if_ena.c revision 1.15.2.3 1 /*-
2 * BSD LICENSE
3 *
4 * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #ifdef _KERNEL_OPT
32 #include "opt_net_mpsafe.h"
33 #endif
34
35 #include <sys/cdefs.h>
36 #if 0
37 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
38 #endif
39 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.15.2.3 2020/08/05 14:59:41 martin Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/kthread.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/module.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 #include <sys/time.h>
54 #include <sys/workqueue.h>
55 #include <sys/callout.h>
56 #include <sys/interrupt.h>
57 #include <sys/cpu.h>
58
59 #include <net/if_ether.h>
60 #include <net/if_vlanvar.h>
61
62 #include <dev/pci/if_enavar.h>
63
64 #ifdef NET_MPSAFE
65 #define WQ_FLAGS WQ_MPSAFE
66 #define CALLOUT_FLAGS CALLOUT_MPSAFE
67 #else
68 #define WQ_FLAGS 0
69 #define CALLOUT_FLAGS 0
70 #endif
71
72 /*********************************************************
73 * Function prototypes
74 *********************************************************/
75 static int ena_probe(device_t, cfdata_t, void *);
76 static int ena_intr_msix_mgmnt(void *);
77 static int ena_allocate_pci_resources(struct pci_attach_args *,
78 struct ena_adapter *);
79 static void ena_free_pci_resources(struct ena_adapter *);
80 static int ena_change_mtu(struct ifnet *, int);
81 static void ena_init_io_rings_common(struct ena_adapter *,
82 struct ena_ring *, uint16_t);
83 static void ena_init_io_rings(struct ena_adapter *);
84 static void ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
85 static void ena_free_all_io_rings_resources(struct ena_adapter *);
86 #if 0
87 static int ena_setup_tx_dma_tag(struct ena_adapter *);
88 static int ena_free_tx_dma_tag(struct ena_adapter *);
89 static int ena_setup_rx_dma_tag(struct ena_adapter *);
90 static int ena_free_rx_dma_tag(struct ena_adapter *);
91 #endif
92 static int ena_setup_tx_resources(struct ena_adapter *, int);
93 static void ena_free_tx_resources(struct ena_adapter *, int);
94 static int ena_setup_all_tx_resources(struct ena_adapter *);
95 static void ena_free_all_tx_resources(struct ena_adapter *);
96 static inline int validate_rx_req_id(struct ena_ring *, uint16_t);
97 static int ena_setup_rx_resources(struct ena_adapter *, unsigned int);
98 static void ena_free_rx_resources(struct ena_adapter *, unsigned int);
99 static int ena_setup_all_rx_resources(struct ena_adapter *);
100 static void ena_free_all_rx_resources(struct ena_adapter *);
101 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *,
102 struct ena_rx_buffer *);
103 static void ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
104 struct ena_rx_buffer *);
105 static int ena_refill_rx_bufs(struct ena_ring *, uint32_t);
106 static void ena_free_rx_bufs(struct ena_adapter *, unsigned int);
107 static void ena_refill_all_rx_bufs(struct ena_adapter *);
108 static void ena_free_all_rx_bufs(struct ena_adapter *);
109 static void ena_free_tx_bufs(struct ena_adapter *, unsigned int);
110 static void ena_free_all_tx_bufs(struct ena_adapter *);
111 static void ena_destroy_all_tx_queues(struct ena_adapter *);
112 static void ena_destroy_all_rx_queues(struct ena_adapter *);
113 static void ena_destroy_all_io_queues(struct ena_adapter *);
114 static int ena_create_io_queues(struct ena_adapter *);
115 static int ena_tx_cleanup(struct ena_ring *);
116 static void ena_deferred_rx_cleanup(struct work *, void *);
117 static int ena_rx_cleanup(struct ena_ring *);
118 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
119 #if 0
120 static void ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
121 struct mbuf *);
122 #endif
123 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
124 struct ena_com_rx_ctx *, uint16_t *);
125 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
126 struct mbuf *);
127 static int ena_handle_msix(void *);
128 static int ena_enable_msix(struct ena_adapter *);
129 static int ena_request_mgmnt_irq(struct ena_adapter *);
130 static int ena_request_io_irq(struct ena_adapter *);
131 static void ena_free_mgmnt_irq(struct ena_adapter *);
132 static void ena_free_io_irq(struct ena_adapter *);
133 static void ena_free_irqs(struct ena_adapter*);
134 static void ena_disable_msix(struct ena_adapter *);
135 static void ena_unmask_all_io_irqs(struct ena_adapter *);
136 static int ena_rss_configure(struct ena_adapter *);
137 static int ena_up_complete(struct ena_adapter *);
138 static int ena_up(struct ena_adapter *);
139 static void ena_down(struct ena_adapter *);
140 #if 0
141 static uint64_t ena_get_counter(struct ifnet *, ift_counter);
142 #endif
143 static int ena_media_change(struct ifnet *);
144 static void ena_media_status(struct ifnet *, struct ifmediareq *);
145 static int ena_init(struct ifnet *);
146 static int ena_ioctl(struct ifnet *, u_long, void *);
147 static int ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
148 static void ena_update_host_info(struct ena_admin_host_info *, struct ifnet *);
149 static void ena_update_hwassist(struct ena_adapter *);
150 static int ena_setup_ifnet(device_t, struct ena_adapter *,
151 struct ena_com_dev_get_features_ctx *);
152 static void ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
153 static int ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
154 struct mbuf **mbuf);
155 static int ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
156 static void ena_start_xmit(struct ena_ring *);
157 static int ena_mq_start(struct ifnet *, struct mbuf *);
158 static void ena_deferred_mq_start(struct work *, void *);
159 #if 0
160 static void ena_qflush(struct ifnet *);
161 #endif
162 static int ena_calc_io_queue_num(struct pci_attach_args *,
163 struct ena_adapter *, struct ena_com_dev_get_features_ctx *);
164 static int ena_calc_queue_size(struct ena_adapter *, uint16_t *,
165 uint16_t *, struct ena_com_dev_get_features_ctx *);
166 #if 0
167 static int ena_rss_init_default(struct ena_adapter *);
168 static void ena_rss_init_default_deferred(void *);
169 #endif
170 static void ena_config_host_info(struct ena_com_dev *);
171 static void ena_attach(device_t, device_t, void *);
172 static int ena_detach(device_t, int);
173 static int ena_device_init(struct ena_adapter *, device_t,
174 struct ena_com_dev_get_features_ctx *, int *);
175 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
176 int);
177 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *);
178 static void unimplemented_aenq_handler(void *,
179 struct ena_admin_aenq_entry *);
180 static void ena_timer_service(void *);
181
182 static const char ena_version[] =
183 DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
184
185 #if 0
186 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
187 #endif
188
189 /*
190 * Tuneable number of buffers in the buf-ring (drbr)
191 */
192 static int ena_buf_ring_size = 4096;
193 #if 0
194 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
195 &ena_buf_ring_size, 0, "Size of the bufring");
196 #endif
197
198 /*
199 * Logging level for changing verbosity of the output
200 */
201 int ena_log_level = ENA_ALERT | ENA_WARNING;
202 #if 0
203 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
204 &ena_log_level, 0, "Logging level indicating verbosity of the logs");
205 #endif
206
207 static const ena_vendor_info_t ena_vendor_info_array[] = {
208 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
209 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
210 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
211 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
212 /* Last entry */
213 { 0, 0, 0 }
214 };
215
216 /*
217 * Contains pointers to event handlers, e.g. link state chage.
218 */
219 static struct ena_aenq_handlers aenq_handlers;
220
221 int
222 ena_dma_alloc(device_t dmadev, bus_size_t size,
223 ena_mem_handle_t *dma , int mapflags)
224 {
225 struct ena_adapter *adapter = device_private(dmadev);
226 uint32_t maxsize;
227 bus_dma_segment_t seg;
228 int error, nsegs;
229
230 maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
231
232 #if 0
233 /* XXX what is this needed for ? */
234 dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
235 if (unlikely(dma_space_addr == 0))
236 dma_space_addr = BUS_SPACE_MAXADDR;
237 #endif
238
239 dma->tag = adapter->sc_dmat;
240
241 if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
242 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
243 ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
244 (uintmax_t)maxsize, error);
245 goto fail_create;
246 }
247
248 error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &seg, 1, &nsegs,
249 BUS_DMA_ALLOCNOW);
250 if (error) {
251 ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
252 (uintmax_t)maxsize, error);
253 goto fail_alloc;
254 }
255
256 error = bus_dmamem_map(dma->tag, &seg, nsegs, maxsize,
257 &dma->vaddr, BUS_DMA_COHERENT);
258 if (error) {
259 ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
260 (uintmax_t)maxsize, error);
261 goto fail_map;
262 }
263 memset(dma->vaddr, 0, maxsize);
264
265 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
266 maxsize, NULL, mapflags);
267 if (error) {
268 ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
269 goto fail_load;
270 }
271 dma->paddr = dma->map->dm_segs[0].ds_addr;
272
273 return (0);
274
275 fail_load:
276 bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
277 fail_map:
278 bus_dmamem_free(dma->tag, &seg, nsegs);
279 fail_alloc:
280 bus_dmamap_destroy(adapter->sc_dmat, dma->map);
281 fail_create:
282 return (error);
283 }
284
285 static int
286 ena_allocate_pci_resources(struct pci_attach_args *pa,
287 struct ena_adapter *adapter)
288 {
289 pcireg_t memtype, reg;
290 bus_addr_t memaddr;
291 bus_size_t mapsize;
292 int flags, error;
293 int msixoff;
294
295 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
296 if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM) {
297 aprint_error_dev(adapter->pdev, "invalid type (type=0x%x)\n",
298 memtype);
299 return ENXIO;
300 }
301 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
302 if (((reg & PCI_COMMAND_MASTER_ENABLE) == 0) ||
303 ((reg & PCI_COMMAND_MEM_ENABLE) == 0)) {
304 /*
305 * Enable address decoding for memory range in case BIOS or
306 * UEFI didn't set it.
307 */
308 reg |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
309 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
310 reg);
311 }
312
313 adapter->sc_btag = pa->pa_memt;
314 error = pci_mapreg_info(pa->pa_pc, pa->pa_tag, ENA_REG_BAR,
315 memtype, &memaddr, &mapsize, &flags);
316 if (error) {
317 aprint_error_dev(adapter->pdev, "can't get map info\n");
318 return ENXIO;
319 }
320
321 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff,
322 NULL)) {
323 pcireg_t msixtbl;
324 uint32_t table_offset;
325 int bir;
326
327 msixtbl = pci_conf_read(pa->pa_pc, pa->pa_tag,
328 msixoff + PCI_MSIX_TBLOFFSET);
329 table_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK;
330 bir = msixtbl & PCI_MSIX_PBABIR_MASK;
331 if (bir == PCI_MAPREG_NUM(ENA_REG_BAR))
332 mapsize = table_offset;
333 }
334
335 error = bus_space_map(adapter->sc_btag, memaddr, mapsize, flags,
336 &adapter->sc_bhandle);
337 if (error != 0) {
338 aprint_error_dev(adapter->pdev,
339 "can't map mem space (error=%d)\n", error);
340 return ENXIO;
341 }
342
343 return (0);
344 }
345
346 static void
347 ena_free_pci_resources(struct ena_adapter *adapter)
348 {
349 /* Nothing to do */
350 }
351
352 static int
353 ena_probe(device_t parent, cfdata_t match, void *aux)
354 {
355 struct pci_attach_args *pa = aux;
356 const ena_vendor_info_t *ent;
357
358 for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
359 ent = &ena_vendor_info_array[i];
360
361 if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
362 (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
363 return 1;
364 }
365 }
366
367 return 0;
368 }
369
370 static int
371 ena_change_mtu(struct ifnet *ifp, int new_mtu)
372 {
373 struct ena_adapter *adapter = if_getsoftc(ifp);
374 int rc;
375
376 if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
377 device_printf(adapter->pdev, "Invalid MTU setting. "
378 "new_mtu: %d max mtu: %d min mtu: %d\n",
379 new_mtu, adapter->max_mtu, ENA_MIN_MTU);
380 return (EINVAL);
381 }
382
383 rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
384 if (likely(rc == 0)) {
385 ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
386 if_setmtu(ifp, new_mtu);
387 } else {
388 device_printf(adapter->pdev, "Failed to set MTU to %d\n",
389 new_mtu);
390 }
391
392 return (rc);
393 }
394
395 #define EVCNT_INIT(st, f) \
396 do { \
397 evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL, \
398 st->name, #f); \
399 } while (0)
400
401 static inline void
402 ena_alloc_counters_rx(struct ena_stats_rx *st, int queue)
403 {
404 snprintf(st->name, sizeof(st->name), "ena rxq%d", queue);
405
406 EVCNT_INIT(st, cnt);
407 EVCNT_INIT(st, bytes);
408 EVCNT_INIT(st, refil_partial);
409 EVCNT_INIT(st, bad_csum);
410 EVCNT_INIT(st, mjum_alloc_fail);
411 EVCNT_INIT(st, mbuf_alloc_fail);
412 EVCNT_INIT(st, dma_mapping_err);
413 EVCNT_INIT(st, bad_desc_num);
414 EVCNT_INIT(st, bad_req_id);
415 EVCNT_INIT(st, empty_rx_ring);
416
417 /* Make sure all code is updated when new fields added */
418 CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
419 + sizeof(st->empty_rx_ring) == sizeof(*st));
420 }
421
422 static inline void
423 ena_alloc_counters_tx(struct ena_stats_tx *st, int queue)
424 {
425 snprintf(st->name, sizeof(st->name), "ena txq%d", queue);
426
427 EVCNT_INIT(st, cnt);
428 EVCNT_INIT(st, bytes);
429 EVCNT_INIT(st, prepare_ctx_err);
430 EVCNT_INIT(st, dma_mapping_err);
431 EVCNT_INIT(st, doorbells);
432 EVCNT_INIT(st, missing_tx_comp);
433 EVCNT_INIT(st, bad_req_id);
434 EVCNT_INIT(st, collapse);
435 EVCNT_INIT(st, collapse_err);
436
437 /* Make sure all code is updated when new fields added */
438 CTASSERT(offsetof(struct ena_stats_tx, collapse_err)
439 + sizeof(st->collapse_err) == sizeof(*st));
440 }
441
442 static inline void
443 ena_alloc_counters_dev(struct ena_stats_dev *st, int queue)
444 {
445 snprintf(st->name, sizeof(st->name), "ena dev ioq%d", queue);
446
447 EVCNT_INIT(st, wd_expired);
448 EVCNT_INIT(st, interface_up);
449 EVCNT_INIT(st, interface_down);
450 EVCNT_INIT(st, admin_q_pause);
451
452 /* Make sure all code is updated when new fields added */
453 CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
454 + sizeof(st->admin_q_pause) == sizeof(*st));
455 }
456
457 static inline void
458 ena_alloc_counters_hwstats(struct ena_hw_stats *st, int queue)
459 {
460 snprintf(st->name, sizeof(st->name), "ena hw ioq%d", queue);
461
462 EVCNT_INIT(st, rx_packets);
463 EVCNT_INIT(st, tx_packets);
464 EVCNT_INIT(st, rx_bytes);
465 EVCNT_INIT(st, tx_bytes);
466 EVCNT_INIT(st, rx_drops);
467
468 /* Make sure all code is updated when new fields added */
469 CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
470 + sizeof(st->rx_drops) == sizeof(*st));
471 }
472 static inline void
473 ena_free_counters(struct evcnt *begin, int size)
474 {
475 struct evcnt *end = (struct evcnt *)((char *)begin + size);
476
477 for (; begin < end; ++begin)
478 counter_u64_free(*begin);
479 }
480
481 static inline void
482 ena_reset_counters(struct evcnt *begin, int size)
483 {
484 struct evcnt *end = (struct evcnt *)((char *)begin + size);
485
486 for (; begin < end; ++begin)
487 counter_u64_zero(*begin);
488 }
489
490 static void
491 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
492 uint16_t qid)
493 {
494
495 ring->qid = qid;
496 ring->adapter = adapter;
497 ring->ena_dev = adapter->ena_dev;
498 }
499
500 static void
501 ena_init_io_rings(struct ena_adapter *adapter)
502 {
503 struct ena_com_dev *ena_dev;
504 struct ena_ring *txr, *rxr;
505 struct ena_que *que;
506 int i;
507
508 ena_dev = adapter->ena_dev;
509
510 for (i = 0; i < adapter->num_queues; i++) {
511 txr = &adapter->tx_ring[i];
512 rxr = &adapter->rx_ring[i];
513
514 /* TX/RX common ring state */
515 ena_init_io_rings_common(adapter, txr, i);
516 ena_init_io_rings_common(adapter, rxr, i);
517
518 /* TX specific ring state */
519 txr->ring_size = adapter->tx_ring_size;
520 txr->tx_max_header_size = ena_dev->tx_max_header_size;
521 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
522 txr->smoothed_interval =
523 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
524
525 /* Allocate a buf ring */
526 txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
527 M_WAITOK, &txr->ring_mtx);
528
529 /* Alloc TX statistics. */
530 ena_alloc_counters_tx(&txr->tx_stats, i);
531
532 /* RX specific ring state */
533 rxr->ring_size = adapter->rx_ring_size;
534 rxr->smoothed_interval =
535 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
536
537 /* Alloc RX statistics. */
538 ena_alloc_counters_rx(&rxr->rx_stats, i);
539
540 /* Initialize locks */
541 snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
542 device_xname(adapter->pdev), i);
543 snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
544 device_xname(adapter->pdev), i);
545
546 mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
547 mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
548
549 que = &adapter->que[i];
550 que->adapter = adapter;
551 que->id = i;
552 que->tx_ring = txr;
553 que->rx_ring = rxr;
554
555 txr->que = que;
556 rxr->que = que;
557
558 rxr->empty_rx_queue = 0;
559 }
560 }
561
562 static void
563 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
564 {
565 struct ena_ring *txr = &adapter->tx_ring[qid];
566 struct ena_ring *rxr = &adapter->rx_ring[qid];
567
568 ena_free_counters((struct evcnt *)&txr->tx_stats,
569 sizeof(txr->tx_stats));
570 ena_free_counters((struct evcnt *)&rxr->rx_stats,
571 sizeof(rxr->rx_stats));
572
573 ENA_RING_MTX_LOCK(txr);
574 drbr_free(txr->br, M_DEVBUF);
575 ENA_RING_MTX_UNLOCK(txr);
576
577 mutex_destroy(&txr->ring_mtx);
578 mutex_destroy(&rxr->ring_mtx);
579 }
580
581 static void
582 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
583 {
584 int i;
585
586 for (i = 0; i < adapter->num_queues; i++)
587 ena_free_io_ring_resources(adapter, i);
588
589 }
590
591 #if 0
592 static int
593 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
594 {
595 int ret;
596
597 /* Create DMA tag for Tx buffers */
598 ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
599 1, 0, /* alignment, bounds */
600 ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window */
601 BUS_SPACE_MAXADDR, /* highaddr of excl window */
602 NULL, NULL, /* filter, filterarg */
603 ENA_TSO_MAXSIZE, /* maxsize */
604 adapter->max_tx_sgl_size - 1, /* nsegments */
605 ENA_TSO_MAXSIZE, /* maxsegsize */
606 0, /* flags */
607 NULL, /* lockfunc */
608 NULL, /* lockfuncarg */
609 &adapter->tx_buf_tag);
610
611 return (ret);
612 }
613 #endif
614
615 #if 0
616 static int
617 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
618 {
619 int ret;
620
621 /* Create DMA tag for Rx buffers*/
622 ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent */
623 1, 0, /* alignment, bounds */
624 ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window */
625 BUS_SPACE_MAXADDR, /* highaddr of excl window */
626 NULL, NULL, /* filter, filterarg */
627 MJUM16BYTES, /* maxsize */
628 adapter->max_rx_sgl_size, /* nsegments */
629 MJUM16BYTES, /* maxsegsize */
630 0, /* flags */
631 NULL, /* lockfunc */
632 NULL, /* lockarg */
633 &adapter->rx_buf_tag);
634
635 return (ret);
636 }
637 #endif
638
639 /**
640 * ena_setup_tx_resources - allocate Tx resources (Descriptors)
641 * @adapter: network interface device structure
642 * @qid: queue index
643 *
644 * Returns 0 on success, otherwise on failure.
645 **/
646 static int
647 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
648 {
649 struct ena_que *que = &adapter->que[qid];
650 struct ena_ring *tx_ring = que->tx_ring;
651 int size, i, err;
652 #ifdef RSS
653 cpuset_t cpu_mask;
654 #endif
655
656 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
657
658 tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
659 if (unlikely(tx_ring->tx_buffer_info == NULL))
660 return (ENOMEM);
661
662 size = sizeof(uint16_t) * tx_ring->ring_size;
663 tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
664 if (unlikely(tx_ring->free_tx_ids == NULL))
665 goto err_buf_info_free;
666
667 /* Req id stack for TX OOO completions */
668 for (i = 0; i < tx_ring->ring_size; i++)
669 tx_ring->free_tx_ids[i] = i;
670
671 /* Reset TX statistics. */
672 ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
673 sizeof(tx_ring->tx_stats));
674
675 tx_ring->next_to_use = 0;
676 tx_ring->next_to_clean = 0;
677
678 /* Make sure that drbr is empty */
679 ENA_RING_MTX_LOCK(tx_ring);
680 drbr_flush(adapter->ifp, tx_ring->br);
681 ENA_RING_MTX_UNLOCK(tx_ring);
682
683 /* ... and create the buffer DMA maps */
684 for (i = 0; i < tx_ring->ring_size; i++) {
685 err = bus_dmamap_create(adapter->sc_dmat,
686 ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
687 ENA_TSO_MAXSIZE, 0, 0,
688 &tx_ring->tx_buffer_info[i].map);
689 if (unlikely(err != 0)) {
690 ena_trace(ENA_ALERT,
691 "Unable to create Tx DMA map for buffer %d\n", i);
692 goto err_buf_info_unmap;
693 }
694 }
695
696 /* Allocate workqueues */
697 int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
698 ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
699 if (unlikely(rc != 0)) {
700 ena_trace(ENA_ALERT,
701 "Unable to create workqueue for enqueue task\n");
702 i = tx_ring->ring_size;
703 goto err_buf_info_unmap;
704 }
705
706 #if 0
707 /* RSS set cpu for thread */
708 #ifdef RSS
709 CPU_SETOF(que->cpu, &cpu_mask);
710 taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET,
711 &cpu_mask, "%s tx_ring enq (bucket %d)",
712 device_xname(adapter->pdev), que->cpu);
713 #else /* RSS */
714 taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET,
715 "%s txeq %d", device_xname(adapter->pdev), que->cpu);
716 #endif /* RSS */
717 #endif
718
719 return (0);
720
721 err_buf_info_unmap:
722 while (i--) {
723 bus_dmamap_destroy(adapter->sc_dmat,
724 tx_ring->tx_buffer_info[i].map);
725 }
726 free(tx_ring->free_tx_ids, M_DEVBUF);
727 tx_ring->free_tx_ids = NULL;
728 err_buf_info_free:
729 free(tx_ring->tx_buffer_info, M_DEVBUF);
730 tx_ring->tx_buffer_info = NULL;
731
732 return (ENOMEM);
733 }
734
735 /**
736 * ena_free_tx_resources - Free Tx Resources per Queue
737 * @adapter: network interface device structure
738 * @qid: queue index
739 *
740 * Free all transmit software resources
741 **/
742 static void
743 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
744 {
745 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
746
747 workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
748 workqueue_destroy(tx_ring->enqueue_tq);
749 tx_ring->enqueue_tq = NULL;
750
751 ENA_RING_MTX_LOCK(tx_ring);
752 /* Flush buffer ring, */
753 drbr_flush(adapter->ifp, tx_ring->br);
754
755 /* Free buffer DMA maps, */
756 for (int i = 0; i < tx_ring->ring_size; i++) {
757 m_freem(tx_ring->tx_buffer_info[i].mbuf);
758 tx_ring->tx_buffer_info[i].mbuf = NULL;
759 bus_dmamap_unload(adapter->sc_dmat,
760 tx_ring->tx_buffer_info[i].map);
761 bus_dmamap_destroy(adapter->sc_dmat,
762 tx_ring->tx_buffer_info[i].map);
763 }
764 ENA_RING_MTX_UNLOCK(tx_ring);
765
766 /* And free allocated memory. */
767 free(tx_ring->tx_buffer_info, M_DEVBUF);
768 tx_ring->tx_buffer_info = NULL;
769
770 free(tx_ring->free_tx_ids, M_DEVBUF);
771 tx_ring->free_tx_ids = NULL;
772 }
773
774 /**
775 * ena_setup_all_tx_resources - allocate all queues Tx resources
776 * @adapter: network interface device structure
777 *
778 * Returns 0 on success, otherwise on failure.
779 **/
780 static int
781 ena_setup_all_tx_resources(struct ena_adapter *adapter)
782 {
783 int i, rc;
784
785 for (i = 0; i < adapter->num_queues; i++) {
786 rc = ena_setup_tx_resources(adapter, i);
787 if (rc != 0) {
788 device_printf(adapter->pdev,
789 "Allocation for Tx Queue %u failed\n", i);
790 goto err_setup_tx;
791 }
792 }
793
794 return (0);
795
796 err_setup_tx:
797 /* Rewind the index freeing the rings as we go */
798 while (i--)
799 ena_free_tx_resources(adapter, i);
800 return (rc);
801 }
802
803 /**
804 * ena_free_all_tx_resources - Free Tx Resources for All Queues
805 * @adapter: network interface device structure
806 *
807 * Free all transmit software resources
808 **/
809 static void
810 ena_free_all_tx_resources(struct ena_adapter *adapter)
811 {
812 int i;
813
814 for (i = 0; i < adapter->num_queues; i++)
815 ena_free_tx_resources(adapter, i);
816 }
817
818 static inline int
819 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
820 {
821 if (likely(req_id < rx_ring->ring_size))
822 return (0);
823
824 device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
825 req_id);
826 counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
827
828 /* Trigger device reset */
829 rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
830 rx_ring->adapter->trigger_reset = true;
831
832 return (EFAULT);
833 }
834
835 /**
836 * ena_setup_rx_resources - allocate Rx resources (Descriptors)
837 * @adapter: network interface device structure
838 * @qid: queue index
839 *
840 * Returns 0 on success, otherwise on failure.
841 **/
842 static int
843 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
844 {
845 struct ena_que *que = &adapter->que[qid];
846 struct ena_ring *rx_ring = que->rx_ring;
847 int size, err, i;
848 #ifdef RSS
849 cpuset_t cpu_mask;
850 #endif
851
852 size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
853
854 /*
855 * Alloc extra element so in rx path
856 * we can always prefetch rx_info + 1
857 */
858 size += sizeof(struct ena_rx_buffer);
859
860 rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
861
862 size = sizeof(uint16_t) * rx_ring->ring_size;
863 rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
864
865 for (i = 0; i < rx_ring->ring_size; i++)
866 rx_ring->free_rx_ids[i] = i;
867
868 /* Reset RX statistics. */
869 ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
870 sizeof(rx_ring->rx_stats));
871
872 rx_ring->next_to_clean = 0;
873 rx_ring->next_to_use = 0;
874
875 /* ... and create the buffer DMA maps */
876 for (i = 0; i < rx_ring->ring_size; i++) {
877 err = bus_dmamap_create(adapter->sc_dmat,
878 MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
879 0, 0,
880 &(rx_ring->rx_buffer_info[i].map));
881 if (err != 0) {
882 ena_trace(ENA_ALERT,
883 "Unable to create Rx DMA map for buffer %d\n", i);
884 goto err_buf_info_unmap;
885 }
886 }
887
888 #ifdef LRO
889 /* Create LRO for the ring */
890 if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
891 int err = tcp_lro_init(&rx_ring->lro);
892 if (err != 0) {
893 device_printf(adapter->pdev,
894 "LRO[%d] Initialization failed!\n", qid);
895 } else {
896 ena_trace(ENA_INFO,
897 "RX Soft LRO[%d] Initialized\n", qid);
898 rx_ring->lro.ifp = adapter->ifp;
899 }
900 }
901 #endif
902
903 /* Allocate workqueues */
904 int rc = workqueue_create(&rx_ring->cmpl_tq, "ena_rx_comp",
905 ena_deferred_rx_cleanup, rx_ring, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
906 if (unlikely(rc != 0)) {
907 ena_trace(ENA_ALERT,
908 "Unable to create workqueue for RX completion task\n");
909 goto err_buf_info_unmap;
910 }
911
912 #if 0
913 /* RSS set cpu for thread */
914 #ifdef RSS
915 CPU_SETOF(que->cpu, &cpu_mask);
916 taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask,
917 "%s rx_ring cmpl (bucket %d)",
918 device_xname(adapter->pdev), que->cpu);
919 #else
920 taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET,
921 "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu);
922 #endif
923 #endif
924
925 return (0);
926
927 err_buf_info_unmap:
928 while (i--) {
929 bus_dmamap_destroy(adapter->sc_dmat,
930 rx_ring->rx_buffer_info[i].map);
931 }
932
933 free(rx_ring->free_rx_ids, M_DEVBUF);
934 rx_ring->free_rx_ids = NULL;
935 free(rx_ring->rx_buffer_info, M_DEVBUF);
936 rx_ring->rx_buffer_info = NULL;
937 return (ENOMEM);
938 }
939
940 /**
941 * ena_free_rx_resources - Free Rx Resources
942 * @adapter: network interface device structure
943 * @qid: queue index
944 *
945 * Free all receive software resources
946 **/
947 static void
948 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
949 {
950 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
951
952 workqueue_wait(rx_ring->cmpl_tq, &rx_ring->cmpl_task);
953 workqueue_destroy(rx_ring->cmpl_tq);
954 rx_ring->cmpl_tq = NULL;
955
956 /* Free buffer DMA maps, */
957 for (int i = 0; i < rx_ring->ring_size; i++) {
958 m_freem(rx_ring->rx_buffer_info[i].mbuf);
959 rx_ring->rx_buffer_info[i].mbuf = NULL;
960 bus_dmamap_unload(adapter->sc_dmat,
961 rx_ring->rx_buffer_info[i].map);
962 bus_dmamap_destroy(adapter->sc_dmat,
963 rx_ring->rx_buffer_info[i].map);
964 }
965
966 #ifdef LRO
967 /* free LRO resources, */
968 tcp_lro_free(&rx_ring->lro);
969 #endif
970
971 /* free allocated memory */
972 free(rx_ring->rx_buffer_info, M_DEVBUF);
973 rx_ring->rx_buffer_info = NULL;
974
975 free(rx_ring->free_rx_ids, M_DEVBUF);
976 rx_ring->free_rx_ids = NULL;
977 }
978
979 /**
980 * ena_setup_all_rx_resources - allocate all queues Rx resources
981 * @adapter: network interface device structure
982 *
983 * Returns 0 on success, otherwise on failure.
984 **/
985 static int
986 ena_setup_all_rx_resources(struct ena_adapter *adapter)
987 {
988 int i, rc = 0;
989
990 for (i = 0; i < adapter->num_queues; i++) {
991 rc = ena_setup_rx_resources(adapter, i);
992 if (rc != 0) {
993 device_printf(adapter->pdev,
994 "Allocation for Rx Queue %u failed\n", i);
995 goto err_setup_rx;
996 }
997 }
998 return (0);
999
1000 err_setup_rx:
1001 /* rewind the index freeing the rings as we go */
1002 while (i--)
1003 ena_free_rx_resources(adapter, i);
1004 return (rc);
1005 }
1006
1007 /**
1008 * ena_free_all_rx_resources - Free Rx resources for all queues
1009 * @adapter: network interface device structure
1010 *
1011 * Free all receive software resources
1012 **/
1013 static void
1014 ena_free_all_rx_resources(struct ena_adapter *adapter)
1015 {
1016 int i;
1017
1018 for (i = 0; i < adapter->num_queues; i++)
1019 ena_free_rx_resources(adapter, i);
1020 }
1021
1022 static inline int
1023 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
1024 struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
1025 {
1026 struct ena_com_buf *ena_buf;
1027 int error;
1028 int mlen;
1029
1030 /* if previous allocated frag is not used */
1031 if (unlikely(rx_info->mbuf != NULL))
1032 return (0);
1033
1034 /* Get mbuf using UMA allocator */
1035 rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES);
1036
1037 if (unlikely(rx_info->mbuf == NULL)) {
1038 counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1);
1039 rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1040 if (unlikely(rx_info->mbuf == NULL)) {
1041 counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1042 return (ENOMEM);
1043 }
1044 mlen = MCLBYTES;
1045 } else {
1046 mlen = MJUM16BYTES;
1047 }
1048 /* Set mbuf length*/
1049 rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
1050
1051 /* Map packets for DMA */
1052 ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1053 "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
1054 adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
1055 error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
1056 rx_info->mbuf, BUS_DMA_NOWAIT);
1057 if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
1058 ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
1059 "nsegs: %d\n", error, rx_info->map->dm_nsegs);
1060 counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
1061 goto exit;
1062
1063 }
1064
1065 bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
1066 rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1067
1068 ena_buf = &rx_info->ena_buf;
1069 ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
1070 ena_buf->len = mlen;
1071
1072 ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1073 "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
1074 rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
1075
1076 return (0);
1077
1078 exit:
1079 m_freem(rx_info->mbuf);
1080 rx_info->mbuf = NULL;
1081 return (EFAULT);
1082 }
1083
1084 static void
1085 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
1086 struct ena_rx_buffer *rx_info)
1087 {
1088
1089 if (rx_info->mbuf == NULL) {
1090 ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
1091 return;
1092 }
1093
1094 bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
1095 m_freem(rx_info->mbuf);
1096 rx_info->mbuf = NULL;
1097 }
1098
1099 /**
1100 * ena_refill_rx_bufs - Refills ring with descriptors
1101 * @rx_ring: the ring which we want to feed with free descriptors
1102 * @num: number of descriptors to refill
1103 * Refills the ring with newly allocated DMA-mapped mbufs for receiving
1104 **/
1105 static int
1106 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
1107 {
1108 struct ena_adapter *adapter = rx_ring->adapter;
1109 uint16_t next_to_use, req_id;
1110 uint32_t i;
1111 int rc;
1112
1113 ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
1114 rx_ring->qid);
1115
1116 next_to_use = rx_ring->next_to_use;
1117
1118 for (i = 0; i < num; i++) {
1119 struct ena_rx_buffer *rx_info;
1120
1121 ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
1122 "RX buffer - next to use: %d", next_to_use);
1123
1124 req_id = rx_ring->free_rx_ids[next_to_use];
1125 rc = validate_rx_req_id(rx_ring, req_id);
1126 if (unlikely(rc != 0))
1127 break;
1128
1129 rx_info = &rx_ring->rx_buffer_info[req_id];
1130
1131 rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
1132 if (unlikely(rc != 0)) {
1133 ena_trace(ENA_WARNING,
1134 "failed to alloc buffer for rx queue %d\n",
1135 rx_ring->qid);
1136 break;
1137 }
1138 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1139 &rx_info->ena_buf, req_id);
1140 if (unlikely(rc != 0)) {
1141 ena_trace(ENA_WARNING,
1142 "failed to add buffer for rx queue %d\n",
1143 rx_ring->qid);
1144 break;
1145 }
1146 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1147 rx_ring->ring_size);
1148 }
1149
1150 if (unlikely(i < num)) {
1151 counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
1152 ena_trace(ENA_WARNING,
1153 "refilled rx qid %d with only %d mbufs (from %d)\n",
1154 rx_ring->qid, i, num);
1155 }
1156
1157 if (likely(i != 0)) {
1158 wmb();
1159 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1160 }
1161 rx_ring->next_to_use = next_to_use;
1162 return (i);
1163 }
1164
1165 static void
1166 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
1167 {
1168 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1169 unsigned int i;
1170
1171 for (i = 0; i < rx_ring->ring_size; i++) {
1172 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1173
1174 if (rx_info->mbuf != NULL)
1175 ena_free_rx_mbuf(adapter, rx_ring, rx_info);
1176 }
1177 }
1178
1179 /**
1180 * ena_refill_all_rx_bufs - allocate all queues Rx buffers
1181 * @adapter: network interface device structure
1182 *
1183 */
1184 static void
1185 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1186 {
1187 struct ena_ring *rx_ring;
1188 int i, rc, bufs_num;
1189
1190 for (i = 0; i < adapter->num_queues; i++) {
1191 rx_ring = &adapter->rx_ring[i];
1192 bufs_num = rx_ring->ring_size - 1;
1193 rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1194
1195 if (unlikely(rc != bufs_num))
1196 ena_trace(ENA_WARNING, "refilling Queue %d failed. "
1197 "Allocated %d buffers from: %d\n", i, rc, bufs_num);
1198 }
1199 }
1200
1201 static void
1202 ena_free_all_rx_bufs(struct ena_adapter *adapter)
1203 {
1204 int i;
1205
1206 for (i = 0; i < adapter->num_queues; i++)
1207 ena_free_rx_bufs(adapter, i);
1208 }
1209
1210 /**
1211 * ena_free_tx_bufs - Free Tx Buffers per Queue
1212 * @adapter: network interface device structure
1213 * @qid: queue index
1214 **/
1215 static void
1216 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
1217 {
1218 bool print_once = true;
1219 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
1220
1221 ENA_RING_MTX_LOCK(tx_ring);
1222 for (int i = 0; i < tx_ring->ring_size; i++) {
1223 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1224
1225 if (tx_info->mbuf == NULL)
1226 continue;
1227
1228 if (print_once) {
1229 device_printf(adapter->pdev,
1230 "free uncompleted tx mbuf qid %d idx 0x%x",
1231 qid, i);
1232 print_once = false;
1233 } else {
1234 ena_trace(ENA_DBG,
1235 "free uncompleted tx mbuf qid %d idx 0x%x",
1236 qid, i);
1237 }
1238
1239 bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1240 m_free(tx_info->mbuf);
1241 tx_info->mbuf = NULL;
1242 }
1243 ENA_RING_MTX_UNLOCK(tx_ring);
1244 }
1245
1246 static void
1247 ena_free_all_tx_bufs(struct ena_adapter *adapter)
1248 {
1249
1250 for (int i = 0; i < adapter->num_queues; i++)
1251 ena_free_tx_bufs(adapter, i);
1252 }
1253
1254 static void
1255 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1256 {
1257 uint16_t ena_qid;
1258 int i;
1259
1260 for (i = 0; i < adapter->num_queues; i++) {
1261 ena_qid = ENA_IO_TXQ_IDX(i);
1262 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1263 }
1264 }
1265
1266 static void
1267 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1268 {
1269 uint16_t ena_qid;
1270 int i;
1271
1272 for (i = 0; i < adapter->num_queues; i++) {
1273 ena_qid = ENA_IO_RXQ_IDX(i);
1274 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1275 }
1276 }
1277
1278 static void
1279 ena_destroy_all_io_queues(struct ena_adapter *adapter)
1280 {
1281 ena_destroy_all_tx_queues(adapter);
1282 ena_destroy_all_rx_queues(adapter);
1283 }
1284
1285 static inline int
1286 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
1287 {
1288 struct ena_adapter *adapter = tx_ring->adapter;
1289 struct ena_tx_buffer *tx_info = NULL;
1290
1291 if (likely(req_id < tx_ring->ring_size)) {
1292 tx_info = &tx_ring->tx_buffer_info[req_id];
1293 if (tx_info->mbuf != NULL)
1294 return (0);
1295 }
1296
1297 if (tx_info->mbuf == NULL)
1298 device_printf(adapter->pdev,
1299 "tx_info doesn't have valid mbuf\n");
1300 else
1301 device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
1302
1303 counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
1304
1305 return (EFAULT);
1306 }
1307
1308 static int
1309 ena_create_io_queues(struct ena_adapter *adapter)
1310 {
1311 struct ena_com_dev *ena_dev = adapter->ena_dev;
1312 struct ena_com_create_io_ctx ctx;
1313 struct ena_ring *ring;
1314 uint16_t ena_qid;
1315 uint32_t msix_vector;
1316 int rc, i;
1317
1318 /* Create TX queues */
1319 for (i = 0; i < adapter->num_queues; i++) {
1320 msix_vector = ENA_IO_IRQ_IDX(i);
1321 ena_qid = ENA_IO_TXQ_IDX(i);
1322 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1323 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1324 ctx.queue_size = adapter->tx_ring_size;
1325 ctx.msix_vector = msix_vector;
1326 ctx.qid = ena_qid;
1327 rc = ena_com_create_io_queue(ena_dev, &ctx);
1328 if (rc != 0) {
1329 device_printf(adapter->pdev,
1330 "Failed to create io TX queue #%d rc: %d\n", i, rc);
1331 goto err_tx;
1332 }
1333 ring = &adapter->tx_ring[i];
1334 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1335 &ring->ena_com_io_sq,
1336 &ring->ena_com_io_cq);
1337 if (rc != 0) {
1338 device_printf(adapter->pdev,
1339 "Failed to get TX queue handlers. TX queue num"
1340 " %d rc: %d\n", i, rc);
1341 ena_com_destroy_io_queue(ena_dev, ena_qid);
1342 goto err_tx;
1343 }
1344 }
1345
1346 /* Create RX queues */
1347 for (i = 0; i < adapter->num_queues; i++) {
1348 msix_vector = ENA_IO_IRQ_IDX(i);
1349 ena_qid = ENA_IO_RXQ_IDX(i);
1350 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1351 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1352 ctx.queue_size = adapter->rx_ring_size;
1353 ctx.msix_vector = msix_vector;
1354 ctx.qid = ena_qid;
1355 rc = ena_com_create_io_queue(ena_dev, &ctx);
1356 if (unlikely(rc != 0)) {
1357 device_printf(adapter->pdev,
1358 "Failed to create io RX queue[%d] rc: %d\n", i, rc);
1359 goto err_rx;
1360 }
1361
1362 ring = &adapter->rx_ring[i];
1363 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1364 &ring->ena_com_io_sq,
1365 &ring->ena_com_io_cq);
1366 if (unlikely(rc != 0)) {
1367 device_printf(adapter->pdev,
1368 "Failed to get RX queue handlers. RX queue num"
1369 " %d rc: %d\n", i, rc);
1370 ena_com_destroy_io_queue(ena_dev, ena_qid);
1371 goto err_rx;
1372 }
1373 }
1374
1375 return (0);
1376
1377 err_rx:
1378 while (i--)
1379 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
1380 i = adapter->num_queues;
1381 err_tx:
1382 while (i--)
1383 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1384
1385 return (ENXIO);
1386 }
1387
1388 /**
1389 * ena_tx_cleanup - clear sent packets and corresponding descriptors
1390 * @tx_ring: ring for which we want to clean packets
1391 *
1392 * Once packets are sent, we ask the device in a loop for no longer used
1393 * descriptors. We find the related mbuf chain in a map (index in an array)
1394 * and free it, then update ring state.
1395 * This is performed in "endless" loop, updating ring pointers every
1396 * TX_COMMIT. The first check of free descriptor is performed before the actual
1397 * loop, then repeated at the loop end.
1398 **/
1399 static int
1400 ena_tx_cleanup(struct ena_ring *tx_ring)
1401 {
1402 struct ena_adapter *adapter;
1403 struct ena_com_io_cq* io_cq;
1404 uint16_t next_to_clean;
1405 uint16_t req_id;
1406 uint16_t ena_qid;
1407 unsigned int total_done = 0;
1408 int rc;
1409 int commit = TX_COMMIT;
1410 int budget = TX_BUDGET;
1411 int work_done;
1412
1413 adapter = tx_ring->que->adapter;
1414 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
1415 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1416 next_to_clean = tx_ring->next_to_clean;
1417
1418 do {
1419 struct ena_tx_buffer *tx_info;
1420 struct mbuf *mbuf;
1421
1422 rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
1423 if (unlikely(rc != 0))
1424 break;
1425
1426 rc = validate_tx_req_id(tx_ring, req_id);
1427 if (unlikely(rc != 0))
1428 break;
1429
1430 tx_info = &tx_ring->tx_buffer_info[req_id];
1431
1432 mbuf = tx_info->mbuf;
1433
1434 tx_info->mbuf = NULL;
1435 bintime_clear(&tx_info->timestamp);
1436
1437 if (likely(tx_info->num_of_bufs != 0)) {
1438 /* Map is no longer required */
1439 bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1440 }
1441
1442 ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
1443 tx_ring->qid, mbuf);
1444
1445 m_freem(mbuf);
1446
1447 total_done += tx_info->tx_descs;
1448
1449 tx_ring->free_tx_ids[next_to_clean] = req_id;
1450 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1451 tx_ring->ring_size);
1452
1453 if (unlikely(--commit == 0)) {
1454 commit = TX_COMMIT;
1455 /* update ring state every TX_COMMIT descriptor */
1456 tx_ring->next_to_clean = next_to_clean;
1457 ena_com_comp_ack(
1458 &adapter->ena_dev->io_sq_queues[ena_qid],
1459 total_done);
1460 ena_com_update_dev_comp_head(io_cq);
1461 total_done = 0;
1462 }
1463 } while (likely(--budget));
1464
1465 work_done = TX_BUDGET - budget;
1466
1467 ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
1468 tx_ring->qid, work_done);
1469
1470 /* If there is still something to commit update ring state */
1471 if (likely(commit != TX_COMMIT)) {
1472 tx_ring->next_to_clean = next_to_clean;
1473 ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
1474 total_done);
1475 ena_com_update_dev_comp_head(io_cq);
1476 }
1477
1478 if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
1479 workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
1480
1481 return (work_done);
1482 }
1483
1484 #if 0
1485 static void
1486 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1487 struct mbuf *mbuf)
1488 {
1489 struct ena_adapter *adapter = rx_ring->adapter;
1490
1491 if (likely(adapter->rss_support)) {
1492 mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
1493
1494 if (ena_rx_ctx->frag &&
1495 (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
1496 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1497 return;
1498 }
1499
1500 switch (ena_rx_ctx->l3_proto) {
1501 case ENA_ETH_IO_L3_PROTO_IPV4:
1502 switch (ena_rx_ctx->l4_proto) {
1503 case ENA_ETH_IO_L4_PROTO_TCP:
1504 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
1505 break;
1506 case ENA_ETH_IO_L4_PROTO_UDP:
1507 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
1508 break;
1509 default:
1510 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
1511 }
1512 break;
1513 case ENA_ETH_IO_L3_PROTO_IPV6:
1514 switch (ena_rx_ctx->l4_proto) {
1515 case ENA_ETH_IO_L4_PROTO_TCP:
1516 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
1517 break;
1518 case ENA_ETH_IO_L4_PROTO_UDP:
1519 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
1520 break;
1521 default:
1522 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
1523 }
1524 break;
1525 case ENA_ETH_IO_L3_PROTO_UNKNOWN:
1526 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1527 break;
1528 default:
1529 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1530 }
1531 } else {
1532 mbuf->m_pkthdr.flowid = rx_ring->qid;
1533 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1534 }
1535 }
1536 #endif
1537
1538 /**
1539 * ena_rx_mbuf - assemble mbuf from descriptors
1540 * @rx_ring: ring for which we want to clean packets
1541 * @ena_bufs: buffer info
1542 * @ena_rx_ctx: metadata for this packet(s)
1543 * @next_to_clean: ring pointer, will be updated only upon success
1544 *
1545 **/
1546 static struct mbuf*
1547 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
1548 struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
1549 {
1550 struct mbuf *mbuf;
1551 struct ena_rx_buffer *rx_info;
1552 struct ena_adapter *adapter;
1553 unsigned int descs = ena_rx_ctx->descs;
1554 uint16_t ntc, len, req_id, buf = 0;
1555
1556 ntc = *next_to_clean;
1557 adapter = rx_ring->adapter;
1558 rx_info = &rx_ring->rx_buffer_info[ntc];
1559
1560 if (unlikely(rx_info->mbuf == NULL)) {
1561 device_printf(adapter->pdev, "NULL mbuf in rx_info");
1562 return (NULL);
1563 }
1564
1565 len = ena_bufs[buf].len;
1566 req_id = ena_bufs[buf].req_id;
1567 rx_info = &rx_ring->rx_buffer_info[req_id];
1568
1569 ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
1570 rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
1571
1572 mbuf = rx_info->mbuf;
1573 KASSERT(mbuf->m_flags & M_PKTHDR);
1574 mbuf->m_pkthdr.len = len;
1575 mbuf->m_len = len;
1576 m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
1577
1578 /* Fill mbuf with hash key and it's interpretation for optimization */
1579 #if 0
1580 ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
1581 #endif
1582
1583 ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d",
1584 mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
1585
1586 /* DMA address is not needed anymore, unmap it */
1587 bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1588
1589 rx_info->mbuf = NULL;
1590 rx_ring->free_rx_ids[ntc] = req_id;
1591 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1592
1593 /*
1594 * While we have more than 1 descriptors for one rcvd packet, append
1595 * other mbufs to the main one
1596 */
1597 while (--descs) {
1598 ++buf;
1599 len = ena_bufs[buf].len;
1600 req_id = ena_bufs[buf].req_id;
1601 rx_info = &rx_ring->rx_buffer_info[req_id];
1602
1603 if (unlikely(rx_info->mbuf == NULL)) {
1604 device_printf(adapter->pdev, "NULL mbuf in rx_info");
1605 /*
1606 * If one of the required mbufs was not allocated yet,
1607 * we can break there.
1608 * All earlier used descriptors will be reallocated
1609 * later and not used mbufs can be reused.
1610 * The next_to_clean pointer will not be updated in case
1611 * of an error, so caller should advance it manually
1612 * in error handling routine to keep it up to date
1613 * with hw ring.
1614 */
1615 m_freem(mbuf);
1616 return (NULL);
1617 }
1618
1619 if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
1620 counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1621 ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
1622 mbuf);
1623 }
1624
1625 ena_trace(ENA_DBG | ENA_RXPTH,
1626 "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
1627
1628 /* Free already appended mbuf, it won't be useful anymore */
1629 bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1630 m_freem(rx_info->mbuf);
1631 rx_info->mbuf = NULL;
1632
1633 rx_ring->free_rx_ids[ntc] = req_id;
1634 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1635 }
1636
1637 *next_to_clean = ntc;
1638
1639 return (mbuf);
1640 }
1641
1642 /**
1643 * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
1644 **/
1645 static inline void
1646 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1647 struct mbuf *mbuf)
1648 {
1649
1650 /* IPv4 */
1651 if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
1652 mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1653 if (ena_rx_ctx->l3_csum_err) {
1654 /* ipv4 checksum error */
1655 mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1656 counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1657 ena_trace(ENA_DBG, "RX IPv4 header checksum error");
1658 return;
1659 }
1660
1661 /* TCP/UDP */
1662 if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1663 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1664 mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
1665 if (ena_rx_ctx->l4_csum_err) {
1666 /* TCP/UDP checksum error */
1667 mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1668 counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1669 ena_trace(ENA_DBG, "RX L4 checksum error");
1670 }
1671 }
1672 }
1673 /* IPv6 */
1674 else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
1675 /* TCP/UDP */
1676 if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1677 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1678 mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
1679 if (ena_rx_ctx->l4_csum_err) {
1680 /* TCP/UDP checksum error */
1681 mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1682 counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1683 ena_trace(ENA_DBG, "RX L4 checksum error");
1684 }
1685 }
1686 }
1687 }
1688
1689 static void
1690 ena_deferred_rx_cleanup(struct work *wk, void *arg)
1691 {
1692 struct ena_ring *rx_ring = arg;
1693 int budget = CLEAN_BUDGET;
1694
1695 atomic_swap_uint(&rx_ring->task_pending, 0);
1696
1697 ENA_RING_MTX_LOCK(rx_ring);
1698 /*
1699 * If deferred task was executed, perform cleanup of all awaiting
1700 * descs (or until given budget is depleted to avoid infinite loop).
1701 */
1702 while (likely(budget--)) {
1703 if (ena_rx_cleanup(rx_ring) == 0)
1704 break;
1705 }
1706 ENA_RING_MTX_UNLOCK(rx_ring);
1707 }
1708
1709 /**
1710 * ena_rx_cleanup - handle rx irq
1711 * @arg: ring for which irq is being handled
1712 **/
1713 static int
1714 ena_rx_cleanup(struct ena_ring *rx_ring)
1715 {
1716 struct ena_adapter *adapter;
1717 struct mbuf *mbuf;
1718 struct ena_com_rx_ctx ena_rx_ctx;
1719 struct ena_com_io_cq* io_cq;
1720 struct ena_com_io_sq* io_sq;
1721 struct ifnet *ifp;
1722 uint16_t ena_qid;
1723 uint16_t next_to_clean;
1724 uint32_t refill_required;
1725 uint32_t refill_threshold;
1726 uint32_t do_if_input = 0;
1727 unsigned int qid;
1728 int rc, i;
1729 int budget = RX_BUDGET;
1730
1731 adapter = rx_ring->que->adapter;
1732 ifp = adapter->ifp;
1733 qid = rx_ring->que->id;
1734 ena_qid = ENA_IO_RXQ_IDX(qid);
1735 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1736 io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
1737 next_to_clean = rx_ring->next_to_clean;
1738
1739 ena_trace(ENA_DBG, "rx: qid %d", qid);
1740
1741 do {
1742 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1743 ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
1744 ena_rx_ctx.descs = 0;
1745 rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
1746
1747 if (unlikely(rc != 0))
1748 goto error;
1749
1750 if (unlikely(ena_rx_ctx.descs == 0))
1751 break;
1752
1753 ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
1754 "descs #: %d l3 proto %d l4 proto %d hash: %x",
1755 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1756 ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1757
1758 /* Receive mbuf from the ring */
1759 mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
1760 &ena_rx_ctx, &next_to_clean);
1761
1762 /* Exit if we failed to retrieve a buffer */
1763 if (unlikely(mbuf == NULL)) {
1764 for (i = 0; i < ena_rx_ctx.descs; ++i) {
1765 rx_ring->free_rx_ids[next_to_clean] =
1766 rx_ring->ena_bufs[i].req_id;
1767 next_to_clean =
1768 ENA_RX_RING_IDX_NEXT(next_to_clean,
1769 rx_ring->ring_size);
1770
1771 }
1772 break;
1773 }
1774
1775 if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
1776 ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
1777 ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
1778 ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
1779 ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
1780 ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
1781 }
1782
1783 counter_enter();
1784 counter_u64_add_protected(rx_ring->rx_stats.bytes,
1785 mbuf->m_pkthdr.len);
1786 counter_u64_add_protected(adapter->hw_stats.rx_bytes,
1787 mbuf->m_pkthdr.len);
1788 counter_exit();
1789 /*
1790 * LRO is only for IP/TCP packets and TCP checksum of the packet
1791 * should be computed by hardware.
1792 */
1793 do_if_input = 1;
1794 #ifdef LRO
1795 if (((ifp->if_capenable & IFCAP_LRO) != 0) &&
1796 ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
1797 (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
1798 /*
1799 * Send to the stack if:
1800 * - LRO not enabled, or
1801 * - no LRO resources, or
1802 * - lro enqueue fails
1803 */
1804 if ((rx_ring->lro.lro_cnt != 0) &&
1805 (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
1806 do_if_input = 0;
1807 }
1808 #endif
1809 if (do_if_input != 0) {
1810 ena_trace(ENA_DBG | ENA_RXPTH,
1811 "calling if_input() with mbuf %p", mbuf);
1812 if_percpuq_enqueue(ifp->if_percpuq, mbuf);
1813 }
1814
1815 counter_enter();
1816 counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
1817 counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
1818 counter_exit();
1819 } while (--budget);
1820
1821 rx_ring->next_to_clean = next_to_clean;
1822
1823 refill_required = ena_com_free_desc(io_sq);
1824 refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
1825
1826 if (refill_required > refill_threshold) {
1827 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1828 ena_refill_rx_bufs(rx_ring, refill_required);
1829 }
1830
1831 #ifdef LRO
1832 tcp_lro_flush_all(&rx_ring->lro);
1833 #endif
1834
1835 return (RX_BUDGET - budget);
1836
1837 error:
1838 counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
1839 return (RX_BUDGET - budget);
1840 }
1841
1842 /*********************************************************************
1843 *
1844 * MSIX & Interrupt Service routine
1845 *
1846 **********************************************************************/
1847
1848 /**
1849 * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
1850 * @arg: interrupt number
1851 **/
1852 static int
1853 ena_intr_msix_mgmnt(void *arg)
1854 {
1855 struct ena_adapter *adapter = (struct ena_adapter *)arg;
1856
1857 ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1858 if (likely(adapter->running))
1859 ena_com_aenq_intr_handler(adapter->ena_dev, arg);
1860
1861 return 1;
1862 }
1863
1864 /**
1865 * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
1866 * @arg: interrupt number
1867 **/
1868 static int
1869 ena_handle_msix(void *arg)
1870 {
1871 struct ena_que *que = arg;
1872 struct ena_adapter *adapter = que->adapter;
1873 struct ifnet *ifp = adapter->ifp;
1874 struct ena_ring *tx_ring;
1875 struct ena_ring *rx_ring;
1876 struct ena_com_io_cq* io_cq;
1877 struct ena_eth_io_intr_reg intr_reg;
1878 int qid, ena_qid;
1879 int txc, rxc, i;
1880
1881 if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1882 return 0;
1883
1884 ena_trace(ENA_DBG, "MSI-X TX/RX routine");
1885
1886 tx_ring = que->tx_ring;
1887 rx_ring = que->rx_ring;
1888 qid = que->id;
1889 ena_qid = ENA_IO_TXQ_IDX(qid);
1890 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1891
1892 for (i = 0; i < CLEAN_BUDGET; ++i) {
1893 /*
1894 * If lock cannot be acquired, then deferred cleanup task was
1895 * being executed and rx ring is being cleaned up in
1896 * another thread.
1897 */
1898 if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) {
1899 rxc = ena_rx_cleanup(rx_ring);
1900 ENA_RING_MTX_UNLOCK(rx_ring);
1901 } else {
1902 rxc = 0;
1903 }
1904
1905 /* Protection from calling ena_tx_cleanup from ena_start_xmit */
1906 ENA_RING_MTX_LOCK(tx_ring);
1907 txc = ena_tx_cleanup(tx_ring);
1908 ENA_RING_MTX_UNLOCK(tx_ring);
1909
1910 if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1911 return 0;
1912
1913 if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
1914 break;
1915 }
1916
1917 /* Signal that work is done and unmask interrupt */
1918 ena_com_update_intr_reg(&intr_reg,
1919 RX_IRQ_INTERVAL,
1920 TX_IRQ_INTERVAL,
1921 true);
1922 ena_com_unmask_intr(io_cq, &intr_reg);
1923
1924 return 1;
1925 }
1926
1927 static int
1928 ena_enable_msix(struct ena_adapter *adapter)
1929 {
1930 int msix_req;
1931 int counts[PCI_INTR_TYPE_SIZE];
1932 int max_type;
1933
1934 /* Reserved the max msix vectors we might need */
1935 msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
1936
1937 counts[PCI_INTR_TYPE_INTX] = 0;
1938 counts[PCI_INTR_TYPE_MSI] = 0;
1939 counts[PCI_INTR_TYPE_MSIX] = msix_req;
1940 max_type = PCI_INTR_TYPE_MSIX;
1941
1942 if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
1943 max_type) != 0) {
1944 aprint_error_dev(adapter->pdev,
1945 "failed to allocate interrupt\n");
1946 return ENOSPC;
1947 }
1948
1949 adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
1950
1951 if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
1952 device_printf(adapter->pdev,
1953 "Enable only %d MSI-x (out of %d), reduce "
1954 "the number of queues\n", adapter->sc_nintrs, msix_req);
1955 adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
1956 }
1957
1958 return 0;
1959 }
1960
1961 #if 0
1962 static void
1963 ena_setup_io_intr(struct ena_adapter *adapter)
1964 {
1965 static int last_bind_cpu = -1;
1966 int irq_idx;
1967
1968 for (int i = 0; i < adapter->num_queues; i++) {
1969 irq_idx = ENA_IO_IRQ_IDX(i);
1970
1971 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1972 "%s-TxRx-%d", device_xname(adapter->pdev), i);
1973 adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
1974 adapter->irq_tbl[irq_idx].data = &adapter->que[i];
1975 adapter->irq_tbl[irq_idx].vector =
1976 adapter->msix_entries[irq_idx].vector;
1977 ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
1978 adapter->msix_entries[irq_idx].vector);
1979 #ifdef RSS
1980 adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1981 rss_getcpu(i % rss_getnumbuckets());
1982 #else
1983 /*
1984 * We still want to bind rings to the corresponding cpu
1985 * using something similar to the RSS round-robin technique.
1986 */
1987 if (unlikely(last_bind_cpu < 0))
1988 last_bind_cpu = CPU_FIRST();
1989 adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1990 last_bind_cpu;
1991 last_bind_cpu = CPU_NEXT(last_bind_cpu);
1992 #endif
1993 }
1994 }
1995 #endif
1996
1997 static int
1998 ena_request_mgmnt_irq(struct ena_adapter *adapter)
1999 {
2000 const char *intrstr;
2001 char intrbuf[PCI_INTRSTR_LEN];
2002 char intr_xname[INTRDEVNAMEBUF];
2003 pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
2004 const int irq_slot = ENA_MGMNT_IRQ_IDX;
2005
2006 KASSERT(adapter->sc_intrs != NULL);
2007 KASSERT(adapter->sc_ihs[irq_slot] == NULL);
2008
2009 snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
2010 device_xname(adapter->pdev));
2011 intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
2012 intrbuf, sizeof(intrbuf));
2013
2014 adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
2015 pc, adapter->sc_intrs[irq_slot],
2016 IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
2017
2018 if (adapter->sc_ihs[irq_slot] == NULL) {
2019 device_printf(adapter->pdev, "failed to register "
2020 "interrupt handler for MGMNT irq %s\n",
2021 intrstr);
2022 return ENOMEM;
2023 }
2024
2025 aprint_normal_dev(adapter->pdev,
2026 "for MGMNT interrupting at %s\n", intrstr);
2027
2028 return 0;
2029 }
2030
2031 static int
2032 ena_request_io_irq(struct ena_adapter *adapter)
2033 {
2034 const char *intrstr;
2035 char intrbuf[PCI_INTRSTR_LEN];
2036 char intr_xname[INTRDEVNAMEBUF];
2037 pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
2038 const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2039 void *vih;
2040 kcpuset_t *affinity;
2041 int i;
2042
2043 KASSERT(adapter->sc_intrs != NULL);
2044
2045 kcpuset_create(&affinity, false);
2046
2047 for (i = 0; i < adapter->num_queues; i++) {
2048 int irq_slot = i + irq_off;
2049 int affinity_to = (irq_slot) % ncpu;
2050
2051 KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
2052 KASSERT(adapter->sc_ihs[irq_slot] == NULL);
2053
2054 snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
2055 device_xname(adapter->pdev), i);
2056 intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
2057 intrbuf, sizeof(intrbuf));
2058
2059 vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
2060 adapter->sc_intrs[irq_slot], IPL_NET,
2061 ena_handle_msix, &adapter->que[i], intr_xname);
2062
2063 if (adapter->sc_ihs[ENA_MGMNT_IRQ_IDX] == NULL) {
2064 device_printf(adapter->pdev, "failed to register "
2065 "interrupt handler for IO queue %d irq %s\n",
2066 i, intrstr);
2067 goto err;
2068 }
2069
2070 kcpuset_zero(affinity);
2071 /* Round-robin affinity */
2072 kcpuset_set(affinity, affinity_to);
2073 int error = interrupt_distribute(vih, affinity, NULL);
2074 if (error == 0) {
2075 aprint_normal_dev(adapter->pdev,
2076 "for IO queue %d interrupting at %s"
2077 " affinity to %u\n", i, intrstr, affinity_to);
2078 } else {
2079 aprint_normal_dev(adapter->pdev,
2080 "for IO queue %d interrupting at %s\n", i, intrstr);
2081 }
2082
2083 adapter->sc_ihs[irq_slot] = vih;
2084
2085 #ifdef RSS
2086 ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
2087 i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
2088 #else
2089 ena_trace(ENA_INFO, "queue %d - cpu %d\n",
2090 i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
2091 #endif
2092 }
2093
2094 kcpuset_destroy(affinity);
2095 return 0;
2096
2097 err:
2098 kcpuset_destroy(affinity);
2099
2100 for (i--; i >= 0; i--) {
2101 int irq_slot __diagused = i + irq_off;
2102 KASSERT(adapter->sc_ihs[irq_slot] != NULL);
2103 pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[i]);
2104 adapter->sc_ihs[i] = NULL;
2105 }
2106
2107 return ENOSPC;
2108 }
2109
2110 static void
2111 ena_free_mgmnt_irq(struct ena_adapter *adapter)
2112 {
2113 const int irq_slot = ENA_MGMNT_IRQ_IDX;
2114
2115 if (adapter->sc_ihs[irq_slot]) {
2116 pci_intr_disestablish(adapter->sc_pa.pa_pc,
2117 adapter->sc_ihs[irq_slot]);
2118 adapter->sc_ihs[irq_slot] = NULL;
2119 }
2120 }
2121
2122 static void
2123 ena_free_io_irq(struct ena_adapter *adapter)
2124 {
2125 const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2126
2127 for (int i = 0; i < adapter->num_queues; i++) {
2128 int irq_slot = i + irq_off;
2129
2130 if (adapter->sc_ihs[irq_slot]) {
2131 pci_intr_disestablish(adapter->sc_pa.pa_pc,
2132 adapter->sc_ihs[i]);
2133 adapter->sc_ihs[i] = NULL;
2134 }
2135 }
2136 }
2137
2138 static void
2139 ena_free_irqs(struct ena_adapter* adapter)
2140 {
2141
2142 ena_free_io_irq(adapter);
2143 ena_free_mgmnt_irq(adapter);
2144 ena_disable_msix(adapter);
2145 }
2146
2147 static void
2148 ena_disable_msix(struct ena_adapter *adapter)
2149 {
2150 pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
2151 adapter->sc_nintrs);
2152 }
2153
2154 static void
2155 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
2156 {
2157 struct ena_com_io_cq* io_cq;
2158 struct ena_eth_io_intr_reg intr_reg;
2159 uint16_t ena_qid;
2160 int i;
2161
2162 /* Unmask interrupts for all queues */
2163 for (i = 0; i < adapter->num_queues; i++) {
2164 ena_qid = ENA_IO_TXQ_IDX(i);
2165 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
2166 ena_com_update_intr_reg(&intr_reg, 0, 0, true);
2167 ena_com_unmask_intr(io_cq, &intr_reg);
2168 }
2169 }
2170
2171 /* Configure the Rx forwarding */
2172 static int
2173 ena_rss_configure(struct ena_adapter *adapter)
2174 {
2175 struct ena_com_dev *ena_dev = adapter->ena_dev;
2176 int rc;
2177
2178 /* Set indirect table */
2179 rc = ena_com_indirect_table_set(ena_dev);
2180 if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2181 return (rc);
2182
2183 /* Configure hash function (if supported) */
2184 rc = ena_com_set_hash_function(ena_dev);
2185 if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2186 return (rc);
2187
2188 /* Configure hash inputs (if supported) */
2189 rc = ena_com_set_hash_ctrl(ena_dev);
2190 if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2191 return (rc);
2192
2193 return (0);
2194 }
2195
2196 static int
2197 ena_up_complete(struct ena_adapter *adapter)
2198 {
2199 int rc;
2200
2201 if (likely(adapter->rss_support)) {
2202 rc = ena_rss_configure(adapter);
2203 if (rc != 0)
2204 return (rc);
2205 }
2206
2207 rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
2208 if (unlikely(rc != 0))
2209 return (rc);
2210
2211 ena_refill_all_rx_bufs(adapter);
2212 ena_reset_counters((struct evcnt *)&adapter->hw_stats,
2213 sizeof(adapter->hw_stats));
2214
2215 return (0);
2216 }
2217
2218 static int
2219 ena_up(struct ena_adapter *adapter)
2220 {
2221 int rc = 0;
2222
2223 #if 0
2224 if (unlikely(device_is_attached(adapter->pdev) == 0)) {
2225 device_printf(adapter->pdev, "device is not attached!\n");
2226 return (ENXIO);
2227 }
2228 #endif
2229
2230 if (unlikely(!adapter->running)) {
2231 device_printf(adapter->pdev, "device is not running!\n");
2232 return (ENXIO);
2233 }
2234
2235 if (!adapter->up) {
2236 device_printf(adapter->pdev, "device is going UP\n");
2237
2238 /* setup interrupts for IO queues */
2239 rc = ena_request_io_irq(adapter);
2240 if (unlikely(rc != 0)) {
2241 ena_trace(ENA_ALERT, "err_req_irq");
2242 goto err_req_irq;
2243 }
2244
2245 /* allocate transmit descriptors */
2246 rc = ena_setup_all_tx_resources(adapter);
2247 if (unlikely(rc != 0)) {
2248 ena_trace(ENA_ALERT, "err_setup_tx");
2249 goto err_setup_tx;
2250 }
2251
2252 /* allocate receive descriptors */
2253 rc = ena_setup_all_rx_resources(adapter);
2254 if (unlikely(rc != 0)) {
2255 ena_trace(ENA_ALERT, "err_setup_rx");
2256 goto err_setup_rx;
2257 }
2258
2259 /* create IO queues for Rx & Tx */
2260 rc = ena_create_io_queues(adapter);
2261 if (unlikely(rc != 0)) {
2262 ena_trace(ENA_ALERT,
2263 "create IO queues failed");
2264 goto err_io_que;
2265 }
2266
2267 if (unlikely(adapter->link_status))
2268 if_link_state_change(adapter->ifp, LINK_STATE_UP);
2269
2270 rc = ena_up_complete(adapter);
2271 if (unlikely(rc != 0))
2272 goto err_up_complete;
2273
2274 counter_u64_add(adapter->dev_stats.interface_up, 1);
2275
2276 ena_update_hwassist(adapter);
2277
2278 if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
2279 IFF_OACTIVE);
2280
2281 callout_reset(&adapter->timer_service, hz,
2282 ena_timer_service, (void *)adapter);
2283
2284 adapter->up = true;
2285
2286 ena_unmask_all_io_irqs(adapter);
2287 }
2288
2289 return (0);
2290
2291 err_up_complete:
2292 ena_destroy_all_io_queues(adapter);
2293 err_io_que:
2294 ena_free_all_rx_resources(adapter);
2295 err_setup_rx:
2296 ena_free_all_tx_resources(adapter);
2297 err_setup_tx:
2298 ena_free_io_irq(adapter);
2299 err_req_irq:
2300 return (rc);
2301 }
2302
2303 #if 0
2304 static uint64_t
2305 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
2306 {
2307 struct ena_adapter *adapter;
2308 struct ena_hw_stats *stats;
2309
2310 adapter = if_getsoftc(ifp);
2311 stats = &adapter->hw_stats;
2312
2313 switch (cnt) {
2314 case IFCOUNTER_IPACKETS:
2315 return (counter_u64_fetch(stats->rx_packets));
2316 case IFCOUNTER_OPACKETS:
2317 return (counter_u64_fetch(stats->tx_packets));
2318 case IFCOUNTER_IBYTES:
2319 return (counter_u64_fetch(stats->rx_bytes));
2320 case IFCOUNTER_OBYTES:
2321 return (counter_u64_fetch(stats->tx_bytes));
2322 case IFCOUNTER_IQDROPS:
2323 return (counter_u64_fetch(stats->rx_drops));
2324 default:
2325 return (if_get_counter_default(ifp, cnt));
2326 }
2327 }
2328 #endif
2329
2330 static int
2331 ena_media_change(struct ifnet *ifp)
2332 {
2333 /* Media Change is not supported by firmware */
2334 return (0);
2335 }
2336
2337 static void
2338 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2339 {
2340 struct ena_adapter *adapter = if_getsoftc(ifp);
2341 ena_trace(ENA_DBG, "enter");
2342
2343 mutex_enter(&adapter->global_mtx);
2344
2345 ifmr->ifm_status = IFM_AVALID;
2346 ifmr->ifm_active = IFM_ETHER;
2347
2348 if (!adapter->link_status) {
2349 mutex_exit(&adapter->global_mtx);
2350 ena_trace(ENA_INFO, "link_status = false");
2351 return;
2352 }
2353
2354 ifmr->ifm_status |= IFM_ACTIVE;
2355 ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2356
2357 mutex_exit(&adapter->global_mtx);
2358 }
2359
2360 static int
2361 ena_init(struct ifnet *ifp)
2362 {
2363 struct ena_adapter *adapter = if_getsoftc(ifp);
2364
2365 if (!adapter->up) {
2366 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2367 ena_up(adapter);
2368 rw_exit(&adapter->ioctl_sx);
2369 }
2370
2371 return 0;
2372 }
2373
2374 static int
2375 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
2376 {
2377 struct ena_adapter *adapter;
2378 struct ifreq *ifr;
2379 int rc;
2380
2381 adapter = ifp->if_softc;
2382 ifr = (struct ifreq *)data;
2383
2384 /*
2385 * Acquiring lock to prevent from running up and down routines parallel.
2386 */
2387 rc = 0;
2388 switch (command) {
2389 case SIOCSIFMTU:
2390 if (ifp->if_mtu == ifr->ifr_mtu)
2391 break;
2392 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2393 ena_down(adapter);
2394
2395 ena_change_mtu(ifp, ifr->ifr_mtu);
2396
2397 rc = ena_up(adapter);
2398 rw_exit(&adapter->ioctl_sx);
2399 break;
2400
2401 case SIOCSIFFLAGS:
2402 if ((ifp->if_flags & IFF_UP) != 0) {
2403 if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2404 if ((ifp->if_flags & (IFF_PROMISC |
2405 IFF_ALLMULTI)) != 0) {
2406 device_printf(adapter->pdev,
2407 "ioctl promisc/allmulti\n");
2408 }
2409 } else {
2410 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2411 rc = ena_up(adapter);
2412 rw_exit(&adapter->ioctl_sx);
2413 }
2414 } else {
2415 if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2416 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2417 ena_down(adapter);
2418 rw_exit(&adapter->ioctl_sx);
2419 }
2420 }
2421 break;
2422
2423 case SIOCADDMULTI:
2424 case SIOCDELMULTI:
2425 break;
2426
2427 case SIOCSIFCAP:
2428 {
2429 struct ifcapreq *ifcr = data;
2430 int reinit = 0;
2431
2432 if (ifcr->ifcr_capenable != ifp->if_capenable) {
2433 ifp->if_capenable = ifcr->ifcr_capenable;
2434 reinit = 1;
2435 }
2436
2437 if ((reinit != 0) &&
2438 ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
2439 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2440 ena_down(adapter);
2441 rc = ena_up(adapter);
2442 rw_exit(&adapter->ioctl_sx);
2443 }
2444 }
2445
2446 break;
2447 default:
2448 rc = ether_ioctl(ifp, command, data);
2449 break;
2450 }
2451
2452 return (rc);
2453 }
2454
2455 static int
2456 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
2457 {
2458 int caps = 0;
2459
2460 if ((feat->offload.tx &
2461 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2462 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
2463 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
2464 caps |= IFCAP_CSUM_IPv4_Tx;
2465
2466 if ((feat->offload.tx &
2467 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
2468 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
2469 caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
2470
2471 if ((feat->offload.tx &
2472 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
2473 caps |= IFCAP_TSOv4;
2474
2475 if ((feat->offload.tx &
2476 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
2477 caps |= IFCAP_TSOv6;
2478
2479 if ((feat->offload.rx_supported &
2480 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
2481 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
2482 caps |= IFCAP_CSUM_IPv4_Rx;
2483
2484 if ((feat->offload.rx_supported &
2485 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
2486 caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
2487
2488 caps |= IFCAP_LRO;
2489
2490 return (caps);
2491 }
2492
2493 static void
2494 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
2495 {
2496
2497 host_info->supported_network_features[0] =
2498 (uint32_t)if_getcapabilities(ifp);
2499 }
2500
2501 static void
2502 ena_update_hwassist(struct ena_adapter *adapter)
2503 {
2504 struct ifnet *ifp = adapter->ifp;
2505 uint32_t feat = adapter->tx_offload_cap;
2506 int cap = if_getcapenable(ifp);
2507 int flags = 0;
2508
2509 if_clearhwassist(ifp);
2510
2511 if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2512 != 0) {
2513 if ((feat &
2514 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
2515 flags |= M_CSUM_IPv4;
2516 if ((feat &
2517 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2518 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
2519 flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
2520 }
2521
2522 if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
2523 flags |= M_CSUM_TCPv6;
2524
2525 if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
2526 flags |= M_CSUM_UDPv6;
2527
2528 if ((cap & IFCAP_TSOv4) != 0)
2529 flags |= M_CSUM_TSOv4;
2530
2531 if ((cap & IFCAP_TSOv6) != 0)
2532 flags |= M_CSUM_TSOv6;
2533
2534 if_sethwassistbits(ifp, flags, 0);
2535 }
2536
2537 static int
2538 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
2539 struct ena_com_dev_get_features_ctx *feat)
2540 {
2541 struct ifnet *ifp;
2542 int caps = 0;
2543
2544 ifp = adapter->ifp = &adapter->sc_ec.ec_if;
2545 if (unlikely(ifp == NULL)) {
2546 ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
2547 return (ENXIO);
2548 }
2549 if_initname(ifp, "ena", device_unit(pdev));
2550 if_setdev(ifp, pdev);
2551 if_setsoftc(ifp, adapter);
2552
2553 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2554 if_setinitfn(ifp, ena_init);
2555 if_settransmitfn(ifp, ena_mq_start);
2556 #if 0
2557 if_setqflushfn(ifp, ena_qflush);
2558 #endif
2559 if_setioctlfn(ifp, ena_ioctl);
2560 #if 0
2561 if_setgetcounterfn(ifp, ena_get_counter);
2562 #endif
2563
2564 if_setsendqlen(ifp, adapter->tx_ring_size);
2565 if_setsendqready(ifp);
2566 if_setmtu(ifp, ETHERMTU);
2567 if_setbaudrate(ifp, 0);
2568 /* Zeroize capabilities... */
2569 if_setcapabilities(ifp, 0);
2570 if_setcapenable(ifp, 0);
2571 /* check hardware support */
2572 caps = ena_get_dev_offloads(feat);
2573 /* ... and set them */
2574 if_setcapabilitiesbit(ifp, caps, 0);
2575 adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2576
2577 #if 0
2578 /* TSO parameters */
2579 /* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
2580 ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
2581 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
2582 ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
2583 ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
2584 #endif
2585
2586 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2587 if_setcapenable(ifp, if_getcapabilities(ifp));
2588
2589 /*
2590 * Specify the media types supported by this adapter and register
2591 * callbacks to update media and link information
2592 */
2593 adapter->sc_ec.ec_ifmedia = &adapter->media;
2594 ifmedia_init(&adapter->media, IFM_IMASK,
2595 ena_media_change, ena_media_status);
2596 ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2597 ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2598
2599 if_attach(ifp);
2600 if_deferred_start_init(ifp, NULL);
2601
2602 ether_ifattach(ifp, adapter->mac_addr);
2603
2604 return (0);
2605 }
2606
2607 static void
2608 ena_down(struct ena_adapter *adapter)
2609 {
2610 int rc;
2611
2612 if (adapter->up) {
2613 device_printf(adapter->pdev, "device is going DOWN\n");
2614
2615 callout_halt(&adapter->timer_service, &adapter->global_mtx);
2616
2617 adapter->up = false;
2618 if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
2619 IFF_RUNNING);
2620
2621 ena_free_io_irq(adapter);
2622
2623 if (adapter->trigger_reset) {
2624 rc = ena_com_dev_reset(adapter->ena_dev,
2625 adapter->reset_reason);
2626 if (unlikely(rc != 0))
2627 device_printf(adapter->pdev,
2628 "Device reset failed\n");
2629 }
2630
2631 ena_destroy_all_io_queues(adapter);
2632
2633 ena_free_all_tx_bufs(adapter);
2634 ena_free_all_rx_bufs(adapter);
2635 ena_free_all_tx_resources(adapter);
2636 ena_free_all_rx_resources(adapter);
2637
2638 counter_u64_add(adapter->dev_stats.interface_down, 1);
2639 }
2640 }
2641
2642 static void
2643 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
2644 {
2645 struct ena_com_tx_meta *ena_meta;
2646 struct ether_vlan_header *eh;
2647 u32 mss;
2648 bool offload;
2649 uint16_t etype;
2650 int ehdrlen;
2651 struct ip *ip;
2652 int iphlen;
2653 struct tcphdr *th;
2654
2655 offload = false;
2656 ena_meta = &ena_tx_ctx->ena_meta;
2657
2658 #if 0
2659 u32 mss = mbuf->m_pkthdr.tso_segsz;
2660
2661 if (mss != 0)
2662 offload = true;
2663 #else
2664 mss = mbuf->m_pkthdr.len; /* XXX don't have tso_segsz */
2665 #endif
2666
2667 if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
2668 offload = true;
2669
2670 if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
2671 offload = true;
2672
2673 if (!offload) {
2674 ena_tx_ctx->meta_valid = 0;
2675 return;
2676 }
2677
2678 /* Determine where frame payload starts. */
2679 eh = mtod(mbuf, struct ether_vlan_header *);
2680 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2681 etype = ntohs(eh->evl_proto);
2682 ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2683 } else {
2684 etype = htons(eh->evl_encap_proto);
2685 ehdrlen = ETHER_HDR_LEN;
2686 }
2687
2688 ip = (struct ip *)(mbuf->m_data + ehdrlen);
2689 iphlen = ip->ip_hl << 2;
2690 th = (struct tcphdr *)((vaddr_t)ip + iphlen);
2691
2692 if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
2693 ena_tx_ctx->l3_csum_enable = 1;
2694 }
2695 if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
2696 ena_tx_ctx->tso_enable = 1;
2697 ena_meta->l4_hdr_len = (th->th_off);
2698 }
2699
2700 switch (etype) {
2701 case ETHERTYPE_IP:
2702 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2703 if ((ip->ip_off & htons(IP_DF)) != 0)
2704 ena_tx_ctx->df = 1;
2705 break;
2706 case ETHERTYPE_IPV6:
2707 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2708
2709 default:
2710 break;
2711 }
2712
2713 if (ip->ip_p == IPPROTO_TCP) {
2714 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2715 if ((mbuf->m_pkthdr.csum_flags &
2716 (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
2717 ena_tx_ctx->l4_csum_enable = 1;
2718 else
2719 ena_tx_ctx->l4_csum_enable = 0;
2720 } else if (ip->ip_p == IPPROTO_UDP) {
2721 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2722 if ((mbuf->m_pkthdr.csum_flags &
2723 (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2724 ena_tx_ctx->l4_csum_enable = 1;
2725 else
2726 ena_tx_ctx->l4_csum_enable = 0;
2727 } else {
2728 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
2729 ena_tx_ctx->l4_csum_enable = 0;
2730 }
2731
2732 ena_meta->mss = mss;
2733 ena_meta->l3_hdr_len = iphlen;
2734 ena_meta->l3_hdr_offset = ehdrlen;
2735 ena_tx_ctx->meta_valid = 1;
2736 }
2737
2738 static int
2739 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2740 {
2741 struct ena_adapter *adapter;
2742 struct mbuf *collapsed_mbuf;
2743 int num_frags;
2744
2745 adapter = tx_ring->adapter;
2746 num_frags = ena_mbuf_count(*mbuf);
2747
2748 /* One segment must be reserved for configuration descriptor. */
2749 if (num_frags < adapter->max_tx_sgl_size)
2750 return (0);
2751 counter_u64_add(tx_ring->tx_stats.collapse, 1);
2752
2753 collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
2754 adapter->max_tx_sgl_size - 1);
2755 if (unlikely(collapsed_mbuf == NULL)) {
2756 counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
2757 return (ENOMEM);
2758 }
2759
2760 /* If mbuf was collapsed succesfully, original mbuf is released. */
2761 *mbuf = collapsed_mbuf;
2762
2763 return (0);
2764 }
2765
2766 static int
2767 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2768 {
2769 struct ena_adapter *adapter;
2770 struct ena_tx_buffer *tx_info;
2771 struct ena_com_tx_ctx ena_tx_ctx;
2772 struct ena_com_dev *ena_dev;
2773 struct ena_com_buf *ena_buf;
2774 struct ena_com_io_sq* io_sq;
2775 void *push_hdr;
2776 uint16_t next_to_use;
2777 uint16_t req_id;
2778 uint16_t ena_qid;
2779 uint32_t header_len;
2780 int i, rc;
2781 int nb_hw_desc;
2782
2783 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2784 adapter = tx_ring->que->adapter;
2785 ena_dev = adapter->ena_dev;
2786 io_sq = &ena_dev->io_sq_queues[ena_qid];
2787
2788 rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
2789 if (unlikely(rc != 0)) {
2790 ena_trace(ENA_WARNING,
2791 "Failed to collapse mbuf! err: %d", rc);
2792 return (rc);
2793 }
2794
2795 next_to_use = tx_ring->next_to_use;
2796 req_id = tx_ring->free_tx_ids[next_to_use];
2797 tx_info = &tx_ring->tx_buffer_info[req_id];
2798
2799 tx_info->mbuf = *mbuf;
2800 tx_info->num_of_bufs = 0;
2801
2802 ena_buf = tx_info->bufs;
2803
2804 ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
2805
2806 /*
2807 * header_len is just a hint for the device. Because FreeBSD is not
2808 * giving us information about packet header length and it is not
2809 * guaranteed that all packet headers will be in the 1st mbuf, setting
2810 * header_len to 0 is making the device ignore this value and resolve
2811 * header on it's own.
2812 */
2813 header_len = 0;
2814 push_hdr = NULL;
2815
2816 rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
2817 *mbuf, BUS_DMA_NOWAIT);
2818
2819 if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
2820 ena_trace(ENA_WARNING,
2821 "dmamap load failed! err: %d nsegs: %d", rc,
2822 tx_info->map->dm_nsegs);
2823 counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
2824 tx_info->mbuf = NULL;
2825 if (rc == ENOMEM)
2826 return (ENA_COM_NO_MEM);
2827 else
2828 return (ENA_COM_INVAL);
2829 }
2830
2831 for (i = 0; i < tx_info->map->dm_nsegs; i++) {
2832 ena_buf->len = tx_info->map->dm_segs[i].ds_len;
2833 ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
2834 ena_buf++;
2835 }
2836 tx_info->num_of_bufs = tx_info->map->dm_nsegs;
2837
2838 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2839 ena_tx_ctx.ena_bufs = tx_info->bufs;
2840 ena_tx_ctx.push_header = push_hdr;
2841 ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2842 ena_tx_ctx.req_id = req_id;
2843 ena_tx_ctx.header_len = header_len;
2844
2845 /* Set flags and meta data */
2846 ena_tx_csum(&ena_tx_ctx, *mbuf);
2847 /* Prepare the packet's descriptors and send them to device */
2848 rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
2849 if (unlikely(rc != 0)) {
2850 device_printf(adapter->pdev, "failed to prepare tx bufs\n");
2851 counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
2852 goto dma_error;
2853 }
2854
2855 counter_enter();
2856 counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
2857 counter_u64_add_protected(tx_ring->tx_stats.bytes,
2858 (*mbuf)->m_pkthdr.len);
2859
2860 counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
2861 counter_u64_add_protected(adapter->hw_stats.tx_bytes,
2862 (*mbuf)->m_pkthdr.len);
2863 counter_exit();
2864
2865 tx_info->tx_descs = nb_hw_desc;
2866 getbinuptime(&tx_info->timestamp);
2867 tx_info->print_once = true;
2868
2869 tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
2870 tx_ring->ring_size);
2871
2872 bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
2873 tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2874
2875 return (0);
2876
2877 dma_error:
2878 tx_info->mbuf = NULL;
2879 bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
2880
2881 return (rc);
2882 }
2883
2884 static void
2885 ena_start_xmit(struct ena_ring *tx_ring)
2886 {
2887 struct mbuf *mbuf;
2888 struct ena_adapter *adapter = tx_ring->adapter;
2889 struct ena_com_io_sq* io_sq;
2890 int ena_qid;
2891 int acum_pkts = 0;
2892 int ret = 0;
2893
2894 if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2895 return;
2896
2897 if (unlikely(!adapter->link_status))
2898 return;
2899
2900 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2901 io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
2902
2903 while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
2904 ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
2905 " header csum flags %#jx",
2906 mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
2907
2908 if (unlikely(!ena_com_sq_have_enough_space(io_sq,
2909 ENA_TX_CLEANUP_THRESHOLD)))
2910 ena_tx_cleanup(tx_ring);
2911
2912 if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
2913 if (ret == ENA_COM_NO_MEM) {
2914 drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2915 } else if (ret == ENA_COM_NO_SPACE) {
2916 drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2917 } else {
2918 m_freem(mbuf);
2919 drbr_advance(adapter->ifp, tx_ring->br);
2920 }
2921
2922 break;
2923 }
2924
2925 drbr_advance(adapter->ifp, tx_ring->br);
2926
2927 if (unlikely((if_getdrvflags(adapter->ifp) &
2928 IFF_RUNNING) == 0))
2929 return;
2930
2931 acum_pkts++;
2932
2933 /*
2934 * If there's a BPF listener, bounce a copy of this frame
2935 * to him.
2936 */
2937 bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
2938
2939 if (unlikely(acum_pkts == DB_THRESHOLD)) {
2940 acum_pkts = 0;
2941 wmb();
2942 /* Trigger the dma engine */
2943 ena_com_write_sq_doorbell(io_sq);
2944 counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2945 }
2946
2947 }
2948
2949 if (likely(acum_pkts != 0)) {
2950 wmb();
2951 /* Trigger the dma engine */
2952 ena_com_write_sq_doorbell(io_sq);
2953 counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2954 }
2955
2956 if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
2957 ena_tx_cleanup(tx_ring);
2958 }
2959
2960 static void
2961 ena_deferred_mq_start(struct work *wk, void *arg)
2962 {
2963 struct ena_ring *tx_ring = (struct ena_ring *)arg;
2964 struct ifnet *ifp = tx_ring->adapter->ifp;
2965
2966 atomic_swap_uint(&tx_ring->task_pending, 0);
2967
2968 while (!drbr_empty(ifp, tx_ring->br) &&
2969 (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2970 ENA_RING_MTX_LOCK(tx_ring);
2971 ena_start_xmit(tx_ring);
2972 ENA_RING_MTX_UNLOCK(tx_ring);
2973 }
2974 }
2975
2976 static int
2977 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
2978 {
2979 struct ena_adapter *adapter = ifp->if_softc;
2980 struct ena_ring *tx_ring;
2981 int ret, is_drbr_empty;
2982 uint32_t i;
2983
2984 if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2985 return (ENODEV);
2986
2987 /* Which queue to use */
2988 /*
2989 * If everything is setup correctly, it should be the
2990 * same bucket that the current CPU we're on is.
2991 * It should improve performance.
2992 */
2993 #if 0
2994 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
2995 #ifdef RSS
2996 if (rss_hash2bucket(m->m_pkthdr.flowid,
2997 M_HASHTYPE_GET(m), &i) == 0) {
2998 i = i % adapter->num_queues;
2999
3000 } else
3001 #endif
3002 {
3003 i = m->m_pkthdr.flowid % adapter->num_queues;
3004 }
3005 } else {
3006 #endif
3007 i = cpu_index(curcpu()) % adapter->num_queues;
3008 #if 0
3009 }
3010 #endif
3011 tx_ring = &adapter->tx_ring[i];
3012
3013 /* Check if drbr is empty before putting packet */
3014 is_drbr_empty = drbr_empty(ifp, tx_ring->br);
3015 ret = drbr_enqueue(ifp, tx_ring->br, m);
3016 if (unlikely(ret != 0)) {
3017 if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
3018 workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
3019 curcpu());
3020 return (ret);
3021 }
3022
3023 if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
3024 ena_start_xmit(tx_ring);
3025 ENA_RING_MTX_UNLOCK(tx_ring);
3026 } else {
3027 if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
3028 workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
3029 curcpu());
3030 }
3031
3032 return (0);
3033 }
3034
3035 #if 0
3036 static void
3037 ena_qflush(struct ifnet *ifp)
3038 {
3039 struct ena_adapter *adapter = ifp->if_softc;
3040 struct ena_ring *tx_ring = adapter->tx_ring;
3041 int i;
3042
3043 for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
3044 if (!drbr_empty(ifp, tx_ring->br)) {
3045 ENA_RING_MTX_LOCK(tx_ring);
3046 drbr_flush(ifp, tx_ring->br);
3047 ENA_RING_MTX_UNLOCK(tx_ring);
3048 }
3049
3050 if_qflush(ifp);
3051 }
3052 #endif
3053
3054 static int
3055 ena_calc_io_queue_num(struct pci_attach_args *pa,
3056 struct ena_adapter *adapter,
3057 struct ena_com_dev_get_features_ctx *get_feat_ctx)
3058 {
3059 int io_sq_num, io_cq_num, io_queue_num;
3060
3061 io_sq_num = get_feat_ctx->max_queues.max_sq_num;
3062 io_cq_num = get_feat_ctx->max_queues.max_cq_num;
3063
3064 io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
3065 io_queue_num = min_t(int, io_queue_num, io_sq_num);
3066 io_queue_num = min_t(int, io_queue_num, io_cq_num);
3067 /* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */
3068 io_queue_num = min_t(int, io_queue_num,
3069 pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
3070 #ifdef RSS
3071 io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets());
3072 #endif
3073
3074 return (io_queue_num);
3075 }
3076
3077 static int
3078 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
3079 uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
3080 {
3081 uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
3082 uint32_t v;
3083 uint32_t q;
3084
3085 queue_size = min_t(uint32_t, queue_size,
3086 feat->max_queues.max_cq_depth);
3087 queue_size = min_t(uint32_t, queue_size,
3088 feat->max_queues.max_sq_depth);
3089
3090 /* round down to the nearest power of 2 */
3091 v = queue_size;
3092 while (v != 0) {
3093 if (powerof2(queue_size) != 0)
3094 break;
3095 v /= 2;
3096 q = rounddown2(queue_size, v);
3097 if (q != 0) {
3098 queue_size = q;
3099 break;
3100 }
3101 }
3102
3103 if (unlikely(queue_size == 0)) {
3104 device_printf(adapter->pdev, "Invalid queue size\n");
3105 return (ENA_COM_FAULT);
3106 }
3107
3108 *max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3109 feat->max_queues.max_packet_tx_descs);
3110 *max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3111 feat->max_queues.max_packet_rx_descs);
3112
3113 return (queue_size);
3114 }
3115
3116 #if 0
3117 static int
3118 ena_rss_init_default(struct ena_adapter *adapter)
3119 {
3120 struct ena_com_dev *ena_dev = adapter->ena_dev;
3121 device_t dev = adapter->pdev;
3122 int qid, rc, i;
3123
3124 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3125 if (unlikely(rc != 0)) {
3126 device_printf(dev, "Cannot init indirect table\n");
3127 return (rc);
3128 }
3129
3130 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3131 #ifdef RSS
3132 qid = rss_get_indirection_to_bucket(i);
3133 qid = qid % adapter->num_queues;
3134 #else
3135 qid = i % adapter->num_queues;
3136 #endif
3137 rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3138 ENA_IO_RXQ_IDX(qid));
3139 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3140 device_printf(dev, "Cannot fill indirect table\n");
3141 goto err_rss_destroy;
3142 }
3143 }
3144
3145 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
3146 ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
3147 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3148 device_printf(dev, "Cannot fill hash function\n");
3149 goto err_rss_destroy;
3150 }
3151
3152 rc = ena_com_set_default_hash_ctrl(ena_dev);
3153 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3154 device_printf(dev, "Cannot fill hash control\n");
3155 goto err_rss_destroy;
3156 }
3157
3158 return (0);
3159
3160 err_rss_destroy:
3161 ena_com_rss_destroy(ena_dev);
3162 return (rc);
3163 }
3164
3165 static void
3166 ena_rss_init_default_deferred(void *arg)
3167 {
3168 struct ena_adapter *adapter;
3169 devclass_t dc;
3170 int max;
3171 int rc;
3172
3173 dc = devclass_find("ena");
3174 if (unlikely(dc == NULL)) {
3175 ena_trace(ENA_ALERT, "No devclass ena\n");
3176 return;
3177 }
3178
3179 max = devclass_get_maxunit(dc);
3180 while (max-- >= 0) {
3181 adapter = devclass_get_softc(dc, max);
3182 if (adapter != NULL) {
3183 rc = ena_rss_init_default(adapter);
3184 adapter->rss_support = true;
3185 if (unlikely(rc != 0)) {
3186 device_printf(adapter->pdev,
3187 "WARNING: RSS was not properly initialized,"
3188 " it will affect bandwidth\n");
3189 adapter->rss_support = false;
3190 }
3191 }
3192 }
3193 }
3194 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL);
3195 #endif
3196
3197 static void
3198 ena_config_host_info(struct ena_com_dev *ena_dev)
3199 {
3200 struct ena_admin_host_info *host_info;
3201 int rc;
3202
3203 /* Allocate only the host info */
3204 rc = ena_com_allocate_host_info(ena_dev);
3205 if (unlikely(rc != 0)) {
3206 ena_trace(ENA_ALERT, "Cannot allocate host info\n");
3207 return;
3208 }
3209
3210 host_info = ena_dev->host_attr.host_info;
3211
3212 host_info->os_type = ENA_ADMIN_OS_FREEBSD;
3213 host_info->kernel_ver = osreldate;
3214
3215 snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
3216 "%d", osreldate);
3217 host_info->os_dist = 0;
3218 strncpy(host_info->os_dist_str, osrelease,
3219 sizeof(host_info->os_dist_str) - 1);
3220
3221 host_info->driver_version =
3222 (DRV_MODULE_VER_MAJOR) |
3223 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3224 (DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
3225
3226 rc = ena_com_set_host_attributes(ena_dev);
3227 if (unlikely(rc != 0)) {
3228 if (rc == EOPNOTSUPP)
3229 ena_trace(ENA_WARNING, "Cannot set host attributes\n");
3230 else
3231 ena_trace(ENA_ALERT, "Cannot set host attributes\n");
3232
3233 goto err;
3234 }
3235
3236 return;
3237
3238 err:
3239 ena_com_delete_host_info(ena_dev);
3240 }
3241
3242 static int
3243 ena_device_init(struct ena_adapter *adapter, device_t pdev,
3244 struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
3245 {
3246 struct ena_com_dev* ena_dev = adapter->ena_dev;
3247 bool readless_supported;
3248 uint32_t aenq_groups;
3249 int dma_width;
3250 int rc;
3251
3252 rc = ena_com_mmio_reg_read_request_init(ena_dev);
3253 if (unlikely(rc != 0)) {
3254 device_printf(pdev, "failed to init mmio read less\n");
3255 return (rc);
3256 }
3257
3258 /*
3259 * The PCIe configuration space revision id indicate if mmio reg
3260 * read is disabled
3261 */
3262 const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
3263 readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
3264 ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3265
3266 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3267 if (unlikely(rc != 0)) {
3268 device_printf(pdev, "Can not reset device\n");
3269 goto err_mmio_read_less;
3270 }
3271
3272 rc = ena_com_validate_version(ena_dev);
3273 if (unlikely(rc != 0)) {
3274 device_printf(pdev, "device version is too low\n");
3275 goto err_mmio_read_less;
3276 }
3277
3278 dma_width = ena_com_get_dma_width(ena_dev);
3279 if (unlikely(dma_width < 0)) {
3280 device_printf(pdev, "Invalid dma width value %d", dma_width);
3281 rc = dma_width;
3282 goto err_mmio_read_less;
3283 }
3284 adapter->dma_width = dma_width;
3285
3286 /* ENA admin level init */
3287 rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
3288 if (unlikely(rc != 0)) {
3289 device_printf(pdev,
3290 "Can not initialize ena admin queue with device\n");
3291 goto err_mmio_read_less;
3292 }
3293
3294 /*
3295 * To enable the msix interrupts the driver needs to know the number
3296 * of queues. So the driver uses polling mode to retrieve this
3297 * information
3298 */
3299 ena_com_set_admin_polling_mode(ena_dev, true);
3300
3301 ena_config_host_info(ena_dev);
3302
3303 /* Get Device Attributes */
3304 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3305 if (unlikely(rc != 0)) {
3306 device_printf(pdev,
3307 "Cannot get attribute for ena device rc: %d\n", rc);
3308 goto err_admin_init;
3309 }
3310
3311 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
3312
3313 aenq_groups &= get_feat_ctx->aenq.supported_groups;
3314 rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3315 if (unlikely(rc != 0)) {
3316 device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
3317 goto err_admin_init;
3318 }
3319
3320 *wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3321
3322 return (0);
3323
3324 err_admin_init:
3325 ena_com_delete_host_info(ena_dev);
3326 ena_com_admin_destroy(ena_dev);
3327 err_mmio_read_less:
3328 ena_com_mmio_reg_read_request_destroy(ena_dev);
3329
3330 return (rc);
3331 }
3332
3333 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
3334 int io_vectors)
3335 {
3336 struct ena_com_dev *ena_dev = adapter->ena_dev;
3337 int rc;
3338
3339 rc = ena_enable_msix(adapter);
3340 if (unlikely(rc != 0)) {
3341 device_printf(adapter->pdev, "Error with MSI-X enablement\n");
3342 return (rc);
3343 }
3344
3345 rc = ena_request_mgmnt_irq(adapter);
3346 if (unlikely(rc != 0)) {
3347 device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
3348 goto err_disable_msix;
3349 }
3350
3351 ena_com_set_admin_polling_mode(ena_dev, false);
3352
3353 ena_com_admin_aenq_enable(ena_dev);
3354
3355 return (0);
3356
3357 err_disable_msix:
3358 ena_disable_msix(adapter);
3359
3360 return (rc);
3361 }
3362
3363 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
3364 static void ena_keep_alive_wd(void *adapter_data,
3365 struct ena_admin_aenq_entry *aenq_e)
3366 {
3367 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3368 struct ena_admin_aenq_keep_alive_desc *desc;
3369 sbintime_t stime;
3370 uint64_t rx_drops;
3371
3372 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3373
3374 rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3375 counter_u64_zero(adapter->hw_stats.rx_drops);
3376 counter_u64_add(adapter->hw_stats.rx_drops, rx_drops);
3377
3378 stime = getsbinuptime();
3379 (void) atomic_swap_64(&adapter->keep_alive_timestamp, stime);
3380 }
3381
3382 /* Check for keep alive expiration */
3383 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3384 {
3385 sbintime_t timestamp, time;
3386
3387 if (adapter->wd_active == 0)
3388 return;
3389
3390 if (likely(adapter->keep_alive_timeout == 0))
3391 return;
3392
3393 /* FreeBSD uses atomic_load_acq_64() in place of the membar + read */
3394 membar_sync();
3395 timestamp = adapter->keep_alive_timestamp;
3396
3397 time = getsbinuptime() - timestamp;
3398 if (unlikely(time > adapter->keep_alive_timeout)) {
3399 device_printf(adapter->pdev,
3400 "Keep alive watchdog timeout.\n");
3401 counter_u64_add(adapter->dev_stats.wd_expired, 1);
3402 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3403 adapter->trigger_reset = true;
3404 }
3405 }
3406
3407 /* Check if admin queue is enabled */
3408 static void check_for_admin_com_state(struct ena_adapter *adapter)
3409 {
3410 if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
3411 false)) {
3412 device_printf(adapter->pdev,
3413 "ENA admin queue is not in running state!\n");
3414 counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
3415 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3416 adapter->trigger_reset = true;
3417 }
3418 }
3419
3420 static int
3421 check_missing_comp_in_queue(struct ena_adapter *adapter,
3422 struct ena_ring *tx_ring)
3423 {
3424 struct bintime curtime, time;
3425 struct ena_tx_buffer *tx_buf;
3426 uint32_t missed_tx = 0;
3427 int i;
3428
3429 getbinuptime(&curtime);
3430
3431 for (i = 0; i < tx_ring->ring_size; i++) {
3432 tx_buf = &tx_ring->tx_buffer_info[i];
3433
3434 if (bintime_isset(&tx_buf->timestamp) == 0)
3435 continue;
3436
3437 time = curtime;
3438 bintime_sub(&time, &tx_buf->timestamp);
3439
3440 /* Check again if packet is still waiting */
3441 if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
3442
3443 if (!tx_buf->print_once)
3444 ena_trace(ENA_WARNING, "Found a Tx that wasn't "
3445 "completed on time, qid %d, index %d.\n",
3446 tx_ring->qid, i);
3447
3448 tx_buf->print_once = true;
3449 missed_tx++;
3450 counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
3451
3452 if (unlikely(missed_tx >
3453 adapter->missing_tx_threshold)) {
3454 device_printf(adapter->pdev,
3455 "The number of lost tx completion "
3456 "is above the threshold (%d > %d). "
3457 "Reset the device\n",
3458 missed_tx, adapter->missing_tx_threshold);
3459 adapter->reset_reason =
3460 ENA_REGS_RESET_MISS_TX_CMPL;
3461 adapter->trigger_reset = true;
3462 return (EIO);
3463 }
3464 }
3465 }
3466
3467 return (0);
3468 }
3469
3470 /*
3471 * Check for TX which were not completed on time.
3472 * Timeout is defined by "missing_tx_timeout".
3473 * Reset will be performed if number of incompleted
3474 * transactions exceeds "missing_tx_threshold".
3475 */
3476 static void
3477 check_for_missing_tx_completions(struct ena_adapter *adapter)
3478 {
3479 struct ena_ring *tx_ring;
3480 int i, budget, rc;
3481
3482 /* Make sure the driver doesn't turn the device in other process */
3483 rmb();
3484
3485 if (!adapter->up)
3486 return;
3487
3488 if (adapter->trigger_reset)
3489 return;
3490
3491 if (adapter->missing_tx_timeout == 0)
3492 return;
3493
3494 budget = adapter->missing_tx_max_queues;
3495
3496 for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
3497 tx_ring = &adapter->tx_ring[i];
3498
3499 rc = check_missing_comp_in_queue(adapter, tx_ring);
3500 if (unlikely(rc != 0))
3501 return;
3502
3503 budget--;
3504 if (budget == 0) {
3505 i++;
3506 break;
3507 }
3508 }
3509
3510 adapter->next_monitored_tx_qid = i % adapter->num_queues;
3511 }
3512
3513 /* trigger deferred rx cleanup after 2 consecutive detections */
3514 #define EMPTY_RX_REFILL 2
3515 /* For the rare case where the device runs out of Rx descriptors and the
3516 * msix handler failed to refill new Rx descriptors (due to a lack of memory
3517 * for example).
3518 * This case will lead to a deadlock:
3519 * The device won't send interrupts since all the new Rx packets will be dropped
3520 * The msix handler won't allocate new Rx descriptors so the device won't be
3521 * able to send new packets.
3522 *
3523 * When such a situation is detected - execute rx cleanup task in another thread
3524 */
3525 static void
3526 check_for_empty_rx_ring(struct ena_adapter *adapter)
3527 {
3528 struct ena_ring *rx_ring;
3529 int i, refill_required;
3530
3531 if (!adapter->up)
3532 return;
3533
3534 if (adapter->trigger_reset)
3535 return;
3536
3537 for (i = 0; i < adapter->num_queues; i++) {
3538 rx_ring = &adapter->rx_ring[i];
3539
3540 refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
3541 if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3542 rx_ring->empty_rx_queue++;
3543
3544 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
3545 counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
3546 1);
3547
3548 device_printf(adapter->pdev,
3549 "trigger refill for ring %d\n", i);
3550
3551 if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
3552 workqueue_enqueue(rx_ring->cmpl_tq,
3553 &rx_ring->cmpl_task, curcpu());
3554 rx_ring->empty_rx_queue = 0;
3555 }
3556 } else {
3557 rx_ring->empty_rx_queue = 0;
3558 }
3559 }
3560 }
3561
3562 static void
3563 ena_timer_service(void *data)
3564 {
3565 struct ena_adapter *adapter = (struct ena_adapter *)data;
3566 struct ena_admin_host_info *host_info =
3567 adapter->ena_dev->host_attr.host_info;
3568
3569 check_for_missing_keep_alive(adapter);
3570
3571 check_for_admin_com_state(adapter);
3572
3573 check_for_missing_tx_completions(adapter);
3574
3575 check_for_empty_rx_ring(adapter);
3576
3577 if (host_info != NULL)
3578 ena_update_host_info(host_info, adapter->ifp);
3579
3580 if (unlikely(adapter->trigger_reset)) {
3581 device_printf(adapter->pdev, "Trigger reset is on\n");
3582 workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
3583 curcpu());
3584 return;
3585 }
3586
3587 /*
3588 * Schedule another timeout one second from now.
3589 */
3590 callout_schedule(&adapter->timer_service, hz);
3591 }
3592
3593 static void
3594 ena_reset_task(struct work *wk, void *arg)
3595 {
3596 struct ena_com_dev_get_features_ctx get_feat_ctx;
3597 struct ena_adapter *adapter = (struct ena_adapter *)arg;
3598 struct ena_com_dev *ena_dev = adapter->ena_dev;
3599 bool dev_up;
3600 int rc;
3601
3602 if (unlikely(!adapter->trigger_reset)) {
3603 device_printf(adapter->pdev,
3604 "device reset scheduled but trigger_reset is off\n");
3605 return;
3606 }
3607
3608 rw_enter(&adapter->ioctl_sx, RW_WRITER);
3609
3610 callout_halt(&adapter->timer_service, &adapter->global_mtx);
3611
3612 dev_up = adapter->up;
3613
3614 ena_com_set_admin_running_state(ena_dev, false);
3615 ena_down(adapter);
3616 ena_free_mgmnt_irq(adapter);
3617 ena_disable_msix(adapter);
3618 ena_com_abort_admin_commands(ena_dev);
3619 ena_com_wait_for_abort_completion(ena_dev);
3620 ena_com_admin_destroy(ena_dev);
3621 ena_com_mmio_reg_read_request_destroy(ena_dev);
3622
3623 adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3624 adapter->trigger_reset = false;
3625
3626 /* Finished destroy part. Restart the device */
3627 rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
3628 &adapter->wd_active);
3629 if (unlikely(rc != 0)) {
3630 device_printf(adapter->pdev,
3631 "ENA device init failed! (err: %d)\n", rc);
3632 goto err_dev_free;
3633 }
3634
3635 /* XXX dealloc and realloc MSI-X, probably a waste */
3636 rc = ena_enable_msix_and_set_admin_interrupts(adapter,
3637 adapter->num_queues);
3638 if (unlikely(rc != 0)) {
3639 device_printf(adapter->pdev, "Enable MSI-X failed\n");
3640 goto err_com_free;
3641 }
3642
3643 /* If the interface was up before the reset bring it up */
3644 if (dev_up) {
3645 rc = ena_up(adapter);
3646 if (unlikely(rc != 0)) {
3647 device_printf(adapter->pdev,
3648 "Failed to create I/O queues\n");
3649 goto err_msix_free;
3650 }
3651 }
3652
3653 callout_reset(&adapter->timer_service, hz,
3654 ena_timer_service, (void *)adapter);
3655
3656 rw_exit(&adapter->ioctl_sx);
3657
3658 return;
3659
3660 err_msix_free:
3661 ena_free_mgmnt_irq(adapter);
3662 ena_disable_msix(adapter);
3663 err_com_free:
3664 ena_com_admin_destroy(ena_dev);
3665 err_dev_free:
3666 device_printf(adapter->pdev, "ENA reset failed!\n");
3667 adapter->running = false;
3668 rw_exit(&adapter->ioctl_sx);
3669 }
3670
3671 /**
3672 * ena_attach - Device Initialization Routine
3673 * @pdev: device information struct
3674 *
3675 * Returns 0 on success, otherwise on failure.
3676 *
3677 * ena_attach initializes an adapter identified by a device structure.
3678 * The OS initialization, configuring of the adapter private structure,
3679 * and a hardware reset occur.
3680 **/
3681 static void
3682 ena_attach(device_t parent, device_t self, void *aux)
3683 {
3684 struct pci_attach_args *pa = aux;
3685 struct ena_com_dev_get_features_ctx get_feat_ctx;
3686 static int version_printed;
3687 struct ena_adapter *adapter = device_private(self);
3688 struct ena_com_dev *ena_dev = NULL;
3689 uint16_t tx_sgl_size = 0;
3690 uint16_t rx_sgl_size = 0;
3691 pcireg_t reg;
3692 int io_queue_num;
3693 int queue_size;
3694 int rc;
3695
3696 adapter->pdev = self;
3697 adapter->ifp = &adapter->sc_ec.ec_if;
3698 adapter->sc_pa = *pa; /* used after attach for adapter reset too */
3699
3700 if (pci_dma64_available(pa))
3701 adapter->sc_dmat = pa->pa_dmat64;
3702 else
3703 adapter->sc_dmat = pa->pa_dmat;
3704
3705 pci_aprint_devinfo(pa, NULL);
3706
3707 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
3708 if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
3709 reg |= PCI_COMMAND_MASTER_ENABLE;
3710 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
3711 }
3712
3713 mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_NET);
3714 rw_init(&adapter->ioctl_sx);
3715
3716 /* Set up the timer service */
3717 adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
3718 adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
3719 adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
3720 adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
3721
3722 if (version_printed++ == 0)
3723 device_printf(parent, "%s\n", ena_version);
3724
3725 rc = ena_allocate_pci_resources(pa, adapter);
3726 if (unlikely(rc != 0)) {
3727 device_printf(parent, "PCI resource allocation failed!\n");
3728 ena_free_pci_resources(adapter);
3729 return;
3730 }
3731
3732 /* Allocate memory for ena_dev structure */
3733 ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
3734 M_WAITOK | M_ZERO);
3735
3736 adapter->ena_dev = ena_dev;
3737 ena_dev->dmadev = self;
3738 ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
3739 M_WAITOK | M_ZERO);
3740
3741 /* Store register resources */
3742 ((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
3743 ((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
3744
3745 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3746
3747 /* Device initialization */
3748 rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
3749 if (unlikely(rc != 0)) {
3750 device_printf(self, "ENA device init failed! (err: %d)\n", rc);
3751 rc = ENXIO;
3752 goto err_bus_free;
3753 }
3754
3755 adapter->keep_alive_timestamp = getsbinuptime();
3756
3757 adapter->tx_offload_cap = get_feat_ctx.offload.tx;
3758
3759 /* Set for sure that interface is not up */
3760 adapter->up = false;
3761
3762 memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
3763 ETHER_ADDR_LEN);
3764
3765 /* calculate IO queue number to create */
3766 io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
3767
3768 ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
3769 io_queue_num);
3770 adapter->num_queues = io_queue_num;
3771
3772 adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
3773
3774 /* calculatre ring sizes */
3775 queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
3776 &rx_sgl_size, &get_feat_ctx);
3777 if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
3778 rc = ENA_COM_FAULT;
3779 goto err_com_free;
3780 }
3781
3782 adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3783
3784 adapter->tx_ring_size = queue_size;
3785 adapter->rx_ring_size = queue_size;
3786
3787 adapter->max_tx_sgl_size = tx_sgl_size;
3788 adapter->max_rx_sgl_size = rx_sgl_size;
3789
3790 #if 0
3791 /* set up dma tags for rx and tx buffers */
3792 rc = ena_setup_tx_dma_tag(adapter);
3793 if (unlikely(rc != 0)) {
3794 device_printf(self, "Failed to create TX DMA tag\n");
3795 goto err_com_free;
3796 }
3797
3798 rc = ena_setup_rx_dma_tag(adapter);
3799 if (unlikely(rc != 0)) {
3800 device_printf(self, "Failed to create RX DMA tag\n");
3801 goto err_tx_tag_free;
3802 }
3803 #endif
3804
3805 /* initialize rings basic information */
3806 device_printf(self, "initalize %d io queues\n", io_queue_num);
3807 ena_init_io_rings(adapter);
3808
3809 /* setup network interface */
3810 rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
3811 if (unlikely(rc != 0)) {
3812 device_printf(self, "Error with network interface setup\n");
3813 goto err_io_free;
3814 }
3815
3816 rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
3817 if (unlikely(rc != 0)) {
3818 device_printf(self,
3819 "Failed to enable and set the admin interrupts\n");
3820 goto err_ifp_free;
3821 }
3822
3823 callout_init(&adapter->timer_service, CALLOUT_FLAGS);
3824
3825 /* Initialize reset task queue */
3826 rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
3827 ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
3828 if (unlikely(rc != 0)) {
3829 ena_trace(ENA_ALERT,
3830 "Unable to create workqueue for reset task\n");
3831 goto err_ifp_free;
3832 }
3833
3834 /* Initialize statistics */
3835 ena_alloc_counters_dev(&adapter->dev_stats, io_queue_num);
3836 ena_alloc_counters_hwstats(&adapter->hw_stats, io_queue_num);
3837 #if 0
3838 ena_sysctl_add_nodes(adapter);
3839 #endif
3840
3841 /* Tell the stack that the interface is not active */
3842 if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
3843
3844 adapter->running = true;
3845 return;
3846
3847 err_ifp_free:
3848 if_detach(adapter->ifp);
3849 if_free(adapter->ifp);
3850 err_io_free:
3851 ena_free_all_io_rings_resources(adapter);
3852 #if 0
3853 ena_free_rx_dma_tag(adapter);
3854 err_tx_tag_free:
3855 ena_free_tx_dma_tag(adapter);
3856 #endif
3857 err_com_free:
3858 ena_com_admin_destroy(ena_dev);
3859 ena_com_delete_host_info(ena_dev);
3860 ena_com_mmio_reg_read_request_destroy(ena_dev);
3861 err_bus_free:
3862 free(ena_dev->bus, M_DEVBUF);
3863 free(ena_dev, M_DEVBUF);
3864 ena_free_pci_resources(adapter);
3865 }
3866
3867 /**
3868 * ena_detach - Device Removal Routine
3869 * @pdev: device information struct
3870 *
3871 * ena_detach is called by the device subsystem to alert the driver
3872 * that it should release a PCI device.
3873 **/
3874 static int
3875 ena_detach(device_t pdev, int flags)
3876 {
3877 struct ena_adapter *adapter = device_private(pdev);
3878 struct ena_com_dev *ena_dev = adapter->ena_dev;
3879 #if 0
3880 int rc;
3881 #endif
3882
3883 /* Make sure VLANS are not using driver */
3884 if (VLAN_ATTACHED(&adapter->sc_ec)) {
3885 device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
3886 return (EBUSY);
3887 }
3888
3889 /* Free reset task and callout */
3890 callout_halt(&adapter->timer_service, &adapter->global_mtx);
3891 callout_destroy(&adapter->timer_service);
3892 workqueue_wait(adapter->reset_tq, &adapter->reset_task);
3893 workqueue_destroy(adapter->reset_tq);
3894 adapter->reset_tq = NULL;
3895
3896 rw_enter(&adapter->ioctl_sx, RW_WRITER);
3897 ena_down(adapter);
3898 rw_exit(&adapter->ioctl_sx);
3899
3900 if (adapter->ifp != NULL) {
3901 ether_ifdetach(adapter->ifp);
3902 if_free(adapter->ifp);
3903 }
3904
3905 ena_free_all_io_rings_resources(adapter);
3906
3907 ena_free_counters((struct evcnt *)&adapter->hw_stats,
3908 sizeof(struct ena_hw_stats));
3909 ena_free_counters((struct evcnt *)&adapter->dev_stats,
3910 sizeof(struct ena_stats_dev));
3911
3912 if (likely(adapter->rss_support))
3913 ena_com_rss_destroy(ena_dev);
3914
3915 #if 0
3916 rc = ena_free_rx_dma_tag(adapter);
3917 if (unlikely(rc != 0))
3918 device_printf(adapter->pdev,
3919 "Unmapped RX DMA tag associations\n");
3920
3921 rc = ena_free_tx_dma_tag(adapter);
3922 if (unlikely(rc != 0))
3923 device_printf(adapter->pdev,
3924 "Unmapped TX DMA tag associations\n");
3925 #endif
3926
3927 /* Reset the device only if the device is running. */
3928 if (adapter->running)
3929 ena_com_dev_reset(ena_dev, adapter->reset_reason);
3930
3931 ena_com_delete_host_info(ena_dev);
3932
3933 ena_free_irqs(adapter);
3934
3935 ena_com_abort_admin_commands(ena_dev);
3936
3937 ena_com_wait_for_abort_completion(ena_dev);
3938
3939 ena_com_admin_destroy(ena_dev);
3940
3941 ena_com_mmio_reg_read_request_destroy(ena_dev);
3942
3943 ena_free_pci_resources(adapter);
3944
3945 mutex_destroy(&adapter->global_mtx);
3946 rw_destroy(&adapter->ioctl_sx);
3947
3948 if (ena_dev->bus != NULL)
3949 free(ena_dev->bus, M_DEVBUF);
3950
3951 if (ena_dev != NULL)
3952 free(ena_dev, M_DEVBUF);
3953
3954 return 0;
3955 }
3956
3957 /******************************************************************************
3958 ******************************** AENQ Handlers *******************************
3959 *****************************************************************************/
3960 /**
3961 * ena_update_on_link_change:
3962 * Notify the network interface about the change in link status
3963 **/
3964 static void
3965 ena_update_on_link_change(void *adapter_data,
3966 struct ena_admin_aenq_entry *aenq_e)
3967 {
3968 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3969 struct ena_admin_aenq_link_change_desc *aenq_desc;
3970 int status;
3971 struct ifnet *ifp;
3972
3973 aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3974 ifp = adapter->ifp;
3975 status = aenq_desc->flags &
3976 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
3977
3978 if (status != 0) {
3979 device_printf(adapter->pdev, "link is UP\n");
3980 if_link_state_change(ifp, LINK_STATE_UP);
3981 } else if (status == 0) {
3982 device_printf(adapter->pdev, "link is DOWN\n");
3983 if_link_state_change(ifp, LINK_STATE_DOWN);
3984 } else {
3985 device_printf(adapter->pdev, "invalid value recvd\n");
3986 BUG();
3987 }
3988
3989 adapter->link_status = status;
3990 }
3991
3992 /**
3993 * This handler will called for unknown event group or unimplemented handlers
3994 **/
3995 static void
3996 unimplemented_aenq_handler(void *data,
3997 struct ena_admin_aenq_entry *aenq_e)
3998 {
3999 return;
4000 }
4001
4002 static struct ena_aenq_handlers aenq_handlers = {
4003 .handlers = {
4004 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4005 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
4006 },
4007 .unimplemented_handler = unimplemented_aenq_handler
4008 };
4009
4010 #ifdef __FreeBSD__
4011 /*********************************************************************
4012 * FreeBSD Device Interface Entry Points
4013 *********************************************************************/
4014
4015 static device_method_t ena_methods[] = {
4016 /* Device interface */
4017 DEVMETHOD(device_probe, ena_probe),
4018 DEVMETHOD(device_attach, ena_attach),
4019 DEVMETHOD(device_detach, ena_detach),
4020 DEVMETHOD_END
4021 };
4022
4023 static driver_t ena_driver = {
4024 "ena", ena_methods, sizeof(struct ena_adapter),
4025 };
4026
4027 devclass_t ena_devclass;
4028 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
4029 MODULE_DEPEND(ena, pci, 1, 1, 1);
4030 MODULE_DEPEND(ena, ether, 1, 1, 1);
4031
4032 /*********************************************************************/
4033 #endif /* __FreeBSD__ */
4034
4035 #ifdef __NetBSD__
4036 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
4037 ena_detach, NULL);
4038 #endif /* __NetBSD */
4039