if_ena.c revision 1.15 1 /*-
2 * BSD LICENSE
3 *
4 * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30 #include <sys/cdefs.h>
31 #if 0
32 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
33 #endif
34 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.15 2019/05/29 10:07:29 msaitoh Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/module.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/time.h>
49 #include <sys/workqueue.h>
50 #include <sys/callout.h>
51 #include <sys/interrupt.h>
52 #include <sys/cpu.h>
53
54 #include <net/if_ether.h>
55 #include <net/if_vlanvar.h>
56
57 #include <dev/pci/if_enavar.h>
58
59 /*********************************************************
60 * Function prototypes
61 *********************************************************/
62 static int ena_probe(device_t, cfdata_t, void *);
63 static int ena_intr_msix_mgmnt(void *);
64 static int ena_allocate_pci_resources(struct pci_attach_args *,
65 struct ena_adapter *);
66 static void ena_free_pci_resources(struct ena_adapter *);
67 static int ena_change_mtu(struct ifnet *, int);
68 static void ena_init_io_rings_common(struct ena_adapter *,
69 struct ena_ring *, uint16_t);
70 static void ena_init_io_rings(struct ena_adapter *);
71 static void ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
72 static void ena_free_all_io_rings_resources(struct ena_adapter *);
73 #if 0
74 static int ena_setup_tx_dma_tag(struct ena_adapter *);
75 static int ena_free_tx_dma_tag(struct ena_adapter *);
76 static int ena_setup_rx_dma_tag(struct ena_adapter *);
77 static int ena_free_rx_dma_tag(struct ena_adapter *);
78 #endif
79 static int ena_setup_tx_resources(struct ena_adapter *, int);
80 static void ena_free_tx_resources(struct ena_adapter *, int);
81 static int ena_setup_all_tx_resources(struct ena_adapter *);
82 static void ena_free_all_tx_resources(struct ena_adapter *);
83 static inline int validate_rx_req_id(struct ena_ring *, uint16_t);
84 static int ena_setup_rx_resources(struct ena_adapter *, unsigned int);
85 static void ena_free_rx_resources(struct ena_adapter *, unsigned int);
86 static int ena_setup_all_rx_resources(struct ena_adapter *);
87 static void ena_free_all_rx_resources(struct ena_adapter *);
88 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *,
89 struct ena_rx_buffer *);
90 static void ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
91 struct ena_rx_buffer *);
92 static int ena_refill_rx_bufs(struct ena_ring *, uint32_t);
93 static void ena_free_rx_bufs(struct ena_adapter *, unsigned int);
94 static void ena_refill_all_rx_bufs(struct ena_adapter *);
95 static void ena_free_all_rx_bufs(struct ena_adapter *);
96 static void ena_free_tx_bufs(struct ena_adapter *, unsigned int);
97 static void ena_free_all_tx_bufs(struct ena_adapter *);
98 static void ena_destroy_all_tx_queues(struct ena_adapter *);
99 static void ena_destroy_all_rx_queues(struct ena_adapter *);
100 static void ena_destroy_all_io_queues(struct ena_adapter *);
101 static int ena_create_io_queues(struct ena_adapter *);
102 static int ena_tx_cleanup(struct ena_ring *);
103 static void ena_deferred_rx_cleanup(struct work *, void *);
104 static int ena_rx_cleanup(struct ena_ring *);
105 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
106 #if 0
107 static void ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
108 struct mbuf *);
109 #endif
110 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
111 struct ena_com_rx_ctx *, uint16_t *);
112 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
113 struct mbuf *);
114 static int ena_handle_msix(void *);
115 static int ena_enable_msix(struct ena_adapter *);
116 static int ena_request_mgmnt_irq(struct ena_adapter *);
117 static int ena_request_io_irq(struct ena_adapter *);
118 static void ena_free_mgmnt_irq(struct ena_adapter *);
119 static void ena_free_io_irq(struct ena_adapter *);
120 static void ena_free_irqs(struct ena_adapter*);
121 static void ena_disable_msix(struct ena_adapter *);
122 static void ena_unmask_all_io_irqs(struct ena_adapter *);
123 static int ena_rss_configure(struct ena_adapter *);
124 static int ena_up_complete(struct ena_adapter *);
125 static int ena_up(struct ena_adapter *);
126 static void ena_down(struct ena_adapter *);
127 #if 0
128 static uint64_t ena_get_counter(struct ifnet *, ift_counter);
129 #endif
130 static int ena_media_change(struct ifnet *);
131 static void ena_media_status(struct ifnet *, struct ifmediareq *);
132 static int ena_init(struct ifnet *);
133 static int ena_ioctl(struct ifnet *, u_long, void *);
134 static int ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
135 static void ena_update_host_info(struct ena_admin_host_info *, struct ifnet *);
136 static void ena_update_hwassist(struct ena_adapter *);
137 static int ena_setup_ifnet(device_t, struct ena_adapter *,
138 struct ena_com_dev_get_features_ctx *);
139 static void ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
140 static int ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
141 struct mbuf **mbuf);
142 static int ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
143 static void ena_start_xmit(struct ena_ring *);
144 static int ena_mq_start(struct ifnet *, struct mbuf *);
145 static void ena_deferred_mq_start(struct work *, void *);
146 #if 0
147 static void ena_qflush(struct ifnet *);
148 #endif
149 static int ena_calc_io_queue_num(struct pci_attach_args *,
150 struct ena_adapter *, struct ena_com_dev_get_features_ctx *);
151 static int ena_calc_queue_size(struct ena_adapter *, uint16_t *,
152 uint16_t *, struct ena_com_dev_get_features_ctx *);
153 #if 0
154 static int ena_rss_init_default(struct ena_adapter *);
155 static void ena_rss_init_default_deferred(void *);
156 #endif
157 static void ena_config_host_info(struct ena_com_dev *);
158 static void ena_attach(device_t, device_t, void *);
159 static int ena_detach(device_t, int);
160 static int ena_device_init(struct ena_adapter *, device_t,
161 struct ena_com_dev_get_features_ctx *, int *);
162 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
163 int);
164 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *);
165 static void unimplemented_aenq_handler(void *,
166 struct ena_admin_aenq_entry *);
167 static void ena_timer_service(void *);
168
169 static const char ena_version[] =
170 DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
171
172 #if 0
173 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
174 #endif
175
176 /*
177 * Tuneable number of buffers in the buf-ring (drbr)
178 */
179 static int ena_buf_ring_size = 4096;
180 #if 0
181 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
182 &ena_buf_ring_size, 0, "Size of the bufring");
183 #endif
184
185 /*
186 * Logging level for changing verbosity of the output
187 */
188 int ena_log_level = ENA_ALERT | ENA_WARNING;
189 #if 0
190 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
191 &ena_log_level, 0, "Logging level indicating verbosity of the logs");
192 #endif
193
194 static const ena_vendor_info_t ena_vendor_info_array[] = {
195 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
196 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
197 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
198 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
199 /* Last entry */
200 { 0, 0, 0 }
201 };
202
203 /*
204 * Contains pointers to event handlers, e.g. link state chage.
205 */
206 static struct ena_aenq_handlers aenq_handlers;
207
208 int
209 ena_dma_alloc(device_t dmadev, bus_size_t size,
210 ena_mem_handle_t *dma , int mapflags)
211 {
212 struct ena_adapter *adapter = device_private(dmadev);
213 uint32_t maxsize;
214 bus_dma_segment_t seg;
215 int error, nsegs;
216
217 maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
218
219 #if 0
220 /* XXX what is this needed for ? */
221 dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
222 if (unlikely(dma_space_addr == 0))
223 dma_space_addr = BUS_SPACE_MAXADDR;
224 #endif
225
226 dma->tag = adapter->sc_dmat;
227
228 if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
229 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
230 ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
231 (uintmax_t)maxsize, error);
232 goto fail_create;
233 }
234
235 error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &seg, 1, &nsegs,
236 BUS_DMA_ALLOCNOW);
237 if (error) {
238 ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
239 (uintmax_t)maxsize, error);
240 goto fail_alloc;
241 }
242
243 error = bus_dmamem_map(dma->tag, &seg, nsegs, maxsize,
244 &dma->vaddr, BUS_DMA_COHERENT);
245 if (error) {
246 ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
247 (uintmax_t)maxsize, error);
248 goto fail_map;
249 }
250 memset(dma->vaddr, 0, maxsize);
251
252 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
253 maxsize, NULL, mapflags);
254 if (error) {
255 ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
256 goto fail_load;
257 }
258 dma->paddr = dma->map->dm_segs[0].ds_addr;
259
260 return (0);
261
262 fail_load:
263 bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
264 fail_map:
265 bus_dmamem_free(dma->tag, &seg, nsegs);
266 fail_alloc:
267 bus_dmamap_destroy(adapter->sc_dmat, dma->map);
268 fail_create:
269 return (error);
270 }
271
272 static int
273 ena_allocate_pci_resources(struct pci_attach_args *pa,
274 struct ena_adapter *adapter)
275 {
276 bus_size_t size;
277
278 /*
279 * Map control/status registers.
280 */
281 pcireg_t memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
282 if (pci_mapreg_map(pa, ENA_REG_BAR, memtype, 0, &adapter->sc_btag,
283 &adapter->sc_bhandle, NULL, &size)) {
284 aprint_error(": can't map mem space\n");
285 return ENXIO;
286 }
287
288 return (0);
289 }
290
291 static void
292 ena_free_pci_resources(struct ena_adapter *adapter)
293 {
294 /* Nothing to do */
295 }
296
297 static int
298 ena_probe(device_t parent, cfdata_t match, void *aux)
299 {
300 struct pci_attach_args *pa = aux;
301 const ena_vendor_info_t *ent;
302
303 for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
304 ent = &ena_vendor_info_array[i];
305
306 if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
307 (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
308 return 1;
309 }
310 }
311
312 return 0;
313 }
314
315 static int
316 ena_change_mtu(struct ifnet *ifp, int new_mtu)
317 {
318 struct ena_adapter *adapter = if_getsoftc(ifp);
319 int rc;
320
321 if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
322 device_printf(adapter->pdev, "Invalid MTU setting. "
323 "new_mtu: %d max mtu: %d min mtu: %d\n",
324 new_mtu, adapter->max_mtu, ENA_MIN_MTU);
325 return (EINVAL);
326 }
327
328 rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
329 if (likely(rc == 0)) {
330 ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
331 if_setmtu(ifp, new_mtu);
332 } else {
333 device_printf(adapter->pdev, "Failed to set MTU to %d\n",
334 new_mtu);
335 }
336
337 return (rc);
338 }
339
340 #define EVCNT_INIT(st, f) \
341 do { \
342 evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL, \
343 st->name, #f); \
344 } while (0)
345
346 static inline void
347 ena_alloc_counters_rx(struct ena_stats_rx *st, int queue)
348 {
349 snprintf(st->name, sizeof(st->name), "ena rxq%d", queue);
350
351 EVCNT_INIT(st, cnt);
352 EVCNT_INIT(st, bytes);
353 EVCNT_INIT(st, refil_partial);
354 EVCNT_INIT(st, bad_csum);
355 EVCNT_INIT(st, mjum_alloc_fail);
356 EVCNT_INIT(st, mbuf_alloc_fail);
357 EVCNT_INIT(st, dma_mapping_err);
358 EVCNT_INIT(st, bad_desc_num);
359 EVCNT_INIT(st, bad_req_id);
360 EVCNT_INIT(st, empty_rx_ring);
361
362 /* Make sure all code is updated when new fields added */
363 CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
364 + sizeof(st->empty_rx_ring) == sizeof(*st));
365 }
366
367 static inline void
368 ena_alloc_counters_tx(struct ena_stats_tx *st, int queue)
369 {
370 snprintf(st->name, sizeof(st->name), "ena txq%d", queue);
371
372 EVCNT_INIT(st, cnt);
373 EVCNT_INIT(st, bytes);
374 EVCNT_INIT(st, prepare_ctx_err);
375 EVCNT_INIT(st, dma_mapping_err);
376 EVCNT_INIT(st, doorbells);
377 EVCNT_INIT(st, missing_tx_comp);
378 EVCNT_INIT(st, bad_req_id);
379 EVCNT_INIT(st, collapse);
380 EVCNT_INIT(st, collapse_err);
381
382 /* Make sure all code is updated when new fields added */
383 CTASSERT(offsetof(struct ena_stats_tx, collapse_err)
384 + sizeof(st->collapse_err) == sizeof(*st));
385 }
386
387 static inline void
388 ena_alloc_counters_dev(struct ena_stats_dev *st, int queue)
389 {
390 snprintf(st->name, sizeof(st->name), "ena dev ioq%d", queue);
391
392 EVCNT_INIT(st, wd_expired);
393 EVCNT_INIT(st, interface_up);
394 EVCNT_INIT(st, interface_down);
395 EVCNT_INIT(st, admin_q_pause);
396
397 /* Make sure all code is updated when new fields added */
398 CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
399 + sizeof(st->admin_q_pause) == sizeof(*st));
400 }
401
402 static inline void
403 ena_alloc_counters_hwstats(struct ena_hw_stats *st, int queue)
404 {
405 snprintf(st->name, sizeof(st->name), "ena hw ioq%d", queue);
406
407 EVCNT_INIT(st, rx_packets);
408 EVCNT_INIT(st, tx_packets);
409 EVCNT_INIT(st, rx_bytes);
410 EVCNT_INIT(st, tx_bytes);
411 EVCNT_INIT(st, rx_drops);
412
413 /* Make sure all code is updated when new fields added */
414 CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
415 + sizeof(st->rx_drops) == sizeof(*st));
416 }
417 static inline void
418 ena_free_counters(struct evcnt *begin, int size)
419 {
420 struct evcnt *end = (struct evcnt *)((char *)begin + size);
421
422 for (; begin < end; ++begin)
423 counter_u64_free(*begin);
424 }
425
426 static inline void
427 ena_reset_counters(struct evcnt *begin, int size)
428 {
429 struct evcnt *end = (struct evcnt *)((char *)begin + size);
430
431 for (; begin < end; ++begin)
432 counter_u64_zero(*begin);
433 }
434
435 static void
436 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
437 uint16_t qid)
438 {
439
440 ring->qid = qid;
441 ring->adapter = adapter;
442 ring->ena_dev = adapter->ena_dev;
443 }
444
445 static void
446 ena_init_io_rings(struct ena_adapter *adapter)
447 {
448 struct ena_com_dev *ena_dev;
449 struct ena_ring *txr, *rxr;
450 struct ena_que *que;
451 int i;
452
453 ena_dev = adapter->ena_dev;
454
455 for (i = 0; i < adapter->num_queues; i++) {
456 txr = &adapter->tx_ring[i];
457 rxr = &adapter->rx_ring[i];
458
459 /* TX/RX common ring state */
460 ena_init_io_rings_common(adapter, txr, i);
461 ena_init_io_rings_common(adapter, rxr, i);
462
463 /* TX specific ring state */
464 txr->ring_size = adapter->tx_ring_size;
465 txr->tx_max_header_size = ena_dev->tx_max_header_size;
466 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
467 txr->smoothed_interval =
468 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
469
470 /* Allocate a buf ring */
471 txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
472 M_WAITOK, &txr->ring_mtx);
473
474 /* Alloc TX statistics. */
475 ena_alloc_counters_tx(&txr->tx_stats, i);
476
477 /* RX specific ring state */
478 rxr->ring_size = adapter->rx_ring_size;
479 rxr->smoothed_interval =
480 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
481
482 /* Alloc RX statistics. */
483 ena_alloc_counters_rx(&rxr->rx_stats, i);
484
485 /* Initialize locks */
486 snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
487 device_xname(adapter->pdev), i);
488 snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
489 device_xname(adapter->pdev), i);
490
491 mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
492 mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
493
494 que = &adapter->que[i];
495 que->adapter = adapter;
496 que->id = i;
497 que->tx_ring = txr;
498 que->rx_ring = rxr;
499
500 txr->que = que;
501 rxr->que = que;
502
503 rxr->empty_rx_queue = 0;
504 }
505 }
506
507 static void
508 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
509 {
510 struct ena_ring *txr = &adapter->tx_ring[qid];
511 struct ena_ring *rxr = &adapter->rx_ring[qid];
512
513 ena_free_counters((struct evcnt *)&txr->tx_stats,
514 sizeof(txr->tx_stats));
515 ena_free_counters((struct evcnt *)&rxr->rx_stats,
516 sizeof(rxr->rx_stats));
517
518 ENA_RING_MTX_LOCK(txr);
519 drbr_free(txr->br, M_DEVBUF);
520 ENA_RING_MTX_UNLOCK(txr);
521
522 mutex_destroy(&txr->ring_mtx);
523 mutex_destroy(&rxr->ring_mtx);
524 }
525
526 static void
527 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
528 {
529 int i;
530
531 for (i = 0; i < adapter->num_queues; i++)
532 ena_free_io_ring_resources(adapter, i);
533
534 }
535
536 #if 0
537 static int
538 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
539 {
540 int ret;
541
542 /* Create DMA tag for Tx buffers */
543 ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
544 1, 0, /* alignment, bounds */
545 ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window */
546 BUS_SPACE_MAXADDR, /* highaddr of excl window */
547 NULL, NULL, /* filter, filterarg */
548 ENA_TSO_MAXSIZE, /* maxsize */
549 adapter->max_tx_sgl_size - 1, /* nsegments */
550 ENA_TSO_MAXSIZE, /* maxsegsize */
551 0, /* flags */
552 NULL, /* lockfunc */
553 NULL, /* lockfuncarg */
554 &adapter->tx_buf_tag);
555
556 return (ret);
557 }
558 #endif
559
560 #if 0
561 static int
562 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
563 {
564 int ret;
565
566 /* Create DMA tag for Rx buffers*/
567 ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent */
568 1, 0, /* alignment, bounds */
569 ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window */
570 BUS_SPACE_MAXADDR, /* highaddr of excl window */
571 NULL, NULL, /* filter, filterarg */
572 MJUM16BYTES, /* maxsize */
573 adapter->max_rx_sgl_size, /* nsegments */
574 MJUM16BYTES, /* maxsegsize */
575 0, /* flags */
576 NULL, /* lockfunc */
577 NULL, /* lockarg */
578 &adapter->rx_buf_tag);
579
580 return (ret);
581 }
582 #endif
583
584 /**
585 * ena_setup_tx_resources - allocate Tx resources (Descriptors)
586 * @adapter: network interface device structure
587 * @qid: queue index
588 *
589 * Returns 0 on success, otherwise on failure.
590 **/
591 static int
592 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
593 {
594 struct ena_que *que = &adapter->que[qid];
595 struct ena_ring *tx_ring = que->tx_ring;
596 int size, i, err;
597 #ifdef RSS
598 cpuset_t cpu_mask;
599 #endif
600
601 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
602
603 tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
604 if (unlikely(tx_ring->tx_buffer_info == NULL))
605 return (ENOMEM);
606
607 size = sizeof(uint16_t) * tx_ring->ring_size;
608 tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
609 if (unlikely(tx_ring->free_tx_ids == NULL))
610 goto err_buf_info_free;
611
612 /* Req id stack for TX OOO completions */
613 for (i = 0; i < tx_ring->ring_size; i++)
614 tx_ring->free_tx_ids[i] = i;
615
616 /* Reset TX statistics. */
617 ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
618 sizeof(tx_ring->tx_stats));
619
620 tx_ring->next_to_use = 0;
621 tx_ring->next_to_clean = 0;
622
623 /* Make sure that drbr is empty */
624 ENA_RING_MTX_LOCK(tx_ring);
625 drbr_flush(adapter->ifp, tx_ring->br);
626 ENA_RING_MTX_UNLOCK(tx_ring);
627
628 /* ... and create the buffer DMA maps */
629 for (i = 0; i < tx_ring->ring_size; i++) {
630 err = bus_dmamap_create(adapter->sc_dmat,
631 ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
632 ENA_TSO_MAXSIZE, 0, 0,
633 &tx_ring->tx_buffer_info[i].map);
634 if (unlikely(err != 0)) {
635 ena_trace(ENA_ALERT,
636 "Unable to create Tx DMA map for buffer %d\n", i);
637 goto err_buf_info_unmap;
638 }
639 }
640
641 /* Allocate workqueues */
642 int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
643 ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
644 if (unlikely(rc != 0)) {
645 ena_trace(ENA_ALERT,
646 "Unable to create workqueue for enqueue task\n");
647 i = tx_ring->ring_size;
648 goto err_buf_info_unmap;
649 }
650
651 #if 0
652 /* RSS set cpu for thread */
653 #ifdef RSS
654 CPU_SETOF(que->cpu, &cpu_mask);
655 taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET,
656 &cpu_mask, "%s tx_ring enq (bucket %d)",
657 device_xname(adapter->pdev), que->cpu);
658 #else /* RSS */
659 taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET,
660 "%s txeq %d", device_xname(adapter->pdev), que->cpu);
661 #endif /* RSS */
662 #endif
663
664 return (0);
665
666 err_buf_info_unmap:
667 while (i--) {
668 bus_dmamap_destroy(adapter->sc_dmat,
669 tx_ring->tx_buffer_info[i].map);
670 }
671 free(tx_ring->free_tx_ids, M_DEVBUF);
672 tx_ring->free_tx_ids = NULL;
673 err_buf_info_free:
674 free(tx_ring->tx_buffer_info, M_DEVBUF);
675 tx_ring->tx_buffer_info = NULL;
676
677 return (ENOMEM);
678 }
679
680 /**
681 * ena_free_tx_resources - Free Tx Resources per Queue
682 * @adapter: network interface device structure
683 * @qid: queue index
684 *
685 * Free all transmit software resources
686 **/
687 static void
688 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
689 {
690 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
691
692 workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
693 workqueue_destroy(tx_ring->enqueue_tq);
694 tx_ring->enqueue_tq = NULL;
695
696 ENA_RING_MTX_LOCK(tx_ring);
697 /* Flush buffer ring, */
698 drbr_flush(adapter->ifp, tx_ring->br);
699
700 /* Free buffer DMA maps, */
701 for (int i = 0; i < tx_ring->ring_size; i++) {
702 m_freem(tx_ring->tx_buffer_info[i].mbuf);
703 tx_ring->tx_buffer_info[i].mbuf = NULL;
704 bus_dmamap_unload(adapter->sc_dmat,
705 tx_ring->tx_buffer_info[i].map);
706 bus_dmamap_destroy(adapter->sc_dmat,
707 tx_ring->tx_buffer_info[i].map);
708 }
709 ENA_RING_MTX_UNLOCK(tx_ring);
710
711 /* And free allocated memory. */
712 free(tx_ring->tx_buffer_info, M_DEVBUF);
713 tx_ring->tx_buffer_info = NULL;
714
715 free(tx_ring->free_tx_ids, M_DEVBUF);
716 tx_ring->free_tx_ids = NULL;
717 }
718
719 /**
720 * ena_setup_all_tx_resources - allocate all queues Tx resources
721 * @adapter: network interface device structure
722 *
723 * Returns 0 on success, otherwise on failure.
724 **/
725 static int
726 ena_setup_all_tx_resources(struct ena_adapter *adapter)
727 {
728 int i, rc;
729
730 for (i = 0; i < adapter->num_queues; i++) {
731 rc = ena_setup_tx_resources(adapter, i);
732 if (rc != 0) {
733 device_printf(adapter->pdev,
734 "Allocation for Tx Queue %u failed\n", i);
735 goto err_setup_tx;
736 }
737 }
738
739 return (0);
740
741 err_setup_tx:
742 /* Rewind the index freeing the rings as we go */
743 while (i--)
744 ena_free_tx_resources(adapter, i);
745 return (rc);
746 }
747
748 /**
749 * ena_free_all_tx_resources - Free Tx Resources for All Queues
750 * @adapter: network interface device structure
751 *
752 * Free all transmit software resources
753 **/
754 static void
755 ena_free_all_tx_resources(struct ena_adapter *adapter)
756 {
757 int i;
758
759 for (i = 0; i < adapter->num_queues; i++)
760 ena_free_tx_resources(adapter, i);
761 }
762
763 static inline int
764 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
765 {
766 if (likely(req_id < rx_ring->ring_size))
767 return (0);
768
769 device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
770 req_id);
771 counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
772
773 /* Trigger device reset */
774 rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
775 rx_ring->adapter->trigger_reset = true;
776
777 return (EFAULT);
778 }
779
780 /**
781 * ena_setup_rx_resources - allocate Rx resources (Descriptors)
782 * @adapter: network interface device structure
783 * @qid: queue index
784 *
785 * Returns 0 on success, otherwise on failure.
786 **/
787 static int
788 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
789 {
790 struct ena_que *que = &adapter->que[qid];
791 struct ena_ring *rx_ring = que->rx_ring;
792 int size, err, i;
793 #ifdef RSS
794 cpuset_t cpu_mask;
795 #endif
796
797 size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
798
799 /*
800 * Alloc extra element so in rx path
801 * we can always prefetch rx_info + 1
802 */
803 size += sizeof(struct ena_rx_buffer);
804
805 rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
806
807 size = sizeof(uint16_t) * rx_ring->ring_size;
808 rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
809
810 for (i = 0; i < rx_ring->ring_size; i++)
811 rx_ring->free_rx_ids[i] = i;
812
813 /* Reset RX statistics. */
814 ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
815 sizeof(rx_ring->rx_stats));
816
817 rx_ring->next_to_clean = 0;
818 rx_ring->next_to_use = 0;
819
820 /* ... and create the buffer DMA maps */
821 for (i = 0; i < rx_ring->ring_size; i++) {
822 err = bus_dmamap_create(adapter->sc_dmat,
823 MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
824 0, 0,
825 &(rx_ring->rx_buffer_info[i].map));
826 if (err != 0) {
827 ena_trace(ENA_ALERT,
828 "Unable to create Rx DMA map for buffer %d\n", i);
829 goto err_buf_info_unmap;
830 }
831 }
832
833 #ifdef LRO
834 /* Create LRO for the ring */
835 if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
836 int err = tcp_lro_init(&rx_ring->lro);
837 if (err != 0) {
838 device_printf(adapter->pdev,
839 "LRO[%d] Initialization failed!\n", qid);
840 } else {
841 ena_trace(ENA_INFO,
842 "RX Soft LRO[%d] Initialized\n", qid);
843 rx_ring->lro.ifp = adapter->ifp;
844 }
845 }
846 #endif
847
848 /* Allocate workqueues */
849 int rc = workqueue_create(&rx_ring->cmpl_tq, "ena_rx_comp",
850 ena_deferred_rx_cleanup, rx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
851 if (unlikely(rc != 0)) {
852 ena_trace(ENA_ALERT,
853 "Unable to create workqueue for RX completion task\n");
854 goto err_buf_info_unmap;
855 }
856
857 #if 0
858 /* RSS set cpu for thread */
859 #ifdef RSS
860 CPU_SETOF(que->cpu, &cpu_mask);
861 taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask,
862 "%s rx_ring cmpl (bucket %d)",
863 device_xname(adapter->pdev), que->cpu);
864 #else
865 taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET,
866 "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu);
867 #endif
868 #endif
869
870 return (0);
871
872 err_buf_info_unmap:
873 while (i--) {
874 bus_dmamap_destroy(adapter->sc_dmat,
875 rx_ring->rx_buffer_info[i].map);
876 }
877
878 free(rx_ring->free_rx_ids, M_DEVBUF);
879 rx_ring->free_rx_ids = NULL;
880 free(rx_ring->rx_buffer_info, M_DEVBUF);
881 rx_ring->rx_buffer_info = NULL;
882 return (ENOMEM);
883 }
884
885 /**
886 * ena_free_rx_resources - Free Rx Resources
887 * @adapter: network interface device structure
888 * @qid: queue index
889 *
890 * Free all receive software resources
891 **/
892 static void
893 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
894 {
895 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
896
897 workqueue_wait(rx_ring->cmpl_tq, &rx_ring->cmpl_task);
898 workqueue_destroy(rx_ring->cmpl_tq);
899 rx_ring->cmpl_tq = NULL;
900
901 /* Free buffer DMA maps, */
902 for (int i = 0; i < rx_ring->ring_size; i++) {
903 m_freem(rx_ring->rx_buffer_info[i].mbuf);
904 rx_ring->rx_buffer_info[i].mbuf = NULL;
905 bus_dmamap_unload(adapter->sc_dmat,
906 rx_ring->rx_buffer_info[i].map);
907 bus_dmamap_destroy(adapter->sc_dmat,
908 rx_ring->rx_buffer_info[i].map);
909 }
910
911 #ifdef LRO
912 /* free LRO resources, */
913 tcp_lro_free(&rx_ring->lro);
914 #endif
915
916 /* free allocated memory */
917 free(rx_ring->rx_buffer_info, M_DEVBUF);
918 rx_ring->rx_buffer_info = NULL;
919
920 free(rx_ring->free_rx_ids, M_DEVBUF);
921 rx_ring->free_rx_ids = NULL;
922 }
923
924 /**
925 * ena_setup_all_rx_resources - allocate all queues Rx resources
926 * @adapter: network interface device structure
927 *
928 * Returns 0 on success, otherwise on failure.
929 **/
930 static int
931 ena_setup_all_rx_resources(struct ena_adapter *adapter)
932 {
933 int i, rc = 0;
934
935 for (i = 0; i < adapter->num_queues; i++) {
936 rc = ena_setup_rx_resources(adapter, i);
937 if (rc != 0) {
938 device_printf(adapter->pdev,
939 "Allocation for Rx Queue %u failed\n", i);
940 goto err_setup_rx;
941 }
942 }
943 return (0);
944
945 err_setup_rx:
946 /* rewind the index freeing the rings as we go */
947 while (i--)
948 ena_free_rx_resources(adapter, i);
949 return (rc);
950 }
951
952 /**
953 * ena_free_all_rx_resources - Free Rx resources for all queues
954 * @adapter: network interface device structure
955 *
956 * Free all receive software resources
957 **/
958 static void
959 ena_free_all_rx_resources(struct ena_adapter *adapter)
960 {
961 int i;
962
963 for (i = 0; i < adapter->num_queues; i++)
964 ena_free_rx_resources(adapter, i);
965 }
966
967 static inline int
968 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
969 struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
970 {
971 struct ena_com_buf *ena_buf;
972 int error;
973 int mlen;
974
975 /* if previous allocated frag is not used */
976 if (unlikely(rx_info->mbuf != NULL))
977 return (0);
978
979 /* Get mbuf using UMA allocator */
980 rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES);
981
982 if (unlikely(rx_info->mbuf == NULL)) {
983 counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1);
984 rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
985 if (unlikely(rx_info->mbuf == NULL)) {
986 counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
987 return (ENOMEM);
988 }
989 mlen = MCLBYTES;
990 } else {
991 mlen = MJUM16BYTES;
992 }
993 /* Set mbuf length*/
994 rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
995
996 /* Map packets for DMA */
997 ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
998 "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
999 adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
1000 error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
1001 rx_info->mbuf, BUS_DMA_NOWAIT);
1002 if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
1003 ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
1004 "nsegs: %d\n", error, rx_info->map->dm_nsegs);
1005 counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
1006 goto exit;
1007
1008 }
1009
1010 bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
1011 rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1012
1013 ena_buf = &rx_info->ena_buf;
1014 ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
1015 ena_buf->len = mlen;
1016
1017 ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1018 "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
1019 rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
1020
1021 return (0);
1022
1023 exit:
1024 m_freem(rx_info->mbuf);
1025 rx_info->mbuf = NULL;
1026 return (EFAULT);
1027 }
1028
1029 static void
1030 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
1031 struct ena_rx_buffer *rx_info)
1032 {
1033
1034 if (rx_info->mbuf == NULL) {
1035 ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
1036 return;
1037 }
1038
1039 bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
1040 m_freem(rx_info->mbuf);
1041 rx_info->mbuf = NULL;
1042 }
1043
1044 /**
1045 * ena_refill_rx_bufs - Refills ring with descriptors
1046 * @rx_ring: the ring which we want to feed with free descriptors
1047 * @num: number of descriptors to refill
1048 * Refills the ring with newly allocated DMA-mapped mbufs for receiving
1049 **/
1050 static int
1051 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
1052 {
1053 struct ena_adapter *adapter = rx_ring->adapter;
1054 uint16_t next_to_use, req_id;
1055 uint32_t i;
1056 int rc;
1057
1058 ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
1059 rx_ring->qid);
1060
1061 next_to_use = rx_ring->next_to_use;
1062
1063 for (i = 0; i < num; i++) {
1064 struct ena_rx_buffer *rx_info;
1065
1066 ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
1067 "RX buffer - next to use: %d", next_to_use);
1068
1069 req_id = rx_ring->free_rx_ids[next_to_use];
1070 rc = validate_rx_req_id(rx_ring, req_id);
1071 if (unlikely(rc != 0))
1072 break;
1073
1074 rx_info = &rx_ring->rx_buffer_info[req_id];
1075
1076 rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
1077 if (unlikely(rc != 0)) {
1078 ena_trace(ENA_WARNING,
1079 "failed to alloc buffer for rx queue %d\n",
1080 rx_ring->qid);
1081 break;
1082 }
1083 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1084 &rx_info->ena_buf, req_id);
1085 if (unlikely(rc != 0)) {
1086 ena_trace(ENA_WARNING,
1087 "failed to add buffer for rx queue %d\n",
1088 rx_ring->qid);
1089 break;
1090 }
1091 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1092 rx_ring->ring_size);
1093 }
1094
1095 if (unlikely(i < num)) {
1096 counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
1097 ena_trace(ENA_WARNING,
1098 "refilled rx qid %d with only %d mbufs (from %d)\n",
1099 rx_ring->qid, i, num);
1100 }
1101
1102 if (likely(i != 0)) {
1103 wmb();
1104 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1105 }
1106 rx_ring->next_to_use = next_to_use;
1107 return (i);
1108 }
1109
1110 static void
1111 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
1112 {
1113 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1114 unsigned int i;
1115
1116 for (i = 0; i < rx_ring->ring_size; i++) {
1117 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1118
1119 if (rx_info->mbuf != NULL)
1120 ena_free_rx_mbuf(adapter, rx_ring, rx_info);
1121 }
1122 }
1123
1124 /**
1125 * ena_refill_all_rx_bufs - allocate all queues Rx buffers
1126 * @adapter: network interface device structure
1127 *
1128 */
1129 static void
1130 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1131 {
1132 struct ena_ring *rx_ring;
1133 int i, rc, bufs_num;
1134
1135 for (i = 0; i < adapter->num_queues; i++) {
1136 rx_ring = &adapter->rx_ring[i];
1137 bufs_num = rx_ring->ring_size - 1;
1138 rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1139
1140 if (unlikely(rc != bufs_num))
1141 ena_trace(ENA_WARNING, "refilling Queue %d failed. "
1142 "Allocated %d buffers from: %d\n", i, rc, bufs_num);
1143 }
1144 }
1145
1146 static void
1147 ena_free_all_rx_bufs(struct ena_adapter *adapter)
1148 {
1149 int i;
1150
1151 for (i = 0; i < adapter->num_queues; i++)
1152 ena_free_rx_bufs(adapter, i);
1153 }
1154
1155 /**
1156 * ena_free_tx_bufs - Free Tx Buffers per Queue
1157 * @adapter: network interface device structure
1158 * @qid: queue index
1159 **/
1160 static void
1161 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
1162 {
1163 bool print_once = true;
1164 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
1165
1166 ENA_RING_MTX_LOCK(tx_ring);
1167 for (int i = 0; i < tx_ring->ring_size; i++) {
1168 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1169
1170 if (tx_info->mbuf == NULL)
1171 continue;
1172
1173 if (print_once) {
1174 device_printf(adapter->pdev,
1175 "free uncompleted tx mbuf qid %d idx 0x%x",
1176 qid, i);
1177 print_once = false;
1178 } else {
1179 ena_trace(ENA_DBG,
1180 "free uncompleted tx mbuf qid %d idx 0x%x",
1181 qid, i);
1182 }
1183
1184 bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1185 m_free(tx_info->mbuf);
1186 tx_info->mbuf = NULL;
1187 }
1188 ENA_RING_MTX_UNLOCK(tx_ring);
1189 }
1190
1191 static void
1192 ena_free_all_tx_bufs(struct ena_adapter *adapter)
1193 {
1194
1195 for (int i = 0; i < adapter->num_queues; i++)
1196 ena_free_tx_bufs(adapter, i);
1197 }
1198
1199 static void
1200 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1201 {
1202 uint16_t ena_qid;
1203 int i;
1204
1205 for (i = 0; i < adapter->num_queues; i++) {
1206 ena_qid = ENA_IO_TXQ_IDX(i);
1207 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1208 }
1209 }
1210
1211 static void
1212 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1213 {
1214 uint16_t ena_qid;
1215 int i;
1216
1217 for (i = 0; i < adapter->num_queues; i++) {
1218 ena_qid = ENA_IO_RXQ_IDX(i);
1219 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1220 }
1221 }
1222
1223 static void
1224 ena_destroy_all_io_queues(struct ena_adapter *adapter)
1225 {
1226 ena_destroy_all_tx_queues(adapter);
1227 ena_destroy_all_rx_queues(adapter);
1228 }
1229
1230 static inline int
1231 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
1232 {
1233 struct ena_adapter *adapter = tx_ring->adapter;
1234 struct ena_tx_buffer *tx_info = NULL;
1235
1236 if (likely(req_id < tx_ring->ring_size)) {
1237 tx_info = &tx_ring->tx_buffer_info[req_id];
1238 if (tx_info->mbuf != NULL)
1239 return (0);
1240 }
1241
1242 if (tx_info->mbuf == NULL)
1243 device_printf(adapter->pdev,
1244 "tx_info doesn't have valid mbuf\n");
1245 else
1246 device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
1247
1248 counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
1249
1250 return (EFAULT);
1251 }
1252
1253 static int
1254 ena_create_io_queues(struct ena_adapter *adapter)
1255 {
1256 struct ena_com_dev *ena_dev = adapter->ena_dev;
1257 struct ena_com_create_io_ctx ctx;
1258 struct ena_ring *ring;
1259 uint16_t ena_qid;
1260 uint32_t msix_vector;
1261 int rc, i;
1262
1263 /* Create TX queues */
1264 for (i = 0; i < adapter->num_queues; i++) {
1265 msix_vector = ENA_IO_IRQ_IDX(i);
1266 ena_qid = ENA_IO_TXQ_IDX(i);
1267 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1268 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1269 ctx.queue_size = adapter->tx_ring_size;
1270 ctx.msix_vector = msix_vector;
1271 ctx.qid = ena_qid;
1272 rc = ena_com_create_io_queue(ena_dev, &ctx);
1273 if (rc != 0) {
1274 device_printf(adapter->pdev,
1275 "Failed to create io TX queue #%d rc: %d\n", i, rc);
1276 goto err_tx;
1277 }
1278 ring = &adapter->tx_ring[i];
1279 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1280 &ring->ena_com_io_sq,
1281 &ring->ena_com_io_cq);
1282 if (rc != 0) {
1283 device_printf(adapter->pdev,
1284 "Failed to get TX queue handlers. TX queue num"
1285 " %d rc: %d\n", i, rc);
1286 ena_com_destroy_io_queue(ena_dev, ena_qid);
1287 goto err_tx;
1288 }
1289 }
1290
1291 /* Create RX queues */
1292 for (i = 0; i < adapter->num_queues; i++) {
1293 msix_vector = ENA_IO_IRQ_IDX(i);
1294 ena_qid = ENA_IO_RXQ_IDX(i);
1295 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1296 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1297 ctx.queue_size = adapter->rx_ring_size;
1298 ctx.msix_vector = msix_vector;
1299 ctx.qid = ena_qid;
1300 rc = ena_com_create_io_queue(ena_dev, &ctx);
1301 if (unlikely(rc != 0)) {
1302 device_printf(adapter->pdev,
1303 "Failed to create io RX queue[%d] rc: %d\n", i, rc);
1304 goto err_rx;
1305 }
1306
1307 ring = &adapter->rx_ring[i];
1308 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1309 &ring->ena_com_io_sq,
1310 &ring->ena_com_io_cq);
1311 if (unlikely(rc != 0)) {
1312 device_printf(adapter->pdev,
1313 "Failed to get RX queue handlers. RX queue num"
1314 " %d rc: %d\n", i, rc);
1315 ena_com_destroy_io_queue(ena_dev, ena_qid);
1316 goto err_rx;
1317 }
1318 }
1319
1320 return (0);
1321
1322 err_rx:
1323 while (i--)
1324 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
1325 i = adapter->num_queues;
1326 err_tx:
1327 while (i--)
1328 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1329
1330 return (ENXIO);
1331 }
1332
1333 /**
1334 * ena_tx_cleanup - clear sent packets and corresponding descriptors
1335 * @tx_ring: ring for which we want to clean packets
1336 *
1337 * Once packets are sent, we ask the device in a loop for no longer used
1338 * descriptors. We find the related mbuf chain in a map (index in an array)
1339 * and free it, then update ring state.
1340 * This is performed in "endless" loop, updating ring pointers every
1341 * TX_COMMIT. The first check of free descriptor is performed before the actual
1342 * loop, then repeated at the loop end.
1343 **/
1344 static int
1345 ena_tx_cleanup(struct ena_ring *tx_ring)
1346 {
1347 struct ena_adapter *adapter;
1348 struct ena_com_io_cq* io_cq;
1349 uint16_t next_to_clean;
1350 uint16_t req_id;
1351 uint16_t ena_qid;
1352 unsigned int total_done = 0;
1353 int rc;
1354 int commit = TX_COMMIT;
1355 int budget = TX_BUDGET;
1356 int work_done;
1357
1358 adapter = tx_ring->que->adapter;
1359 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
1360 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1361 next_to_clean = tx_ring->next_to_clean;
1362
1363 do {
1364 struct ena_tx_buffer *tx_info;
1365 struct mbuf *mbuf;
1366
1367 rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
1368 if (unlikely(rc != 0))
1369 break;
1370
1371 rc = validate_tx_req_id(tx_ring, req_id);
1372 if (unlikely(rc != 0))
1373 break;
1374
1375 tx_info = &tx_ring->tx_buffer_info[req_id];
1376
1377 mbuf = tx_info->mbuf;
1378
1379 tx_info->mbuf = NULL;
1380 bintime_clear(&tx_info->timestamp);
1381
1382 if (likely(tx_info->num_of_bufs != 0)) {
1383 /* Map is no longer required */
1384 bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1385 }
1386
1387 ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
1388 tx_ring->qid, mbuf);
1389
1390 m_freem(mbuf);
1391
1392 total_done += tx_info->tx_descs;
1393
1394 tx_ring->free_tx_ids[next_to_clean] = req_id;
1395 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1396 tx_ring->ring_size);
1397
1398 if (unlikely(--commit == 0)) {
1399 commit = TX_COMMIT;
1400 /* update ring state every TX_COMMIT descriptor */
1401 tx_ring->next_to_clean = next_to_clean;
1402 ena_com_comp_ack(
1403 &adapter->ena_dev->io_sq_queues[ena_qid],
1404 total_done);
1405 ena_com_update_dev_comp_head(io_cq);
1406 total_done = 0;
1407 }
1408 } while (likely(--budget));
1409
1410 work_done = TX_BUDGET - budget;
1411
1412 ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
1413 tx_ring->qid, work_done);
1414
1415 /* If there is still something to commit update ring state */
1416 if (likely(commit != TX_COMMIT)) {
1417 tx_ring->next_to_clean = next_to_clean;
1418 ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
1419 total_done);
1420 ena_com_update_dev_comp_head(io_cq);
1421 }
1422
1423 if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
1424 workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
1425
1426 return (work_done);
1427 }
1428
1429 #if 0
1430 static void
1431 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1432 struct mbuf *mbuf)
1433 {
1434 struct ena_adapter *adapter = rx_ring->adapter;
1435
1436 if (likely(adapter->rss_support)) {
1437 mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
1438
1439 if (ena_rx_ctx->frag &&
1440 (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
1441 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1442 return;
1443 }
1444
1445 switch (ena_rx_ctx->l3_proto) {
1446 case ENA_ETH_IO_L3_PROTO_IPV4:
1447 switch (ena_rx_ctx->l4_proto) {
1448 case ENA_ETH_IO_L4_PROTO_TCP:
1449 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
1450 break;
1451 case ENA_ETH_IO_L4_PROTO_UDP:
1452 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
1453 break;
1454 default:
1455 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
1456 }
1457 break;
1458 case ENA_ETH_IO_L3_PROTO_IPV6:
1459 switch (ena_rx_ctx->l4_proto) {
1460 case ENA_ETH_IO_L4_PROTO_TCP:
1461 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
1462 break;
1463 case ENA_ETH_IO_L4_PROTO_UDP:
1464 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
1465 break;
1466 default:
1467 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
1468 }
1469 break;
1470 case ENA_ETH_IO_L3_PROTO_UNKNOWN:
1471 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1472 break;
1473 default:
1474 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1475 }
1476 } else {
1477 mbuf->m_pkthdr.flowid = rx_ring->qid;
1478 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1479 }
1480 }
1481 #endif
1482
1483 /**
1484 * ena_rx_mbuf - assemble mbuf from descriptors
1485 * @rx_ring: ring for which we want to clean packets
1486 * @ena_bufs: buffer info
1487 * @ena_rx_ctx: metadata for this packet(s)
1488 * @next_to_clean: ring pointer, will be updated only upon success
1489 *
1490 **/
1491 static struct mbuf*
1492 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
1493 struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
1494 {
1495 struct mbuf *mbuf;
1496 struct ena_rx_buffer *rx_info;
1497 struct ena_adapter *adapter;
1498 unsigned int descs = ena_rx_ctx->descs;
1499 uint16_t ntc, len, req_id, buf = 0;
1500
1501 ntc = *next_to_clean;
1502 adapter = rx_ring->adapter;
1503 rx_info = &rx_ring->rx_buffer_info[ntc];
1504
1505 if (unlikely(rx_info->mbuf == NULL)) {
1506 device_printf(adapter->pdev, "NULL mbuf in rx_info");
1507 return (NULL);
1508 }
1509
1510 len = ena_bufs[buf].len;
1511 req_id = ena_bufs[buf].req_id;
1512 rx_info = &rx_ring->rx_buffer_info[req_id];
1513
1514 ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
1515 rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
1516
1517 mbuf = rx_info->mbuf;
1518 KASSERT(mbuf->m_flags & M_PKTHDR);
1519 mbuf->m_pkthdr.len = len;
1520 mbuf->m_len = len;
1521 m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
1522
1523 /* Fill mbuf with hash key and it's interpretation for optimization */
1524 #if 0
1525 ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
1526 #endif
1527
1528 ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d",
1529 mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
1530
1531 /* DMA address is not needed anymore, unmap it */
1532 bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1533
1534 rx_info->mbuf = NULL;
1535 rx_ring->free_rx_ids[ntc] = req_id;
1536 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1537
1538 /*
1539 * While we have more than 1 descriptors for one rcvd packet, append
1540 * other mbufs to the main one
1541 */
1542 while (--descs) {
1543 ++buf;
1544 len = ena_bufs[buf].len;
1545 req_id = ena_bufs[buf].req_id;
1546 rx_info = &rx_ring->rx_buffer_info[req_id];
1547
1548 if (unlikely(rx_info->mbuf == NULL)) {
1549 device_printf(adapter->pdev, "NULL mbuf in rx_info");
1550 /*
1551 * If one of the required mbufs was not allocated yet,
1552 * we can break there.
1553 * All earlier used descriptors will be reallocated
1554 * later and not used mbufs can be reused.
1555 * The next_to_clean pointer will not be updated in case
1556 * of an error, so caller should advance it manually
1557 * in error handling routine to keep it up to date
1558 * with hw ring.
1559 */
1560 m_freem(mbuf);
1561 return (NULL);
1562 }
1563
1564 if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
1565 counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1566 ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
1567 mbuf);
1568 }
1569
1570 ena_trace(ENA_DBG | ENA_RXPTH,
1571 "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
1572
1573 /* Free already appended mbuf, it won't be useful anymore */
1574 bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1575 m_freem(rx_info->mbuf);
1576 rx_info->mbuf = NULL;
1577
1578 rx_ring->free_rx_ids[ntc] = req_id;
1579 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1580 }
1581
1582 *next_to_clean = ntc;
1583
1584 return (mbuf);
1585 }
1586
1587 /**
1588 * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
1589 **/
1590 static inline void
1591 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1592 struct mbuf *mbuf)
1593 {
1594
1595 /* IPv4 */
1596 if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
1597 mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1598 if (ena_rx_ctx->l3_csum_err) {
1599 /* ipv4 checksum error */
1600 mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1601 counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1602 ena_trace(ENA_DBG, "RX IPv4 header checksum error");
1603 return;
1604 }
1605
1606 /* TCP/UDP */
1607 if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1608 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1609 mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
1610 if (ena_rx_ctx->l4_csum_err) {
1611 /* TCP/UDP checksum error */
1612 mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1613 counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1614 ena_trace(ENA_DBG, "RX L4 checksum error");
1615 }
1616 }
1617 }
1618 /* IPv6 */
1619 else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
1620 /* TCP/UDP */
1621 if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1622 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1623 mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
1624 if (ena_rx_ctx->l4_csum_err) {
1625 /* TCP/UDP checksum error */
1626 mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1627 counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1628 ena_trace(ENA_DBG, "RX L4 checksum error");
1629 }
1630 }
1631 }
1632 }
1633
1634 static void
1635 ena_deferred_rx_cleanup(struct work *wk, void *arg)
1636 {
1637 struct ena_ring *rx_ring = arg;
1638 int budget = CLEAN_BUDGET;
1639
1640 atomic_swap_uint(&rx_ring->task_pending, 0);
1641
1642 ENA_RING_MTX_LOCK(rx_ring);
1643 /*
1644 * If deferred task was executed, perform cleanup of all awaiting
1645 * descs (or until given budget is depleted to avoid infinite loop).
1646 */
1647 while (likely(budget--)) {
1648 if (ena_rx_cleanup(rx_ring) == 0)
1649 break;
1650 }
1651 ENA_RING_MTX_UNLOCK(rx_ring);
1652 }
1653
1654 /**
1655 * ena_rx_cleanup - handle rx irq
1656 * @arg: ring for which irq is being handled
1657 **/
1658 static int
1659 ena_rx_cleanup(struct ena_ring *rx_ring)
1660 {
1661 struct ena_adapter *adapter;
1662 struct mbuf *mbuf;
1663 struct ena_com_rx_ctx ena_rx_ctx;
1664 struct ena_com_io_cq* io_cq;
1665 struct ena_com_io_sq* io_sq;
1666 struct ifnet *ifp;
1667 uint16_t ena_qid;
1668 uint16_t next_to_clean;
1669 uint32_t refill_required;
1670 uint32_t refill_threshold;
1671 uint32_t do_if_input = 0;
1672 unsigned int qid;
1673 int rc, i;
1674 int budget = RX_BUDGET;
1675
1676 adapter = rx_ring->que->adapter;
1677 ifp = adapter->ifp;
1678 qid = rx_ring->que->id;
1679 ena_qid = ENA_IO_RXQ_IDX(qid);
1680 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1681 io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
1682 next_to_clean = rx_ring->next_to_clean;
1683
1684 ena_trace(ENA_DBG, "rx: qid %d", qid);
1685
1686 do {
1687 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1688 ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
1689 ena_rx_ctx.descs = 0;
1690 rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
1691
1692 if (unlikely(rc != 0))
1693 goto error;
1694
1695 if (unlikely(ena_rx_ctx.descs == 0))
1696 break;
1697
1698 ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
1699 "descs #: %d l3 proto %d l4 proto %d hash: %x",
1700 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1701 ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1702
1703 /* Receive mbuf from the ring */
1704 mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
1705 &ena_rx_ctx, &next_to_clean);
1706
1707 /* Exit if we failed to retrieve a buffer */
1708 if (unlikely(mbuf == NULL)) {
1709 for (i = 0; i < ena_rx_ctx.descs; ++i) {
1710 rx_ring->free_rx_ids[next_to_clean] =
1711 rx_ring->ena_bufs[i].req_id;
1712 next_to_clean =
1713 ENA_RX_RING_IDX_NEXT(next_to_clean,
1714 rx_ring->ring_size);
1715
1716 }
1717 break;
1718 }
1719
1720 if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
1721 ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
1722 ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
1723 ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
1724 ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
1725 ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
1726 }
1727
1728 counter_enter();
1729 counter_u64_add_protected(rx_ring->rx_stats.bytes,
1730 mbuf->m_pkthdr.len);
1731 counter_u64_add_protected(adapter->hw_stats.rx_bytes,
1732 mbuf->m_pkthdr.len);
1733 counter_exit();
1734 /*
1735 * LRO is only for IP/TCP packets and TCP checksum of the packet
1736 * should be computed by hardware.
1737 */
1738 do_if_input = 1;
1739 #ifdef LRO
1740 if (((ifp->if_capenable & IFCAP_LRO) != 0) &&
1741 ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
1742 (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
1743 /*
1744 * Send to the stack if:
1745 * - LRO not enabled, or
1746 * - no LRO resources, or
1747 * - lro enqueue fails
1748 */
1749 if ((rx_ring->lro.lro_cnt != 0) &&
1750 (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
1751 do_if_input = 0;
1752 }
1753 #endif
1754 if (do_if_input != 0) {
1755 ena_trace(ENA_DBG | ENA_RXPTH,
1756 "calling if_input() with mbuf %p", mbuf);
1757 if_percpuq_enqueue(ifp->if_percpuq, mbuf);
1758 }
1759
1760 counter_enter();
1761 counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
1762 counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
1763 counter_exit();
1764 } while (--budget);
1765
1766 rx_ring->next_to_clean = next_to_clean;
1767
1768 refill_required = ena_com_free_desc(io_sq);
1769 refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
1770
1771 if (refill_required > refill_threshold) {
1772 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1773 ena_refill_rx_bufs(rx_ring, refill_required);
1774 }
1775
1776 #ifdef LRO
1777 tcp_lro_flush_all(&rx_ring->lro);
1778 #endif
1779
1780 return (RX_BUDGET - budget);
1781
1782 error:
1783 counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
1784 return (RX_BUDGET - budget);
1785 }
1786
1787 /*********************************************************************
1788 *
1789 * MSIX & Interrupt Service routine
1790 *
1791 **********************************************************************/
1792
1793 /**
1794 * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
1795 * @arg: interrupt number
1796 **/
1797 static int
1798 ena_intr_msix_mgmnt(void *arg)
1799 {
1800 struct ena_adapter *adapter = (struct ena_adapter *)arg;
1801
1802 ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1803 if (likely(adapter->running))
1804 ena_com_aenq_intr_handler(adapter->ena_dev, arg);
1805
1806 return 1;
1807 }
1808
1809 /**
1810 * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
1811 * @arg: interrupt number
1812 **/
1813 static int
1814 ena_handle_msix(void *arg)
1815 {
1816 struct ena_que *que = arg;
1817 struct ena_adapter *adapter = que->adapter;
1818 struct ifnet *ifp = adapter->ifp;
1819 struct ena_ring *tx_ring;
1820 struct ena_ring *rx_ring;
1821 struct ena_com_io_cq* io_cq;
1822 struct ena_eth_io_intr_reg intr_reg;
1823 int qid, ena_qid;
1824 int txc, rxc, i;
1825
1826 if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1827 return 0;
1828
1829 ena_trace(ENA_DBG, "MSI-X TX/RX routine");
1830
1831 tx_ring = que->tx_ring;
1832 rx_ring = que->rx_ring;
1833 qid = que->id;
1834 ena_qid = ENA_IO_TXQ_IDX(qid);
1835 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1836
1837 for (i = 0; i < CLEAN_BUDGET; ++i) {
1838 /*
1839 * If lock cannot be acquired, then deferred cleanup task was
1840 * being executed and rx ring is being cleaned up in
1841 * another thread.
1842 */
1843 if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) {
1844 rxc = ena_rx_cleanup(rx_ring);
1845 ENA_RING_MTX_UNLOCK(rx_ring);
1846 } else {
1847 rxc = 0;
1848 }
1849
1850 /* Protection from calling ena_tx_cleanup from ena_start_xmit */
1851 ENA_RING_MTX_LOCK(tx_ring);
1852 txc = ena_tx_cleanup(tx_ring);
1853 ENA_RING_MTX_UNLOCK(tx_ring);
1854
1855 if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1856 return 0;
1857
1858 if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
1859 break;
1860 }
1861
1862 /* Signal that work is done and unmask interrupt */
1863 ena_com_update_intr_reg(&intr_reg,
1864 RX_IRQ_INTERVAL,
1865 TX_IRQ_INTERVAL,
1866 true);
1867 ena_com_unmask_intr(io_cq, &intr_reg);
1868
1869 return 1;
1870 }
1871
1872 static int
1873 ena_enable_msix(struct ena_adapter *adapter)
1874 {
1875 int msix_req;
1876 int counts[PCI_INTR_TYPE_SIZE];
1877 int max_type;
1878
1879 /* Reserved the max msix vectors we might need */
1880 msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
1881
1882 counts[PCI_INTR_TYPE_INTX] = 0;
1883 counts[PCI_INTR_TYPE_MSI] = 0;
1884 counts[PCI_INTR_TYPE_MSIX] = msix_req;
1885 max_type = PCI_INTR_TYPE_MSIX;
1886
1887 if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
1888 max_type) != 0) {
1889 aprint_error_dev(adapter->pdev,
1890 "failed to allocate interrupt\n");
1891 return ENOSPC;
1892 }
1893
1894 adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
1895
1896 if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
1897 device_printf(adapter->pdev,
1898 "Enable only %d MSI-x (out of %d), reduce "
1899 "the number of queues\n", adapter->sc_nintrs, msix_req);
1900 adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
1901 }
1902
1903 return 0;
1904 }
1905
1906 #if 0
1907 static void
1908 ena_setup_io_intr(struct ena_adapter *adapter)
1909 {
1910 static int last_bind_cpu = -1;
1911 int irq_idx;
1912
1913 for (int i = 0; i < adapter->num_queues; i++) {
1914 irq_idx = ENA_IO_IRQ_IDX(i);
1915
1916 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1917 "%s-TxRx-%d", device_xname(adapter->pdev), i);
1918 adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
1919 adapter->irq_tbl[irq_idx].data = &adapter->que[i];
1920 adapter->irq_tbl[irq_idx].vector =
1921 adapter->msix_entries[irq_idx].vector;
1922 ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
1923 adapter->msix_entries[irq_idx].vector);
1924 #ifdef RSS
1925 adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1926 rss_getcpu(i % rss_getnumbuckets());
1927 #else
1928 /*
1929 * We still want to bind rings to the corresponding cpu
1930 * using something similar to the RSS round-robin technique.
1931 */
1932 if (unlikely(last_bind_cpu < 0))
1933 last_bind_cpu = CPU_FIRST();
1934 adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1935 last_bind_cpu;
1936 last_bind_cpu = CPU_NEXT(last_bind_cpu);
1937 #endif
1938 }
1939 }
1940 #endif
1941
1942 static int
1943 ena_request_mgmnt_irq(struct ena_adapter *adapter)
1944 {
1945 const char *intrstr;
1946 char intrbuf[PCI_INTRSTR_LEN];
1947 char intr_xname[INTRDEVNAMEBUF];
1948 pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
1949 const int irq_slot = ENA_MGMNT_IRQ_IDX;
1950
1951 KASSERT(adapter->sc_intrs != NULL);
1952 KASSERT(adapter->sc_ihs[irq_slot] == NULL);
1953
1954 snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
1955 device_xname(adapter->pdev));
1956 intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
1957 intrbuf, sizeof(intrbuf));
1958
1959 adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
1960 pc, adapter->sc_intrs[irq_slot],
1961 IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
1962
1963 if (adapter->sc_ihs[irq_slot] == NULL) {
1964 device_printf(adapter->pdev, "failed to register "
1965 "interrupt handler for MGMNT irq %s\n",
1966 intrstr);
1967 return ENOMEM;
1968 }
1969
1970 aprint_normal_dev(adapter->pdev,
1971 "for MGMNT interrupting at %s\n", intrstr);
1972
1973 return 0;
1974 }
1975
1976 static int
1977 ena_request_io_irq(struct ena_adapter *adapter)
1978 {
1979 const char *intrstr;
1980 char intrbuf[PCI_INTRSTR_LEN];
1981 char intr_xname[INTRDEVNAMEBUF];
1982 pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
1983 const int irq_off = ENA_IO_IRQ_FIRST_IDX;
1984 void *vih;
1985 kcpuset_t *affinity;
1986 int i;
1987
1988 KASSERT(adapter->sc_intrs != NULL);
1989
1990 kcpuset_create(&affinity, false);
1991
1992 for (i = 0; i < adapter->num_queues; i++) {
1993 int irq_slot = i + irq_off;
1994 int affinity_to = (irq_slot) % ncpu;
1995
1996 KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
1997 KASSERT(adapter->sc_ihs[irq_slot] == NULL);
1998
1999 snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
2000 device_xname(adapter->pdev), i);
2001 intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
2002 intrbuf, sizeof(intrbuf));
2003
2004 vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
2005 adapter->sc_intrs[irq_slot], IPL_NET,
2006 ena_handle_msix, &adapter->que[i], intr_xname);
2007
2008 if (adapter->sc_ihs[ENA_MGMNT_IRQ_IDX] == NULL) {
2009 device_printf(adapter->pdev, "failed to register "
2010 "interrupt handler for IO queue %d irq %s\n",
2011 i, intrstr);
2012 goto err;
2013 }
2014
2015 kcpuset_zero(affinity);
2016 /* Round-robin affinity */
2017 kcpuset_set(affinity, affinity_to);
2018 int error = interrupt_distribute(vih, affinity, NULL);
2019 if (error == 0) {
2020 aprint_normal_dev(adapter->pdev,
2021 "for IO queue %d interrupting at %s"
2022 " affinity to %u\n", i, intrstr, affinity_to);
2023 } else {
2024 aprint_normal_dev(adapter->pdev,
2025 "for IO queue %d interrupting at %s\n", i, intrstr);
2026 }
2027
2028 adapter->sc_ihs[irq_slot] = vih;
2029
2030 #ifdef RSS
2031 ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
2032 i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
2033 #else
2034 ena_trace(ENA_INFO, "queue %d - cpu %d\n",
2035 i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
2036 #endif
2037 }
2038
2039 kcpuset_destroy(affinity);
2040 return 0;
2041
2042 err:
2043 kcpuset_destroy(affinity);
2044
2045 for (i--; i >= 0; i--) {
2046 #if defined(DEBUG) || defined(DIAGNOSTIC)
2047 int irq_slot = i + irq_off;
2048 #endif
2049 KASSERT(adapter->sc_ihs[irq_slot] != NULL);
2050 pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[i]);
2051 adapter->sc_ihs[i] = NULL;
2052 }
2053
2054 return ENOSPC;
2055 }
2056
2057 static void
2058 ena_free_mgmnt_irq(struct ena_adapter *adapter)
2059 {
2060 const int irq_slot = ENA_MGMNT_IRQ_IDX;
2061
2062 if (adapter->sc_ihs[irq_slot]) {
2063 pci_intr_disestablish(adapter->sc_pa.pa_pc,
2064 adapter->sc_ihs[irq_slot]);
2065 adapter->sc_ihs[irq_slot] = NULL;
2066 }
2067 }
2068
2069 static void
2070 ena_free_io_irq(struct ena_adapter *adapter)
2071 {
2072 const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2073
2074 for (int i = 0; i < adapter->num_queues; i++) {
2075 int irq_slot = i + irq_off;
2076
2077 if (adapter->sc_ihs[irq_slot]) {
2078 pci_intr_disestablish(adapter->sc_pa.pa_pc,
2079 adapter->sc_ihs[i]);
2080 adapter->sc_ihs[i] = NULL;
2081 }
2082 }
2083 }
2084
2085 static void
2086 ena_free_irqs(struct ena_adapter* adapter)
2087 {
2088
2089 ena_free_io_irq(adapter);
2090 ena_free_mgmnt_irq(adapter);
2091 ena_disable_msix(adapter);
2092 }
2093
2094 static void
2095 ena_disable_msix(struct ena_adapter *adapter)
2096 {
2097 pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
2098 adapter->sc_nintrs);
2099 }
2100
2101 static void
2102 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
2103 {
2104 struct ena_com_io_cq* io_cq;
2105 struct ena_eth_io_intr_reg intr_reg;
2106 uint16_t ena_qid;
2107 int i;
2108
2109 /* Unmask interrupts for all queues */
2110 for (i = 0; i < adapter->num_queues; i++) {
2111 ena_qid = ENA_IO_TXQ_IDX(i);
2112 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
2113 ena_com_update_intr_reg(&intr_reg, 0, 0, true);
2114 ena_com_unmask_intr(io_cq, &intr_reg);
2115 }
2116 }
2117
2118 /* Configure the Rx forwarding */
2119 static int
2120 ena_rss_configure(struct ena_adapter *adapter)
2121 {
2122 struct ena_com_dev *ena_dev = adapter->ena_dev;
2123 int rc;
2124
2125 /* Set indirect table */
2126 rc = ena_com_indirect_table_set(ena_dev);
2127 if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2128 return (rc);
2129
2130 /* Configure hash function (if supported) */
2131 rc = ena_com_set_hash_function(ena_dev);
2132 if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2133 return (rc);
2134
2135 /* Configure hash inputs (if supported) */
2136 rc = ena_com_set_hash_ctrl(ena_dev);
2137 if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2138 return (rc);
2139
2140 return (0);
2141 }
2142
2143 static int
2144 ena_up_complete(struct ena_adapter *adapter)
2145 {
2146 int rc;
2147
2148 if (likely(adapter->rss_support)) {
2149 rc = ena_rss_configure(adapter);
2150 if (rc != 0)
2151 return (rc);
2152 }
2153
2154 rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
2155 if (unlikely(rc != 0))
2156 return (rc);
2157
2158 ena_refill_all_rx_bufs(adapter);
2159 ena_reset_counters((struct evcnt *)&adapter->hw_stats,
2160 sizeof(adapter->hw_stats));
2161
2162 return (0);
2163 }
2164
2165 static int
2166 ena_up(struct ena_adapter *adapter)
2167 {
2168 int rc = 0;
2169
2170 #if 0
2171 if (unlikely(device_is_attached(adapter->pdev) == 0)) {
2172 device_printf(adapter->pdev, "device is not attached!\n");
2173 return (ENXIO);
2174 }
2175 #endif
2176
2177 if (unlikely(!adapter->running)) {
2178 device_printf(adapter->pdev, "device is not running!\n");
2179 return (ENXIO);
2180 }
2181
2182 if (!adapter->up) {
2183 device_printf(adapter->pdev, "device is going UP\n");
2184
2185 /* setup interrupts for IO queues */
2186 rc = ena_request_io_irq(adapter);
2187 if (unlikely(rc != 0)) {
2188 ena_trace(ENA_ALERT, "err_req_irq");
2189 goto err_req_irq;
2190 }
2191
2192 /* allocate transmit descriptors */
2193 rc = ena_setup_all_tx_resources(adapter);
2194 if (unlikely(rc != 0)) {
2195 ena_trace(ENA_ALERT, "err_setup_tx");
2196 goto err_setup_tx;
2197 }
2198
2199 /* allocate receive descriptors */
2200 rc = ena_setup_all_rx_resources(adapter);
2201 if (unlikely(rc != 0)) {
2202 ena_trace(ENA_ALERT, "err_setup_rx");
2203 goto err_setup_rx;
2204 }
2205
2206 /* create IO queues for Rx & Tx */
2207 rc = ena_create_io_queues(adapter);
2208 if (unlikely(rc != 0)) {
2209 ena_trace(ENA_ALERT,
2210 "create IO queues failed");
2211 goto err_io_que;
2212 }
2213
2214 if (unlikely(adapter->link_status))
2215 if_link_state_change(adapter->ifp, LINK_STATE_UP);
2216
2217 rc = ena_up_complete(adapter);
2218 if (unlikely(rc != 0))
2219 goto err_up_complete;
2220
2221 counter_u64_add(adapter->dev_stats.interface_up, 1);
2222
2223 ena_update_hwassist(adapter);
2224
2225 if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
2226 IFF_OACTIVE);
2227
2228 callout_reset(&adapter->timer_service, hz,
2229 ena_timer_service, (void *)adapter);
2230
2231 adapter->up = true;
2232
2233 ena_unmask_all_io_irqs(adapter);
2234 }
2235
2236 return (0);
2237
2238 err_up_complete:
2239 ena_destroy_all_io_queues(adapter);
2240 err_io_que:
2241 ena_free_all_rx_resources(adapter);
2242 err_setup_rx:
2243 ena_free_all_tx_resources(adapter);
2244 err_setup_tx:
2245 ena_free_io_irq(adapter);
2246 err_req_irq:
2247 return (rc);
2248 }
2249
2250 #if 0
2251 static uint64_t
2252 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
2253 {
2254 struct ena_adapter *adapter;
2255 struct ena_hw_stats *stats;
2256
2257 adapter = if_getsoftc(ifp);
2258 stats = &adapter->hw_stats;
2259
2260 switch (cnt) {
2261 case IFCOUNTER_IPACKETS:
2262 return (counter_u64_fetch(stats->rx_packets));
2263 case IFCOUNTER_OPACKETS:
2264 return (counter_u64_fetch(stats->tx_packets));
2265 case IFCOUNTER_IBYTES:
2266 return (counter_u64_fetch(stats->rx_bytes));
2267 case IFCOUNTER_OBYTES:
2268 return (counter_u64_fetch(stats->tx_bytes));
2269 case IFCOUNTER_IQDROPS:
2270 return (counter_u64_fetch(stats->rx_drops));
2271 default:
2272 return (if_get_counter_default(ifp, cnt));
2273 }
2274 }
2275 #endif
2276
2277 static int
2278 ena_media_change(struct ifnet *ifp)
2279 {
2280 /* Media Change is not supported by firmware */
2281 return (0);
2282 }
2283
2284 static void
2285 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2286 {
2287 struct ena_adapter *adapter = if_getsoftc(ifp);
2288 ena_trace(ENA_DBG, "enter");
2289
2290 mutex_enter(&adapter->global_mtx);
2291
2292 ifmr->ifm_status = IFM_AVALID;
2293 ifmr->ifm_active = IFM_ETHER;
2294
2295 if (!adapter->link_status) {
2296 mutex_exit(&adapter->global_mtx);
2297 ena_trace(ENA_INFO, "link_status = false");
2298 return;
2299 }
2300
2301 ifmr->ifm_status |= IFM_ACTIVE;
2302 ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2303
2304 mutex_exit(&adapter->global_mtx);
2305 }
2306
2307 static int
2308 ena_init(struct ifnet *ifp)
2309 {
2310 struct ena_adapter *adapter = if_getsoftc(ifp);
2311
2312 if (!adapter->up) {
2313 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2314 ena_up(adapter);
2315 rw_exit(&adapter->ioctl_sx);
2316 }
2317
2318 return 0;
2319 }
2320
2321 static int
2322 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
2323 {
2324 struct ena_adapter *adapter;
2325 struct ifreq *ifr;
2326 int rc;
2327
2328 adapter = ifp->if_softc;
2329 ifr = (struct ifreq *)data;
2330
2331 /*
2332 * Acquiring lock to prevent from running up and down routines parallel.
2333 */
2334 rc = 0;
2335 switch (command) {
2336 case SIOCSIFMTU:
2337 if (ifp->if_mtu == ifr->ifr_mtu)
2338 break;
2339 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2340 ena_down(adapter);
2341
2342 ena_change_mtu(ifp, ifr->ifr_mtu);
2343
2344 rc = ena_up(adapter);
2345 rw_exit(&adapter->ioctl_sx);
2346 break;
2347
2348 case SIOCSIFFLAGS:
2349 if ((ifp->if_flags & IFF_UP) != 0) {
2350 if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2351 if ((ifp->if_flags & (IFF_PROMISC |
2352 IFF_ALLMULTI)) != 0) {
2353 device_printf(adapter->pdev,
2354 "ioctl promisc/allmulti\n");
2355 }
2356 } else {
2357 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2358 rc = ena_up(adapter);
2359 rw_exit(&adapter->ioctl_sx);
2360 }
2361 } else {
2362 if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2363 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2364 ena_down(adapter);
2365 rw_exit(&adapter->ioctl_sx);
2366 }
2367 }
2368 break;
2369
2370 case SIOCADDMULTI:
2371 case SIOCDELMULTI:
2372 break;
2373
2374 case SIOCSIFCAP:
2375 {
2376 struct ifcapreq *ifcr = data;
2377 int reinit = 0;
2378
2379 if (ifcr->ifcr_capenable != ifp->if_capenable) {
2380 ifp->if_capenable = ifcr->ifcr_capenable;
2381 reinit = 1;
2382 }
2383
2384 if ((reinit != 0) &&
2385 ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
2386 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2387 ena_down(adapter);
2388 rc = ena_up(adapter);
2389 rw_exit(&adapter->ioctl_sx);
2390 }
2391 }
2392
2393 break;
2394 default:
2395 rc = ether_ioctl(ifp, command, data);
2396 break;
2397 }
2398
2399 return (rc);
2400 }
2401
2402 static int
2403 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
2404 {
2405 int caps = 0;
2406
2407 if ((feat->offload.tx &
2408 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2409 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
2410 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
2411 caps |= IFCAP_CSUM_IPv4_Tx;
2412
2413 if ((feat->offload.tx &
2414 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
2415 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
2416 caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
2417
2418 if ((feat->offload.tx &
2419 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
2420 caps |= IFCAP_TSOv4;
2421
2422 if ((feat->offload.tx &
2423 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
2424 caps |= IFCAP_TSOv6;
2425
2426 if ((feat->offload.rx_supported &
2427 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
2428 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
2429 caps |= IFCAP_CSUM_IPv4_Rx;
2430
2431 if ((feat->offload.rx_supported &
2432 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
2433 caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
2434
2435 caps |= IFCAP_LRO;
2436
2437 return (caps);
2438 }
2439
2440 static void
2441 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
2442 {
2443
2444 host_info->supported_network_features[0] =
2445 (uint32_t)if_getcapabilities(ifp);
2446 }
2447
2448 static void
2449 ena_update_hwassist(struct ena_adapter *adapter)
2450 {
2451 struct ifnet *ifp = adapter->ifp;
2452 uint32_t feat = adapter->tx_offload_cap;
2453 int cap = if_getcapenable(ifp);
2454 int flags = 0;
2455
2456 if_clearhwassist(ifp);
2457
2458 if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2459 != 0) {
2460 if ((feat &
2461 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
2462 flags |= M_CSUM_IPv4;
2463 if ((feat &
2464 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2465 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
2466 flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
2467 }
2468
2469 if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
2470 flags |= M_CSUM_TCPv6;
2471
2472 if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
2473 flags |= M_CSUM_UDPv6;
2474
2475 if ((cap & IFCAP_TSOv4) != 0)
2476 flags |= M_CSUM_TSOv4;
2477
2478 if ((cap & IFCAP_TSOv6) != 0)
2479 flags |= M_CSUM_TSOv6;
2480
2481 if_sethwassistbits(ifp, flags, 0);
2482 }
2483
2484 static int
2485 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
2486 struct ena_com_dev_get_features_ctx *feat)
2487 {
2488 struct ifnet *ifp;
2489 int caps = 0;
2490
2491 ifp = adapter->ifp = &adapter->sc_ec.ec_if;
2492 if (unlikely(ifp == NULL)) {
2493 ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
2494 return (ENXIO);
2495 }
2496 if_initname(ifp, "ena", device_unit(pdev));
2497 if_setdev(ifp, pdev);
2498 if_setsoftc(ifp, adapter);
2499
2500 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2501 if_setinitfn(ifp, ena_init);
2502 if_settransmitfn(ifp, ena_mq_start);
2503 #if 0
2504 if_setqflushfn(ifp, ena_qflush);
2505 #endif
2506 if_setioctlfn(ifp, ena_ioctl);
2507 #if 0
2508 if_setgetcounterfn(ifp, ena_get_counter);
2509 #endif
2510
2511 if_setsendqlen(ifp, adapter->tx_ring_size);
2512 if_setsendqready(ifp);
2513 if_setmtu(ifp, ETHERMTU);
2514 if_setbaudrate(ifp, 0);
2515 /* Zeroize capabilities... */
2516 if_setcapabilities(ifp, 0);
2517 if_setcapenable(ifp, 0);
2518 /* check hardware support */
2519 caps = ena_get_dev_offloads(feat);
2520 /* ... and set them */
2521 if_setcapabilitiesbit(ifp, caps, 0);
2522 adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2523
2524 #if 0
2525 /* TSO parameters */
2526 /* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
2527 ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
2528 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
2529 ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
2530 ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
2531 #endif
2532
2533 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2534 if_setcapenable(ifp, if_getcapabilities(ifp));
2535
2536 /*
2537 * Specify the media types supported by this adapter and register
2538 * callbacks to update media and link information
2539 */
2540 adapter->sc_ec.ec_ifmedia = &adapter->media;
2541 ifmedia_init(&adapter->media, IFM_IMASK,
2542 ena_media_change, ena_media_status);
2543 ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2544 ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2545
2546 if_attach(ifp);
2547 if_deferred_start_init(ifp, NULL);
2548
2549 ether_ifattach(ifp, adapter->mac_addr);
2550
2551 return (0);
2552 }
2553
2554 static void
2555 ena_down(struct ena_adapter *adapter)
2556 {
2557 int rc;
2558
2559 if (adapter->up) {
2560 device_printf(adapter->pdev, "device is going DOWN\n");
2561
2562 callout_halt(&adapter->timer_service, &adapter->global_mtx);
2563
2564 adapter->up = false;
2565 if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
2566 IFF_RUNNING);
2567
2568 ena_free_io_irq(adapter);
2569
2570 if (adapter->trigger_reset) {
2571 rc = ena_com_dev_reset(adapter->ena_dev,
2572 adapter->reset_reason);
2573 if (unlikely(rc != 0))
2574 device_printf(adapter->pdev,
2575 "Device reset failed\n");
2576 }
2577
2578 ena_destroy_all_io_queues(adapter);
2579
2580 ena_free_all_tx_bufs(adapter);
2581 ena_free_all_rx_bufs(adapter);
2582 ena_free_all_tx_resources(adapter);
2583 ena_free_all_rx_resources(adapter);
2584
2585 counter_u64_add(adapter->dev_stats.interface_down, 1);
2586 }
2587 }
2588
2589 static void
2590 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
2591 {
2592 struct ena_com_tx_meta *ena_meta;
2593 struct ether_vlan_header *eh;
2594 u32 mss;
2595 bool offload;
2596 uint16_t etype;
2597 int ehdrlen;
2598 struct ip *ip;
2599 int iphlen;
2600 struct tcphdr *th;
2601
2602 offload = false;
2603 ena_meta = &ena_tx_ctx->ena_meta;
2604
2605 #if 0
2606 u32 mss = mbuf->m_pkthdr.tso_segsz;
2607
2608 if (mss != 0)
2609 offload = true;
2610 #else
2611 mss = mbuf->m_pkthdr.len; /* XXX don't have tso_segsz */
2612 #endif
2613
2614 if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
2615 offload = true;
2616
2617 if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
2618 offload = true;
2619
2620 if (!offload) {
2621 ena_tx_ctx->meta_valid = 0;
2622 return;
2623 }
2624
2625 /* Determine where frame payload starts. */
2626 eh = mtod(mbuf, struct ether_vlan_header *);
2627 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2628 etype = ntohs(eh->evl_proto);
2629 ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2630 } else {
2631 etype = htons(eh->evl_encap_proto);
2632 ehdrlen = ETHER_HDR_LEN;
2633 }
2634
2635 ip = (struct ip *)(mbuf->m_data + ehdrlen);
2636 iphlen = ip->ip_hl << 2;
2637 th = (struct tcphdr *)((vaddr_t)ip + iphlen);
2638
2639 if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
2640 ena_tx_ctx->l3_csum_enable = 1;
2641 }
2642 if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
2643 ena_tx_ctx->tso_enable = 1;
2644 ena_meta->l4_hdr_len = (th->th_off);
2645 }
2646
2647 switch (etype) {
2648 case ETHERTYPE_IP:
2649 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2650 if ((ip->ip_off & htons(IP_DF)) != 0)
2651 ena_tx_ctx->df = 1;
2652 break;
2653 case ETHERTYPE_IPV6:
2654 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2655
2656 default:
2657 break;
2658 }
2659
2660 if (ip->ip_p == IPPROTO_TCP) {
2661 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2662 if ((mbuf->m_pkthdr.csum_flags &
2663 (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
2664 ena_tx_ctx->l4_csum_enable = 1;
2665 else
2666 ena_tx_ctx->l4_csum_enable = 0;
2667 } else if (ip->ip_p == IPPROTO_UDP) {
2668 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2669 if ((mbuf->m_pkthdr.csum_flags &
2670 (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2671 ena_tx_ctx->l4_csum_enable = 1;
2672 else
2673 ena_tx_ctx->l4_csum_enable = 0;
2674 } else {
2675 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
2676 ena_tx_ctx->l4_csum_enable = 0;
2677 }
2678
2679 ena_meta->mss = mss;
2680 ena_meta->l3_hdr_len = iphlen;
2681 ena_meta->l3_hdr_offset = ehdrlen;
2682 ena_tx_ctx->meta_valid = 1;
2683 }
2684
2685 static int
2686 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2687 {
2688 struct ena_adapter *adapter;
2689 struct mbuf *collapsed_mbuf;
2690 int num_frags;
2691
2692 adapter = tx_ring->adapter;
2693 num_frags = ena_mbuf_count(*mbuf);
2694
2695 /* One segment must be reserved for configuration descriptor. */
2696 if (num_frags < adapter->max_tx_sgl_size)
2697 return (0);
2698 counter_u64_add(tx_ring->tx_stats.collapse, 1);
2699
2700 collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
2701 adapter->max_tx_sgl_size - 1);
2702 if (unlikely(collapsed_mbuf == NULL)) {
2703 counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
2704 return (ENOMEM);
2705 }
2706
2707 /* If mbuf was collapsed succesfully, original mbuf is released. */
2708 *mbuf = collapsed_mbuf;
2709
2710 return (0);
2711 }
2712
2713 static int
2714 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2715 {
2716 struct ena_adapter *adapter;
2717 struct ena_tx_buffer *tx_info;
2718 struct ena_com_tx_ctx ena_tx_ctx;
2719 struct ena_com_dev *ena_dev;
2720 struct ena_com_buf *ena_buf;
2721 struct ena_com_io_sq* io_sq;
2722 void *push_hdr;
2723 uint16_t next_to_use;
2724 uint16_t req_id;
2725 uint16_t ena_qid;
2726 uint32_t header_len;
2727 int i, rc;
2728 int nb_hw_desc;
2729
2730 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2731 adapter = tx_ring->que->adapter;
2732 ena_dev = adapter->ena_dev;
2733 io_sq = &ena_dev->io_sq_queues[ena_qid];
2734
2735 rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
2736 if (unlikely(rc != 0)) {
2737 ena_trace(ENA_WARNING,
2738 "Failed to collapse mbuf! err: %d", rc);
2739 return (rc);
2740 }
2741
2742 next_to_use = tx_ring->next_to_use;
2743 req_id = tx_ring->free_tx_ids[next_to_use];
2744 tx_info = &tx_ring->tx_buffer_info[req_id];
2745
2746 tx_info->mbuf = *mbuf;
2747 tx_info->num_of_bufs = 0;
2748
2749 ena_buf = tx_info->bufs;
2750
2751 ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
2752
2753 /*
2754 * header_len is just a hint for the device. Because FreeBSD is not
2755 * giving us information about packet header length and it is not
2756 * guaranteed that all packet headers will be in the 1st mbuf, setting
2757 * header_len to 0 is making the device ignore this value and resolve
2758 * header on it's own.
2759 */
2760 header_len = 0;
2761 push_hdr = NULL;
2762
2763 rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
2764 *mbuf, BUS_DMA_NOWAIT);
2765
2766 if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
2767 ena_trace(ENA_WARNING,
2768 "dmamap load failed! err: %d nsegs: %d", rc,
2769 tx_info->map->dm_nsegs);
2770 counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
2771 tx_info->mbuf = NULL;
2772 if (rc == ENOMEM)
2773 return (ENA_COM_NO_MEM);
2774 else
2775 return (ENA_COM_INVAL);
2776 }
2777
2778 for (i = 0; i < tx_info->map->dm_nsegs; i++) {
2779 ena_buf->len = tx_info->map->dm_segs[i].ds_len;
2780 ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
2781 ena_buf++;
2782 }
2783 tx_info->num_of_bufs = tx_info->map->dm_nsegs;
2784
2785 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2786 ena_tx_ctx.ena_bufs = tx_info->bufs;
2787 ena_tx_ctx.push_header = push_hdr;
2788 ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2789 ena_tx_ctx.req_id = req_id;
2790 ena_tx_ctx.header_len = header_len;
2791
2792 /* Set flags and meta data */
2793 ena_tx_csum(&ena_tx_ctx, *mbuf);
2794 /* Prepare the packet's descriptors and send them to device */
2795 rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
2796 if (unlikely(rc != 0)) {
2797 device_printf(adapter->pdev, "failed to prepare tx bufs\n");
2798 counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
2799 goto dma_error;
2800 }
2801
2802 counter_enter();
2803 counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
2804 counter_u64_add_protected(tx_ring->tx_stats.bytes,
2805 (*mbuf)->m_pkthdr.len);
2806
2807 counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
2808 counter_u64_add_protected(adapter->hw_stats.tx_bytes,
2809 (*mbuf)->m_pkthdr.len);
2810 counter_exit();
2811
2812 tx_info->tx_descs = nb_hw_desc;
2813 getbinuptime(&tx_info->timestamp);
2814 tx_info->print_once = true;
2815
2816 tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
2817 tx_ring->ring_size);
2818
2819 bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
2820 tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2821
2822 return (0);
2823
2824 dma_error:
2825 tx_info->mbuf = NULL;
2826 bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
2827
2828 return (rc);
2829 }
2830
2831 static void
2832 ena_start_xmit(struct ena_ring *tx_ring)
2833 {
2834 struct mbuf *mbuf;
2835 struct ena_adapter *adapter = tx_ring->adapter;
2836 struct ena_com_io_sq* io_sq;
2837 int ena_qid;
2838 int acum_pkts = 0;
2839 int ret = 0;
2840
2841 if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2842 return;
2843
2844 if (unlikely(!adapter->link_status))
2845 return;
2846
2847 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2848 io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
2849
2850 while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
2851 ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
2852 " header csum flags %#jx",
2853 mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
2854
2855 if (unlikely(!ena_com_sq_have_enough_space(io_sq,
2856 ENA_TX_CLEANUP_THRESHOLD)))
2857 ena_tx_cleanup(tx_ring);
2858
2859 if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
2860 if (ret == ENA_COM_NO_MEM) {
2861 drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2862 } else if (ret == ENA_COM_NO_SPACE) {
2863 drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2864 } else {
2865 m_freem(mbuf);
2866 drbr_advance(adapter->ifp, tx_ring->br);
2867 }
2868
2869 break;
2870 }
2871
2872 drbr_advance(adapter->ifp, tx_ring->br);
2873
2874 if (unlikely((if_getdrvflags(adapter->ifp) &
2875 IFF_RUNNING) == 0))
2876 return;
2877
2878 acum_pkts++;
2879
2880 /*
2881 * If there's a BPF listener, bounce a copy of this frame
2882 * to him.
2883 */
2884 bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
2885
2886 if (unlikely(acum_pkts == DB_THRESHOLD)) {
2887 acum_pkts = 0;
2888 wmb();
2889 /* Trigger the dma engine */
2890 ena_com_write_sq_doorbell(io_sq);
2891 counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2892 }
2893
2894 }
2895
2896 if (likely(acum_pkts != 0)) {
2897 wmb();
2898 /* Trigger the dma engine */
2899 ena_com_write_sq_doorbell(io_sq);
2900 counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2901 }
2902
2903 if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
2904 ena_tx_cleanup(tx_ring);
2905 }
2906
2907 static void
2908 ena_deferred_mq_start(struct work *wk, void *arg)
2909 {
2910 struct ena_ring *tx_ring = (struct ena_ring *)arg;
2911 struct ifnet *ifp = tx_ring->adapter->ifp;
2912
2913 atomic_swap_uint(&tx_ring->task_pending, 0);
2914
2915 while (!drbr_empty(ifp, tx_ring->br) &&
2916 (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2917 ENA_RING_MTX_LOCK(tx_ring);
2918 ena_start_xmit(tx_ring);
2919 ENA_RING_MTX_UNLOCK(tx_ring);
2920 }
2921 }
2922
2923 static int
2924 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
2925 {
2926 struct ena_adapter *adapter = ifp->if_softc;
2927 struct ena_ring *tx_ring;
2928 int ret, is_drbr_empty;
2929 uint32_t i;
2930
2931 if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2932 return (ENODEV);
2933
2934 /* Which queue to use */
2935 /*
2936 * If everything is setup correctly, it should be the
2937 * same bucket that the current CPU we're on is.
2938 * It should improve performance.
2939 */
2940 #if 0
2941 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
2942 #ifdef RSS
2943 if (rss_hash2bucket(m->m_pkthdr.flowid,
2944 M_HASHTYPE_GET(m), &i) == 0) {
2945 i = i % adapter->num_queues;
2946
2947 } else
2948 #endif
2949 {
2950 i = m->m_pkthdr.flowid % adapter->num_queues;
2951 }
2952 } else {
2953 #endif
2954 i = cpu_index(curcpu()) % adapter->num_queues;
2955 #if 0
2956 }
2957 #endif
2958 tx_ring = &adapter->tx_ring[i];
2959
2960 /* Check if drbr is empty before putting packet */
2961 is_drbr_empty = drbr_empty(ifp, tx_ring->br);
2962 ret = drbr_enqueue(ifp, tx_ring->br, m);
2963 if (unlikely(ret != 0)) {
2964 if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
2965 workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
2966 curcpu());
2967 return (ret);
2968 }
2969
2970 if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
2971 ena_start_xmit(tx_ring);
2972 ENA_RING_MTX_UNLOCK(tx_ring);
2973 } else {
2974 if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
2975 workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
2976 curcpu());
2977 }
2978
2979 return (0);
2980 }
2981
2982 #if 0
2983 static void
2984 ena_qflush(struct ifnet *ifp)
2985 {
2986 struct ena_adapter *adapter = ifp->if_softc;
2987 struct ena_ring *tx_ring = adapter->tx_ring;
2988 int i;
2989
2990 for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
2991 if (!drbr_empty(ifp, tx_ring->br)) {
2992 ENA_RING_MTX_LOCK(tx_ring);
2993 drbr_flush(ifp, tx_ring->br);
2994 ENA_RING_MTX_UNLOCK(tx_ring);
2995 }
2996
2997 if_qflush(ifp);
2998 }
2999 #endif
3000
3001 static int
3002 ena_calc_io_queue_num(struct pci_attach_args *pa,
3003 struct ena_adapter *adapter,
3004 struct ena_com_dev_get_features_ctx *get_feat_ctx)
3005 {
3006 int io_sq_num, io_cq_num, io_queue_num;
3007
3008 io_sq_num = get_feat_ctx->max_queues.max_sq_num;
3009 io_cq_num = get_feat_ctx->max_queues.max_cq_num;
3010
3011 io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
3012 io_queue_num = min_t(int, io_queue_num, io_sq_num);
3013 io_queue_num = min_t(int, io_queue_num, io_cq_num);
3014 /* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */
3015 io_queue_num = min_t(int, io_queue_num,
3016 pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
3017 #ifdef RSS
3018 io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets());
3019 #endif
3020
3021 return (io_queue_num);
3022 }
3023
3024 static int
3025 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
3026 uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
3027 {
3028 uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
3029 uint32_t v;
3030 uint32_t q;
3031
3032 queue_size = min_t(uint32_t, queue_size,
3033 feat->max_queues.max_cq_depth);
3034 queue_size = min_t(uint32_t, queue_size,
3035 feat->max_queues.max_sq_depth);
3036
3037 /* round down to the nearest power of 2 */
3038 v = queue_size;
3039 while (v != 0) {
3040 if (powerof2(queue_size) != 0)
3041 break;
3042 v /= 2;
3043 q = rounddown2(queue_size, v);
3044 if (q != 0) {
3045 queue_size = q;
3046 break;
3047 }
3048 }
3049
3050 if (unlikely(queue_size == 0)) {
3051 device_printf(adapter->pdev, "Invalid queue size\n");
3052 return (ENA_COM_FAULT);
3053 }
3054
3055 *max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3056 feat->max_queues.max_packet_tx_descs);
3057 *max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3058 feat->max_queues.max_packet_rx_descs);
3059
3060 return (queue_size);
3061 }
3062
3063 #if 0
3064 static int
3065 ena_rss_init_default(struct ena_adapter *adapter)
3066 {
3067 struct ena_com_dev *ena_dev = adapter->ena_dev;
3068 device_t dev = adapter->pdev;
3069 int qid, rc, i;
3070
3071 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3072 if (unlikely(rc != 0)) {
3073 device_printf(dev, "Cannot init indirect table\n");
3074 return (rc);
3075 }
3076
3077 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3078 #ifdef RSS
3079 qid = rss_get_indirection_to_bucket(i);
3080 qid = qid % adapter->num_queues;
3081 #else
3082 qid = i % adapter->num_queues;
3083 #endif
3084 rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3085 ENA_IO_RXQ_IDX(qid));
3086 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3087 device_printf(dev, "Cannot fill indirect table\n");
3088 goto err_rss_destroy;
3089 }
3090 }
3091
3092 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
3093 ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
3094 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3095 device_printf(dev, "Cannot fill hash function\n");
3096 goto err_rss_destroy;
3097 }
3098
3099 rc = ena_com_set_default_hash_ctrl(ena_dev);
3100 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3101 device_printf(dev, "Cannot fill hash control\n");
3102 goto err_rss_destroy;
3103 }
3104
3105 return (0);
3106
3107 err_rss_destroy:
3108 ena_com_rss_destroy(ena_dev);
3109 return (rc);
3110 }
3111
3112 static void
3113 ena_rss_init_default_deferred(void *arg)
3114 {
3115 struct ena_adapter *adapter;
3116 devclass_t dc;
3117 int max;
3118 int rc;
3119
3120 dc = devclass_find("ena");
3121 if (unlikely(dc == NULL)) {
3122 ena_trace(ENA_ALERT, "No devclass ena\n");
3123 return;
3124 }
3125
3126 max = devclass_get_maxunit(dc);
3127 while (max-- >= 0) {
3128 adapter = devclass_get_softc(dc, max);
3129 if (adapter != NULL) {
3130 rc = ena_rss_init_default(adapter);
3131 adapter->rss_support = true;
3132 if (unlikely(rc != 0)) {
3133 device_printf(adapter->pdev,
3134 "WARNING: RSS was not properly initialized,"
3135 " it will affect bandwidth\n");
3136 adapter->rss_support = false;
3137 }
3138 }
3139 }
3140 }
3141 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL);
3142 #endif
3143
3144 static void
3145 ena_config_host_info(struct ena_com_dev *ena_dev)
3146 {
3147 struct ena_admin_host_info *host_info;
3148 int rc;
3149
3150 /* Allocate only the host info */
3151 rc = ena_com_allocate_host_info(ena_dev);
3152 if (unlikely(rc != 0)) {
3153 ena_trace(ENA_ALERT, "Cannot allocate host info\n");
3154 return;
3155 }
3156
3157 host_info = ena_dev->host_attr.host_info;
3158
3159 host_info->os_type = ENA_ADMIN_OS_FREEBSD;
3160 host_info->kernel_ver = osreldate;
3161
3162 snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
3163 "%d", osreldate);
3164 host_info->os_dist = 0;
3165 strncpy(host_info->os_dist_str, osrelease,
3166 sizeof(host_info->os_dist_str) - 1);
3167
3168 host_info->driver_version =
3169 (DRV_MODULE_VER_MAJOR) |
3170 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3171 (DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
3172
3173 rc = ena_com_set_host_attributes(ena_dev);
3174 if (unlikely(rc != 0)) {
3175 if (rc == EOPNOTSUPP)
3176 ena_trace(ENA_WARNING, "Cannot set host attributes\n");
3177 else
3178 ena_trace(ENA_ALERT, "Cannot set host attributes\n");
3179
3180 goto err;
3181 }
3182
3183 return;
3184
3185 err:
3186 ena_com_delete_host_info(ena_dev);
3187 }
3188
3189 static int
3190 ena_device_init(struct ena_adapter *adapter, device_t pdev,
3191 struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
3192 {
3193 struct ena_com_dev* ena_dev = adapter->ena_dev;
3194 bool readless_supported;
3195 uint32_t aenq_groups;
3196 int dma_width;
3197 int rc;
3198
3199 rc = ena_com_mmio_reg_read_request_init(ena_dev);
3200 if (unlikely(rc != 0)) {
3201 device_printf(pdev, "failed to init mmio read less\n");
3202 return (rc);
3203 }
3204
3205 /*
3206 * The PCIe configuration space revision id indicate if mmio reg
3207 * read is disabled
3208 */
3209 const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
3210 readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
3211 ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3212
3213 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3214 if (unlikely(rc != 0)) {
3215 device_printf(pdev, "Can not reset device\n");
3216 goto err_mmio_read_less;
3217 }
3218
3219 rc = ena_com_validate_version(ena_dev);
3220 if (unlikely(rc != 0)) {
3221 device_printf(pdev, "device version is too low\n");
3222 goto err_mmio_read_less;
3223 }
3224
3225 dma_width = ena_com_get_dma_width(ena_dev);
3226 if (unlikely(dma_width < 0)) {
3227 device_printf(pdev, "Invalid dma width value %d", dma_width);
3228 rc = dma_width;
3229 goto err_mmio_read_less;
3230 }
3231 adapter->dma_width = dma_width;
3232
3233 /* ENA admin level init */
3234 rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
3235 if (unlikely(rc != 0)) {
3236 device_printf(pdev,
3237 "Can not initialize ena admin queue with device\n");
3238 goto err_mmio_read_less;
3239 }
3240
3241 /*
3242 * To enable the msix interrupts the driver needs to know the number
3243 * of queues. So the driver uses polling mode to retrieve this
3244 * information
3245 */
3246 ena_com_set_admin_polling_mode(ena_dev, true);
3247
3248 ena_config_host_info(ena_dev);
3249
3250 /* Get Device Attributes */
3251 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3252 if (unlikely(rc != 0)) {
3253 device_printf(pdev,
3254 "Cannot get attribute for ena device rc: %d\n", rc);
3255 goto err_admin_init;
3256 }
3257
3258 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
3259
3260 aenq_groups &= get_feat_ctx->aenq.supported_groups;
3261 rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3262 if (unlikely(rc != 0)) {
3263 device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
3264 goto err_admin_init;
3265 }
3266
3267 *wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3268
3269 return (0);
3270
3271 err_admin_init:
3272 ena_com_delete_host_info(ena_dev);
3273 ena_com_admin_destroy(ena_dev);
3274 err_mmio_read_less:
3275 ena_com_mmio_reg_read_request_destroy(ena_dev);
3276
3277 return (rc);
3278 }
3279
3280 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
3281 int io_vectors)
3282 {
3283 struct ena_com_dev *ena_dev = adapter->ena_dev;
3284 int rc;
3285
3286 rc = ena_enable_msix(adapter);
3287 if (unlikely(rc != 0)) {
3288 device_printf(adapter->pdev, "Error with MSI-X enablement\n");
3289 return (rc);
3290 }
3291
3292 rc = ena_request_mgmnt_irq(adapter);
3293 if (unlikely(rc != 0)) {
3294 device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
3295 goto err_disable_msix;
3296 }
3297
3298 ena_com_set_admin_polling_mode(ena_dev, false);
3299
3300 ena_com_admin_aenq_enable(ena_dev);
3301
3302 return (0);
3303
3304 err_disable_msix:
3305 ena_disable_msix(adapter);
3306
3307 return (rc);
3308 }
3309
3310 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
3311 static void ena_keep_alive_wd(void *adapter_data,
3312 struct ena_admin_aenq_entry *aenq_e)
3313 {
3314 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3315 struct ena_admin_aenq_keep_alive_desc *desc;
3316 sbintime_t stime;
3317 uint64_t rx_drops;
3318
3319 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3320
3321 rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3322 counter_u64_zero(adapter->hw_stats.rx_drops);
3323 counter_u64_add(adapter->hw_stats.rx_drops, rx_drops);
3324
3325 stime = getsbinuptime();
3326 (void) atomic_swap_64(&adapter->keep_alive_timestamp, stime);
3327 }
3328
3329 /* Check for keep alive expiration */
3330 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3331 {
3332 sbintime_t timestamp, time;
3333
3334 if (adapter->wd_active == 0)
3335 return;
3336
3337 if (likely(adapter->keep_alive_timeout == 0))
3338 return;
3339
3340 /* FreeBSD uses atomic_load_acq_64() in place of the membar + read */
3341 membar_sync();
3342 timestamp = adapter->keep_alive_timestamp;
3343
3344 time = getsbinuptime() - timestamp;
3345 if (unlikely(time > adapter->keep_alive_timeout)) {
3346 device_printf(adapter->pdev,
3347 "Keep alive watchdog timeout.\n");
3348 counter_u64_add(adapter->dev_stats.wd_expired, 1);
3349 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3350 adapter->trigger_reset = true;
3351 }
3352 }
3353
3354 /* Check if admin queue is enabled */
3355 static void check_for_admin_com_state(struct ena_adapter *adapter)
3356 {
3357 if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
3358 false)) {
3359 device_printf(adapter->pdev,
3360 "ENA admin queue is not in running state!\n");
3361 counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
3362 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3363 adapter->trigger_reset = true;
3364 }
3365 }
3366
3367 static int
3368 check_missing_comp_in_queue(struct ena_adapter *adapter,
3369 struct ena_ring *tx_ring)
3370 {
3371 struct bintime curtime, time;
3372 struct ena_tx_buffer *tx_buf;
3373 uint32_t missed_tx = 0;
3374 int i;
3375
3376 getbinuptime(&curtime);
3377
3378 for (i = 0; i < tx_ring->ring_size; i++) {
3379 tx_buf = &tx_ring->tx_buffer_info[i];
3380
3381 if (bintime_isset(&tx_buf->timestamp) == 0)
3382 continue;
3383
3384 time = curtime;
3385 bintime_sub(&time, &tx_buf->timestamp);
3386
3387 /* Check again if packet is still waiting */
3388 if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
3389
3390 if (!tx_buf->print_once)
3391 ena_trace(ENA_WARNING, "Found a Tx that wasn't "
3392 "completed on time, qid %d, index %d.\n",
3393 tx_ring->qid, i);
3394
3395 tx_buf->print_once = true;
3396 missed_tx++;
3397 counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
3398
3399 if (unlikely(missed_tx >
3400 adapter->missing_tx_threshold)) {
3401 device_printf(adapter->pdev,
3402 "The number of lost tx completion "
3403 "is above the threshold (%d > %d). "
3404 "Reset the device\n",
3405 missed_tx, adapter->missing_tx_threshold);
3406 adapter->reset_reason =
3407 ENA_REGS_RESET_MISS_TX_CMPL;
3408 adapter->trigger_reset = true;
3409 return (EIO);
3410 }
3411 }
3412 }
3413
3414 return (0);
3415 }
3416
3417 /*
3418 * Check for TX which were not completed on time.
3419 * Timeout is defined by "missing_tx_timeout".
3420 * Reset will be performed if number of incompleted
3421 * transactions exceeds "missing_tx_threshold".
3422 */
3423 static void
3424 check_for_missing_tx_completions(struct ena_adapter *adapter)
3425 {
3426 struct ena_ring *tx_ring;
3427 int i, budget, rc;
3428
3429 /* Make sure the driver doesn't turn the device in other process */
3430 rmb();
3431
3432 if (!adapter->up)
3433 return;
3434
3435 if (adapter->trigger_reset)
3436 return;
3437
3438 if (adapter->missing_tx_timeout == 0)
3439 return;
3440
3441 budget = adapter->missing_tx_max_queues;
3442
3443 for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
3444 tx_ring = &adapter->tx_ring[i];
3445
3446 rc = check_missing_comp_in_queue(adapter, tx_ring);
3447 if (unlikely(rc != 0))
3448 return;
3449
3450 budget--;
3451 if (budget == 0) {
3452 i++;
3453 break;
3454 }
3455 }
3456
3457 adapter->next_monitored_tx_qid = i % adapter->num_queues;
3458 }
3459
3460 /* trigger deferred rx cleanup after 2 consecutive detections */
3461 #define EMPTY_RX_REFILL 2
3462 /* For the rare case where the device runs out of Rx descriptors and the
3463 * msix handler failed to refill new Rx descriptors (due to a lack of memory
3464 * for example).
3465 * This case will lead to a deadlock:
3466 * The device won't send interrupts since all the new Rx packets will be dropped
3467 * The msix handler won't allocate new Rx descriptors so the device won't be
3468 * able to send new packets.
3469 *
3470 * When such a situation is detected - execute rx cleanup task in another thread
3471 */
3472 static void
3473 check_for_empty_rx_ring(struct ena_adapter *adapter)
3474 {
3475 struct ena_ring *rx_ring;
3476 int i, refill_required;
3477
3478 if (!adapter->up)
3479 return;
3480
3481 if (adapter->trigger_reset)
3482 return;
3483
3484 for (i = 0; i < adapter->num_queues; i++) {
3485 rx_ring = &adapter->rx_ring[i];
3486
3487 refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
3488 if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3489 rx_ring->empty_rx_queue++;
3490
3491 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
3492 counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
3493 1);
3494
3495 device_printf(adapter->pdev,
3496 "trigger refill for ring %d\n", i);
3497
3498 if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
3499 workqueue_enqueue(rx_ring->cmpl_tq,
3500 &rx_ring->cmpl_task, curcpu());
3501 rx_ring->empty_rx_queue = 0;
3502 }
3503 } else {
3504 rx_ring->empty_rx_queue = 0;
3505 }
3506 }
3507 }
3508
3509 static void
3510 ena_timer_service(void *data)
3511 {
3512 struct ena_adapter *adapter = (struct ena_adapter *)data;
3513 struct ena_admin_host_info *host_info =
3514 adapter->ena_dev->host_attr.host_info;
3515
3516 check_for_missing_keep_alive(adapter);
3517
3518 check_for_admin_com_state(adapter);
3519
3520 check_for_missing_tx_completions(adapter);
3521
3522 check_for_empty_rx_ring(adapter);
3523
3524 if (host_info != NULL)
3525 ena_update_host_info(host_info, adapter->ifp);
3526
3527 if (unlikely(adapter->trigger_reset)) {
3528 device_printf(adapter->pdev, "Trigger reset is on\n");
3529 workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
3530 curcpu());
3531 return;
3532 }
3533
3534 /*
3535 * Schedule another timeout one second from now.
3536 */
3537 callout_schedule(&adapter->timer_service, hz);
3538 }
3539
3540 static void
3541 ena_reset_task(struct work *wk, void *arg)
3542 {
3543 struct ena_com_dev_get_features_ctx get_feat_ctx;
3544 struct ena_adapter *adapter = (struct ena_adapter *)arg;
3545 struct ena_com_dev *ena_dev = adapter->ena_dev;
3546 bool dev_up;
3547 int rc;
3548
3549 if (unlikely(!adapter->trigger_reset)) {
3550 device_printf(adapter->pdev,
3551 "device reset scheduled but trigger_reset is off\n");
3552 return;
3553 }
3554
3555 rw_enter(&adapter->ioctl_sx, RW_WRITER);
3556
3557 callout_halt(&adapter->timer_service, &adapter->global_mtx);
3558
3559 dev_up = adapter->up;
3560
3561 ena_com_set_admin_running_state(ena_dev, false);
3562 ena_down(adapter);
3563 ena_free_mgmnt_irq(adapter);
3564 ena_disable_msix(adapter);
3565 ena_com_abort_admin_commands(ena_dev);
3566 ena_com_wait_for_abort_completion(ena_dev);
3567 ena_com_admin_destroy(ena_dev);
3568 ena_com_mmio_reg_read_request_destroy(ena_dev);
3569
3570 adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3571 adapter->trigger_reset = false;
3572
3573 /* Finished destroy part. Restart the device */
3574 rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
3575 &adapter->wd_active);
3576 if (unlikely(rc != 0)) {
3577 device_printf(adapter->pdev,
3578 "ENA device init failed! (err: %d)\n", rc);
3579 goto err_dev_free;
3580 }
3581
3582 /* XXX dealloc and realloc MSI-X, probably a waste */
3583 rc = ena_enable_msix_and_set_admin_interrupts(adapter,
3584 adapter->num_queues);
3585 if (unlikely(rc != 0)) {
3586 device_printf(adapter->pdev, "Enable MSI-X failed\n");
3587 goto err_com_free;
3588 }
3589
3590 /* If the interface was up before the reset bring it up */
3591 if (dev_up) {
3592 rc = ena_up(adapter);
3593 if (unlikely(rc != 0)) {
3594 device_printf(adapter->pdev,
3595 "Failed to create I/O queues\n");
3596 goto err_msix_free;
3597 }
3598 }
3599
3600 callout_reset(&adapter->timer_service, hz,
3601 ena_timer_service, (void *)adapter);
3602
3603 rw_exit(&adapter->ioctl_sx);
3604
3605 return;
3606
3607 err_msix_free:
3608 ena_free_mgmnt_irq(adapter);
3609 ena_disable_msix(adapter);
3610 err_com_free:
3611 ena_com_admin_destroy(ena_dev);
3612 err_dev_free:
3613 device_printf(adapter->pdev, "ENA reset failed!\n");
3614 adapter->running = false;
3615 rw_exit(&adapter->ioctl_sx);
3616 }
3617
3618 /**
3619 * ena_attach - Device Initialization Routine
3620 * @pdev: device information struct
3621 *
3622 * Returns 0 on success, otherwise on failure.
3623 *
3624 * ena_attach initializes an adapter identified by a device structure.
3625 * The OS initialization, configuring of the adapter private structure,
3626 * and a hardware reset occur.
3627 **/
3628 static void
3629 ena_attach(device_t parent, device_t self, void *aux)
3630 {
3631 struct pci_attach_args *pa = aux;
3632 struct ena_com_dev_get_features_ctx get_feat_ctx;
3633 static int version_printed;
3634 struct ena_adapter *adapter = device_private(self);
3635 struct ena_com_dev *ena_dev = NULL;
3636 uint16_t tx_sgl_size = 0;
3637 uint16_t rx_sgl_size = 0;
3638 pcireg_t reg;
3639 int io_queue_num;
3640 int queue_size;
3641 int rc;
3642
3643 adapter->pdev = self;
3644 adapter->ifp = &adapter->sc_ec.ec_if;
3645 adapter->sc_pa = *pa; /* used after attach for adapter reset too */
3646
3647 if (pci_dma64_available(pa))
3648 adapter->sc_dmat = pa->pa_dmat64;
3649 else
3650 adapter->sc_dmat = pa->pa_dmat;
3651
3652 pci_aprint_devinfo(pa, NULL);
3653
3654 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
3655 if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
3656 reg |= PCI_COMMAND_MASTER_ENABLE;
3657 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
3658 }
3659
3660 mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_NET);
3661 rw_init(&adapter->ioctl_sx);
3662
3663 /* Set up the timer service */
3664 adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
3665 adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
3666 adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
3667 adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
3668
3669 if (version_printed++ == 0)
3670 device_printf(parent, "%s\n", ena_version);
3671
3672 rc = ena_allocate_pci_resources(pa, adapter);
3673 if (unlikely(rc != 0)) {
3674 device_printf(parent, "PCI resource allocation failed!\n");
3675 ena_free_pci_resources(adapter);
3676 return;
3677 }
3678
3679 /* Allocate memory for ena_dev structure */
3680 ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
3681 M_WAITOK | M_ZERO);
3682
3683 adapter->ena_dev = ena_dev;
3684 ena_dev->dmadev = self;
3685 ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
3686 M_WAITOK | M_ZERO);
3687
3688 /* Store register resources */
3689 ((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
3690 ((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
3691
3692 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3693
3694 /* Device initialization */
3695 rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
3696 if (unlikely(rc != 0)) {
3697 device_printf(self, "ENA device init failed! (err: %d)\n", rc);
3698 rc = ENXIO;
3699 goto err_bus_free;
3700 }
3701
3702 adapter->keep_alive_timestamp = getsbinuptime();
3703
3704 adapter->tx_offload_cap = get_feat_ctx.offload.tx;
3705
3706 /* Set for sure that interface is not up */
3707 adapter->up = false;
3708
3709 memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
3710 ETHER_ADDR_LEN);
3711
3712 /* calculate IO queue number to create */
3713 io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
3714
3715 ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
3716 io_queue_num);
3717 adapter->num_queues = io_queue_num;
3718
3719 adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
3720
3721 /* calculatre ring sizes */
3722 queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
3723 &rx_sgl_size, &get_feat_ctx);
3724 if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
3725 rc = ENA_COM_FAULT;
3726 goto err_com_free;
3727 }
3728
3729 adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3730
3731 adapter->tx_ring_size = queue_size;
3732 adapter->rx_ring_size = queue_size;
3733
3734 adapter->max_tx_sgl_size = tx_sgl_size;
3735 adapter->max_rx_sgl_size = rx_sgl_size;
3736
3737 #if 0
3738 /* set up dma tags for rx and tx buffers */
3739 rc = ena_setup_tx_dma_tag(adapter);
3740 if (unlikely(rc != 0)) {
3741 device_printf(self, "Failed to create TX DMA tag\n");
3742 goto err_com_free;
3743 }
3744
3745 rc = ena_setup_rx_dma_tag(adapter);
3746 if (unlikely(rc != 0)) {
3747 device_printf(self, "Failed to create RX DMA tag\n");
3748 goto err_tx_tag_free;
3749 }
3750 #endif
3751
3752 /* initialize rings basic information */
3753 device_printf(self, "initalize %d io queues\n", io_queue_num);
3754 ena_init_io_rings(adapter);
3755
3756 /* setup network interface */
3757 rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
3758 if (unlikely(rc != 0)) {
3759 device_printf(self, "Error with network interface setup\n");
3760 goto err_io_free;
3761 }
3762
3763 rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
3764 if (unlikely(rc != 0)) {
3765 device_printf(self,
3766 "Failed to enable and set the admin interrupts\n");
3767 goto err_ifp_free;
3768 }
3769
3770 callout_init(&adapter->timer_service, CALLOUT_MPSAFE);
3771
3772 /* Initialize reset task queue */
3773 rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
3774 ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
3775 if (unlikely(rc != 0)) {
3776 ena_trace(ENA_ALERT,
3777 "Unable to create workqueue for reset task\n");
3778 goto err_ifp_free;
3779 }
3780
3781 /* Initialize statistics */
3782 ena_alloc_counters_dev(&adapter->dev_stats, io_queue_num);
3783 ena_alloc_counters_hwstats(&adapter->hw_stats, io_queue_num);
3784 #if 0
3785 ena_sysctl_add_nodes(adapter);
3786 #endif
3787
3788 /* Tell the stack that the interface is not active */
3789 if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
3790
3791 adapter->running = true;
3792 return;
3793
3794 err_ifp_free:
3795 if_detach(adapter->ifp);
3796 if_free(adapter->ifp);
3797 err_io_free:
3798 ena_free_all_io_rings_resources(adapter);
3799 #if 0
3800 ena_free_rx_dma_tag(adapter);
3801 err_tx_tag_free:
3802 ena_free_tx_dma_tag(adapter);
3803 #endif
3804 err_com_free:
3805 ena_com_admin_destroy(ena_dev);
3806 ena_com_delete_host_info(ena_dev);
3807 ena_com_mmio_reg_read_request_destroy(ena_dev);
3808 err_bus_free:
3809 free(ena_dev->bus, M_DEVBUF);
3810 free(ena_dev, M_DEVBUF);
3811 ena_free_pci_resources(adapter);
3812 }
3813
3814 /**
3815 * ena_detach - Device Removal Routine
3816 * @pdev: device information struct
3817 *
3818 * ena_detach is called by the device subsystem to alert the driver
3819 * that it should release a PCI device.
3820 **/
3821 static int
3822 ena_detach(device_t pdev, int flags)
3823 {
3824 struct ena_adapter *adapter = device_private(pdev);
3825 struct ena_com_dev *ena_dev = adapter->ena_dev;
3826 #if 0
3827 int rc;
3828 #endif
3829
3830 /* Make sure VLANS are not using driver */
3831 if (VLAN_ATTACHED(&adapter->sc_ec)) {
3832 device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
3833 return (EBUSY);
3834 }
3835
3836 /* Free reset task and callout */
3837 callout_halt(&adapter->timer_service, &adapter->global_mtx);
3838 callout_destroy(&adapter->timer_service);
3839 workqueue_wait(adapter->reset_tq, &adapter->reset_task);
3840 workqueue_destroy(adapter->reset_tq);
3841 adapter->reset_tq = NULL;
3842
3843 rw_enter(&adapter->ioctl_sx, RW_WRITER);
3844 ena_down(adapter);
3845 rw_exit(&adapter->ioctl_sx);
3846
3847 if (adapter->ifp != NULL) {
3848 ether_ifdetach(adapter->ifp);
3849 if_free(adapter->ifp);
3850 }
3851
3852 ena_free_all_io_rings_resources(adapter);
3853
3854 ena_free_counters((struct evcnt *)&adapter->hw_stats,
3855 sizeof(struct ena_hw_stats));
3856 ena_free_counters((struct evcnt *)&adapter->dev_stats,
3857 sizeof(struct ena_stats_dev));
3858
3859 if (likely(adapter->rss_support))
3860 ena_com_rss_destroy(ena_dev);
3861
3862 #if 0
3863 rc = ena_free_rx_dma_tag(adapter);
3864 if (unlikely(rc != 0))
3865 device_printf(adapter->pdev,
3866 "Unmapped RX DMA tag associations\n");
3867
3868 rc = ena_free_tx_dma_tag(adapter);
3869 if (unlikely(rc != 0))
3870 device_printf(adapter->pdev,
3871 "Unmapped TX DMA tag associations\n");
3872 #endif
3873
3874 /* Reset the device only if the device is running. */
3875 if (adapter->running)
3876 ena_com_dev_reset(ena_dev, adapter->reset_reason);
3877
3878 ena_com_delete_host_info(ena_dev);
3879
3880 ena_free_irqs(adapter);
3881
3882 ena_com_abort_admin_commands(ena_dev);
3883
3884 ena_com_wait_for_abort_completion(ena_dev);
3885
3886 ena_com_admin_destroy(ena_dev);
3887
3888 ena_com_mmio_reg_read_request_destroy(ena_dev);
3889
3890 ena_free_pci_resources(adapter);
3891
3892 mutex_destroy(&adapter->global_mtx);
3893 rw_destroy(&adapter->ioctl_sx);
3894
3895 if (ena_dev->bus != NULL)
3896 free(ena_dev->bus, M_DEVBUF);
3897
3898 if (ena_dev != NULL)
3899 free(ena_dev, M_DEVBUF);
3900
3901 return 0;
3902 }
3903
3904 /******************************************************************************
3905 ******************************** AENQ Handlers *******************************
3906 *****************************************************************************/
3907 /**
3908 * ena_update_on_link_change:
3909 * Notify the network interface about the change in link status
3910 **/
3911 static void
3912 ena_update_on_link_change(void *adapter_data,
3913 struct ena_admin_aenq_entry *aenq_e)
3914 {
3915 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3916 struct ena_admin_aenq_link_change_desc *aenq_desc;
3917 int status;
3918 struct ifnet *ifp;
3919
3920 aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3921 ifp = adapter->ifp;
3922 status = aenq_desc->flags &
3923 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
3924
3925 if (status != 0) {
3926 device_printf(adapter->pdev, "link is UP\n");
3927 if_link_state_change(ifp, LINK_STATE_UP);
3928 } else if (status == 0) {
3929 device_printf(adapter->pdev, "link is DOWN\n");
3930 if_link_state_change(ifp, LINK_STATE_DOWN);
3931 } else {
3932 device_printf(adapter->pdev, "invalid value recvd\n");
3933 BUG();
3934 }
3935
3936 adapter->link_status = status;
3937 }
3938
3939 /**
3940 * This handler will called for unknown event group or unimplemented handlers
3941 **/
3942 static void
3943 unimplemented_aenq_handler(void *data,
3944 struct ena_admin_aenq_entry *aenq_e)
3945 {
3946 return;
3947 }
3948
3949 static struct ena_aenq_handlers aenq_handlers = {
3950 .handlers = {
3951 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3952 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
3953 },
3954 .unimplemented_handler = unimplemented_aenq_handler
3955 };
3956
3957 #ifdef __FreeBSD__
3958 /*********************************************************************
3959 * FreeBSD Device Interface Entry Points
3960 *********************************************************************/
3961
3962 static device_method_t ena_methods[] = {
3963 /* Device interface */
3964 DEVMETHOD(device_probe, ena_probe),
3965 DEVMETHOD(device_attach, ena_attach),
3966 DEVMETHOD(device_detach, ena_detach),
3967 DEVMETHOD_END
3968 };
3969
3970 static driver_t ena_driver = {
3971 "ena", ena_methods, sizeof(struct ena_adapter),
3972 };
3973
3974 devclass_t ena_devclass;
3975 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
3976 MODULE_DEPEND(ena, pci, 1, 1, 1);
3977 MODULE_DEPEND(ena, ether, 1, 1, 1);
3978
3979 /*********************************************************************/
3980 #endif /* __FreeBSD__ */
3981
3982 #ifdef __NetBSD__
3983 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
3984 ena_detach, NULL);
3985 #endif /* __NetBSD */
3986