Home | History | Annotate | Line # | Download | only in pci
if_ena.c revision 1.15.2.3
      1 /*-
      2  * BSD LICENSE
      3  *
      4  * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  *
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 #ifdef _KERNEL_OPT
     32 #include "opt_net_mpsafe.h"
     33 #endif
     34 
     35 #include <sys/cdefs.h>
     36 #if 0
     37 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
     38 #endif
     39 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.15.2.3 2020/08/05 14:59:41 martin Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/bus.h>
     44 #include <sys/endian.h>
     45 #include <sys/kernel.h>
     46 #include <sys/kthread.h>
     47 #include <sys/malloc.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/module.h>
     50 #include <sys/socket.h>
     51 #include <sys/sockio.h>
     52 #include <sys/sysctl.h>
     53 #include <sys/time.h>
     54 #include <sys/workqueue.h>
     55 #include <sys/callout.h>
     56 #include <sys/interrupt.h>
     57 #include <sys/cpu.h>
     58 
     59 #include <net/if_ether.h>
     60 #include <net/if_vlanvar.h>
     61 
     62 #include <dev/pci/if_enavar.h>
     63 
     64 #ifdef NET_MPSAFE
     65 #define	WQ_FLAGS	WQ_MPSAFE
     66 #define	CALLOUT_FLAGS	CALLOUT_MPSAFE
     67 #else
     68 #define	WQ_FLAGS	0
     69 #define	CALLOUT_FLAGS	0
     70 #endif
     71 
     72 /*********************************************************
     73  *  Function prototypes
     74  *********************************************************/
     75 static int	ena_probe(device_t, cfdata_t, void *);
     76 static int	ena_intr_msix_mgmnt(void *);
     77 static int	ena_allocate_pci_resources(struct pci_attach_args *,
     78 		    struct ena_adapter *);
     79 static void	ena_free_pci_resources(struct ena_adapter *);
     80 static int	ena_change_mtu(struct ifnet *, int);
     81 static void	ena_init_io_rings_common(struct ena_adapter *,
     82     struct ena_ring *, uint16_t);
     83 static void	ena_init_io_rings(struct ena_adapter *);
     84 static void	ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
     85 static void	ena_free_all_io_rings_resources(struct ena_adapter *);
     86 #if 0
     87 static int	ena_setup_tx_dma_tag(struct ena_adapter *);
     88 static int	ena_free_tx_dma_tag(struct ena_adapter *);
     89 static int	ena_setup_rx_dma_tag(struct ena_adapter *);
     90 static int	ena_free_rx_dma_tag(struct ena_adapter *);
     91 #endif
     92 static int	ena_setup_tx_resources(struct ena_adapter *, int);
     93 static void	ena_free_tx_resources(struct ena_adapter *, int);
     94 static int	ena_setup_all_tx_resources(struct ena_adapter *);
     95 static void	ena_free_all_tx_resources(struct ena_adapter *);
     96 static inline int validate_rx_req_id(struct ena_ring *, uint16_t);
     97 static int	ena_setup_rx_resources(struct ena_adapter *, unsigned int);
     98 static void	ena_free_rx_resources(struct ena_adapter *, unsigned int);
     99 static int	ena_setup_all_rx_resources(struct ena_adapter *);
    100 static void	ena_free_all_rx_resources(struct ena_adapter *);
    101 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *,
    102     struct ena_rx_buffer *);
    103 static void	ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
    104     struct ena_rx_buffer *);
    105 static int	ena_refill_rx_bufs(struct ena_ring *, uint32_t);
    106 static void	ena_free_rx_bufs(struct ena_adapter *, unsigned int);
    107 static void	ena_refill_all_rx_bufs(struct ena_adapter *);
    108 static void	ena_free_all_rx_bufs(struct ena_adapter *);
    109 static void	ena_free_tx_bufs(struct ena_adapter *, unsigned int);
    110 static void	ena_free_all_tx_bufs(struct ena_adapter *);
    111 static void	ena_destroy_all_tx_queues(struct ena_adapter *);
    112 static void	ena_destroy_all_rx_queues(struct ena_adapter *);
    113 static void	ena_destroy_all_io_queues(struct ena_adapter *);
    114 static int	ena_create_io_queues(struct ena_adapter *);
    115 static int	ena_tx_cleanup(struct ena_ring *);
    116 static void	ena_deferred_rx_cleanup(struct work *, void *);
    117 static int	ena_rx_cleanup(struct ena_ring *);
    118 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
    119 #if 0
    120 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
    121     struct mbuf *);
    122 #endif
    123 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
    124     struct ena_com_rx_ctx *, uint16_t *);
    125 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
    126     struct mbuf *);
    127 static int	ena_handle_msix(void *);
    128 static int	ena_enable_msix(struct ena_adapter *);
    129 static int	ena_request_mgmnt_irq(struct ena_adapter *);
    130 static int	ena_request_io_irq(struct ena_adapter *);
    131 static void	ena_free_mgmnt_irq(struct ena_adapter *);
    132 static void	ena_free_io_irq(struct ena_adapter *);
    133 static void	ena_free_irqs(struct ena_adapter*);
    134 static void	ena_disable_msix(struct ena_adapter *);
    135 static void	ena_unmask_all_io_irqs(struct ena_adapter *);
    136 static int	ena_rss_configure(struct ena_adapter *);
    137 static int	ena_up_complete(struct ena_adapter *);
    138 static int	ena_up(struct ena_adapter *);
    139 static void	ena_down(struct ena_adapter *);
    140 #if 0
    141 static uint64_t	ena_get_counter(struct ifnet *, ift_counter);
    142 #endif
    143 static int	ena_media_change(struct ifnet *);
    144 static void	ena_media_status(struct ifnet *, struct ifmediareq *);
    145 static int	ena_init(struct ifnet *);
    146 static int	ena_ioctl(struct ifnet *, u_long, void *);
    147 static int	ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
    148 static void	ena_update_host_info(struct ena_admin_host_info *, struct ifnet *);
    149 static void	ena_update_hwassist(struct ena_adapter *);
    150 static int	ena_setup_ifnet(device_t, struct ena_adapter *,
    151     struct ena_com_dev_get_features_ctx *);
    152 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
    153 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
    154     struct mbuf **mbuf);
    155 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
    156 static void	ena_start_xmit(struct ena_ring *);
    157 static int	ena_mq_start(struct ifnet *, struct mbuf *);
    158 static void	ena_deferred_mq_start(struct work *, void *);
    159 #if 0
    160 static void	ena_qflush(struct ifnet *);
    161 #endif
    162 static int	ena_calc_io_queue_num(struct pci_attach_args *,
    163     struct ena_adapter *, struct ena_com_dev_get_features_ctx *);
    164 static int	ena_calc_queue_size(struct ena_adapter *, uint16_t *,
    165     uint16_t *, struct ena_com_dev_get_features_ctx *);
    166 #if 0
    167 static int	ena_rss_init_default(struct ena_adapter *);
    168 static void	ena_rss_init_default_deferred(void *);
    169 #endif
    170 static void	ena_config_host_info(struct ena_com_dev *);
    171 static void	ena_attach(device_t, device_t, void *);
    172 static int	ena_detach(device_t, int);
    173 static int	ena_device_init(struct ena_adapter *, device_t,
    174     struct ena_com_dev_get_features_ctx *, int *);
    175 static int	ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
    176     int);
    177 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *);
    178 static void	unimplemented_aenq_handler(void *,
    179     struct ena_admin_aenq_entry *);
    180 static void	ena_timer_service(void *);
    181 
    182 static const char ena_version[] =
    183     DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
    184 
    185 #if 0
    186 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
    187 #endif
    188 
    189 /*
    190  * Tuneable number of buffers in the buf-ring (drbr)
    191  */
    192 static int ena_buf_ring_size = 4096;
    193 #if 0
    194 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
    195     &ena_buf_ring_size, 0, "Size of the bufring");
    196 #endif
    197 
    198 /*
    199  * Logging level for changing verbosity of the output
    200  */
    201 int ena_log_level = ENA_ALERT | ENA_WARNING;
    202 #if 0
    203 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
    204     &ena_log_level, 0, "Logging level indicating verbosity of the logs");
    205 #endif
    206 
    207 static const ena_vendor_info_t ena_vendor_info_array[] = {
    208     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
    209     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
    210     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
    211     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
    212     /* Last entry */
    213     { 0, 0, 0 }
    214 };
    215 
    216 /*
    217  * Contains pointers to event handlers, e.g. link state chage.
    218  */
    219 static struct ena_aenq_handlers aenq_handlers;
    220 
    221 int
    222 ena_dma_alloc(device_t dmadev, bus_size_t size,
    223     ena_mem_handle_t *dma , int mapflags)
    224 {
    225 	struct ena_adapter *adapter = device_private(dmadev);
    226 	uint32_t maxsize;
    227 	bus_dma_segment_t seg;
    228 	int error, nsegs;
    229 
    230 	maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
    231 
    232 #if 0
    233 	/* XXX what is this needed for ? */
    234 	dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
    235 	if (unlikely(dma_space_addr == 0))
    236 		dma_space_addr = BUS_SPACE_MAXADDR;
    237 #endif
    238 
    239 	dma->tag = adapter->sc_dmat;
    240 
    241         if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
    242             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
    243 		ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
    244 		    (uintmax_t)maxsize, error);
    245                 goto fail_create;
    246 	}
    247 
    248 	error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &seg, 1, &nsegs,
    249 	    BUS_DMA_ALLOCNOW);
    250 	if (error) {
    251 		ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
    252 		    (uintmax_t)maxsize, error);
    253 		goto fail_alloc;
    254 	}
    255 
    256 	error = bus_dmamem_map(dma->tag, &seg, nsegs, maxsize,
    257 	    &dma->vaddr, BUS_DMA_COHERENT);
    258 	if (error) {
    259 		ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
    260 		    (uintmax_t)maxsize, error);
    261 		goto fail_map;
    262 	}
    263 	memset(dma->vaddr, 0, maxsize);
    264 
    265 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
    266 	    maxsize, NULL, mapflags);
    267 	if (error) {
    268 		ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
    269 		goto fail_load;
    270 	}
    271 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    272 
    273 	return (0);
    274 
    275 fail_load:
    276 	bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
    277 fail_map:
    278 	bus_dmamem_free(dma->tag, &seg, nsegs);
    279 fail_alloc:
    280 	bus_dmamap_destroy(adapter->sc_dmat, dma->map);
    281 fail_create:
    282 	return (error);
    283 }
    284 
    285 static int
    286 ena_allocate_pci_resources(struct pci_attach_args *pa,
    287     struct ena_adapter *adapter)
    288 {
    289 	pcireg_t memtype, reg;
    290 	bus_addr_t memaddr;
    291 	bus_size_t mapsize;
    292 	int flags, error;
    293 	int msixoff;
    294 
    295 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
    296 	if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM) {
    297 		aprint_error_dev(adapter->pdev, "invalid type (type=0x%x)\n",
    298 		    memtype);
    299 		return ENXIO;
    300 	}
    301 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    302 	if (((reg & PCI_COMMAND_MASTER_ENABLE) == 0) ||
    303 	    ((reg & PCI_COMMAND_MEM_ENABLE) == 0)) {
    304 		/*
    305 		 * Enable address decoding for memory range in case BIOS or
    306 		 * UEFI didn't set it.
    307 		 */
    308 		reg |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
    309         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    310 		    reg);
    311 	}
    312 
    313 	adapter->sc_btag = pa->pa_memt;
    314 	error = pci_mapreg_info(pa->pa_pc, pa->pa_tag, ENA_REG_BAR,
    315 	    memtype, &memaddr, &mapsize, &flags);
    316 	if (error) {
    317 		aprint_error_dev(adapter->pdev, "can't get map info\n");
    318 		return ENXIO;
    319 	}
    320 
    321 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff,
    322 	    NULL)) {
    323 		pcireg_t msixtbl;
    324 		uint32_t table_offset;
    325 		int bir;
    326 
    327 		msixtbl = pci_conf_read(pa->pa_pc, pa->pa_tag,
    328 		    msixoff + PCI_MSIX_TBLOFFSET);
    329 		table_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK;
    330 		bir = msixtbl & PCI_MSIX_PBABIR_MASK;
    331 		if (bir == PCI_MAPREG_NUM(ENA_REG_BAR))
    332 			mapsize = table_offset;
    333 	}
    334 
    335 	error = bus_space_map(adapter->sc_btag, memaddr, mapsize, flags,
    336 	    &adapter->sc_bhandle);
    337 	if (error != 0) {
    338 		aprint_error_dev(adapter->pdev,
    339 		    "can't map mem space (error=%d)\n", error);
    340 		return ENXIO;
    341 	}
    342 
    343 	return (0);
    344 }
    345 
    346 static void
    347 ena_free_pci_resources(struct ena_adapter *adapter)
    348 {
    349 	/* Nothing to do */
    350 }
    351 
    352 static int
    353 ena_probe(device_t parent, cfdata_t match, void *aux)
    354 {
    355 	struct pci_attach_args *pa = aux;
    356 	const ena_vendor_info_t *ent;
    357 
    358 	for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
    359 		ent = &ena_vendor_info_array[i];
    360 
    361 		if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
    362 		    (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
    363 			return 1;
    364 		}
    365 	}
    366 
    367 	return 0;
    368 }
    369 
    370 static int
    371 ena_change_mtu(struct ifnet *ifp, int new_mtu)
    372 {
    373 	struct ena_adapter *adapter = if_getsoftc(ifp);
    374 	int rc;
    375 
    376 	if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
    377 		device_printf(adapter->pdev, "Invalid MTU setting. "
    378 		    "new_mtu: %d max mtu: %d min mtu: %d\n",
    379 		    new_mtu, adapter->max_mtu, ENA_MIN_MTU);
    380 		return (EINVAL);
    381 	}
    382 
    383 	rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
    384 	if (likely(rc == 0)) {
    385 		ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
    386 		if_setmtu(ifp, new_mtu);
    387 	} else {
    388 		device_printf(adapter->pdev, "Failed to set MTU to %d\n",
    389 		    new_mtu);
    390 	}
    391 
    392 	return (rc);
    393 }
    394 
    395 #define EVCNT_INIT(st, f) \
    396 	do {								\
    397 		evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL,	\
    398 		    st->name, #f);					\
    399 	} while (0)
    400 
    401 static inline void
    402 ena_alloc_counters_rx(struct ena_stats_rx *st, int queue)
    403 {
    404 	snprintf(st->name, sizeof(st->name), "ena rxq%d", queue);
    405 
    406 	EVCNT_INIT(st, cnt);
    407 	EVCNT_INIT(st, bytes);
    408 	EVCNT_INIT(st, refil_partial);
    409 	EVCNT_INIT(st, bad_csum);
    410 	EVCNT_INIT(st, mjum_alloc_fail);
    411 	EVCNT_INIT(st, mbuf_alloc_fail);
    412 	EVCNT_INIT(st, dma_mapping_err);
    413 	EVCNT_INIT(st, bad_desc_num);
    414 	EVCNT_INIT(st, bad_req_id);
    415 	EVCNT_INIT(st, empty_rx_ring);
    416 
    417 	/* Make sure all code is updated when new fields added */
    418 	CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
    419 	    + sizeof(st->empty_rx_ring) == sizeof(*st));
    420 }
    421 
    422 static inline void
    423 ena_alloc_counters_tx(struct ena_stats_tx *st, int queue)
    424 {
    425 	snprintf(st->name, sizeof(st->name), "ena txq%d", queue);
    426 
    427 	EVCNT_INIT(st, cnt);
    428 	EVCNT_INIT(st, bytes);
    429 	EVCNT_INIT(st, prepare_ctx_err);
    430 	EVCNT_INIT(st, dma_mapping_err);
    431 	EVCNT_INIT(st, doorbells);
    432 	EVCNT_INIT(st, missing_tx_comp);
    433 	EVCNT_INIT(st, bad_req_id);
    434 	EVCNT_INIT(st, collapse);
    435 	EVCNT_INIT(st, collapse_err);
    436 
    437 	/* Make sure all code is updated when new fields added */
    438 	CTASSERT(offsetof(struct ena_stats_tx, collapse_err)
    439 	    + sizeof(st->collapse_err) == sizeof(*st));
    440 }
    441 
    442 static inline void
    443 ena_alloc_counters_dev(struct ena_stats_dev *st, int queue)
    444 {
    445 	snprintf(st->name, sizeof(st->name), "ena dev ioq%d", queue);
    446 
    447 	EVCNT_INIT(st, wd_expired);
    448 	EVCNT_INIT(st, interface_up);
    449 	EVCNT_INIT(st, interface_down);
    450 	EVCNT_INIT(st, admin_q_pause);
    451 
    452 	/* Make sure all code is updated when new fields added */
    453 	CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
    454 	    + sizeof(st->admin_q_pause) == sizeof(*st));
    455 }
    456 
    457 static inline void
    458 ena_alloc_counters_hwstats(struct ena_hw_stats *st, int queue)
    459 {
    460 	snprintf(st->name, sizeof(st->name), "ena hw ioq%d", queue);
    461 
    462 	EVCNT_INIT(st, rx_packets);
    463 	EVCNT_INIT(st, tx_packets);
    464 	EVCNT_INIT(st, rx_bytes);
    465 	EVCNT_INIT(st, tx_bytes);
    466 	EVCNT_INIT(st, rx_drops);
    467 
    468 	/* Make sure all code is updated when new fields added */
    469 	CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
    470 	    + sizeof(st->rx_drops) == sizeof(*st));
    471 }
    472 static inline void
    473 ena_free_counters(struct evcnt *begin, int size)
    474 {
    475 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
    476 
    477 	for (; begin < end; ++begin)
    478 		counter_u64_free(*begin);
    479 }
    480 
    481 static inline void
    482 ena_reset_counters(struct evcnt *begin, int size)
    483 {
    484 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
    485 
    486 	for (; begin < end; ++begin)
    487 		counter_u64_zero(*begin);
    488 }
    489 
    490 static void
    491 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
    492     uint16_t qid)
    493 {
    494 
    495 	ring->qid = qid;
    496 	ring->adapter = adapter;
    497 	ring->ena_dev = adapter->ena_dev;
    498 }
    499 
    500 static void
    501 ena_init_io_rings(struct ena_adapter *adapter)
    502 {
    503 	struct ena_com_dev *ena_dev;
    504 	struct ena_ring *txr, *rxr;
    505 	struct ena_que *que;
    506 	int i;
    507 
    508 	ena_dev = adapter->ena_dev;
    509 
    510 	for (i = 0; i < adapter->num_queues; i++) {
    511 		txr = &adapter->tx_ring[i];
    512 		rxr = &adapter->rx_ring[i];
    513 
    514 		/* TX/RX common ring state */
    515 		ena_init_io_rings_common(adapter, txr, i);
    516 		ena_init_io_rings_common(adapter, rxr, i);
    517 
    518 		/* TX specific ring state */
    519 		txr->ring_size = adapter->tx_ring_size;
    520 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
    521 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
    522 		txr->smoothed_interval =
    523 		    ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
    524 
    525 		/* Allocate a buf ring */
    526 		txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
    527 		    M_WAITOK, &txr->ring_mtx);
    528 
    529 		/* Alloc TX statistics. */
    530 		ena_alloc_counters_tx(&txr->tx_stats, i);
    531 
    532 		/* RX specific ring state */
    533 		rxr->ring_size = adapter->rx_ring_size;
    534 		rxr->smoothed_interval =
    535 		    ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
    536 
    537 		/* Alloc RX statistics. */
    538 		ena_alloc_counters_rx(&rxr->rx_stats, i);
    539 
    540 		/* Initialize locks */
    541 		snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
    542 		    device_xname(adapter->pdev), i);
    543 		snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
    544 		    device_xname(adapter->pdev), i);
    545 
    546 		mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
    547 		mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
    548 
    549 		que = &adapter->que[i];
    550 		que->adapter = adapter;
    551 		que->id = i;
    552 		que->tx_ring = txr;
    553 		que->rx_ring = rxr;
    554 
    555 		txr->que = que;
    556 		rxr->que = que;
    557 
    558 		rxr->empty_rx_queue = 0;
    559 	}
    560 }
    561 
    562 static void
    563 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
    564 {
    565 	struct ena_ring *txr = &adapter->tx_ring[qid];
    566 	struct ena_ring *rxr = &adapter->rx_ring[qid];
    567 
    568 	ena_free_counters((struct evcnt *)&txr->tx_stats,
    569 	    sizeof(txr->tx_stats));
    570 	ena_free_counters((struct evcnt *)&rxr->rx_stats,
    571 	    sizeof(rxr->rx_stats));
    572 
    573 	ENA_RING_MTX_LOCK(txr);
    574 	drbr_free(txr->br, M_DEVBUF);
    575 	ENA_RING_MTX_UNLOCK(txr);
    576 
    577 	mutex_destroy(&txr->ring_mtx);
    578 	mutex_destroy(&rxr->ring_mtx);
    579 }
    580 
    581 static void
    582 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
    583 {
    584 	int i;
    585 
    586 	for (i = 0; i < adapter->num_queues; i++)
    587 		ena_free_io_ring_resources(adapter, i);
    588 
    589 }
    590 
    591 #if 0
    592 static int
    593 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
    594 {
    595 	int ret;
    596 
    597 	/* Create DMA tag for Tx buffers */
    598 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
    599 	    1, 0,				  /* alignment, bounds 	     */
    600 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
    601 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
    602 	    NULL, NULL,				  /* filter, filterarg 	     */
    603 	    ENA_TSO_MAXSIZE,			  /* maxsize 		     */
    604 	    adapter->max_tx_sgl_size - 1,	  /* nsegments 		     */
    605 	    ENA_TSO_MAXSIZE,			  /* maxsegsize 	     */
    606 	    0,					  /* flags 		     */
    607 	    NULL,				  /* lockfunc 		     */
    608 	    NULL,				  /* lockfuncarg 	     */
    609 	    &adapter->tx_buf_tag);
    610 
    611 	return (ret);
    612 }
    613 #endif
    614 
    615 #if 0
    616 static int
    617 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
    618 {
    619 	int ret;
    620 
    621 	/* Create DMA tag for Rx buffers*/
    622 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent   */
    623 	    1, 0,				  /* alignment, bounds 	     */
    624 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
    625 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
    626 	    NULL, NULL,				  /* filter, filterarg 	     */
    627 	    MJUM16BYTES,			  /* maxsize 		     */
    628 	    adapter->max_rx_sgl_size,		  /* nsegments 		     */
    629 	    MJUM16BYTES,			  /* maxsegsize 	     */
    630 	    0,					  /* flags 		     */
    631 	    NULL,				  /* lockfunc 		     */
    632 	    NULL,				  /* lockarg 		     */
    633 	    &adapter->rx_buf_tag);
    634 
    635 	return (ret);
    636 }
    637 #endif
    638 
    639 /**
    640  * ena_setup_tx_resources - allocate Tx resources (Descriptors)
    641  * @adapter: network interface device structure
    642  * @qid: queue index
    643  *
    644  * Returns 0 on success, otherwise on failure.
    645  **/
    646 static int
    647 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
    648 {
    649 	struct ena_que *que = &adapter->que[qid];
    650 	struct ena_ring *tx_ring = que->tx_ring;
    651 	int size, i, err;
    652 #ifdef	RSS
    653 	cpuset_t cpu_mask;
    654 #endif
    655 
    656 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
    657 
    658 	tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
    659 	if (unlikely(tx_ring->tx_buffer_info == NULL))
    660 		return (ENOMEM);
    661 
    662 	size = sizeof(uint16_t) * tx_ring->ring_size;
    663 	tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
    664 	if (unlikely(tx_ring->free_tx_ids == NULL))
    665 		goto err_buf_info_free;
    666 
    667 	/* Req id stack for TX OOO completions */
    668 	for (i = 0; i < tx_ring->ring_size; i++)
    669 		tx_ring->free_tx_ids[i] = i;
    670 
    671 	/* Reset TX statistics. */
    672 	ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
    673 	    sizeof(tx_ring->tx_stats));
    674 
    675 	tx_ring->next_to_use = 0;
    676 	tx_ring->next_to_clean = 0;
    677 
    678 	/* Make sure that drbr is empty */
    679 	ENA_RING_MTX_LOCK(tx_ring);
    680 	drbr_flush(adapter->ifp, tx_ring->br);
    681 	ENA_RING_MTX_UNLOCK(tx_ring);
    682 
    683 	/* ... and create the buffer DMA maps */
    684 	for (i = 0; i < tx_ring->ring_size; i++) {
    685 		err = bus_dmamap_create(adapter->sc_dmat,
    686 		    ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
    687 		    ENA_TSO_MAXSIZE, 0, 0,
    688 		    &tx_ring->tx_buffer_info[i].map);
    689 		if (unlikely(err != 0)) {
    690 			ena_trace(ENA_ALERT,
    691 			     "Unable to create Tx DMA map for buffer %d\n", i);
    692 			goto err_buf_info_unmap;
    693 		}
    694 	}
    695 
    696 	/* Allocate workqueues */
    697 	int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
    698 	    ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
    699 	if (unlikely(rc != 0)) {
    700 		ena_trace(ENA_ALERT,
    701 		    "Unable to create workqueue for enqueue task\n");
    702 		i = tx_ring->ring_size;
    703 		goto err_buf_info_unmap;
    704 	}
    705 
    706 #if 0
    707 	/* RSS set cpu for thread */
    708 #ifdef RSS
    709 	CPU_SETOF(que->cpu, &cpu_mask);
    710 	taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET,
    711 	    &cpu_mask, "%s tx_ring enq (bucket %d)",
    712 	    device_xname(adapter->pdev), que->cpu);
    713 #else /* RSS */
    714 	taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET,
    715 	    "%s txeq %d", device_xname(adapter->pdev), que->cpu);
    716 #endif /* RSS */
    717 #endif
    718 
    719 	return (0);
    720 
    721 err_buf_info_unmap:
    722 	while (i--) {
    723 		bus_dmamap_destroy(adapter->sc_dmat,
    724 		    tx_ring->tx_buffer_info[i].map);
    725 	}
    726 	free(tx_ring->free_tx_ids, M_DEVBUF);
    727 	tx_ring->free_tx_ids = NULL;
    728 err_buf_info_free:
    729 	free(tx_ring->tx_buffer_info, M_DEVBUF);
    730 	tx_ring->tx_buffer_info = NULL;
    731 
    732 	return (ENOMEM);
    733 }
    734 
    735 /**
    736  * ena_free_tx_resources - Free Tx Resources per Queue
    737  * @adapter: network interface device structure
    738  * @qid: queue index
    739  *
    740  * Free all transmit software resources
    741  **/
    742 static void
    743 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
    744 {
    745 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
    746 
    747 	workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
    748 	workqueue_destroy(tx_ring->enqueue_tq);
    749 	tx_ring->enqueue_tq = NULL;
    750 
    751 	ENA_RING_MTX_LOCK(tx_ring);
    752 	/* Flush buffer ring, */
    753 	drbr_flush(adapter->ifp, tx_ring->br);
    754 
    755 	/* Free buffer DMA maps, */
    756 	for (int i = 0; i < tx_ring->ring_size; i++) {
    757 		m_freem(tx_ring->tx_buffer_info[i].mbuf);
    758 		tx_ring->tx_buffer_info[i].mbuf = NULL;
    759 		bus_dmamap_unload(adapter->sc_dmat,
    760 		    tx_ring->tx_buffer_info[i].map);
    761 		bus_dmamap_destroy(adapter->sc_dmat,
    762 		    tx_ring->tx_buffer_info[i].map);
    763 	}
    764 	ENA_RING_MTX_UNLOCK(tx_ring);
    765 
    766 	/* And free allocated memory. */
    767 	free(tx_ring->tx_buffer_info, M_DEVBUF);
    768 	tx_ring->tx_buffer_info = NULL;
    769 
    770 	free(tx_ring->free_tx_ids, M_DEVBUF);
    771 	tx_ring->free_tx_ids = NULL;
    772 }
    773 
    774 /**
    775  * ena_setup_all_tx_resources - allocate all queues Tx resources
    776  * @adapter: network interface device structure
    777  *
    778  * Returns 0 on success, otherwise on failure.
    779  **/
    780 static int
    781 ena_setup_all_tx_resources(struct ena_adapter *adapter)
    782 {
    783 	int i, rc;
    784 
    785 	for (i = 0; i < adapter->num_queues; i++) {
    786 		rc = ena_setup_tx_resources(adapter, i);
    787 		if (rc != 0) {
    788 			device_printf(adapter->pdev,
    789 			    "Allocation for Tx Queue %u failed\n", i);
    790 			goto err_setup_tx;
    791 		}
    792 	}
    793 
    794 	return (0);
    795 
    796 err_setup_tx:
    797 	/* Rewind the index freeing the rings as we go */
    798 	while (i--)
    799 		ena_free_tx_resources(adapter, i);
    800 	return (rc);
    801 }
    802 
    803 /**
    804  * ena_free_all_tx_resources - Free Tx Resources for All Queues
    805  * @adapter: network interface device structure
    806  *
    807  * Free all transmit software resources
    808  **/
    809 static void
    810 ena_free_all_tx_resources(struct ena_adapter *adapter)
    811 {
    812 	int i;
    813 
    814 	for (i = 0; i < adapter->num_queues; i++)
    815 		ena_free_tx_resources(adapter, i);
    816 }
    817 
    818 static inline int
    819 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
    820 {
    821 	if (likely(req_id < rx_ring->ring_size))
    822 		return (0);
    823 
    824 	device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
    825 	    req_id);
    826 	counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
    827 
    828 	/* Trigger device reset */
    829 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
    830 	rx_ring->adapter->trigger_reset = true;
    831 
    832 	return (EFAULT);
    833 }
    834 
    835 /**
    836  * ena_setup_rx_resources - allocate Rx resources (Descriptors)
    837  * @adapter: network interface device structure
    838  * @qid: queue index
    839  *
    840  * Returns 0 on success, otherwise on failure.
    841  **/
    842 static int
    843 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
    844 {
    845 	struct ena_que *que = &adapter->que[qid];
    846 	struct ena_ring *rx_ring = que->rx_ring;
    847 	int size, err, i;
    848 #ifdef	RSS
    849 	cpuset_t cpu_mask;
    850 #endif
    851 
    852 	size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
    853 
    854 	/*
    855 	 * Alloc extra element so in rx path
    856 	 * we can always prefetch rx_info + 1
    857 	 */
    858 	size += sizeof(struct ena_rx_buffer);
    859 
    860 	rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
    861 
    862 	size = sizeof(uint16_t) * rx_ring->ring_size;
    863 	rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
    864 
    865 	for (i = 0; i < rx_ring->ring_size; i++)
    866 		rx_ring->free_rx_ids[i] = i;
    867 
    868 	/* Reset RX statistics. */
    869 	ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
    870 	    sizeof(rx_ring->rx_stats));
    871 
    872 	rx_ring->next_to_clean = 0;
    873 	rx_ring->next_to_use = 0;
    874 
    875 	/* ... and create the buffer DMA maps */
    876 	for (i = 0; i < rx_ring->ring_size; i++) {
    877 		err = bus_dmamap_create(adapter->sc_dmat,
    878 		    MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
    879 		    0, 0,
    880 		    &(rx_ring->rx_buffer_info[i].map));
    881 		if (err != 0) {
    882 			ena_trace(ENA_ALERT,
    883 			    "Unable to create Rx DMA map for buffer %d\n", i);
    884 			goto err_buf_info_unmap;
    885 		}
    886 	}
    887 
    888 #ifdef LRO
    889 	/* Create LRO for the ring */
    890 	if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
    891 		int err = tcp_lro_init(&rx_ring->lro);
    892 		if (err != 0) {
    893 			device_printf(adapter->pdev,
    894 			    "LRO[%d] Initialization failed!\n", qid);
    895 		} else {
    896 			ena_trace(ENA_INFO,
    897 			    "RX Soft LRO[%d] Initialized\n", qid);
    898 			rx_ring->lro.ifp = adapter->ifp;
    899 		}
    900 	}
    901 #endif
    902 
    903 	/* Allocate workqueues */
    904 	int rc = workqueue_create(&rx_ring->cmpl_tq, "ena_rx_comp",
    905 	    ena_deferred_rx_cleanup, rx_ring, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
    906 	if (unlikely(rc != 0)) {
    907 		ena_trace(ENA_ALERT,
    908 		    "Unable to create workqueue for RX completion task\n");
    909 		goto err_buf_info_unmap;
    910 	}
    911 
    912 #if 0
    913 	/* RSS set cpu for thread */
    914 #ifdef RSS
    915 	CPU_SETOF(que->cpu, &cpu_mask);
    916 	taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask,
    917 	    "%s rx_ring cmpl (bucket %d)",
    918 	    device_xname(adapter->pdev), que->cpu);
    919 #else
    920 	taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET,
    921 	    "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu);
    922 #endif
    923 #endif
    924 
    925 	return (0);
    926 
    927 err_buf_info_unmap:
    928 	while (i--) {
    929 		bus_dmamap_destroy(adapter->sc_dmat,
    930 		    rx_ring->rx_buffer_info[i].map);
    931 	}
    932 
    933 	free(rx_ring->free_rx_ids, M_DEVBUF);
    934 	rx_ring->free_rx_ids = NULL;
    935 	free(rx_ring->rx_buffer_info, M_DEVBUF);
    936 	rx_ring->rx_buffer_info = NULL;
    937 	return (ENOMEM);
    938 }
    939 
    940 /**
    941  * ena_free_rx_resources - Free Rx Resources
    942  * @adapter: network interface device structure
    943  * @qid: queue index
    944  *
    945  * Free all receive software resources
    946  **/
    947 static void
    948 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
    949 {
    950 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
    951 
    952 	workqueue_wait(rx_ring->cmpl_tq, &rx_ring->cmpl_task);
    953 	workqueue_destroy(rx_ring->cmpl_tq);
    954 	rx_ring->cmpl_tq = NULL;
    955 
    956 	/* Free buffer DMA maps, */
    957 	for (int i = 0; i < rx_ring->ring_size; i++) {
    958 		m_freem(rx_ring->rx_buffer_info[i].mbuf);
    959 		rx_ring->rx_buffer_info[i].mbuf = NULL;
    960 		bus_dmamap_unload(adapter->sc_dmat,
    961 		    rx_ring->rx_buffer_info[i].map);
    962 		bus_dmamap_destroy(adapter->sc_dmat,
    963 		    rx_ring->rx_buffer_info[i].map);
    964 	}
    965 
    966 #ifdef LRO
    967 	/* free LRO resources, */
    968 	tcp_lro_free(&rx_ring->lro);
    969 #endif
    970 
    971 	/* free allocated memory */
    972 	free(rx_ring->rx_buffer_info, M_DEVBUF);
    973 	rx_ring->rx_buffer_info = NULL;
    974 
    975 	free(rx_ring->free_rx_ids, M_DEVBUF);
    976 	rx_ring->free_rx_ids = NULL;
    977 }
    978 
    979 /**
    980  * ena_setup_all_rx_resources - allocate all queues Rx resources
    981  * @adapter: network interface device structure
    982  *
    983  * Returns 0 on success, otherwise on failure.
    984  **/
    985 static int
    986 ena_setup_all_rx_resources(struct ena_adapter *adapter)
    987 {
    988 	int i, rc = 0;
    989 
    990 	for (i = 0; i < adapter->num_queues; i++) {
    991 		rc = ena_setup_rx_resources(adapter, i);
    992 		if (rc != 0) {
    993 			device_printf(adapter->pdev,
    994 			    "Allocation for Rx Queue %u failed\n", i);
    995 			goto err_setup_rx;
    996 		}
    997 	}
    998 	return (0);
    999 
   1000 err_setup_rx:
   1001 	/* rewind the index freeing the rings as we go */
   1002 	while (i--)
   1003 		ena_free_rx_resources(adapter, i);
   1004 	return (rc);
   1005 }
   1006 
   1007 /**
   1008  * ena_free_all_rx_resources - Free Rx resources for all queues
   1009  * @adapter: network interface device structure
   1010  *
   1011  * Free all receive software resources
   1012  **/
   1013 static void
   1014 ena_free_all_rx_resources(struct ena_adapter *adapter)
   1015 {
   1016 	int i;
   1017 
   1018 	for (i = 0; i < adapter->num_queues; i++)
   1019 		ena_free_rx_resources(adapter, i);
   1020 }
   1021 
   1022 static inline int
   1023 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
   1024     struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
   1025 {
   1026 	struct ena_com_buf *ena_buf;
   1027 	int error;
   1028 	int mlen;
   1029 
   1030 	/* if previous allocated frag is not used */
   1031 	if (unlikely(rx_info->mbuf != NULL))
   1032 		return (0);
   1033 
   1034 	/* Get mbuf using UMA allocator */
   1035 	rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES);
   1036 
   1037 	if (unlikely(rx_info->mbuf == NULL)) {
   1038 		counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1);
   1039 		rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
   1040 		if (unlikely(rx_info->mbuf == NULL)) {
   1041 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
   1042 			return (ENOMEM);
   1043 		}
   1044 		mlen = MCLBYTES;
   1045 	} else {
   1046 		mlen = MJUM16BYTES;
   1047 	}
   1048 	/* Set mbuf length*/
   1049 	rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
   1050 
   1051 	/* Map packets for DMA */
   1052 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
   1053 	    "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
   1054 	    adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
   1055 	error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
   1056 	    rx_info->mbuf, BUS_DMA_NOWAIT);
   1057 	if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
   1058 		ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
   1059 		    "nsegs: %d\n", error, rx_info->map->dm_nsegs);
   1060 		counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
   1061 		goto exit;
   1062 
   1063 	}
   1064 
   1065 	bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
   1066 	    rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
   1067 
   1068 	ena_buf = &rx_info->ena_buf;
   1069 	ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
   1070 	ena_buf->len = mlen;
   1071 
   1072 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
   1073 	    "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
   1074 	    rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
   1075 
   1076 	return (0);
   1077 
   1078 exit:
   1079 	m_freem(rx_info->mbuf);
   1080 	rx_info->mbuf = NULL;
   1081 	return (EFAULT);
   1082 }
   1083 
   1084 static void
   1085 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
   1086     struct ena_rx_buffer *rx_info)
   1087 {
   1088 
   1089 	if (rx_info->mbuf == NULL) {
   1090 		ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
   1091 		return;
   1092 	}
   1093 
   1094 	bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
   1095 	m_freem(rx_info->mbuf);
   1096 	rx_info->mbuf = NULL;
   1097 }
   1098 
   1099 /**
   1100  * ena_refill_rx_bufs - Refills ring with descriptors
   1101  * @rx_ring: the ring which we want to feed with free descriptors
   1102  * @num: number of descriptors to refill
   1103  * Refills the ring with newly allocated DMA-mapped mbufs for receiving
   1104  **/
   1105 static int
   1106 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
   1107 {
   1108 	struct ena_adapter *adapter = rx_ring->adapter;
   1109 	uint16_t next_to_use, req_id;
   1110 	uint32_t i;
   1111 	int rc;
   1112 
   1113 	ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
   1114 	    rx_ring->qid);
   1115 
   1116 	next_to_use = rx_ring->next_to_use;
   1117 
   1118 	for (i = 0; i < num; i++) {
   1119 		struct ena_rx_buffer *rx_info;
   1120 
   1121 		ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
   1122 		    "RX buffer - next to use: %d", next_to_use);
   1123 
   1124 		req_id = rx_ring->free_rx_ids[next_to_use];
   1125 		rc = validate_rx_req_id(rx_ring, req_id);
   1126 		if (unlikely(rc != 0))
   1127 			break;
   1128 
   1129 		rx_info = &rx_ring->rx_buffer_info[req_id];
   1130 
   1131 		rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
   1132 		if (unlikely(rc != 0)) {
   1133 			ena_trace(ENA_WARNING,
   1134 			    "failed to alloc buffer for rx queue %d\n",
   1135 			    rx_ring->qid);
   1136 			break;
   1137 		}
   1138 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
   1139 		    &rx_info->ena_buf, req_id);
   1140 		if (unlikely(rc != 0)) {
   1141 			ena_trace(ENA_WARNING,
   1142 			    "failed to add buffer for rx queue %d\n",
   1143 			    rx_ring->qid);
   1144 			break;
   1145 		}
   1146 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
   1147 		    rx_ring->ring_size);
   1148 	}
   1149 
   1150 	if (unlikely(i < num)) {
   1151 		counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
   1152 		ena_trace(ENA_WARNING,
   1153 		     "refilled rx qid %d with only %d mbufs (from %d)\n",
   1154 		     rx_ring->qid, i, num);
   1155 	}
   1156 
   1157 	if (likely(i != 0)) {
   1158 		wmb();
   1159 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
   1160 	}
   1161 	rx_ring->next_to_use = next_to_use;
   1162 	return (i);
   1163 }
   1164 
   1165 static void
   1166 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
   1167 {
   1168 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
   1169 	unsigned int i;
   1170 
   1171 	for (i = 0; i < rx_ring->ring_size; i++) {
   1172 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
   1173 
   1174 		if (rx_info->mbuf != NULL)
   1175 			ena_free_rx_mbuf(adapter, rx_ring, rx_info);
   1176 	}
   1177 }
   1178 
   1179 /**
   1180  * ena_refill_all_rx_bufs - allocate all queues Rx buffers
   1181  * @adapter: network interface device structure
   1182  *
   1183  */
   1184 static void
   1185 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
   1186 {
   1187 	struct ena_ring *rx_ring;
   1188 	int i, rc, bufs_num;
   1189 
   1190 	for (i = 0; i < adapter->num_queues; i++) {
   1191 		rx_ring = &adapter->rx_ring[i];
   1192 		bufs_num = rx_ring->ring_size - 1;
   1193 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
   1194 
   1195 		if (unlikely(rc != bufs_num))
   1196 			ena_trace(ENA_WARNING, "refilling Queue %d failed. "
   1197 			    "Allocated %d buffers from: %d\n", i, rc, bufs_num);
   1198 	}
   1199 }
   1200 
   1201 static void
   1202 ena_free_all_rx_bufs(struct ena_adapter *adapter)
   1203 {
   1204 	int i;
   1205 
   1206 	for (i = 0; i < adapter->num_queues; i++)
   1207 		ena_free_rx_bufs(adapter, i);
   1208 }
   1209 
   1210 /**
   1211  * ena_free_tx_bufs - Free Tx Buffers per Queue
   1212  * @adapter: network interface device structure
   1213  * @qid: queue index
   1214  **/
   1215 static void
   1216 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
   1217 {
   1218 	bool print_once = true;
   1219 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
   1220 
   1221 	ENA_RING_MTX_LOCK(tx_ring);
   1222 	for (int i = 0; i < tx_ring->ring_size; i++) {
   1223 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
   1224 
   1225 		if (tx_info->mbuf == NULL)
   1226 			continue;
   1227 
   1228 		if (print_once) {
   1229 			device_printf(adapter->pdev,
   1230 			    "free uncompleted tx mbuf qid %d idx 0x%x",
   1231 			    qid, i);
   1232 			print_once = false;
   1233 		} else {
   1234 			ena_trace(ENA_DBG,
   1235 			    "free uncompleted tx mbuf qid %d idx 0x%x",
   1236 			     qid, i);
   1237 		}
   1238 
   1239 		bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   1240 		m_free(tx_info->mbuf);
   1241 		tx_info->mbuf = NULL;
   1242 	}
   1243 	ENA_RING_MTX_UNLOCK(tx_ring);
   1244 }
   1245 
   1246 static void
   1247 ena_free_all_tx_bufs(struct ena_adapter *adapter)
   1248 {
   1249 
   1250 	for (int i = 0; i < adapter->num_queues; i++)
   1251 		ena_free_tx_bufs(adapter, i);
   1252 }
   1253 
   1254 static void
   1255 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
   1256 {
   1257 	uint16_t ena_qid;
   1258 	int i;
   1259 
   1260 	for (i = 0; i < adapter->num_queues; i++) {
   1261 		ena_qid = ENA_IO_TXQ_IDX(i);
   1262 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
   1263 	}
   1264 }
   1265 
   1266 static void
   1267 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
   1268 {
   1269 	uint16_t ena_qid;
   1270 	int i;
   1271 
   1272 	for (i = 0; i < adapter->num_queues; i++) {
   1273 		ena_qid = ENA_IO_RXQ_IDX(i);
   1274 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
   1275 	}
   1276 }
   1277 
   1278 static void
   1279 ena_destroy_all_io_queues(struct ena_adapter *adapter)
   1280 {
   1281 	ena_destroy_all_tx_queues(adapter);
   1282 	ena_destroy_all_rx_queues(adapter);
   1283 }
   1284 
   1285 static inline int
   1286 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
   1287 {
   1288 	struct ena_adapter *adapter = tx_ring->adapter;
   1289 	struct ena_tx_buffer *tx_info = NULL;
   1290 
   1291 	if (likely(req_id < tx_ring->ring_size)) {
   1292 		tx_info = &tx_ring->tx_buffer_info[req_id];
   1293 		if (tx_info->mbuf != NULL)
   1294 			return (0);
   1295 	}
   1296 
   1297 	if (tx_info->mbuf == NULL)
   1298 		device_printf(adapter->pdev,
   1299 		    "tx_info doesn't have valid mbuf\n");
   1300 	else
   1301 		device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
   1302 
   1303 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
   1304 
   1305 	return (EFAULT);
   1306 }
   1307 
   1308 static int
   1309 ena_create_io_queues(struct ena_adapter *adapter)
   1310 {
   1311 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   1312 	struct ena_com_create_io_ctx ctx;
   1313 	struct ena_ring *ring;
   1314 	uint16_t ena_qid;
   1315 	uint32_t msix_vector;
   1316 	int rc, i;
   1317 
   1318 	/* Create TX queues */
   1319 	for (i = 0; i < adapter->num_queues; i++) {
   1320 		msix_vector = ENA_IO_IRQ_IDX(i);
   1321 		ena_qid = ENA_IO_TXQ_IDX(i);
   1322 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
   1323 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
   1324 		ctx.queue_size = adapter->tx_ring_size;
   1325 		ctx.msix_vector = msix_vector;
   1326 		ctx.qid = ena_qid;
   1327 		rc = ena_com_create_io_queue(ena_dev, &ctx);
   1328 		if (rc != 0) {
   1329 			device_printf(adapter->pdev,
   1330 			    "Failed to create io TX queue #%d rc: %d\n", i, rc);
   1331 			goto err_tx;
   1332 		}
   1333 		ring = &adapter->tx_ring[i];
   1334 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
   1335 		    &ring->ena_com_io_sq,
   1336 		    &ring->ena_com_io_cq);
   1337 		if (rc != 0) {
   1338 			device_printf(adapter->pdev,
   1339 			    "Failed to get TX queue handlers. TX queue num"
   1340 			    " %d rc: %d\n", i, rc);
   1341 			ena_com_destroy_io_queue(ena_dev, ena_qid);
   1342 			goto err_tx;
   1343 		}
   1344 	}
   1345 
   1346 	/* Create RX queues */
   1347 	for (i = 0; i < adapter->num_queues; i++) {
   1348 		msix_vector = ENA_IO_IRQ_IDX(i);
   1349 		ena_qid = ENA_IO_RXQ_IDX(i);
   1350 		ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
   1351 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
   1352 		ctx.queue_size = adapter->rx_ring_size;
   1353 		ctx.msix_vector = msix_vector;
   1354 		ctx.qid = ena_qid;
   1355 		rc = ena_com_create_io_queue(ena_dev, &ctx);
   1356 		if (unlikely(rc != 0)) {
   1357 			device_printf(adapter->pdev,
   1358 			    "Failed to create io RX queue[%d] rc: %d\n", i, rc);
   1359 			goto err_rx;
   1360 		}
   1361 
   1362 		ring = &adapter->rx_ring[i];
   1363 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
   1364 		    &ring->ena_com_io_sq,
   1365 		    &ring->ena_com_io_cq);
   1366 		if (unlikely(rc != 0)) {
   1367 			device_printf(adapter->pdev,
   1368 			    "Failed to get RX queue handlers. RX queue num"
   1369 			    " %d rc: %d\n", i, rc);
   1370 			ena_com_destroy_io_queue(ena_dev, ena_qid);
   1371 			goto err_rx;
   1372 		}
   1373 	}
   1374 
   1375 	return (0);
   1376 
   1377 err_rx:
   1378 	while (i--)
   1379 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
   1380 	i = adapter->num_queues;
   1381 err_tx:
   1382 	while (i--)
   1383 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
   1384 
   1385 	return (ENXIO);
   1386 }
   1387 
   1388 /**
   1389  * ena_tx_cleanup - clear sent packets and corresponding descriptors
   1390  * @tx_ring: ring for which we want to clean packets
   1391  *
   1392  * Once packets are sent, we ask the device in a loop for no longer used
   1393  * descriptors. We find the related mbuf chain in a map (index in an array)
   1394  * and free it, then update ring state.
   1395  * This is performed in "endless" loop, updating ring pointers every
   1396  * TX_COMMIT. The first check of free descriptor is performed before the actual
   1397  * loop, then repeated at the loop end.
   1398  **/
   1399 static int
   1400 ena_tx_cleanup(struct ena_ring *tx_ring)
   1401 {
   1402 	struct ena_adapter *adapter;
   1403 	struct ena_com_io_cq* io_cq;
   1404 	uint16_t next_to_clean;
   1405 	uint16_t req_id;
   1406 	uint16_t ena_qid;
   1407 	unsigned int total_done = 0;
   1408 	int rc;
   1409 	int commit = TX_COMMIT;
   1410 	int budget = TX_BUDGET;
   1411 	int work_done;
   1412 
   1413 	adapter = tx_ring->que->adapter;
   1414 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   1415 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1416 	next_to_clean = tx_ring->next_to_clean;
   1417 
   1418 	do {
   1419 		struct ena_tx_buffer *tx_info;
   1420 		struct mbuf *mbuf;
   1421 
   1422 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
   1423 		if (unlikely(rc != 0))
   1424 			break;
   1425 
   1426 		rc = validate_tx_req_id(tx_ring, req_id);
   1427 		if (unlikely(rc != 0))
   1428 			break;
   1429 
   1430 		tx_info = &tx_ring->tx_buffer_info[req_id];
   1431 
   1432 		mbuf = tx_info->mbuf;
   1433 
   1434 		tx_info->mbuf = NULL;
   1435 		bintime_clear(&tx_info->timestamp);
   1436 
   1437 		if (likely(tx_info->num_of_bufs != 0)) {
   1438 			/* Map is no longer required */
   1439 			bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   1440 		}
   1441 
   1442 		ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
   1443 		    tx_ring->qid, mbuf);
   1444 
   1445 		m_freem(mbuf);
   1446 
   1447 		total_done += tx_info->tx_descs;
   1448 
   1449 		tx_ring->free_tx_ids[next_to_clean] = req_id;
   1450 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
   1451 		    tx_ring->ring_size);
   1452 
   1453 		if (unlikely(--commit == 0)) {
   1454 			commit = TX_COMMIT;
   1455 			/* update ring state every TX_COMMIT descriptor */
   1456 			tx_ring->next_to_clean = next_to_clean;
   1457 			ena_com_comp_ack(
   1458 			    &adapter->ena_dev->io_sq_queues[ena_qid],
   1459 			    total_done);
   1460 			ena_com_update_dev_comp_head(io_cq);
   1461 			total_done = 0;
   1462 		}
   1463 	} while (likely(--budget));
   1464 
   1465 	work_done = TX_BUDGET - budget;
   1466 
   1467 	ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
   1468 	tx_ring->qid, work_done);
   1469 
   1470 	/* If there is still something to commit update ring state */
   1471 	if (likely(commit != TX_COMMIT)) {
   1472 		tx_ring->next_to_clean = next_to_clean;
   1473 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
   1474 		    total_done);
   1475 		ena_com_update_dev_comp_head(io_cq);
   1476 	}
   1477 
   1478 	if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   1479 		workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
   1480 
   1481 	return (work_done);
   1482 }
   1483 
   1484 #if 0
   1485 static void
   1486 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
   1487     struct mbuf *mbuf)
   1488 {
   1489 	struct ena_adapter *adapter = rx_ring->adapter;
   1490 
   1491 	if (likely(adapter->rss_support)) {
   1492 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
   1493 
   1494 		if (ena_rx_ctx->frag &&
   1495 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
   1496 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
   1497 			return;
   1498 		}
   1499 
   1500 		switch (ena_rx_ctx->l3_proto) {
   1501 		case ENA_ETH_IO_L3_PROTO_IPV4:
   1502 			switch (ena_rx_ctx->l4_proto) {
   1503 			case ENA_ETH_IO_L4_PROTO_TCP:
   1504 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
   1505 				break;
   1506 			case ENA_ETH_IO_L4_PROTO_UDP:
   1507 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
   1508 				break;
   1509 			default:
   1510 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
   1511 			}
   1512 			break;
   1513 		case ENA_ETH_IO_L3_PROTO_IPV6:
   1514 			switch (ena_rx_ctx->l4_proto) {
   1515 			case ENA_ETH_IO_L4_PROTO_TCP:
   1516 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
   1517 				break;
   1518 			case ENA_ETH_IO_L4_PROTO_UDP:
   1519 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
   1520 				break;
   1521 			default:
   1522 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
   1523 			}
   1524 			break;
   1525 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
   1526 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
   1527 			break;
   1528 		default:
   1529 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
   1530 		}
   1531 	} else {
   1532 		mbuf->m_pkthdr.flowid = rx_ring->qid;
   1533 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
   1534 	}
   1535 }
   1536 #endif
   1537 
   1538 /**
   1539  * ena_rx_mbuf - assemble mbuf from descriptors
   1540  * @rx_ring: ring for which we want to clean packets
   1541  * @ena_bufs: buffer info
   1542  * @ena_rx_ctx: metadata for this packet(s)
   1543  * @next_to_clean: ring pointer, will be updated only upon success
   1544  *
   1545  **/
   1546 static struct mbuf*
   1547 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
   1548     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
   1549 {
   1550 	struct mbuf *mbuf;
   1551 	struct ena_rx_buffer *rx_info;
   1552 	struct ena_adapter *adapter;
   1553 	unsigned int descs = ena_rx_ctx->descs;
   1554 	uint16_t ntc, len, req_id, buf = 0;
   1555 
   1556 	ntc = *next_to_clean;
   1557 	adapter = rx_ring->adapter;
   1558 	rx_info = &rx_ring->rx_buffer_info[ntc];
   1559 
   1560 	if (unlikely(rx_info->mbuf == NULL)) {
   1561 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
   1562 		return (NULL);
   1563 	}
   1564 
   1565 	len = ena_bufs[buf].len;
   1566 	req_id = ena_bufs[buf].req_id;
   1567 	rx_info = &rx_ring->rx_buffer_info[req_id];
   1568 
   1569 	ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
   1570 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
   1571 
   1572 	mbuf = rx_info->mbuf;
   1573 	KASSERT(mbuf->m_flags & M_PKTHDR);
   1574 	mbuf->m_pkthdr.len = len;
   1575 	mbuf->m_len = len;
   1576 	m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
   1577 
   1578 	/* Fill mbuf with hash key and it's interpretation for optimization */
   1579 #if 0
   1580 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
   1581 #endif
   1582 
   1583 	ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d",
   1584 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
   1585 
   1586 	/* DMA address is not needed anymore, unmap it */
   1587 	bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
   1588 
   1589 	rx_info->mbuf = NULL;
   1590 	rx_ring->free_rx_ids[ntc] = req_id;
   1591 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
   1592 
   1593 	/*
   1594 	 * While we have more than 1 descriptors for one rcvd packet, append
   1595 	 * other mbufs to the main one
   1596 	 */
   1597 	while (--descs) {
   1598 		++buf;
   1599 		len = ena_bufs[buf].len;
   1600 		req_id = ena_bufs[buf].req_id;
   1601 		rx_info = &rx_ring->rx_buffer_info[req_id];
   1602 
   1603 		if (unlikely(rx_info->mbuf == NULL)) {
   1604 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
   1605 			/*
   1606 			 * If one of the required mbufs was not allocated yet,
   1607 			 * we can break there.
   1608 			 * All earlier used descriptors will be reallocated
   1609 			 * later and not used mbufs can be reused.
   1610 			 * The next_to_clean pointer will not be updated in case
   1611 			 * of an error, so caller should advance it manually
   1612 			 * in error handling routine to keep it up to date
   1613 			 * with hw ring.
   1614 			 */
   1615 			m_freem(mbuf);
   1616 			return (NULL);
   1617 		}
   1618 
   1619 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
   1620 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
   1621 			ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
   1622 			    mbuf);
   1623 		}
   1624 
   1625 		ena_trace(ENA_DBG | ENA_RXPTH,
   1626 		    "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
   1627 
   1628 		/* Free already appended mbuf, it won't be useful anymore */
   1629 		bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
   1630 		m_freem(rx_info->mbuf);
   1631 		rx_info->mbuf = NULL;
   1632 
   1633 		rx_ring->free_rx_ids[ntc] = req_id;
   1634 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
   1635 	}
   1636 
   1637 	*next_to_clean = ntc;
   1638 
   1639 	return (mbuf);
   1640 }
   1641 
   1642 /**
   1643  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
   1644  **/
   1645 static inline void
   1646 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
   1647     struct mbuf *mbuf)
   1648 {
   1649 
   1650 	/* IPv4 */
   1651 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
   1652 		mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1653 		if (ena_rx_ctx->l3_csum_err) {
   1654 			/* ipv4 checksum error */
   1655 			mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1656 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1657 			ena_trace(ENA_DBG, "RX IPv4 header checksum error");
   1658 			return;
   1659 		}
   1660 
   1661 		/*  TCP/UDP */
   1662 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
   1663 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
   1664 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
   1665 			if (ena_rx_ctx->l4_csum_err) {
   1666 				/* TCP/UDP checksum error */
   1667 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1668 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1669 				ena_trace(ENA_DBG, "RX L4 checksum error");
   1670 			}
   1671 		}
   1672 	}
   1673 	/* IPv6 */
   1674 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
   1675 		/*  TCP/UDP */
   1676 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
   1677 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
   1678 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
   1679 			if (ena_rx_ctx->l4_csum_err) {
   1680 				/* TCP/UDP checksum error */
   1681 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1682 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1683 				ena_trace(ENA_DBG, "RX L4 checksum error");
   1684 			}
   1685 		}
   1686 	}
   1687 }
   1688 
   1689 static void
   1690 ena_deferred_rx_cleanup(struct work *wk, void *arg)
   1691 {
   1692 	struct ena_ring *rx_ring = arg;
   1693 	int budget = CLEAN_BUDGET;
   1694 
   1695 	atomic_swap_uint(&rx_ring->task_pending, 0);
   1696 
   1697 	ENA_RING_MTX_LOCK(rx_ring);
   1698 	/*
   1699 	 * If deferred task was executed, perform cleanup of all awaiting
   1700 	 * descs (or until given budget is depleted to avoid infinite loop).
   1701 	 */
   1702 	while (likely(budget--)) {
   1703 		if (ena_rx_cleanup(rx_ring) == 0)
   1704 			break;
   1705 	}
   1706 	ENA_RING_MTX_UNLOCK(rx_ring);
   1707 }
   1708 
   1709 /**
   1710  * ena_rx_cleanup - handle rx irq
   1711  * @arg: ring for which irq is being handled
   1712  **/
   1713 static int
   1714 ena_rx_cleanup(struct ena_ring *rx_ring)
   1715 {
   1716 	struct ena_adapter *adapter;
   1717 	struct mbuf *mbuf;
   1718 	struct ena_com_rx_ctx ena_rx_ctx;
   1719 	struct ena_com_io_cq* io_cq;
   1720 	struct ena_com_io_sq* io_sq;
   1721 	struct ifnet *ifp;
   1722 	uint16_t ena_qid;
   1723 	uint16_t next_to_clean;
   1724 	uint32_t refill_required;
   1725 	uint32_t refill_threshold;
   1726 	uint32_t do_if_input = 0;
   1727 	unsigned int qid;
   1728 	int rc, i;
   1729 	int budget = RX_BUDGET;
   1730 
   1731 	adapter = rx_ring->que->adapter;
   1732 	ifp = adapter->ifp;
   1733 	qid = rx_ring->que->id;
   1734 	ena_qid = ENA_IO_RXQ_IDX(qid);
   1735 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1736 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
   1737 	next_to_clean = rx_ring->next_to_clean;
   1738 
   1739 	ena_trace(ENA_DBG, "rx: qid %d", qid);
   1740 
   1741 	do {
   1742 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
   1743 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
   1744 		ena_rx_ctx.descs = 0;
   1745 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
   1746 
   1747 		if (unlikely(rc != 0))
   1748 			goto error;
   1749 
   1750 		if (unlikely(ena_rx_ctx.descs == 0))
   1751 			break;
   1752 
   1753 		ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
   1754 		    "descs #: %d l3 proto %d l4 proto %d hash: %x",
   1755 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
   1756 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
   1757 
   1758 		/* Receive mbuf from the ring */
   1759 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
   1760 		    &ena_rx_ctx, &next_to_clean);
   1761 
   1762 		/* Exit if we failed to retrieve a buffer */
   1763 		if (unlikely(mbuf == NULL)) {
   1764 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
   1765 				rx_ring->free_rx_ids[next_to_clean] =
   1766 				    rx_ring->ena_bufs[i].req_id;
   1767 				next_to_clean =
   1768 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
   1769 				    rx_ring->ring_size);
   1770 
   1771 			}
   1772 			break;
   1773 		}
   1774 
   1775 		if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
   1776 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
   1777 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
   1778 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
   1779 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
   1780 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
   1781 		}
   1782 
   1783 		counter_enter();
   1784 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
   1785 		    mbuf->m_pkthdr.len);
   1786 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
   1787 		    mbuf->m_pkthdr.len);
   1788 		counter_exit();
   1789 		/*
   1790 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
   1791 		 * should be computed by hardware.
   1792 		 */
   1793 		do_if_input = 1;
   1794 #ifdef LRO
   1795 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
   1796 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
   1797 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
   1798 			/*
   1799 			 * Send to the stack if:
   1800 			 *  - LRO not enabled, or
   1801 			 *  - no LRO resources, or
   1802 			 *  - lro enqueue fails
   1803 			 */
   1804 			if ((rx_ring->lro.lro_cnt != 0) &&
   1805 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
   1806 					do_if_input = 0;
   1807 		}
   1808 #endif
   1809 		if (do_if_input != 0) {
   1810 			ena_trace(ENA_DBG | ENA_RXPTH,
   1811 			    "calling if_input() with mbuf %p", mbuf);
   1812 			if_percpuq_enqueue(ifp->if_percpuq, mbuf);
   1813 		}
   1814 
   1815 		counter_enter();
   1816 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
   1817 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
   1818 		counter_exit();
   1819 	} while (--budget);
   1820 
   1821 	rx_ring->next_to_clean = next_to_clean;
   1822 
   1823 	refill_required = ena_com_free_desc(io_sq);
   1824 	refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
   1825 
   1826 	if (refill_required > refill_threshold) {
   1827 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
   1828 		ena_refill_rx_bufs(rx_ring, refill_required);
   1829 	}
   1830 
   1831 #ifdef LRO
   1832 	tcp_lro_flush_all(&rx_ring->lro);
   1833 #endif
   1834 
   1835 	return (RX_BUDGET - budget);
   1836 
   1837 error:
   1838 	counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
   1839 	return (RX_BUDGET - budget);
   1840 }
   1841 
   1842 /*********************************************************************
   1843  *
   1844  *  MSIX & Interrupt Service routine
   1845  *
   1846  **********************************************************************/
   1847 
   1848 /**
   1849  * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
   1850  * @arg: interrupt number
   1851  **/
   1852 static int
   1853 ena_intr_msix_mgmnt(void *arg)
   1854 {
   1855 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
   1856 
   1857 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
   1858 	if (likely(adapter->running))
   1859 		ena_com_aenq_intr_handler(adapter->ena_dev, arg);
   1860 
   1861 	return 1;
   1862 }
   1863 
   1864 /**
   1865  * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
   1866  * @arg: interrupt number
   1867  **/
   1868 static int
   1869 ena_handle_msix(void *arg)
   1870 {
   1871 	struct ena_que	*que = arg;
   1872 	struct ena_adapter *adapter = que->adapter;
   1873 	struct ifnet *ifp = adapter->ifp;
   1874 	struct ena_ring *tx_ring;
   1875 	struct ena_ring *rx_ring;
   1876 	struct ena_com_io_cq* io_cq;
   1877 	struct ena_eth_io_intr_reg intr_reg;
   1878 	int qid, ena_qid;
   1879 	int txc, rxc, i;
   1880 
   1881 	if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
   1882 		return 0;
   1883 
   1884 	ena_trace(ENA_DBG, "MSI-X TX/RX routine");
   1885 
   1886 	tx_ring = que->tx_ring;
   1887 	rx_ring = que->rx_ring;
   1888 	qid = que->id;
   1889 	ena_qid = ENA_IO_TXQ_IDX(qid);
   1890 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1891 
   1892 	for (i = 0; i < CLEAN_BUDGET; ++i) {
   1893 		/*
   1894 		 * If lock cannot be acquired, then deferred cleanup task was
   1895 		 * being executed and rx ring is being cleaned up in
   1896 		 * another thread.
   1897 		 */
   1898 		if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) {
   1899 			rxc = ena_rx_cleanup(rx_ring);
   1900 			ENA_RING_MTX_UNLOCK(rx_ring);
   1901 		} else {
   1902 			rxc = 0;
   1903 		}
   1904 
   1905 		/* Protection from calling ena_tx_cleanup from ena_start_xmit */
   1906 		ENA_RING_MTX_LOCK(tx_ring);
   1907 		txc = ena_tx_cleanup(tx_ring);
   1908 		ENA_RING_MTX_UNLOCK(tx_ring);
   1909 
   1910 		if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
   1911 			return 0;
   1912 
   1913 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
   1914 		       break;
   1915 	}
   1916 
   1917 	/* Signal that work is done and unmask interrupt */
   1918 	ena_com_update_intr_reg(&intr_reg,
   1919 	    RX_IRQ_INTERVAL,
   1920 	    TX_IRQ_INTERVAL,
   1921 	    true);
   1922 	ena_com_unmask_intr(io_cq, &intr_reg);
   1923 
   1924 	return 1;
   1925 }
   1926 
   1927 static int
   1928 ena_enable_msix(struct ena_adapter *adapter)
   1929 {
   1930 	int msix_req;
   1931 	int counts[PCI_INTR_TYPE_SIZE];
   1932 	int max_type;
   1933 
   1934 	/* Reserved the max msix vectors we might need */
   1935 	msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
   1936 
   1937 	counts[PCI_INTR_TYPE_INTX] = 0;
   1938 	counts[PCI_INTR_TYPE_MSI] = 0;
   1939 	counts[PCI_INTR_TYPE_MSIX] = msix_req;
   1940 	max_type = PCI_INTR_TYPE_MSIX;
   1941 
   1942 	if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
   1943 	    max_type) != 0) {
   1944 		aprint_error_dev(adapter->pdev,
   1945 		    "failed to allocate interrupt\n");
   1946 		return ENOSPC;
   1947 	}
   1948 
   1949 	adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
   1950 
   1951 	if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
   1952 		device_printf(adapter->pdev,
   1953 		    "Enable only %d MSI-x (out of %d), reduce "
   1954 		    "the number of queues\n", adapter->sc_nintrs, msix_req);
   1955 		adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
   1956 	}
   1957 
   1958 	return 0;
   1959 }
   1960 
   1961 #if 0
   1962 static void
   1963 ena_setup_io_intr(struct ena_adapter *adapter)
   1964 {
   1965 	static int last_bind_cpu = -1;
   1966 	int irq_idx;
   1967 
   1968 	for (int i = 0; i < adapter->num_queues; i++) {
   1969 		irq_idx = ENA_IO_IRQ_IDX(i);
   1970 
   1971 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
   1972 		    "%s-TxRx-%d", device_xname(adapter->pdev), i);
   1973 		adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
   1974 		adapter->irq_tbl[irq_idx].data = &adapter->que[i];
   1975 		adapter->irq_tbl[irq_idx].vector =
   1976 		    adapter->msix_entries[irq_idx].vector;
   1977 		ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
   1978 		    adapter->msix_entries[irq_idx].vector);
   1979 #ifdef	RSS
   1980 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
   1981 		    rss_getcpu(i % rss_getnumbuckets());
   1982 #else
   1983 		/*
   1984 		 * We still want to bind rings to the corresponding cpu
   1985 		 * using something similar to the RSS round-robin technique.
   1986 		 */
   1987 		if (unlikely(last_bind_cpu < 0))
   1988 			last_bind_cpu = CPU_FIRST();
   1989 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
   1990 		    last_bind_cpu;
   1991 		last_bind_cpu = CPU_NEXT(last_bind_cpu);
   1992 #endif
   1993 	}
   1994 }
   1995 #endif
   1996 
   1997 static int
   1998 ena_request_mgmnt_irq(struct ena_adapter *adapter)
   1999 {
   2000 	const char *intrstr;
   2001 	char intrbuf[PCI_INTRSTR_LEN];
   2002 	char intr_xname[INTRDEVNAMEBUF];
   2003 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
   2004 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
   2005 
   2006 	KASSERT(adapter->sc_intrs != NULL);
   2007 	KASSERT(adapter->sc_ihs[irq_slot] == NULL);
   2008 
   2009 	snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
   2010 	    device_xname(adapter->pdev));
   2011 	intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
   2012 	    intrbuf, sizeof(intrbuf));
   2013 
   2014 	adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
   2015 	    pc, adapter->sc_intrs[irq_slot],
   2016 	    IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
   2017 
   2018 	if (adapter->sc_ihs[irq_slot] == NULL) {
   2019 		device_printf(adapter->pdev, "failed to register "
   2020 		    "interrupt handler for MGMNT irq %s\n",
   2021 		    intrstr);
   2022 		return ENOMEM;
   2023 	}
   2024 
   2025 	aprint_normal_dev(adapter->pdev,
   2026 	    "for MGMNT interrupting at %s\n", intrstr);
   2027 
   2028 	return 0;
   2029 }
   2030 
   2031 static int
   2032 ena_request_io_irq(struct ena_adapter *adapter)
   2033 {
   2034 	const char *intrstr;
   2035 	char intrbuf[PCI_INTRSTR_LEN];
   2036 	char intr_xname[INTRDEVNAMEBUF];
   2037 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
   2038 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
   2039 	void *vih;
   2040 	kcpuset_t *affinity;
   2041 	int i;
   2042 
   2043 	KASSERT(adapter->sc_intrs != NULL);
   2044 
   2045 	kcpuset_create(&affinity, false);
   2046 
   2047 	for (i = 0; i < adapter->num_queues; i++) {
   2048 		int irq_slot = i + irq_off;
   2049 		int affinity_to = (irq_slot) % ncpu;
   2050 
   2051 		KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
   2052 		KASSERT(adapter->sc_ihs[irq_slot] == NULL);
   2053 
   2054 		snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
   2055 		    device_xname(adapter->pdev), i);
   2056 		intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
   2057 		    intrbuf, sizeof(intrbuf));
   2058 
   2059 		vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
   2060 		    adapter->sc_intrs[irq_slot], IPL_NET,
   2061 		    ena_handle_msix, &adapter->que[i], intr_xname);
   2062 
   2063 		if (adapter->sc_ihs[ENA_MGMNT_IRQ_IDX] == NULL) {
   2064 			device_printf(adapter->pdev, "failed to register "
   2065 			    "interrupt handler for IO queue %d irq %s\n",
   2066 			    i, intrstr);
   2067 			goto err;
   2068 		}
   2069 
   2070 		kcpuset_zero(affinity);
   2071 		/* Round-robin affinity */
   2072 		kcpuset_set(affinity, affinity_to);
   2073 		int error = interrupt_distribute(vih, affinity, NULL);
   2074 		if (error == 0) {
   2075 			aprint_normal_dev(adapter->pdev,
   2076 			    "for IO queue %d interrupting at %s"
   2077 			    " affinity to %u\n", i, intrstr, affinity_to);
   2078 		} else {
   2079 			aprint_normal_dev(adapter->pdev,
   2080 			    "for IO queue %d interrupting at %s\n", i, intrstr);
   2081 		}
   2082 
   2083 		adapter->sc_ihs[irq_slot] = vih;
   2084 
   2085 #ifdef	RSS
   2086 		ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
   2087 		    i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
   2088 #else
   2089 		ena_trace(ENA_INFO, "queue %d - cpu %d\n",
   2090 		    i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
   2091 #endif
   2092 	}
   2093 
   2094 	kcpuset_destroy(affinity);
   2095 	return 0;
   2096 
   2097 err:
   2098 	kcpuset_destroy(affinity);
   2099 
   2100 	for (i--; i >= 0; i--) {
   2101 		int irq_slot __diagused = i + irq_off;
   2102 		KASSERT(adapter->sc_ihs[irq_slot] != NULL);
   2103 		pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[i]);
   2104 		adapter->sc_ihs[i] = NULL;
   2105 	}
   2106 
   2107 	return ENOSPC;
   2108 }
   2109 
   2110 static void
   2111 ena_free_mgmnt_irq(struct ena_adapter *adapter)
   2112 {
   2113 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
   2114 
   2115 	if (adapter->sc_ihs[irq_slot]) {
   2116 		pci_intr_disestablish(adapter->sc_pa.pa_pc,
   2117 		    adapter->sc_ihs[irq_slot]);
   2118 		adapter->sc_ihs[irq_slot] = NULL;
   2119 	}
   2120 }
   2121 
   2122 static void
   2123 ena_free_io_irq(struct ena_adapter *adapter)
   2124 {
   2125 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
   2126 
   2127 	for (int i = 0; i < adapter->num_queues; i++) {
   2128 		int irq_slot = i + irq_off;
   2129 
   2130 		if (adapter->sc_ihs[irq_slot]) {
   2131 			pci_intr_disestablish(adapter->sc_pa.pa_pc,
   2132 			    adapter->sc_ihs[i]);
   2133 			adapter->sc_ihs[i] = NULL;
   2134 		}
   2135 	}
   2136 }
   2137 
   2138 static void
   2139 ena_free_irqs(struct ena_adapter* adapter)
   2140 {
   2141 
   2142 	ena_free_io_irq(adapter);
   2143 	ena_free_mgmnt_irq(adapter);
   2144 	ena_disable_msix(adapter);
   2145 }
   2146 
   2147 static void
   2148 ena_disable_msix(struct ena_adapter *adapter)
   2149 {
   2150 	pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
   2151 	    adapter->sc_nintrs);
   2152 }
   2153 
   2154 static void
   2155 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
   2156 {
   2157 	struct ena_com_io_cq* io_cq;
   2158 	struct ena_eth_io_intr_reg intr_reg;
   2159 	uint16_t ena_qid;
   2160 	int i;
   2161 
   2162 	/* Unmask interrupts for all queues */
   2163 	for (i = 0; i < adapter->num_queues; i++) {
   2164 		ena_qid = ENA_IO_TXQ_IDX(i);
   2165 		io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   2166 		ena_com_update_intr_reg(&intr_reg, 0, 0, true);
   2167 		ena_com_unmask_intr(io_cq, &intr_reg);
   2168 	}
   2169 }
   2170 
   2171 /* Configure the Rx forwarding */
   2172 static int
   2173 ena_rss_configure(struct ena_adapter *adapter)
   2174 {
   2175 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   2176 	int rc;
   2177 
   2178 	/* Set indirect table */
   2179 	rc = ena_com_indirect_table_set(ena_dev);
   2180 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2181 		return (rc);
   2182 
   2183 	/* Configure hash function (if supported) */
   2184 	rc = ena_com_set_hash_function(ena_dev);
   2185 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2186 		return (rc);
   2187 
   2188 	/* Configure hash inputs (if supported) */
   2189 	rc = ena_com_set_hash_ctrl(ena_dev);
   2190 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2191 		return (rc);
   2192 
   2193 	return (0);
   2194 }
   2195 
   2196 static int
   2197 ena_up_complete(struct ena_adapter *adapter)
   2198 {
   2199 	int rc;
   2200 
   2201 	if (likely(adapter->rss_support)) {
   2202 		rc = ena_rss_configure(adapter);
   2203 		if (rc != 0)
   2204 			return (rc);
   2205 	}
   2206 
   2207 	rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
   2208 	if (unlikely(rc != 0))
   2209 		return (rc);
   2210 
   2211 	ena_refill_all_rx_bufs(adapter);
   2212 	ena_reset_counters((struct evcnt *)&adapter->hw_stats,
   2213 	    sizeof(adapter->hw_stats));
   2214 
   2215 	return (0);
   2216 }
   2217 
   2218 static int
   2219 ena_up(struct ena_adapter *adapter)
   2220 {
   2221 	int rc = 0;
   2222 
   2223 #if 0
   2224 	if (unlikely(device_is_attached(adapter->pdev) == 0)) {
   2225 		device_printf(adapter->pdev, "device is not attached!\n");
   2226 		return (ENXIO);
   2227 	}
   2228 #endif
   2229 
   2230 	if (unlikely(!adapter->running)) {
   2231 		device_printf(adapter->pdev, "device is not running!\n");
   2232 		return (ENXIO);
   2233 	}
   2234 
   2235 	if (!adapter->up) {
   2236 		device_printf(adapter->pdev, "device is going UP\n");
   2237 
   2238 		/* setup interrupts for IO queues */
   2239 		rc = ena_request_io_irq(adapter);
   2240 		if (unlikely(rc != 0)) {
   2241 			ena_trace(ENA_ALERT, "err_req_irq");
   2242 			goto err_req_irq;
   2243 		}
   2244 
   2245 		/* allocate transmit descriptors */
   2246 		rc = ena_setup_all_tx_resources(adapter);
   2247 		if (unlikely(rc != 0)) {
   2248 			ena_trace(ENA_ALERT, "err_setup_tx");
   2249 			goto err_setup_tx;
   2250 		}
   2251 
   2252 		/* allocate receive descriptors */
   2253 		rc = ena_setup_all_rx_resources(adapter);
   2254 		if (unlikely(rc != 0)) {
   2255 			ena_trace(ENA_ALERT, "err_setup_rx");
   2256 			goto err_setup_rx;
   2257 		}
   2258 
   2259 		/* create IO queues for Rx & Tx */
   2260 		rc = ena_create_io_queues(adapter);
   2261 		if (unlikely(rc != 0)) {
   2262 			ena_trace(ENA_ALERT,
   2263 			    "create IO queues failed");
   2264 			goto err_io_que;
   2265 		}
   2266 
   2267 		if (unlikely(adapter->link_status))
   2268 			if_link_state_change(adapter->ifp, LINK_STATE_UP);
   2269 
   2270 		rc = ena_up_complete(adapter);
   2271 		if (unlikely(rc != 0))
   2272 			goto err_up_complete;
   2273 
   2274 		counter_u64_add(adapter->dev_stats.interface_up, 1);
   2275 
   2276 		ena_update_hwassist(adapter);
   2277 
   2278 		if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
   2279 		    IFF_OACTIVE);
   2280 
   2281 		callout_reset(&adapter->timer_service, hz,
   2282 		    ena_timer_service, (void *)adapter);
   2283 
   2284 		adapter->up = true;
   2285 
   2286 		ena_unmask_all_io_irqs(adapter);
   2287 	}
   2288 
   2289 	return (0);
   2290 
   2291 err_up_complete:
   2292 	ena_destroy_all_io_queues(adapter);
   2293 err_io_que:
   2294 	ena_free_all_rx_resources(adapter);
   2295 err_setup_rx:
   2296 	ena_free_all_tx_resources(adapter);
   2297 err_setup_tx:
   2298 	ena_free_io_irq(adapter);
   2299 err_req_irq:
   2300 	return (rc);
   2301 }
   2302 
   2303 #if 0
   2304 static uint64_t
   2305 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
   2306 {
   2307 	struct ena_adapter *adapter;
   2308 	struct ena_hw_stats *stats;
   2309 
   2310 	adapter = if_getsoftc(ifp);
   2311 	stats = &adapter->hw_stats;
   2312 
   2313 	switch (cnt) {
   2314 	case IFCOUNTER_IPACKETS:
   2315 		return (counter_u64_fetch(stats->rx_packets));
   2316 	case IFCOUNTER_OPACKETS:
   2317 		return (counter_u64_fetch(stats->tx_packets));
   2318 	case IFCOUNTER_IBYTES:
   2319 		return (counter_u64_fetch(stats->rx_bytes));
   2320 	case IFCOUNTER_OBYTES:
   2321 		return (counter_u64_fetch(stats->tx_bytes));
   2322 	case IFCOUNTER_IQDROPS:
   2323 		return (counter_u64_fetch(stats->rx_drops));
   2324 	default:
   2325 		return (if_get_counter_default(ifp, cnt));
   2326 	}
   2327 }
   2328 #endif
   2329 
   2330 static int
   2331 ena_media_change(struct ifnet *ifp)
   2332 {
   2333 	/* Media Change is not supported by firmware */
   2334 	return (0);
   2335 }
   2336 
   2337 static void
   2338 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
   2339 {
   2340 	struct ena_adapter *adapter = if_getsoftc(ifp);
   2341 	ena_trace(ENA_DBG, "enter");
   2342 
   2343 	mutex_enter(&adapter->global_mtx);
   2344 
   2345 	ifmr->ifm_status = IFM_AVALID;
   2346 	ifmr->ifm_active = IFM_ETHER;
   2347 
   2348 	if (!adapter->link_status) {
   2349 		mutex_exit(&adapter->global_mtx);
   2350 		ena_trace(ENA_INFO, "link_status = false");
   2351 		return;
   2352 	}
   2353 
   2354 	ifmr->ifm_status |= IFM_ACTIVE;
   2355 	ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
   2356 
   2357 	mutex_exit(&adapter->global_mtx);
   2358 }
   2359 
   2360 static int
   2361 ena_init(struct ifnet *ifp)
   2362 {
   2363 	struct ena_adapter *adapter = if_getsoftc(ifp);
   2364 
   2365 	if (!adapter->up) {
   2366 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2367 		ena_up(adapter);
   2368 		rw_exit(&adapter->ioctl_sx);
   2369 	}
   2370 
   2371 	return 0;
   2372 }
   2373 
   2374 static int
   2375 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
   2376 {
   2377 	struct ena_adapter *adapter;
   2378 	struct ifreq *ifr;
   2379 	int rc;
   2380 
   2381 	adapter = ifp->if_softc;
   2382 	ifr = (struct ifreq *)data;
   2383 
   2384 	/*
   2385 	 * Acquiring lock to prevent from running up and down routines parallel.
   2386 	 */
   2387 	rc = 0;
   2388 	switch (command) {
   2389 	case SIOCSIFMTU:
   2390 		if (ifp->if_mtu == ifr->ifr_mtu)
   2391 			break;
   2392 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2393 		ena_down(adapter);
   2394 
   2395 		ena_change_mtu(ifp, ifr->ifr_mtu);
   2396 
   2397 		rc = ena_up(adapter);
   2398 		rw_exit(&adapter->ioctl_sx);
   2399 		break;
   2400 
   2401 	case SIOCSIFFLAGS:
   2402 		if ((ifp->if_flags & IFF_UP) != 0) {
   2403 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
   2404 				if ((ifp->if_flags & (IFF_PROMISC |
   2405 				    IFF_ALLMULTI)) != 0) {
   2406 					device_printf(adapter->pdev,
   2407 					    "ioctl promisc/allmulti\n");
   2408 				}
   2409 			} else {
   2410 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2411 				rc = ena_up(adapter);
   2412 				rw_exit(&adapter->ioctl_sx);
   2413 			}
   2414 		} else {
   2415 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
   2416 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2417 				ena_down(adapter);
   2418 				rw_exit(&adapter->ioctl_sx);
   2419 			}
   2420 		}
   2421 		break;
   2422 
   2423 	case SIOCADDMULTI:
   2424 	case SIOCDELMULTI:
   2425 		break;
   2426 
   2427 	case SIOCSIFCAP:
   2428 		{
   2429 			struct ifcapreq *ifcr = data;
   2430 			int reinit = 0;
   2431 
   2432 			if (ifcr->ifcr_capenable != ifp->if_capenable) {
   2433 				ifp->if_capenable = ifcr->ifcr_capenable;
   2434 				reinit = 1;
   2435 			}
   2436 
   2437 			if ((reinit != 0) &&
   2438 			    ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
   2439 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2440 				ena_down(adapter);
   2441 				rc = ena_up(adapter);
   2442 				rw_exit(&adapter->ioctl_sx);
   2443 			}
   2444 		}
   2445 
   2446 		break;
   2447 	default:
   2448 		rc = ether_ioctl(ifp, command, data);
   2449 		break;
   2450 	}
   2451 
   2452 	return (rc);
   2453 }
   2454 
   2455 static int
   2456 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
   2457 {
   2458 	int caps = 0;
   2459 
   2460 	if ((feat->offload.tx &
   2461 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
   2462 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
   2463 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
   2464 		caps |= IFCAP_CSUM_IPv4_Tx;
   2465 
   2466 	if ((feat->offload.tx &
   2467 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
   2468 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
   2469 		caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
   2470 
   2471 	if ((feat->offload.tx &
   2472 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
   2473 		caps |= IFCAP_TSOv4;
   2474 
   2475 	if ((feat->offload.tx &
   2476 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
   2477 		caps |= IFCAP_TSOv6;
   2478 
   2479 	if ((feat->offload.rx_supported &
   2480 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
   2481 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
   2482 		caps |= IFCAP_CSUM_IPv4_Rx;
   2483 
   2484 	if ((feat->offload.rx_supported &
   2485 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
   2486 		caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
   2487 
   2488 	caps |= IFCAP_LRO;
   2489 
   2490 	return (caps);
   2491 }
   2492 
   2493 static void
   2494 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
   2495 {
   2496 
   2497 	host_info->supported_network_features[0] =
   2498 	    (uint32_t)if_getcapabilities(ifp);
   2499 }
   2500 
   2501 static void
   2502 ena_update_hwassist(struct ena_adapter *adapter)
   2503 {
   2504 	struct ifnet *ifp = adapter->ifp;
   2505 	uint32_t feat = adapter->tx_offload_cap;
   2506 	int cap = if_getcapenable(ifp);
   2507 	int flags = 0;
   2508 
   2509 	if_clearhwassist(ifp);
   2510 
   2511 	if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2512 	    != 0) {
   2513 		if ((feat &
   2514 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
   2515 			flags |= M_CSUM_IPv4;
   2516 		if ((feat &
   2517 		    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
   2518 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
   2519 			flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
   2520 	}
   2521 
   2522 	if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
   2523 		flags |= M_CSUM_TCPv6;
   2524 
   2525 	if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
   2526 		flags |= M_CSUM_UDPv6;
   2527 
   2528 	if ((cap & IFCAP_TSOv4) != 0)
   2529 		flags |= M_CSUM_TSOv4;
   2530 
   2531 	if ((cap & IFCAP_TSOv6) != 0)
   2532 		flags |= M_CSUM_TSOv6;
   2533 
   2534 	if_sethwassistbits(ifp, flags, 0);
   2535 }
   2536 
   2537 static int
   2538 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
   2539     struct ena_com_dev_get_features_ctx *feat)
   2540 {
   2541 	struct ifnet *ifp;
   2542 	int caps = 0;
   2543 
   2544 	ifp = adapter->ifp = &adapter->sc_ec.ec_if;
   2545 	if (unlikely(ifp == NULL)) {
   2546 		ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
   2547 		return (ENXIO);
   2548 	}
   2549 	if_initname(ifp, "ena", device_unit(pdev));
   2550 	if_setdev(ifp, pdev);
   2551 	if_setsoftc(ifp, adapter);
   2552 
   2553 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
   2554 	if_setinitfn(ifp, ena_init);
   2555 	if_settransmitfn(ifp, ena_mq_start);
   2556 #if 0
   2557 	if_setqflushfn(ifp, ena_qflush);
   2558 #endif
   2559 	if_setioctlfn(ifp, ena_ioctl);
   2560 #if 0
   2561 	if_setgetcounterfn(ifp, ena_get_counter);
   2562 #endif
   2563 
   2564 	if_setsendqlen(ifp, adapter->tx_ring_size);
   2565 	if_setsendqready(ifp);
   2566 	if_setmtu(ifp, ETHERMTU);
   2567 	if_setbaudrate(ifp, 0);
   2568 	/* Zeroize capabilities... */
   2569 	if_setcapabilities(ifp, 0);
   2570 	if_setcapenable(ifp, 0);
   2571 	/* check hardware support */
   2572 	caps = ena_get_dev_offloads(feat);
   2573 	/* ... and set them */
   2574 	if_setcapabilitiesbit(ifp, caps, 0);
   2575 	adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2576 
   2577 #if 0
   2578 	/* TSO parameters */
   2579 	/* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
   2580 	ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
   2581 	    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
   2582 	ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
   2583 	ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
   2584 #endif
   2585 
   2586 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
   2587 	if_setcapenable(ifp, if_getcapabilities(ifp));
   2588 
   2589 	/*
   2590 	 * Specify the media types supported by this adapter and register
   2591 	 * callbacks to update media and link information
   2592 	 */
   2593 	adapter->sc_ec.ec_ifmedia = &adapter->media;
   2594 	ifmedia_init(&adapter->media, IFM_IMASK,
   2595 	    ena_media_change, ena_media_status);
   2596 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
   2597 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
   2598 
   2599 	if_attach(ifp);
   2600 	if_deferred_start_init(ifp, NULL);
   2601 
   2602 	ether_ifattach(ifp, adapter->mac_addr);
   2603 
   2604 	return (0);
   2605 }
   2606 
   2607 static void
   2608 ena_down(struct ena_adapter *adapter)
   2609 {
   2610 	int rc;
   2611 
   2612 	if (adapter->up) {
   2613 		device_printf(adapter->pdev, "device is going DOWN\n");
   2614 
   2615 		callout_halt(&adapter->timer_service, &adapter->global_mtx);
   2616 
   2617 		adapter->up = false;
   2618 		if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
   2619 		    IFF_RUNNING);
   2620 
   2621 		ena_free_io_irq(adapter);
   2622 
   2623 		if (adapter->trigger_reset) {
   2624 			rc = ena_com_dev_reset(adapter->ena_dev,
   2625 			    adapter->reset_reason);
   2626 			if (unlikely(rc != 0))
   2627 				device_printf(adapter->pdev,
   2628 				    "Device reset failed\n");
   2629 		}
   2630 
   2631 		ena_destroy_all_io_queues(adapter);
   2632 
   2633 		ena_free_all_tx_bufs(adapter);
   2634 		ena_free_all_rx_bufs(adapter);
   2635 		ena_free_all_tx_resources(adapter);
   2636 		ena_free_all_rx_resources(adapter);
   2637 
   2638 		counter_u64_add(adapter->dev_stats.interface_down, 1);
   2639 	}
   2640 }
   2641 
   2642 static void
   2643 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
   2644 {
   2645 	struct ena_com_tx_meta *ena_meta;
   2646 	struct ether_vlan_header *eh;
   2647 	u32 mss;
   2648 	bool offload;
   2649 	uint16_t etype;
   2650 	int ehdrlen;
   2651 	struct ip *ip;
   2652 	int iphlen;
   2653 	struct tcphdr *th;
   2654 
   2655 	offload = false;
   2656 	ena_meta = &ena_tx_ctx->ena_meta;
   2657 
   2658 #if 0
   2659 	u32 mss = mbuf->m_pkthdr.tso_segsz;
   2660 
   2661 	if (mss != 0)
   2662 		offload = true;
   2663 #else
   2664 	mss = mbuf->m_pkthdr.len;	/* XXX don't have tso_segsz */
   2665 #endif
   2666 
   2667 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
   2668 		offload = true;
   2669 
   2670 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
   2671 		offload = true;
   2672 
   2673 	if (!offload) {
   2674 		ena_tx_ctx->meta_valid = 0;
   2675 		return;
   2676 	}
   2677 
   2678 	/* Determine where frame payload starts. */
   2679 	eh = mtod(mbuf, struct ether_vlan_header *);
   2680 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
   2681 		etype = ntohs(eh->evl_proto);
   2682 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   2683 	} else {
   2684 		etype = htons(eh->evl_encap_proto);
   2685 		ehdrlen = ETHER_HDR_LEN;
   2686 	}
   2687 
   2688 	ip = (struct ip *)(mbuf->m_data + ehdrlen);
   2689 	iphlen = ip->ip_hl << 2;
   2690 	th = (struct tcphdr *)((vaddr_t)ip + iphlen);
   2691 
   2692 	if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
   2693 		ena_tx_ctx->l3_csum_enable = 1;
   2694 	}
   2695 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
   2696 		ena_tx_ctx->tso_enable = 1;
   2697 		ena_meta->l4_hdr_len = (th->th_off);
   2698 	}
   2699 
   2700 	switch (etype) {
   2701 	case ETHERTYPE_IP:
   2702 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
   2703 		if ((ip->ip_off & htons(IP_DF)) != 0)
   2704 			ena_tx_ctx->df = 1;
   2705 		break;
   2706 	case ETHERTYPE_IPV6:
   2707 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
   2708 
   2709 	default:
   2710 		break;
   2711 	}
   2712 
   2713 	if (ip->ip_p == IPPROTO_TCP) {
   2714 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
   2715 		if ((mbuf->m_pkthdr.csum_flags &
   2716 		    (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
   2717 			ena_tx_ctx->l4_csum_enable = 1;
   2718 		else
   2719 			ena_tx_ctx->l4_csum_enable = 0;
   2720 	} else if (ip->ip_p == IPPROTO_UDP) {
   2721 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
   2722 		if ((mbuf->m_pkthdr.csum_flags &
   2723 		    (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
   2724 			ena_tx_ctx->l4_csum_enable = 1;
   2725 		else
   2726 			ena_tx_ctx->l4_csum_enable = 0;
   2727 	} else {
   2728 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
   2729 		ena_tx_ctx->l4_csum_enable = 0;
   2730 	}
   2731 
   2732 	ena_meta->mss = mss;
   2733 	ena_meta->l3_hdr_len = iphlen;
   2734 	ena_meta->l3_hdr_offset = ehdrlen;
   2735 	ena_tx_ctx->meta_valid = 1;
   2736 }
   2737 
   2738 static int
   2739 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
   2740 {
   2741 	struct ena_adapter *adapter;
   2742 	struct mbuf *collapsed_mbuf;
   2743 	int num_frags;
   2744 
   2745 	adapter = tx_ring->adapter;
   2746 	num_frags = ena_mbuf_count(*mbuf);
   2747 
   2748 	/* One segment must be reserved for configuration descriptor. */
   2749 	if (num_frags < adapter->max_tx_sgl_size)
   2750 		return (0);
   2751 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
   2752 
   2753 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
   2754 	    adapter->max_tx_sgl_size - 1);
   2755 	if (unlikely(collapsed_mbuf == NULL)) {
   2756 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
   2757 		return (ENOMEM);
   2758 	}
   2759 
   2760 	/* If mbuf was collapsed succesfully, original mbuf is released. */
   2761 	*mbuf = collapsed_mbuf;
   2762 
   2763 	return (0);
   2764 }
   2765 
   2766 static int
   2767 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
   2768 {
   2769 	struct ena_adapter *adapter;
   2770 	struct ena_tx_buffer *tx_info;
   2771 	struct ena_com_tx_ctx ena_tx_ctx;
   2772 	struct ena_com_dev *ena_dev;
   2773 	struct ena_com_buf *ena_buf;
   2774 	struct ena_com_io_sq* io_sq;
   2775 	void *push_hdr;
   2776 	uint16_t next_to_use;
   2777 	uint16_t req_id;
   2778 	uint16_t ena_qid;
   2779 	uint32_t header_len;
   2780 	int i, rc;
   2781 	int nb_hw_desc;
   2782 
   2783 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   2784 	adapter = tx_ring->que->adapter;
   2785 	ena_dev = adapter->ena_dev;
   2786 	io_sq = &ena_dev->io_sq_queues[ena_qid];
   2787 
   2788 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
   2789 	if (unlikely(rc != 0)) {
   2790 		ena_trace(ENA_WARNING,
   2791 		    "Failed to collapse mbuf! err: %d", rc);
   2792 		return (rc);
   2793 	}
   2794 
   2795 	next_to_use = tx_ring->next_to_use;
   2796 	req_id = tx_ring->free_tx_ids[next_to_use];
   2797 	tx_info = &tx_ring->tx_buffer_info[req_id];
   2798 
   2799 	tx_info->mbuf = *mbuf;
   2800 	tx_info->num_of_bufs = 0;
   2801 
   2802 	ena_buf = tx_info->bufs;
   2803 
   2804 	ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
   2805 
   2806 	/*
   2807 	 * header_len is just a hint for the device. Because FreeBSD is not
   2808 	 * giving us information about packet header length and it is not
   2809 	 * guaranteed that all packet headers will be in the 1st mbuf, setting
   2810 	 * header_len to 0 is making the device ignore this value and resolve
   2811 	 * header on it's own.
   2812 	 */
   2813 	header_len = 0;
   2814 	push_hdr = NULL;
   2815 
   2816 	rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
   2817 	    *mbuf, BUS_DMA_NOWAIT);
   2818 
   2819 	if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
   2820 		ena_trace(ENA_WARNING,
   2821 		    "dmamap load failed! err: %d nsegs: %d", rc,
   2822 		    tx_info->map->dm_nsegs);
   2823 		counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
   2824 		tx_info->mbuf = NULL;
   2825 		if (rc == ENOMEM)
   2826 			return (ENA_COM_NO_MEM);
   2827 		else
   2828 			return (ENA_COM_INVAL);
   2829 	}
   2830 
   2831 	for (i = 0; i < tx_info->map->dm_nsegs; i++) {
   2832 		ena_buf->len = tx_info->map->dm_segs[i].ds_len;
   2833 		ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
   2834 		ena_buf++;
   2835 	}
   2836 	tx_info->num_of_bufs = tx_info->map->dm_nsegs;
   2837 
   2838 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
   2839 	ena_tx_ctx.ena_bufs = tx_info->bufs;
   2840 	ena_tx_ctx.push_header = push_hdr;
   2841 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
   2842 	ena_tx_ctx.req_id = req_id;
   2843 	ena_tx_ctx.header_len = header_len;
   2844 
   2845 	/* Set flags and meta data */
   2846 	ena_tx_csum(&ena_tx_ctx, *mbuf);
   2847 	/* Prepare the packet's descriptors and send them to device */
   2848 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
   2849 	if (unlikely(rc != 0)) {
   2850 		device_printf(adapter->pdev, "failed to prepare tx bufs\n");
   2851 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
   2852 		goto dma_error;
   2853 	}
   2854 
   2855 	counter_enter();
   2856 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
   2857 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
   2858 	    (*mbuf)->m_pkthdr.len);
   2859 
   2860 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
   2861 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
   2862 	    (*mbuf)->m_pkthdr.len);
   2863 	counter_exit();
   2864 
   2865 	tx_info->tx_descs = nb_hw_desc;
   2866 	getbinuptime(&tx_info->timestamp);
   2867 	tx_info->print_once = true;
   2868 
   2869 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
   2870 	    tx_ring->ring_size);
   2871 
   2872 	bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
   2873 	    tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2874 
   2875 	return (0);
   2876 
   2877 dma_error:
   2878 	tx_info->mbuf = NULL;
   2879 	bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   2880 
   2881 	return (rc);
   2882 }
   2883 
   2884 static void
   2885 ena_start_xmit(struct ena_ring *tx_ring)
   2886 {
   2887 	struct mbuf *mbuf;
   2888 	struct ena_adapter *adapter = tx_ring->adapter;
   2889 	struct ena_com_io_sq* io_sq;
   2890 	int ena_qid;
   2891 	int acum_pkts = 0;
   2892 	int ret = 0;
   2893 
   2894 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
   2895 		return;
   2896 
   2897 	if (unlikely(!adapter->link_status))
   2898 		return;
   2899 
   2900 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   2901 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
   2902 
   2903 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
   2904 		ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
   2905 		    " header csum flags %#jx",
   2906 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
   2907 
   2908 		if (unlikely(!ena_com_sq_have_enough_space(io_sq,
   2909 		    ENA_TX_CLEANUP_THRESHOLD)))
   2910 			ena_tx_cleanup(tx_ring);
   2911 
   2912 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
   2913 			if (ret == ENA_COM_NO_MEM) {
   2914 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
   2915 			} else if (ret == ENA_COM_NO_SPACE) {
   2916 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
   2917 			} else {
   2918 				m_freem(mbuf);
   2919 				drbr_advance(adapter->ifp, tx_ring->br);
   2920 			}
   2921 
   2922 			break;
   2923 		}
   2924 
   2925 		drbr_advance(adapter->ifp, tx_ring->br);
   2926 
   2927 		if (unlikely((if_getdrvflags(adapter->ifp) &
   2928 		    IFF_RUNNING) == 0))
   2929 			return;
   2930 
   2931 		acum_pkts++;
   2932 
   2933 		/*
   2934 		 * If there's a BPF listener, bounce a copy of this frame
   2935 		 * to him.
   2936 		 */
   2937 		bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
   2938 
   2939 		if (unlikely(acum_pkts == DB_THRESHOLD)) {
   2940 			acum_pkts = 0;
   2941 			wmb();
   2942 			/* Trigger the dma engine */
   2943 			ena_com_write_sq_doorbell(io_sq);
   2944 			counter_u64_add(tx_ring->tx_stats.doorbells, 1);
   2945 		}
   2946 
   2947 	}
   2948 
   2949 	if (likely(acum_pkts != 0)) {
   2950 		wmb();
   2951 		/* Trigger the dma engine */
   2952 		ena_com_write_sq_doorbell(io_sq);
   2953 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
   2954 	}
   2955 
   2956 	if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
   2957 		ena_tx_cleanup(tx_ring);
   2958 }
   2959 
   2960 static void
   2961 ena_deferred_mq_start(struct work *wk, void *arg)
   2962 {
   2963 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
   2964 	struct ifnet *ifp = tx_ring->adapter->ifp;
   2965 
   2966 	atomic_swap_uint(&tx_ring->task_pending, 0);
   2967 
   2968 	while (!drbr_empty(ifp, tx_ring->br) &&
   2969 	    (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
   2970 		ENA_RING_MTX_LOCK(tx_ring);
   2971 		ena_start_xmit(tx_ring);
   2972 		ENA_RING_MTX_UNLOCK(tx_ring);
   2973 	}
   2974 }
   2975 
   2976 static int
   2977 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
   2978 {
   2979 	struct ena_adapter *adapter = ifp->if_softc;
   2980 	struct ena_ring *tx_ring;
   2981 	int ret, is_drbr_empty;
   2982 	uint32_t i;
   2983 
   2984 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
   2985 		return (ENODEV);
   2986 
   2987 	/* Which queue to use */
   2988 	/*
   2989 	 * If everything is setup correctly, it should be the
   2990 	 * same bucket that the current CPU we're on is.
   2991 	 * It should improve performance.
   2992 	 */
   2993 #if 0
   2994 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
   2995 #ifdef	RSS
   2996 		if (rss_hash2bucket(m->m_pkthdr.flowid,
   2997 		    M_HASHTYPE_GET(m), &i) == 0) {
   2998 			i = i % adapter->num_queues;
   2999 
   3000 		} else
   3001 #endif
   3002 		{
   3003 			i = m->m_pkthdr.flowid % adapter->num_queues;
   3004 		}
   3005 	} else {
   3006 #endif
   3007 		i = cpu_index(curcpu()) % adapter->num_queues;
   3008 #if 0
   3009 	}
   3010 #endif
   3011 	tx_ring = &adapter->tx_ring[i];
   3012 
   3013 	/* Check if drbr is empty before putting packet */
   3014 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
   3015 	ret = drbr_enqueue(ifp, tx_ring->br, m);
   3016 	if (unlikely(ret != 0)) {
   3017 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   3018 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
   3019 			    curcpu());
   3020 		return (ret);
   3021 	}
   3022 
   3023 	if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
   3024 		ena_start_xmit(tx_ring);
   3025 		ENA_RING_MTX_UNLOCK(tx_ring);
   3026 	} else {
   3027 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   3028 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
   3029 			    curcpu());
   3030 	}
   3031 
   3032 	return (0);
   3033 }
   3034 
   3035 #if 0
   3036 static void
   3037 ena_qflush(struct ifnet *ifp)
   3038 {
   3039 	struct ena_adapter *adapter = ifp->if_softc;
   3040 	struct ena_ring *tx_ring = adapter->tx_ring;
   3041 	int i;
   3042 
   3043 	for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
   3044 		if (!drbr_empty(ifp, tx_ring->br)) {
   3045 			ENA_RING_MTX_LOCK(tx_ring);
   3046 			drbr_flush(ifp, tx_ring->br);
   3047 			ENA_RING_MTX_UNLOCK(tx_ring);
   3048 		}
   3049 
   3050 	if_qflush(ifp);
   3051 }
   3052 #endif
   3053 
   3054 static int
   3055 ena_calc_io_queue_num(struct pci_attach_args *pa,
   3056     struct ena_adapter *adapter,
   3057     struct ena_com_dev_get_features_ctx *get_feat_ctx)
   3058 {
   3059 	int io_sq_num, io_cq_num, io_queue_num;
   3060 
   3061 	io_sq_num = get_feat_ctx->max_queues.max_sq_num;
   3062 	io_cq_num = get_feat_ctx->max_queues.max_cq_num;
   3063 
   3064 	io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
   3065 	io_queue_num = min_t(int, io_queue_num, io_sq_num);
   3066 	io_queue_num = min_t(int, io_queue_num, io_cq_num);
   3067 	/* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */
   3068 	io_queue_num = min_t(int, io_queue_num,
   3069 	    pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
   3070 #ifdef	RSS
   3071 	io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets());
   3072 #endif
   3073 
   3074 	return (io_queue_num);
   3075 }
   3076 
   3077 static int
   3078 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
   3079     uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
   3080 {
   3081 	uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
   3082 	uint32_t v;
   3083 	uint32_t q;
   3084 
   3085 	queue_size = min_t(uint32_t, queue_size,
   3086 	    feat->max_queues.max_cq_depth);
   3087 	queue_size = min_t(uint32_t, queue_size,
   3088 	    feat->max_queues.max_sq_depth);
   3089 
   3090 	/* round down to the nearest power of 2 */
   3091 	v = queue_size;
   3092 	while (v != 0) {
   3093 		if (powerof2(queue_size) != 0)
   3094 			break;
   3095 		v /= 2;
   3096 		q = rounddown2(queue_size, v);
   3097 		if (q != 0) {
   3098 			queue_size = q;
   3099 			break;
   3100 		}
   3101 	}
   3102 
   3103 	if (unlikely(queue_size == 0)) {
   3104 		device_printf(adapter->pdev, "Invalid queue size\n");
   3105 		return (ENA_COM_FAULT);
   3106 	}
   3107 
   3108 	*max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
   3109 	    feat->max_queues.max_packet_tx_descs);
   3110 	*max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
   3111 	    feat->max_queues.max_packet_rx_descs);
   3112 
   3113 	return (queue_size);
   3114 }
   3115 
   3116 #if 0
   3117 static int
   3118 ena_rss_init_default(struct ena_adapter *adapter)
   3119 {
   3120 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3121 	device_t dev = adapter->pdev;
   3122 	int qid, rc, i;
   3123 
   3124 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
   3125 	if (unlikely(rc != 0)) {
   3126 		device_printf(dev, "Cannot init indirect table\n");
   3127 		return (rc);
   3128 	}
   3129 
   3130 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
   3131 #ifdef	RSS
   3132 		qid = rss_get_indirection_to_bucket(i);
   3133 		qid = qid % adapter->num_queues;
   3134 #else
   3135 		qid = i % adapter->num_queues;
   3136 #endif
   3137 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
   3138 		    ENA_IO_RXQ_IDX(qid));
   3139 		if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3140 			device_printf(dev, "Cannot fill indirect table\n");
   3141 			goto err_rss_destroy;
   3142 		}
   3143 	}
   3144 
   3145 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
   3146 	    ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
   3147 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3148 		device_printf(dev, "Cannot fill hash function\n");
   3149 		goto err_rss_destroy;
   3150 	}
   3151 
   3152 	rc = ena_com_set_default_hash_ctrl(ena_dev);
   3153 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3154 		device_printf(dev, "Cannot fill hash control\n");
   3155 		goto err_rss_destroy;
   3156 	}
   3157 
   3158 	return (0);
   3159 
   3160 err_rss_destroy:
   3161 	ena_com_rss_destroy(ena_dev);
   3162 	return (rc);
   3163 }
   3164 
   3165 static void
   3166 ena_rss_init_default_deferred(void *arg)
   3167 {
   3168 	struct ena_adapter *adapter;
   3169 	devclass_t dc;
   3170 	int max;
   3171 	int rc;
   3172 
   3173 	dc = devclass_find("ena");
   3174 	if (unlikely(dc == NULL)) {
   3175 		ena_trace(ENA_ALERT, "No devclass ena\n");
   3176 		return;
   3177 	}
   3178 
   3179 	max = devclass_get_maxunit(dc);
   3180 	while (max-- >= 0) {
   3181 		adapter = devclass_get_softc(dc, max);
   3182 		if (adapter != NULL) {
   3183 			rc = ena_rss_init_default(adapter);
   3184 			adapter->rss_support = true;
   3185 			if (unlikely(rc != 0)) {
   3186 				device_printf(adapter->pdev,
   3187 				    "WARNING: RSS was not properly initialized,"
   3188 				    " it will affect bandwidth\n");
   3189 				adapter->rss_support = false;
   3190 			}
   3191 		}
   3192 	}
   3193 }
   3194 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL);
   3195 #endif
   3196 
   3197 static void
   3198 ena_config_host_info(struct ena_com_dev *ena_dev)
   3199 {
   3200 	struct ena_admin_host_info *host_info;
   3201 	int rc;
   3202 
   3203 	/* Allocate only the host info */
   3204 	rc = ena_com_allocate_host_info(ena_dev);
   3205 	if (unlikely(rc != 0)) {
   3206 		ena_trace(ENA_ALERT, "Cannot allocate host info\n");
   3207 		return;
   3208 	}
   3209 
   3210 	host_info = ena_dev->host_attr.host_info;
   3211 
   3212 	host_info->os_type = ENA_ADMIN_OS_FREEBSD;
   3213 	host_info->kernel_ver = osreldate;
   3214 
   3215 	snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
   3216 	    "%d", osreldate);
   3217 	host_info->os_dist = 0;
   3218 	strncpy(host_info->os_dist_str, osrelease,
   3219 	    sizeof(host_info->os_dist_str) - 1);
   3220 
   3221 	host_info->driver_version =
   3222 		(DRV_MODULE_VER_MAJOR) |
   3223 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
   3224 		(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
   3225 
   3226 	rc = ena_com_set_host_attributes(ena_dev);
   3227 	if (unlikely(rc != 0)) {
   3228 		if (rc == EOPNOTSUPP)
   3229 			ena_trace(ENA_WARNING, "Cannot set host attributes\n");
   3230 		else
   3231 			ena_trace(ENA_ALERT, "Cannot set host attributes\n");
   3232 
   3233 		goto err;
   3234 	}
   3235 
   3236 	return;
   3237 
   3238 err:
   3239 	ena_com_delete_host_info(ena_dev);
   3240 }
   3241 
   3242 static int
   3243 ena_device_init(struct ena_adapter *adapter, device_t pdev,
   3244     struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
   3245 {
   3246 	struct ena_com_dev* ena_dev = adapter->ena_dev;
   3247 	bool readless_supported;
   3248 	uint32_t aenq_groups;
   3249 	int dma_width;
   3250 	int rc;
   3251 
   3252 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
   3253 	if (unlikely(rc != 0)) {
   3254 		device_printf(pdev, "failed to init mmio read less\n");
   3255 		return (rc);
   3256 	}
   3257 
   3258 	/*
   3259 	 * The PCIe configuration space revision id indicate if mmio reg
   3260 	 * read is disabled
   3261 	 */
   3262 	const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
   3263 	readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
   3264 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
   3265 
   3266 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
   3267 	if (unlikely(rc != 0)) {
   3268 		device_printf(pdev, "Can not reset device\n");
   3269 		goto err_mmio_read_less;
   3270 	}
   3271 
   3272 	rc = ena_com_validate_version(ena_dev);
   3273 	if (unlikely(rc != 0)) {
   3274 		device_printf(pdev, "device version is too low\n");
   3275 		goto err_mmio_read_less;
   3276 	}
   3277 
   3278 	dma_width = ena_com_get_dma_width(ena_dev);
   3279 	if (unlikely(dma_width < 0)) {
   3280 		device_printf(pdev, "Invalid dma width value %d", dma_width);
   3281 		rc = dma_width;
   3282 		goto err_mmio_read_less;
   3283 	}
   3284 	adapter->dma_width = dma_width;
   3285 
   3286 	/* ENA admin level init */
   3287 	rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
   3288 	if (unlikely(rc != 0)) {
   3289 		device_printf(pdev,
   3290 		    "Can not initialize ena admin queue with device\n");
   3291 		goto err_mmio_read_less;
   3292 	}
   3293 
   3294 	/*
   3295 	 * To enable the msix interrupts the driver needs to know the number
   3296 	 * of queues. So the driver uses polling mode to retrieve this
   3297 	 * information
   3298 	 */
   3299 	ena_com_set_admin_polling_mode(ena_dev, true);
   3300 
   3301 	ena_config_host_info(ena_dev);
   3302 
   3303 	/* Get Device Attributes */
   3304 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
   3305 	if (unlikely(rc != 0)) {
   3306 		device_printf(pdev,
   3307 		    "Cannot get attribute for ena device rc: %d\n", rc);
   3308 		goto err_admin_init;
   3309 	}
   3310 
   3311 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
   3312 
   3313 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
   3314 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
   3315 	if (unlikely(rc != 0)) {
   3316 		device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
   3317 		goto err_admin_init;
   3318 	}
   3319 
   3320 	*wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
   3321 
   3322 	return (0);
   3323 
   3324 err_admin_init:
   3325 	ena_com_delete_host_info(ena_dev);
   3326 	ena_com_admin_destroy(ena_dev);
   3327 err_mmio_read_less:
   3328 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3329 
   3330 	return (rc);
   3331 }
   3332 
   3333 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
   3334     int io_vectors)
   3335 {
   3336 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3337 	int rc;
   3338 
   3339 	rc = ena_enable_msix(adapter);
   3340 	if (unlikely(rc != 0)) {
   3341 		device_printf(adapter->pdev, "Error with MSI-X enablement\n");
   3342 		return (rc);
   3343 	}
   3344 
   3345 	rc = ena_request_mgmnt_irq(adapter);
   3346 	if (unlikely(rc != 0)) {
   3347 		device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
   3348 		goto err_disable_msix;
   3349 	}
   3350 
   3351 	ena_com_set_admin_polling_mode(ena_dev, false);
   3352 
   3353 	ena_com_admin_aenq_enable(ena_dev);
   3354 
   3355 	return (0);
   3356 
   3357 err_disable_msix:
   3358 	ena_disable_msix(adapter);
   3359 
   3360 	return (rc);
   3361 }
   3362 
   3363 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
   3364 static void ena_keep_alive_wd(void *adapter_data,
   3365     struct ena_admin_aenq_entry *aenq_e)
   3366 {
   3367 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
   3368 	struct ena_admin_aenq_keep_alive_desc *desc;
   3369 	sbintime_t stime;
   3370 	uint64_t rx_drops;
   3371 
   3372 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
   3373 
   3374 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
   3375 	counter_u64_zero(adapter->hw_stats.rx_drops);
   3376 	counter_u64_add(adapter->hw_stats.rx_drops, rx_drops);
   3377 
   3378 	stime = getsbinuptime();
   3379 	(void) atomic_swap_64(&adapter->keep_alive_timestamp, stime);
   3380 }
   3381 
   3382 /* Check for keep alive expiration */
   3383 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
   3384 {
   3385 	sbintime_t timestamp, time;
   3386 
   3387 	if (adapter->wd_active == 0)
   3388 		return;
   3389 
   3390 	if (likely(adapter->keep_alive_timeout == 0))
   3391 		return;
   3392 
   3393 	/* FreeBSD uses atomic_load_acq_64() in place of the membar + read */
   3394 	membar_sync();
   3395 	timestamp = adapter->keep_alive_timestamp;
   3396 
   3397 	time = getsbinuptime() - timestamp;
   3398 	if (unlikely(time > adapter->keep_alive_timeout)) {
   3399 		device_printf(adapter->pdev,
   3400 		    "Keep alive watchdog timeout.\n");
   3401 		counter_u64_add(adapter->dev_stats.wd_expired, 1);
   3402 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
   3403 		adapter->trigger_reset = true;
   3404 	}
   3405 }
   3406 
   3407 /* Check if admin queue is enabled */
   3408 static void check_for_admin_com_state(struct ena_adapter *adapter)
   3409 {
   3410 	if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
   3411 	    false)) {
   3412 		device_printf(adapter->pdev,
   3413 		    "ENA admin queue is not in running state!\n");
   3414 		counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
   3415 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
   3416 		adapter->trigger_reset = true;
   3417 	}
   3418 }
   3419 
   3420 static int
   3421 check_missing_comp_in_queue(struct ena_adapter *adapter,
   3422     struct ena_ring *tx_ring)
   3423 {
   3424 	struct bintime curtime, time;
   3425 	struct ena_tx_buffer *tx_buf;
   3426 	uint32_t missed_tx = 0;
   3427 	int i;
   3428 
   3429 	getbinuptime(&curtime);
   3430 
   3431 	for (i = 0; i < tx_ring->ring_size; i++) {
   3432 		tx_buf = &tx_ring->tx_buffer_info[i];
   3433 
   3434 		if (bintime_isset(&tx_buf->timestamp) == 0)
   3435 			continue;
   3436 
   3437 		time = curtime;
   3438 		bintime_sub(&time, &tx_buf->timestamp);
   3439 
   3440 		/* Check again if packet is still waiting */
   3441 		if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
   3442 
   3443 			if (!tx_buf->print_once)
   3444 				ena_trace(ENA_WARNING, "Found a Tx that wasn't "
   3445 				    "completed on time, qid %d, index %d.\n",
   3446 				    tx_ring->qid, i);
   3447 
   3448 			tx_buf->print_once = true;
   3449 			missed_tx++;
   3450 			counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
   3451 
   3452 			if (unlikely(missed_tx >
   3453 			    adapter->missing_tx_threshold)) {
   3454 				device_printf(adapter->pdev,
   3455 				    "The number of lost tx completion "
   3456 				    "is above the threshold (%d > %d). "
   3457 				    "Reset the device\n",
   3458 				    missed_tx, adapter->missing_tx_threshold);
   3459 				adapter->reset_reason =
   3460 				    ENA_REGS_RESET_MISS_TX_CMPL;
   3461 				adapter->trigger_reset = true;
   3462 				return (EIO);
   3463 			}
   3464 		}
   3465 	}
   3466 
   3467 	return (0);
   3468 }
   3469 
   3470 /*
   3471  * Check for TX which were not completed on time.
   3472  * Timeout is defined by "missing_tx_timeout".
   3473  * Reset will be performed if number of incompleted
   3474  * transactions exceeds "missing_tx_threshold".
   3475  */
   3476 static void
   3477 check_for_missing_tx_completions(struct ena_adapter *adapter)
   3478 {
   3479 	struct ena_ring *tx_ring;
   3480 	int i, budget, rc;
   3481 
   3482 	/* Make sure the driver doesn't turn the device in other process */
   3483 	rmb();
   3484 
   3485 	if (!adapter->up)
   3486 		return;
   3487 
   3488 	if (adapter->trigger_reset)
   3489 		return;
   3490 
   3491 	if (adapter->missing_tx_timeout == 0)
   3492 		return;
   3493 
   3494 	budget = adapter->missing_tx_max_queues;
   3495 
   3496 	for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
   3497 		tx_ring = &adapter->tx_ring[i];
   3498 
   3499 		rc = check_missing_comp_in_queue(adapter, tx_ring);
   3500 		if (unlikely(rc != 0))
   3501 			return;
   3502 
   3503 		budget--;
   3504 		if (budget == 0) {
   3505 			i++;
   3506 			break;
   3507 		}
   3508 	}
   3509 
   3510 	adapter->next_monitored_tx_qid = i % adapter->num_queues;
   3511 }
   3512 
   3513 /* trigger deferred rx cleanup after 2 consecutive detections */
   3514 #define EMPTY_RX_REFILL 2
   3515 /* For the rare case where the device runs out of Rx descriptors and the
   3516  * msix handler failed to refill new Rx descriptors (due to a lack of memory
   3517  * for example).
   3518  * This case will lead to a deadlock:
   3519  * The device won't send interrupts since all the new Rx packets will be dropped
   3520  * The msix handler won't allocate new Rx descriptors so the device won't be
   3521  * able to send new packets.
   3522  *
   3523  * When such a situation is detected - execute rx cleanup task in another thread
   3524  */
   3525 static void
   3526 check_for_empty_rx_ring(struct ena_adapter *adapter)
   3527 {
   3528 	struct ena_ring *rx_ring;
   3529 	int i, refill_required;
   3530 
   3531 	if (!adapter->up)
   3532 		return;
   3533 
   3534 	if (adapter->trigger_reset)
   3535 		return;
   3536 
   3537 	for (i = 0; i < adapter->num_queues; i++) {
   3538 		rx_ring = &adapter->rx_ring[i];
   3539 
   3540 		refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
   3541 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
   3542 			rx_ring->empty_rx_queue++;
   3543 
   3544 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL)	{
   3545 				counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
   3546 				    1);
   3547 
   3548 				device_printf(adapter->pdev,
   3549 				    "trigger refill for ring %d\n", i);
   3550 
   3551 				if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
   3552 					workqueue_enqueue(rx_ring->cmpl_tq,
   3553 					    &rx_ring->cmpl_task, curcpu());
   3554 				rx_ring->empty_rx_queue = 0;
   3555 			}
   3556 		} else {
   3557 			rx_ring->empty_rx_queue = 0;
   3558 		}
   3559 	}
   3560 }
   3561 
   3562 static void
   3563 ena_timer_service(void *data)
   3564 {
   3565 	struct ena_adapter *adapter = (struct ena_adapter *)data;
   3566 	struct ena_admin_host_info *host_info =
   3567 	    adapter->ena_dev->host_attr.host_info;
   3568 
   3569 	check_for_missing_keep_alive(adapter);
   3570 
   3571 	check_for_admin_com_state(adapter);
   3572 
   3573 	check_for_missing_tx_completions(adapter);
   3574 
   3575 	check_for_empty_rx_ring(adapter);
   3576 
   3577 	if (host_info != NULL)
   3578 		ena_update_host_info(host_info, adapter->ifp);
   3579 
   3580 	if (unlikely(adapter->trigger_reset)) {
   3581 		device_printf(adapter->pdev, "Trigger reset is on\n");
   3582 		workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
   3583 		    curcpu());
   3584 		return;
   3585 	}
   3586 
   3587 	/*
   3588 	 * Schedule another timeout one second from now.
   3589 	 */
   3590 	callout_schedule(&adapter->timer_service, hz);
   3591 }
   3592 
   3593 static void
   3594 ena_reset_task(struct work *wk, void *arg)
   3595 {
   3596 	struct ena_com_dev_get_features_ctx get_feat_ctx;
   3597 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
   3598 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3599 	bool dev_up;
   3600 	int rc;
   3601 
   3602 	if (unlikely(!adapter->trigger_reset)) {
   3603 		device_printf(adapter->pdev,
   3604 		    "device reset scheduled but trigger_reset is off\n");
   3605 		return;
   3606 	}
   3607 
   3608 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
   3609 
   3610 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
   3611 
   3612 	dev_up = adapter->up;
   3613 
   3614 	ena_com_set_admin_running_state(ena_dev, false);
   3615 	ena_down(adapter);
   3616 	ena_free_mgmnt_irq(adapter);
   3617 	ena_disable_msix(adapter);
   3618 	ena_com_abort_admin_commands(ena_dev);
   3619 	ena_com_wait_for_abort_completion(ena_dev);
   3620 	ena_com_admin_destroy(ena_dev);
   3621 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3622 
   3623 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
   3624 	adapter->trigger_reset = false;
   3625 
   3626 	/* Finished destroy part. Restart the device */
   3627 	rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
   3628 	    &adapter->wd_active);
   3629 	if (unlikely(rc != 0)) {
   3630 		device_printf(adapter->pdev,
   3631 		    "ENA device init failed! (err: %d)\n", rc);
   3632 		goto err_dev_free;
   3633 	}
   3634 
   3635 	/* XXX dealloc and realloc MSI-X, probably a waste */
   3636 	rc = ena_enable_msix_and_set_admin_interrupts(adapter,
   3637 	    adapter->num_queues);
   3638 	if (unlikely(rc != 0)) {
   3639 		device_printf(adapter->pdev, "Enable MSI-X failed\n");
   3640 		goto err_com_free;
   3641 	}
   3642 
   3643 	/* If the interface was up before the reset bring it up */
   3644 	if (dev_up) {
   3645 		rc = ena_up(adapter);
   3646 		if (unlikely(rc != 0)) {
   3647 			device_printf(adapter->pdev,
   3648 			    "Failed to create I/O queues\n");
   3649 			goto err_msix_free;
   3650 		}
   3651 	}
   3652 
   3653 	callout_reset(&adapter->timer_service, hz,
   3654 	    ena_timer_service, (void *)adapter);
   3655 
   3656 	rw_exit(&adapter->ioctl_sx);
   3657 
   3658 	return;
   3659 
   3660 err_msix_free:
   3661 	ena_free_mgmnt_irq(adapter);
   3662 	ena_disable_msix(adapter);
   3663 err_com_free:
   3664 	ena_com_admin_destroy(ena_dev);
   3665 err_dev_free:
   3666 	device_printf(adapter->pdev, "ENA reset failed!\n");
   3667 	adapter->running = false;
   3668 	rw_exit(&adapter->ioctl_sx);
   3669 }
   3670 
   3671 /**
   3672  * ena_attach - Device Initialization Routine
   3673  * @pdev: device information struct
   3674  *
   3675  * Returns 0 on success, otherwise on failure.
   3676  *
   3677  * ena_attach initializes an adapter identified by a device structure.
   3678  * The OS initialization, configuring of the adapter private structure,
   3679  * and a hardware reset occur.
   3680  **/
   3681 static void
   3682 ena_attach(device_t parent, device_t self, void *aux)
   3683 {
   3684 	struct pci_attach_args *pa = aux;
   3685 	struct ena_com_dev_get_features_ctx get_feat_ctx;
   3686 	static int version_printed;
   3687 	struct ena_adapter *adapter = device_private(self);
   3688 	struct ena_com_dev *ena_dev = NULL;
   3689 	uint16_t tx_sgl_size = 0;
   3690 	uint16_t rx_sgl_size = 0;
   3691 	pcireg_t reg;
   3692 	int io_queue_num;
   3693 	int queue_size;
   3694 	int rc;
   3695 
   3696 	adapter->pdev = self;
   3697 	adapter->ifp = &adapter->sc_ec.ec_if;
   3698 	adapter->sc_pa = *pa;	/* used after attach for adapter reset too */
   3699 
   3700 	if (pci_dma64_available(pa))
   3701 		adapter->sc_dmat = pa->pa_dmat64;
   3702 	else
   3703 		adapter->sc_dmat = pa->pa_dmat;
   3704 
   3705 	pci_aprint_devinfo(pa, NULL);
   3706 
   3707 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   3708 	if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
   3709 		reg |= PCI_COMMAND_MASTER_ENABLE;
   3710         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
   3711 	}
   3712 
   3713 	mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_NET);
   3714 	rw_init(&adapter->ioctl_sx);
   3715 
   3716 	/* Set up the timer service */
   3717 	adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
   3718 	adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
   3719 	adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
   3720 	adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
   3721 
   3722 	if (version_printed++ == 0)
   3723 		device_printf(parent, "%s\n", ena_version);
   3724 
   3725 	rc = ena_allocate_pci_resources(pa, adapter);
   3726 	if (unlikely(rc != 0)) {
   3727 		device_printf(parent, "PCI resource allocation failed!\n");
   3728 		ena_free_pci_resources(adapter);
   3729 		return;
   3730 	}
   3731 
   3732 	/* Allocate memory for ena_dev structure */
   3733 	ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
   3734 	    M_WAITOK | M_ZERO);
   3735 
   3736 	adapter->ena_dev = ena_dev;
   3737 	ena_dev->dmadev = self;
   3738 	ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
   3739 	    M_WAITOK | M_ZERO);
   3740 
   3741 	/* Store register resources */
   3742 	((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
   3743 	((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
   3744 
   3745 	ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
   3746 
   3747 	/* Device initialization */
   3748 	rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
   3749 	if (unlikely(rc != 0)) {
   3750 		device_printf(self, "ENA device init failed! (err: %d)\n", rc);
   3751 		rc = ENXIO;
   3752 		goto err_bus_free;
   3753 	}
   3754 
   3755 	adapter->keep_alive_timestamp = getsbinuptime();
   3756 
   3757 	adapter->tx_offload_cap = get_feat_ctx.offload.tx;
   3758 
   3759 	/* Set for sure that interface is not up */
   3760 	adapter->up = false;
   3761 
   3762 	memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
   3763 	    ETHER_ADDR_LEN);
   3764 
   3765 	/* calculate IO queue number to create */
   3766 	io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
   3767 
   3768 	ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
   3769 	    io_queue_num);
   3770 	adapter->num_queues = io_queue_num;
   3771 
   3772 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
   3773 
   3774 	/* calculatre ring sizes */
   3775 	queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
   3776 	    &rx_sgl_size, &get_feat_ctx);
   3777 	if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
   3778 		rc = ENA_COM_FAULT;
   3779 		goto err_com_free;
   3780 	}
   3781 
   3782 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
   3783 
   3784 	adapter->tx_ring_size = queue_size;
   3785 	adapter->rx_ring_size = queue_size;
   3786 
   3787 	adapter->max_tx_sgl_size = tx_sgl_size;
   3788 	adapter->max_rx_sgl_size = rx_sgl_size;
   3789 
   3790 #if 0
   3791 	/* set up dma tags for rx and tx buffers */
   3792 	rc = ena_setup_tx_dma_tag(adapter);
   3793 	if (unlikely(rc != 0)) {
   3794 		device_printf(self, "Failed to create TX DMA tag\n");
   3795 		goto err_com_free;
   3796 	}
   3797 
   3798 	rc = ena_setup_rx_dma_tag(adapter);
   3799 	if (unlikely(rc != 0)) {
   3800 		device_printf(self, "Failed to create RX DMA tag\n");
   3801 		goto err_tx_tag_free;
   3802 	}
   3803 #endif
   3804 
   3805 	/* initialize rings basic information */
   3806 	device_printf(self, "initalize %d io queues\n", io_queue_num);
   3807 	ena_init_io_rings(adapter);
   3808 
   3809 	/* setup network interface */
   3810 	rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
   3811 	if (unlikely(rc != 0)) {
   3812 		device_printf(self, "Error with network interface setup\n");
   3813 		goto err_io_free;
   3814 	}
   3815 
   3816 	rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
   3817 	if (unlikely(rc != 0)) {
   3818 		device_printf(self,
   3819 		    "Failed to enable and set the admin interrupts\n");
   3820 		goto err_ifp_free;
   3821 	}
   3822 
   3823 	callout_init(&adapter->timer_service, CALLOUT_FLAGS);
   3824 
   3825 	/* Initialize reset task queue */
   3826 	rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
   3827 	    ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
   3828 	if (unlikely(rc != 0)) {
   3829 		ena_trace(ENA_ALERT,
   3830 		    "Unable to create workqueue for reset task\n");
   3831 		goto err_ifp_free;
   3832 	}
   3833 
   3834 	/* Initialize statistics */
   3835 	ena_alloc_counters_dev(&adapter->dev_stats, io_queue_num);
   3836 	ena_alloc_counters_hwstats(&adapter->hw_stats, io_queue_num);
   3837 #if 0
   3838 	ena_sysctl_add_nodes(adapter);
   3839 #endif
   3840 
   3841 	/* Tell the stack that the interface is not active */
   3842 	if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
   3843 
   3844 	adapter->running = true;
   3845 	return;
   3846 
   3847 err_ifp_free:
   3848 	if_detach(adapter->ifp);
   3849 	if_free(adapter->ifp);
   3850 err_io_free:
   3851 	ena_free_all_io_rings_resources(adapter);
   3852 #if 0
   3853 	ena_free_rx_dma_tag(adapter);
   3854 err_tx_tag_free:
   3855 	ena_free_tx_dma_tag(adapter);
   3856 #endif
   3857 err_com_free:
   3858 	ena_com_admin_destroy(ena_dev);
   3859 	ena_com_delete_host_info(ena_dev);
   3860 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3861 err_bus_free:
   3862 	free(ena_dev->bus, M_DEVBUF);
   3863 	free(ena_dev, M_DEVBUF);
   3864 	ena_free_pci_resources(adapter);
   3865 }
   3866 
   3867 /**
   3868  * ena_detach - Device Removal Routine
   3869  * @pdev: device information struct
   3870  *
   3871  * ena_detach is called by the device subsystem to alert the driver
   3872  * that it should release a PCI device.
   3873  **/
   3874 static int
   3875 ena_detach(device_t pdev, int flags)
   3876 {
   3877 	struct ena_adapter *adapter = device_private(pdev);
   3878 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3879 #if 0
   3880 	int rc;
   3881 #endif
   3882 
   3883 	/* Make sure VLANS are not using driver */
   3884 	if (VLAN_ATTACHED(&adapter->sc_ec)) {
   3885 		device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
   3886 		return (EBUSY);
   3887 	}
   3888 
   3889 	/* Free reset task and callout */
   3890 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
   3891 	callout_destroy(&adapter->timer_service);
   3892 	workqueue_wait(adapter->reset_tq, &adapter->reset_task);
   3893 	workqueue_destroy(adapter->reset_tq);
   3894 	adapter->reset_tq = NULL;
   3895 
   3896 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
   3897 	ena_down(adapter);
   3898 	rw_exit(&adapter->ioctl_sx);
   3899 
   3900 	if (adapter->ifp != NULL) {
   3901 		ether_ifdetach(adapter->ifp);
   3902 		if_free(adapter->ifp);
   3903 	}
   3904 
   3905 	ena_free_all_io_rings_resources(adapter);
   3906 
   3907 	ena_free_counters((struct evcnt *)&adapter->hw_stats,
   3908 	    sizeof(struct ena_hw_stats));
   3909 	ena_free_counters((struct evcnt *)&adapter->dev_stats,
   3910 	    sizeof(struct ena_stats_dev));
   3911 
   3912 	if (likely(adapter->rss_support))
   3913 		ena_com_rss_destroy(ena_dev);
   3914 
   3915 #if 0
   3916 	rc = ena_free_rx_dma_tag(adapter);
   3917 	if (unlikely(rc != 0))
   3918 		device_printf(adapter->pdev,
   3919 		    "Unmapped RX DMA tag associations\n");
   3920 
   3921 	rc = ena_free_tx_dma_tag(adapter);
   3922 	if (unlikely(rc != 0))
   3923 		device_printf(adapter->pdev,
   3924 		    "Unmapped TX DMA tag associations\n");
   3925 #endif
   3926 
   3927 	/* Reset the device only if the device is running. */
   3928 	if (adapter->running)
   3929 		ena_com_dev_reset(ena_dev, adapter->reset_reason);
   3930 
   3931 	ena_com_delete_host_info(ena_dev);
   3932 
   3933 	ena_free_irqs(adapter);
   3934 
   3935 	ena_com_abort_admin_commands(ena_dev);
   3936 
   3937 	ena_com_wait_for_abort_completion(ena_dev);
   3938 
   3939 	ena_com_admin_destroy(ena_dev);
   3940 
   3941 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3942 
   3943 	ena_free_pci_resources(adapter);
   3944 
   3945 	mutex_destroy(&adapter->global_mtx);
   3946 	rw_destroy(&adapter->ioctl_sx);
   3947 
   3948 	if (ena_dev->bus != NULL)
   3949 		free(ena_dev->bus, M_DEVBUF);
   3950 
   3951 	if (ena_dev != NULL)
   3952 		free(ena_dev, M_DEVBUF);
   3953 
   3954 	return 0;
   3955 }
   3956 
   3957 /******************************************************************************
   3958  ******************************** AENQ Handlers *******************************
   3959  *****************************************************************************/
   3960 /**
   3961  * ena_update_on_link_change:
   3962  * Notify the network interface about the change in link status
   3963  **/
   3964 static void
   3965 ena_update_on_link_change(void *adapter_data,
   3966     struct ena_admin_aenq_entry *aenq_e)
   3967 {
   3968 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
   3969 	struct ena_admin_aenq_link_change_desc *aenq_desc;
   3970 	int status;
   3971 	struct ifnet *ifp;
   3972 
   3973 	aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
   3974 	ifp = adapter->ifp;
   3975 	status = aenq_desc->flags &
   3976 	    ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
   3977 
   3978 	if (status != 0) {
   3979 		device_printf(adapter->pdev, "link is UP\n");
   3980 		if_link_state_change(ifp, LINK_STATE_UP);
   3981 	} else if (status == 0) {
   3982 		device_printf(adapter->pdev, "link is DOWN\n");
   3983 		if_link_state_change(ifp, LINK_STATE_DOWN);
   3984 	} else {
   3985 		device_printf(adapter->pdev, "invalid value recvd\n");
   3986 		BUG();
   3987 	}
   3988 
   3989 	adapter->link_status = status;
   3990 }
   3991 
   3992 /**
   3993  * This handler will called for unknown event group or unimplemented handlers
   3994  **/
   3995 static void
   3996 unimplemented_aenq_handler(void *data,
   3997     struct ena_admin_aenq_entry *aenq_e)
   3998 {
   3999 	return;
   4000 }
   4001 
   4002 static struct ena_aenq_handlers aenq_handlers = {
   4003     .handlers = {
   4004 	    [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
   4005 	    [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
   4006     },
   4007     .unimplemented_handler = unimplemented_aenq_handler
   4008 };
   4009 
   4010 #ifdef __FreeBSD__
   4011 /*********************************************************************
   4012  *  FreeBSD Device Interface Entry Points
   4013  *********************************************************************/
   4014 
   4015 static device_method_t ena_methods[] = {
   4016     /* Device interface */
   4017     DEVMETHOD(device_probe, ena_probe),
   4018     DEVMETHOD(device_attach, ena_attach),
   4019     DEVMETHOD(device_detach, ena_detach),
   4020     DEVMETHOD_END
   4021 };
   4022 
   4023 static driver_t ena_driver = {
   4024     "ena", ena_methods, sizeof(struct ena_adapter),
   4025 };
   4026 
   4027 devclass_t ena_devclass;
   4028 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
   4029 MODULE_DEPEND(ena, pci, 1, 1, 1);
   4030 MODULE_DEPEND(ena, ether, 1, 1, 1);
   4031 
   4032 /*********************************************************************/
   4033 #endif /* __FreeBSD__ */
   4034 
   4035 #ifdef __NetBSD__
   4036 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
   4037 	ena_detach, NULL);
   4038 #endif /* __NetBSD */
   4039