Home | History | Annotate | Line # | Download | only in pci
if_ena.c revision 1.15
      1 /*-
      2  * BSD LICENSE
      3  *
      4  * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  *
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 #include <sys/cdefs.h>
     31 #if 0
     32 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
     33 #endif
     34 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.15 2019/05/29 10:07:29 msaitoh Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/bus.h>
     39 #include <sys/endian.h>
     40 #include <sys/kernel.h>
     41 #include <sys/kthread.h>
     42 #include <sys/malloc.h>
     43 #include <sys/mbuf.h>
     44 #include <sys/module.h>
     45 #include <sys/socket.h>
     46 #include <sys/sockio.h>
     47 #include <sys/sysctl.h>
     48 #include <sys/time.h>
     49 #include <sys/workqueue.h>
     50 #include <sys/callout.h>
     51 #include <sys/interrupt.h>
     52 #include <sys/cpu.h>
     53 
     54 #include <net/if_ether.h>
     55 #include <net/if_vlanvar.h>
     56 
     57 #include <dev/pci/if_enavar.h>
     58 
     59 /*********************************************************
     60  *  Function prototypes
     61  *********************************************************/
     62 static int	ena_probe(device_t, cfdata_t, void *);
     63 static int	ena_intr_msix_mgmnt(void *);
     64 static int	ena_allocate_pci_resources(struct pci_attach_args *,
     65 		    struct ena_adapter *);
     66 static void	ena_free_pci_resources(struct ena_adapter *);
     67 static int	ena_change_mtu(struct ifnet *, int);
     68 static void	ena_init_io_rings_common(struct ena_adapter *,
     69     struct ena_ring *, uint16_t);
     70 static void	ena_init_io_rings(struct ena_adapter *);
     71 static void	ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
     72 static void	ena_free_all_io_rings_resources(struct ena_adapter *);
     73 #if 0
     74 static int	ena_setup_tx_dma_tag(struct ena_adapter *);
     75 static int	ena_free_tx_dma_tag(struct ena_adapter *);
     76 static int	ena_setup_rx_dma_tag(struct ena_adapter *);
     77 static int	ena_free_rx_dma_tag(struct ena_adapter *);
     78 #endif
     79 static int	ena_setup_tx_resources(struct ena_adapter *, int);
     80 static void	ena_free_tx_resources(struct ena_adapter *, int);
     81 static int	ena_setup_all_tx_resources(struct ena_adapter *);
     82 static void	ena_free_all_tx_resources(struct ena_adapter *);
     83 static inline int validate_rx_req_id(struct ena_ring *, uint16_t);
     84 static int	ena_setup_rx_resources(struct ena_adapter *, unsigned int);
     85 static void	ena_free_rx_resources(struct ena_adapter *, unsigned int);
     86 static int	ena_setup_all_rx_resources(struct ena_adapter *);
     87 static void	ena_free_all_rx_resources(struct ena_adapter *);
     88 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *,
     89     struct ena_rx_buffer *);
     90 static void	ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
     91     struct ena_rx_buffer *);
     92 static int	ena_refill_rx_bufs(struct ena_ring *, uint32_t);
     93 static void	ena_free_rx_bufs(struct ena_adapter *, unsigned int);
     94 static void	ena_refill_all_rx_bufs(struct ena_adapter *);
     95 static void	ena_free_all_rx_bufs(struct ena_adapter *);
     96 static void	ena_free_tx_bufs(struct ena_adapter *, unsigned int);
     97 static void	ena_free_all_tx_bufs(struct ena_adapter *);
     98 static void	ena_destroy_all_tx_queues(struct ena_adapter *);
     99 static void	ena_destroy_all_rx_queues(struct ena_adapter *);
    100 static void	ena_destroy_all_io_queues(struct ena_adapter *);
    101 static int	ena_create_io_queues(struct ena_adapter *);
    102 static int	ena_tx_cleanup(struct ena_ring *);
    103 static void	ena_deferred_rx_cleanup(struct work *, void *);
    104 static int	ena_rx_cleanup(struct ena_ring *);
    105 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
    106 #if 0
    107 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
    108     struct mbuf *);
    109 #endif
    110 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
    111     struct ena_com_rx_ctx *, uint16_t *);
    112 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
    113     struct mbuf *);
    114 static int	ena_handle_msix(void *);
    115 static int	ena_enable_msix(struct ena_adapter *);
    116 static int	ena_request_mgmnt_irq(struct ena_adapter *);
    117 static int	ena_request_io_irq(struct ena_adapter *);
    118 static void	ena_free_mgmnt_irq(struct ena_adapter *);
    119 static void	ena_free_io_irq(struct ena_adapter *);
    120 static void	ena_free_irqs(struct ena_adapter*);
    121 static void	ena_disable_msix(struct ena_adapter *);
    122 static void	ena_unmask_all_io_irqs(struct ena_adapter *);
    123 static int	ena_rss_configure(struct ena_adapter *);
    124 static int	ena_up_complete(struct ena_adapter *);
    125 static int	ena_up(struct ena_adapter *);
    126 static void	ena_down(struct ena_adapter *);
    127 #if 0
    128 static uint64_t	ena_get_counter(struct ifnet *, ift_counter);
    129 #endif
    130 static int	ena_media_change(struct ifnet *);
    131 static void	ena_media_status(struct ifnet *, struct ifmediareq *);
    132 static int	ena_init(struct ifnet *);
    133 static int	ena_ioctl(struct ifnet *, u_long, void *);
    134 static int	ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
    135 static void	ena_update_host_info(struct ena_admin_host_info *, struct ifnet *);
    136 static void	ena_update_hwassist(struct ena_adapter *);
    137 static int	ena_setup_ifnet(device_t, struct ena_adapter *,
    138     struct ena_com_dev_get_features_ctx *);
    139 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
    140 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
    141     struct mbuf **mbuf);
    142 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
    143 static void	ena_start_xmit(struct ena_ring *);
    144 static int	ena_mq_start(struct ifnet *, struct mbuf *);
    145 static void	ena_deferred_mq_start(struct work *, void *);
    146 #if 0
    147 static void	ena_qflush(struct ifnet *);
    148 #endif
    149 static int	ena_calc_io_queue_num(struct pci_attach_args *,
    150     struct ena_adapter *, struct ena_com_dev_get_features_ctx *);
    151 static int	ena_calc_queue_size(struct ena_adapter *, uint16_t *,
    152     uint16_t *, struct ena_com_dev_get_features_ctx *);
    153 #if 0
    154 static int	ena_rss_init_default(struct ena_adapter *);
    155 static void	ena_rss_init_default_deferred(void *);
    156 #endif
    157 static void	ena_config_host_info(struct ena_com_dev *);
    158 static void	ena_attach(device_t, device_t, void *);
    159 static int	ena_detach(device_t, int);
    160 static int	ena_device_init(struct ena_adapter *, device_t,
    161     struct ena_com_dev_get_features_ctx *, int *);
    162 static int	ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
    163     int);
    164 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *);
    165 static void	unimplemented_aenq_handler(void *,
    166     struct ena_admin_aenq_entry *);
    167 static void	ena_timer_service(void *);
    168 
    169 static const char ena_version[] =
    170     DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
    171 
    172 #if 0
    173 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
    174 #endif
    175 
    176 /*
    177  * Tuneable number of buffers in the buf-ring (drbr)
    178  */
    179 static int ena_buf_ring_size = 4096;
    180 #if 0
    181 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
    182     &ena_buf_ring_size, 0, "Size of the bufring");
    183 #endif
    184 
    185 /*
    186  * Logging level for changing verbosity of the output
    187  */
    188 int ena_log_level = ENA_ALERT | ENA_WARNING;
    189 #if 0
    190 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
    191     &ena_log_level, 0, "Logging level indicating verbosity of the logs");
    192 #endif
    193 
    194 static const ena_vendor_info_t ena_vendor_info_array[] = {
    195     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
    196     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
    197     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
    198     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
    199     /* Last entry */
    200     { 0, 0, 0 }
    201 };
    202 
    203 /*
    204  * Contains pointers to event handlers, e.g. link state chage.
    205  */
    206 static struct ena_aenq_handlers aenq_handlers;
    207 
    208 int
    209 ena_dma_alloc(device_t dmadev, bus_size_t size,
    210     ena_mem_handle_t *dma , int mapflags)
    211 {
    212 	struct ena_adapter *adapter = device_private(dmadev);
    213 	uint32_t maxsize;
    214 	bus_dma_segment_t seg;
    215 	int error, nsegs;
    216 
    217 	maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
    218 
    219 #if 0
    220 	/* XXX what is this needed for ? */
    221 	dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
    222 	if (unlikely(dma_space_addr == 0))
    223 		dma_space_addr = BUS_SPACE_MAXADDR;
    224 #endif
    225 
    226 	dma->tag = adapter->sc_dmat;
    227 
    228         if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
    229             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
    230 		ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
    231 		    (uintmax_t)maxsize, error);
    232                 goto fail_create;
    233 	}
    234 
    235 	error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &seg, 1, &nsegs,
    236 	    BUS_DMA_ALLOCNOW);
    237 	if (error) {
    238 		ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
    239 		    (uintmax_t)maxsize, error);
    240 		goto fail_alloc;
    241 	}
    242 
    243 	error = bus_dmamem_map(dma->tag, &seg, nsegs, maxsize,
    244 	    &dma->vaddr, BUS_DMA_COHERENT);
    245 	if (error) {
    246 		ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
    247 		    (uintmax_t)maxsize, error);
    248 		goto fail_map;
    249 	}
    250 	memset(dma->vaddr, 0, maxsize);
    251 
    252 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
    253 	    maxsize, NULL, mapflags);
    254 	if (error) {
    255 		ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
    256 		goto fail_load;
    257 	}
    258 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    259 
    260 	return (0);
    261 
    262 fail_load:
    263 	bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
    264 fail_map:
    265 	bus_dmamem_free(dma->tag, &seg, nsegs);
    266 fail_alloc:
    267 	bus_dmamap_destroy(adapter->sc_dmat, dma->map);
    268 fail_create:
    269 	return (error);
    270 }
    271 
    272 static int
    273 ena_allocate_pci_resources(struct pci_attach_args *pa,
    274     struct ena_adapter *adapter)
    275 {
    276 	bus_size_t size;
    277 
    278 	/*
    279 	 * Map control/status registers.
    280 	*/
    281 	pcireg_t memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
    282 	if (pci_mapreg_map(pa, ENA_REG_BAR, memtype, 0, &adapter->sc_btag,
    283 	    &adapter->sc_bhandle, NULL, &size)) {
    284 		aprint_error(": can't map mem space\n");
    285 		return ENXIO;
    286 	}
    287 
    288 	return (0);
    289 }
    290 
    291 static void
    292 ena_free_pci_resources(struct ena_adapter *adapter)
    293 {
    294 	/* Nothing to do */
    295 }
    296 
    297 static int
    298 ena_probe(device_t parent, cfdata_t match, void *aux)
    299 {
    300 	struct pci_attach_args *pa = aux;
    301 	const ena_vendor_info_t *ent;
    302 
    303 	for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
    304 		ent = &ena_vendor_info_array[i];
    305 
    306 		if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
    307 		    (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
    308 			return 1;
    309 		}
    310 	}
    311 
    312 	return 0;
    313 }
    314 
    315 static int
    316 ena_change_mtu(struct ifnet *ifp, int new_mtu)
    317 {
    318 	struct ena_adapter *adapter = if_getsoftc(ifp);
    319 	int rc;
    320 
    321 	if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
    322 		device_printf(adapter->pdev, "Invalid MTU setting. "
    323 		    "new_mtu: %d max mtu: %d min mtu: %d\n",
    324 		    new_mtu, adapter->max_mtu, ENA_MIN_MTU);
    325 		return (EINVAL);
    326 	}
    327 
    328 	rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
    329 	if (likely(rc == 0)) {
    330 		ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
    331 		if_setmtu(ifp, new_mtu);
    332 	} else {
    333 		device_printf(adapter->pdev, "Failed to set MTU to %d\n",
    334 		    new_mtu);
    335 	}
    336 
    337 	return (rc);
    338 }
    339 
    340 #define EVCNT_INIT(st, f) \
    341 	do {								\
    342 		evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL,	\
    343 		    st->name, #f);					\
    344 	} while (0)
    345 
    346 static inline void
    347 ena_alloc_counters_rx(struct ena_stats_rx *st, int queue)
    348 {
    349 	snprintf(st->name, sizeof(st->name), "ena rxq%d", queue);
    350 
    351 	EVCNT_INIT(st, cnt);
    352 	EVCNT_INIT(st, bytes);
    353 	EVCNT_INIT(st, refil_partial);
    354 	EVCNT_INIT(st, bad_csum);
    355 	EVCNT_INIT(st, mjum_alloc_fail);
    356 	EVCNT_INIT(st, mbuf_alloc_fail);
    357 	EVCNT_INIT(st, dma_mapping_err);
    358 	EVCNT_INIT(st, bad_desc_num);
    359 	EVCNT_INIT(st, bad_req_id);
    360 	EVCNT_INIT(st, empty_rx_ring);
    361 
    362 	/* Make sure all code is updated when new fields added */
    363 	CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
    364 	    + sizeof(st->empty_rx_ring) == sizeof(*st));
    365 }
    366 
    367 static inline void
    368 ena_alloc_counters_tx(struct ena_stats_tx *st, int queue)
    369 {
    370 	snprintf(st->name, sizeof(st->name), "ena txq%d", queue);
    371 
    372 	EVCNT_INIT(st, cnt);
    373 	EVCNT_INIT(st, bytes);
    374 	EVCNT_INIT(st, prepare_ctx_err);
    375 	EVCNT_INIT(st, dma_mapping_err);
    376 	EVCNT_INIT(st, doorbells);
    377 	EVCNT_INIT(st, missing_tx_comp);
    378 	EVCNT_INIT(st, bad_req_id);
    379 	EVCNT_INIT(st, collapse);
    380 	EVCNT_INIT(st, collapse_err);
    381 
    382 	/* Make sure all code is updated when new fields added */
    383 	CTASSERT(offsetof(struct ena_stats_tx, collapse_err)
    384 	    + sizeof(st->collapse_err) == sizeof(*st));
    385 }
    386 
    387 static inline void
    388 ena_alloc_counters_dev(struct ena_stats_dev *st, int queue)
    389 {
    390 	snprintf(st->name, sizeof(st->name), "ena dev ioq%d", queue);
    391 
    392 	EVCNT_INIT(st, wd_expired);
    393 	EVCNT_INIT(st, interface_up);
    394 	EVCNT_INIT(st, interface_down);
    395 	EVCNT_INIT(st, admin_q_pause);
    396 
    397 	/* Make sure all code is updated when new fields added */
    398 	CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
    399 	    + sizeof(st->admin_q_pause) == sizeof(*st));
    400 }
    401 
    402 static inline void
    403 ena_alloc_counters_hwstats(struct ena_hw_stats *st, int queue)
    404 {
    405 	snprintf(st->name, sizeof(st->name), "ena hw ioq%d", queue);
    406 
    407 	EVCNT_INIT(st, rx_packets);
    408 	EVCNT_INIT(st, tx_packets);
    409 	EVCNT_INIT(st, rx_bytes);
    410 	EVCNT_INIT(st, tx_bytes);
    411 	EVCNT_INIT(st, rx_drops);
    412 
    413 	/* Make sure all code is updated when new fields added */
    414 	CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
    415 	    + sizeof(st->rx_drops) == sizeof(*st));
    416 }
    417 static inline void
    418 ena_free_counters(struct evcnt *begin, int size)
    419 {
    420 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
    421 
    422 	for (; begin < end; ++begin)
    423 		counter_u64_free(*begin);
    424 }
    425 
    426 static inline void
    427 ena_reset_counters(struct evcnt *begin, int size)
    428 {
    429 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
    430 
    431 	for (; begin < end; ++begin)
    432 		counter_u64_zero(*begin);
    433 }
    434 
    435 static void
    436 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
    437     uint16_t qid)
    438 {
    439 
    440 	ring->qid = qid;
    441 	ring->adapter = adapter;
    442 	ring->ena_dev = adapter->ena_dev;
    443 }
    444 
    445 static void
    446 ena_init_io_rings(struct ena_adapter *adapter)
    447 {
    448 	struct ena_com_dev *ena_dev;
    449 	struct ena_ring *txr, *rxr;
    450 	struct ena_que *que;
    451 	int i;
    452 
    453 	ena_dev = adapter->ena_dev;
    454 
    455 	for (i = 0; i < adapter->num_queues; i++) {
    456 		txr = &adapter->tx_ring[i];
    457 		rxr = &adapter->rx_ring[i];
    458 
    459 		/* TX/RX common ring state */
    460 		ena_init_io_rings_common(adapter, txr, i);
    461 		ena_init_io_rings_common(adapter, rxr, i);
    462 
    463 		/* TX specific ring state */
    464 		txr->ring_size = adapter->tx_ring_size;
    465 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
    466 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
    467 		txr->smoothed_interval =
    468 		    ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
    469 
    470 		/* Allocate a buf ring */
    471 		txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
    472 		    M_WAITOK, &txr->ring_mtx);
    473 
    474 		/* Alloc TX statistics. */
    475 		ena_alloc_counters_tx(&txr->tx_stats, i);
    476 
    477 		/* RX specific ring state */
    478 		rxr->ring_size = adapter->rx_ring_size;
    479 		rxr->smoothed_interval =
    480 		    ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
    481 
    482 		/* Alloc RX statistics. */
    483 		ena_alloc_counters_rx(&rxr->rx_stats, i);
    484 
    485 		/* Initialize locks */
    486 		snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
    487 		    device_xname(adapter->pdev), i);
    488 		snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
    489 		    device_xname(adapter->pdev), i);
    490 
    491 		mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
    492 		mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
    493 
    494 		que = &adapter->que[i];
    495 		que->adapter = adapter;
    496 		que->id = i;
    497 		que->tx_ring = txr;
    498 		que->rx_ring = rxr;
    499 
    500 		txr->que = que;
    501 		rxr->que = que;
    502 
    503 		rxr->empty_rx_queue = 0;
    504 	}
    505 }
    506 
    507 static void
    508 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
    509 {
    510 	struct ena_ring *txr = &adapter->tx_ring[qid];
    511 	struct ena_ring *rxr = &adapter->rx_ring[qid];
    512 
    513 	ena_free_counters((struct evcnt *)&txr->tx_stats,
    514 	    sizeof(txr->tx_stats));
    515 	ena_free_counters((struct evcnt *)&rxr->rx_stats,
    516 	    sizeof(rxr->rx_stats));
    517 
    518 	ENA_RING_MTX_LOCK(txr);
    519 	drbr_free(txr->br, M_DEVBUF);
    520 	ENA_RING_MTX_UNLOCK(txr);
    521 
    522 	mutex_destroy(&txr->ring_mtx);
    523 	mutex_destroy(&rxr->ring_mtx);
    524 }
    525 
    526 static void
    527 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
    528 {
    529 	int i;
    530 
    531 	for (i = 0; i < adapter->num_queues; i++)
    532 		ena_free_io_ring_resources(adapter, i);
    533 
    534 }
    535 
    536 #if 0
    537 static int
    538 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
    539 {
    540 	int ret;
    541 
    542 	/* Create DMA tag for Tx buffers */
    543 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
    544 	    1, 0,				  /* alignment, bounds 	     */
    545 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
    546 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
    547 	    NULL, NULL,				  /* filter, filterarg 	     */
    548 	    ENA_TSO_MAXSIZE,			  /* maxsize 		     */
    549 	    adapter->max_tx_sgl_size - 1,	  /* nsegments 		     */
    550 	    ENA_TSO_MAXSIZE,			  /* maxsegsize 	     */
    551 	    0,					  /* flags 		     */
    552 	    NULL,				  /* lockfunc 		     */
    553 	    NULL,				  /* lockfuncarg 	     */
    554 	    &adapter->tx_buf_tag);
    555 
    556 	return (ret);
    557 }
    558 #endif
    559 
    560 #if 0
    561 static int
    562 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
    563 {
    564 	int ret;
    565 
    566 	/* Create DMA tag for Rx buffers*/
    567 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent   */
    568 	    1, 0,				  /* alignment, bounds 	     */
    569 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
    570 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
    571 	    NULL, NULL,				  /* filter, filterarg 	     */
    572 	    MJUM16BYTES,			  /* maxsize 		     */
    573 	    adapter->max_rx_sgl_size,		  /* nsegments 		     */
    574 	    MJUM16BYTES,			  /* maxsegsize 	     */
    575 	    0,					  /* flags 		     */
    576 	    NULL,				  /* lockfunc 		     */
    577 	    NULL,				  /* lockarg 		     */
    578 	    &adapter->rx_buf_tag);
    579 
    580 	return (ret);
    581 }
    582 #endif
    583 
    584 /**
    585  * ena_setup_tx_resources - allocate Tx resources (Descriptors)
    586  * @adapter: network interface device structure
    587  * @qid: queue index
    588  *
    589  * Returns 0 on success, otherwise on failure.
    590  **/
    591 static int
    592 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
    593 {
    594 	struct ena_que *que = &adapter->que[qid];
    595 	struct ena_ring *tx_ring = que->tx_ring;
    596 	int size, i, err;
    597 #ifdef	RSS
    598 	cpuset_t cpu_mask;
    599 #endif
    600 
    601 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
    602 
    603 	tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
    604 	if (unlikely(tx_ring->tx_buffer_info == NULL))
    605 		return (ENOMEM);
    606 
    607 	size = sizeof(uint16_t) * tx_ring->ring_size;
    608 	tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
    609 	if (unlikely(tx_ring->free_tx_ids == NULL))
    610 		goto err_buf_info_free;
    611 
    612 	/* Req id stack for TX OOO completions */
    613 	for (i = 0; i < tx_ring->ring_size; i++)
    614 		tx_ring->free_tx_ids[i] = i;
    615 
    616 	/* Reset TX statistics. */
    617 	ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
    618 	    sizeof(tx_ring->tx_stats));
    619 
    620 	tx_ring->next_to_use = 0;
    621 	tx_ring->next_to_clean = 0;
    622 
    623 	/* Make sure that drbr is empty */
    624 	ENA_RING_MTX_LOCK(tx_ring);
    625 	drbr_flush(adapter->ifp, tx_ring->br);
    626 	ENA_RING_MTX_UNLOCK(tx_ring);
    627 
    628 	/* ... and create the buffer DMA maps */
    629 	for (i = 0; i < tx_ring->ring_size; i++) {
    630 		err = bus_dmamap_create(adapter->sc_dmat,
    631 		    ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
    632 		    ENA_TSO_MAXSIZE, 0, 0,
    633 		    &tx_ring->tx_buffer_info[i].map);
    634 		if (unlikely(err != 0)) {
    635 			ena_trace(ENA_ALERT,
    636 			     "Unable to create Tx DMA map for buffer %d\n", i);
    637 			goto err_buf_info_unmap;
    638 		}
    639 	}
    640 
    641 	/* Allocate workqueues */
    642 	int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
    643 	    ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
    644 	if (unlikely(rc != 0)) {
    645 		ena_trace(ENA_ALERT,
    646 		    "Unable to create workqueue for enqueue task\n");
    647 		i = tx_ring->ring_size;
    648 		goto err_buf_info_unmap;
    649 	}
    650 
    651 #if 0
    652 	/* RSS set cpu for thread */
    653 #ifdef RSS
    654 	CPU_SETOF(que->cpu, &cpu_mask);
    655 	taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET,
    656 	    &cpu_mask, "%s tx_ring enq (bucket %d)",
    657 	    device_xname(adapter->pdev), que->cpu);
    658 #else /* RSS */
    659 	taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET,
    660 	    "%s txeq %d", device_xname(adapter->pdev), que->cpu);
    661 #endif /* RSS */
    662 #endif
    663 
    664 	return (0);
    665 
    666 err_buf_info_unmap:
    667 	while (i--) {
    668 		bus_dmamap_destroy(adapter->sc_dmat,
    669 		    tx_ring->tx_buffer_info[i].map);
    670 	}
    671 	free(tx_ring->free_tx_ids, M_DEVBUF);
    672 	tx_ring->free_tx_ids = NULL;
    673 err_buf_info_free:
    674 	free(tx_ring->tx_buffer_info, M_DEVBUF);
    675 	tx_ring->tx_buffer_info = NULL;
    676 
    677 	return (ENOMEM);
    678 }
    679 
    680 /**
    681  * ena_free_tx_resources - Free Tx Resources per Queue
    682  * @adapter: network interface device structure
    683  * @qid: queue index
    684  *
    685  * Free all transmit software resources
    686  **/
    687 static void
    688 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
    689 {
    690 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
    691 
    692 	workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
    693 	workqueue_destroy(tx_ring->enqueue_tq);
    694 	tx_ring->enqueue_tq = NULL;
    695 
    696 	ENA_RING_MTX_LOCK(tx_ring);
    697 	/* Flush buffer ring, */
    698 	drbr_flush(adapter->ifp, tx_ring->br);
    699 
    700 	/* Free buffer DMA maps, */
    701 	for (int i = 0; i < tx_ring->ring_size; i++) {
    702 		m_freem(tx_ring->tx_buffer_info[i].mbuf);
    703 		tx_ring->tx_buffer_info[i].mbuf = NULL;
    704 		bus_dmamap_unload(adapter->sc_dmat,
    705 		    tx_ring->tx_buffer_info[i].map);
    706 		bus_dmamap_destroy(adapter->sc_dmat,
    707 		    tx_ring->tx_buffer_info[i].map);
    708 	}
    709 	ENA_RING_MTX_UNLOCK(tx_ring);
    710 
    711 	/* And free allocated memory. */
    712 	free(tx_ring->tx_buffer_info, M_DEVBUF);
    713 	tx_ring->tx_buffer_info = NULL;
    714 
    715 	free(tx_ring->free_tx_ids, M_DEVBUF);
    716 	tx_ring->free_tx_ids = NULL;
    717 }
    718 
    719 /**
    720  * ena_setup_all_tx_resources - allocate all queues Tx resources
    721  * @adapter: network interface device structure
    722  *
    723  * Returns 0 on success, otherwise on failure.
    724  **/
    725 static int
    726 ena_setup_all_tx_resources(struct ena_adapter *adapter)
    727 {
    728 	int i, rc;
    729 
    730 	for (i = 0; i < adapter->num_queues; i++) {
    731 		rc = ena_setup_tx_resources(adapter, i);
    732 		if (rc != 0) {
    733 			device_printf(adapter->pdev,
    734 			    "Allocation for Tx Queue %u failed\n", i);
    735 			goto err_setup_tx;
    736 		}
    737 	}
    738 
    739 	return (0);
    740 
    741 err_setup_tx:
    742 	/* Rewind the index freeing the rings as we go */
    743 	while (i--)
    744 		ena_free_tx_resources(adapter, i);
    745 	return (rc);
    746 }
    747 
    748 /**
    749  * ena_free_all_tx_resources - Free Tx Resources for All Queues
    750  * @adapter: network interface device structure
    751  *
    752  * Free all transmit software resources
    753  **/
    754 static void
    755 ena_free_all_tx_resources(struct ena_adapter *adapter)
    756 {
    757 	int i;
    758 
    759 	for (i = 0; i < adapter->num_queues; i++)
    760 		ena_free_tx_resources(adapter, i);
    761 }
    762 
    763 static inline int
    764 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
    765 {
    766 	if (likely(req_id < rx_ring->ring_size))
    767 		return (0);
    768 
    769 	device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
    770 	    req_id);
    771 	counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
    772 
    773 	/* Trigger device reset */
    774 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
    775 	rx_ring->adapter->trigger_reset = true;
    776 
    777 	return (EFAULT);
    778 }
    779 
    780 /**
    781  * ena_setup_rx_resources - allocate Rx resources (Descriptors)
    782  * @adapter: network interface device structure
    783  * @qid: queue index
    784  *
    785  * Returns 0 on success, otherwise on failure.
    786  **/
    787 static int
    788 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
    789 {
    790 	struct ena_que *que = &adapter->que[qid];
    791 	struct ena_ring *rx_ring = que->rx_ring;
    792 	int size, err, i;
    793 #ifdef	RSS
    794 	cpuset_t cpu_mask;
    795 #endif
    796 
    797 	size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
    798 
    799 	/*
    800 	 * Alloc extra element so in rx path
    801 	 * we can always prefetch rx_info + 1
    802 	 */
    803 	size += sizeof(struct ena_rx_buffer);
    804 
    805 	rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
    806 
    807 	size = sizeof(uint16_t) * rx_ring->ring_size;
    808 	rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
    809 
    810 	for (i = 0; i < rx_ring->ring_size; i++)
    811 		rx_ring->free_rx_ids[i] = i;
    812 
    813 	/* Reset RX statistics. */
    814 	ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
    815 	    sizeof(rx_ring->rx_stats));
    816 
    817 	rx_ring->next_to_clean = 0;
    818 	rx_ring->next_to_use = 0;
    819 
    820 	/* ... and create the buffer DMA maps */
    821 	for (i = 0; i < rx_ring->ring_size; i++) {
    822 		err = bus_dmamap_create(adapter->sc_dmat,
    823 		    MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
    824 		    0, 0,
    825 		    &(rx_ring->rx_buffer_info[i].map));
    826 		if (err != 0) {
    827 			ena_trace(ENA_ALERT,
    828 			    "Unable to create Rx DMA map for buffer %d\n", i);
    829 			goto err_buf_info_unmap;
    830 		}
    831 	}
    832 
    833 #ifdef LRO
    834 	/* Create LRO for the ring */
    835 	if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
    836 		int err = tcp_lro_init(&rx_ring->lro);
    837 		if (err != 0) {
    838 			device_printf(adapter->pdev,
    839 			    "LRO[%d] Initialization failed!\n", qid);
    840 		} else {
    841 			ena_trace(ENA_INFO,
    842 			    "RX Soft LRO[%d] Initialized\n", qid);
    843 			rx_ring->lro.ifp = adapter->ifp;
    844 		}
    845 	}
    846 #endif
    847 
    848 	/* Allocate workqueues */
    849 	int rc = workqueue_create(&rx_ring->cmpl_tq, "ena_rx_comp",
    850 	    ena_deferred_rx_cleanup, rx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
    851 	if (unlikely(rc != 0)) {
    852 		ena_trace(ENA_ALERT,
    853 		    "Unable to create workqueue for RX completion task\n");
    854 		goto err_buf_info_unmap;
    855 	}
    856 
    857 #if 0
    858 	/* RSS set cpu for thread */
    859 #ifdef RSS
    860 	CPU_SETOF(que->cpu, &cpu_mask);
    861 	taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask,
    862 	    "%s rx_ring cmpl (bucket %d)",
    863 	    device_xname(adapter->pdev), que->cpu);
    864 #else
    865 	taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET,
    866 	    "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu);
    867 #endif
    868 #endif
    869 
    870 	return (0);
    871 
    872 err_buf_info_unmap:
    873 	while (i--) {
    874 		bus_dmamap_destroy(adapter->sc_dmat,
    875 		    rx_ring->rx_buffer_info[i].map);
    876 	}
    877 
    878 	free(rx_ring->free_rx_ids, M_DEVBUF);
    879 	rx_ring->free_rx_ids = NULL;
    880 	free(rx_ring->rx_buffer_info, M_DEVBUF);
    881 	rx_ring->rx_buffer_info = NULL;
    882 	return (ENOMEM);
    883 }
    884 
    885 /**
    886  * ena_free_rx_resources - Free Rx Resources
    887  * @adapter: network interface device structure
    888  * @qid: queue index
    889  *
    890  * Free all receive software resources
    891  **/
    892 static void
    893 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
    894 {
    895 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
    896 
    897 	workqueue_wait(rx_ring->cmpl_tq, &rx_ring->cmpl_task);
    898 	workqueue_destroy(rx_ring->cmpl_tq);
    899 	rx_ring->cmpl_tq = NULL;
    900 
    901 	/* Free buffer DMA maps, */
    902 	for (int i = 0; i < rx_ring->ring_size; i++) {
    903 		m_freem(rx_ring->rx_buffer_info[i].mbuf);
    904 		rx_ring->rx_buffer_info[i].mbuf = NULL;
    905 		bus_dmamap_unload(adapter->sc_dmat,
    906 		    rx_ring->rx_buffer_info[i].map);
    907 		bus_dmamap_destroy(adapter->sc_dmat,
    908 		    rx_ring->rx_buffer_info[i].map);
    909 	}
    910 
    911 #ifdef LRO
    912 	/* free LRO resources, */
    913 	tcp_lro_free(&rx_ring->lro);
    914 #endif
    915 
    916 	/* free allocated memory */
    917 	free(rx_ring->rx_buffer_info, M_DEVBUF);
    918 	rx_ring->rx_buffer_info = NULL;
    919 
    920 	free(rx_ring->free_rx_ids, M_DEVBUF);
    921 	rx_ring->free_rx_ids = NULL;
    922 }
    923 
    924 /**
    925  * ena_setup_all_rx_resources - allocate all queues Rx resources
    926  * @adapter: network interface device structure
    927  *
    928  * Returns 0 on success, otherwise on failure.
    929  **/
    930 static int
    931 ena_setup_all_rx_resources(struct ena_adapter *adapter)
    932 {
    933 	int i, rc = 0;
    934 
    935 	for (i = 0; i < adapter->num_queues; i++) {
    936 		rc = ena_setup_rx_resources(adapter, i);
    937 		if (rc != 0) {
    938 			device_printf(adapter->pdev,
    939 			    "Allocation for Rx Queue %u failed\n", i);
    940 			goto err_setup_rx;
    941 		}
    942 	}
    943 	return (0);
    944 
    945 err_setup_rx:
    946 	/* rewind the index freeing the rings as we go */
    947 	while (i--)
    948 		ena_free_rx_resources(adapter, i);
    949 	return (rc);
    950 }
    951 
    952 /**
    953  * ena_free_all_rx_resources - Free Rx resources for all queues
    954  * @adapter: network interface device structure
    955  *
    956  * Free all receive software resources
    957  **/
    958 static void
    959 ena_free_all_rx_resources(struct ena_adapter *adapter)
    960 {
    961 	int i;
    962 
    963 	for (i = 0; i < adapter->num_queues; i++)
    964 		ena_free_rx_resources(adapter, i);
    965 }
    966 
    967 static inline int
    968 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
    969     struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
    970 {
    971 	struct ena_com_buf *ena_buf;
    972 	int error;
    973 	int mlen;
    974 
    975 	/* if previous allocated frag is not used */
    976 	if (unlikely(rx_info->mbuf != NULL))
    977 		return (0);
    978 
    979 	/* Get mbuf using UMA allocator */
    980 	rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES);
    981 
    982 	if (unlikely(rx_info->mbuf == NULL)) {
    983 		counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1);
    984 		rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
    985 		if (unlikely(rx_info->mbuf == NULL)) {
    986 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
    987 			return (ENOMEM);
    988 		}
    989 		mlen = MCLBYTES;
    990 	} else {
    991 		mlen = MJUM16BYTES;
    992 	}
    993 	/* Set mbuf length*/
    994 	rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
    995 
    996 	/* Map packets for DMA */
    997 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
    998 	    "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
    999 	    adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
   1000 	error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
   1001 	    rx_info->mbuf, BUS_DMA_NOWAIT);
   1002 	if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
   1003 		ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
   1004 		    "nsegs: %d\n", error, rx_info->map->dm_nsegs);
   1005 		counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
   1006 		goto exit;
   1007 
   1008 	}
   1009 
   1010 	bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
   1011 	    rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
   1012 
   1013 	ena_buf = &rx_info->ena_buf;
   1014 	ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
   1015 	ena_buf->len = mlen;
   1016 
   1017 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
   1018 	    "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
   1019 	    rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
   1020 
   1021 	return (0);
   1022 
   1023 exit:
   1024 	m_freem(rx_info->mbuf);
   1025 	rx_info->mbuf = NULL;
   1026 	return (EFAULT);
   1027 }
   1028 
   1029 static void
   1030 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
   1031     struct ena_rx_buffer *rx_info)
   1032 {
   1033 
   1034 	if (rx_info->mbuf == NULL) {
   1035 		ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
   1036 		return;
   1037 	}
   1038 
   1039 	bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
   1040 	m_freem(rx_info->mbuf);
   1041 	rx_info->mbuf = NULL;
   1042 }
   1043 
   1044 /**
   1045  * ena_refill_rx_bufs - Refills ring with descriptors
   1046  * @rx_ring: the ring which we want to feed with free descriptors
   1047  * @num: number of descriptors to refill
   1048  * Refills the ring with newly allocated DMA-mapped mbufs for receiving
   1049  **/
   1050 static int
   1051 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
   1052 {
   1053 	struct ena_adapter *adapter = rx_ring->adapter;
   1054 	uint16_t next_to_use, req_id;
   1055 	uint32_t i;
   1056 	int rc;
   1057 
   1058 	ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
   1059 	    rx_ring->qid);
   1060 
   1061 	next_to_use = rx_ring->next_to_use;
   1062 
   1063 	for (i = 0; i < num; i++) {
   1064 		struct ena_rx_buffer *rx_info;
   1065 
   1066 		ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
   1067 		    "RX buffer - next to use: %d", next_to_use);
   1068 
   1069 		req_id = rx_ring->free_rx_ids[next_to_use];
   1070 		rc = validate_rx_req_id(rx_ring, req_id);
   1071 		if (unlikely(rc != 0))
   1072 			break;
   1073 
   1074 		rx_info = &rx_ring->rx_buffer_info[req_id];
   1075 
   1076 		rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
   1077 		if (unlikely(rc != 0)) {
   1078 			ena_trace(ENA_WARNING,
   1079 			    "failed to alloc buffer for rx queue %d\n",
   1080 			    rx_ring->qid);
   1081 			break;
   1082 		}
   1083 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
   1084 		    &rx_info->ena_buf, req_id);
   1085 		if (unlikely(rc != 0)) {
   1086 			ena_trace(ENA_WARNING,
   1087 			    "failed to add buffer for rx queue %d\n",
   1088 			    rx_ring->qid);
   1089 			break;
   1090 		}
   1091 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
   1092 		    rx_ring->ring_size);
   1093 	}
   1094 
   1095 	if (unlikely(i < num)) {
   1096 		counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
   1097 		ena_trace(ENA_WARNING,
   1098 		     "refilled rx qid %d with only %d mbufs (from %d)\n",
   1099 		     rx_ring->qid, i, num);
   1100 	}
   1101 
   1102 	if (likely(i != 0)) {
   1103 		wmb();
   1104 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
   1105 	}
   1106 	rx_ring->next_to_use = next_to_use;
   1107 	return (i);
   1108 }
   1109 
   1110 static void
   1111 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
   1112 {
   1113 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
   1114 	unsigned int i;
   1115 
   1116 	for (i = 0; i < rx_ring->ring_size; i++) {
   1117 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
   1118 
   1119 		if (rx_info->mbuf != NULL)
   1120 			ena_free_rx_mbuf(adapter, rx_ring, rx_info);
   1121 	}
   1122 }
   1123 
   1124 /**
   1125  * ena_refill_all_rx_bufs - allocate all queues Rx buffers
   1126  * @adapter: network interface device structure
   1127  *
   1128  */
   1129 static void
   1130 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
   1131 {
   1132 	struct ena_ring *rx_ring;
   1133 	int i, rc, bufs_num;
   1134 
   1135 	for (i = 0; i < adapter->num_queues; i++) {
   1136 		rx_ring = &adapter->rx_ring[i];
   1137 		bufs_num = rx_ring->ring_size - 1;
   1138 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
   1139 
   1140 		if (unlikely(rc != bufs_num))
   1141 			ena_trace(ENA_WARNING, "refilling Queue %d failed. "
   1142 			    "Allocated %d buffers from: %d\n", i, rc, bufs_num);
   1143 	}
   1144 }
   1145 
   1146 static void
   1147 ena_free_all_rx_bufs(struct ena_adapter *adapter)
   1148 {
   1149 	int i;
   1150 
   1151 	for (i = 0; i < adapter->num_queues; i++)
   1152 		ena_free_rx_bufs(adapter, i);
   1153 }
   1154 
   1155 /**
   1156  * ena_free_tx_bufs - Free Tx Buffers per Queue
   1157  * @adapter: network interface device structure
   1158  * @qid: queue index
   1159  **/
   1160 static void
   1161 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
   1162 {
   1163 	bool print_once = true;
   1164 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
   1165 
   1166 	ENA_RING_MTX_LOCK(tx_ring);
   1167 	for (int i = 0; i < tx_ring->ring_size; i++) {
   1168 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
   1169 
   1170 		if (tx_info->mbuf == NULL)
   1171 			continue;
   1172 
   1173 		if (print_once) {
   1174 			device_printf(adapter->pdev,
   1175 			    "free uncompleted tx mbuf qid %d idx 0x%x",
   1176 			    qid, i);
   1177 			print_once = false;
   1178 		} else {
   1179 			ena_trace(ENA_DBG,
   1180 			    "free uncompleted tx mbuf qid %d idx 0x%x",
   1181 			     qid, i);
   1182 		}
   1183 
   1184 		bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   1185 		m_free(tx_info->mbuf);
   1186 		tx_info->mbuf = NULL;
   1187 	}
   1188 	ENA_RING_MTX_UNLOCK(tx_ring);
   1189 }
   1190 
   1191 static void
   1192 ena_free_all_tx_bufs(struct ena_adapter *adapter)
   1193 {
   1194 
   1195 	for (int i = 0; i < adapter->num_queues; i++)
   1196 		ena_free_tx_bufs(adapter, i);
   1197 }
   1198 
   1199 static void
   1200 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
   1201 {
   1202 	uint16_t ena_qid;
   1203 	int i;
   1204 
   1205 	for (i = 0; i < adapter->num_queues; i++) {
   1206 		ena_qid = ENA_IO_TXQ_IDX(i);
   1207 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
   1208 	}
   1209 }
   1210 
   1211 static void
   1212 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
   1213 {
   1214 	uint16_t ena_qid;
   1215 	int i;
   1216 
   1217 	for (i = 0; i < adapter->num_queues; i++) {
   1218 		ena_qid = ENA_IO_RXQ_IDX(i);
   1219 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
   1220 	}
   1221 }
   1222 
   1223 static void
   1224 ena_destroy_all_io_queues(struct ena_adapter *adapter)
   1225 {
   1226 	ena_destroy_all_tx_queues(adapter);
   1227 	ena_destroy_all_rx_queues(adapter);
   1228 }
   1229 
   1230 static inline int
   1231 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
   1232 {
   1233 	struct ena_adapter *adapter = tx_ring->adapter;
   1234 	struct ena_tx_buffer *tx_info = NULL;
   1235 
   1236 	if (likely(req_id < tx_ring->ring_size)) {
   1237 		tx_info = &tx_ring->tx_buffer_info[req_id];
   1238 		if (tx_info->mbuf != NULL)
   1239 			return (0);
   1240 	}
   1241 
   1242 	if (tx_info->mbuf == NULL)
   1243 		device_printf(adapter->pdev,
   1244 		    "tx_info doesn't have valid mbuf\n");
   1245 	else
   1246 		device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
   1247 
   1248 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
   1249 
   1250 	return (EFAULT);
   1251 }
   1252 
   1253 static int
   1254 ena_create_io_queues(struct ena_adapter *adapter)
   1255 {
   1256 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   1257 	struct ena_com_create_io_ctx ctx;
   1258 	struct ena_ring *ring;
   1259 	uint16_t ena_qid;
   1260 	uint32_t msix_vector;
   1261 	int rc, i;
   1262 
   1263 	/* Create TX queues */
   1264 	for (i = 0; i < adapter->num_queues; i++) {
   1265 		msix_vector = ENA_IO_IRQ_IDX(i);
   1266 		ena_qid = ENA_IO_TXQ_IDX(i);
   1267 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
   1268 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
   1269 		ctx.queue_size = adapter->tx_ring_size;
   1270 		ctx.msix_vector = msix_vector;
   1271 		ctx.qid = ena_qid;
   1272 		rc = ena_com_create_io_queue(ena_dev, &ctx);
   1273 		if (rc != 0) {
   1274 			device_printf(adapter->pdev,
   1275 			    "Failed to create io TX queue #%d rc: %d\n", i, rc);
   1276 			goto err_tx;
   1277 		}
   1278 		ring = &adapter->tx_ring[i];
   1279 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
   1280 		    &ring->ena_com_io_sq,
   1281 		    &ring->ena_com_io_cq);
   1282 		if (rc != 0) {
   1283 			device_printf(adapter->pdev,
   1284 			    "Failed to get TX queue handlers. TX queue num"
   1285 			    " %d rc: %d\n", i, rc);
   1286 			ena_com_destroy_io_queue(ena_dev, ena_qid);
   1287 			goto err_tx;
   1288 		}
   1289 	}
   1290 
   1291 	/* Create RX queues */
   1292 	for (i = 0; i < adapter->num_queues; i++) {
   1293 		msix_vector = ENA_IO_IRQ_IDX(i);
   1294 		ena_qid = ENA_IO_RXQ_IDX(i);
   1295 		ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
   1296 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
   1297 		ctx.queue_size = adapter->rx_ring_size;
   1298 		ctx.msix_vector = msix_vector;
   1299 		ctx.qid = ena_qid;
   1300 		rc = ena_com_create_io_queue(ena_dev, &ctx);
   1301 		if (unlikely(rc != 0)) {
   1302 			device_printf(adapter->pdev,
   1303 			    "Failed to create io RX queue[%d] rc: %d\n", i, rc);
   1304 			goto err_rx;
   1305 		}
   1306 
   1307 		ring = &adapter->rx_ring[i];
   1308 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
   1309 		    &ring->ena_com_io_sq,
   1310 		    &ring->ena_com_io_cq);
   1311 		if (unlikely(rc != 0)) {
   1312 			device_printf(adapter->pdev,
   1313 			    "Failed to get RX queue handlers. RX queue num"
   1314 			    " %d rc: %d\n", i, rc);
   1315 			ena_com_destroy_io_queue(ena_dev, ena_qid);
   1316 			goto err_rx;
   1317 		}
   1318 	}
   1319 
   1320 	return (0);
   1321 
   1322 err_rx:
   1323 	while (i--)
   1324 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
   1325 	i = adapter->num_queues;
   1326 err_tx:
   1327 	while (i--)
   1328 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
   1329 
   1330 	return (ENXIO);
   1331 }
   1332 
   1333 /**
   1334  * ena_tx_cleanup - clear sent packets and corresponding descriptors
   1335  * @tx_ring: ring for which we want to clean packets
   1336  *
   1337  * Once packets are sent, we ask the device in a loop for no longer used
   1338  * descriptors. We find the related mbuf chain in a map (index in an array)
   1339  * and free it, then update ring state.
   1340  * This is performed in "endless" loop, updating ring pointers every
   1341  * TX_COMMIT. The first check of free descriptor is performed before the actual
   1342  * loop, then repeated at the loop end.
   1343  **/
   1344 static int
   1345 ena_tx_cleanup(struct ena_ring *tx_ring)
   1346 {
   1347 	struct ena_adapter *adapter;
   1348 	struct ena_com_io_cq* io_cq;
   1349 	uint16_t next_to_clean;
   1350 	uint16_t req_id;
   1351 	uint16_t ena_qid;
   1352 	unsigned int total_done = 0;
   1353 	int rc;
   1354 	int commit = TX_COMMIT;
   1355 	int budget = TX_BUDGET;
   1356 	int work_done;
   1357 
   1358 	adapter = tx_ring->que->adapter;
   1359 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   1360 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1361 	next_to_clean = tx_ring->next_to_clean;
   1362 
   1363 	do {
   1364 		struct ena_tx_buffer *tx_info;
   1365 		struct mbuf *mbuf;
   1366 
   1367 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
   1368 		if (unlikely(rc != 0))
   1369 			break;
   1370 
   1371 		rc = validate_tx_req_id(tx_ring, req_id);
   1372 		if (unlikely(rc != 0))
   1373 			break;
   1374 
   1375 		tx_info = &tx_ring->tx_buffer_info[req_id];
   1376 
   1377 		mbuf = tx_info->mbuf;
   1378 
   1379 		tx_info->mbuf = NULL;
   1380 		bintime_clear(&tx_info->timestamp);
   1381 
   1382 		if (likely(tx_info->num_of_bufs != 0)) {
   1383 			/* Map is no longer required */
   1384 			bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   1385 		}
   1386 
   1387 		ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
   1388 		    tx_ring->qid, mbuf);
   1389 
   1390 		m_freem(mbuf);
   1391 
   1392 		total_done += tx_info->tx_descs;
   1393 
   1394 		tx_ring->free_tx_ids[next_to_clean] = req_id;
   1395 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
   1396 		    tx_ring->ring_size);
   1397 
   1398 		if (unlikely(--commit == 0)) {
   1399 			commit = TX_COMMIT;
   1400 			/* update ring state every TX_COMMIT descriptor */
   1401 			tx_ring->next_to_clean = next_to_clean;
   1402 			ena_com_comp_ack(
   1403 			    &adapter->ena_dev->io_sq_queues[ena_qid],
   1404 			    total_done);
   1405 			ena_com_update_dev_comp_head(io_cq);
   1406 			total_done = 0;
   1407 		}
   1408 	} while (likely(--budget));
   1409 
   1410 	work_done = TX_BUDGET - budget;
   1411 
   1412 	ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
   1413 	tx_ring->qid, work_done);
   1414 
   1415 	/* If there is still something to commit update ring state */
   1416 	if (likely(commit != TX_COMMIT)) {
   1417 		tx_ring->next_to_clean = next_to_clean;
   1418 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
   1419 		    total_done);
   1420 		ena_com_update_dev_comp_head(io_cq);
   1421 	}
   1422 
   1423 	if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   1424 		workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
   1425 
   1426 	return (work_done);
   1427 }
   1428 
   1429 #if 0
   1430 static void
   1431 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
   1432     struct mbuf *mbuf)
   1433 {
   1434 	struct ena_adapter *adapter = rx_ring->adapter;
   1435 
   1436 	if (likely(adapter->rss_support)) {
   1437 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
   1438 
   1439 		if (ena_rx_ctx->frag &&
   1440 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
   1441 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
   1442 			return;
   1443 		}
   1444 
   1445 		switch (ena_rx_ctx->l3_proto) {
   1446 		case ENA_ETH_IO_L3_PROTO_IPV4:
   1447 			switch (ena_rx_ctx->l4_proto) {
   1448 			case ENA_ETH_IO_L4_PROTO_TCP:
   1449 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
   1450 				break;
   1451 			case ENA_ETH_IO_L4_PROTO_UDP:
   1452 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
   1453 				break;
   1454 			default:
   1455 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
   1456 			}
   1457 			break;
   1458 		case ENA_ETH_IO_L3_PROTO_IPV6:
   1459 			switch (ena_rx_ctx->l4_proto) {
   1460 			case ENA_ETH_IO_L4_PROTO_TCP:
   1461 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
   1462 				break;
   1463 			case ENA_ETH_IO_L4_PROTO_UDP:
   1464 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
   1465 				break;
   1466 			default:
   1467 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
   1468 			}
   1469 			break;
   1470 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
   1471 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
   1472 			break;
   1473 		default:
   1474 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
   1475 		}
   1476 	} else {
   1477 		mbuf->m_pkthdr.flowid = rx_ring->qid;
   1478 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
   1479 	}
   1480 }
   1481 #endif
   1482 
   1483 /**
   1484  * ena_rx_mbuf - assemble mbuf from descriptors
   1485  * @rx_ring: ring for which we want to clean packets
   1486  * @ena_bufs: buffer info
   1487  * @ena_rx_ctx: metadata for this packet(s)
   1488  * @next_to_clean: ring pointer, will be updated only upon success
   1489  *
   1490  **/
   1491 static struct mbuf*
   1492 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
   1493     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
   1494 {
   1495 	struct mbuf *mbuf;
   1496 	struct ena_rx_buffer *rx_info;
   1497 	struct ena_adapter *adapter;
   1498 	unsigned int descs = ena_rx_ctx->descs;
   1499 	uint16_t ntc, len, req_id, buf = 0;
   1500 
   1501 	ntc = *next_to_clean;
   1502 	adapter = rx_ring->adapter;
   1503 	rx_info = &rx_ring->rx_buffer_info[ntc];
   1504 
   1505 	if (unlikely(rx_info->mbuf == NULL)) {
   1506 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
   1507 		return (NULL);
   1508 	}
   1509 
   1510 	len = ena_bufs[buf].len;
   1511 	req_id = ena_bufs[buf].req_id;
   1512 	rx_info = &rx_ring->rx_buffer_info[req_id];
   1513 
   1514 	ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
   1515 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
   1516 
   1517 	mbuf = rx_info->mbuf;
   1518 	KASSERT(mbuf->m_flags & M_PKTHDR);
   1519 	mbuf->m_pkthdr.len = len;
   1520 	mbuf->m_len = len;
   1521 	m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
   1522 
   1523 	/* Fill mbuf with hash key and it's interpretation for optimization */
   1524 #if 0
   1525 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
   1526 #endif
   1527 
   1528 	ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d",
   1529 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
   1530 
   1531 	/* DMA address is not needed anymore, unmap it */
   1532 	bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
   1533 
   1534 	rx_info->mbuf = NULL;
   1535 	rx_ring->free_rx_ids[ntc] = req_id;
   1536 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
   1537 
   1538 	/*
   1539 	 * While we have more than 1 descriptors for one rcvd packet, append
   1540 	 * other mbufs to the main one
   1541 	 */
   1542 	while (--descs) {
   1543 		++buf;
   1544 		len = ena_bufs[buf].len;
   1545 		req_id = ena_bufs[buf].req_id;
   1546 		rx_info = &rx_ring->rx_buffer_info[req_id];
   1547 
   1548 		if (unlikely(rx_info->mbuf == NULL)) {
   1549 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
   1550 			/*
   1551 			 * If one of the required mbufs was not allocated yet,
   1552 			 * we can break there.
   1553 			 * All earlier used descriptors will be reallocated
   1554 			 * later and not used mbufs can be reused.
   1555 			 * The next_to_clean pointer will not be updated in case
   1556 			 * of an error, so caller should advance it manually
   1557 			 * in error handling routine to keep it up to date
   1558 			 * with hw ring.
   1559 			 */
   1560 			m_freem(mbuf);
   1561 			return (NULL);
   1562 		}
   1563 
   1564 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
   1565 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
   1566 			ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
   1567 			    mbuf);
   1568 		}
   1569 
   1570 		ena_trace(ENA_DBG | ENA_RXPTH,
   1571 		    "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
   1572 
   1573 		/* Free already appended mbuf, it won't be useful anymore */
   1574 		bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
   1575 		m_freem(rx_info->mbuf);
   1576 		rx_info->mbuf = NULL;
   1577 
   1578 		rx_ring->free_rx_ids[ntc] = req_id;
   1579 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
   1580 	}
   1581 
   1582 	*next_to_clean = ntc;
   1583 
   1584 	return (mbuf);
   1585 }
   1586 
   1587 /**
   1588  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
   1589  **/
   1590 static inline void
   1591 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
   1592     struct mbuf *mbuf)
   1593 {
   1594 
   1595 	/* IPv4 */
   1596 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
   1597 		mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1598 		if (ena_rx_ctx->l3_csum_err) {
   1599 			/* ipv4 checksum error */
   1600 			mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1601 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1602 			ena_trace(ENA_DBG, "RX IPv4 header checksum error");
   1603 			return;
   1604 		}
   1605 
   1606 		/*  TCP/UDP */
   1607 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
   1608 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
   1609 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
   1610 			if (ena_rx_ctx->l4_csum_err) {
   1611 				/* TCP/UDP checksum error */
   1612 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1613 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1614 				ena_trace(ENA_DBG, "RX L4 checksum error");
   1615 			}
   1616 		}
   1617 	}
   1618 	/* IPv6 */
   1619 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
   1620 		/*  TCP/UDP */
   1621 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
   1622 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
   1623 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
   1624 			if (ena_rx_ctx->l4_csum_err) {
   1625 				/* TCP/UDP checksum error */
   1626 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1627 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1628 				ena_trace(ENA_DBG, "RX L4 checksum error");
   1629 			}
   1630 		}
   1631 	}
   1632 }
   1633 
   1634 static void
   1635 ena_deferred_rx_cleanup(struct work *wk, void *arg)
   1636 {
   1637 	struct ena_ring *rx_ring = arg;
   1638 	int budget = CLEAN_BUDGET;
   1639 
   1640 	atomic_swap_uint(&rx_ring->task_pending, 0);
   1641 
   1642 	ENA_RING_MTX_LOCK(rx_ring);
   1643 	/*
   1644 	 * If deferred task was executed, perform cleanup of all awaiting
   1645 	 * descs (or until given budget is depleted to avoid infinite loop).
   1646 	 */
   1647 	while (likely(budget--)) {
   1648 		if (ena_rx_cleanup(rx_ring) == 0)
   1649 			break;
   1650 	}
   1651 	ENA_RING_MTX_UNLOCK(rx_ring);
   1652 }
   1653 
   1654 /**
   1655  * ena_rx_cleanup - handle rx irq
   1656  * @arg: ring for which irq is being handled
   1657  **/
   1658 static int
   1659 ena_rx_cleanup(struct ena_ring *rx_ring)
   1660 {
   1661 	struct ena_adapter *adapter;
   1662 	struct mbuf *mbuf;
   1663 	struct ena_com_rx_ctx ena_rx_ctx;
   1664 	struct ena_com_io_cq* io_cq;
   1665 	struct ena_com_io_sq* io_sq;
   1666 	struct ifnet *ifp;
   1667 	uint16_t ena_qid;
   1668 	uint16_t next_to_clean;
   1669 	uint32_t refill_required;
   1670 	uint32_t refill_threshold;
   1671 	uint32_t do_if_input = 0;
   1672 	unsigned int qid;
   1673 	int rc, i;
   1674 	int budget = RX_BUDGET;
   1675 
   1676 	adapter = rx_ring->que->adapter;
   1677 	ifp = adapter->ifp;
   1678 	qid = rx_ring->que->id;
   1679 	ena_qid = ENA_IO_RXQ_IDX(qid);
   1680 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1681 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
   1682 	next_to_clean = rx_ring->next_to_clean;
   1683 
   1684 	ena_trace(ENA_DBG, "rx: qid %d", qid);
   1685 
   1686 	do {
   1687 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
   1688 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
   1689 		ena_rx_ctx.descs = 0;
   1690 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
   1691 
   1692 		if (unlikely(rc != 0))
   1693 			goto error;
   1694 
   1695 		if (unlikely(ena_rx_ctx.descs == 0))
   1696 			break;
   1697 
   1698 		ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
   1699 		    "descs #: %d l3 proto %d l4 proto %d hash: %x",
   1700 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
   1701 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
   1702 
   1703 		/* Receive mbuf from the ring */
   1704 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
   1705 		    &ena_rx_ctx, &next_to_clean);
   1706 
   1707 		/* Exit if we failed to retrieve a buffer */
   1708 		if (unlikely(mbuf == NULL)) {
   1709 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
   1710 				rx_ring->free_rx_ids[next_to_clean] =
   1711 				    rx_ring->ena_bufs[i].req_id;
   1712 				next_to_clean =
   1713 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
   1714 				    rx_ring->ring_size);
   1715 
   1716 			}
   1717 			break;
   1718 		}
   1719 
   1720 		if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
   1721 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
   1722 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
   1723 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
   1724 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
   1725 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
   1726 		}
   1727 
   1728 		counter_enter();
   1729 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
   1730 		    mbuf->m_pkthdr.len);
   1731 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
   1732 		    mbuf->m_pkthdr.len);
   1733 		counter_exit();
   1734 		/*
   1735 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
   1736 		 * should be computed by hardware.
   1737 		 */
   1738 		do_if_input = 1;
   1739 #ifdef LRO
   1740 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
   1741 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
   1742 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
   1743 			/*
   1744 			 * Send to the stack if:
   1745 			 *  - LRO not enabled, or
   1746 			 *  - no LRO resources, or
   1747 			 *  - lro enqueue fails
   1748 			 */
   1749 			if ((rx_ring->lro.lro_cnt != 0) &&
   1750 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
   1751 					do_if_input = 0;
   1752 		}
   1753 #endif
   1754 		if (do_if_input != 0) {
   1755 			ena_trace(ENA_DBG | ENA_RXPTH,
   1756 			    "calling if_input() with mbuf %p", mbuf);
   1757 			if_percpuq_enqueue(ifp->if_percpuq, mbuf);
   1758 		}
   1759 
   1760 		counter_enter();
   1761 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
   1762 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
   1763 		counter_exit();
   1764 	} while (--budget);
   1765 
   1766 	rx_ring->next_to_clean = next_to_clean;
   1767 
   1768 	refill_required = ena_com_free_desc(io_sq);
   1769 	refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
   1770 
   1771 	if (refill_required > refill_threshold) {
   1772 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
   1773 		ena_refill_rx_bufs(rx_ring, refill_required);
   1774 	}
   1775 
   1776 #ifdef LRO
   1777 	tcp_lro_flush_all(&rx_ring->lro);
   1778 #endif
   1779 
   1780 	return (RX_BUDGET - budget);
   1781 
   1782 error:
   1783 	counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
   1784 	return (RX_BUDGET - budget);
   1785 }
   1786 
   1787 /*********************************************************************
   1788  *
   1789  *  MSIX & Interrupt Service routine
   1790  *
   1791  **********************************************************************/
   1792 
   1793 /**
   1794  * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
   1795  * @arg: interrupt number
   1796  **/
   1797 static int
   1798 ena_intr_msix_mgmnt(void *arg)
   1799 {
   1800 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
   1801 
   1802 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
   1803 	if (likely(adapter->running))
   1804 		ena_com_aenq_intr_handler(adapter->ena_dev, arg);
   1805 
   1806 	return 1;
   1807 }
   1808 
   1809 /**
   1810  * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
   1811  * @arg: interrupt number
   1812  **/
   1813 static int
   1814 ena_handle_msix(void *arg)
   1815 {
   1816 	struct ena_que	*que = arg;
   1817 	struct ena_adapter *adapter = que->adapter;
   1818 	struct ifnet *ifp = adapter->ifp;
   1819 	struct ena_ring *tx_ring;
   1820 	struct ena_ring *rx_ring;
   1821 	struct ena_com_io_cq* io_cq;
   1822 	struct ena_eth_io_intr_reg intr_reg;
   1823 	int qid, ena_qid;
   1824 	int txc, rxc, i;
   1825 
   1826 	if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
   1827 		return 0;
   1828 
   1829 	ena_trace(ENA_DBG, "MSI-X TX/RX routine");
   1830 
   1831 	tx_ring = que->tx_ring;
   1832 	rx_ring = que->rx_ring;
   1833 	qid = que->id;
   1834 	ena_qid = ENA_IO_TXQ_IDX(qid);
   1835 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1836 
   1837 	for (i = 0; i < CLEAN_BUDGET; ++i) {
   1838 		/*
   1839 		 * If lock cannot be acquired, then deferred cleanup task was
   1840 		 * being executed and rx ring is being cleaned up in
   1841 		 * another thread.
   1842 		 */
   1843 		if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) {
   1844 			rxc = ena_rx_cleanup(rx_ring);
   1845 			ENA_RING_MTX_UNLOCK(rx_ring);
   1846 		} else {
   1847 			rxc = 0;
   1848 		}
   1849 
   1850 		/* Protection from calling ena_tx_cleanup from ena_start_xmit */
   1851 		ENA_RING_MTX_LOCK(tx_ring);
   1852 		txc = ena_tx_cleanup(tx_ring);
   1853 		ENA_RING_MTX_UNLOCK(tx_ring);
   1854 
   1855 		if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
   1856 			return 0;
   1857 
   1858 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
   1859 		       break;
   1860 	}
   1861 
   1862 	/* Signal that work is done and unmask interrupt */
   1863 	ena_com_update_intr_reg(&intr_reg,
   1864 	    RX_IRQ_INTERVAL,
   1865 	    TX_IRQ_INTERVAL,
   1866 	    true);
   1867 	ena_com_unmask_intr(io_cq, &intr_reg);
   1868 
   1869 	return 1;
   1870 }
   1871 
   1872 static int
   1873 ena_enable_msix(struct ena_adapter *adapter)
   1874 {
   1875 	int msix_req;
   1876 	int counts[PCI_INTR_TYPE_SIZE];
   1877 	int max_type;
   1878 
   1879 	/* Reserved the max msix vectors we might need */
   1880 	msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
   1881 
   1882 	counts[PCI_INTR_TYPE_INTX] = 0;
   1883 	counts[PCI_INTR_TYPE_MSI] = 0;
   1884 	counts[PCI_INTR_TYPE_MSIX] = msix_req;
   1885 	max_type = PCI_INTR_TYPE_MSIX;
   1886 
   1887 	if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
   1888 	    max_type) != 0) {
   1889 		aprint_error_dev(adapter->pdev,
   1890 		    "failed to allocate interrupt\n");
   1891 		return ENOSPC;
   1892 	}
   1893 
   1894 	adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
   1895 
   1896 	if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
   1897 		device_printf(adapter->pdev,
   1898 		    "Enable only %d MSI-x (out of %d), reduce "
   1899 		    "the number of queues\n", adapter->sc_nintrs, msix_req);
   1900 		adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
   1901 	}
   1902 
   1903 	return 0;
   1904 }
   1905 
   1906 #if 0
   1907 static void
   1908 ena_setup_io_intr(struct ena_adapter *adapter)
   1909 {
   1910 	static int last_bind_cpu = -1;
   1911 	int irq_idx;
   1912 
   1913 	for (int i = 0; i < adapter->num_queues; i++) {
   1914 		irq_idx = ENA_IO_IRQ_IDX(i);
   1915 
   1916 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
   1917 		    "%s-TxRx-%d", device_xname(adapter->pdev), i);
   1918 		adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
   1919 		adapter->irq_tbl[irq_idx].data = &adapter->que[i];
   1920 		adapter->irq_tbl[irq_idx].vector =
   1921 		    adapter->msix_entries[irq_idx].vector;
   1922 		ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
   1923 		    adapter->msix_entries[irq_idx].vector);
   1924 #ifdef	RSS
   1925 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
   1926 		    rss_getcpu(i % rss_getnumbuckets());
   1927 #else
   1928 		/*
   1929 		 * We still want to bind rings to the corresponding cpu
   1930 		 * using something similar to the RSS round-robin technique.
   1931 		 */
   1932 		if (unlikely(last_bind_cpu < 0))
   1933 			last_bind_cpu = CPU_FIRST();
   1934 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
   1935 		    last_bind_cpu;
   1936 		last_bind_cpu = CPU_NEXT(last_bind_cpu);
   1937 #endif
   1938 	}
   1939 }
   1940 #endif
   1941 
   1942 static int
   1943 ena_request_mgmnt_irq(struct ena_adapter *adapter)
   1944 {
   1945 	const char *intrstr;
   1946 	char intrbuf[PCI_INTRSTR_LEN];
   1947 	char intr_xname[INTRDEVNAMEBUF];
   1948 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
   1949 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
   1950 
   1951 	KASSERT(adapter->sc_intrs != NULL);
   1952 	KASSERT(adapter->sc_ihs[irq_slot] == NULL);
   1953 
   1954 	snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
   1955 	    device_xname(adapter->pdev));
   1956 	intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
   1957 	    intrbuf, sizeof(intrbuf));
   1958 
   1959 	adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
   1960 	    pc, adapter->sc_intrs[irq_slot],
   1961 	    IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
   1962 
   1963 	if (adapter->sc_ihs[irq_slot] == NULL) {
   1964 		device_printf(adapter->pdev, "failed to register "
   1965 		    "interrupt handler for MGMNT irq %s\n",
   1966 		    intrstr);
   1967 		return ENOMEM;
   1968 	}
   1969 
   1970 	aprint_normal_dev(adapter->pdev,
   1971 	    "for MGMNT interrupting at %s\n", intrstr);
   1972 
   1973 	return 0;
   1974 }
   1975 
   1976 static int
   1977 ena_request_io_irq(struct ena_adapter *adapter)
   1978 {
   1979 	const char *intrstr;
   1980 	char intrbuf[PCI_INTRSTR_LEN];
   1981 	char intr_xname[INTRDEVNAMEBUF];
   1982 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
   1983 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
   1984 	void *vih;
   1985 	kcpuset_t *affinity;
   1986 	int i;
   1987 
   1988 	KASSERT(adapter->sc_intrs != NULL);
   1989 
   1990 	kcpuset_create(&affinity, false);
   1991 
   1992 	for (i = 0; i < adapter->num_queues; i++) {
   1993 		int irq_slot = i + irq_off;
   1994 		int affinity_to = (irq_slot) % ncpu;
   1995 
   1996 		KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
   1997 		KASSERT(adapter->sc_ihs[irq_slot] == NULL);
   1998 
   1999 		snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
   2000 		    device_xname(adapter->pdev), i);
   2001 		intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
   2002 		    intrbuf, sizeof(intrbuf));
   2003 
   2004 		vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
   2005 		    adapter->sc_intrs[irq_slot], IPL_NET,
   2006 		    ena_handle_msix, &adapter->que[i], intr_xname);
   2007 
   2008 		if (adapter->sc_ihs[ENA_MGMNT_IRQ_IDX] == NULL) {
   2009 			device_printf(adapter->pdev, "failed to register "
   2010 			    "interrupt handler for IO queue %d irq %s\n",
   2011 			    i, intrstr);
   2012 			goto err;
   2013 		}
   2014 
   2015 		kcpuset_zero(affinity);
   2016 		/* Round-robin affinity */
   2017 		kcpuset_set(affinity, affinity_to);
   2018 		int error = interrupt_distribute(vih, affinity, NULL);
   2019 		if (error == 0) {
   2020 			aprint_normal_dev(adapter->pdev,
   2021 			    "for IO queue %d interrupting at %s"
   2022 			    " affinity to %u\n", i, intrstr, affinity_to);
   2023 		} else {
   2024 			aprint_normal_dev(adapter->pdev,
   2025 			    "for IO queue %d interrupting at %s\n", i, intrstr);
   2026 		}
   2027 
   2028 		adapter->sc_ihs[irq_slot] = vih;
   2029 
   2030 #ifdef	RSS
   2031 		ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
   2032 		    i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
   2033 #else
   2034 		ena_trace(ENA_INFO, "queue %d - cpu %d\n",
   2035 		    i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
   2036 #endif
   2037 	}
   2038 
   2039 	kcpuset_destroy(affinity);
   2040 	return 0;
   2041 
   2042 err:
   2043 	kcpuset_destroy(affinity);
   2044 
   2045 	for (i--; i >= 0; i--) {
   2046 #if defined(DEBUG) || defined(DIAGNOSTIC)
   2047 		int irq_slot = i + irq_off;
   2048 #endif
   2049 		KASSERT(adapter->sc_ihs[irq_slot] != NULL);
   2050 		pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[i]);
   2051 		adapter->sc_ihs[i] = NULL;
   2052 	}
   2053 
   2054 	return ENOSPC;
   2055 }
   2056 
   2057 static void
   2058 ena_free_mgmnt_irq(struct ena_adapter *adapter)
   2059 {
   2060 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
   2061 
   2062 	if (adapter->sc_ihs[irq_slot]) {
   2063 		pci_intr_disestablish(adapter->sc_pa.pa_pc,
   2064 		    adapter->sc_ihs[irq_slot]);
   2065 		adapter->sc_ihs[irq_slot] = NULL;
   2066 	}
   2067 }
   2068 
   2069 static void
   2070 ena_free_io_irq(struct ena_adapter *adapter)
   2071 {
   2072 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
   2073 
   2074 	for (int i = 0; i < adapter->num_queues; i++) {
   2075 		int irq_slot = i + irq_off;
   2076 
   2077 		if (adapter->sc_ihs[irq_slot]) {
   2078 			pci_intr_disestablish(adapter->sc_pa.pa_pc,
   2079 			    adapter->sc_ihs[i]);
   2080 			adapter->sc_ihs[i] = NULL;
   2081 		}
   2082 	}
   2083 }
   2084 
   2085 static void
   2086 ena_free_irqs(struct ena_adapter* adapter)
   2087 {
   2088 
   2089 	ena_free_io_irq(adapter);
   2090 	ena_free_mgmnt_irq(adapter);
   2091 	ena_disable_msix(adapter);
   2092 }
   2093 
   2094 static void
   2095 ena_disable_msix(struct ena_adapter *adapter)
   2096 {
   2097 	pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
   2098 	    adapter->sc_nintrs);
   2099 }
   2100 
   2101 static void
   2102 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
   2103 {
   2104 	struct ena_com_io_cq* io_cq;
   2105 	struct ena_eth_io_intr_reg intr_reg;
   2106 	uint16_t ena_qid;
   2107 	int i;
   2108 
   2109 	/* Unmask interrupts for all queues */
   2110 	for (i = 0; i < adapter->num_queues; i++) {
   2111 		ena_qid = ENA_IO_TXQ_IDX(i);
   2112 		io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   2113 		ena_com_update_intr_reg(&intr_reg, 0, 0, true);
   2114 		ena_com_unmask_intr(io_cq, &intr_reg);
   2115 	}
   2116 }
   2117 
   2118 /* Configure the Rx forwarding */
   2119 static int
   2120 ena_rss_configure(struct ena_adapter *adapter)
   2121 {
   2122 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   2123 	int rc;
   2124 
   2125 	/* Set indirect table */
   2126 	rc = ena_com_indirect_table_set(ena_dev);
   2127 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2128 		return (rc);
   2129 
   2130 	/* Configure hash function (if supported) */
   2131 	rc = ena_com_set_hash_function(ena_dev);
   2132 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2133 		return (rc);
   2134 
   2135 	/* Configure hash inputs (if supported) */
   2136 	rc = ena_com_set_hash_ctrl(ena_dev);
   2137 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2138 		return (rc);
   2139 
   2140 	return (0);
   2141 }
   2142 
   2143 static int
   2144 ena_up_complete(struct ena_adapter *adapter)
   2145 {
   2146 	int rc;
   2147 
   2148 	if (likely(adapter->rss_support)) {
   2149 		rc = ena_rss_configure(adapter);
   2150 		if (rc != 0)
   2151 			return (rc);
   2152 	}
   2153 
   2154 	rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
   2155 	if (unlikely(rc != 0))
   2156 		return (rc);
   2157 
   2158 	ena_refill_all_rx_bufs(adapter);
   2159 	ena_reset_counters((struct evcnt *)&adapter->hw_stats,
   2160 	    sizeof(adapter->hw_stats));
   2161 
   2162 	return (0);
   2163 }
   2164 
   2165 static int
   2166 ena_up(struct ena_adapter *adapter)
   2167 {
   2168 	int rc = 0;
   2169 
   2170 #if 0
   2171 	if (unlikely(device_is_attached(adapter->pdev) == 0)) {
   2172 		device_printf(adapter->pdev, "device is not attached!\n");
   2173 		return (ENXIO);
   2174 	}
   2175 #endif
   2176 
   2177 	if (unlikely(!adapter->running)) {
   2178 		device_printf(adapter->pdev, "device is not running!\n");
   2179 		return (ENXIO);
   2180 	}
   2181 
   2182 	if (!adapter->up) {
   2183 		device_printf(adapter->pdev, "device is going UP\n");
   2184 
   2185 		/* setup interrupts for IO queues */
   2186 		rc = ena_request_io_irq(adapter);
   2187 		if (unlikely(rc != 0)) {
   2188 			ena_trace(ENA_ALERT, "err_req_irq");
   2189 			goto err_req_irq;
   2190 		}
   2191 
   2192 		/* allocate transmit descriptors */
   2193 		rc = ena_setup_all_tx_resources(adapter);
   2194 		if (unlikely(rc != 0)) {
   2195 			ena_trace(ENA_ALERT, "err_setup_tx");
   2196 			goto err_setup_tx;
   2197 		}
   2198 
   2199 		/* allocate receive descriptors */
   2200 		rc = ena_setup_all_rx_resources(adapter);
   2201 		if (unlikely(rc != 0)) {
   2202 			ena_trace(ENA_ALERT, "err_setup_rx");
   2203 			goto err_setup_rx;
   2204 		}
   2205 
   2206 		/* create IO queues for Rx & Tx */
   2207 		rc = ena_create_io_queues(adapter);
   2208 		if (unlikely(rc != 0)) {
   2209 			ena_trace(ENA_ALERT,
   2210 			    "create IO queues failed");
   2211 			goto err_io_que;
   2212 		}
   2213 
   2214 		if (unlikely(adapter->link_status))
   2215 			if_link_state_change(adapter->ifp, LINK_STATE_UP);
   2216 
   2217 		rc = ena_up_complete(adapter);
   2218 		if (unlikely(rc != 0))
   2219 			goto err_up_complete;
   2220 
   2221 		counter_u64_add(adapter->dev_stats.interface_up, 1);
   2222 
   2223 		ena_update_hwassist(adapter);
   2224 
   2225 		if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
   2226 		    IFF_OACTIVE);
   2227 
   2228 		callout_reset(&adapter->timer_service, hz,
   2229 		    ena_timer_service, (void *)adapter);
   2230 
   2231 		adapter->up = true;
   2232 
   2233 		ena_unmask_all_io_irqs(adapter);
   2234 	}
   2235 
   2236 	return (0);
   2237 
   2238 err_up_complete:
   2239 	ena_destroy_all_io_queues(adapter);
   2240 err_io_que:
   2241 	ena_free_all_rx_resources(adapter);
   2242 err_setup_rx:
   2243 	ena_free_all_tx_resources(adapter);
   2244 err_setup_tx:
   2245 	ena_free_io_irq(adapter);
   2246 err_req_irq:
   2247 	return (rc);
   2248 }
   2249 
   2250 #if 0
   2251 static uint64_t
   2252 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
   2253 {
   2254 	struct ena_adapter *adapter;
   2255 	struct ena_hw_stats *stats;
   2256 
   2257 	adapter = if_getsoftc(ifp);
   2258 	stats = &adapter->hw_stats;
   2259 
   2260 	switch (cnt) {
   2261 	case IFCOUNTER_IPACKETS:
   2262 		return (counter_u64_fetch(stats->rx_packets));
   2263 	case IFCOUNTER_OPACKETS:
   2264 		return (counter_u64_fetch(stats->tx_packets));
   2265 	case IFCOUNTER_IBYTES:
   2266 		return (counter_u64_fetch(stats->rx_bytes));
   2267 	case IFCOUNTER_OBYTES:
   2268 		return (counter_u64_fetch(stats->tx_bytes));
   2269 	case IFCOUNTER_IQDROPS:
   2270 		return (counter_u64_fetch(stats->rx_drops));
   2271 	default:
   2272 		return (if_get_counter_default(ifp, cnt));
   2273 	}
   2274 }
   2275 #endif
   2276 
   2277 static int
   2278 ena_media_change(struct ifnet *ifp)
   2279 {
   2280 	/* Media Change is not supported by firmware */
   2281 	return (0);
   2282 }
   2283 
   2284 static void
   2285 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
   2286 {
   2287 	struct ena_adapter *adapter = if_getsoftc(ifp);
   2288 	ena_trace(ENA_DBG, "enter");
   2289 
   2290 	mutex_enter(&adapter->global_mtx);
   2291 
   2292 	ifmr->ifm_status = IFM_AVALID;
   2293 	ifmr->ifm_active = IFM_ETHER;
   2294 
   2295 	if (!adapter->link_status) {
   2296 		mutex_exit(&adapter->global_mtx);
   2297 		ena_trace(ENA_INFO, "link_status = false");
   2298 		return;
   2299 	}
   2300 
   2301 	ifmr->ifm_status |= IFM_ACTIVE;
   2302 	ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
   2303 
   2304 	mutex_exit(&adapter->global_mtx);
   2305 }
   2306 
   2307 static int
   2308 ena_init(struct ifnet *ifp)
   2309 {
   2310 	struct ena_adapter *adapter = if_getsoftc(ifp);
   2311 
   2312 	if (!adapter->up) {
   2313 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2314 		ena_up(adapter);
   2315 		rw_exit(&adapter->ioctl_sx);
   2316 	}
   2317 
   2318 	return 0;
   2319 }
   2320 
   2321 static int
   2322 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
   2323 {
   2324 	struct ena_adapter *adapter;
   2325 	struct ifreq *ifr;
   2326 	int rc;
   2327 
   2328 	adapter = ifp->if_softc;
   2329 	ifr = (struct ifreq *)data;
   2330 
   2331 	/*
   2332 	 * Acquiring lock to prevent from running up and down routines parallel.
   2333 	 */
   2334 	rc = 0;
   2335 	switch (command) {
   2336 	case SIOCSIFMTU:
   2337 		if (ifp->if_mtu == ifr->ifr_mtu)
   2338 			break;
   2339 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2340 		ena_down(adapter);
   2341 
   2342 		ena_change_mtu(ifp, ifr->ifr_mtu);
   2343 
   2344 		rc = ena_up(adapter);
   2345 		rw_exit(&adapter->ioctl_sx);
   2346 		break;
   2347 
   2348 	case SIOCSIFFLAGS:
   2349 		if ((ifp->if_flags & IFF_UP) != 0) {
   2350 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
   2351 				if ((ifp->if_flags & (IFF_PROMISC |
   2352 				    IFF_ALLMULTI)) != 0) {
   2353 					device_printf(adapter->pdev,
   2354 					    "ioctl promisc/allmulti\n");
   2355 				}
   2356 			} else {
   2357 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2358 				rc = ena_up(adapter);
   2359 				rw_exit(&adapter->ioctl_sx);
   2360 			}
   2361 		} else {
   2362 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
   2363 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2364 				ena_down(adapter);
   2365 				rw_exit(&adapter->ioctl_sx);
   2366 			}
   2367 		}
   2368 		break;
   2369 
   2370 	case SIOCADDMULTI:
   2371 	case SIOCDELMULTI:
   2372 		break;
   2373 
   2374 	case SIOCSIFCAP:
   2375 		{
   2376 			struct ifcapreq *ifcr = data;
   2377 			int reinit = 0;
   2378 
   2379 			if (ifcr->ifcr_capenable != ifp->if_capenable) {
   2380 				ifp->if_capenable = ifcr->ifcr_capenable;
   2381 				reinit = 1;
   2382 			}
   2383 
   2384 			if ((reinit != 0) &&
   2385 			    ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
   2386 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2387 				ena_down(adapter);
   2388 				rc = ena_up(adapter);
   2389 				rw_exit(&adapter->ioctl_sx);
   2390 			}
   2391 		}
   2392 
   2393 		break;
   2394 	default:
   2395 		rc = ether_ioctl(ifp, command, data);
   2396 		break;
   2397 	}
   2398 
   2399 	return (rc);
   2400 }
   2401 
   2402 static int
   2403 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
   2404 {
   2405 	int caps = 0;
   2406 
   2407 	if ((feat->offload.tx &
   2408 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
   2409 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
   2410 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
   2411 		caps |= IFCAP_CSUM_IPv4_Tx;
   2412 
   2413 	if ((feat->offload.tx &
   2414 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
   2415 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
   2416 		caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
   2417 
   2418 	if ((feat->offload.tx &
   2419 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
   2420 		caps |= IFCAP_TSOv4;
   2421 
   2422 	if ((feat->offload.tx &
   2423 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
   2424 		caps |= IFCAP_TSOv6;
   2425 
   2426 	if ((feat->offload.rx_supported &
   2427 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
   2428 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
   2429 		caps |= IFCAP_CSUM_IPv4_Rx;
   2430 
   2431 	if ((feat->offload.rx_supported &
   2432 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
   2433 		caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
   2434 
   2435 	caps |= IFCAP_LRO;
   2436 
   2437 	return (caps);
   2438 }
   2439 
   2440 static void
   2441 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
   2442 {
   2443 
   2444 	host_info->supported_network_features[0] =
   2445 	    (uint32_t)if_getcapabilities(ifp);
   2446 }
   2447 
   2448 static void
   2449 ena_update_hwassist(struct ena_adapter *adapter)
   2450 {
   2451 	struct ifnet *ifp = adapter->ifp;
   2452 	uint32_t feat = adapter->tx_offload_cap;
   2453 	int cap = if_getcapenable(ifp);
   2454 	int flags = 0;
   2455 
   2456 	if_clearhwassist(ifp);
   2457 
   2458 	if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2459 	    != 0) {
   2460 		if ((feat &
   2461 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
   2462 			flags |= M_CSUM_IPv4;
   2463 		if ((feat &
   2464 		    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
   2465 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
   2466 			flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
   2467 	}
   2468 
   2469 	if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
   2470 		flags |= M_CSUM_TCPv6;
   2471 
   2472 	if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
   2473 		flags |= M_CSUM_UDPv6;
   2474 
   2475 	if ((cap & IFCAP_TSOv4) != 0)
   2476 		flags |= M_CSUM_TSOv4;
   2477 
   2478 	if ((cap & IFCAP_TSOv6) != 0)
   2479 		flags |= M_CSUM_TSOv6;
   2480 
   2481 	if_sethwassistbits(ifp, flags, 0);
   2482 }
   2483 
   2484 static int
   2485 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
   2486     struct ena_com_dev_get_features_ctx *feat)
   2487 {
   2488 	struct ifnet *ifp;
   2489 	int caps = 0;
   2490 
   2491 	ifp = adapter->ifp = &adapter->sc_ec.ec_if;
   2492 	if (unlikely(ifp == NULL)) {
   2493 		ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
   2494 		return (ENXIO);
   2495 	}
   2496 	if_initname(ifp, "ena", device_unit(pdev));
   2497 	if_setdev(ifp, pdev);
   2498 	if_setsoftc(ifp, adapter);
   2499 
   2500 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
   2501 	if_setinitfn(ifp, ena_init);
   2502 	if_settransmitfn(ifp, ena_mq_start);
   2503 #if 0
   2504 	if_setqflushfn(ifp, ena_qflush);
   2505 #endif
   2506 	if_setioctlfn(ifp, ena_ioctl);
   2507 #if 0
   2508 	if_setgetcounterfn(ifp, ena_get_counter);
   2509 #endif
   2510 
   2511 	if_setsendqlen(ifp, adapter->tx_ring_size);
   2512 	if_setsendqready(ifp);
   2513 	if_setmtu(ifp, ETHERMTU);
   2514 	if_setbaudrate(ifp, 0);
   2515 	/* Zeroize capabilities... */
   2516 	if_setcapabilities(ifp, 0);
   2517 	if_setcapenable(ifp, 0);
   2518 	/* check hardware support */
   2519 	caps = ena_get_dev_offloads(feat);
   2520 	/* ... and set them */
   2521 	if_setcapabilitiesbit(ifp, caps, 0);
   2522 	adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2523 
   2524 #if 0
   2525 	/* TSO parameters */
   2526 	/* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
   2527 	ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
   2528 	    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
   2529 	ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
   2530 	ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
   2531 #endif
   2532 
   2533 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
   2534 	if_setcapenable(ifp, if_getcapabilities(ifp));
   2535 
   2536 	/*
   2537 	 * Specify the media types supported by this adapter and register
   2538 	 * callbacks to update media and link information
   2539 	 */
   2540 	adapter->sc_ec.ec_ifmedia = &adapter->media;
   2541 	ifmedia_init(&adapter->media, IFM_IMASK,
   2542 	    ena_media_change, ena_media_status);
   2543 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
   2544 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
   2545 
   2546 	if_attach(ifp);
   2547 	if_deferred_start_init(ifp, NULL);
   2548 
   2549 	ether_ifattach(ifp, adapter->mac_addr);
   2550 
   2551 	return (0);
   2552 }
   2553 
   2554 static void
   2555 ena_down(struct ena_adapter *adapter)
   2556 {
   2557 	int rc;
   2558 
   2559 	if (adapter->up) {
   2560 		device_printf(adapter->pdev, "device is going DOWN\n");
   2561 
   2562 		callout_halt(&adapter->timer_service, &adapter->global_mtx);
   2563 
   2564 		adapter->up = false;
   2565 		if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
   2566 		    IFF_RUNNING);
   2567 
   2568 		ena_free_io_irq(adapter);
   2569 
   2570 		if (adapter->trigger_reset) {
   2571 			rc = ena_com_dev_reset(adapter->ena_dev,
   2572 			    adapter->reset_reason);
   2573 			if (unlikely(rc != 0))
   2574 				device_printf(adapter->pdev,
   2575 				    "Device reset failed\n");
   2576 		}
   2577 
   2578 		ena_destroy_all_io_queues(adapter);
   2579 
   2580 		ena_free_all_tx_bufs(adapter);
   2581 		ena_free_all_rx_bufs(adapter);
   2582 		ena_free_all_tx_resources(adapter);
   2583 		ena_free_all_rx_resources(adapter);
   2584 
   2585 		counter_u64_add(adapter->dev_stats.interface_down, 1);
   2586 	}
   2587 }
   2588 
   2589 static void
   2590 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
   2591 {
   2592 	struct ena_com_tx_meta *ena_meta;
   2593 	struct ether_vlan_header *eh;
   2594 	u32 mss;
   2595 	bool offload;
   2596 	uint16_t etype;
   2597 	int ehdrlen;
   2598 	struct ip *ip;
   2599 	int iphlen;
   2600 	struct tcphdr *th;
   2601 
   2602 	offload = false;
   2603 	ena_meta = &ena_tx_ctx->ena_meta;
   2604 
   2605 #if 0
   2606 	u32 mss = mbuf->m_pkthdr.tso_segsz;
   2607 
   2608 	if (mss != 0)
   2609 		offload = true;
   2610 #else
   2611 	mss = mbuf->m_pkthdr.len;	/* XXX don't have tso_segsz */
   2612 #endif
   2613 
   2614 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
   2615 		offload = true;
   2616 
   2617 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
   2618 		offload = true;
   2619 
   2620 	if (!offload) {
   2621 		ena_tx_ctx->meta_valid = 0;
   2622 		return;
   2623 	}
   2624 
   2625 	/* Determine where frame payload starts. */
   2626 	eh = mtod(mbuf, struct ether_vlan_header *);
   2627 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
   2628 		etype = ntohs(eh->evl_proto);
   2629 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   2630 	} else {
   2631 		etype = htons(eh->evl_encap_proto);
   2632 		ehdrlen = ETHER_HDR_LEN;
   2633 	}
   2634 
   2635 	ip = (struct ip *)(mbuf->m_data + ehdrlen);
   2636 	iphlen = ip->ip_hl << 2;
   2637 	th = (struct tcphdr *)((vaddr_t)ip + iphlen);
   2638 
   2639 	if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
   2640 		ena_tx_ctx->l3_csum_enable = 1;
   2641 	}
   2642 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
   2643 		ena_tx_ctx->tso_enable = 1;
   2644 		ena_meta->l4_hdr_len = (th->th_off);
   2645 	}
   2646 
   2647 	switch (etype) {
   2648 	case ETHERTYPE_IP:
   2649 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
   2650 		if ((ip->ip_off & htons(IP_DF)) != 0)
   2651 			ena_tx_ctx->df = 1;
   2652 		break;
   2653 	case ETHERTYPE_IPV6:
   2654 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
   2655 
   2656 	default:
   2657 		break;
   2658 	}
   2659 
   2660 	if (ip->ip_p == IPPROTO_TCP) {
   2661 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
   2662 		if ((mbuf->m_pkthdr.csum_flags &
   2663 		    (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
   2664 			ena_tx_ctx->l4_csum_enable = 1;
   2665 		else
   2666 			ena_tx_ctx->l4_csum_enable = 0;
   2667 	} else if (ip->ip_p == IPPROTO_UDP) {
   2668 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
   2669 		if ((mbuf->m_pkthdr.csum_flags &
   2670 		    (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
   2671 			ena_tx_ctx->l4_csum_enable = 1;
   2672 		else
   2673 			ena_tx_ctx->l4_csum_enable = 0;
   2674 	} else {
   2675 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
   2676 		ena_tx_ctx->l4_csum_enable = 0;
   2677 	}
   2678 
   2679 	ena_meta->mss = mss;
   2680 	ena_meta->l3_hdr_len = iphlen;
   2681 	ena_meta->l3_hdr_offset = ehdrlen;
   2682 	ena_tx_ctx->meta_valid = 1;
   2683 }
   2684 
   2685 static int
   2686 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
   2687 {
   2688 	struct ena_adapter *adapter;
   2689 	struct mbuf *collapsed_mbuf;
   2690 	int num_frags;
   2691 
   2692 	adapter = tx_ring->adapter;
   2693 	num_frags = ena_mbuf_count(*mbuf);
   2694 
   2695 	/* One segment must be reserved for configuration descriptor. */
   2696 	if (num_frags < adapter->max_tx_sgl_size)
   2697 		return (0);
   2698 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
   2699 
   2700 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
   2701 	    adapter->max_tx_sgl_size - 1);
   2702 	if (unlikely(collapsed_mbuf == NULL)) {
   2703 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
   2704 		return (ENOMEM);
   2705 	}
   2706 
   2707 	/* If mbuf was collapsed succesfully, original mbuf is released. */
   2708 	*mbuf = collapsed_mbuf;
   2709 
   2710 	return (0);
   2711 }
   2712 
   2713 static int
   2714 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
   2715 {
   2716 	struct ena_adapter *adapter;
   2717 	struct ena_tx_buffer *tx_info;
   2718 	struct ena_com_tx_ctx ena_tx_ctx;
   2719 	struct ena_com_dev *ena_dev;
   2720 	struct ena_com_buf *ena_buf;
   2721 	struct ena_com_io_sq* io_sq;
   2722 	void *push_hdr;
   2723 	uint16_t next_to_use;
   2724 	uint16_t req_id;
   2725 	uint16_t ena_qid;
   2726 	uint32_t header_len;
   2727 	int i, rc;
   2728 	int nb_hw_desc;
   2729 
   2730 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   2731 	adapter = tx_ring->que->adapter;
   2732 	ena_dev = adapter->ena_dev;
   2733 	io_sq = &ena_dev->io_sq_queues[ena_qid];
   2734 
   2735 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
   2736 	if (unlikely(rc != 0)) {
   2737 		ena_trace(ENA_WARNING,
   2738 		    "Failed to collapse mbuf! err: %d", rc);
   2739 		return (rc);
   2740 	}
   2741 
   2742 	next_to_use = tx_ring->next_to_use;
   2743 	req_id = tx_ring->free_tx_ids[next_to_use];
   2744 	tx_info = &tx_ring->tx_buffer_info[req_id];
   2745 
   2746 	tx_info->mbuf = *mbuf;
   2747 	tx_info->num_of_bufs = 0;
   2748 
   2749 	ena_buf = tx_info->bufs;
   2750 
   2751 	ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
   2752 
   2753 	/*
   2754 	 * header_len is just a hint for the device. Because FreeBSD is not
   2755 	 * giving us information about packet header length and it is not
   2756 	 * guaranteed that all packet headers will be in the 1st mbuf, setting
   2757 	 * header_len to 0 is making the device ignore this value and resolve
   2758 	 * header on it's own.
   2759 	 */
   2760 	header_len = 0;
   2761 	push_hdr = NULL;
   2762 
   2763 	rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
   2764 	    *mbuf, BUS_DMA_NOWAIT);
   2765 
   2766 	if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
   2767 		ena_trace(ENA_WARNING,
   2768 		    "dmamap load failed! err: %d nsegs: %d", rc,
   2769 		    tx_info->map->dm_nsegs);
   2770 		counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
   2771 		tx_info->mbuf = NULL;
   2772 		if (rc == ENOMEM)
   2773 			return (ENA_COM_NO_MEM);
   2774 		else
   2775 			return (ENA_COM_INVAL);
   2776 	}
   2777 
   2778 	for (i = 0; i < tx_info->map->dm_nsegs; i++) {
   2779 		ena_buf->len = tx_info->map->dm_segs[i].ds_len;
   2780 		ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
   2781 		ena_buf++;
   2782 	}
   2783 	tx_info->num_of_bufs = tx_info->map->dm_nsegs;
   2784 
   2785 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
   2786 	ena_tx_ctx.ena_bufs = tx_info->bufs;
   2787 	ena_tx_ctx.push_header = push_hdr;
   2788 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
   2789 	ena_tx_ctx.req_id = req_id;
   2790 	ena_tx_ctx.header_len = header_len;
   2791 
   2792 	/* Set flags and meta data */
   2793 	ena_tx_csum(&ena_tx_ctx, *mbuf);
   2794 	/* Prepare the packet's descriptors and send them to device */
   2795 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
   2796 	if (unlikely(rc != 0)) {
   2797 		device_printf(adapter->pdev, "failed to prepare tx bufs\n");
   2798 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
   2799 		goto dma_error;
   2800 	}
   2801 
   2802 	counter_enter();
   2803 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
   2804 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
   2805 	    (*mbuf)->m_pkthdr.len);
   2806 
   2807 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
   2808 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
   2809 	    (*mbuf)->m_pkthdr.len);
   2810 	counter_exit();
   2811 
   2812 	tx_info->tx_descs = nb_hw_desc;
   2813 	getbinuptime(&tx_info->timestamp);
   2814 	tx_info->print_once = true;
   2815 
   2816 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
   2817 	    tx_ring->ring_size);
   2818 
   2819 	bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
   2820 	    tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2821 
   2822 	return (0);
   2823 
   2824 dma_error:
   2825 	tx_info->mbuf = NULL;
   2826 	bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   2827 
   2828 	return (rc);
   2829 }
   2830 
   2831 static void
   2832 ena_start_xmit(struct ena_ring *tx_ring)
   2833 {
   2834 	struct mbuf *mbuf;
   2835 	struct ena_adapter *adapter = tx_ring->adapter;
   2836 	struct ena_com_io_sq* io_sq;
   2837 	int ena_qid;
   2838 	int acum_pkts = 0;
   2839 	int ret = 0;
   2840 
   2841 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
   2842 		return;
   2843 
   2844 	if (unlikely(!adapter->link_status))
   2845 		return;
   2846 
   2847 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   2848 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
   2849 
   2850 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
   2851 		ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
   2852 		    " header csum flags %#jx",
   2853 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
   2854 
   2855 		if (unlikely(!ena_com_sq_have_enough_space(io_sq,
   2856 		    ENA_TX_CLEANUP_THRESHOLD)))
   2857 			ena_tx_cleanup(tx_ring);
   2858 
   2859 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
   2860 			if (ret == ENA_COM_NO_MEM) {
   2861 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
   2862 			} else if (ret == ENA_COM_NO_SPACE) {
   2863 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
   2864 			} else {
   2865 				m_freem(mbuf);
   2866 				drbr_advance(adapter->ifp, tx_ring->br);
   2867 			}
   2868 
   2869 			break;
   2870 		}
   2871 
   2872 		drbr_advance(adapter->ifp, tx_ring->br);
   2873 
   2874 		if (unlikely((if_getdrvflags(adapter->ifp) &
   2875 		    IFF_RUNNING) == 0))
   2876 			return;
   2877 
   2878 		acum_pkts++;
   2879 
   2880 		/*
   2881 		 * If there's a BPF listener, bounce a copy of this frame
   2882 		 * to him.
   2883 		 */
   2884 		bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
   2885 
   2886 		if (unlikely(acum_pkts == DB_THRESHOLD)) {
   2887 			acum_pkts = 0;
   2888 			wmb();
   2889 			/* Trigger the dma engine */
   2890 			ena_com_write_sq_doorbell(io_sq);
   2891 			counter_u64_add(tx_ring->tx_stats.doorbells, 1);
   2892 		}
   2893 
   2894 	}
   2895 
   2896 	if (likely(acum_pkts != 0)) {
   2897 		wmb();
   2898 		/* Trigger the dma engine */
   2899 		ena_com_write_sq_doorbell(io_sq);
   2900 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
   2901 	}
   2902 
   2903 	if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
   2904 		ena_tx_cleanup(tx_ring);
   2905 }
   2906 
   2907 static void
   2908 ena_deferred_mq_start(struct work *wk, void *arg)
   2909 {
   2910 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
   2911 	struct ifnet *ifp = tx_ring->adapter->ifp;
   2912 
   2913 	atomic_swap_uint(&tx_ring->task_pending, 0);
   2914 
   2915 	while (!drbr_empty(ifp, tx_ring->br) &&
   2916 	    (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
   2917 		ENA_RING_MTX_LOCK(tx_ring);
   2918 		ena_start_xmit(tx_ring);
   2919 		ENA_RING_MTX_UNLOCK(tx_ring);
   2920 	}
   2921 }
   2922 
   2923 static int
   2924 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
   2925 {
   2926 	struct ena_adapter *adapter = ifp->if_softc;
   2927 	struct ena_ring *tx_ring;
   2928 	int ret, is_drbr_empty;
   2929 	uint32_t i;
   2930 
   2931 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
   2932 		return (ENODEV);
   2933 
   2934 	/* Which queue to use */
   2935 	/*
   2936 	 * If everything is setup correctly, it should be the
   2937 	 * same bucket that the current CPU we're on is.
   2938 	 * It should improve performance.
   2939 	 */
   2940 #if 0
   2941 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
   2942 #ifdef	RSS
   2943 		if (rss_hash2bucket(m->m_pkthdr.flowid,
   2944 		    M_HASHTYPE_GET(m), &i) == 0) {
   2945 			i = i % adapter->num_queues;
   2946 
   2947 		} else
   2948 #endif
   2949 		{
   2950 			i = m->m_pkthdr.flowid % adapter->num_queues;
   2951 		}
   2952 	} else {
   2953 #endif
   2954 		i = cpu_index(curcpu()) % adapter->num_queues;
   2955 #if 0
   2956 	}
   2957 #endif
   2958 	tx_ring = &adapter->tx_ring[i];
   2959 
   2960 	/* Check if drbr is empty before putting packet */
   2961 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
   2962 	ret = drbr_enqueue(ifp, tx_ring->br, m);
   2963 	if (unlikely(ret != 0)) {
   2964 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   2965 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
   2966 			    curcpu());
   2967 		return (ret);
   2968 	}
   2969 
   2970 	if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
   2971 		ena_start_xmit(tx_ring);
   2972 		ENA_RING_MTX_UNLOCK(tx_ring);
   2973 	} else {
   2974 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   2975 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
   2976 			    curcpu());
   2977 	}
   2978 
   2979 	return (0);
   2980 }
   2981 
   2982 #if 0
   2983 static void
   2984 ena_qflush(struct ifnet *ifp)
   2985 {
   2986 	struct ena_adapter *adapter = ifp->if_softc;
   2987 	struct ena_ring *tx_ring = adapter->tx_ring;
   2988 	int i;
   2989 
   2990 	for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
   2991 		if (!drbr_empty(ifp, tx_ring->br)) {
   2992 			ENA_RING_MTX_LOCK(tx_ring);
   2993 			drbr_flush(ifp, tx_ring->br);
   2994 			ENA_RING_MTX_UNLOCK(tx_ring);
   2995 		}
   2996 
   2997 	if_qflush(ifp);
   2998 }
   2999 #endif
   3000 
   3001 static int
   3002 ena_calc_io_queue_num(struct pci_attach_args *pa,
   3003     struct ena_adapter *adapter,
   3004     struct ena_com_dev_get_features_ctx *get_feat_ctx)
   3005 {
   3006 	int io_sq_num, io_cq_num, io_queue_num;
   3007 
   3008 	io_sq_num = get_feat_ctx->max_queues.max_sq_num;
   3009 	io_cq_num = get_feat_ctx->max_queues.max_cq_num;
   3010 
   3011 	io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
   3012 	io_queue_num = min_t(int, io_queue_num, io_sq_num);
   3013 	io_queue_num = min_t(int, io_queue_num, io_cq_num);
   3014 	/* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */
   3015 	io_queue_num = min_t(int, io_queue_num,
   3016 	    pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
   3017 #ifdef	RSS
   3018 	io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets());
   3019 #endif
   3020 
   3021 	return (io_queue_num);
   3022 }
   3023 
   3024 static int
   3025 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
   3026     uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
   3027 {
   3028 	uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
   3029 	uint32_t v;
   3030 	uint32_t q;
   3031 
   3032 	queue_size = min_t(uint32_t, queue_size,
   3033 	    feat->max_queues.max_cq_depth);
   3034 	queue_size = min_t(uint32_t, queue_size,
   3035 	    feat->max_queues.max_sq_depth);
   3036 
   3037 	/* round down to the nearest power of 2 */
   3038 	v = queue_size;
   3039 	while (v != 0) {
   3040 		if (powerof2(queue_size) != 0)
   3041 			break;
   3042 		v /= 2;
   3043 		q = rounddown2(queue_size, v);
   3044 		if (q != 0) {
   3045 			queue_size = q;
   3046 			break;
   3047 		}
   3048 	}
   3049 
   3050 	if (unlikely(queue_size == 0)) {
   3051 		device_printf(adapter->pdev, "Invalid queue size\n");
   3052 		return (ENA_COM_FAULT);
   3053 	}
   3054 
   3055 	*max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
   3056 	    feat->max_queues.max_packet_tx_descs);
   3057 	*max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
   3058 	    feat->max_queues.max_packet_rx_descs);
   3059 
   3060 	return (queue_size);
   3061 }
   3062 
   3063 #if 0
   3064 static int
   3065 ena_rss_init_default(struct ena_adapter *adapter)
   3066 {
   3067 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3068 	device_t dev = adapter->pdev;
   3069 	int qid, rc, i;
   3070 
   3071 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
   3072 	if (unlikely(rc != 0)) {
   3073 		device_printf(dev, "Cannot init indirect table\n");
   3074 		return (rc);
   3075 	}
   3076 
   3077 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
   3078 #ifdef	RSS
   3079 		qid = rss_get_indirection_to_bucket(i);
   3080 		qid = qid % adapter->num_queues;
   3081 #else
   3082 		qid = i % adapter->num_queues;
   3083 #endif
   3084 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
   3085 		    ENA_IO_RXQ_IDX(qid));
   3086 		if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3087 			device_printf(dev, "Cannot fill indirect table\n");
   3088 			goto err_rss_destroy;
   3089 		}
   3090 	}
   3091 
   3092 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
   3093 	    ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
   3094 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3095 		device_printf(dev, "Cannot fill hash function\n");
   3096 		goto err_rss_destroy;
   3097 	}
   3098 
   3099 	rc = ena_com_set_default_hash_ctrl(ena_dev);
   3100 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3101 		device_printf(dev, "Cannot fill hash control\n");
   3102 		goto err_rss_destroy;
   3103 	}
   3104 
   3105 	return (0);
   3106 
   3107 err_rss_destroy:
   3108 	ena_com_rss_destroy(ena_dev);
   3109 	return (rc);
   3110 }
   3111 
   3112 static void
   3113 ena_rss_init_default_deferred(void *arg)
   3114 {
   3115 	struct ena_adapter *adapter;
   3116 	devclass_t dc;
   3117 	int max;
   3118 	int rc;
   3119 
   3120 	dc = devclass_find("ena");
   3121 	if (unlikely(dc == NULL)) {
   3122 		ena_trace(ENA_ALERT, "No devclass ena\n");
   3123 		return;
   3124 	}
   3125 
   3126 	max = devclass_get_maxunit(dc);
   3127 	while (max-- >= 0) {
   3128 		adapter = devclass_get_softc(dc, max);
   3129 		if (adapter != NULL) {
   3130 			rc = ena_rss_init_default(adapter);
   3131 			adapter->rss_support = true;
   3132 			if (unlikely(rc != 0)) {
   3133 				device_printf(adapter->pdev,
   3134 				    "WARNING: RSS was not properly initialized,"
   3135 				    " it will affect bandwidth\n");
   3136 				adapter->rss_support = false;
   3137 			}
   3138 		}
   3139 	}
   3140 }
   3141 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL);
   3142 #endif
   3143 
   3144 static void
   3145 ena_config_host_info(struct ena_com_dev *ena_dev)
   3146 {
   3147 	struct ena_admin_host_info *host_info;
   3148 	int rc;
   3149 
   3150 	/* Allocate only the host info */
   3151 	rc = ena_com_allocate_host_info(ena_dev);
   3152 	if (unlikely(rc != 0)) {
   3153 		ena_trace(ENA_ALERT, "Cannot allocate host info\n");
   3154 		return;
   3155 	}
   3156 
   3157 	host_info = ena_dev->host_attr.host_info;
   3158 
   3159 	host_info->os_type = ENA_ADMIN_OS_FREEBSD;
   3160 	host_info->kernel_ver = osreldate;
   3161 
   3162 	snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
   3163 	    "%d", osreldate);
   3164 	host_info->os_dist = 0;
   3165 	strncpy(host_info->os_dist_str, osrelease,
   3166 	    sizeof(host_info->os_dist_str) - 1);
   3167 
   3168 	host_info->driver_version =
   3169 		(DRV_MODULE_VER_MAJOR) |
   3170 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
   3171 		(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
   3172 
   3173 	rc = ena_com_set_host_attributes(ena_dev);
   3174 	if (unlikely(rc != 0)) {
   3175 		if (rc == EOPNOTSUPP)
   3176 			ena_trace(ENA_WARNING, "Cannot set host attributes\n");
   3177 		else
   3178 			ena_trace(ENA_ALERT, "Cannot set host attributes\n");
   3179 
   3180 		goto err;
   3181 	}
   3182 
   3183 	return;
   3184 
   3185 err:
   3186 	ena_com_delete_host_info(ena_dev);
   3187 }
   3188 
   3189 static int
   3190 ena_device_init(struct ena_adapter *adapter, device_t pdev,
   3191     struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
   3192 {
   3193 	struct ena_com_dev* ena_dev = adapter->ena_dev;
   3194 	bool readless_supported;
   3195 	uint32_t aenq_groups;
   3196 	int dma_width;
   3197 	int rc;
   3198 
   3199 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
   3200 	if (unlikely(rc != 0)) {
   3201 		device_printf(pdev, "failed to init mmio read less\n");
   3202 		return (rc);
   3203 	}
   3204 
   3205 	/*
   3206 	 * The PCIe configuration space revision id indicate if mmio reg
   3207 	 * read is disabled
   3208 	 */
   3209 	const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
   3210 	readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
   3211 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
   3212 
   3213 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
   3214 	if (unlikely(rc != 0)) {
   3215 		device_printf(pdev, "Can not reset device\n");
   3216 		goto err_mmio_read_less;
   3217 	}
   3218 
   3219 	rc = ena_com_validate_version(ena_dev);
   3220 	if (unlikely(rc != 0)) {
   3221 		device_printf(pdev, "device version is too low\n");
   3222 		goto err_mmio_read_less;
   3223 	}
   3224 
   3225 	dma_width = ena_com_get_dma_width(ena_dev);
   3226 	if (unlikely(dma_width < 0)) {
   3227 		device_printf(pdev, "Invalid dma width value %d", dma_width);
   3228 		rc = dma_width;
   3229 		goto err_mmio_read_less;
   3230 	}
   3231 	adapter->dma_width = dma_width;
   3232 
   3233 	/* ENA admin level init */
   3234 	rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
   3235 	if (unlikely(rc != 0)) {
   3236 		device_printf(pdev,
   3237 		    "Can not initialize ena admin queue with device\n");
   3238 		goto err_mmio_read_less;
   3239 	}
   3240 
   3241 	/*
   3242 	 * To enable the msix interrupts the driver needs to know the number
   3243 	 * of queues. So the driver uses polling mode to retrieve this
   3244 	 * information
   3245 	 */
   3246 	ena_com_set_admin_polling_mode(ena_dev, true);
   3247 
   3248 	ena_config_host_info(ena_dev);
   3249 
   3250 	/* Get Device Attributes */
   3251 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
   3252 	if (unlikely(rc != 0)) {
   3253 		device_printf(pdev,
   3254 		    "Cannot get attribute for ena device rc: %d\n", rc);
   3255 		goto err_admin_init;
   3256 	}
   3257 
   3258 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
   3259 
   3260 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
   3261 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
   3262 	if (unlikely(rc != 0)) {
   3263 		device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
   3264 		goto err_admin_init;
   3265 	}
   3266 
   3267 	*wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
   3268 
   3269 	return (0);
   3270 
   3271 err_admin_init:
   3272 	ena_com_delete_host_info(ena_dev);
   3273 	ena_com_admin_destroy(ena_dev);
   3274 err_mmio_read_less:
   3275 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3276 
   3277 	return (rc);
   3278 }
   3279 
   3280 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
   3281     int io_vectors)
   3282 {
   3283 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3284 	int rc;
   3285 
   3286 	rc = ena_enable_msix(adapter);
   3287 	if (unlikely(rc != 0)) {
   3288 		device_printf(adapter->pdev, "Error with MSI-X enablement\n");
   3289 		return (rc);
   3290 	}
   3291 
   3292 	rc = ena_request_mgmnt_irq(adapter);
   3293 	if (unlikely(rc != 0)) {
   3294 		device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
   3295 		goto err_disable_msix;
   3296 	}
   3297 
   3298 	ena_com_set_admin_polling_mode(ena_dev, false);
   3299 
   3300 	ena_com_admin_aenq_enable(ena_dev);
   3301 
   3302 	return (0);
   3303 
   3304 err_disable_msix:
   3305 	ena_disable_msix(adapter);
   3306 
   3307 	return (rc);
   3308 }
   3309 
   3310 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
   3311 static void ena_keep_alive_wd(void *adapter_data,
   3312     struct ena_admin_aenq_entry *aenq_e)
   3313 {
   3314 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
   3315 	struct ena_admin_aenq_keep_alive_desc *desc;
   3316 	sbintime_t stime;
   3317 	uint64_t rx_drops;
   3318 
   3319 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
   3320 
   3321 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
   3322 	counter_u64_zero(adapter->hw_stats.rx_drops);
   3323 	counter_u64_add(adapter->hw_stats.rx_drops, rx_drops);
   3324 
   3325 	stime = getsbinuptime();
   3326 	(void) atomic_swap_64(&adapter->keep_alive_timestamp, stime);
   3327 }
   3328 
   3329 /* Check for keep alive expiration */
   3330 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
   3331 {
   3332 	sbintime_t timestamp, time;
   3333 
   3334 	if (adapter->wd_active == 0)
   3335 		return;
   3336 
   3337 	if (likely(adapter->keep_alive_timeout == 0))
   3338 		return;
   3339 
   3340 	/* FreeBSD uses atomic_load_acq_64() in place of the membar + read */
   3341 	membar_sync();
   3342 	timestamp = adapter->keep_alive_timestamp;
   3343 
   3344 	time = getsbinuptime() - timestamp;
   3345 	if (unlikely(time > adapter->keep_alive_timeout)) {
   3346 		device_printf(adapter->pdev,
   3347 		    "Keep alive watchdog timeout.\n");
   3348 		counter_u64_add(adapter->dev_stats.wd_expired, 1);
   3349 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
   3350 		adapter->trigger_reset = true;
   3351 	}
   3352 }
   3353 
   3354 /* Check if admin queue is enabled */
   3355 static void check_for_admin_com_state(struct ena_adapter *adapter)
   3356 {
   3357 	if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
   3358 	    false)) {
   3359 		device_printf(adapter->pdev,
   3360 		    "ENA admin queue is not in running state!\n");
   3361 		counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
   3362 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
   3363 		adapter->trigger_reset = true;
   3364 	}
   3365 }
   3366 
   3367 static int
   3368 check_missing_comp_in_queue(struct ena_adapter *adapter,
   3369     struct ena_ring *tx_ring)
   3370 {
   3371 	struct bintime curtime, time;
   3372 	struct ena_tx_buffer *tx_buf;
   3373 	uint32_t missed_tx = 0;
   3374 	int i;
   3375 
   3376 	getbinuptime(&curtime);
   3377 
   3378 	for (i = 0; i < tx_ring->ring_size; i++) {
   3379 		tx_buf = &tx_ring->tx_buffer_info[i];
   3380 
   3381 		if (bintime_isset(&tx_buf->timestamp) == 0)
   3382 			continue;
   3383 
   3384 		time = curtime;
   3385 		bintime_sub(&time, &tx_buf->timestamp);
   3386 
   3387 		/* Check again if packet is still waiting */
   3388 		if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
   3389 
   3390 			if (!tx_buf->print_once)
   3391 				ena_trace(ENA_WARNING, "Found a Tx that wasn't "
   3392 				    "completed on time, qid %d, index %d.\n",
   3393 				    tx_ring->qid, i);
   3394 
   3395 			tx_buf->print_once = true;
   3396 			missed_tx++;
   3397 			counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
   3398 
   3399 			if (unlikely(missed_tx >
   3400 			    adapter->missing_tx_threshold)) {
   3401 				device_printf(adapter->pdev,
   3402 				    "The number of lost tx completion "
   3403 				    "is above the threshold (%d > %d). "
   3404 				    "Reset the device\n",
   3405 				    missed_tx, adapter->missing_tx_threshold);
   3406 				adapter->reset_reason =
   3407 				    ENA_REGS_RESET_MISS_TX_CMPL;
   3408 				adapter->trigger_reset = true;
   3409 				return (EIO);
   3410 			}
   3411 		}
   3412 	}
   3413 
   3414 	return (0);
   3415 }
   3416 
   3417 /*
   3418  * Check for TX which were not completed on time.
   3419  * Timeout is defined by "missing_tx_timeout".
   3420  * Reset will be performed if number of incompleted
   3421  * transactions exceeds "missing_tx_threshold".
   3422  */
   3423 static void
   3424 check_for_missing_tx_completions(struct ena_adapter *adapter)
   3425 {
   3426 	struct ena_ring *tx_ring;
   3427 	int i, budget, rc;
   3428 
   3429 	/* Make sure the driver doesn't turn the device in other process */
   3430 	rmb();
   3431 
   3432 	if (!adapter->up)
   3433 		return;
   3434 
   3435 	if (adapter->trigger_reset)
   3436 		return;
   3437 
   3438 	if (adapter->missing_tx_timeout == 0)
   3439 		return;
   3440 
   3441 	budget = adapter->missing_tx_max_queues;
   3442 
   3443 	for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
   3444 		tx_ring = &adapter->tx_ring[i];
   3445 
   3446 		rc = check_missing_comp_in_queue(adapter, tx_ring);
   3447 		if (unlikely(rc != 0))
   3448 			return;
   3449 
   3450 		budget--;
   3451 		if (budget == 0) {
   3452 			i++;
   3453 			break;
   3454 		}
   3455 	}
   3456 
   3457 	adapter->next_monitored_tx_qid = i % adapter->num_queues;
   3458 }
   3459 
   3460 /* trigger deferred rx cleanup after 2 consecutive detections */
   3461 #define EMPTY_RX_REFILL 2
   3462 /* For the rare case where the device runs out of Rx descriptors and the
   3463  * msix handler failed to refill new Rx descriptors (due to a lack of memory
   3464  * for example).
   3465  * This case will lead to a deadlock:
   3466  * The device won't send interrupts since all the new Rx packets will be dropped
   3467  * The msix handler won't allocate new Rx descriptors so the device won't be
   3468  * able to send new packets.
   3469  *
   3470  * When such a situation is detected - execute rx cleanup task in another thread
   3471  */
   3472 static void
   3473 check_for_empty_rx_ring(struct ena_adapter *adapter)
   3474 {
   3475 	struct ena_ring *rx_ring;
   3476 	int i, refill_required;
   3477 
   3478 	if (!adapter->up)
   3479 		return;
   3480 
   3481 	if (adapter->trigger_reset)
   3482 		return;
   3483 
   3484 	for (i = 0; i < adapter->num_queues; i++) {
   3485 		rx_ring = &adapter->rx_ring[i];
   3486 
   3487 		refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
   3488 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
   3489 			rx_ring->empty_rx_queue++;
   3490 
   3491 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL)	{
   3492 				counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
   3493 				    1);
   3494 
   3495 				device_printf(adapter->pdev,
   3496 				    "trigger refill for ring %d\n", i);
   3497 
   3498 				if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
   3499 					workqueue_enqueue(rx_ring->cmpl_tq,
   3500 					    &rx_ring->cmpl_task, curcpu());
   3501 				rx_ring->empty_rx_queue = 0;
   3502 			}
   3503 		} else {
   3504 			rx_ring->empty_rx_queue = 0;
   3505 		}
   3506 	}
   3507 }
   3508 
   3509 static void
   3510 ena_timer_service(void *data)
   3511 {
   3512 	struct ena_adapter *adapter = (struct ena_adapter *)data;
   3513 	struct ena_admin_host_info *host_info =
   3514 	    adapter->ena_dev->host_attr.host_info;
   3515 
   3516 	check_for_missing_keep_alive(adapter);
   3517 
   3518 	check_for_admin_com_state(adapter);
   3519 
   3520 	check_for_missing_tx_completions(adapter);
   3521 
   3522 	check_for_empty_rx_ring(adapter);
   3523 
   3524 	if (host_info != NULL)
   3525 		ena_update_host_info(host_info, adapter->ifp);
   3526 
   3527 	if (unlikely(adapter->trigger_reset)) {
   3528 		device_printf(adapter->pdev, "Trigger reset is on\n");
   3529 		workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
   3530 		    curcpu());
   3531 		return;
   3532 	}
   3533 
   3534 	/*
   3535 	 * Schedule another timeout one second from now.
   3536 	 */
   3537 	callout_schedule(&adapter->timer_service, hz);
   3538 }
   3539 
   3540 static void
   3541 ena_reset_task(struct work *wk, void *arg)
   3542 {
   3543 	struct ena_com_dev_get_features_ctx get_feat_ctx;
   3544 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
   3545 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3546 	bool dev_up;
   3547 	int rc;
   3548 
   3549 	if (unlikely(!adapter->trigger_reset)) {
   3550 		device_printf(adapter->pdev,
   3551 		    "device reset scheduled but trigger_reset is off\n");
   3552 		return;
   3553 	}
   3554 
   3555 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
   3556 
   3557 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
   3558 
   3559 	dev_up = adapter->up;
   3560 
   3561 	ena_com_set_admin_running_state(ena_dev, false);
   3562 	ena_down(adapter);
   3563 	ena_free_mgmnt_irq(adapter);
   3564 	ena_disable_msix(adapter);
   3565 	ena_com_abort_admin_commands(ena_dev);
   3566 	ena_com_wait_for_abort_completion(ena_dev);
   3567 	ena_com_admin_destroy(ena_dev);
   3568 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3569 
   3570 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
   3571 	adapter->trigger_reset = false;
   3572 
   3573 	/* Finished destroy part. Restart the device */
   3574 	rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
   3575 	    &adapter->wd_active);
   3576 	if (unlikely(rc != 0)) {
   3577 		device_printf(adapter->pdev,
   3578 		    "ENA device init failed! (err: %d)\n", rc);
   3579 		goto err_dev_free;
   3580 	}
   3581 
   3582 	/* XXX dealloc and realloc MSI-X, probably a waste */
   3583 	rc = ena_enable_msix_and_set_admin_interrupts(adapter,
   3584 	    adapter->num_queues);
   3585 	if (unlikely(rc != 0)) {
   3586 		device_printf(adapter->pdev, "Enable MSI-X failed\n");
   3587 		goto err_com_free;
   3588 	}
   3589 
   3590 	/* If the interface was up before the reset bring it up */
   3591 	if (dev_up) {
   3592 		rc = ena_up(adapter);
   3593 		if (unlikely(rc != 0)) {
   3594 			device_printf(adapter->pdev,
   3595 			    "Failed to create I/O queues\n");
   3596 			goto err_msix_free;
   3597 		}
   3598 	}
   3599 
   3600 	callout_reset(&adapter->timer_service, hz,
   3601 	    ena_timer_service, (void *)adapter);
   3602 
   3603 	rw_exit(&adapter->ioctl_sx);
   3604 
   3605 	return;
   3606 
   3607 err_msix_free:
   3608 	ena_free_mgmnt_irq(adapter);
   3609 	ena_disable_msix(adapter);
   3610 err_com_free:
   3611 	ena_com_admin_destroy(ena_dev);
   3612 err_dev_free:
   3613 	device_printf(adapter->pdev, "ENA reset failed!\n");
   3614 	adapter->running = false;
   3615 	rw_exit(&adapter->ioctl_sx);
   3616 }
   3617 
   3618 /**
   3619  * ena_attach - Device Initialization Routine
   3620  * @pdev: device information struct
   3621  *
   3622  * Returns 0 on success, otherwise on failure.
   3623  *
   3624  * ena_attach initializes an adapter identified by a device structure.
   3625  * The OS initialization, configuring of the adapter private structure,
   3626  * and a hardware reset occur.
   3627  **/
   3628 static void
   3629 ena_attach(device_t parent, device_t self, void *aux)
   3630 {
   3631 	struct pci_attach_args *pa = aux;
   3632 	struct ena_com_dev_get_features_ctx get_feat_ctx;
   3633 	static int version_printed;
   3634 	struct ena_adapter *adapter = device_private(self);
   3635 	struct ena_com_dev *ena_dev = NULL;
   3636 	uint16_t tx_sgl_size = 0;
   3637 	uint16_t rx_sgl_size = 0;
   3638 	pcireg_t reg;
   3639 	int io_queue_num;
   3640 	int queue_size;
   3641 	int rc;
   3642 
   3643 	adapter->pdev = self;
   3644 	adapter->ifp = &adapter->sc_ec.ec_if;
   3645 	adapter->sc_pa = *pa;	/* used after attach for adapter reset too */
   3646 
   3647 	if (pci_dma64_available(pa))
   3648 		adapter->sc_dmat = pa->pa_dmat64;
   3649 	else
   3650 		adapter->sc_dmat = pa->pa_dmat;
   3651 
   3652 	pci_aprint_devinfo(pa, NULL);
   3653 
   3654 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   3655 	if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
   3656 		reg |= PCI_COMMAND_MASTER_ENABLE;
   3657         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
   3658 	}
   3659 
   3660 	mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_NET);
   3661 	rw_init(&adapter->ioctl_sx);
   3662 
   3663 	/* Set up the timer service */
   3664 	adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
   3665 	adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
   3666 	adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
   3667 	adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
   3668 
   3669 	if (version_printed++ == 0)
   3670 		device_printf(parent, "%s\n", ena_version);
   3671 
   3672 	rc = ena_allocate_pci_resources(pa, adapter);
   3673 	if (unlikely(rc != 0)) {
   3674 		device_printf(parent, "PCI resource allocation failed!\n");
   3675 		ena_free_pci_resources(adapter);
   3676 		return;
   3677 	}
   3678 
   3679 	/* Allocate memory for ena_dev structure */
   3680 	ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
   3681 	    M_WAITOK | M_ZERO);
   3682 
   3683 	adapter->ena_dev = ena_dev;
   3684 	ena_dev->dmadev = self;
   3685 	ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
   3686 	    M_WAITOK | M_ZERO);
   3687 
   3688 	/* Store register resources */
   3689 	((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
   3690 	((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
   3691 
   3692 	ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
   3693 
   3694 	/* Device initialization */
   3695 	rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
   3696 	if (unlikely(rc != 0)) {
   3697 		device_printf(self, "ENA device init failed! (err: %d)\n", rc);
   3698 		rc = ENXIO;
   3699 		goto err_bus_free;
   3700 	}
   3701 
   3702 	adapter->keep_alive_timestamp = getsbinuptime();
   3703 
   3704 	adapter->tx_offload_cap = get_feat_ctx.offload.tx;
   3705 
   3706 	/* Set for sure that interface is not up */
   3707 	adapter->up = false;
   3708 
   3709 	memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
   3710 	    ETHER_ADDR_LEN);
   3711 
   3712 	/* calculate IO queue number to create */
   3713 	io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
   3714 
   3715 	ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
   3716 	    io_queue_num);
   3717 	adapter->num_queues = io_queue_num;
   3718 
   3719 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
   3720 
   3721 	/* calculatre ring sizes */
   3722 	queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
   3723 	    &rx_sgl_size, &get_feat_ctx);
   3724 	if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
   3725 		rc = ENA_COM_FAULT;
   3726 		goto err_com_free;
   3727 	}
   3728 
   3729 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
   3730 
   3731 	adapter->tx_ring_size = queue_size;
   3732 	adapter->rx_ring_size = queue_size;
   3733 
   3734 	adapter->max_tx_sgl_size = tx_sgl_size;
   3735 	adapter->max_rx_sgl_size = rx_sgl_size;
   3736 
   3737 #if 0
   3738 	/* set up dma tags for rx and tx buffers */
   3739 	rc = ena_setup_tx_dma_tag(adapter);
   3740 	if (unlikely(rc != 0)) {
   3741 		device_printf(self, "Failed to create TX DMA tag\n");
   3742 		goto err_com_free;
   3743 	}
   3744 
   3745 	rc = ena_setup_rx_dma_tag(adapter);
   3746 	if (unlikely(rc != 0)) {
   3747 		device_printf(self, "Failed to create RX DMA tag\n");
   3748 		goto err_tx_tag_free;
   3749 	}
   3750 #endif
   3751 
   3752 	/* initialize rings basic information */
   3753 	device_printf(self, "initalize %d io queues\n", io_queue_num);
   3754 	ena_init_io_rings(adapter);
   3755 
   3756 	/* setup network interface */
   3757 	rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
   3758 	if (unlikely(rc != 0)) {
   3759 		device_printf(self, "Error with network interface setup\n");
   3760 		goto err_io_free;
   3761 	}
   3762 
   3763 	rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
   3764 	if (unlikely(rc != 0)) {
   3765 		device_printf(self,
   3766 		    "Failed to enable and set the admin interrupts\n");
   3767 		goto err_ifp_free;
   3768 	}
   3769 
   3770 	callout_init(&adapter->timer_service, CALLOUT_MPSAFE);
   3771 
   3772 	/* Initialize reset task queue */
   3773 	rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
   3774 	    ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
   3775 	if (unlikely(rc != 0)) {
   3776 		ena_trace(ENA_ALERT,
   3777 		    "Unable to create workqueue for reset task\n");
   3778 		goto err_ifp_free;
   3779 	}
   3780 
   3781 	/* Initialize statistics */
   3782 	ena_alloc_counters_dev(&adapter->dev_stats, io_queue_num);
   3783 	ena_alloc_counters_hwstats(&adapter->hw_stats, io_queue_num);
   3784 #if 0
   3785 	ena_sysctl_add_nodes(adapter);
   3786 #endif
   3787 
   3788 	/* Tell the stack that the interface is not active */
   3789 	if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
   3790 
   3791 	adapter->running = true;
   3792 	return;
   3793 
   3794 err_ifp_free:
   3795 	if_detach(adapter->ifp);
   3796 	if_free(adapter->ifp);
   3797 err_io_free:
   3798 	ena_free_all_io_rings_resources(adapter);
   3799 #if 0
   3800 	ena_free_rx_dma_tag(adapter);
   3801 err_tx_tag_free:
   3802 	ena_free_tx_dma_tag(adapter);
   3803 #endif
   3804 err_com_free:
   3805 	ena_com_admin_destroy(ena_dev);
   3806 	ena_com_delete_host_info(ena_dev);
   3807 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3808 err_bus_free:
   3809 	free(ena_dev->bus, M_DEVBUF);
   3810 	free(ena_dev, M_DEVBUF);
   3811 	ena_free_pci_resources(adapter);
   3812 }
   3813 
   3814 /**
   3815  * ena_detach - Device Removal Routine
   3816  * @pdev: device information struct
   3817  *
   3818  * ena_detach is called by the device subsystem to alert the driver
   3819  * that it should release a PCI device.
   3820  **/
   3821 static int
   3822 ena_detach(device_t pdev, int flags)
   3823 {
   3824 	struct ena_adapter *adapter = device_private(pdev);
   3825 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3826 #if 0
   3827 	int rc;
   3828 #endif
   3829 
   3830 	/* Make sure VLANS are not using driver */
   3831 	if (VLAN_ATTACHED(&adapter->sc_ec)) {
   3832 		device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
   3833 		return (EBUSY);
   3834 	}
   3835 
   3836 	/* Free reset task and callout */
   3837 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
   3838 	callout_destroy(&adapter->timer_service);
   3839 	workqueue_wait(adapter->reset_tq, &adapter->reset_task);
   3840 	workqueue_destroy(adapter->reset_tq);
   3841 	adapter->reset_tq = NULL;
   3842 
   3843 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
   3844 	ena_down(adapter);
   3845 	rw_exit(&adapter->ioctl_sx);
   3846 
   3847 	if (adapter->ifp != NULL) {
   3848 		ether_ifdetach(adapter->ifp);
   3849 		if_free(adapter->ifp);
   3850 	}
   3851 
   3852 	ena_free_all_io_rings_resources(adapter);
   3853 
   3854 	ena_free_counters((struct evcnt *)&adapter->hw_stats,
   3855 	    sizeof(struct ena_hw_stats));
   3856 	ena_free_counters((struct evcnt *)&adapter->dev_stats,
   3857 	    sizeof(struct ena_stats_dev));
   3858 
   3859 	if (likely(adapter->rss_support))
   3860 		ena_com_rss_destroy(ena_dev);
   3861 
   3862 #if 0
   3863 	rc = ena_free_rx_dma_tag(adapter);
   3864 	if (unlikely(rc != 0))
   3865 		device_printf(adapter->pdev,
   3866 		    "Unmapped RX DMA tag associations\n");
   3867 
   3868 	rc = ena_free_tx_dma_tag(adapter);
   3869 	if (unlikely(rc != 0))
   3870 		device_printf(adapter->pdev,
   3871 		    "Unmapped TX DMA tag associations\n");
   3872 #endif
   3873 
   3874 	/* Reset the device only if the device is running. */
   3875 	if (adapter->running)
   3876 		ena_com_dev_reset(ena_dev, adapter->reset_reason);
   3877 
   3878 	ena_com_delete_host_info(ena_dev);
   3879 
   3880 	ena_free_irqs(adapter);
   3881 
   3882 	ena_com_abort_admin_commands(ena_dev);
   3883 
   3884 	ena_com_wait_for_abort_completion(ena_dev);
   3885 
   3886 	ena_com_admin_destroy(ena_dev);
   3887 
   3888 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3889 
   3890 	ena_free_pci_resources(adapter);
   3891 
   3892 	mutex_destroy(&adapter->global_mtx);
   3893 	rw_destroy(&adapter->ioctl_sx);
   3894 
   3895 	if (ena_dev->bus != NULL)
   3896 		free(ena_dev->bus, M_DEVBUF);
   3897 
   3898 	if (ena_dev != NULL)
   3899 		free(ena_dev, M_DEVBUF);
   3900 
   3901 	return 0;
   3902 }
   3903 
   3904 /******************************************************************************
   3905  ******************************** AENQ Handlers *******************************
   3906  *****************************************************************************/
   3907 /**
   3908  * ena_update_on_link_change:
   3909  * Notify the network interface about the change in link status
   3910  **/
   3911 static void
   3912 ena_update_on_link_change(void *adapter_data,
   3913     struct ena_admin_aenq_entry *aenq_e)
   3914 {
   3915 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
   3916 	struct ena_admin_aenq_link_change_desc *aenq_desc;
   3917 	int status;
   3918 	struct ifnet *ifp;
   3919 
   3920 	aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
   3921 	ifp = adapter->ifp;
   3922 	status = aenq_desc->flags &
   3923 	    ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
   3924 
   3925 	if (status != 0) {
   3926 		device_printf(adapter->pdev, "link is UP\n");
   3927 		if_link_state_change(ifp, LINK_STATE_UP);
   3928 	} else if (status == 0) {
   3929 		device_printf(adapter->pdev, "link is DOWN\n");
   3930 		if_link_state_change(ifp, LINK_STATE_DOWN);
   3931 	} else {
   3932 		device_printf(adapter->pdev, "invalid value recvd\n");
   3933 		BUG();
   3934 	}
   3935 
   3936 	adapter->link_status = status;
   3937 }
   3938 
   3939 /**
   3940  * This handler will called for unknown event group or unimplemented handlers
   3941  **/
   3942 static void
   3943 unimplemented_aenq_handler(void *data,
   3944     struct ena_admin_aenq_entry *aenq_e)
   3945 {
   3946 	return;
   3947 }
   3948 
   3949 static struct ena_aenq_handlers aenq_handlers = {
   3950     .handlers = {
   3951 	    [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
   3952 	    [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
   3953     },
   3954     .unimplemented_handler = unimplemented_aenq_handler
   3955 };
   3956 
   3957 #ifdef __FreeBSD__
   3958 /*********************************************************************
   3959  *  FreeBSD Device Interface Entry Points
   3960  *********************************************************************/
   3961 
   3962 static device_method_t ena_methods[] = {
   3963     /* Device interface */
   3964     DEVMETHOD(device_probe, ena_probe),
   3965     DEVMETHOD(device_attach, ena_attach),
   3966     DEVMETHOD(device_detach, ena_detach),
   3967     DEVMETHOD_END
   3968 };
   3969 
   3970 static driver_t ena_driver = {
   3971     "ena", ena_methods, sizeof(struct ena_adapter),
   3972 };
   3973 
   3974 devclass_t ena_devclass;
   3975 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
   3976 MODULE_DEPEND(ena, pci, 1, 1, 1);
   3977 MODULE_DEPEND(ena, ether, 1, 1, 1);
   3978 
   3979 /*********************************************************************/
   3980 #endif /* __FreeBSD__ */
   3981 
   3982 #ifdef __NetBSD__
   3983 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
   3984 	ena_detach, NULL);
   3985 #endif /* __NetBSD */
   3986