adapter->pdev), i);
490 snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
491 device_xname(adapter->pdev), i);
492
493 mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
494 mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
495
496 que = &adapter->que[i];
497 que->adapter = adapter;
498 que->id = i;
499 que->tx_ring = txr;
500 que->rx_ring = rxr;
501
502 txr->que = que;
503 rxr->que = que;
504
505 rxr->empty_rx_queue = 0;
506 }
507 }
508
509 static void
510 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
511 {
512 struct ena_ring *txr = &adapter->tx_ring[qid];
513 struct ena_ring *rxr = &adapter->rx_ring[qid];
514
515 ena_free_counters((struct evcnt *)&txr->tx_stats,
516 sizeof(txr->tx_stats));
517 ena_free_counters((struct evcnt *)&rxr->rx_stats,
518 sizeof(rxr->rx_stats));
519
520 ENA_RING_MTX_LOCK(txr);
521 drbr_free(txr->br, M_DEVBUF);
522 ENA_RING_MTX_UNLOCK(txr);
523
524 mutex_destroy(&txr->ring_mtx);
525 mutex_destroy(&rxr->ring_mtx);
526 }
527
528 static void
529 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
530 {
531 int i;
532
533 for (i = 0; i < adapter->num_queues; i++)
534 ena_free_io_ring_resources(adapter, i);
535
536 }
537
538 #if 0
539 static int
540 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
541 {
542 int ret;
543
544 /* Create DMA tag for Tx buffers */
545 ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
546 1, 0, /* alignment, bounds */
547 ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window */
548 BUS_SPACE_MAXADDR, /* highaddr of excl window */
549 NULL, NULL, /* filter, filterarg */
550 ENA_TSO_MAXSIZE, /* maxsize */
551 adapter->max_tx_sgl_size - 1, /* nsegments */
552 ENA_TSO_MAXSIZE, /* maxsegsize */
553 0, /* flags */
554 NULL, /* lockfunc */
555 NULL, /* lockfuncarg */
556 &adapter->tx_buf_tag);
557
558 return (ret);
559 }
560 #endif
561
562 #if 0
563 static int
564 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
565 {
566 int ret;
567
568 /* Create DMA tag for Rx buffers*/
569 ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent */
570 1, 0, /* alignment, bounds */
571 ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window */
572 BUS_SPACE_MAXADDR, /* highaddr of excl window */
573 NULL, NULL, /* filter, filterarg */
574 MJUM16BYTES, /* maxsize */
575 adapter->max_rx_sgl_size, /* nsegments */
576 MJUM16BYTES, /* maxsegsize */
577 0, /* flags */
578 NULL, /* lockfunc */
579 NULL, /* lockarg */
580 &adapter->rx_buf_tag);
581
582 return (ret);
583 }
584 #endif
585
586 /**
587 * ena_setup_tx_resources - allocate Tx resources (Descriptors)
588 * @adapter: network interface device structure
589 * @qid: queue index
590 *
591 * Returns 0 on success, otherwise on failure.
592 **/
593 static int
594 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
595 {
596 struct ena_que *que = &adapter->que[qid];
597 struct ena_ring *tx_ring = que->tx_ring;
598 int size, i, err;
599 #ifdef RSS
600 cpuset_t cpu_mask;
601 #endif
602
603 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
604
605 tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
606 if (unlikely(tx_ring->tx_buffer_info == NULL))
607 return (ENOMEM);
608
609 size = sizeof(uint16_t) * tx_ring->ring_size;
610 tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
611 if (unlikely(tx_ring->free_tx_ids == NULL))
612 goto err_buf_info_free;
613
614 /* Req id stack for TX OOO completions */
615 for (i = 0; i < tx_ring->ring_size; i++)
616 tx_ring->free_tx_ids[i] = i;
617
618 /* Reset TX statistics. */
619 ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
620 sizeof(tx_ring->tx_stats));
621
622 tx_ring->next_to_use = 0;
623 tx_ring->next_to_clean = 0;
624
625 /* Make sure that drbr is empty */
626 ENA_RING_MTX_LOCK(tx_ring);
627 drbr_flush(adapter->ifp, tx_ring->br);
628 ENA_RING_MTX_UNLOCK(tx_ring);
629
630 /* ... and create the buffer DMA maps */
631 for (i = 0; i < tx_ring->ring_size; i++) {
632 err = bus_dmamap_create(adapter->sc_dmat,
633 ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
634 ENA_TSO_MAXSIZE, 0, 0,
635 &tx_ring->tx_buffer_info[i].map);
636 if (unlikely(err != 0)) {
637 ena_trace(ENA_ALERT,
638 "Unable to create Tx DMA map for buffer %d\n", i);
639 goto err_buf_info_unmap;
640 }
641 }
642
643 /* Allocate workqueues */
644 int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
645 ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
646 if (unlikely(rc != 0)) {
647 ena_trace(ENA_ALERT,
648 "Unable to create workqueue for enqueue task\n");
649 i = tx_ring->ring_size;
650 goto err_buf_info_unmap;
651 }
652
653 #if 0
654 /* RSS set cpu for thread */
655 #ifdef RSS
656 CPU_SETOF(que->cpu, &cpu_mask);
657 taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET,
658 &cpu_mask, "%s tx_ring enq (bucket %d)",
659 device_xname(adapter->pdev), que->cpu);
660 #else /* RSS */
661 taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET,
662 "%s txeq %d", device_xname(adapter->pdev), que->cpu);
663 #endif /* RSS */
664 #endif
665
666 return (0);
667
668 err_buf_info_unmap:
669 while (i--) {
670 bus_dmamap_destroy(adapter->sc_dmat,
671 tx_ring->tx_buffer_info[i].map);
672 }
673 free(tx_ring->free_tx_ids, M_DEVBUF);
674 tx_ring->free_tx_ids = NULL;
675 err_buf_info_free:
676 free(tx_ring->tx_buffer_info, M_DEVBUF);
677 tx_ring->tx_buffer_info = NULL;
678
679 return (ENOMEM);
680 }
681
682 /**
683 * ena_free_tx_resources - Free Tx Resources per Queue
684 * @adapter: network interface device structure
685 * @qid: queue index
686 *
687 * Free all transmit software resources
688 **/
689 static void
690 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
691 {
692 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
693
694 workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
695 workqueue_destroy(tx_ring->enqueue_tq);
696 tx_ring->enqueue_tq = NULL;
697
698 ENA_RING_MTX_LOCK(tx_ring);
699 /* Flush buffer ring, */
700 drbr_flush(adapter->ifp, tx_ring->br);
701
702 /* Free buffer DMA maps, */
703 for (int i = 0; i < tx_ring->ring_size; i++) {
704 m_freem(tx_ring->tx_buffer_info[i].mbuf);
705 tx_ring->tx_buffer_info[i].mbuf = NULL;
706 bus_dmamap_unload(adapter->sc_dmat,
707 tx_ring->tx_buffer_info[i].map);
708 bus_dmamap_destroy(adapter->sc_dmat,
709 tx_ring->tx_buffer_info[i].map);
710 }
711 ENA_RING_MTX_UNLOCK(tx_ring);
712
713 /* And free allocated memory. */
714 free(tx_ring->tx_buffer_info, M_DEVBUF);
715 tx_ring->tx_buffer_info = NULL;
716
717 free(tx_ring->free_tx_ids, M_DEVBUF);
718 tx_ring->free_tx_ids = NULL;
719 }
720
721 /**
722 * ena_setup_all_tx_resources - allocate all queues Tx resources
723 * @adapter: network interface device structure
724 *
725 * Returns 0 on success, otherwise on failure.
726 **/
727 static int
728 ena_setup_all_tx_resources(struct ena_adapter *adapter)
729 {
730 int i, rc;
731
732 for (i = 0; i < adapter->num_queues; i++) {
733 rc = ena_setup_tx_resources(adapter, i);
734 if (rc != 0) {
735 device_printf(adapter->pdev,
736 "Allocation for Tx Queue %u failed\n", i);
737 goto err_setup_tx;
738 }
739 }
740
741 return (0);
742
743 err_setup_tx:
744 /* Rewind the index freeing the rings as we go */
745 while (i--)
746 ena_free_tx_resources(adapter, i);
747 return (rc);
748 }
749
750 /**
751 * ena_free_all_tx_resources - Free Tx Resources for All Queues
752 * @adapter: network interface device structure
753 *
754 * Free all transmit software resources
755 **/
756 static void
757 ena_free_all_tx_resources(struct ena_adapter *adapter)
758 {
759 int i;
760
761 for (i = 0; i < adapter->num_queues; i++)
762 ena_free_tx_resources(adapter, i);
763 }
764
765 static inline int
766 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
767 {
768 if (likely(req_id < rx_ring->ring_size))
769 return (0);
770
771 device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
772 req_id);
773 counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
774
775 /* Trigger device reset */
776 rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
777 rx_ring->adapter->trigger_reset = true;
778
779 return (EFAULT);
780 }
781
782 /**
783 * ena_setup_rx_resources - allocate Rx resources (Descriptors)
784 * @adapter: network interface device structure
785 * @qid: queue index
786 *
787 * Returns 0 on success, otherwise on failure.
788 **/
789 static int
790 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
791 {
792 struct ena_que *que = &adapter->que[qid];
793 struct ena_ring *rx_ring = que->rx_ring;
794 int size, err, i;
795 #ifdef RSS
796 cpuset_t cpu_mask;
797 #endif
798
799 size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
800
801 /*
802 * Alloc extra element so in rx path
803 * we can always prefetch rx_info + 1
804 */
805 size += sizeof(struct ena_rx_buffer);
806
807 rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
808
809 size = sizeof(uint16_t) * rx_ring->ring_size;
810 rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
811
812 for (i = 0; i < rx_ring->ring_size; i++)
813 rx_ring->free_rx_ids[i] = i;
814
815 /* Reset RX statistics. */
816 ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
817 sizeof(rx_ring->rx_stats));
818
819 rx_ring->next_to_clean = 0;
820 rx_ring->next_to_use = 0;
821
822 /* ... and create the buffer DMA maps */
823 for (i = 0; i < rx_ring->ring_size; i++) {
824 err = bus_dmamap_create(adapter->sc_dmat,
825 MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
826 0, 0,
827 &(rx_ring->rx_buffer_info[i].map));
828 if (err != 0) {
829 ena_trace(ENA_ALERT,
830 "Unable to create Rx DMA map for buffer %d\n", i);
831 goto err_buf_info_unmap;
832 }
833 }
834
835 #ifdef LRO
836 /* Create LRO for the ring */
837 if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
838 int err = tcp_lro_init(&rx_ring->lro);
839 if (err != 0) {
840 device_printf(adapter->pdev,
841 "LRO[%d] Initialization failed!\n", qid);
842 } else {
843 ena_trace(ENA_INFO,
844 "RX Soft LRO[%d] Initialized\n", qid);
845 rx_ring->lro.ifp = adapter->ifp;
846 }
847 }
848 #endif
849
850 /* Allocate workqueues */
851 int rc = workqueue_create(&rx_ring->cmpl_tq, "ena_rx_comp",
852 ena_deferred_rx_cleanup, rx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
853 if (unlikely(rc != 0)) {
854 ena_trace(ENA_ALERT,
855 "Unable to create workqueue for RX completion task\n");
856 goto err_buf_info_unmap;
857 }
858
859 #if 0
860 /* RSS set cpu for thread */
861 #ifdef RSS
862 CPU_SETOF(que->cpu, &cpu_mask);
863 taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask,
864 "%s rx_ring cmpl (bucket %d)",
865 device_xname(adapter->pdev), que->cpu);
866 #else
867 taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET,
868 "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu);
869 #endif
870 #endif
871
872 return (0);
873
874 err_buf_info_unmap:
875 while (i--) {
876 bus_dmamap_destroy(adapter->sc_dmat,
877 rx_ring->rx_buffer_info[i].map);
878 }
879
880 free(rx_ring->free_rx_ids, M_DEVBUF);
881 rx_ring->free_rx_ids = NULL;
882 free(rx_ring->rx_buffer_info, M_DEVBUF);
883 rx_ring->rx_buffer_info = NULL;
884 return (ENOMEM);
885 }
886
887 /**
888 * ena_free_rx_resources - Free Rx Resources
889 * @adapter: network interface device structure
890 * @qid: queue index
891 *
892 * Free all receive software resources
893 **/
894 static void
895 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
896 {
897 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
898
899 workqueue_wait(rx_ring->cmpl_tq, &rx_ring->cmpl_task);
900 workqueue_destroy(rx_ring->cmpl_tq);
901 rx_ring->cmpl_tq = NULL;
902
903 /* Free buffer DMA maps, */
904 for (int i = 0; i < rx_ring->ring_size; i++) {
905 m_freem(rx_ring->rx_buffer_info[i].mbuf);
906 rx_ring->rx_buffer_info[i].mbuf = NULL;
907 bus_dmamap_unload(adapter->sc_dmat,
908 rx_ring->rx_buffer_info[i].map);
909 bus_dmamap_destroy(adapter->sc_dmat,
910 rx_ring->rx_buffer_info[i].map);
911 }
912
913 #ifdef LRO
914 /* free LRO resources, */
915 tcp_lro_free(&rx_ring->lro);
916 #endif
917
918 /* free allocated memory */
919 free(rx_ring->rx_buffer_info, M_DEVBUF);
920 rx_ring->rx_buffer_info = NULL;
921
922 free(rx_ring->free_rx_ids, M_DEVBUF);
923 rx_ring->free_rx_ids = NULL;
924 }
925
926 /**
927 * ena_setup_all_rx_resources - allocate all queues Rx resources
928 * @adapter: network interface device structure
929 *
930 * Returns 0 on success, otherwise on failure.
931 **/
932 static int
933 ena_setup_all_rx_resources(struct ena_adapter *adapter)
934 {
935 int i, rc = 0;
936
937 for (i = 0; i < adapter->num_queues; i++) {
938 rc = ena_setup_rx_resources(adapter, i);
939 if (rc != 0) {
940 device_printf(adapter->pdev,
941 "Allocation for Rx Queue %u failed\n", i);
942 goto err_setup_rx;
943 }
944 }
945 return (0);
946
947 err_setup_rx:
948 /* rewind the index freeing the rings as we go */
949 while (i--)
950 ena_free_rx_resources(adapter, i);
951 return (rc);
952 }
953
954 /**
955 * ena_free_all_rx_resources - Free Rx resources for all queues
956 * @adapter: network interface device structure
957 *
958 * Free all receive software resources
959 **/
960 static void
961 ena_free_all_rx_resources(struct ena_adapter *adapter)
962 {
963 int i;
964
965 for (i = 0; i < adapter->num_queues; i++)
966 ena_free_rx_resources(adapter, i);
967 }
968
969 static inline int
970 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
971 struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
972 {
973 struct ena_com_buf *ena_buf;
974 int error;
975 int mlen;
976
977 /* if previous allocated frag is not used */
978 if (unlikely(rx_info->mbuf != NULL))
979 return (0);
980
981 /* Get mbuf using UMA allocator */
982 rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES);
983
984 if (unlikely(rx_info->mbuf == NULL)) {
985 counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1);
986 rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
987 if (unlikely(rx_info->mbuf == NULL)) {
988 counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
989 return (ENOMEM);
990 }
991 mlen = MCLBYTES;
992 } else {
993 mlen = MJUM16BYTES;
994 }
995 /* Set mbuf length*/
996 rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
997
998 /* Map packets for DMA */
999 ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1000 "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
1001 adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
1002 error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
1003 rx_info->mbuf, BUS_DMA_NOWAIT);
1004 if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
1005 ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
1006 "nsegs: %d\n", error, rx_info->map->dm_nsegs);
1007 counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
1008 goto exit;
1009
1010 }
1011
1012 bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
1013 rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1014
1015 ena_buf = &rx_info->ena_buf;
1016 ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
1017 ena_buf->len = mlen;
1018
1019 ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1020 "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
1021 rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
1022
1023 return (0);
1024
1025 exit:
1026 m_freem(rx_info->mbuf);
1027 rx_info->mbuf = NULL;
1028 return (EFAULT);
1029 }
1030
1031 static void
1032 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
1033 struct ena_rx_buffer *rx_info)
1034 {
1035
1036 if (rx_info->mbuf == NULL) {
1037 ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
1038 return;
1039 }
1040
1041 bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
1042 m_freem(rx_info->mbuf);
1043 rx_info->mbuf = NULL;
1044 }
1045
1046 /**
1047 * ena_refill_rx_bufs - Refills ring with descriptors
1048 * @rx_ring: the ring which we want to feed with free descriptors
1049 * @num: number of descriptors to refill
1050 * Refills the ring with newly allocated DMA-mapped mbufs for receiving
1051 **/
1052 static int
1053 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
1054 {
1055 struct ena_adapter *adapter = rx_ring->adapter;
1056 uint16_t next_to_use, req_id;
1057 uint32_t i;
1058 int rc;
1059
1060 ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
1061 rx_ring->qid);
1062
1063 next_to_use = rx_ring->next_to_use;
1064
1065 for (i = 0; i < num; i++) {
1066 struct ena_rx_buffer *rx_info;
1067
1068 ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
1069 "RX buffer - next to use: %d", next_to_use);
1070
1071 req_id = rx_ring->free_rx_ids[next_to_use];
1072 rc = validate_rx_req_id(rx_ring, req_id);
1073 if (unlikely(rc != 0))
1074 break;
1075
1076 rx_info = &rx_ring->rx_buffer_info[req_id];
1077
1078 rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
1079 if (unlikely(rc != 0)) {
1080 ena_trace(ENA_WARNING,
1081 "failed to alloc buffer for rx queue %d\n",
1082 rx_ring->qid);
1083 break;
1084 }
1085 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1086 &rx_info->ena_buf, req_id);
1087 if (unlikely(rc != 0)) {
1088 ena_trace(ENA_WARNING,
1089 "failed to add buffer for rx queue %d\n",
1090 rx_ring->qid);
1091 break;
1092 }
1093 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1094 rx_ring->ring_size);
1095 }
1096
1097 if (unlikely(i < num)) {
1098 counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
1099 ena_trace(ENA_WARNING,
1100 "refilled rx qid %d with only %d mbufs (from %d)\n",
1101 rx_ring->qid, i, num);
1102 }
1103
1104 if (likely(i != 0)) {
1105 wmb();
1106 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1107 }
1108 rx_ring->next_to_use = next_to_use;
1109 return (i);
1110 }
1111
1112 static void
1113 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
1114 {
1115 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1116 unsigned int i;
1117
1118 for (i = 0; i < rx_ring->ring_size; i++) {
1119 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1120
1121 if (rx_info->mbuf != NULL)
1122 ena_free_rx_mbuf(adapter, rx_ring, rx_info);
1123 }
1124 }
1125
1126 /**
1127 * ena_refill_all_rx_bufs - allocate all queues Rx buffers
1128 * @adapter: network interface device structure
1129 *
1130 */
1131 static void
1132 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1133 {
1134 struct ena_ring *rx_ring;
1135 int i, rc, bufs_num;
1136
1137 for (i = 0; i < adapter->num_queues; i++) {
1138 rx_ring = &adapter->rx_ring[i];
1139 bufs_num = rx_ring->ring_size - 1;
1140 rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1141
1142 if (unlikely(rc != bufs_num))
1143 ena_trace(ENA_WARNING, "refilling Queue %d failed. "
1144 "Allocated %d buffers from: %d\n", i, rc, bufs_num);
1145 }
1146 }
1147
1148 static void
1149 ena_free_all_rx_bufs(struct ena_adapter *adapter)
1150 {
1151 int i;
1152
1153 for (i = 0; i < adapter->num_queues; i++)
1154 ena_free_rx_bufs(adapter, i);
1155 }
1156
1157 /**
1158 * ena_free_tx_bufs - Free Tx Buffers per Queue
1159 * @adapter: network interface device structure
1160 * @qid: queue index
1161 **/
1162 static void
1163 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
1164 {
1165 bool print_once = true;
1166 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
1167
1168 ENA_RING_MTX_LOCK(tx_ring);
1169 for (int i = 0; i < tx_ring->ring_size; i++) {
1170 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1171
1172 if (tx_info->mbuf == NULL)
1173 continue;
1174
1175 if (print_once) {
1176 device_printf(adapter->pdev,
1177 "free uncompleted tx mbuf qid %d idx 0x%x",
1178 qid, i);
1179 print_once = false;
1180 } else {
1181 ena_trace(ENA_DBG,
1182 "free uncompleted tx mbuf qid %d idx 0x%x",
1183 qid, i);
1184 }
1185
1186 bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1187 m_free(tx_info->mbuf);
1188 tx_info->mbuf = NULL;
1189 }
1190 ENA_RING_MTX_UNLOCK(tx_ring);
1191 }
1192
1193 static void
1194 ena_free_all_tx_bufs(struct ena_adapter *adapter)
1195 {
1196
1197 for (int i = 0; i < adapter->num_queues; i++)
1198 ena_free_tx_bufs(adapter, i);
1199 }
1200
1201 static void
1202 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1203 {
1204 uint16_t ena_qid;
1205 int i;
1206
1207 for (i = 0; i < adapter->num_queues; i++) {
1208 ena_qid = ENA_IO_TXQ_IDX(i);
1209 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1210 }
1211 }
1212
1213 static void
1214 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1215 {
1216 uint16_t ena_qid;
1217 int i;
1218
1219 for (i = 0; i < adapter->num_queues; i++) {
1220 ena_qid = ENA_IO_RXQ_IDX(i);
1221 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1222 }
1223 }
1224
1225 static void
1226 ena_destroy_all_io_queues(struct ena_adapter *adapter)
1227 {
1228 ena_destroy_all_tx_queues(adapter);
1229 ena_destroy_all_rx_queues(adapter);
1230 }
1231
1232 static inline int
1233 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
1234 {
1235 struct ena_adapter *adapter = tx_ring->adapter;
1236 struct ena_tx_buffer *tx_info = NULL;
1237
1238 if (likely(req_id < tx_ring->ring_size)) {
1239 tx_info = &tx_ring->tx_buffer_info[req_id];
1240 if (tx_info->mbuf != NULL)
1241 return (0);
1242 }
1243
1244 if (tx_info->mbuf == NULL)
1245 device_printf(adapter->pdev,
1246 "tx_info doesn't have valid mbuf\n");
1247 else
1248 device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
1249
1250 counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
1251
1252 return (EFAULT);
1253 }
1254
1255 static int
1256 ena_create_io_queues(struct ena_adapter *adapter)
1257 {
1258 struct ena_com_dev *ena_dev = adapter->ena_dev;
1259 struct ena_com_create_io_ctx ctx;
1260 struct ena_ring *ring;
1261 uint16_t ena_qid;
1262 uint32_t msix_vector;
1263 int rc, i;
1264
1265 /* Create TX queues */
1266 for (i = 0; i < adapter->num_queues; i++) {
1267 msix_vector = ENA_IO_IRQ_IDX(i);
1268 ena_qid = ENA_IO_TXQ_IDX(i);
1269 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1270 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1271 ctx.queue_size = adapter->tx_ring_size;
1272 ctx.msix_vector = msix_vector;
1273 ctx.qid = ena_qid;
1274 rc = ena_com_create_io_queue(ena_dev, &ctx);
1275 if (rc != 0) {
1276 device_printf(adapter->pdev,
1277 "Failed to create io TX queue #%d rc: %d\n", i, rc);
1278 goto err_tx;
1279 }
1280 ring = &adapter->tx_ring[i];
1281 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1282 &ring->ena_com_io_sq,
1283 &ring->ena_com_io_cq);
1284 if (rc != 0) {
1285 device_printf(adapter->pdev,
1286 "Failed to get TX queue handlers. TX queue num"
1287 " %d rc: %d\n", i, rc);
1288 ena_com_destroy_io_queue(ena_dev, ena_qid);
1289 goto err_tx;
1290 }
1291 }
1292
1293 /* Create RX queues */
1294 for (i = 0; i < adapter->num_queues; i++) {
1295 msix_vector = ENA_IO_IRQ_IDX(i);
1296 ena_qid = ENA_IO_RXQ_IDX(i);
1297 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1298 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1299 ctx.queue_size = adapter->rx_ring_size;
1300 ctx.msix_vector = msix_vector;
1301 ctx.qid = ena_qid;
1302 rc = ena_com_create_io_queue(ena_dev, &ctx);
1303 if (unlikely(rc != 0)) {
1304 device_printf(adapter->pdev,
1305 "Failed to create io RX queue[%d] rc: %d\n", i, rc);
1306 goto err_rx;
1307 }
1308
1309 ring = &adapter->rx_ring[i];
1310 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1311 &ring->ena_com_io_sq,
1312 &ring->ena_com_io_cq);
1313 if (unlikely(rc != 0)) {
1314 device_printf(adapter->pdev,
1315 "Failed to get RX queue handlers. RX queue num"
1316 " %d rc: %d\n", i, rc);
1317 ena_com_destroy_io_queue(ena_dev, ena_qid);
1318 goto err_rx;
1319 }
1320 }
1321
1322 return (0);
1323
1324 err_rx:
1325 while (i--)
1326 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
1327 i = adapter->num_queues;
1328 err_tx:
1329 while (i--)
1330 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1331
1332 return (ENXIO);
1333 }
1334
1335 /**
1336 * ena_tx_cleanup - clear sent packets and corresponding descriptors
1337 * @tx_ring: ring for which we want to clean packets
1338 *
1339 * Once packets are sent, we ask the device in a loop for no longer used
1340 * descriptors. We find the related mbuf chain in a map (index in an array)
1341 * and free it, then update ring state.
1342 * This is performed in "endless" loop, updating ring pointers every
1343 * TX_COMMIT. The first check of free descriptor is performed before the actual
1344 * loop, then repeated at the loop end.
1345 **/
1346 static int
1347 ena_tx_cleanup(struct ena_ring *tx_ring)
1348 {
1349 struct ena_adapter *adapter;
1350 struct ena_com_io_cq* io_cq;
1351 uint16_t next_to_clean;
1352 uint16_t req_id;
1353 uint16_t ena_qid;
1354 unsigned int total_done = 0;
1355 int rc;
1356 int commit = TX_COMMIT;
1357 int budget = TX_BUDGET;
1358 int work_done;
1359
1360 adapter = tx_ring->que->adapter;
1361 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
1362 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1363 next_to_clean = tx_ring->next_to_clean;
1364
1365 do {
1366 struct ena_tx_buffer *tx_info;
1367 struct mbuf *mbuf;
1368
1369 rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
1370 if (unlikely(rc != 0))
1371 break;
1372
1373 rc = validate_tx_req_id(tx_ring, req_id);
1374 if (unlikely(rc != 0))
1375 break;
1376
1377 tx_info = &tx_ring->tx_buffer_info[req_id];
1378
1379 mbuf = tx_info->mbuf;
1380
1381 tx_info->mbuf = NULL;
1382 bintime_clear(&tx_info->timestamp);
1383
1384 if (likely(tx_info->num_of_bufs != 0)) {
1385 /* Map is no longer required */
1386 bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1387 }
1388
1389 ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
1390 tx_ring->qid, mbuf);
1391
1392 m_freem(mbuf);
1393
1394 total_done += tx_info->tx_descs;
1395
1396 tx_ring->free_tx_ids[next_to_clean] = req_id;
1397 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1398 tx_ring->ring_size);
1399
1400 if (unlikely(--commit == 0)) {
1401 commit = TX_COMMIT;
1402 /* update ring state every TX_COMMIT descriptor */
1403 tx_ring->next_to_clean = next_to_clean;
1404 ena_com_comp_ack(
1405 &adapter->ena_dev->io_sq_queues[ena_qid],
1406 total_done);
1407 ena_com_update_dev_comp_head(io_cq);
1408 total_done = 0;
1409 }
1410 } while (likely(--budget));
1411
1412 work_done = TX_BUDGET - budget;
1413
1414 ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
1415 tx_ring->qid, work_done);
1416
1417 /* If there is still something to commit update ring state */
1418 if (likely(commit != TX_COMMIT)) {
1419 tx_ring->next_to_clean = next_to_clean;
1420 ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
1421 total_done);
1422 ena_com_update_dev_comp_head(io_cq);
1423 }
1424
1425 if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
1426 workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
1427
1428 return (work_done);
1429 }
1430
1431 #if 0
1432 static void
1433 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1434 struct mbuf *mbuf)
1435 {
1436 struct ena_adapter *adapter = rx_ring->adapter;
1437
1438 if (likely(adapter->rss_support)) {
1439 mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
1440
1441 if (ena_rx_ctx->frag &&
1442 (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
1443 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1444 return;
1445 }
1446
1447 switch (ena_rx_ctx->l3_proto) {
1448 case ENA_ETH_IO_L3_PROTO_IPV4:
1449 switch (ena_rx_ctx->l4_proto) {
1450 case ENA_ETH_IO_L4_PROTO_TCP:
1451 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
1452 break;
1453 case ENA_ETH_IO_L4_PROTO_UDP:
1454 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
1455 break;
1456 default:
1457 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
1458 }
1459 break;
1460 case ENA_ETH_IO_L3_PROTO_IPV6:
1461 switch (ena_rx_ctx->l4_proto) {
1462 case ENA_ETH_IO_L4_PROTO_TCP:
1463 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
1464 break;
1465 case ENA_ETH_IO_L4_PROTO_UDP:
1466 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
1467 break;
1468 default:
1469 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
1470 }
1471 break;
1472 case ENA_ETH_IO_L3_PROTO_UNKNOWN:
1473 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1474 break;
1475 default:
1476 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1477 }
1478 } else {
1479 mbuf->m_pkthdr.flowid = rx_ring->qid;
1480 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1481 }
1482 }
1483 #endif
1484
1485 /**
1486 * ena_rx_mbuf - assemble mbuf from descriptors
1487 * @rx_ring: ring for which we want to clean packets
1488 * @ena_bufs: buffer info
1489 * @ena_rx_ctx: metadata for this packet(s)
1490 * @next_to_clean: ring pointer, will be updated only upon success
1491 *
1492 **/
1493 static struct mbuf*
1494 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
1495 struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
1496 {
1497 struct mbuf *mbuf;
1498 struct ena_rx_buffer *rx_info;
1499 struct ena_adapter *adapter;
1500 unsigned int descs = ena_rx_ctx->descs;
1501 uint16_t ntc, len, req_id, buf = 0;
1502
1503 ntc = *next_to_clean;
1504 adapter = rx_ring->adapter;
1505 rx_info = &rx_ring->rx_buffer_info[ntc];
1506
1507 if (unlikely(rx_info->mbuf == NULL)) {
1508 device_printf(adapter->pdev, "NULL mbuf in rx_info");
1509 return (NULL);
1510 }
1511
1512 len = ena_bufs[buf].len;
1513 req_id = ena_bufs[buf].req_id;
1514 rx_info = &rx_ring->rx_buffer_info[req_id];
1515
1516 ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
1517 rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
1518
1519 mbuf = rx_info->mbuf;
1520 KASSERT(mbuf->m_flags & M_PKTHDR);
1521 mbuf->m_pkthdr.len = len;
1522 mbuf->m_len = len;
1523 m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
1524
1525 /* Fill mbuf with hash key and it's interpretation for optimization */
1526 #if 0
1527 ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
1528 #endif
1529
1530 ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d",
1531 mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
1532
1533 /* DMA address is not needed anymore, unmap it */
1534 bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1535
1536 rx_info->mbuf = NULL;
1537 rx_ring->free_rx_ids[ntc] = req_id;
1538 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1539
1540 /*
1541 * While we have more than 1 descriptors for one rcvd packet, append
1542 * other mbufs to the main one
1543 */
1544 while (--descs) {
1545 ++buf;
1546 len = ena_bufs[buf].len;
1547 req_id = ena_bufs[buf].req_id;
1548 rx_info = &rx_ring->rx_buffer_info[req_id];
1549
1550 if (unlikely(rx_info->mbuf == NULL)) {
1551 device_printf(adapter->pdev, "NULL mbuf in rx_info");
1552 /*
1553 * If one of the required mbufs was not allocated yet,
1554 * we can break there.
1555 * All earlier used descriptors will be reallocated
1556 * later and not used mbufs can be reused.
1557 * The next_to_clean pointer will not be updated in case
1558 * of an error, so caller should advance it manually
1559 * in error handling routine to keep it up to date
1560 * with hw ring.
1561 */
1562 m_freem(mbuf);
1563 return (NULL);
1564 }
1565
1566 if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
1567 counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1568 ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
1569 mbuf);
1570 }
1571
1572 ena_trace(ENA_DBG | ENA_RXPTH,
1573 "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
1574
1575 /* Free already appended mbuf, it won't be useful anymore */
1576 bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1577 m_freem(rx_info->mbuf);
1578 rx_info->mbuf = NULL;
1579
1580 rx_ring->free_rx_ids[ntc] = req_id;
1581 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1582 }
1583
1584 *next_to_clean = ntc;
1585
1586 return (mbuf);
1587 }
1588
1589 /**
1590 * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
1591 **/
1592 static inline void
1593 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1594 struct mbuf *mbuf)
1595 {
1596
1597 /* IPv4 */
1598 if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
1599 mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1600 if (ena_rx_ctx->l3_csum_err) {
1601 /* ipv4 checksum error */
1602 mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1603 counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1604 ena_trace(ENA_DBG, "RX IPv4 header checksum error");
1605 return;
1606 }
1607
1608 /* TCP/UDP */
1609 if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1610 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1611 mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
1612 if (ena_rx_ctx->l4_csum_err) {
1613 /* TCP/UDP checksum error */
1614 mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1615 counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1616 ena_trace(ENA_DBG, "RX L4 checksum error");
1617 }
1618 }
1619 }
1620 /* IPv6 */
1621 else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
1622 /* TCP/UDP */
1623 if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1624 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1625 mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
1626 if (ena_rx_ctx->l4_csum_err) {
1627 /* TCP/UDP checksum error */
1628 mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1629 counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1630 ena_trace(ENA_DBG, "RX L4 checksum error");
1631 }
1632 }
1633 }
1634 }
1635
1636 static void
1637 ena_deferred_rx_cleanup(struct work *wk, void *arg)
1638 {
1639 struct ena_ring *rx_ring = arg;
1640 int budget = CLEAN_BUDGET;
1641
1642 atomic_swap_uint(&rx_ring->task_pending, 0);
1643
1644 ENA_RING_MTX_LOCK(rx_ring);
1645 /*
1646 * If deferred task was executed, perform cleanup of all awaiting
1647 * descs (or until given budget is depleted to avoid infinite loop).
1648 */
1649 while (likely(budget--)) {
1650 if (ena_rx_cleanup(rx_ring) == 0)
1651 break;
1652 }
1653 ENA_RING_MTX_UNLOCK(rx_ring);
1654 }
1655
1656 /**
1657 * ena_rx_cleanup - handle rx irq
1658 * @arg: ring for which irq is being handled
1659 **/
1660 static int
1661 ena_rx_cleanup(struct ena_ring *rx_ring)
1662 {
1663 struct ena_adapter *adapter;
1664 struct mbuf *mbuf;
1665 struct ena_com_rx_ctx ena_rx_ctx;
1666 struct ena_com_io_cq* io_cq;
1667 struct ena_com_io_sq* io_sq;
1668 struct ifnet *ifp;
1669 uint16_t ena_qid;
1670 uint16_t next_to_clean;
1671 uint32_t refill_required;
1672 uint32_t refill_threshold;
1673 uint32_t do_if_input = 0;
1674 unsigned int qid;
1675 int rc, i;
1676 int budget = RX_BUDGET;
1677
1678 adapter = rx_ring->que->adapter;
1679 ifp = adapter->ifp;
1680 qid = rx_ring->que->id;
1681 ena_qid = ENA_IO_RXQ_IDX(qid);
1682 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1683 io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
1684 next_to_clean = rx_ring->next_to_clean;
1685
1686 ena_trace(ENA_DBG, "rx: qid %d", qid);
1687
1688 do {
1689 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1690 ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
1691 ena_rx_ctx.descs = 0;
1692 rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
1693
1694 if (unlikely(rc != 0))
1695 goto error;
1696
1697 if (unlikely(ena_rx_ctx.descs == 0))
1698 break;
1699
1700 ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
1701 "descs #: %d l3 proto %d l4 proto %d hash: %x",
1702 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1703 ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1704
1705 /* Receive mbuf from the ring */
1706 mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
1707 &ena_rx_ctx, &next_to_clean);
1708
1709 /* Exit if we failed to retrieve a buffer */
1710 if (unlikely(mbuf == NULL)) {
1711 for (i = 0; i < ena_rx_ctx.descs; ++i) {
1712 rx_ring->free_rx_ids[next_to_clean] =
1713 rx_ring->ena_bufs[i].req_id;
1714 next_to_clean =
1715 ENA_RX_RING_IDX_NEXT(next_to_clean,
1716 rx_ring->ring_size);
1717
1718 }
1719 break;
1720 }
1721
1722 if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
1723 ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
1724 ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
1725 ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
1726 ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
1727 ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
1728 }
1729
1730 counter_enter();
1731 counter_u64_add_protected(rx_ring->rx_stats.bytes,
1732 mbuf->m_pkthdr.len);
1733 counter_u64_add_protected(adapter->hw_stats.rx_bytes,
1734 mbuf->m_pkthdr.len);
1735 counter_exit();
1736 /*
1737 * LRO is only for IP/TCP packets and TCP checksum of the packet
1738 * should be computed by hardware.
1739 */
1740 do_if_input = 1;
1741 #ifdef LRO
1742 if (((ifp->if_capenable & IFCAP_LRO) != 0) &&
1743 ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
1744 (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
1745 /*
1746 * Send to the stack if:
1747 * - LRO not enabled, or
1748 * - no LRO resources, or
1749 * - lro enqueue fails
1750 */
1751 if ((rx_ring->lro.lro_cnt != 0) &&
1752 (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
1753 do_if_input = 0;
1754 }
1755 #endif
1756 if (do_if_input != 0) {
1757 ena_trace(ENA_DBG | ENA_RXPTH,
1758 "calling if_input() with mbuf %p", mbuf);
1759 if_percpuq_enqueue(ifp->if_percpuq, mbuf);
1760 }
1761
1762 counter_enter();
1763 counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
1764 counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
1765 counter_exit();
1766 } while (--budget);
1767
1768 rx_ring->next_to_clean = next_to_clean;
1769
1770 refill_required = ena_com_free_desc(io_sq);
1771 refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
1772
1773 if (refill_required > refill_threshold) {
1774 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1775 ena_refill_rx_bufs(rx_ring, refill_required);
1776 }
1777
1778 #ifdef LRO
1779 tcp_lro_flush_all(&rx_ring->lro);
1780 #endif
1781
1782 return (RX_BUDGET - budget);
1783
1784 error:
1785 counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
1786 return (RX_BUDGET - budget);
1787 }
1788
1789 /*********************************************************************
1790 *
1791 * MSIX & Interrupt Service routine
1792 *
1793 **********************************************************************/
1794
1795 /**
1796 * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
1797 * @arg: interrupt number
1798 **/
1799 static int
1800 ena_intr_msix_mgmnt(void *arg)
1801 {
1802 struct ena_adapter *adapter = (struct ena_adapter *)arg;
1803
1804 ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1805 if (likely(adapter->running))
1806 ena_com_aenq_intr_handler(adapter->ena_dev, arg);
1807
1808 return 1;
1809 }
1810
1811 /**
1812 * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
1813 * @arg: interrupt number
1814 **/
1815 static int
1816 ena_handle_msix(void *arg)
1817 {
1818 struct ena_que *que = arg;
1819 struct ena_adapter *adapter = que->adapter;
1820 struct ifnet *ifp = adapter->ifp;
1821 struct ena_ring *tx_ring;
1822 struct ena_ring *rx_ring;
1823 struct ena_com_io_cq* io_cq;
1824 struct ena_eth_io_intr_reg intr_reg;
1825 int qid, ena_qid;
1826 int txc, rxc, i;
1827
1828 if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1829 return 0;
1830
1831 ena_trace(ENA_DBG, "MSI-X TX/RX routine");
1832
1833 tx_ring = que->tx_ring;
1834 rx_ring = que->rx_ring;
1835 qid = que->id;
1836 ena_qid = ENA_IO_TXQ_IDX(qid);
1837 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1838
1839 for (i = 0; i < CLEAN_BUDGET; ++i) {
1840 /*
1841 * If lock cannot be acquired, then deferred cleanup task was
1842 * being executed and rx ring is being cleaned up in
1843 * another thread.
1844 */
1845 if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) {
1846 rxc = ena_rx_cleanup(rx_ring);
1847 ENA_RING_MTX_UNLOCK(rx_ring);
1848 } else {
1849 rxc = 0;
1850 }
1851
1852 /* Protection from calling ena_tx_cleanup from ena_start_xmit */
1853 ENA_RING_MTX_LOCK(tx_ring);
1854 txc = ena_tx_cleanup(tx_ring);
1855 ENA_RING_MTX_UNLOCK(tx_ring);
1856
1857 if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1858 return 0;
1859
1860 if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
1861 break;
1862 }
1863
1864 /* Signal that work is done and unmask interrupt */
1865 ena_com_update_intr_reg(&intr_reg,
1866 RX_IRQ_INTERVAL,
1867 TX_IRQ_INTERVAL,
1868 true);
1869 ena_com_unmask_intr(io_cq, &intr_reg);
1870
1871 return 1;
1872 }
1873
1874 static int
1875 ena_enable_msix(struct ena_adapter *adapter)
1876 {
1877 int msix_req;
1878 int counts[PCI_INTR_TYPE_SIZE];
1879 int max_type;
1880
1881 /* Reserved the max msix vectors we might need */
1882 msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
1883
1884 counts[PCI_INTR_TYPE_INTX] = 0;
1885 counts[PCI_INTR_TYPE_MSI] = 0;
1886 counts[PCI_INTR_TYPE_MSIX] = msix_req;
1887 max_type = PCI_INTR_TYPE_MSIX;
1888
1889 if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
1890 max_type) != 0) {
1891 aprint_error_dev(adapter->pdev,
1892 "failed to allocate interrupt\n");
1893 return ENOSPC;
1894 }
1895
1896 adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
1897
1898 if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
1899 device_printf(adapter->pdev,
1900 "Enable only %d MSI-x (out of %d), reduce "
1901 "the number of queues\n", adapter->sc_nintrs, msix_req);
1902 adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
1903 }
1904
1905 return 0;
1906 }
1907
1908 #if 0
1909 static void
1910 ena_setup_io_intr(struct ena_adapter *adapter)
1911 {
1912 static int last_bind_cpu = -1;
1913 int irq_idx;
1914
1915 for (int i = 0; i < adapter->num_queues; i++) {
1916 irq_idx = ENA_IO_IRQ_IDX(i);
1917
1918 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1919 "%s-TxRx-%d", device_xname(adapter->pdev), i);
1920 adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
1921 adapter->irq_tbl[irq_idx].data = &adapter->que[i];
1922 adapter->irq_tbl[irq_idx].vector =
1923 adapter->msix_entries[irq_idx].vector;
1924 ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
1925 adapter->msix_entries[irq_idx].vector);
1926 #ifdef RSS
1927 adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1928 rss_getcpu(i % rss_getnumbuckets());
1929 #else
1930 /*
1931 * We still want to bind rings to the corresponding cpu
1932 * using something similar to the RSS round-robin technique.
1933 */
1934 if (unlikely(last_bind_cpu < 0))
1935 last_bind_cpu = CPU_FIRST();
1936 adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1937 last_bind_cpu;
1938 last_bind_cpu = CPU_NEXT(last_bind_cpu);
1939 #endif
1940 }
1941 }
1942 #endif
1943
1944 static int
1945 ena_request_mgmnt_irq(struct ena_adapter *adapter)
1946 {
1947 const char *intrstr;
1948 char intrbuf[PCI_INTRSTR_LEN];
1949 char intr_xname[INTRDEVNAMEBUF];
1950 pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
1951 const int irq_slot = ENA_MGMNT_IRQ_IDX;
1952
1953 KASSERT(adapter->sc_intrs != NULL);
1954 KASSERT(adapter->sc_ihs[irq_slot] == NULL);
1955
1956 snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
1957 device_xname(adapter->pdev));
1958 intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
1959 intrbuf, sizeof(intrbuf));
1960
1961 adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
1962 pc, adapter->sc_intrs[irq_slot],
1963 IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
1964
1965 if (adapter->sc_ihs[irq_slot] == NULL) {
1966 device_printf(adapter->pdev, "failed to register "
1967 "interrupt handler for MGMNT irq %s\n",
1968 intrstr);
1969 return ENOMEM;
1970 }
1971
1972 aprint_normal_dev(adapter->pdev,
1973 "for MGMNT interrupting at %s\n", intrstr);
1974
1975 return 0;
1976 }
1977
1978 static int
1979 ena_request_io_irq(struct ena_adapter *adapter)
1980 {
1981 const char *intrstr;
1982 char intrbuf[PCI_INTRSTR_LEN];
1983 char intr_xname[INTRDEVNAMEBUF];
1984 pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
1985 const int irq_off = ENA_IO_IRQ_FIRST_IDX;
1986 void *vih;
1987 kcpuset_t *affinity;
1988 int i;
1989
1990 KASSERT(adapter->sc_intrs != NULL);
1991
1992 kcpuset_create(&affinity, false);
1993
1994 for (i = 0; i < adapter->num_queues; i++) {
1995 int irq_slot = i + irq_off;
1996 int affinity_to = (irq_slot) % ncpu;
1997
1998 KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
1999 KASSERT(adapter->sc_ihs[irq_slot] == NULL);
2000
2001 snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
2002 device_xname(adapter->pdev), i);
2003 intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
2004 intrbuf, sizeof(intrbuf));
2005
2006 vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
2007 adapter->sc_intrs[irq_slot], IPL_NET,
2008 ena_handle_msix, &adapter->que[i], intr_xname);
2009
2010 if (adapter->sc_ihs[ENA_MGMNT_IRQ_IDX] == NULL) {
2011 device_printf(adapter->pdev, "failed to register "
2012 "interrupt handler for IO queue %d irq %s\n",
2013 i, intrstr);
2014 goto err;
2015 }
2016
2017 kcpuset_zero(affinity);
2018 /* Round-robin affinity */
2019 kcpuset_set(affinity, affinity_to);
2020 int error = interrupt_distribute(vih, affinity, NULL);
2021 if (error == 0) {
2022 aprint_normal_dev(adapter->pdev,
2023 "for IO queue %d interrupting at %s"
2024 " affinity to %u\n", i, intrstr, affinity_to);
2025 } else {
2026 aprint_normal_dev(adapter->pdev,
2027 "for IO queue %d interrupting at %s\n", i, intrstr);
2028 }
2029
2030 adapter->sc_ihs[irq_slot] = vih;
2031
2032 #ifdef RSS
2033 ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
2034 i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
2035 #else
2036 ena_trace(ENA_INFO, "queue %d - cpu %d\n",
2037 i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
2038 #endif
2039 }
2040
2041 kcpuset_destroy(affinity);
2042 return 0;
2043
2044 err:
2045 kcpuset_destroy(affinity);
2046
2047 for (i--; i >= 0; i--) {
2048 #if defined(DEBUG) || defined(DIAGNOSTIC)
2049 int irq_slot = i + irq_off;
2050 #endif
2051 KASSERT(adapter->sc_ihs[irq_slot] != NULL);
2052 pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[i]);
2053 adapter->sc_ihs[i] = NULL;
2054 }
2055
2056 return ENOSPC;
2057 }
2058
2059 static void
2060 ena_free_mgmnt_irq(struct ena_adapter *adapter)
2061 {
2062 const int irq_slot = ENA_MGMNT_IRQ_IDX;
2063
2064 if (adapter->sc_ihs[irq_slot]) {
2065 pci_intr_disestablish(adapter->sc_pa.pa_pc,
2066 adapter->sc_ihs[irq_slot]);
2067 adapter->sc_ihs[irq_slot] = NULL;
2068 }
2069 }
2070
2071 static void
2072 ena_free_io_irq(struct ena_adapter *adapter)
2073 {
2074 const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2075
2076 for (int i = 0; i < adapter->num_queues; i++) {
2077 int irq_slot = i + irq_off;
2078
2079 if (adapter->sc_ihs[irq_slot]) {
2080 pci_intr_disestablish(adapter->sc_pa.pa_pc,
2081 adapter->sc_ihs[i]);
2082 adapter->sc_ihs[i] = NULL;
2083 }
2084 }
2085 }
2086
2087 static void
2088 ena_free_irqs(struct ena_adapter* adapter)
2089 {
2090
2091 ena_free_io_irq(adapter);
2092 ena_free_mgmnt_irq(adapter);
2093 ena_disable_msix(adapter);
2094 }
2095
2096 static void
2097 ena_disable_msix(struct ena_adapter *adapter)
2098 {
2099 pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
2100 adapter->sc_nintrs);
2101 }
2102
2103 static void
2104 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
2105 {
2106 struct ena_com_io_cq* io_cq;
2107 struct ena_eth_io_intr_reg intr_reg;
2108 uint16_t ena_qid;
2109 int i;
2110
2111 /* Unmask interrupts for all queues */
2112 for (i = 0; i < adapter->num_queues; i++) {
2113 ena_qid = ENA_IO_TXQ_IDX(i);
2114 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
2115 ena_com_update_intr_reg(&intr_reg, 0, 0, true);
2116 ena_com_unmask_intr(io_cq, &intr_reg);
2117 }
2118 }
2119
2120 /* Configure the Rx forwarding */
2121 static int
2122 ena_rss_configure(struct ena_adapter *adapter)
2123 {
2124 struct ena_com_dev *ena_dev = adapter->ena_dev;
2125 int rc;
2126
2127 /* Set indirect table */
2128 rc = ena_com_indirect_table_set(ena_dev);
2129 if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2130 return (rc);
2131
2132 /* Configure hash function (if supported) */
2133 rc = ena_com_set_hash_function(ena_dev);
2134 if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2135 return (rc);
2136
2137 /* Configure hash inputs (if supported) */
2138 rc = ena_com_set_hash_ctrl(ena_dev);
2139 if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2140 return (rc);
2141
2142 return (0);
2143 }
2144
2145 static int
2146 ena_up_complete(struct ena_adapter *adapter)
2147 {
2148 int rc;
2149
2150 if (likely(adapter->rss_support)) {
2151 rc = ena_rss_configure(adapter);
2152 if (rc != 0)
2153 return (rc);
2154 }
2155
2156 rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
2157 if (unlikely(rc != 0))
2158 return (rc);
2159
2160 ena_refill_all_rx_bufs(adapter);
2161 ena_reset_counters((struct evcnt *)&adapter->hw_stats,
2162 sizeof(adapter->hw_stats));
2163
2164 return (0);
2165 }
2166
2167 static int
2168 ena_up(struct ena_adapter *adapter)
2169 {
2170 int rc = 0;
2171
2172 #if 0
2173 if (unlikely(device_is_attached(adapter->pdev) == 0)) {
2174 device_printf(adapter->pdev, "device is not attached!\n");
2175 return (ENXIO);
2176 }
2177 #endif
2178
2179 if (unlikely(!adapter->running)) {
2180 device_printf(adapter->pdev, "device is not running!\n");
2181 return (ENXIO);
2182 }
2183
2184 if (!adapter->up) {
2185 device_printf(adapter->pdev, "device is going UP\n");
2186
2187 /* setup interrupts for IO queues */
2188 rc = ena_request_io_irq(adapter);
2189 if (unlikely(rc != 0)) {
2190 ena_trace(ENA_ALERT, "err_req_irq");
2191 goto err_req_irq;
2192 }
2193
2194 /* allocate transmit descriptors */
2195 rc = ena_setup_all_tx_resources(adapter);
2196 if (unlikely(rc != 0)) {
2197 ena_trace(ENA_ALERT, "err_setup_tx");
2198 goto err_setup_tx;
2199 }
2200
2201 /* allocate receive descriptors */
2202 rc = ena_setup_all_rx_resources(adapter);
2203 if (unlikely(rc != 0)) {
2204 ena_trace(ENA_ALERT, "err_setup_rx");
2205 goto err_setup_rx;
2206 }
2207
2208 /* create IO queues for Rx & Tx */
2209 rc = ena_create_io_queues(adapter);
2210 if (unlikely(rc != 0)) {
2211 ena_trace(ENA_ALERT,
2212 "create IO queues failed");
2213 goto err_io_que;
2214 }
2215
2216 if (unlikely(adapter->link_status))
2217 if_link_state_change(adapter->ifp, LINK_STATE_UP);
2218
2219 rc = ena_up_complete(adapter);
2220 if (unlikely(rc != 0))
2221 goto err_up_complete;
2222
2223 counter_u64_add(adapter->dev_stats.interface_up, 1);
2224
2225 ena_update_hwassist(adapter);
2226
2227 if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
2228 IFF_OACTIVE);
2229
2230 callout_reset(&adapter->timer_service, hz,
2231 ena_timer_service, (void *)adapter);
2232
2233 adapter->up = true;
2234
2235 ena_unmask_all_io_irqs(adapter);
2236 }
2237
2238 return (0);
2239
2240 err_up_complete:
2241 ena_destroy_all_io_queues(adapter);
2242 err_io_que:
2243 ena_free_all_rx_resources(adapter);
2244 err_setup_rx:
2245 ena_free_all_tx_resources(adapter);
2246 err_setup_tx:
2247 ena_free_io_irq(adapter);
2248 err_req_irq:
2249 return (rc);
2250 }
2251
2252 #if 0
2253 static uint64_t
2254 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
2255 {
2256 struct ena_adapter *adapter;
2257 struct ena_hw_stats *stats;
2258
2259 adapter = if_getsoftc(ifp);
2260 stats = &adapter->hw_stats;
2261
2262 switch (cnt) {
2263 case IFCOUNTER_IPACKETS:
2264 return (counter_u64_fetch(stats->rx_packets));
2265 case IFCOUNTER_OPACKETS:
2266 return (counter_u64_fetch(stats->tx_packets));
2267 case IFCOUNTER_IBYTES:
2268 return (counter_u64_fetch(stats->rx_bytes));
2269 case IFCOUNTER_OBYTES:
2270 return (counter_u64_fetch(stats->tx_bytes));
2271 case IFCOUNTER_IQDROPS:
2272 return (counter_u64_fetch(stats->rx_drops));
2273 default:
2274 return (if_get_counter_default(ifp, cnt));
2275 }
2276 }
2277 #endif
2278
2279 static int
2280 ena_media_change(struct ifnet *ifp)
2281 {
2282 /* Media Change is not supported by firmware */
2283 return (0);
2284 }
2285
2286 static void
2287 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2288 {
2289 struct ena_adapter *adapter = if_getsoftc(ifp);
2290 ena_trace(ENA_DBG, "enter");
2291
2292 mutex_enter(&adapter->global_mtx);
2293
2294 ifmr->ifm_status = IFM_AVALID;
2295 ifmr->ifm_active = IFM_ETHER;
2296
2297 if (!adapter->link_status) {
2298 mutex_exit(&adapter->global_mtx);
2299 ena_trace(ENA_INFO, "link_status = false");
2300 return;
2301 }
2302
2303 ifmr->ifm_status |= IFM_ACTIVE;
2304 ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2305
2306 mutex_exit(&adapter->global_mtx);
2307 }
2308
2309 static int
2310 ena_init(struct ifnet *ifp)
2311 {
2312 struct ena_adapter *adapter = if_getsoftc(ifp);
2313
2314 if (!adapter->up) {
2315 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2316 ena_up(adapter);
2317 rw_exit(&adapter->ioctl_sx);
2318 }
2319
2320 return 0;
2321 }
2322
2323 static int
2324 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
2325 {
2326 struct ena_adapter *adapter;
2327 struct ifreq *ifr;
2328 int rc;
2329
2330 adapter = ifp->if_softc;
2331 ifr = (struct ifreq *)data;
2332
2333 /*
2334 * Acquiring lock to prevent from running up and down routines parallel.
2335 */
2336 rc = 0;
2337 switch (command) {
2338 case SIOCSIFMTU:
2339 if (ifp->if_mtu == ifr->ifr_mtu)
2340 break;
2341 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2342 ena_down(adapter);
2343
2344 ena_change_mtu(ifp, ifr->ifr_mtu);
2345
2346 rc = ena_up(adapter);
2347 rw_exit(&adapter->ioctl_sx);
2348 break;
2349
2350 case SIOCSIFFLAGS:
2351 if ((ifp->if_flags & IFF_UP) != 0) {
2352 if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2353 if ((ifp->if_flags & (IFF_PROMISC |
2354 IFF_ALLMULTI)) != 0) {
2355 device_printf(adapter->pdev,
2356 "ioctl promisc/allmulti\n");
2357 }
2358 } else {
2359 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2360 rc = ena_up(adapter);
2361 rw_exit(&adapter->ioctl_sx);
2362 }
2363 } else {
2364 if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2365 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2366 ena_down(adapter);
2367 rw_exit(&adapter->ioctl_sx);
2368 }
2369 }
2370 break;
2371
2372 case SIOCADDMULTI:
2373 case SIOCDELMULTI:
2374 break;
2375
2376 case SIOCSIFMEDIA:
2377 case SIOCGIFMEDIA:
2378 rc = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
2379 break;
2380
2381 case SIOCSIFCAP:
2382 {
2383 struct ifcapreq *ifcr = data;
2384 int reinit = 0;
2385
2386 if (ifcr->ifcr_capenable != ifp->if_capenable) {
2387 ifp->if_capenable = ifcr->ifcr_capenable;
2388 reinit = 1;
2389 }
2390
2391 if ((reinit != 0) &&
2392 ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
2393 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2394 ena_down(adapter);
2395 rc = ena_up(adapter);
2396 rw_exit(&adapter->ioctl_sx);
2397 }
2398 }
2399
2400 break;
2401 default:
2402 rc = ether_ioctl(ifp, command, data);
2403 break;
2404 }
2405
2406 return (rc);
2407 }
2408
2409 static int
2410 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
2411 {
2412 int caps = 0;
2413
2414 if ((feat->offload.tx &
2415 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2416 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
2417 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
2418 caps |= IFCAP_CSUM_IPv4_Tx;
2419
2420 if ((feat->offload.tx &
2421 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
2422 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
2423 caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
2424
2425 if ((feat->offload.tx &
2426 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
2427 caps |= IFCAP_TSOv4;
2428
2429 if ((feat->offload.tx &
2430 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
2431 caps |= IFCAP_TSOv6;
2432
2433 if ((feat->offload.rx_supported &
2434 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
2435 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
2436 caps |= IFCAP_CSUM_IPv4_Rx;
2437
2438 if ((feat->offload.rx_supported &
2439 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
2440 caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
2441
2442 caps |= IFCAP_LRO;
2443
2444 return (caps);
2445 }
2446
2447 static void
2448 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
2449 {
2450
2451 host_info->supported_network_features[0] =
2452 (uint32_t)if_getcapabilities(ifp);
2453 }
2454
2455 static void
2456 ena_update_hwassist(struct ena_adapter *adapter)
2457 {
2458 struct ifnet *ifp = adapter->ifp;
2459 uint32_t feat = adapter->tx_offload_cap;
2460 int cap = if_getcapenable(ifp);
2461 int flags = 0;
2462
2463 if_clearhwassist(ifp);
2464
2465 if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2466 != 0) {
2467 if ((feat &
2468 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
2469 flags |= M_CSUM_IPv4;
2470 if ((feat &
2471 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2472 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
2473 flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
2474 }
2475
2476 if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
2477 flags |= M_CSUM_TCPv6;
2478
2479 if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
2480 flags |= M_CSUM_UDPv6;
2481
2482 if ((cap & IFCAP_TSOv4) != 0)
2483 flags |= M_CSUM_TSOv4;
2484
2485 if ((cap & IFCAP_TSOv6) != 0)
2486 flags |= M_CSUM_TSOv6;
2487
2488 if_sethwassistbits(ifp, flags, 0);
2489 }
2490
2491 static int
2492 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
2493 struct ena_com_dev_get_features_ctx *feat)
2494 {
2495 struct ifnet *ifp;
2496 int caps = 0;
2497
2498 ifp = adapter->ifp = &adapter->sc_ec.ec_if;
2499 if (unlikely(ifp == NULL)) {
2500 ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
2501 return (ENXIO);
2502 }
2503 if_initname(ifp, "ena", device_unit(pdev));
2504 if_setdev(ifp, pdev);
2505 if_setsoftc(ifp, adapter);
2506
2507 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2508 if_setinitfn(ifp, ena_init);
2509 if_settransmitfn(ifp, ena_mq_start);
2510 #if 0
2511 if_setqflushfn(ifp, ena_qflush);
2512 #endif
2513 if_setioctlfn(ifp, ena_ioctl);
2514 #if 0
2515 if_setgetcounterfn(ifp, ena_get_counter);
2516 #endif
2517
2518 if_setsendqlen(ifp, adapter->tx_ring_size);
2519 if_setsendqready(ifp);
2520 if_setmtu(ifp, ETHERMTU);
2521 if_setbaudrate(ifp, 0);
2522 /* Zeroize capabilities... */
2523 if_setcapabilities(ifp, 0);
2524 if_setcapenable(ifp, 0);
2525 /* check hardware support */
2526 caps = ena_get_dev_offloads(feat);
2527 /* ... and set them */
2528 if_setcapabilitiesbit(ifp, caps, 0);
2529 adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2530
2531 #if 0
2532 /* TSO parameters */
2533 /* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
2534 ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
2535 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
2536 ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
2537 ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
2538 #endif
2539
2540 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2541 if_setcapenable(ifp, if_getcapabilities(ifp));
2542
2543 /*
2544 * Specify the media types supported by this adapter and register
2545 * callbacks to update media and link information
2546 */
2547 ifmedia_init(&adapter->media, IFM_IMASK,
2548 ena_media_change, ena_media_status);
2549 ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2550 ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2551
2552 if_attach(ifp);
2553 if_deferred_start_init(ifp, NULL);
2554
2555 ether_ifattach(ifp, adapter->mac_addr);
2556
2557 return (0);
2558 }
2559
2560 static void
2561 ena_down(struct ena_adapter *adapter)
2562 {
2563 int rc;
2564
2565 if (adapter->up) {
2566 device_printf(adapter->pdev, "device is going DOWN\n");
2567
2568 callout_halt(&adapter->timer_service, &adapter->global_mtx);
2569
2570 adapter->up = false;
2571 if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
2572 IFF_RUNNING);
2573
2574 ena_free_io_irq(adapter);
2575
2576 if (adapter->trigger_reset) {
2577 rc = ena_com_dev_reset(adapter->ena_dev,
2578 adapter->reset_reason);
2579 if (unlikely(rc != 0))
2580 device_printf(adapter->pdev,
2581 "Device reset failed\n");
2582 }
2583
2584 ena_destroy_all_io_queues(adapter);
2585
2586 ena_free_all_tx_bufs(adapter);
2587 ena_free_all_rx_bufs(adapter);
2588 ena_free_all_tx_resources(adapter);
2589 ena_free_all_rx_resources(adapter);
2590
2591 counter_u64_add(adapter->dev_stats.interface_down, 1);
2592 }
2593 }
2594
2595 static void
2596 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
2597 {
2598 struct ena_com_tx_meta *ena_meta;
2599 struct ether_vlan_header *eh;
2600 u32 mss;
2601 bool offload;
2602 uint16_t etype;
2603 int ehdrlen;
2604 struct ip *ip;
2605 int iphlen;
2606 struct tcphdr *th;
2607
2608 offload = false;
2609 ena_meta = &ena_tx_ctx->ena_meta;
2610
2611 #if 0
2612 u32 mss = mbuf->m_pkthdr.tso_segsz;
2613
2614 if (mss != 0)
2615 offload = true;
2616 #else
2617 mss = mbuf->m_pkthdr.len; /* XXX don't have tso_segsz */
2618 #endif
2619
2620 if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
2621 offload = true;
2622
2623 if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
2624 offload = true;
2625
2626 if (!offload) {
2627 ena_tx_ctx->meta_valid = 0;
2628 return;
2629 }
2630
2631 /* Determine where frame payload starts. */
2632 eh = mtod(mbuf, struct ether_vlan_header *);
2633 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2634 etype = ntohs(eh->evl_proto);
2635 ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2636 } else {
2637 etype = htons(eh->evl_encap_proto);
2638 ehdrlen = ETHER_HDR_LEN;
2639 }
2640
2641 ip = (struct ip *)(mbuf->m_data + ehdrlen);
2642 iphlen = ip->ip_hl << 2;
2643 th = (struct tcphdr *)((vaddr_t)ip + iphlen);
2644
2645 if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
2646 ena_tx_ctx->l3_csum_enable = 1;
2647 }
2648 if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
2649 ena_tx_ctx->tso_enable = 1;
2650 ena_meta->l4_hdr_len = (th->th_off);
2651 }
2652
2653 switch (etype) {
2654 case ETHERTYPE_IP:
2655 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2656 if ((ip->ip_off & htons(IP_DF)) != 0)
2657 ena_tx_ctx->df = 1;
2658 break;
2659 case ETHERTYPE_IPV6:
2660 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2661
2662 default:
2663 break;
2664 }
2665
2666 if (ip->ip_p == IPPROTO_TCP) {
2667 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2668 if ((mbuf->m_pkthdr.csum_flags &
2669 (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
2670 ena_tx_ctx->l4_csum_enable = 1;
2671 else
2672 ena_tx_ctx->l4_csum_enable = 0;
2673 } else if (ip->ip_p == IPPROTO_UDP) {
2674 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2675 if ((mbuf->m_pkthdr.csum_flags &
2676 (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2677 ena_tx_ctx->l4_csum_enable = 1;
2678 else
2679 ena_tx_ctx->l4_csum_enable = 0;
2680 } else {
2681 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
2682 ena_tx_ctx->l4_csum_enable = 0;
2683 }
2684
2685 ena_meta->mss = mss;
2686 ena_meta->l3_hdr_len = iphlen;
2687 ena_meta->l3_hdr_offset = ehdrlen;
2688 ena_tx_ctx->meta_valid = 1;
2689 }
2690
2691 static int
2692 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2693 {
2694 struct ena_adapter *adapter;
2695 struct mbuf *collapsed_mbuf;
2696 int num_frags;
2697
2698 adapter = tx_ring->adapter;
2699 num_frags = ena_mbuf_count(*mbuf);
2700
2701 /* One segment must be reserved for configuration descriptor. */
2702 if (num_frags < adapter->max_tx_sgl_size)
2703 return (0);
2704 counter_u64_add(tx_ring->tx_stats.collapse, 1);
2705
2706 collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
2707 adapter->max_tx_sgl_size - 1);
2708 if (unlikely(collapsed_mbuf == NULL)) {
2709 counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
2710 return (ENOMEM);
2711 }
2712
2713 /* If mbuf was collapsed succesfully, original mbuf is released. */
2714 *mbuf = collapsed_mbuf;
2715
2716 return (0);
2717 }
2718
2719 static int
2720 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2721 {
2722 struct ena_adapter *adapter;
2723 struct ena_tx_buffer *tx_info;
2724 struct ena_com_tx_ctx ena_tx_ctx;
2725 struct ena_com_dev *ena_dev;
2726 struct ena_com_buf *ena_buf;
2727 struct ena_com_io_sq* io_sq;
2728 void *push_hdr;
2729 uint16_t next_to_use;
2730 uint16_t req_id;
2731 uint16_t ena_qid;
2732 uint32_t header_len;
2733 int i, rc;
2734 int nb_hw_desc;
2735
2736 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2737 adapter = tx_ring->que->adapter;
2738 ena_dev = adapter->ena_dev;
2739 io_sq = &ena_dev->io_sq_queues[ena_qid];
2740
2741 rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
2742 if (unlikely(rc != 0)) {
2743 ena_trace(ENA_WARNING,
2744 "Failed to collapse mbuf! err: %d", rc);
2745 return (rc);
2746 }
2747
2748 next_to_use = tx_ring->next_to_use;
2749 req_id = tx_ring->free_tx_ids[next_to_use];
2750 tx_info = &tx_ring->tx_buffer_info[req_id];
2751
2752 tx_info->mbuf = *mbuf;
2753 tx_info->num_of_bufs = 0;
2754
2755 ena_buf = tx_info->bufs;
2756
2757 ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
2758
2759 /*
2760 * header_len is just a hint for the device. Because FreeBSD is not
2761 * giving us information about packet header length and it is not
2762 * guaranteed that all packet headers will be in the 1st mbuf, setting
2763 * header_len to 0 is making the device ignore this value and resolve
2764 * header on it's own.
2765 */
2766 header_len = 0;
2767 push_hdr = NULL;
2768
2769 rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
2770 *mbuf, BUS_DMA_NOWAIT);
2771
2772 if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
2773 ena_trace(ENA_WARNING,
2774 "dmamap load failed! err: %d nsegs: %d", rc,
2775 tx_info->map->dm_nsegs);
2776 counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
2777 tx_info->mbuf = NULL;
2778 if (rc == ENOMEM)
2779 return (ENA_COM_NO_MEM);
2780 else
2781 return (ENA_COM_INVAL);
2782 }
2783
2784 for (i = 0; i < tx_info->map->dm_nsegs; i++) {
2785 ena_buf->len = tx_info->map->dm_segs[i].ds_len;
2786 ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
2787 ena_buf++;
2788 }
2789 tx_info->num_of_bufs = tx_info->map->dm_nsegs;
2790
2791 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2792 ena_tx_ctx.ena_bufs = tx_info->bufs;
2793 ena_tx_ctx.push_header = push_hdr;
2794 ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2795 ena_tx_ctx.req_id = req_id;
2796 ena_tx_ctx.header_len = header_len;
2797
2798 /* Set flags and meta data */
2799 ena_tx_csum(&ena_tx_ctx, *mbuf);
2800 /* Prepare the packet's descriptors and send them to device */
2801 rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
2802 if (unlikely(rc != 0)) {
2803 device_printf(adapter->pdev, "failed to prepare tx bufs\n");
2804 counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
2805 goto dma_error;
2806 }
2807
2808 counter_enter();
2809 counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
2810 counter_u64_add_protected(tx_ring->tx_stats.bytes,
2811 (*mbuf)->m_pkthdr.len);
2812
2813 counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
2814 counter_u64_add_protected(adapter->hw_stats.tx_bytes,
2815 (*mbuf)->m_pkthdr.len);
2816 counter_exit();
2817
2818 tx_info->tx_descs = nb_hw_desc;
2819 getbinuptime(&tx_info->timestamp);
2820 tx_info->print_once = true;
2821
2822 tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
2823 tx_ring->ring_size);
2824
2825 bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
2826 tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2827
2828 return (0);
2829
2830 dma_error:
2831 tx_info->mbuf = NULL;
2832 bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
2833
2834 return (rc);
2835 }
2836
2837 static void
2838 ena_start_xmit(struct ena_ring *tx_ring)
2839 {
2840 struct mbuf *mbuf;
2841 struct ena_adapter *adapter = tx_ring->adapter;
2842 struct ena_com_io_sq* io_sq;
2843 int ena_qid;
2844 int acum_pkts = 0;
2845 int ret = 0;
2846
2847 if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2848 return;
2849
2850 if (unlikely(!adapter->link_status))
2851 return;
2852
2853 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2854 io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
2855
2856 while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
2857 ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
2858 " header csum flags %#jx",
2859 mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
2860
2861 if (unlikely(!ena_com_sq_have_enough_space(io_sq,
2862 ENA_TX_CLEANUP_THRESHOLD)))
2863 ena_tx_cleanup(tx_ring);
2864
2865 if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
2866 if (ret == ENA_COM_NO_MEM) {
2867 drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2868 } else if (ret == ENA_COM_NO_SPACE) {
2869 drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2870 } else {
2871 m_freem(mbuf);
2872 drbr_advance(adapter->ifp, tx_ring->br);
2873 }
2874
2875 break;
2876 }
2877
2878 drbr_advance(adapter->ifp, tx_ring->br);
2879
2880 if (unlikely((if_getdrvflags(adapter->ifp) &
2881 IFF_RUNNING) == 0))
2882 return;
2883
2884 acum_pkts++;
2885
2886 /*
2887 * If there's a BPF listener, bounce a copy of this frame
2888 * to him.
2889 */
2890 bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
2891
2892 if (unlikely(acum_pkts == DB_THRESHOLD)) {
2893 acum_pkts = 0;
2894 wmb();
2895 /* Trigger the dma engine */
2896 ena_com_write_sq_doorbell(io_sq);
2897 counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2898 }
2899
2900 }
2901
2902 if (likely(acum_pkts != 0)) {
2903 wmb();
2904 /* Trigger the dma engine */
2905 ena_com_write_sq_doorbell(io_sq);
2906 counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2907 }
2908
2909 if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
2910 ena_tx_cleanup(tx_ring);
2911 }
2912
2913 static void
2914 ena_deferred_mq_start(struct work *wk, void *arg)
2915 {
2916 struct ena_ring *tx_ring = (struct ena_ring *)arg;
2917 struct ifnet *ifp = tx_ring->adapter->ifp;
2918
2919 atomic_swap_uint(&tx_ring->task_pending, 0);
2920
2921 while (!drbr_empty(ifp, tx_ring->br) &&
2922 (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2923 ENA_RING_MTX_LOCK(tx_ring);
2924 ena_start_xmit(tx_ring);
2925 ENA_RING_MTX_UNLOCK(tx_ring);
2926 }
2927 }
2928
2929 static int
2930 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
2931 {
2932 struct ena_adapter *adapter = ifp->if_softc;
2933 struct ena_ring *tx_ring;
2934 int ret, is_drbr_empty;
2935 uint32_t i;
2936
2937 if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2938 return (ENODEV);
2939
2940 /* Which queue to use */
2941 /*
2942 * If everything is setup correctly, it should be the
2943 * same bucket that the current CPU we're on is.
2944 * It should improve performance.
2945 */
2946 #if 0
2947 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
2948 #ifdef RSS
2949 if (rss_hash2bucket(m->m_pkthdr.flowid,
2950 M_HASHTYPE_GET(m), &i) == 0) {
2951 i = i % adapter->num_queues;
2952
2953 } else
2954 #endif
2955 {
2956 i = m->m_pkthdr.flowid % adapter->num_queues;
2957 }
2958 } else {
2959 #endif
2960 i = cpu_index(curcpu()) % adapter->num_queues;
2961 #if 0
2962 }
2963 #endif
2964 tx_ring = &adapter->tx_ring[i];
2965
2966 /* Check if drbr is empty before putting packet */
2967 is_drbr_empty = drbr_empty(ifp, tx_ring->br);
2968 ret = drbr_enqueue(ifp, tx_ring->br, m);
2969 if (unlikely(ret != 0)) {
2970 if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
2971 workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
2972 curcpu());
2973 return (ret);
2974 }
2975
2976 if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
2977 ena_start_xmit(tx_ring);
2978 ENA_RING_MTX_UNLOCK(tx_ring);
2979 } else {
2980 if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
2981 workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
2982 curcpu());
2983 }
2984
2985 return (0);
2986 }
2987
2988 #if 0
2989 static void
2990 ena_qflush(struct ifnet *ifp)
2991 {
2992 struct ena_adapter *adapter = ifp->if_softc;
2993 struct ena_ring *tx_ring = adapter->tx_ring;
2994 int i;
2995
2996 for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
2997 if (!drbr_empty(ifp, tx_ring->br)) {
2998 ENA_RING_MTX_LOCK(tx_ring);
2999 drbr_flush(ifp, tx_ring->br);
3000 ENA_RING_MTX_UNLOCK(tx_ring);
3001 }
3002
3003 if_qflush(ifp);
3004 }
3005 #endif
3006
3007 static int
3008 ena_calc_io_queue_num(struct pci_attach_args *pa,
3009 struct ena_adapter *adapter,
3010 struct ena_com_dev_get_features_ctx *get_feat_ctx)
3011 {
3012 int io_sq_num, io_cq_num, io_queue_num;
3013
3014 io_sq_num = get_feat_ctx->max_queues.max_sq_num;
3015 io_cq_num = get_feat_ctx->max_queues.max_cq_num;
3016
3017 io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
3018 io_queue_num = min_t(int, io_queue_num, io_sq_num);
3019 io_queue_num = min_t(int, io_queue_num, io_cq_num);
3020 /* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */
3021 io_queue_num = min_t(int, io_queue_num,
3022 pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
3023 #ifdef RSS
3024 io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets());
3025 #endif
3026
3027 return (io_queue_num);
3028 }
3029
3030 static int
3031 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
3032 uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
3033 {
3034 uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
3035 uint32_t v;
3036 uint32_t q;
3037
3038 queue_size = min_t(uint32_t, queue_size,
3039 feat->max_queues.max_cq_depth);
3040 queue_size = min_t(uint32_t, queue_size,
3041 feat->max_queues.max_sq_depth);
3042
3043 /* round down to the nearest power of 2 */
3044 v = queue_size;
3045 while (v != 0) {
3046 if (powerof2(queue_size) != 0)
3047 break;
3048 v /= 2;
3049 q = rounddown2(queue_size, v);
3050 if (q != 0) {
3051 queue_size = q;
3052 break;
3053 }
3054 }
3055
3056 if (unlikely(queue_size == 0)) {
3057 device_printf(adapter->pdev, "Invalid queue size\n");
3058 return (ENA_COM_FAULT);
3059 }
3060
3061 *max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3062 feat->max_queues.max_packet_tx_descs);
3063 *max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3064 feat->max_queues.max_packet_rx_descs);
3065
3066 return (queue_size);
3067 }
3068
3069 #if 0
3070 static int
3071 ena_rss_init_default(struct ena_adapter *adapter)
3072 {
3073 struct ena_com_dev *ena_dev = adapter->ena_dev;
3074 device_t dev = adapter->pdev;
3075 int qid, rc, i;
3076
3077 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3078 if (unlikely(rc != 0)) {
3079 device_printf(dev, "Cannot init indirect table\n");
3080 return (rc);
3081 }
3082
3083 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3084 #ifdef RSS
3085 qid = rss_get_indirection_to_bucket(i);
3086 qid = qid % adapter->num_queues;
3087 #else
3088 qid = i % adapter->num_queues;
3089 #endif
3090 rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3091 ENA_IO_RXQ_IDX(qid));
3092 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3093 device_printf(dev, "Cannot fill indirect table\n");
3094 goto err_rss_destroy;
3095 }
3096 }
3097
3098 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
3099 ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
3100 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3101 device_printf(dev, "Cannot fill hash function\n");
3102 goto err_rss_destroy;
3103 }
3104
3105 rc = ena_com_set_default_hash_ctrl(ena_dev);
3106 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3107 device_printf(dev, "Cannot fill hash control\n");
3108 goto err_rss_destroy;
3109 }
3110
3111 return (0);
3112
3113 err_rss_destroy:
3114 ena_com_rss_destroy(ena_dev);
3115 return (rc);
3116 }
3117
3118 static void
3119 ena_rss_init_default_deferred(void *arg)
3120 {
3121 struct ena_adapter *adapter;
3122 devclass_t dc;
3123 int max;
3124 int rc;
3125
3126 dc = devclass_find("ena");
3127 if (unlikely(dc == NULL)) {
3128 ena_trace(ENA_ALERT, "No devclass ena\n");
3129 return;
3130 }
3131
3132 max = devclass_get_maxunit(dc);
3133 while (max-- >= 0) {
3134 adapter = devclass_get_softc(dc, max);
3135 if (adapter != NULL) {
3136 rc = ena_rss_init_default(adapter);
3137 adapter->rss_support = true;
3138 if (unlikely(rc != 0)) {
3139 device_printf(adapter->pdev,
3140 "WARNING: RSS was not properly initialized,"
3141 " it will affect bandwidth\n");
3142 adapter->rss_support = false;
3143 }
3144 }
3145 }
3146 }
3147 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL);
3148 #endif
3149
3150 static void
3151 ena_config_host_info(struct ena_com_dev *ena_dev)
3152 {
3153 struct ena_admin_host_info *host_info;
3154 int rc;
3155
3156 /* Allocate only the host info */
3157 rc = ena_com_allocate_host_info(ena_dev);
3158 if (unlikely(rc != 0)) {
3159 ena_trace(ENA_ALERT, "Cannot allocate host info\n");
3160 return;
3161 }
3162
3163 host_info = ena_dev->host_attr.host_info;
3164
3165 host_info->os_type = ENA_ADMIN_OS_FREEBSD;
3166 host_info->kernel_ver = osreldate;
3167
3168 snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
3169 "%d", osreldate);
3170 host_info->os_dist = 0;
3171 strncpy(host_info->os_dist_str, osrelease,
3172 sizeof(host_info->os_dist_str) - 1);
3173
3174 host_info->driver_version =
3175 (DRV_MODULE_VER_MAJOR) |
3176 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3177 (DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
3178
3179 rc = ena_com_set_host_attributes(ena_dev);
3180 if (unlikely(rc != 0)) {
3181 if (rc == EOPNOTSUPP)
3182 ena_trace(ENA_WARNING, "Cannot set host attributes\n");
3183 else
3184 ena_trace(ENA_ALERT, "Cannot set host attributes\n");
3185
3186 goto err;
3187 }
3188
3189 return;
3190
3191 err:
3192 ena_com_delete_host_info(ena_dev);
3193 }
3194
3195 static int
3196 ena_device_init(struct ena_adapter *adapter, device_t pdev,
3197 struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
3198 {
3199 struct ena_com_dev* ena_dev = adapter->ena_dev;
3200 bool readless_supported;
3201 uint32_t aenq_groups;
3202 int dma_width;
3203 int rc;
3204
3205 rc = ena_com_mmio_reg_read_request_init(ena_dev);
3206 if (unlikely(rc != 0)) {
3207 device_printf(pdev, "failed to init mmio read less\n");
3208 return (rc);
3209 }
3210
3211 /*
3212 * The PCIe configuration space revision id indicate if mmio reg
3213 * read is disabled
3214 */
3215 const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
3216 readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
3217 ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3218
3219 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3220 if (unlikely(rc != 0)) {
3221 device_printf(pdev, "Can not reset device\n");
3222 goto err_mmio_read_less;
3223 }
3224
3225 rc = ena_com_validate_version(ena_dev);
3226 if (unlikely(rc != 0)) {
3227 device_printf(pdev, "device version is too low\n");
3228 goto err_mmio_read_less;
3229 }
3230
3231 dma_width = ena_com_get_dma_width(ena_dev);
3232 if (unlikely(dma_width < 0)) {
3233 device_printf(pdev, "Invalid dma width value %d", dma_width);
3234 rc = dma_width;
3235 goto err_mmio_read_less;
3236 }
3237 adapter->dma_width = dma_width;
3238
3239 /* ENA admin level init */
3240 rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
3241 if (unlikely(rc != 0)) {
3242 device_printf(pdev,
3243 "Can not initialize ena admin queue with device\n");
3244 goto err_mmio_read_less;
3245 }
3246
3247 /*
3248 * To enable the msix interrupts the driver needs to know the number
3249 * of queues. So the driver uses polling mode to retrieve this
3250 * information
3251 */
3252 ena_com_set_admin_polling_mode(ena_dev, true);
3253
3254 ena_config_host_info(ena_dev);
3255
3256 /* Get Device Attributes */
3257 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3258 if (unlikely(rc != 0)) {
3259 device_printf(pdev,
3260 "Cannot get attribute for ena device rc: %d\n", rc);
3261 goto err_admin_init;
3262 }
3263
3264 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
3265
3266 aenq_groups &= get_feat_ctx->aenq.supported_groups;
3267 rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3268 if (unlikely(rc != 0)) {
3269 device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
3270 goto err_admin_init;
3271 }
3272
3273 *wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3274
3275 return (0);
3276
3277 err_admin_init:
3278 ena_com_delete_host_info(ena_dev);
3279 ena_com_admin_destroy(ena_dev);
3280 err_mmio_read_less:
3281 ena_com_mmio_reg_read_request_destroy(ena_dev);
3282
3283 return (rc);
3284 }
3285
3286 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
3287 int io_vectors)
3288 {
3289 struct ena_com_dev *ena_dev = adapter->ena_dev;
3290 int rc;
3291
3292 rc = ena_enable_msix(adapter);
3293 if (unlikely(rc != 0)) {
3294 device_printf(adapter->pdev, "Error with MSI-X enablement\n");
3295 return (rc);
3296 }
3297
3298 rc = ena_request_mgmnt_irq(adapter);
3299 if (unlikely(rc != 0)) {
3300 device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
3301 goto err_disable_msix;
3302 }
3303
3304 ena_com_set_admin_polling_mode(ena_dev, false);
3305
3306 ena_com_admin_aenq_enable(ena_dev);
3307
3308 return (0);
3309
3310 err_disable_msix:
3311 ena_disable_msix(adapter);
3312
3313 return (rc);
3314 }
3315
3316 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
3317 static void ena_keep_alive_wd(void *adapter_data,
3318 struct ena_admin_aenq_entry *aenq_e)
3319 {
3320 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3321 struct ena_admin_aenq_keep_alive_desc *desc;
3322 sbintime_t stime;
3323 uint64_t rx_drops;
3324
3325 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3326
3327 rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3328 counter_u64_zero(adapter->hw_stats.rx_drops);
3329 counter_u64_add(adapter->hw_stats.rx_drops, rx_drops);
3330
3331 stime = getsbinuptime();
3332 (void) atomic_swap_64(&adapter->keep_alive_timestamp, stime);
3333 }
3334
3335 /* Check for keep alive expiration */
3336 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3337 {
3338 sbintime_t timestamp, time;
3339
3340 if (adapter->wd_active == 0)
3341 return;
3342
3343 if (likely(adapter->keep_alive_timeout == 0))
3344 return;
3345
3346 /* FreeBSD uses atomic_load_acq_64() in place of the membar + read */
3347 membar_sync();
3348 timestamp = adapter->keep_alive_timestamp;
3349
3350 time = getsbinuptime() - timestamp;
3351 if (unlikely(time > adapter->keep_alive_timeout)) {
3352 device_printf(adapter->pdev,
3353 "Keep alive watchdog timeout.\n");
3354 counter_u64_add(adapter->dev_stats.wd_expired, 1);
3355 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3356 adapter->trigger_reset = true;
3357 }
3358 }
3359
3360 /* Check if admin queue is enabled */
3361 static void check_for_admin_com_state(struct ena_adapter *adapter)
3362 {
3363 if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
3364 false)) {
3365 device_printf(adapter->pdev,
3366 "ENA admin queue is not in running state!\n");
3367 counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
3368 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3369 adapter->trigger_reset = true;
3370 }
3371 }
3372
3373 static int
3374 check_missing_comp_in_queue(struct ena_adapter *adapter,
3375 struct ena_ring *tx_ring)
3376 {
3377 struct bintime curtime, time;
3378 struct ena_tx_buffer *tx_buf;
3379 uint32_t missed_tx = 0;
3380 int i;
3381
3382 getbinuptime(&curtime);
3383
3384 for (i = 0; i < tx_ring->ring_size; i++) {
3385 tx_buf = &tx_ring->tx_buffer_info[i];
3386
3387 if (bintime_isset(&tx_buf->timestamp) == 0)
3388 continue;
3389
3390 time = curtime;
3391 bintime_sub(&time, &tx_buf->timestamp);
3392
3393 /* Check again if packet is still waiting */
3394 if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
3395
3396 if (!tx_buf->print_once)
3397 ena_trace(ENA_WARNING, "Found a Tx that wasn't "
3398 "completed on time, qid %d, index %d.\n",
3399 tx_ring->qid, i);
3400
3401 tx_buf->print_once = true;
3402 missed_tx++;
3403 counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
3404
3405 if (unlikely(missed_tx >
3406 adapter->missing_tx_threshold)) {
3407 device_printf(adapter->pdev,
3408 "The number of lost tx completion "
3409 "is above the threshold (%d > %d). "
3410 "Reset the device\n",
3411 missed_tx, adapter->missing_tx_threshold);
3412 adapter->reset_reason =
3413 ENA_REGS_RESET_MISS_TX_CMPL;
3414 adapter->trigger_reset = true;
3415 return (EIO);
3416 }
3417 }
3418 }
3419
3420 return (0);
3421 }
3422
3423 /*
3424 * Check for TX which were not completed on time.
3425 * Timeout is defined by "missing_tx_timeout".
3426 * Reset will be performed if number of incompleted
3427 * transactions exceeds "missing_tx_threshold".
3428 */
3429 static void
3430 check_for_missing_tx_completions(struct ena_adapter *adapter)
3431 {
3432 struct ena_ring *tx_ring;
3433 int i, budget, rc;
3434
3435 /* Make sure the driver doesn't turn the device in other process */
3436 rmb();
3437
3438 if (!adapter->up)
3439 return;
3440
3441 if (adapter->trigger_reset)
3442 return;
3443
3444 if (adapter->missing_tx_timeout == 0)
3445 return;
3446
3447 budget = adapter->missing_tx_max_queues;
3448
3449 for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
3450 tx_ring = &adapter->tx_ring[i];
3451
3452 rc = check_missing_comp_in_queue(adapter, tx_ring);
3453 if (unlikely(rc != 0))
3454 return;
3455
3456 budget--;
3457 if (budget == 0) {
3458 i++;
3459 break;
3460 }
3461 }
3462
3463 adapter->next_monitored_tx_qid = i % adapter->num_queues;
3464 }
3465
3466 /* trigger deferred rx cleanup after 2 consecutive detections */
3467 #define EMPTY_RX_REFILL 2
3468 /* For the rare case where the device runs out of Rx descriptors and the
3469 * msix handler failed to refill new Rx descriptors (due to a lack of memory
3470 * for example).
3471 * This case will lead to a deadlock:
3472 * The device won't send interrupts since all the new Rx packets will be dropped
3473 * The msix handler won't allocate new Rx descriptors so the device won't be
3474 * able to send new packets.
3475 *
3476 * When such a situation is detected - execute rx cleanup task in another thread
3477 */
3478 static void
3479 check_for_empty_rx_ring(struct ena_adapter *adapter)
3480 {
3481 struct ena_ring *rx_ring;
3482 int i, refill_required;
3483
3484 if (!adapter->up)
3485 return;
3486
3487 if (adapter->trigger_reset)
3488 return;
3489
3490 for (i = 0; i < adapter->num_queues; i++) {
3491 rx_ring = &adapter->rx_ring[i];
3492
3493 refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
3494 if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3495 rx_ring->empty_rx_queue++;
3496
3497 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
3498 counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
3499 1);
3500
3501 device_printf(adapter->pdev,
3502 "trigger refill for ring %d\n", i);
3503
3504 if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
3505 workqueue_enqueue(rx_ring->cmpl_tq,
3506 &rx_ring->cmpl_task, curcpu());
3507 rx_ring->empty_rx_queue = 0;
3508 }
3509 } else {
3510 rx_ring->empty_rx_queue = 0;
3511 }
3512 }
3513 }
3514
3515 static void
3516 ena_timer_service(void *data)
3517 {
3518 struct ena_adapter *adapter = (struct ena_adapter *)data;
3519 struct ena_admin_host_info *host_info =
3520 adapter->ena_dev->host_attr.host_info;
3521
3522 check_for_missing_keep_alive(adapter);
3523
3524 check_for_admin_com_state(adapter);
3525
3526 check_for_missing_tx_completions(adapter);
3527
3528 check_for_empty_rx_ring(adapter);
3529
3530 if (host_info != NULL)
3531 ena_update_host_info(host_info, adapter->ifp);
3532
3533 if (unlikely(adapter->trigger_reset)) {
3534 device_printf(adapter->pdev, "Trigger reset is on\n");
3535 workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
3536 curcpu());
3537 return;
3538 }
3539
3540 /*
3541 * Schedule another timeout one second from now.
3542 */
3543 callout_schedule(&adapter->timer_service, hz);
3544 }
3545
3546 static void
3547 ena_reset_task(struct work *wk, void *arg)
3548 {
3549 struct ena_com_dev_get_features_ctx get_feat_ctx;
3550 struct ena_adapter *adapter = (struct ena_adapter *)arg;
3551 struct ena_com_dev *ena_dev = adapter->ena_dev;
3552 bool dev_up;
3553 int rc;
3554
3555 if (unlikely(!adapter->trigger_reset)) {
3556 device_printf(adapter->pdev,
3557 "device reset scheduled but trigger_reset is off\n");
3558 return;
3559 }
3560
3561 rw_enter(&adapter->ioctl_sx, RW_WRITER);
3562
3563 callout_halt(&adapter->timer_service, &adapter->global_mtx);
3564
3565 dev_up = adapter->up;
3566
3567 ena_com_set_admin_running_state(ena_dev, false);
3568 ena_down(adapter);
3569 ena_free_mgmnt_irq(adapter);
3570 ena_disable_msix(adapter);
3571 ena_com_abort_admin_commands(ena_dev);
3572 ena_com_wait_for_abort_completion(ena_dev);
3573 ena_com_admin_destroy(ena_dev);
3574 ena_com_mmio_reg_read_request_destroy(ena_dev);
3575
3576 adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3577 adapter->trigger_reset = false;
3578
3579 /* Finished destroy part. Restart the device */
3580 rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
3581 &adapter->wd_active);
3582 if (unlikely(rc != 0)) {
3583 device_printf(adapter->pdev,
3584 "ENA device init failed! (err: %d)\n", rc);
3585 goto err_dev_free;
3586 }
3587
3588 /* XXX dealloc and realloc MSI-X, probably a waste */
3589 rc = ena_enable_msix_and_set_admin_interrupts(adapter,
3590 adapter->num_queues);
3591 if (unlikely(rc != 0)) {
3592 device_printf(adapter->pdev, "Enable MSI-X failed\n");
3593 goto err_com_free;
3594 }
3595
3596 /* If the interface was up before the reset bring it up */
3597 if (dev_up) {
3598 rc = ena_up(adapter);
3599 if (unlikely(rc != 0)) {
3600 device_printf(adapter->pdev,
3601 "Failed to create I/O queues\n");
3602 goto err_msix_free;
3603 }
3604 }
3605
3606 callout_reset(&adapter->timer_service, hz,
3607 ena_timer_service, (void *)adapter);
3608
3609 rw_exit(&adapter->ioctl_sx);
3610
3611 return;
3612
3613 err_msix_free:
3614 ena_free_mgmnt_irq(adapter);
3615 ena_disable_msix(adapter);
3616 err_com_free:
3617 ena_com_admin_destroy(ena_dev);
3618 err_dev_free:
3619 device_printf(adapter->pdev, "ENA reset failed!\n");
3620 adapter->running = false;
3621 rw_exit(&adapter->ioctl_sx);
3622 }
3623
3624 /**
3625 * ena_attach - Device Initialization Routine
3626 * @pdev: device information struct
3627 *
3628 * Returns 0 on success, otherwise on failure.
3629 *
3630 * ena_attach initializes an adapter identified by a device structure.
3631 * The OS initialization, configuring of the adapter private structure,
3632 * and a hardware reset occur.
3633 **/
3634 static void
3635 ena_attach(device_t parent, device_t self, void *aux)
3636 {
3637 struct pci_attach_args *pa = aux;
3638 struct ena_com_dev_get_features_ctx get_feat_ctx;
3639 static int version_printed;
3640 struct ena_adapter *adapter = device_private(self);
3641 struct ena_com_dev *ena_dev = NULL;
3642 uint16_t tx_sgl_size = 0;
3643 uint16_t rx_sgl_size = 0;
3644 pcireg_t reg;
3645 int io_queue_num;
3646 int queue_size;
3647 int rc;
3648
3649 adapter->pdev = self;
3650 adapter->ifp = &adapter->sc_ec.ec_if;
3651 adapter->sc_pa = *pa; /* used after attach for adapter reset too */
3652
3653 if (pci_dma64_available(pa))
3654 adapter->sc_dmat = pa->pa_dmat64;
3655 else
3656 adapter->sc_dmat = pa->pa_dmat;
3657
3658 pci_aprint_devinfo(pa, NULL);
3659
3660 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
3661 if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
3662 reg |= PCI_COMMAND_MASTER_ENABLE;
3663 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
3664 }
3665
3666 mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_NET);
3667 rw_init(&adapter->ioctl_sx);
3668
3669 /* Set up the timer service */
3670 adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
3671 adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
3672 adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
3673 adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
3674
3675 if (version_printed++ == 0)
3676 device_printf(parent, "%s\n", ena_version);
3677
3678 rc = ena_allocate_pci_resources(pa, adapter);
3679 if (unlikely(rc != 0)) {
3680 device_printf(parent, "PCI resource allocation failed!\n");
3681 ena_free_pci_resources(adapter);
3682 return;
3683 }
3684
3685 /* Allocate memory for ena_dev structure */
3686 ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
3687 M_WAITOK | M_ZERO);
3688
3689 adapter->ena_dev = ena_dev;
3690 ena_dev->dmadev = self;
3691 ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
3692 M_WAITOK | M_ZERO);
3693
3694 /* Store register resources */
3695 ((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
3696 ((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
3697
3698 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3699
3700 /* Device initialization */
3701 rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
3702 if (unlikely(rc != 0)) {
3703 device_printf(self, "ENA device init failed! (err: %d)\n", rc);
3704 rc = ENXIO;
3705 goto err_bus_free;
3706 }
3707
3708 adapter->keep_alive_timestamp = getsbinuptime();
3709
3710 adapter->tx_offload_cap = get_feat_ctx.offload.tx;
3711
3712 /* Set for sure that interface is not up */
3713 adapter->up = false;
3714
3715 memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
3716 ETHER_ADDR_LEN);
3717
3718 /* calculate IO queue number to create */
3719 io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
3720
3721 ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
3722 io_queue_num);
3723 adapter->num_queues = io_queue_num;
3724
3725 adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
3726
3727 /* calculatre ring sizes */
3728 queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
3729 &rx_sgl_size, &get_feat_ctx);
3730 if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
3731 rc = ENA_COM_FAULT;
3732 goto err_com_free;
3733 }
3734
3735 adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3736
3737 adapter->tx_ring_size = queue_size;
3738 adapter->rx_ring_size = queue_size;
3739
3740 adapter->max_tx_sgl_size = tx_sgl_size;
3741 adapter->max_rx_sgl_size = rx_sgl_size;
3742
3743 #if 0
3744 /* set up dma tags for rx and tx buffers */
3745 rc = ena_setup_tx_dma_tag(adapter);
3746 if (unlikely(rc != 0)) {
3747 device_printf(self, "Failed to create TX DMA tag\n");
3748 goto err_com_free;
3749 }
3750
3751 rc = ena_setup_rx_dma_tag(adapter);
3752 if (unlikely(rc != 0)) {
3753 device_printf(self, "Failed to create RX DMA tag\n");
3754 goto err_tx_tag_free;
3755 }
3756 #endif
3757
3758 /* initialize rings basic information */
3759 device_printf(self, "initalize %d io queues\n", io_queue_num);
3760 ena_init_io_rings(adapter);
3761
3762 /* setup network interface */
3763 rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
3764 if (unlikely(rc != 0)) {
3765 device_printf(self, "Error with network interface setup\n");
3766 goto err_io_free;
3767 }
3768
3769 rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
3770 if (unlikely(rc != 0)) {
3771 device_printf(self,
3772 "Failed to enable and set the admin interrupts\n");
3773 goto err_ifp_free;
3774 }
3775
3776 callout_init(&adapter->timer_service, CALLOUT_MPSAFE);
3777
3778 /* Initialize reset task queue */
3779 rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
3780 ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
3781 if (unlikely(rc != 0)) {
3782 ena_trace(ENA_ALERT,
3783 "Unable to create workqueue for reset task\n");
3784 goto err_ifp_free;
3785 }
3786
3787 /* Initialize statistics */
3788 ena_alloc_counters_dev(&adapter->dev_stats, io_queue_num);
3789 ena_alloc_counters_hwstats(&adapter->hw_stats, io_queue_num);
3790 #if 0
3791 ena_sysctl_add_nodes(adapter);
3792 #endif
3793
3794 /* Tell the stack that the interface is not active */
3795 if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
3796
3797 adapter->running = true;
3798 return;
3799
3800 err_ifp_free:
3801 if_detach(adapter->ifp);
3802 if_free(adapter->ifp);
3803 err_io_free:
3804 ena_free_all_io_rings_resources(adapter);
3805 #if 0
3806 ena_free_rx_dma_tag(adapter);
3807 err_tx_tag_free:
3808 ena_free_tx_dma_tag(adapter);
3809 #endif
3810 err_com_free:
3811 ena_com_admin_destroy(ena_dev);
3812 ena_com_delete_host_info(ena_dev);
3813 ena_com_mmio_reg_read_request_destroy(ena_dev);
3814 err_bus_free:
3815 free(ena_dev->bus, M_DEVBUF);
3816 free(ena_dev, M_DEVBUF);
3817 ena_free_pci_resources(adapter);
3818 }
3819
3820 /**
3821 * ena_detach - Device Removal Routine
3822 * @pdev: device information struct
3823 *
3824 * ena_detach is called by the device subsystem to alert the driver
3825 * that it should release a PCI device.
3826 **/
3827 static int
3828 ena_detach(device_t pdev, int flags)
3829 {
3830 struct ena_adapter *adapter = device_private(pdev);
3831 struct ena_com_dev *ena_dev = adapter->ena_dev;
3832 #if 0
3833 int rc;
3834 #endif
3835
3836 /* Make sure VLANS are not using driver */
3837 if (VLAN_ATTACHED(&adapter->sc_ec)) {
3838 device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
3839 return (EBUSY);
3840 }
3841
3842 /* Free reset task and callout */
3843 callout_halt(&adapter->timer_service, &adapter->global_mtx);
3844 callout_destroy(&adapter->timer_service);
3845 workqueue_wait(adapter->reset_tq, &adapter->reset_task);
3846 workqueue_destroy(adapter->reset_tq);
3847 adapter->reset_tq = NULL;
3848
3849 rw_enter(&adapter->ioctl_sx, RW_WRITER);
3850 ena_down(adapter);
3851 rw_exit(&adapter->ioctl_sx);
3852
3853 if (adapter->ifp != NULL) {
3854 ether_ifdetach(adapter->ifp);
3855 if_free(adapter->ifp);
3856 }
3857
3858 ena_free_all_io_rings_resources(adapter);
3859
3860 ena_free_counters((struct evcnt *)&adapter->hw_stats,
3861 sizeof(struct ena_hw_stats));
3862 ena_free_counters((struct evcnt *)&adapter->dev_stats,
3863 sizeof(struct ena_stats_dev));
3864
3865 if (likely(adapter->rss_support))
3866 ena_com_rss_destroy(ena_dev);
3867
3868 #if 0
3869 rc = ena_free_rx_dma_tag(adapter);
3870 if (unlikely(rc != 0))
3871 device_printf(adapter->pdev,
3872 "Unmapped RX DMA tag associations\n");
3873
3874 rc = ena_free_tx_dma_tag(adapter);
3875 if (unlikely(rc != 0))
3876 device_printf(adapter->pdev,
3877 "Unmapped TX DMA tag associations\n");
3878 #endif
3879
3880 /* Reset the device only if the device is running. */
3881 if (adapter->running)
3882 ena_com_dev_reset(ena_dev, adapter->reset_reason);
3883
3884 ena_com_delete_host_info(ena_dev);
3885
3886 ena_free_irqs(adapter);
3887
3888 ena_com_abort_admin_commands(ena_dev);
3889
3890 ena_com_wait_for_abort_completion(ena_dev);
3891
3892 ena_com_admin_destroy(ena_dev);
3893
3894 ena_com_mmio_reg_read_request_destroy(ena_dev);
3895
3896 ena_free_pci_resources(adapter);
3897
3898 mutex_destroy(&adapter->global_mtx);
3899 rw_destroy(&adapter->ioctl_sx);
3900
3901 if (ena_dev->bus != NULL)
3902 free(ena_dev->bus, M_DEVBUF);
3903
3904 if (ena_dev != NULL)
3905 free(ena_dev, M_DEVBUF);
3906
3907 return 0;
3908 }
3909
3910 /******************************************************************************
3911 ******************************** AENQ Handlers *******************************
3912 *****************************************************************************/
3913 /**
3914 * ena_update_on_link_change:
3915 * Notify the network interface about the change in link status
3916 **/
3917 static void
3918 ena_update_on_link_change(void *adapter_data,
3919 struct ena_admin_aenq_entry *aenq_e)
3920 {
3921 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3922 struct ena_admin_aenq_link_change_desc *aenq_desc;
3923 int status;
3924 struct ifnet *ifp;
3925
3926 aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3927 ifp = adapter->ifp;
3928 status = aenq_desc->flags &
3929 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
3930
3931 if (status != 0) {
3932 device_printf(adapter->pdev, "link is UP\n");
3933 if_link_state_change(ifp, LINK_STATE_UP);
3934 } else if (status == 0) {
3935 device_printf(adapter->pdev, "link is DOWN\n");
3936 if_link_state_change(ifp, LINK_STATE_DOWN);
3937 } else {
3938 device_printf(adapter->pdev, "invalid value recvd\n");
3939 BUG();
3940 }
3941
3942 adapter->link_status = status;
3943 }
3944
3945 /**
3946 * This handler will called for unknown event group or unimplemented handlers
3947 **/
3948 static void
3949 unimplemented_aenq_handler(void *data,
3950 struct ena_admin_aenq_entry *aenq_e)
3951 {
3952 return;
3953 }
3954
3955 static struct ena_aenq_handlers aenq_handlers = {
3956 .handlers = {
3957 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3958 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
3959 },
3960 .unimplemented_handler = unimplemented_aenq_handler
3961 };
3962
3963 #ifdef __FreeBSD__
3964 /*********************************************************************
3965 * FreeBSD Device Interface Entry Points
3966 *********************************************************************/
3967
3968 static device_method_t ena_methods[] = {
3969 /* Device interface */
3970 DEVMETHOD(device_probe, ena_probe),
3971 DEVMETHOD(device_attach, ena_attach),
3972 DEVMETHOD(device_detach, ena_detach),
3973 DEVMETHOD_END
3974 };
3975
3976 static driver_t ena_driver = {
3977 "ena", ena_methods, sizeof(struct ena_adapter),
3978 };
3979
3980 devclass_t ena_devclass;
3981 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
3982 MODULE_DEPEND(ena, pci, 1, 1, 1);
3983 MODULE_DEPEND(ena, ether, 1, 1, 1);
3984
3985 /*********************************************************************/
3986 #endif /* __FreeBSD__ */
3987
3988 #ifdef __NetBSD__
3989 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
3990 ena_detach, NULL);
3991 #endif /* __NetBSD */
3992