Home | History | Annotate | Line # | Download | only in pci
if_ena.c revision 1.17
      1 /*-
      2  * BSD LICENSE
      3  *
      4  * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  *
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 #include <sys/cdefs.h>
     31 #if 0
     32 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
     33 #endif
     34 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.17 2019/10/18 04:09:02 msaitoh Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/bus.h>
     39 #include <sys/endian.h>
     40 #include <sys/kernel.h>
     41 #include <sys/kthread.h>
     42 #include <sys/malloc.h>
     43 #include <sys/mbuf.h>
     44 #include <sys/module.h>
     45 #include <sys/socket.h>
     46 #include <sys/sockio.h>
     47 #include <sys/sysctl.h>
     48 #include <sys/time.h>
     49 #include <sys/workqueue.h>
     50 #include <sys/callout.h>
     51 #include <sys/interrupt.h>
     52 #include <sys/cpu.h>
     53 
     54 #include <net/if_ether.h>
     55 #include <net/if_vlanvar.h>
     56 
     57 #include <dev/pci/if_enavar.h>
     58 
     59 /*********************************************************
     60  *  Function prototypes
     61  *********************************************************/
     62 static int	ena_probe(device_t, cfdata_t, void *);
     63 static int	ena_intr_msix_mgmnt(void *);
     64 static int	ena_allocate_pci_resources(struct pci_attach_args *,
     65 		    struct ena_adapter *);
     66 static void	ena_free_pci_resources(struct ena_adapter *);
     67 static int	ena_change_mtu(struct ifnet *, int);
     68 static void	ena_init_io_rings_common(struct ena_adapter *,
     69     struct ena_ring *, uint16_t);
     70 static void	ena_init_io_rings(struct ena_adapter *);
     71 static void	ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
     72 static void	ena_free_all_io_rings_resources(struct ena_adapter *);
     73 #if 0
     74 static int	ena_setup_tx_dma_tag(struct ena_adapter *);
     75 static int	ena_free_tx_dma_tag(struct ena_adapter *);
     76 static int	ena_setup_rx_dma_tag(struct ena_adapter *);
     77 static int	ena_free_rx_dma_tag(struct ena_adapter *);
     78 #endif
     79 static int	ena_setup_tx_resources(struct ena_adapter *, int);
     80 static void	ena_free_tx_resources(struct ena_adapter *, int);
     81 static int	ena_setup_all_tx_resources(struct ena_adapter *);
     82 static void	ena_free_all_tx_resources(struct ena_adapter *);
     83 static inline int validate_rx_req_id(struct ena_ring *, uint16_t);
     84 static int	ena_setup_rx_resources(struct ena_adapter *, unsigned int);
     85 static void	ena_free_rx_resources(struct ena_adapter *, unsigned int);
     86 static int	ena_setup_all_rx_resources(struct ena_adapter *);
     87 static void	ena_free_all_rx_resources(struct ena_adapter *);
     88 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *,
     89     struct ena_rx_buffer *);
     90 static void	ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
     91     struct ena_rx_buffer *);
     92 static int	ena_refill_rx_bufs(struct ena_ring *, uint32_t);
     93 static void	ena_free_rx_bufs(struct ena_adapter *, unsigned int);
     94 static void	ena_refill_all_rx_bufs(struct ena_adapter *);
     95 static void	ena_free_all_rx_bufs(struct ena_adapter *);
     96 static void	ena_free_tx_bufs(struct ena_adapter *, unsigned int);
     97 static void	ena_free_all_tx_bufs(struct ena_adapter *);
     98 static void	ena_destroy_all_tx_queues(struct ena_adapter *);
     99 static void	ena_destroy_all_rx_queues(struct ena_adapter *);
    100 static void	ena_destroy_all_io_queues(struct ena_adapter *);
    101 static int	ena_create_io_queues(struct ena_adapter *);
    102 static int	ena_tx_cleanup(struct ena_ring *);
    103 static void	ena_deferred_rx_cleanup(struct work *, void *);
    104 static int	ena_rx_cleanup(struct ena_ring *);
    105 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
    106 #if 0
    107 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
    108     struct mbuf *);
    109 #endif
    110 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
    111     struct ena_com_rx_ctx *, uint16_t *);
    112 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
    113     struct mbuf *);
    114 static int	ena_handle_msix(void *);
    115 static int	ena_enable_msix(struct ena_adapter *);
    116 static int	ena_request_mgmnt_irq(struct ena_adapter *);
    117 static int	ena_request_io_irq(struct ena_adapter *);
    118 static void	ena_free_mgmnt_irq(struct ena_adapter *);
    119 static void	ena_free_io_irq(struct ena_adapter *);
    120 static void	ena_free_irqs(struct ena_adapter*);
    121 static void	ena_disable_msix(struct ena_adapter *);
    122 static void	ena_unmask_all_io_irqs(struct ena_adapter *);
    123 static int	ena_rss_configure(struct ena_adapter *);
    124 static int	ena_up_complete(struct ena_adapter *);
    125 static int	ena_up(struct ena_adapter *);
    126 static void	ena_down(struct ena_adapter *);
    127 #if 0
    128 static uint64_t	ena_get_counter(struct ifnet *, ift_counter);
    129 #endif
    130 static int	ena_media_change(struct ifnet *);
    131 static void	ena_media_status(struct ifnet *, struct ifmediareq *);
    132 static int	ena_init(struct ifnet *);
    133 static int	ena_ioctl(struct ifnet *, u_long, void *);
    134 static int	ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
    135 static void	ena_update_host_info(struct ena_admin_host_info *, struct ifnet *);
    136 static void	ena_update_hwassist(struct ena_adapter *);
    137 static int	ena_setup_ifnet(device_t, struct ena_adapter *,
    138     struct ena_com_dev_get_features_ctx *);
    139 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
    140 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
    141     struct mbuf **mbuf);
    142 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
    143 static void	ena_start_xmit(struct ena_ring *);
    144 static int	ena_mq_start(struct ifnet *, struct mbuf *);
    145 static void	ena_deferred_mq_start(struct work *, void *);
    146 #if 0
    147 static void	ena_qflush(struct ifnet *);
    148 #endif
    149 static int	ena_calc_io_queue_num(struct pci_attach_args *,
    150     struct ena_adapter *, struct ena_com_dev_get_features_ctx *);
    151 static int	ena_calc_queue_size(struct ena_adapter *, uint16_t *,
    152     uint16_t *, struct ena_com_dev_get_features_ctx *);
    153 #if 0
    154 static int	ena_rss_init_default(struct ena_adapter *);
    155 static void	ena_rss_init_default_deferred(void *);
    156 #endif
    157 static void	ena_config_host_info(struct ena_com_dev *);
    158 static void	ena_attach(device_t, device_t, void *);
    159 static int	ena_detach(device_t, int);
    160 static int	ena_device_init(struct ena_adapter *, device_t,
    161     struct ena_com_dev_get_features_ctx *, int *);
    162 static int	ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
    163     int);
    164 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *);
    165 static void	unimplemented_aenq_handler(void *,
    166     struct ena_admin_aenq_entry *);
    167 static void	ena_timer_service(void *);
    168 
    169 static const char ena_version[] =
    170     DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
    171 
    172 #if 0
    173 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
    174 #endif
    175 
    176 /*
    177  * Tuneable number of buffers in the buf-ring (drbr)
    178  */
    179 static int ena_buf_ring_size = 4096;
    180 #if 0
    181 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
    182     &ena_buf_ring_size, 0, "Size of the bufring");
    183 #endif
    184 
    185 /*
    186  * Logging level for changing verbosity of the output
    187  */
    188 int ena_log_level = ENA_ALERT | ENA_WARNING;
    189 #if 0
    190 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
    191     &ena_log_level, 0, "Logging level indicating verbosity of the logs");
    192 #endif
    193 
    194 static const ena_vendor_info_t ena_vendor_info_array[] = {
    195     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
    196     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
    197     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
    198     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
    199     /* Last entry */
    200     { 0, 0, 0 }
    201 };
    202 
    203 /*
    204  * Contains pointers to event handlers, e.g. link state chage.
    205  */
    206 static struct ena_aenq_handlers aenq_handlers;
    207 
    208 int
    209 ena_dma_alloc(device_t dmadev, bus_size_t size,
    210     ena_mem_handle_t *dma , int mapflags)
    211 {
    212 	struct ena_adapter *adapter = device_private(dmadev);
    213 	uint32_t maxsize;
    214 	bus_dma_segment_t seg;
    215 	int error, nsegs;
    216 
    217 	maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
    218 
    219 #if 0
    220 	/* XXX what is this needed for ? */
    221 	dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
    222 	if (unlikely(dma_space_addr == 0))
    223 		dma_space_addr = BUS_SPACE_MAXADDR;
    224 #endif
    225 
    226 	dma->tag = adapter->sc_dmat;
    227 
    228         if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
    229             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
    230 		ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
    231 		    (uintmax_t)maxsize, error);
    232                 goto fail_create;
    233 	}
    234 
    235 	error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &seg, 1, &nsegs,
    236 	    BUS_DMA_ALLOCNOW);
    237 	if (error) {
    238 		ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
    239 		    (uintmax_t)maxsize, error);
    240 		goto fail_alloc;
    241 	}
    242 
    243 	error = bus_dmamem_map(dma->tag, &seg, nsegs, maxsize,
    244 	    &dma->vaddr, BUS_DMA_COHERENT);
    245 	if (error) {
    246 		ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
    247 		    (uintmax_t)maxsize, error);
    248 		goto fail_map;
    249 	}
    250 	memset(dma->vaddr, 0, maxsize);
    251 
    252 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
    253 	    maxsize, NULL, mapflags);
    254 	if (error) {
    255 		ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
    256 		goto fail_load;
    257 	}
    258 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    259 
    260 	return (0);
    261 
    262 fail_load:
    263 	bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
    264 fail_map:
    265 	bus_dmamem_free(dma->tag, &seg, nsegs);
    266 fail_alloc:
    267 	bus_dmamap_destroy(adapter->sc_dmat, dma->map);
    268 fail_create:
    269 	return (error);
    270 }
    271 
    272 static int
    273 ena_allocate_pci_resources(struct pci_attach_args *pa,
    274     struct ena_adapter *adapter)
    275 {
    276 	pcireg_t memtype, reg;
    277 	bus_addr_t memaddr;
    278 	bus_size_t mapsize;
    279 	int flags, error;
    280 	int msixoff;
    281 
    282 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
    283 	if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM) {
    284 		aprint_error_dev(adapter->pdev, "invalid type (type=0x%x)\n",
    285 		    memtype);
    286 		return ENXIO;
    287 	}
    288 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    289 	if (((reg & PCI_COMMAND_MASTER_ENABLE) == 0) ||
    290 	    ((reg & PCI_COMMAND_MEM_ENABLE) == 0)) {
    291 		/*
    292 		 * Enable address decoding for memory range in case BIOS or
    293 		 * UEFI didn't set it.
    294 		 */
    295 		reg |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
    296         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    297 		    reg);
    298 	}
    299 
    300 	adapter->sc_btag = pa->pa_memt;
    301 	error = pci_mapreg_info(pa->pa_pc, pa->pa_tag, ENA_REG_BAR,
    302 	    memtype, &memaddr, &mapsize, &flags);
    303 	if (error) {
    304 		aprint_error_dev(adapter->pdev, "can't get map info\n");
    305 		return ENXIO;
    306 	}
    307 
    308 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff,
    309 	    NULL)) {
    310 		pcireg_t msixtbl;
    311 		uint32_t table_offset;
    312 		int bir;
    313 
    314 		msixtbl = pci_conf_read(pa->pa_pc, pa->pa_tag,
    315 		    msixoff + PCI_MSIX_TBLOFFSET);
    316 		table_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK;
    317 		bir = msixtbl & PCI_MSIX_PBABIR_MASK;
    318 		if (bir == PCI_MAPREG_NUM(ENA_REG_BAR))
    319 			mapsize = table_offset;
    320 	}
    321 
    322 	error = bus_space_map(adapter->sc_btag, memaddr, mapsize, flags,
    323 	    &adapter->sc_bhandle);
    324 	if (error != 0) {
    325 		aprint_error_dev(adapter->pdev,
    326 		    "can't map mem space (error=%d)\n", error);
    327 		return ENXIO;
    328 	}
    329 
    330 	return (0);
    331 }
    332 
    333 static void
    334 ena_free_pci_resources(struct ena_adapter *adapter)
    335 {
    336 	/* Nothing to do */
    337 }
    338 
    339 static int
    340 ena_probe(device_t parent, cfdata_t match, void *aux)
    341 {
    342 	struct pci_attach_args *pa = aux;
    343 	const ena_vendor_info_t *ent;
    344 
    345 	for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
    346 		ent = &ena_vendor_info_array[i];
    347 
    348 		if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
    349 		    (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
    350 			return 1;
    351 		}
    352 	}
    353 
    354 	return 0;
    355 }
    356 
    357 static int
    358 ena_change_mtu(struct ifnet *ifp, int new_mtu)
    359 {
    360 	struct ena_adapter *adapter = if_getsoftc(ifp);
    361 	int rc;
    362 
    363 	if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
    364 		device_printf(adapter->pdev, "Invalid MTU setting. "
    365 		    "new_mtu: %d max mtu: %d min mtu: %d\n",
    366 		    new_mtu, adapter->max_mtu, ENA_MIN_MTU);
    367 		return (EINVAL);
    368 	}
    369 
    370 	rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
    371 	if (likely(rc == 0)) {
    372 		ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
    373 		if_setmtu(ifp, new_mtu);
    374 	} else {
    375 		device_printf(adapter->pdev, "Failed to set MTU to %d\n",
    376 		    new_mtu);
    377 	}
    378 
    379 	return (rc);
    380 }
    381 
    382 #define EVCNT_INIT(st, f) \
    383 	do {								\
    384 		evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL,	\
    385 		    st->name, #f);					\
    386 	} while (0)
    387 
    388 static inline void
    389 ena_alloc_counters_rx(struct ena_stats_rx *st, int queue)
    390 {
    391 	snprintf(st->name, sizeof(st->name), "ena rxq%d", queue);
    392 
    393 	EVCNT_INIT(st, cnt);
    394 	EVCNT_INIT(st, bytes);
    395 	EVCNT_INIT(st, refil_partial);
    396 	EVCNT_INIT(st, bad_csum);
    397 	EVCNT_INIT(st, mjum_alloc_fail);
    398 	EVCNT_INIT(st, mbuf_alloc_fail);
    399 	EVCNT_INIT(st, dma_mapping_err);
    400 	EVCNT_INIT(st, bad_desc_num);
    401 	EVCNT_INIT(st, bad_req_id);
    402 	EVCNT_INIT(st, empty_rx_ring);
    403 
    404 	/* Make sure all code is updated when new fields added */
    405 	CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
    406 	    + sizeof(st->empty_rx_ring) == sizeof(*st));
    407 }
    408 
    409 static inline void
    410 ena_alloc_counters_tx(struct ena_stats_tx *st, int queue)
    411 {
    412 	snprintf(st->name, sizeof(st->name), "ena txq%d", queue);
    413 
    414 	EVCNT_INIT(st, cnt);
    415 	EVCNT_INIT(st, bytes);
    416 	EVCNT_INIT(st, prepare_ctx_err);
    417 	EVCNT_INIT(st, dma_mapping_err);
    418 	EVCNT_INIT(st, doorbells);
    419 	EVCNT_INIT(st, missing_tx_comp);
    420 	EVCNT_INIT(st, bad_req_id);
    421 	EVCNT_INIT(st, collapse);
    422 	EVCNT_INIT(st, collapse_err);
    423 
    424 	/* Make sure all code is updated when new fields added */
    425 	CTASSERT(offsetof(struct ena_stats_tx, collapse_err)
    426 	    + sizeof(st->collapse_err) == sizeof(*st));
    427 }
    428 
    429 static inline void
    430 ena_alloc_counters_dev(struct ena_stats_dev *st, int queue)
    431 {
    432 	snprintf(st->name, sizeof(st->name), "ena dev ioq%d", queue);
    433 
    434 	EVCNT_INIT(st, wd_expired);
    435 	EVCNT_INIT(st, interface_up);
    436 	EVCNT_INIT(st, interface_down);
    437 	EVCNT_INIT(st, admin_q_pause);
    438 
    439 	/* Make sure all code is updated when new fields added */
    440 	CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
    441 	    + sizeof(st->admin_q_pause) == sizeof(*st));
    442 }
    443 
    444 static inline void
    445 ena_alloc_counters_hwstats(struct ena_hw_stats *st, int queue)
    446 {
    447 	snprintf(st->name, sizeof(st->name), "ena hw ioq%d", queue);
    448 
    449 	EVCNT_INIT(st, rx_packets);
    450 	EVCNT_INIT(st, tx_packets);
    451 	EVCNT_INIT(st, rx_bytes);
    452 	EVCNT_INIT(st, tx_bytes);
    453 	EVCNT_INIT(st, rx_drops);
    454 
    455 	/* Make sure all code is updated when new fields added */
    456 	CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
    457 	    + sizeof(st->rx_drops) == sizeof(*st));
    458 }
    459 static inline void
    460 ena_free_counters(struct evcnt *begin, int size)
    461 {
    462 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
    463 
    464 	for (; begin < end; ++begin)
    465 		counter_u64_free(*begin);
    466 }
    467 
    468 static inline void
    469 ena_reset_counters(struct evcnt *begin, int size)
    470 {
    471 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
    472 
    473 	for (; begin < end; ++begin)
    474 		counter_u64_zero(*begin);
    475 }
    476 
    477 static void
    478 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
    479     uint16_t qid)
    480 {
    481 
    482 	ring->qid = qid;
    483 	ring->adapter = adapter;
    484 	ring->ena_dev = adapter->ena_dev;
    485 }
    486 
    487 static void
    488 ena_init_io_rings(struct ena_adapter *adapter)
    489 {
    490 	struct ena_com_dev *ena_dev;
    491 	struct ena_ring *txr, *rxr;
    492 	struct ena_que *que;
    493 	int i;
    494 
    495 	ena_dev = adapter->ena_dev;
    496 
    497 	for (i = 0; i < adapter->num_queues; i++) {
    498 		txr = &adapter->tx_ring[i];
    499 		rxr = &adapter->rx_ring[i];
    500 
    501 		/* TX/RX common ring state */
    502 		ena_init_io_rings_common(adapter, txr, i);
    503 		ena_init_io_rings_common(adapter, rxr, i);
    504 
    505 		/* TX specific ring state */
    506 		txr->ring_size = adapter->tx_ring_size;
    507 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
    508 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
    509 		txr->smoothed_interval =
    510 		    ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
    511 
    512 		/* Allocate a buf ring */
    513 		txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
    514 		    M_WAITOK, &txr->ring_mtx);
    515 
    516 		/* Alloc TX statistics. */
    517 		ena_alloc_counters_tx(&txr->tx_stats, i);
    518 
    519 		/* RX specific ring state */
    520 		rxr->ring_size = adapter->rx_ring_size;
    521 		rxr->smoothed_interval =
    522 		    ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
    523 
    524 		/* Alloc RX statistics. */
    525 		ena_alloc_counters_rx(&rxr->rx_stats, i);
    526 
    527 		/* Initialize locks */
    528 		snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
    529 		    device_xname(adapter->pdev), i);
    530 		snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
    531 		    device_xname(adapter->pdev), i);
    532 
    533 		mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
    534 		mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
    535 
    536 		que = &adapter->que[i];
    537 		que->adapter = adapter;
    538 		que->id = i;
    539 		que->tx_ring = txr;
    540 		que->rx_ring = rxr;
    541 
    542 		txr->que = que;
    543 		rxr->que = que;
    544 
    545 		rxr->empty_rx_queue = 0;
    546 	}
    547 }
    548 
    549 static void
    550 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
    551 {
    552 	struct ena_ring *txr = &adapter->tx_ring[qid];
    553 	struct ena_ring *rxr = &adapter->rx_ring[qid];
    554 
    555 	ena_free_counters((struct evcnt *)&txr->tx_stats,
    556 	    sizeof(txr->tx_stats));
    557 	ena_free_counters((struct evcnt *)&rxr->rx_stats,
    558 	    sizeof(rxr->rx_stats));
    559 
    560 	ENA_RING_MTX_LOCK(txr);
    561 	drbr_free(txr->br, M_DEVBUF);
    562 	ENA_RING_MTX_UNLOCK(txr);
    563 
    564 	mutex_destroy(&txr->ring_mtx);
    565 	mutex_destroy(&rxr->ring_mtx);
    566 }
    567 
    568 static void
    569 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
    570 {
    571 	int i;
    572 
    573 	for (i = 0; i < adapter->num_queues; i++)
    574 		ena_free_io_ring_resources(adapter, i);
    575 
    576 }
    577 
    578 #if 0
    579 static int
    580 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
    581 {
    582 	int ret;
    583 
    584 	/* Create DMA tag for Tx buffers */
    585 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
    586 	    1, 0,				  /* alignment, bounds 	     */
    587 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
    588 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
    589 	    NULL, NULL,				  /* filter, filterarg 	     */
    590 	    ENA_TSO_MAXSIZE,			  /* maxsize 		     */
    591 	    adapter->max_tx_sgl_size - 1,	  /* nsegments 		     */
    592 	    ENA_TSO_MAXSIZE,			  /* maxsegsize 	     */
    593 	    0,					  /* flags 		     */
    594 	    NULL,				  /* lockfunc 		     */
    595 	    NULL,				  /* lockfuncarg 	     */
    596 	    &adapter->tx_buf_tag);
    597 
    598 	return (ret);
    599 }
    600 #endif
    601 
    602 #if 0
    603 static int
    604 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
    605 {
    606 	int ret;
    607 
    608 	/* Create DMA tag for Rx buffers*/
    609 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent   */
    610 	    1, 0,				  /* alignment, bounds 	     */
    611 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
    612 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
    613 	    NULL, NULL,				  /* filter, filterarg 	     */
    614 	    MJUM16BYTES,			  /* maxsize 		     */
    615 	    adapter->max_rx_sgl_size,		  /* nsegments 		     */
    616 	    MJUM16BYTES,			  /* maxsegsize 	     */
    617 	    0,					  /* flags 		     */
    618 	    NULL,				  /* lockfunc 		     */
    619 	    NULL,				  /* lockarg 		     */
    620 	    &adapter->rx_buf_tag);
    621 
    622 	return (ret);
    623 }
    624 #endif
    625 
    626 /**
    627  * ena_setup_tx_resources - allocate Tx resources (Descriptors)
    628  * @adapter: network interface device structure
    629  * @qid: queue index
    630  *
    631  * Returns 0 on success, otherwise on failure.
    632  **/
    633 static int
    634 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
    635 {
    636 	struct ena_que *que = &adapter->que[qid];
    637 	struct ena_ring *tx_ring = que->tx_ring;
    638 	int size, i, err;
    639 #ifdef	RSS
    640 	cpuset_t cpu_mask;
    641 #endif
    642 
    643 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
    644 
    645 	tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
    646 	if (unlikely(tx_ring->tx_buffer_info == NULL))
    647 		return (ENOMEM);
    648 
    649 	size = sizeof(uint16_t) * tx_ring->ring_size;
    650 	tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
    651 	if (unlikely(tx_ring->free_tx_ids == NULL))
    652 		goto err_buf_info_free;
    653 
    654 	/* Req id stack for TX OOO completions */
    655 	for (i = 0; i < tx_ring->ring_size; i++)
    656 		tx_ring->free_tx_ids[i] = i;
    657 
    658 	/* Reset TX statistics. */
    659 	ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
    660 	    sizeof(tx_ring->tx_stats));
    661 
    662 	tx_ring->next_to_use = 0;
    663 	tx_ring->next_to_clean = 0;
    664 
    665 	/* Make sure that drbr is empty */
    666 	ENA_RING_MTX_LOCK(tx_ring);
    667 	drbr_flush(adapter->ifp, tx_ring->br);
    668 	ENA_RING_MTX_UNLOCK(tx_ring);
    669 
    670 	/* ... and create the buffer DMA maps */
    671 	for (i = 0; i < tx_ring->ring_size; i++) {
    672 		err = bus_dmamap_create(adapter->sc_dmat,
    673 		    ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
    674 		    ENA_TSO_MAXSIZE, 0, 0,
    675 		    &tx_ring->tx_buffer_info[i].map);
    676 		if (unlikely(err != 0)) {
    677 			ena_trace(ENA_ALERT,
    678 			     "Unable to create Tx DMA map for buffer %d\n", i);
    679 			goto err_buf_info_unmap;
    680 		}
    681 	}
    682 
    683 	/* Allocate workqueues */
    684 	int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
    685 	    ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
    686 	if (unlikely(rc != 0)) {
    687 		ena_trace(ENA_ALERT,
    688 		    "Unable to create workqueue for enqueue task\n");
    689 		i = tx_ring->ring_size;
    690 		goto err_buf_info_unmap;
    691 	}
    692 
    693 #if 0
    694 	/* RSS set cpu for thread */
    695 #ifdef RSS
    696 	CPU_SETOF(que->cpu, &cpu_mask);
    697 	taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET,
    698 	    &cpu_mask, "%s tx_ring enq (bucket %d)",
    699 	    device_xname(adapter->pdev), que->cpu);
    700 #else /* RSS */
    701 	taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET,
    702 	    "%s txeq %d", device_xname(adapter->pdev), que->cpu);
    703 #endif /* RSS */
    704 #endif
    705 
    706 	return (0);
    707 
    708 err_buf_info_unmap:
    709 	while (i--) {
    710 		bus_dmamap_destroy(adapter->sc_dmat,
    711 		    tx_ring->tx_buffer_info[i].map);
    712 	}
    713 	free(tx_ring->free_tx_ids, M_DEVBUF);
    714 	tx_ring->free_tx_ids = NULL;
    715 err_buf_info_free:
    716 	free(tx_ring->tx_buffer_info, M_DEVBUF);
    717 	tx_ring->tx_buffer_info = NULL;
    718 
    719 	return (ENOMEM);
    720 }
    721 
    722 /**
    723  * ena_free_tx_resources - Free Tx Resources per Queue
    724  * @adapter: network interface device structure
    725  * @qid: queue index
    726  *
    727  * Free all transmit software resources
    728  **/
    729 static void
    730 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
    731 {
    732 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
    733 
    734 	workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
    735 	workqueue_destroy(tx_ring->enqueue_tq);
    736 	tx_ring->enqueue_tq = NULL;
    737 
    738 	ENA_RING_MTX_LOCK(tx_ring);
    739 	/* Flush buffer ring, */
    740 	drbr_flush(adapter->ifp, tx_ring->br);
    741 
    742 	/* Free buffer DMA maps, */
    743 	for (int i = 0; i < tx_ring->ring_size; i++) {
    744 		m_freem(tx_ring->tx_buffer_info[i].mbuf);
    745 		tx_ring->tx_buffer_info[i].mbuf = NULL;
    746 		bus_dmamap_unload(adapter->sc_dmat,
    747 		    tx_ring->tx_buffer_info[i].map);
    748 		bus_dmamap_destroy(adapter->sc_dmat,
    749 		    tx_ring->tx_buffer_info[i].map);
    750 	}
    751 	ENA_RING_MTX_UNLOCK(tx_ring);
    752 
    753 	/* And free allocated memory. */
    754 	free(tx_ring->tx_buffer_info, M_DEVBUF);
    755 	tx_ring->tx_buffer_info = NULL;
    756 
    757 	free(tx_ring->free_tx_ids, M_DEVBUF);
    758 	tx_ring->free_tx_ids = NULL;
    759 }
    760 
    761 /**
    762  * ena_setup_all_tx_resources - allocate all queues Tx resources
    763  * @adapter: network interface device structure
    764  *
    765  * Returns 0 on success, otherwise on failure.
    766  **/
    767 static int
    768 ena_setup_all_tx_resources(struct ena_adapter *adapter)
    769 {
    770 	int i, rc;
    771 
    772 	for (i = 0; i < adapter->num_queues; i++) {
    773 		rc = ena_setup_tx_resources(adapter, i);
    774 		if (rc != 0) {
    775 			device_printf(adapter->pdev,
    776 			    "Allocation for Tx Queue %u failed\n", i);
    777 			goto err_setup_tx;
    778 		}
    779 	}
    780 
    781 	return (0);
    782 
    783 err_setup_tx:
    784 	/* Rewind the index freeing the rings as we go */
    785 	while (i--)
    786 		ena_free_tx_resources(adapter, i);
    787 	return (rc);
    788 }
    789 
    790 /**
    791  * ena_free_all_tx_resources - Free Tx Resources for All Queues
    792  * @adapter: network interface device structure
    793  *
    794  * Free all transmit software resources
    795  **/
    796 static void
    797 ena_free_all_tx_resources(struct ena_adapter *adapter)
    798 {
    799 	int i;
    800 
    801 	for (i = 0; i < adapter->num_queues; i++)
    802 		ena_free_tx_resources(adapter, i);
    803 }
    804 
    805 static inline int
    806 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
    807 {
    808 	if (likely(req_id < rx_ring->ring_size))
    809 		return (0);
    810 
    811 	device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
    812 	    req_id);
    813 	counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
    814 
    815 	/* Trigger device reset */
    816 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
    817 	rx_ring->adapter->trigger_reset = true;
    818 
    819 	return (EFAULT);
    820 }
    821 
    822 /**
    823  * ena_setup_rx_resources - allocate Rx resources (Descriptors)
    824  * @adapter: network interface device structure
    825  * @qid: queue index
    826  *
    827  * Returns 0 on success, otherwise on failure.
    828  **/
    829 static int
    830 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
    831 {
    832 	struct ena_que *que = &adapter->que[qid];
    833 	struct ena_ring *rx_ring = que->rx_ring;
    834 	int size, err, i;
    835 #ifdef	RSS
    836 	cpuset_t cpu_mask;
    837 #endif
    838 
    839 	size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
    840 
    841 	/*
    842 	 * Alloc extra element so in rx path
    843 	 * we can always prefetch rx_info + 1
    844 	 */
    845 	size += sizeof(struct ena_rx_buffer);
    846 
    847 	rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
    848 
    849 	size = sizeof(uint16_t) * rx_ring->ring_size;
    850 	rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
    851 
    852 	for (i = 0; i < rx_ring->ring_size; i++)
    853 		rx_ring->free_rx_ids[i] = i;
    854 
    855 	/* Reset RX statistics. */
    856 	ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
    857 	    sizeof(rx_ring->rx_stats));
    858 
    859 	rx_ring->next_to_clean = 0;
    860 	rx_ring->next_to_use = 0;
    861 
    862 	/* ... and create the buffer DMA maps */
    863 	for (i = 0; i < rx_ring->ring_size; i++) {
    864 		err = bus_dmamap_create(adapter->sc_dmat,
    865 		    MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
    866 		    0, 0,
    867 		    &(rx_ring->rx_buffer_info[i].map));
    868 		if (err != 0) {
    869 			ena_trace(ENA_ALERT,
    870 			    "Unable to create Rx DMA map for buffer %d\n", i);
    871 			goto err_buf_info_unmap;
    872 		}
    873 	}
    874 
    875 #ifdef LRO
    876 	/* Create LRO for the ring */
    877 	if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
    878 		int err = tcp_lro_init(&rx_ring->lro);
    879 		if (err != 0) {
    880 			device_printf(adapter->pdev,
    881 			    "LRO[%d] Initialization failed!\n", qid);
    882 		} else {
    883 			ena_trace(ENA_INFO,
    884 			    "RX Soft LRO[%d] Initialized\n", qid);
    885 			rx_ring->lro.ifp = adapter->ifp;
    886 		}
    887 	}
    888 #endif
    889 
    890 	/* Allocate workqueues */
    891 	int rc = workqueue_create(&rx_ring->cmpl_tq, "ena_rx_comp",
    892 	    ena_deferred_rx_cleanup, rx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
    893 	if (unlikely(rc != 0)) {
    894 		ena_trace(ENA_ALERT,
    895 		    "Unable to create workqueue for RX completion task\n");
    896 		goto err_buf_info_unmap;
    897 	}
    898 
    899 #if 0
    900 	/* RSS set cpu for thread */
    901 #ifdef RSS
    902 	CPU_SETOF(que->cpu, &cpu_mask);
    903 	taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask,
    904 	    "%s rx_ring cmpl (bucket %d)",
    905 	    device_xname(adapter->pdev), que->cpu);
    906 #else
    907 	taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET,
    908 	    "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu);
    909 #endif
    910 #endif
    911 
    912 	return (0);
    913 
    914 err_buf_info_unmap:
    915 	while (i--) {
    916 		bus_dmamap_destroy(adapter->sc_dmat,
    917 		    rx_ring->rx_buffer_info[i].map);
    918 	}
    919 
    920 	free(rx_ring->free_rx_ids, M_DEVBUF);
    921 	rx_ring->free_rx_ids = NULL;
    922 	free(rx_ring->rx_buffer_info, M_DEVBUF);
    923 	rx_ring->rx_buffer_info = NULL;
    924 	return (ENOMEM);
    925 }
    926 
    927 /**
    928  * ena_free_rx_resources - Free Rx Resources
    929  * @adapter: network interface device structure
    930  * @qid: queue index
    931  *
    932  * Free all receive software resources
    933  **/
    934 static void
    935 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
    936 {
    937 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
    938 
    939 	workqueue_wait(rx_ring->cmpl_tq, &rx_ring->cmpl_task);
    940 	workqueue_destroy(rx_ring->cmpl_tq);
    941 	rx_ring->cmpl_tq = NULL;
    942 
    943 	/* Free buffer DMA maps, */
    944 	for (int i = 0; i < rx_ring->ring_size; i++) {
    945 		m_freem(rx_ring->rx_buffer_info[i].mbuf);
    946 		rx_ring->rx_buffer_info[i].mbuf = NULL;
    947 		bus_dmamap_unload(adapter->sc_dmat,
    948 		    rx_ring->rx_buffer_info[i].map);
    949 		bus_dmamap_destroy(adapter->sc_dmat,
    950 		    rx_ring->rx_buffer_info[i].map);
    951 	}
    952 
    953 #ifdef LRO
    954 	/* free LRO resources, */
    955 	tcp_lro_free(&rx_ring->lro);
    956 #endif
    957 
    958 	/* free allocated memory */
    959 	free(rx_ring->rx_buffer_info, M_DEVBUF);
    960 	rx_ring->rx_buffer_info = NULL;
    961 
    962 	free(rx_ring->free_rx_ids, M_DEVBUF);
    963 	rx_ring->free_rx_ids = NULL;
    964 }
    965 
    966 /**
    967  * ena_setup_all_rx_resources - allocate all queues Rx resources
    968  * @adapter: network interface device structure
    969  *
    970  * Returns 0 on success, otherwise on failure.
    971  **/
    972 static int
    973 ena_setup_all_rx_resources(struct ena_adapter *adapter)
    974 {
    975 	int i, rc = 0;
    976 
    977 	for (i = 0; i < adapter->num_queues; i++) {
    978 		rc = ena_setup_rx_resources(adapter, i);
    979 		if (rc != 0) {
    980 			device_printf(adapter->pdev,
    981 			    "Allocation for Rx Queue %u failed\n", i);
    982 			goto err_setup_rx;
    983 		}
    984 	}
    985 	return (0);
    986 
    987 err_setup_rx:
    988 	/* rewind the index freeing the rings as we go */
    989 	while (i--)
    990 		ena_free_rx_resources(adapter, i);
    991 	return (rc);
    992 }
    993 
    994 /**
    995  * ena_free_all_rx_resources - Free Rx resources for all queues
    996  * @adapter: network interface device structure
    997  *
    998  * Free all receive software resources
    999  **/
   1000 static void
   1001 ena_free_all_rx_resources(struct ena_adapter *adapter)
   1002 {
   1003 	int i;
   1004 
   1005 	for (i = 0; i < adapter->num_queues; i++)
   1006 		ena_free_rx_resources(adapter, i);
   1007 }
   1008 
   1009 static inline int
   1010 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
   1011     struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
   1012 {
   1013 	struct ena_com_buf *ena_buf;
   1014 	int error;
   1015 	int mlen;
   1016 
   1017 	/* if previous allocated frag is not used */
   1018 	if (unlikely(rx_info->mbuf != NULL))
   1019 		return (0);
   1020 
   1021 	/* Get mbuf using UMA allocator */
   1022 	rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES);
   1023 
   1024 	if (unlikely(rx_info->mbuf == NULL)) {
   1025 		counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1);
   1026 		rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
   1027 		if (unlikely(rx_info->mbuf == NULL)) {
   1028 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
   1029 			return (ENOMEM);
   1030 		}
   1031 		mlen = MCLBYTES;
   1032 	} else {
   1033 		mlen = MJUM16BYTES;
   1034 	}
   1035 	/* Set mbuf length*/
   1036 	rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
   1037 
   1038 	/* Map packets for DMA */
   1039 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
   1040 	    "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
   1041 	    adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
   1042 	error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
   1043 	    rx_info->mbuf, BUS_DMA_NOWAIT);
   1044 	if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
   1045 		ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
   1046 		    "nsegs: %d\n", error, rx_info->map->dm_nsegs);
   1047 		counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
   1048 		goto exit;
   1049 
   1050 	}
   1051 
   1052 	bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
   1053 	    rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
   1054 
   1055 	ena_buf = &rx_info->ena_buf;
   1056 	ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
   1057 	ena_buf->len = mlen;
   1058 
   1059 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
   1060 	    "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
   1061 	    rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
   1062 
   1063 	return (0);
   1064 
   1065 exit:
   1066 	m_freem(rx_info->mbuf);
   1067 	rx_info->mbuf = NULL;
   1068 	return (EFAULT);
   1069 }
   1070 
   1071 static void
   1072 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
   1073     struct ena_rx_buffer *rx_info)
   1074 {
   1075 
   1076 	if (rx_info->mbuf == NULL) {
   1077 		ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
   1078 		return;
   1079 	}
   1080 
   1081 	bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
   1082 	m_freem(rx_info->mbuf);
   1083 	rx_info->mbuf = NULL;
   1084 }
   1085 
   1086 /**
   1087  * ena_refill_rx_bufs - Refills ring with descriptors
   1088  * @rx_ring: the ring which we want to feed with free descriptors
   1089  * @num: number of descriptors to refill
   1090  * Refills the ring with newly allocated DMA-mapped mbufs for receiving
   1091  **/
   1092 static int
   1093 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
   1094 {
   1095 	struct ena_adapter *adapter = rx_ring->adapter;
   1096 	uint16_t next_to_use, req_id;
   1097 	uint32_t i;
   1098 	int rc;
   1099 
   1100 	ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
   1101 	    rx_ring->qid);
   1102 
   1103 	next_to_use = rx_ring->next_to_use;
   1104 
   1105 	for (i = 0; i < num; i++) {
   1106 		struct ena_rx_buffer *rx_info;
   1107 
   1108 		ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
   1109 		    "RX buffer - next to use: %d", next_to_use);
   1110 
   1111 		req_id = rx_ring->free_rx_ids[next_to_use];
   1112 		rc = validate_rx_req_id(rx_ring, req_id);
   1113 		if (unlikely(rc != 0))
   1114 			break;
   1115 
   1116 		rx_info = &rx_ring->rx_buffer_info[req_id];
   1117 
   1118 		rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
   1119 		if (unlikely(rc != 0)) {
   1120 			ena_trace(ENA_WARNING,
   1121 			    "failed to alloc buffer for rx queue %d\n",
   1122 			    rx_ring->qid);
   1123 			break;
   1124 		}
   1125 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
   1126 		    &rx_info->ena_buf, req_id);
   1127 		if (unlikely(rc != 0)) {
   1128 			ena_trace(ENA_WARNING,
   1129 			    "failed to add buffer for rx queue %d\n",
   1130 			    rx_ring->qid);
   1131 			break;
   1132 		}
   1133 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
   1134 		    rx_ring->ring_size);
   1135 	}
   1136 
   1137 	if (unlikely(i < num)) {
   1138 		counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
   1139 		ena_trace(ENA_WARNING,
   1140 		     "refilled rx qid %d with only %d mbufs (from %d)\n",
   1141 		     rx_ring->qid, i, num);
   1142 	}
   1143 
   1144 	if (likely(i != 0)) {
   1145 		wmb();
   1146 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
   1147 	}
   1148 	rx_ring->next_to_use = next_to_use;
   1149 	return (i);
   1150 }
   1151 
   1152 static void
   1153 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
   1154 {
   1155 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
   1156 	unsigned int i;
   1157 
   1158 	for (i = 0; i < rx_ring->ring_size; i++) {
   1159 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
   1160 
   1161 		if (rx_info->mbuf != NULL)
   1162 			ena_free_rx_mbuf(adapter, rx_ring, rx_info);
   1163 	}
   1164 }
   1165 
   1166 /**
   1167  * ena_refill_all_rx_bufs - allocate all queues Rx buffers
   1168  * @adapter: network interface device structure
   1169  *
   1170  */
   1171 static void
   1172 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
   1173 {
   1174 	struct ena_ring *rx_ring;
   1175 	int i, rc, bufs_num;
   1176 
   1177 	for (i = 0; i < adapter->num_queues; i++) {
   1178 		rx_ring = &adapter->rx_ring[i];
   1179 		bufs_num = rx_ring->ring_size - 1;
   1180 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
   1181 
   1182 		if (unlikely(rc != bufs_num))
   1183 			ena_trace(ENA_WARNING, "refilling Queue %d failed. "
   1184 			    "Allocated %d buffers from: %d\n", i, rc, bufs_num);
   1185 	}
   1186 }
   1187 
   1188 static void
   1189 ena_free_all_rx_bufs(struct ena_adapter *adapter)
   1190 {
   1191 	int i;
   1192 
   1193 	for (i = 0; i < adapter->num_queues; i++)
   1194 		ena_free_rx_bufs(adapter, i);
   1195 }
   1196 
   1197 /**
   1198  * ena_free_tx_bufs - Free Tx Buffers per Queue
   1199  * @adapter: network interface device structure
   1200  * @qid: queue index
   1201  **/
   1202 static void
   1203 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
   1204 {
   1205 	bool print_once = true;
   1206 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
   1207 
   1208 	ENA_RING_MTX_LOCK(tx_ring);
   1209 	for (int i = 0; i < tx_ring->ring_size; i++) {
   1210 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
   1211 
   1212 		if (tx_info->mbuf == NULL)
   1213 			continue;
   1214 
   1215 		if (print_once) {
   1216 			device_printf(adapter->pdev,
   1217 			    "free uncompleted tx mbuf qid %d idx 0x%x",
   1218 			    qid, i);
   1219 			print_once = false;
   1220 		} else {
   1221 			ena_trace(ENA_DBG,
   1222 			    "free uncompleted tx mbuf qid %d idx 0x%x",
   1223 			     qid, i);
   1224 		}
   1225 
   1226 		bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   1227 		m_free(tx_info->mbuf);
   1228 		tx_info->mbuf = NULL;
   1229 	}
   1230 	ENA_RING_MTX_UNLOCK(tx_ring);
   1231 }
   1232 
   1233 static void
   1234 ena_free_all_tx_bufs(struct ena_adapter *adapter)
   1235 {
   1236 
   1237 	for (int i = 0; i < adapter->num_queues; i++)
   1238 		ena_free_tx_bufs(adapter, i);
   1239 }
   1240 
   1241 static void
   1242 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
   1243 {
   1244 	uint16_t ena_qid;
   1245 	int i;
   1246 
   1247 	for (i = 0; i < adapter->num_queues; i++) {
   1248 		ena_qid = ENA_IO_TXQ_IDX(i);
   1249 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
   1250 	}
   1251 }
   1252 
   1253 static void
   1254 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
   1255 {
   1256 	uint16_t ena_qid;
   1257 	int i;
   1258 
   1259 	for (i = 0; i < adapter->num_queues; i++) {
   1260 		ena_qid = ENA_IO_RXQ_IDX(i);
   1261 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
   1262 	}
   1263 }
   1264 
   1265 static void
   1266 ena_destroy_all_io_queues(struct ena_adapter *adapter)
   1267 {
   1268 	ena_destroy_all_tx_queues(adapter);
   1269 	ena_destroy_all_rx_queues(adapter);
   1270 }
   1271 
   1272 static inline int
   1273 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
   1274 {
   1275 	struct ena_adapter *adapter = tx_ring->adapter;
   1276 	struct ena_tx_buffer *tx_info = NULL;
   1277 
   1278 	if (likely(req_id < tx_ring->ring_size)) {
   1279 		tx_info = &tx_ring->tx_buffer_info[req_id];
   1280 		if (tx_info->mbuf != NULL)
   1281 			return (0);
   1282 	}
   1283 
   1284 	if (tx_info->mbuf == NULL)
   1285 		device_printf(adapter->pdev,
   1286 		    "tx_info doesn't have valid mbuf\n");
   1287 	else
   1288 		device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
   1289 
   1290 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
   1291 
   1292 	return (EFAULT);
   1293 }
   1294 
   1295 static int
   1296 ena_create_io_queues(struct ena_adapter *adapter)
   1297 {
   1298 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   1299 	struct ena_com_create_io_ctx ctx;
   1300 	struct ena_ring *ring;
   1301 	uint16_t ena_qid;
   1302 	uint32_t msix_vector;
   1303 	int rc, i;
   1304 
   1305 	/* Create TX queues */
   1306 	for (i = 0; i < adapter->num_queues; i++) {
   1307 		msix_vector = ENA_IO_IRQ_IDX(i);
   1308 		ena_qid = ENA_IO_TXQ_IDX(i);
   1309 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
   1310 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
   1311 		ctx.queue_size = adapter->tx_ring_size;
   1312 		ctx.msix_vector = msix_vector;
   1313 		ctx.qid = ena_qid;
   1314 		rc = ena_com_create_io_queue(ena_dev, &ctx);
   1315 		if (rc != 0) {
   1316 			device_printf(adapter->pdev,
   1317 			    "Failed to create io TX queue #%d rc: %d\n", i, rc);
   1318 			goto err_tx;
   1319 		}
   1320 		ring = &adapter->tx_ring[i];
   1321 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
   1322 		    &ring->ena_com_io_sq,
   1323 		    &ring->ena_com_io_cq);
   1324 		if (rc != 0) {
   1325 			device_printf(adapter->pdev,
   1326 			    "Failed to get TX queue handlers. TX queue num"
   1327 			    " %d rc: %d\n", i, rc);
   1328 			ena_com_destroy_io_queue(ena_dev, ena_qid);
   1329 			goto err_tx;
   1330 		}
   1331 	}
   1332 
   1333 	/* Create RX queues */
   1334 	for (i = 0; i < adapter->num_queues; i++) {
   1335 		msix_vector = ENA_IO_IRQ_IDX(i);
   1336 		ena_qid = ENA_IO_RXQ_IDX(i);
   1337 		ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
   1338 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
   1339 		ctx.queue_size = adapter->rx_ring_size;
   1340 		ctx.msix_vector = msix_vector;
   1341 		ctx.qid = ena_qid;
   1342 		rc = ena_com_create_io_queue(ena_dev, &ctx);
   1343 		if (unlikely(rc != 0)) {
   1344 			device_printf(adapter->pdev,
   1345 			    "Failed to create io RX queue[%d] rc: %d\n", i, rc);
   1346 			goto err_rx;
   1347 		}
   1348 
   1349 		ring = &adapter->rx_ring[i];
   1350 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
   1351 		    &ring->ena_com_io_sq,
   1352 		    &ring->ena_com_io_cq);
   1353 		if (unlikely(rc != 0)) {
   1354 			device_printf(adapter->pdev,
   1355 			    "Failed to get RX queue handlers. RX queue num"
   1356 			    " %d rc: %d\n", i, rc);
   1357 			ena_com_destroy_io_queue(ena_dev, ena_qid);
   1358 			goto err_rx;
   1359 		}
   1360 	}
   1361 
   1362 	return (0);
   1363 
   1364 err_rx:
   1365 	while (i--)
   1366 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
   1367 	i = adapter->num_queues;
   1368 err_tx:
   1369 	while (i--)
   1370 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
   1371 
   1372 	return (ENXIO);
   1373 }
   1374 
   1375 /**
   1376  * ena_tx_cleanup - clear sent packets and corresponding descriptors
   1377  * @tx_ring: ring for which we want to clean packets
   1378  *
   1379  * Once packets are sent, we ask the device in a loop for no longer used
   1380  * descriptors. We find the related mbuf chain in a map (index in an array)
   1381  * and free it, then update ring state.
   1382  * This is performed in "endless" loop, updating ring pointers every
   1383  * TX_COMMIT. The first check of free descriptor is performed before the actual
   1384  * loop, then repeated at the loop end.
   1385  **/
   1386 static int
   1387 ena_tx_cleanup(struct ena_ring *tx_ring)
   1388 {
   1389 	struct ena_adapter *adapter;
   1390 	struct ena_com_io_cq* io_cq;
   1391 	uint16_t next_to_clean;
   1392 	uint16_t req_id;
   1393 	uint16_t ena_qid;
   1394 	unsigned int total_done = 0;
   1395 	int rc;
   1396 	int commit = TX_COMMIT;
   1397 	int budget = TX_BUDGET;
   1398 	int work_done;
   1399 
   1400 	adapter = tx_ring->que->adapter;
   1401 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   1402 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1403 	next_to_clean = tx_ring->next_to_clean;
   1404 
   1405 	do {
   1406 		struct ena_tx_buffer *tx_info;
   1407 		struct mbuf *mbuf;
   1408 
   1409 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
   1410 		if (unlikely(rc != 0))
   1411 			break;
   1412 
   1413 		rc = validate_tx_req_id(tx_ring, req_id);
   1414 		if (unlikely(rc != 0))
   1415 			break;
   1416 
   1417 		tx_info = &tx_ring->tx_buffer_info[req_id];
   1418 
   1419 		mbuf = tx_info->mbuf;
   1420 
   1421 		tx_info->mbuf = NULL;
   1422 		bintime_clear(&tx_info->timestamp);
   1423 
   1424 		if (likely(tx_info->num_of_bufs != 0)) {
   1425 			/* Map is no longer required */
   1426 			bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   1427 		}
   1428 
   1429 		ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
   1430 		    tx_ring->qid, mbuf);
   1431 
   1432 		m_freem(mbuf);
   1433 
   1434 		total_done += tx_info->tx_descs;
   1435 
   1436 		tx_ring->free_tx_ids[next_to_clean] = req_id;
   1437 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
   1438 		    tx_ring->ring_size);
   1439 
   1440 		if (unlikely(--commit == 0)) {
   1441 			commit = TX_COMMIT;
   1442 			/* update ring state every TX_COMMIT descriptor */
   1443 			tx_ring->next_to_clean = next_to_clean;
   1444 			ena_com_comp_ack(
   1445 			    &adapter->ena_dev->io_sq_queues[ena_qid],
   1446 			    total_done);
   1447 			ena_com_update_dev_comp_head(io_cq);
   1448 			total_done = 0;
   1449 		}
   1450 	} while (likely(--budget));
   1451 
   1452 	work_done = TX_BUDGET - budget;
   1453 
   1454 	ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
   1455 	tx_ring->qid, work_done);
   1456 
   1457 	/* If there is still something to commit update ring state */
   1458 	if (likely(commit != TX_COMMIT)) {
   1459 		tx_ring->next_to_clean = next_to_clean;
   1460 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
   1461 		    total_done);
   1462 		ena_com_update_dev_comp_head(io_cq);
   1463 	}
   1464 
   1465 	if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   1466 		workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
   1467 
   1468 	return (work_done);
   1469 }
   1470 
   1471 #if 0
   1472 static void
   1473 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
   1474     struct mbuf *mbuf)
   1475 {
   1476 	struct ena_adapter *adapter = rx_ring->adapter;
   1477 
   1478 	if (likely(adapter->rss_support)) {
   1479 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
   1480 
   1481 		if (ena_rx_ctx->frag &&
   1482 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
   1483 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
   1484 			return;
   1485 		}
   1486 
   1487 		switch (ena_rx_ctx->l3_proto) {
   1488 		case ENA_ETH_IO_L3_PROTO_IPV4:
   1489 			switch (ena_rx_ctx->l4_proto) {
   1490 			case ENA_ETH_IO_L4_PROTO_TCP:
   1491 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
   1492 				break;
   1493 			case ENA_ETH_IO_L4_PROTO_UDP:
   1494 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
   1495 				break;
   1496 			default:
   1497 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
   1498 			}
   1499 			break;
   1500 		case ENA_ETH_IO_L3_PROTO_IPV6:
   1501 			switch (ena_rx_ctx->l4_proto) {
   1502 			case ENA_ETH_IO_L4_PROTO_TCP:
   1503 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
   1504 				break;
   1505 			case ENA_ETH_IO_L4_PROTO_UDP:
   1506 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
   1507 				break;
   1508 			default:
   1509 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
   1510 			}
   1511 			break;
   1512 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
   1513 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
   1514 			break;
   1515 		default:
   1516 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
   1517 		}
   1518 	} else {
   1519 		mbuf->m_pkthdr.flowid = rx_ring->qid;
   1520 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
   1521 	}
   1522 }
   1523 #endif
   1524 
   1525 /**
   1526  * ena_rx_mbuf - assemble mbuf from descriptors
   1527  * @rx_ring: ring for which we want to clean packets
   1528  * @ena_bufs: buffer info
   1529  * @ena_rx_ctx: metadata for this packet(s)
   1530  * @next_to_clean: ring pointer, will be updated only upon success
   1531  *
   1532  **/
   1533 static struct mbuf*
   1534 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
   1535     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
   1536 {
   1537 	struct mbuf *mbuf;
   1538 	struct ena_rx_buffer *rx_info;
   1539 	struct ena_adapter *adapter;
   1540 	unsigned int descs = ena_rx_ctx->descs;
   1541 	uint16_t ntc, len, req_id, buf = 0;
   1542 
   1543 	ntc = *next_to_clean;
   1544 	adapter = rx_ring->adapter;
   1545 	rx_info = &rx_ring->rx_buffer_info[ntc];
   1546 
   1547 	if (unlikely(rx_info->mbuf == NULL)) {
   1548 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
   1549 		return (NULL);
   1550 	}
   1551 
   1552 	len = ena_bufs[buf].len;
   1553 	req_id = ena_bufs[buf].req_id;
   1554 	rx_info = &rx_ring->rx_buffer_info[req_id];
   1555 
   1556 	ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
   1557 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
   1558 
   1559 	mbuf = rx_info->mbuf;
   1560 	KASSERT(mbuf->m_flags & M_PKTHDR);
   1561 	mbuf->m_pkthdr.len = len;
   1562 	mbuf->m_len = len;
   1563 	m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
   1564 
   1565 	/* Fill mbuf with hash key and it's interpretation for optimization */
   1566 #if 0
   1567 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
   1568 #endif
   1569 
   1570 	ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d",
   1571 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
   1572 
   1573 	/* DMA address is not needed anymore, unmap it */
   1574 	bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
   1575 
   1576 	rx_info->mbuf = NULL;
   1577 	rx_ring->free_rx_ids[ntc] = req_id;
   1578 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
   1579 
   1580 	/*
   1581 	 * While we have more than 1 descriptors for one rcvd packet, append
   1582 	 * other mbufs to the main one
   1583 	 */
   1584 	while (--descs) {
   1585 		++buf;
   1586 		len = ena_bufs[buf].len;
   1587 		req_id = ena_bufs[buf].req_id;
   1588 		rx_info = &rx_ring->rx_buffer_info[req_id];
   1589 
   1590 		if (unlikely(rx_info->mbuf == NULL)) {
   1591 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
   1592 			/*
   1593 			 * If one of the required mbufs was not allocated yet,
   1594 			 * we can break there.
   1595 			 * All earlier used descriptors will be reallocated
   1596 			 * later and not used mbufs can be reused.
   1597 			 * The next_to_clean pointer will not be updated in case
   1598 			 * of an error, so caller should advance it manually
   1599 			 * in error handling routine to keep it up to date
   1600 			 * with hw ring.
   1601 			 */
   1602 			m_freem(mbuf);
   1603 			return (NULL);
   1604 		}
   1605 
   1606 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
   1607 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
   1608 			ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
   1609 			    mbuf);
   1610 		}
   1611 
   1612 		ena_trace(ENA_DBG | ENA_RXPTH,
   1613 		    "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
   1614 
   1615 		/* Free already appended mbuf, it won't be useful anymore */
   1616 		bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
   1617 		m_freem(rx_info->mbuf);
   1618 		rx_info->mbuf = NULL;
   1619 
   1620 		rx_ring->free_rx_ids[ntc] = req_id;
   1621 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
   1622 	}
   1623 
   1624 	*next_to_clean = ntc;
   1625 
   1626 	return (mbuf);
   1627 }
   1628 
   1629 /**
   1630  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
   1631  **/
   1632 static inline void
   1633 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
   1634     struct mbuf *mbuf)
   1635 {
   1636 
   1637 	/* IPv4 */
   1638 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
   1639 		mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1640 		if (ena_rx_ctx->l3_csum_err) {
   1641 			/* ipv4 checksum error */
   1642 			mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1643 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1644 			ena_trace(ENA_DBG, "RX IPv4 header checksum error");
   1645 			return;
   1646 		}
   1647 
   1648 		/*  TCP/UDP */
   1649 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
   1650 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
   1651 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
   1652 			if (ena_rx_ctx->l4_csum_err) {
   1653 				/* TCP/UDP checksum error */
   1654 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1655 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1656 				ena_trace(ENA_DBG, "RX L4 checksum error");
   1657 			}
   1658 		}
   1659 	}
   1660 	/* IPv6 */
   1661 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
   1662 		/*  TCP/UDP */
   1663 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
   1664 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
   1665 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
   1666 			if (ena_rx_ctx->l4_csum_err) {
   1667 				/* TCP/UDP checksum error */
   1668 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1669 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1670 				ena_trace(ENA_DBG, "RX L4 checksum error");
   1671 			}
   1672 		}
   1673 	}
   1674 }
   1675 
   1676 static void
   1677 ena_deferred_rx_cleanup(struct work *wk, void *arg)
   1678 {
   1679 	struct ena_ring *rx_ring = arg;
   1680 	int budget = CLEAN_BUDGET;
   1681 
   1682 	atomic_swap_uint(&rx_ring->task_pending, 0);
   1683 
   1684 	ENA_RING_MTX_LOCK(rx_ring);
   1685 	/*
   1686 	 * If deferred task was executed, perform cleanup of all awaiting
   1687 	 * descs (or until given budget is depleted to avoid infinite loop).
   1688 	 */
   1689 	while (likely(budget--)) {
   1690 		if (ena_rx_cleanup(rx_ring) == 0)
   1691 			break;
   1692 	}
   1693 	ENA_RING_MTX_UNLOCK(rx_ring);
   1694 }
   1695 
   1696 /**
   1697  * ena_rx_cleanup - handle rx irq
   1698  * @arg: ring for which irq is being handled
   1699  **/
   1700 static int
   1701 ena_rx_cleanup(struct ena_ring *rx_ring)
   1702 {
   1703 	struct ena_adapter *adapter;
   1704 	struct mbuf *mbuf;
   1705 	struct ena_com_rx_ctx ena_rx_ctx;
   1706 	struct ena_com_io_cq* io_cq;
   1707 	struct ena_com_io_sq* io_sq;
   1708 	struct ifnet *ifp;
   1709 	uint16_t ena_qid;
   1710 	uint16_t next_to_clean;
   1711 	uint32_t refill_required;
   1712 	uint32_t refill_threshold;
   1713 	uint32_t do_if_input = 0;
   1714 	unsigned int qid;
   1715 	int rc, i;
   1716 	int budget = RX_BUDGET;
   1717 
   1718 	adapter = rx_ring->que->adapter;
   1719 	ifp = adapter->ifp;
   1720 	qid = rx_ring->que->id;
   1721 	ena_qid = ENA_IO_RXQ_IDX(qid);
   1722 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1723 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
   1724 	next_to_clean = rx_ring->next_to_clean;
   1725 
   1726 	ena_trace(ENA_DBG, "rx: qid %d", qid);
   1727 
   1728 	do {
   1729 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
   1730 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
   1731 		ena_rx_ctx.descs = 0;
   1732 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
   1733 
   1734 		if (unlikely(rc != 0))
   1735 			goto error;
   1736 
   1737 		if (unlikely(ena_rx_ctx.descs == 0))
   1738 			break;
   1739 
   1740 		ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
   1741 		    "descs #: %d l3 proto %d l4 proto %d hash: %x",
   1742 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
   1743 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
   1744 
   1745 		/* Receive mbuf from the ring */
   1746 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
   1747 		    &ena_rx_ctx, &next_to_clean);
   1748 
   1749 		/* Exit if we failed to retrieve a buffer */
   1750 		if (unlikely(mbuf == NULL)) {
   1751 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
   1752 				rx_ring->free_rx_ids[next_to_clean] =
   1753 				    rx_ring->ena_bufs[i].req_id;
   1754 				next_to_clean =
   1755 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
   1756 				    rx_ring->ring_size);
   1757 
   1758 			}
   1759 			break;
   1760 		}
   1761 
   1762 		if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
   1763 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
   1764 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
   1765 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
   1766 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
   1767 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
   1768 		}
   1769 
   1770 		counter_enter();
   1771 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
   1772 		    mbuf->m_pkthdr.len);
   1773 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
   1774 		    mbuf->m_pkthdr.len);
   1775 		counter_exit();
   1776 		/*
   1777 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
   1778 		 * should be computed by hardware.
   1779 		 */
   1780 		do_if_input = 1;
   1781 #ifdef LRO
   1782 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
   1783 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
   1784 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
   1785 			/*
   1786 			 * Send to the stack if:
   1787 			 *  - LRO not enabled, or
   1788 			 *  - no LRO resources, or
   1789 			 *  - lro enqueue fails
   1790 			 */
   1791 			if ((rx_ring->lro.lro_cnt != 0) &&
   1792 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
   1793 					do_if_input = 0;
   1794 		}
   1795 #endif
   1796 		if (do_if_input != 0) {
   1797 			ena_trace(ENA_DBG | ENA_RXPTH,
   1798 			    "calling if_input() with mbuf %p", mbuf);
   1799 			if_percpuq_enqueue(ifp->if_percpuq, mbuf);
   1800 		}
   1801 
   1802 		counter_enter();
   1803 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
   1804 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
   1805 		counter_exit();
   1806 	} while (--budget);
   1807 
   1808 	rx_ring->next_to_clean = next_to_clean;
   1809 
   1810 	refill_required = ena_com_free_desc(io_sq);
   1811 	refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
   1812 
   1813 	if (refill_required > refill_threshold) {
   1814 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
   1815 		ena_refill_rx_bufs(rx_ring, refill_required);
   1816 	}
   1817 
   1818 #ifdef LRO
   1819 	tcp_lro_flush_all(&rx_ring->lro);
   1820 #endif
   1821 
   1822 	return (RX_BUDGET - budget);
   1823 
   1824 error:
   1825 	counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
   1826 	return (RX_BUDGET - budget);
   1827 }
   1828 
   1829 /*********************************************************************
   1830  *
   1831  *  MSIX & Interrupt Service routine
   1832  *
   1833  **********************************************************************/
   1834 
   1835 /**
   1836  * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
   1837  * @arg: interrupt number
   1838  **/
   1839 static int
   1840 ena_intr_msix_mgmnt(void *arg)
   1841 {
   1842 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
   1843 
   1844 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
   1845 	if (likely(adapter->running))
   1846 		ena_com_aenq_intr_handler(adapter->ena_dev, arg);
   1847 
   1848 	return 1;
   1849 }
   1850 
   1851 /**
   1852  * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
   1853  * @arg: interrupt number
   1854  **/
   1855 static int
   1856 ena_handle_msix(void *arg)
   1857 {
   1858 	struct ena_que	*que = arg;
   1859 	struct ena_adapter *adapter = que->adapter;
   1860 	struct ifnet *ifp = adapter->ifp;
   1861 	struct ena_ring *tx_ring;
   1862 	struct ena_ring *rx_ring;
   1863 	struct ena_com_io_cq* io_cq;
   1864 	struct ena_eth_io_intr_reg intr_reg;
   1865 	int qid, ena_qid;
   1866 	int txc, rxc, i;
   1867 
   1868 	if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
   1869 		return 0;
   1870 
   1871 	ena_trace(ENA_DBG, "MSI-X TX/RX routine");
   1872 
   1873 	tx_ring = que->tx_ring;
   1874 	rx_ring = que->rx_ring;
   1875 	qid = que->id;
   1876 	ena_qid = ENA_IO_TXQ_IDX(qid);
   1877 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1878 
   1879 	for (i = 0; i < CLEAN_BUDGET; ++i) {
   1880 		/*
   1881 		 * If lock cannot be acquired, then deferred cleanup task was
   1882 		 * being executed and rx ring is being cleaned up in
   1883 		 * another thread.
   1884 		 */
   1885 		if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) {
   1886 			rxc = ena_rx_cleanup(rx_ring);
   1887 			ENA_RING_MTX_UNLOCK(rx_ring);
   1888 		} else {
   1889 			rxc = 0;
   1890 		}
   1891 
   1892 		/* Protection from calling ena_tx_cleanup from ena_start_xmit */
   1893 		ENA_RING_MTX_LOCK(tx_ring);
   1894 		txc = ena_tx_cleanup(tx_ring);
   1895 		ENA_RING_MTX_UNLOCK(tx_ring);
   1896 
   1897 		if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
   1898 			return 0;
   1899 
   1900 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
   1901 		       break;
   1902 	}
   1903 
   1904 	/* Signal that work is done and unmask interrupt */
   1905 	ena_com_update_intr_reg(&intr_reg,
   1906 	    RX_IRQ_INTERVAL,
   1907 	    TX_IRQ_INTERVAL,
   1908 	    true);
   1909 	ena_com_unmask_intr(io_cq, &intr_reg);
   1910 
   1911 	return 1;
   1912 }
   1913 
   1914 static int
   1915 ena_enable_msix(struct ena_adapter *adapter)
   1916 {
   1917 	int msix_req;
   1918 	int counts[PCI_INTR_TYPE_SIZE];
   1919 	int max_type;
   1920 
   1921 	/* Reserved the max msix vectors we might need */
   1922 	msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
   1923 
   1924 	counts[PCI_INTR_TYPE_INTX] = 0;
   1925 	counts[PCI_INTR_TYPE_MSI] = 0;
   1926 	counts[PCI_INTR_TYPE_MSIX] = msix_req;
   1927 	max_type = PCI_INTR_TYPE_MSIX;
   1928 
   1929 	if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
   1930 	    max_type) != 0) {
   1931 		aprint_error_dev(adapter->pdev,
   1932 		    "failed to allocate interrupt\n");
   1933 		return ENOSPC;
   1934 	}
   1935 
   1936 	adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
   1937 
   1938 	if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
   1939 		device_printf(adapter->pdev,
   1940 		    "Enable only %d MSI-x (out of %d), reduce "
   1941 		    "the number of queues\n", adapter->sc_nintrs, msix_req);
   1942 		adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
   1943 	}
   1944 
   1945 	return 0;
   1946 }
   1947 
   1948 #if 0
   1949 static void
   1950 ena_setup_io_intr(struct ena_adapter *adapter)
   1951 {
   1952 	static int last_bind_cpu = -1;
   1953 	int irq_idx;
   1954 
   1955 	for (int i = 0; i < adapter->num_queues; i++) {
   1956 		irq_idx = ENA_IO_IRQ_IDX(i);
   1957 
   1958 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
   1959 		    "%s-TxRx-%d", device_xname(adapter->pdev), i);
   1960 		adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
   1961 		adapter->irq_tbl[irq_idx].data = &adapter->que[i];
   1962 		adapter->irq_tbl[irq_idx].vector =
   1963 		    adapter->msix_entries[irq_idx].vector;
   1964 		ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
   1965 		    adapter->msix_entries[irq_idx].vector);
   1966 #ifdef	RSS
   1967 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
   1968 		    rss_getcpu(i % rss_getnumbuckets());
   1969 #else
   1970 		/*
   1971 		 * We still want to bind rings to the corresponding cpu
   1972 		 * using something similar to the RSS round-robin technique.
   1973 		 */
   1974 		if (unlikely(last_bind_cpu < 0))
   1975 			last_bind_cpu = CPU_FIRST();
   1976 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
   1977 		    last_bind_cpu;
   1978 		last_bind_cpu = CPU_NEXT(last_bind_cpu);
   1979 #endif
   1980 	}
   1981 }
   1982 #endif
   1983 
   1984 static int
   1985 ena_request_mgmnt_irq(struct ena_adapter *adapter)
   1986 {
   1987 	const char *intrstr;
   1988 	char intrbuf[PCI_INTRSTR_LEN];
   1989 	char intr_xname[INTRDEVNAMEBUF];
   1990 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
   1991 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
   1992 
   1993 	KASSERT(adapter->sc_intrs != NULL);
   1994 	KASSERT(adapter->sc_ihs[irq_slot] == NULL);
   1995 
   1996 	snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
   1997 	    device_xname(adapter->pdev));
   1998 	intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
   1999 	    intrbuf, sizeof(intrbuf));
   2000 
   2001 	adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
   2002 	    pc, adapter->sc_intrs[irq_slot],
   2003 	    IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
   2004 
   2005 	if (adapter->sc_ihs[irq_slot] == NULL) {
   2006 		device_printf(adapter->pdev, "failed to register "
   2007 		    "interrupt handler for MGMNT irq %s\n",
   2008 		    intrstr);
   2009 		return ENOMEM;
   2010 	}
   2011 
   2012 	aprint_normal_dev(adapter->pdev,
   2013 	    "for MGMNT interrupting at %s\n", intrstr);
   2014 
   2015 	return 0;
   2016 }
   2017 
   2018 static int
   2019 ena_request_io_irq(struct ena_adapter *adapter)
   2020 {
   2021 	const char *intrstr;
   2022 	char intrbuf[PCI_INTRSTR_LEN];
   2023 	char intr_xname[INTRDEVNAMEBUF];
   2024 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
   2025 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
   2026 	void *vih;
   2027 	kcpuset_t *affinity;
   2028 	int i;
   2029 
   2030 	KASSERT(adapter->sc_intrs != NULL);
   2031 
   2032 	kcpuset_create(&affinity, false);
   2033 
   2034 	for (i = 0; i < adapter->num_queues; i++) {
   2035 		int irq_slot = i + irq_off;
   2036 		int affinity_to = (irq_slot) % ncpu;
   2037 
   2038 		KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
   2039 		KASSERT(adapter->sc_ihs[irq_slot] == NULL);
   2040 
   2041 		snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
   2042 		    device_xname(adapter->pdev), i);
   2043 		intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
   2044 		    intrbuf, sizeof(intrbuf));
   2045 
   2046 		vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
   2047 		    adapter->sc_intrs[irq_slot], IPL_NET,
   2048 		    ena_handle_msix, &adapter->que[i], intr_xname);
   2049 
   2050 		if (adapter->sc_ihs[ENA_MGMNT_IRQ_IDX] == NULL) {
   2051 			device_printf(adapter->pdev, "failed to register "
   2052 			    "interrupt handler for IO queue %d irq %s\n",
   2053 			    i, intrstr);
   2054 			goto err;
   2055 		}
   2056 
   2057 		kcpuset_zero(affinity);
   2058 		/* Round-robin affinity */
   2059 		kcpuset_set(affinity, affinity_to);
   2060 		int error = interrupt_distribute(vih, affinity, NULL);
   2061 		if (error == 0) {
   2062 			aprint_normal_dev(adapter->pdev,
   2063 			    "for IO queue %d interrupting at %s"
   2064 			    " affinity to %u\n", i, intrstr, affinity_to);
   2065 		} else {
   2066 			aprint_normal_dev(adapter->pdev,
   2067 			    "for IO queue %d interrupting at %s\n", i, intrstr);
   2068 		}
   2069 
   2070 		adapter->sc_ihs[irq_slot] = vih;
   2071 
   2072 #ifdef	RSS
   2073 		ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
   2074 		    i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
   2075 #else
   2076 		ena_trace(ENA_INFO, "queue %d - cpu %d\n",
   2077 		    i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
   2078 #endif
   2079 	}
   2080 
   2081 	kcpuset_destroy(affinity);
   2082 	return 0;
   2083 
   2084 err:
   2085 	kcpuset_destroy(affinity);
   2086 
   2087 	for (i--; i >= 0; i--) {
   2088 #if defined(DEBUG) || defined(DIAGNOSTIC)
   2089 		int irq_slot = i + irq_off;
   2090 #endif
   2091 		KASSERT(adapter->sc_ihs[irq_slot] != NULL);
   2092 		pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[i]);
   2093 		adapter->sc_ihs[i] = NULL;
   2094 	}
   2095 
   2096 	return ENOSPC;
   2097 }
   2098 
   2099 static void
   2100 ena_free_mgmnt_irq(struct ena_adapter *adapter)
   2101 {
   2102 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
   2103 
   2104 	if (adapter->sc_ihs[irq_slot]) {
   2105 		pci_intr_disestablish(adapter->sc_pa.pa_pc,
   2106 		    adapter->sc_ihs[irq_slot]);
   2107 		adapter->sc_ihs[irq_slot] = NULL;
   2108 	}
   2109 }
   2110 
   2111 static void
   2112 ena_free_io_irq(struct ena_adapter *adapter)
   2113 {
   2114 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
   2115 
   2116 	for (int i = 0; i < adapter->num_queues; i++) {
   2117 		int irq_slot = i + irq_off;
   2118 
   2119 		if (adapter->sc_ihs[irq_slot]) {
   2120 			pci_intr_disestablish(adapter->sc_pa.pa_pc,
   2121 			    adapter->sc_ihs[i]);
   2122 			adapter->sc_ihs[i] = NULL;
   2123 		}
   2124 	}
   2125 }
   2126 
   2127 static void
   2128 ena_free_irqs(struct ena_adapter* adapter)
   2129 {
   2130 
   2131 	ena_free_io_irq(adapter);
   2132 	ena_free_mgmnt_irq(adapter);
   2133 	ena_disable_msix(adapter);
   2134 }
   2135 
   2136 static void
   2137 ena_disable_msix(struct ena_adapter *adapter)
   2138 {
   2139 	pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
   2140 	    adapter->sc_nintrs);
   2141 }
   2142 
   2143 static void
   2144 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
   2145 {
   2146 	struct ena_com_io_cq* io_cq;
   2147 	struct ena_eth_io_intr_reg intr_reg;
   2148 	uint16_t ena_qid;
   2149 	int i;
   2150 
   2151 	/* Unmask interrupts for all queues */
   2152 	for (i = 0; i < adapter->num_queues; i++) {
   2153 		ena_qid = ENA_IO_TXQ_IDX(i);
   2154 		io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   2155 		ena_com_update_intr_reg(&intr_reg, 0, 0, true);
   2156 		ena_com_unmask_intr(io_cq, &intr_reg);
   2157 	}
   2158 }
   2159 
   2160 /* Configure the Rx forwarding */
   2161 static int
   2162 ena_rss_configure(struct ena_adapter *adapter)
   2163 {
   2164 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   2165 	int rc;
   2166 
   2167 	/* Set indirect table */
   2168 	rc = ena_com_indirect_table_set(ena_dev);
   2169 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2170 		return (rc);
   2171 
   2172 	/* Configure hash function (if supported) */
   2173 	rc = ena_com_set_hash_function(ena_dev);
   2174 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2175 		return (rc);
   2176 
   2177 	/* Configure hash inputs (if supported) */
   2178 	rc = ena_com_set_hash_ctrl(ena_dev);
   2179 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2180 		return (rc);
   2181 
   2182 	return (0);
   2183 }
   2184 
   2185 static int
   2186 ena_up_complete(struct ena_adapter *adapter)
   2187 {
   2188 	int rc;
   2189 
   2190 	if (likely(adapter->rss_support)) {
   2191 		rc = ena_rss_configure(adapter);
   2192 		if (rc != 0)
   2193 			return (rc);
   2194 	}
   2195 
   2196 	rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
   2197 	if (unlikely(rc != 0))
   2198 		return (rc);
   2199 
   2200 	ena_refill_all_rx_bufs(adapter);
   2201 	ena_reset_counters((struct evcnt *)&adapter->hw_stats,
   2202 	    sizeof(adapter->hw_stats));
   2203 
   2204 	return (0);
   2205 }
   2206 
   2207 static int
   2208 ena_up(struct ena_adapter *adapter)
   2209 {
   2210 	int rc = 0;
   2211 
   2212 #if 0
   2213 	if (unlikely(device_is_attached(adapter->pdev) == 0)) {
   2214 		device_printf(adapter->pdev, "device is not attached!\n");
   2215 		return (ENXIO);
   2216 	}
   2217 #endif
   2218 
   2219 	if (unlikely(!adapter->running)) {
   2220 		device_printf(adapter->pdev, "device is not running!\n");
   2221 		return (ENXIO);
   2222 	}
   2223 
   2224 	if (!adapter->up) {
   2225 		device_printf(adapter->pdev, "device is going UP\n");
   2226 
   2227 		/* setup interrupts for IO queues */
   2228 		rc = ena_request_io_irq(adapter);
   2229 		if (unlikely(rc != 0)) {
   2230 			ena_trace(ENA_ALERT, "err_req_irq");
   2231 			goto err_req_irq;
   2232 		}
   2233 
   2234 		/* allocate transmit descriptors */
   2235 		rc = ena_setup_all_tx_resources(adapter);
   2236 		if (unlikely(rc != 0)) {
   2237 			ena_trace(ENA_ALERT, "err_setup_tx");
   2238 			goto err_setup_tx;
   2239 		}
   2240 
   2241 		/* allocate receive descriptors */
   2242 		rc = ena_setup_all_rx_resources(adapter);
   2243 		if (unlikely(rc != 0)) {
   2244 			ena_trace(ENA_ALERT, "err_setup_rx");
   2245 			goto err_setup_rx;
   2246 		}
   2247 
   2248 		/* create IO queues for Rx & Tx */
   2249 		rc = ena_create_io_queues(adapter);
   2250 		if (unlikely(rc != 0)) {
   2251 			ena_trace(ENA_ALERT,
   2252 			    "create IO queues failed");
   2253 			goto err_io_que;
   2254 		}
   2255 
   2256 		if (unlikely(adapter->link_status))
   2257 			if_link_state_change(adapter->ifp, LINK_STATE_UP);
   2258 
   2259 		rc = ena_up_complete(adapter);
   2260 		if (unlikely(rc != 0))
   2261 			goto err_up_complete;
   2262 
   2263 		counter_u64_add(adapter->dev_stats.interface_up, 1);
   2264 
   2265 		ena_update_hwassist(adapter);
   2266 
   2267 		if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
   2268 		    IFF_OACTIVE);
   2269 
   2270 		callout_reset(&adapter->timer_service, hz,
   2271 		    ena_timer_service, (void *)adapter);
   2272 
   2273 		adapter->up = true;
   2274 
   2275 		ena_unmask_all_io_irqs(adapter);
   2276 	}
   2277 
   2278 	return (0);
   2279 
   2280 err_up_complete:
   2281 	ena_destroy_all_io_queues(adapter);
   2282 err_io_que:
   2283 	ena_free_all_rx_resources(adapter);
   2284 err_setup_rx:
   2285 	ena_free_all_tx_resources(adapter);
   2286 err_setup_tx:
   2287 	ena_free_io_irq(adapter);
   2288 err_req_irq:
   2289 	return (rc);
   2290 }
   2291 
   2292 #if 0
   2293 static uint64_t
   2294 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
   2295 {
   2296 	struct ena_adapter *adapter;
   2297 	struct ena_hw_stats *stats;
   2298 
   2299 	adapter = if_getsoftc(ifp);
   2300 	stats = &adapter->hw_stats;
   2301 
   2302 	switch (cnt) {
   2303 	case IFCOUNTER_IPACKETS:
   2304 		return (counter_u64_fetch(stats->rx_packets));
   2305 	case IFCOUNTER_OPACKETS:
   2306 		return (counter_u64_fetch(stats->tx_packets));
   2307 	case IFCOUNTER_IBYTES:
   2308 		return (counter_u64_fetch(stats->rx_bytes));
   2309 	case IFCOUNTER_OBYTES:
   2310 		return (counter_u64_fetch(stats->tx_bytes));
   2311 	case IFCOUNTER_IQDROPS:
   2312 		return (counter_u64_fetch(stats->rx_drops));
   2313 	default:
   2314 		return (if_get_counter_default(ifp, cnt));
   2315 	}
   2316 }
   2317 #endif
   2318 
   2319 static int
   2320 ena_media_change(struct ifnet *ifp)
   2321 {
   2322 	/* Media Change is not supported by firmware */
   2323 	return (0);
   2324 }
   2325 
   2326 static void
   2327 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
   2328 {
   2329 	struct ena_adapter *adapter = if_getsoftc(ifp);
   2330 	ena_trace(ENA_DBG, "enter");
   2331 
   2332 	mutex_enter(&adapter->global_mtx);
   2333 
   2334 	ifmr->ifm_status = IFM_AVALID;
   2335 	ifmr->ifm_active = IFM_ETHER;
   2336 
   2337 	if (!adapter->link_status) {
   2338 		mutex_exit(&adapter->global_mtx);
   2339 		ena_trace(ENA_INFO, "link_status = false");
   2340 		return;
   2341 	}
   2342 
   2343 	ifmr->ifm_status |= IFM_ACTIVE;
   2344 	ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
   2345 
   2346 	mutex_exit(&adapter->global_mtx);
   2347 }
   2348 
   2349 static int
   2350 ena_init(struct ifnet *ifp)
   2351 {
   2352 	struct ena_adapter *adapter = if_getsoftc(ifp);
   2353 
   2354 	if (!adapter->up) {
   2355 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2356 		ena_up(adapter);
   2357 		rw_exit(&adapter->ioctl_sx);
   2358 	}
   2359 
   2360 	return 0;
   2361 }
   2362 
   2363 static int
   2364 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
   2365 {
   2366 	struct ena_adapter *adapter;
   2367 	struct ifreq *ifr;
   2368 	int rc;
   2369 
   2370 	adapter = ifp->if_softc;
   2371 	ifr = (struct ifreq *)data;
   2372 
   2373 	/*
   2374 	 * Acquiring lock to prevent from running up and down routines parallel.
   2375 	 */
   2376 	rc = 0;
   2377 	switch (command) {
   2378 	case SIOCSIFMTU:
   2379 		if (ifp->if_mtu == ifr->ifr_mtu)
   2380 			break;
   2381 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2382 		ena_down(adapter);
   2383 
   2384 		ena_change_mtu(ifp, ifr->ifr_mtu);
   2385 
   2386 		rc = ena_up(adapter);
   2387 		rw_exit(&adapter->ioctl_sx);
   2388 		break;
   2389 
   2390 	case SIOCSIFFLAGS:
   2391 		if ((ifp->if_flags & IFF_UP) != 0) {
   2392 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
   2393 				if ((ifp->if_flags & (IFF_PROMISC |
   2394 				    IFF_ALLMULTI)) != 0) {
   2395 					device_printf(adapter->pdev,
   2396 					    "ioctl promisc/allmulti\n");
   2397 				}
   2398 			} else {
   2399 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2400 				rc = ena_up(adapter);
   2401 				rw_exit(&adapter->ioctl_sx);
   2402 			}
   2403 		} else {
   2404 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
   2405 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2406 				ena_down(adapter);
   2407 				rw_exit(&adapter->ioctl_sx);
   2408 			}
   2409 		}
   2410 		break;
   2411 
   2412 	case SIOCADDMULTI:
   2413 	case SIOCDELMULTI:
   2414 		break;
   2415 
   2416 	case SIOCSIFCAP:
   2417 		{
   2418 			struct ifcapreq *ifcr = data;
   2419 			int reinit = 0;
   2420 
   2421 			if (ifcr->ifcr_capenable != ifp->if_capenable) {
   2422 				ifp->if_capenable = ifcr->ifcr_capenable;
   2423 				reinit = 1;
   2424 			}
   2425 
   2426 			if ((reinit != 0) &&
   2427 			    ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
   2428 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2429 				ena_down(adapter);
   2430 				rc = ena_up(adapter);
   2431 				rw_exit(&adapter->ioctl_sx);
   2432 			}
   2433 		}
   2434 
   2435 		break;
   2436 	default:
   2437 		rc = ether_ioctl(ifp, command, data);
   2438 		break;
   2439 	}
   2440 
   2441 	return (rc);
   2442 }
   2443 
   2444 static int
   2445 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
   2446 {
   2447 	int caps = 0;
   2448 
   2449 	if ((feat->offload.tx &
   2450 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
   2451 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
   2452 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
   2453 		caps |= IFCAP_CSUM_IPv4_Tx;
   2454 
   2455 	if ((feat->offload.tx &
   2456 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
   2457 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
   2458 		caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
   2459 
   2460 	if ((feat->offload.tx &
   2461 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
   2462 		caps |= IFCAP_TSOv4;
   2463 
   2464 	if ((feat->offload.tx &
   2465 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
   2466 		caps |= IFCAP_TSOv6;
   2467 
   2468 	if ((feat->offload.rx_supported &
   2469 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
   2470 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
   2471 		caps |= IFCAP_CSUM_IPv4_Rx;
   2472 
   2473 	if ((feat->offload.rx_supported &
   2474 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
   2475 		caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
   2476 
   2477 	caps |= IFCAP_LRO;
   2478 
   2479 	return (caps);
   2480 }
   2481 
   2482 static void
   2483 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
   2484 {
   2485 
   2486 	host_info->supported_network_features[0] =
   2487 	    (uint32_t)if_getcapabilities(ifp);
   2488 }
   2489 
   2490 static void
   2491 ena_update_hwassist(struct ena_adapter *adapter)
   2492 {
   2493 	struct ifnet *ifp = adapter->ifp;
   2494 	uint32_t feat = adapter->tx_offload_cap;
   2495 	int cap = if_getcapenable(ifp);
   2496 	int flags = 0;
   2497 
   2498 	if_clearhwassist(ifp);
   2499 
   2500 	if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2501 	    != 0) {
   2502 		if ((feat &
   2503 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
   2504 			flags |= M_CSUM_IPv4;
   2505 		if ((feat &
   2506 		    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
   2507 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
   2508 			flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
   2509 	}
   2510 
   2511 	if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
   2512 		flags |= M_CSUM_TCPv6;
   2513 
   2514 	if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
   2515 		flags |= M_CSUM_UDPv6;
   2516 
   2517 	if ((cap & IFCAP_TSOv4) != 0)
   2518 		flags |= M_CSUM_TSOv4;
   2519 
   2520 	if ((cap & IFCAP_TSOv6) != 0)
   2521 		flags |= M_CSUM_TSOv6;
   2522 
   2523 	if_sethwassistbits(ifp, flags, 0);
   2524 }
   2525 
   2526 static int
   2527 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
   2528     struct ena_com_dev_get_features_ctx *feat)
   2529 {
   2530 	struct ifnet *ifp;
   2531 	int caps = 0;
   2532 
   2533 	ifp = adapter->ifp = &adapter->sc_ec.ec_if;
   2534 	if (unlikely(ifp == NULL)) {
   2535 		ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
   2536 		return (ENXIO);
   2537 	}
   2538 	if_initname(ifp, "ena", device_unit(pdev));
   2539 	if_setdev(ifp, pdev);
   2540 	if_setsoftc(ifp, adapter);
   2541 
   2542 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
   2543 	if_setinitfn(ifp, ena_init);
   2544 	if_settransmitfn(ifp, ena_mq_start);
   2545 #if 0
   2546 	if_setqflushfn(ifp, ena_qflush);
   2547 #endif
   2548 	if_setioctlfn(ifp, ena_ioctl);
   2549 #if 0
   2550 	if_setgetcounterfn(ifp, ena_get_counter);
   2551 #endif
   2552 
   2553 	if_setsendqlen(ifp, adapter->tx_ring_size);
   2554 	if_setsendqready(ifp);
   2555 	if_setmtu(ifp, ETHERMTU);
   2556 	if_setbaudrate(ifp, 0);
   2557 	/* Zeroize capabilities... */
   2558 	if_setcapabilities(ifp, 0);
   2559 	if_setcapenable(ifp, 0);
   2560 	/* check hardware support */
   2561 	caps = ena_get_dev_offloads(feat);
   2562 	/* ... and set them */
   2563 	if_setcapabilitiesbit(ifp, caps, 0);
   2564 	adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2565 
   2566 #if 0
   2567 	/* TSO parameters */
   2568 	/* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
   2569 	ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
   2570 	    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
   2571 	ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
   2572 	ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
   2573 #endif
   2574 
   2575 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
   2576 	if_setcapenable(ifp, if_getcapabilities(ifp));
   2577 
   2578 	/*
   2579 	 * Specify the media types supported by this adapter and register
   2580 	 * callbacks to update media and link information
   2581 	 */
   2582 	adapter->sc_ec.ec_ifmedia = &adapter->media;
   2583 	ifmedia_init(&adapter->media, IFM_IMASK,
   2584 	    ena_media_change, ena_media_status);
   2585 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
   2586 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
   2587 
   2588 	if_attach(ifp);
   2589 	if_deferred_start_init(ifp, NULL);
   2590 
   2591 	ether_ifattach(ifp, adapter->mac_addr);
   2592 
   2593 	return (0);
   2594 }
   2595 
   2596 static void
   2597 ena_down(struct ena_adapter *adapter)
   2598 {
   2599 	int rc;
   2600 
   2601 	if (adapter->up) {
   2602 		device_printf(adapter->pdev, "device is going DOWN\n");
   2603 
   2604 		callout_halt(&adapter->timer_service, &adapter->global_mtx);
   2605 
   2606 		adapter->up = false;
   2607 		if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
   2608 		    IFF_RUNNING);
   2609 
   2610 		ena_free_io_irq(adapter);
   2611 
   2612 		if (adapter->trigger_reset) {
   2613 			rc = ena_com_dev_reset(adapter->ena_dev,
   2614 			    adapter->reset_reason);
   2615 			if (unlikely(rc != 0))
   2616 				device_printf(adapter->pdev,
   2617 				    "Device reset failed\n");
   2618 		}
   2619 
   2620 		ena_destroy_all_io_queues(adapter);
   2621 
   2622 		ena_free_all_tx_bufs(adapter);
   2623 		ena_free_all_rx_bufs(adapter);
   2624 		ena_free_all_tx_resources(adapter);
   2625 		ena_free_all_rx_resources(adapter);
   2626 
   2627 		counter_u64_add(adapter->dev_stats.interface_down, 1);
   2628 	}
   2629 }
   2630 
   2631 static void
   2632 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
   2633 {
   2634 	struct ena_com_tx_meta *ena_meta;
   2635 	struct ether_vlan_header *eh;
   2636 	u32 mss;
   2637 	bool offload;
   2638 	uint16_t etype;
   2639 	int ehdrlen;
   2640 	struct ip *ip;
   2641 	int iphlen;
   2642 	struct tcphdr *th;
   2643 
   2644 	offload = false;
   2645 	ena_meta = &ena_tx_ctx->ena_meta;
   2646 
   2647 #if 0
   2648 	u32 mss = mbuf->m_pkthdr.tso_segsz;
   2649 
   2650 	if (mss != 0)
   2651 		offload = true;
   2652 #else
   2653 	mss = mbuf->m_pkthdr.len;	/* XXX don't have tso_segsz */
   2654 #endif
   2655 
   2656 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
   2657 		offload = true;
   2658 
   2659 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
   2660 		offload = true;
   2661 
   2662 	if (!offload) {
   2663 		ena_tx_ctx->meta_valid = 0;
   2664 		return;
   2665 	}
   2666 
   2667 	/* Determine where frame payload starts. */
   2668 	eh = mtod(mbuf, struct ether_vlan_header *);
   2669 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
   2670 		etype = ntohs(eh->evl_proto);
   2671 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   2672 	} else {
   2673 		etype = htons(eh->evl_encap_proto);
   2674 		ehdrlen = ETHER_HDR_LEN;
   2675 	}
   2676 
   2677 	ip = (struct ip *)(mbuf->m_data + ehdrlen);
   2678 	iphlen = ip->ip_hl << 2;
   2679 	th = (struct tcphdr *)((vaddr_t)ip + iphlen);
   2680 
   2681 	if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
   2682 		ena_tx_ctx->l3_csum_enable = 1;
   2683 	}
   2684 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
   2685 		ena_tx_ctx->tso_enable = 1;
   2686 		ena_meta->l4_hdr_len = (th->th_off);
   2687 	}
   2688 
   2689 	switch (etype) {
   2690 	case ETHERTYPE_IP:
   2691 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
   2692 		if ((ip->ip_off & htons(IP_DF)) != 0)
   2693 			ena_tx_ctx->df = 1;
   2694 		break;
   2695 	case ETHERTYPE_IPV6:
   2696 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
   2697 
   2698 	default:
   2699 		break;
   2700 	}
   2701 
   2702 	if (ip->ip_p == IPPROTO_TCP) {
   2703 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
   2704 		if ((mbuf->m_pkthdr.csum_flags &
   2705 		    (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
   2706 			ena_tx_ctx->l4_csum_enable = 1;
   2707 		else
   2708 			ena_tx_ctx->l4_csum_enable = 0;
   2709 	} else if (ip->ip_p == IPPROTO_UDP) {
   2710 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
   2711 		if ((mbuf->m_pkthdr.csum_flags &
   2712 		    (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
   2713 			ena_tx_ctx->l4_csum_enable = 1;
   2714 		else
   2715 			ena_tx_ctx->l4_csum_enable = 0;
   2716 	} else {
   2717 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
   2718 		ena_tx_ctx->l4_csum_enable = 0;
   2719 	}
   2720 
   2721 	ena_meta->mss = mss;
   2722 	ena_meta->l3_hdr_len = iphlen;
   2723 	ena_meta->l3_hdr_offset = ehdrlen;
   2724 	ena_tx_ctx->meta_valid = 1;
   2725 }
   2726 
   2727 static int
   2728 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
   2729 {
   2730 	struct ena_adapter *adapter;
   2731 	struct mbuf *collapsed_mbuf;
   2732 	int num_frags;
   2733 
   2734 	adapter = tx_ring->adapter;
   2735 	num_frags = ena_mbuf_count(*mbuf);
   2736 
   2737 	/* One segment must be reserved for configuration descriptor. */
   2738 	if (num_frags < adapter->max_tx_sgl_size)
   2739 		return (0);
   2740 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
   2741 
   2742 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
   2743 	    adapter->max_tx_sgl_size - 1);
   2744 	if (unlikely(collapsed_mbuf == NULL)) {
   2745 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
   2746 		return (ENOMEM);
   2747 	}
   2748 
   2749 	/* If mbuf was collapsed succesfully, original mbuf is released. */
   2750 	*mbuf = collapsed_mbuf;
   2751 
   2752 	return (0);
   2753 }
   2754 
   2755 static int
   2756 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
   2757 {
   2758 	struct ena_adapter *adapter;
   2759 	struct ena_tx_buffer *tx_info;
   2760 	struct ena_com_tx_ctx ena_tx_ctx;
   2761 	struct ena_com_dev *ena_dev;
   2762 	struct ena_com_buf *ena_buf;
   2763 	struct ena_com_io_sq* io_sq;
   2764 	void *push_hdr;
   2765 	uint16_t next_to_use;
   2766 	uint16_t req_id;
   2767 	uint16_t ena_qid;
   2768 	uint32_t header_len;
   2769 	int i, rc;
   2770 	int nb_hw_desc;
   2771 
   2772 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   2773 	adapter = tx_ring->que->adapter;
   2774 	ena_dev = adapter->ena_dev;
   2775 	io_sq = &ena_dev->io_sq_queues[ena_qid];
   2776 
   2777 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
   2778 	if (unlikely(rc != 0)) {
   2779 		ena_trace(ENA_WARNING,
   2780 		    "Failed to collapse mbuf! err: %d", rc);
   2781 		return (rc);
   2782 	}
   2783 
   2784 	next_to_use = tx_ring->next_to_use;
   2785 	req_id = tx_ring->free_tx_ids[next_to_use];
   2786 	tx_info = &tx_ring->tx_buffer_info[req_id];
   2787 
   2788 	tx_info->mbuf = *mbuf;
   2789 	tx_info->num_of_bufs = 0;
   2790 
   2791 	ena_buf = tx_info->bufs;
   2792 
   2793 	ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
   2794 
   2795 	/*
   2796 	 * header_len is just a hint for the device. Because FreeBSD is not
   2797 	 * giving us information about packet header length and it is not
   2798 	 * guaranteed that all packet headers will be in the 1st mbuf, setting
   2799 	 * header_len to 0 is making the device ignore this value and resolve
   2800 	 * header on it's own.
   2801 	 */
   2802 	header_len = 0;
   2803 	push_hdr = NULL;
   2804 
   2805 	rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
   2806 	    *mbuf, BUS_DMA_NOWAIT);
   2807 
   2808 	if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
   2809 		ena_trace(ENA_WARNING,
   2810 		    "dmamap load failed! err: %d nsegs: %d", rc,
   2811 		    tx_info->map->dm_nsegs);
   2812 		counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
   2813 		tx_info->mbuf = NULL;
   2814 		if (rc == ENOMEM)
   2815 			return (ENA_COM_NO_MEM);
   2816 		else
   2817 			return (ENA_COM_INVAL);
   2818 	}
   2819 
   2820 	for (i = 0; i < tx_info->map->dm_nsegs; i++) {
   2821 		ena_buf->len = tx_info->map->dm_segs[i].ds_len;
   2822 		ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
   2823 		ena_buf++;
   2824 	}
   2825 	tx_info->num_of_bufs = tx_info->map->dm_nsegs;
   2826 
   2827 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
   2828 	ena_tx_ctx.ena_bufs = tx_info->bufs;
   2829 	ena_tx_ctx.push_header = push_hdr;
   2830 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
   2831 	ena_tx_ctx.req_id = req_id;
   2832 	ena_tx_ctx.header_len = header_len;
   2833 
   2834 	/* Set flags and meta data */
   2835 	ena_tx_csum(&ena_tx_ctx, *mbuf);
   2836 	/* Prepare the packet's descriptors and send them to device */
   2837 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
   2838 	if (unlikely(rc != 0)) {
   2839 		device_printf(adapter->pdev, "failed to prepare tx bufs\n");
   2840 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
   2841 		goto dma_error;
   2842 	}
   2843 
   2844 	counter_enter();
   2845 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
   2846 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
   2847 	    (*mbuf)->m_pkthdr.len);
   2848 
   2849 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
   2850 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
   2851 	    (*mbuf)->m_pkthdr.len);
   2852 	counter_exit();
   2853 
   2854 	tx_info->tx_descs = nb_hw_desc;
   2855 	getbinuptime(&tx_info->timestamp);
   2856 	tx_info->print_once = true;
   2857 
   2858 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
   2859 	    tx_ring->ring_size);
   2860 
   2861 	bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
   2862 	    tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2863 
   2864 	return (0);
   2865 
   2866 dma_error:
   2867 	tx_info->mbuf = NULL;
   2868 	bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   2869 
   2870 	return (rc);
   2871 }
   2872 
   2873 static void
   2874 ena_start_xmit(struct ena_ring *tx_ring)
   2875 {
   2876 	struct mbuf *mbuf;
   2877 	struct ena_adapter *adapter = tx_ring->adapter;
   2878 	struct ena_com_io_sq* io_sq;
   2879 	int ena_qid;
   2880 	int acum_pkts = 0;
   2881 	int ret = 0;
   2882 
   2883 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
   2884 		return;
   2885 
   2886 	if (unlikely(!adapter->link_status))
   2887 		return;
   2888 
   2889 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   2890 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
   2891 
   2892 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
   2893 		ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
   2894 		    " header csum flags %#jx",
   2895 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
   2896 
   2897 		if (unlikely(!ena_com_sq_have_enough_space(io_sq,
   2898 		    ENA_TX_CLEANUP_THRESHOLD)))
   2899 			ena_tx_cleanup(tx_ring);
   2900 
   2901 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
   2902 			if (ret == ENA_COM_NO_MEM) {
   2903 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
   2904 			} else if (ret == ENA_COM_NO_SPACE) {
   2905 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
   2906 			} else {
   2907 				m_freem(mbuf);
   2908 				drbr_advance(adapter->ifp, tx_ring->br);
   2909 			}
   2910 
   2911 			break;
   2912 		}
   2913 
   2914 		drbr_advance(adapter->ifp, tx_ring->br);
   2915 
   2916 		if (unlikely((if_getdrvflags(adapter->ifp) &
   2917 		    IFF_RUNNING) == 0))
   2918 			return;
   2919 
   2920 		acum_pkts++;
   2921 
   2922 		/*
   2923 		 * If there's a BPF listener, bounce a copy of this frame
   2924 		 * to him.
   2925 		 */
   2926 		bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
   2927 
   2928 		if (unlikely(acum_pkts == DB_THRESHOLD)) {
   2929 			acum_pkts = 0;
   2930 			wmb();
   2931 			/* Trigger the dma engine */
   2932 			ena_com_write_sq_doorbell(io_sq);
   2933 			counter_u64_add(tx_ring->tx_stats.doorbells, 1);
   2934 		}
   2935 
   2936 	}
   2937 
   2938 	if (likely(acum_pkts != 0)) {
   2939 		wmb();
   2940 		/* Trigger the dma engine */
   2941 		ena_com_write_sq_doorbell(io_sq);
   2942 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
   2943 	}
   2944 
   2945 	if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
   2946 		ena_tx_cleanup(tx_ring);
   2947 }
   2948 
   2949 static void
   2950 ena_deferred_mq_start(struct work *wk, void *arg)
   2951 {
   2952 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
   2953 	struct ifnet *ifp = tx_ring->adapter->ifp;
   2954 
   2955 	atomic_swap_uint(&tx_ring->task_pending, 0);
   2956 
   2957 	while (!drbr_empty(ifp, tx_ring->br) &&
   2958 	    (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
   2959 		ENA_RING_MTX_LOCK(tx_ring);
   2960 		ena_start_xmit(tx_ring);
   2961 		ENA_RING_MTX_UNLOCK(tx_ring);
   2962 	}
   2963 }
   2964 
   2965 static int
   2966 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
   2967 {
   2968 	struct ena_adapter *adapter = ifp->if_softc;
   2969 	struct ena_ring *tx_ring;
   2970 	int ret, is_drbr_empty;
   2971 	uint32_t i;
   2972 
   2973 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
   2974 		return (ENODEV);
   2975 
   2976 	/* Which queue to use */
   2977 	/*
   2978 	 * If everything is setup correctly, it should be the
   2979 	 * same bucket that the current CPU we're on is.
   2980 	 * It should improve performance.
   2981 	 */
   2982 #if 0
   2983 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
   2984 #ifdef	RSS
   2985 		if (rss_hash2bucket(m->m_pkthdr.flowid,
   2986 		    M_HASHTYPE_GET(m), &i) == 0) {
   2987 			i = i % adapter->num_queues;
   2988 
   2989 		} else
   2990 #endif
   2991 		{
   2992 			i = m->m_pkthdr.flowid % adapter->num_queues;
   2993 		}
   2994 	} else {
   2995 #endif
   2996 		i = cpu_index(curcpu()) % adapter->num_queues;
   2997 #if 0
   2998 	}
   2999 #endif
   3000 	tx_ring = &adapter->tx_ring[i];
   3001 
   3002 	/* Check if drbr is empty before putting packet */
   3003 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
   3004 	ret = drbr_enqueue(ifp, tx_ring->br, m);
   3005 	if (unlikely(ret != 0)) {
   3006 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   3007 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
   3008 			    curcpu());
   3009 		return (ret);
   3010 	}
   3011 
   3012 	if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
   3013 		ena_start_xmit(tx_ring);
   3014 		ENA_RING_MTX_UNLOCK(tx_ring);
   3015 	} else {
   3016 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   3017 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
   3018 			    curcpu());
   3019 	}
   3020 
   3021 	return (0);
   3022 }
   3023 
   3024 #if 0
   3025 static void
   3026 ena_qflush(struct ifnet *ifp)
   3027 {
   3028 	struct ena_adapter *adapter = ifp->if_softc;
   3029 	struct ena_ring *tx_ring = adapter->tx_ring;
   3030 	int i;
   3031 
   3032 	for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
   3033 		if (!drbr_empty(ifp, tx_ring->br)) {
   3034 			ENA_RING_MTX_LOCK(tx_ring);
   3035 			drbr_flush(ifp, tx_ring->br);
   3036 			ENA_RING_MTX_UNLOCK(tx_ring);
   3037 		}
   3038 
   3039 	if_qflush(ifp);
   3040 }
   3041 #endif
   3042 
   3043 static int
   3044 ena_calc_io_queue_num(struct pci_attach_args *pa,
   3045     struct ena_adapter *adapter,
   3046     struct ena_com_dev_get_features_ctx *get_feat_ctx)
   3047 {
   3048 	int io_sq_num, io_cq_num, io_queue_num;
   3049 
   3050 	io_sq_num = get_feat_ctx->max_queues.max_sq_num;
   3051 	io_cq_num = get_feat_ctx->max_queues.max_cq_num;
   3052 
   3053 	io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
   3054 	io_queue_num = min_t(int, io_queue_num, io_sq_num);
   3055 	io_queue_num = min_t(int, io_queue_num, io_cq_num);
   3056 	/* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */
   3057 	io_queue_num = min_t(int, io_queue_num,
   3058 	    pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
   3059 #ifdef	RSS
   3060 	io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets());
   3061 #endif
   3062 
   3063 	return (io_queue_num);
   3064 }
   3065 
   3066 static int
   3067 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
   3068     uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
   3069 {
   3070 	uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
   3071 	uint32_t v;
   3072 	uint32_t q;
   3073 
   3074 	queue_size = min_t(uint32_t, queue_size,
   3075 	    feat->max_queues.max_cq_depth);
   3076 	queue_size = min_t(uint32_t, queue_size,
   3077 	    feat->max_queues.max_sq_depth);
   3078 
   3079 	/* round down to the nearest power of 2 */
   3080 	v = queue_size;
   3081 	while (v != 0) {
   3082 		if (powerof2(queue_size) != 0)
   3083 			break;
   3084 		v /= 2;
   3085 		q = rounddown2(queue_size, v);
   3086 		if (q != 0) {
   3087 			queue_size = q;
   3088 			break;
   3089 		}
   3090 	}
   3091 
   3092 	if (unlikely(queue_size == 0)) {
   3093 		device_printf(adapter->pdev, "Invalid queue size\n");
   3094 		return (ENA_COM_FAULT);
   3095 	}
   3096 
   3097 	*max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
   3098 	    feat->max_queues.max_packet_tx_descs);
   3099 	*max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
   3100 	    feat->max_queues.max_packet_rx_descs);
   3101 
   3102 	return (queue_size);
   3103 }
   3104 
   3105 #if 0
   3106 static int
   3107 ena_rss_init_default(struct ena_adapter *adapter)
   3108 {
   3109 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3110 	device_t dev = adapter->pdev;
   3111 	int qid, rc, i;
   3112 
   3113 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
   3114 	if (unlikely(rc != 0)) {
   3115 		device_printf(dev, "Cannot init indirect table\n");
   3116 		return (rc);
   3117 	}
   3118 
   3119 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
   3120 #ifdef	RSS
   3121 		qid = rss_get_indirection_to_bucket(i);
   3122 		qid = qid % adapter->num_queues;
   3123 #else
   3124 		qid = i % adapter->num_queues;
   3125 #endif
   3126 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
   3127 		    ENA_IO_RXQ_IDX(qid));
   3128 		if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3129 			device_printf(dev, "Cannot fill indirect table\n");
   3130 			goto err_rss_destroy;
   3131 		}
   3132 	}
   3133 
   3134 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
   3135 	    ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
   3136 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3137 		device_printf(dev, "Cannot fill hash function\n");
   3138 		goto err_rss_destroy;
   3139 	}
   3140 
   3141 	rc = ena_com_set_default_hash_ctrl(ena_dev);
   3142 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3143 		device_printf(dev, "Cannot fill hash control\n");
   3144 		goto err_rss_destroy;
   3145 	}
   3146 
   3147 	return (0);
   3148 
   3149 err_rss_destroy:
   3150 	ena_com_rss_destroy(ena_dev);
   3151 	return (rc);
   3152 }
   3153 
   3154 static void
   3155 ena_rss_init_default_deferred(void *arg)
   3156 {
   3157 	struct ena_adapter *adapter;
   3158 	devclass_t dc;
   3159 	int max;
   3160 	int rc;
   3161 
   3162 	dc = devclass_find("ena");
   3163 	if (unlikely(dc == NULL)) {
   3164 		ena_trace(ENA_ALERT, "No devclass ena\n");
   3165 		return;
   3166 	}
   3167 
   3168 	max = devclass_get_maxunit(dc);
   3169 	while (max-- >= 0) {
   3170 		adapter = devclass_get_softc(dc, max);
   3171 		if (adapter != NULL) {
   3172 			rc = ena_rss_init_default(adapter);
   3173 			adapter->rss_support = true;
   3174 			if (unlikely(rc != 0)) {
   3175 				device_printf(adapter->pdev,
   3176 				    "WARNING: RSS was not properly initialized,"
   3177 				    " it will affect bandwidth\n");
   3178 				adapter->rss_support = false;
   3179 			}
   3180 		}
   3181 	}
   3182 }
   3183 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL);
   3184 #endif
   3185 
   3186 static void
   3187 ena_config_host_info(struct ena_com_dev *ena_dev)
   3188 {
   3189 	struct ena_admin_host_info *host_info;
   3190 	int rc;
   3191 
   3192 	/* Allocate only the host info */
   3193 	rc = ena_com_allocate_host_info(ena_dev);
   3194 	if (unlikely(rc != 0)) {
   3195 		ena_trace(ENA_ALERT, "Cannot allocate host info\n");
   3196 		return;
   3197 	}
   3198 
   3199 	host_info = ena_dev->host_attr.host_info;
   3200 
   3201 	host_info->os_type = ENA_ADMIN_OS_FREEBSD;
   3202 	host_info->kernel_ver = osreldate;
   3203 
   3204 	snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
   3205 	    "%d", osreldate);
   3206 	host_info->os_dist = 0;
   3207 	strncpy(host_info->os_dist_str, osrelease,
   3208 	    sizeof(host_info->os_dist_str) - 1);
   3209 
   3210 	host_info->driver_version =
   3211 		(DRV_MODULE_VER_MAJOR) |
   3212 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
   3213 		(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
   3214 
   3215 	rc = ena_com_set_host_attributes(ena_dev);
   3216 	if (unlikely(rc != 0)) {
   3217 		if (rc == EOPNOTSUPP)
   3218 			ena_trace(ENA_WARNING, "Cannot set host attributes\n");
   3219 		else
   3220 			ena_trace(ENA_ALERT, "Cannot set host attributes\n");
   3221 
   3222 		goto err;
   3223 	}
   3224 
   3225 	return;
   3226 
   3227 err:
   3228 	ena_com_delete_host_info(ena_dev);
   3229 }
   3230 
   3231 static int
   3232 ena_device_init(struct ena_adapter *adapter, device_t pdev,
   3233     struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
   3234 {
   3235 	struct ena_com_dev* ena_dev = adapter->ena_dev;
   3236 	bool readless_supported;
   3237 	uint32_t aenq_groups;
   3238 	int dma_width;
   3239 	int rc;
   3240 
   3241 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
   3242 	if (unlikely(rc != 0)) {
   3243 		device_printf(pdev, "failed to init mmio read less\n");
   3244 		return (rc);
   3245 	}
   3246 
   3247 	/*
   3248 	 * The PCIe configuration space revision id indicate if mmio reg
   3249 	 * read is disabled
   3250 	 */
   3251 	const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
   3252 	readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
   3253 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
   3254 
   3255 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
   3256 	if (unlikely(rc != 0)) {
   3257 		device_printf(pdev, "Can not reset device\n");
   3258 		goto err_mmio_read_less;
   3259 	}
   3260 
   3261 	rc = ena_com_validate_version(ena_dev);
   3262 	if (unlikely(rc != 0)) {
   3263 		device_printf(pdev, "device version is too low\n");
   3264 		goto err_mmio_read_less;
   3265 	}
   3266 
   3267 	dma_width = ena_com_get_dma_width(ena_dev);
   3268 	if (unlikely(dma_width < 0)) {
   3269 		device_printf(pdev, "Invalid dma width value %d", dma_width);
   3270 		rc = dma_width;
   3271 		goto err_mmio_read_less;
   3272 	}
   3273 	adapter->dma_width = dma_width;
   3274 
   3275 	/* ENA admin level init */
   3276 	rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
   3277 	if (unlikely(rc != 0)) {
   3278 		device_printf(pdev,
   3279 		    "Can not initialize ena admin queue with device\n");
   3280 		goto err_mmio_read_less;
   3281 	}
   3282 
   3283 	/*
   3284 	 * To enable the msix interrupts the driver needs to know the number
   3285 	 * of queues. So the driver uses polling mode to retrieve this
   3286 	 * information
   3287 	 */
   3288 	ena_com_set_admin_polling_mode(ena_dev, true);
   3289 
   3290 	ena_config_host_info(ena_dev);
   3291 
   3292 	/* Get Device Attributes */
   3293 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
   3294 	if (unlikely(rc != 0)) {
   3295 		device_printf(pdev,
   3296 		    "Cannot get attribute for ena device rc: %d\n", rc);
   3297 		goto err_admin_init;
   3298 	}
   3299 
   3300 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
   3301 
   3302 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
   3303 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
   3304 	if (unlikely(rc != 0)) {
   3305 		device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
   3306 		goto err_admin_init;
   3307 	}
   3308 
   3309 	*wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
   3310 
   3311 	return (0);
   3312 
   3313 err_admin_init:
   3314 	ena_com_delete_host_info(ena_dev);
   3315 	ena_com_admin_destroy(ena_dev);
   3316 err_mmio_read_less:
   3317 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3318 
   3319 	return (rc);
   3320 }
   3321 
   3322 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
   3323     int io_vectors)
   3324 {
   3325 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3326 	int rc;
   3327 
   3328 	rc = ena_enable_msix(adapter);
   3329 	if (unlikely(rc != 0)) {
   3330 		device_printf(adapter->pdev, "Error with MSI-X enablement\n");
   3331 		return (rc);
   3332 	}
   3333 
   3334 	rc = ena_request_mgmnt_irq(adapter);
   3335 	if (unlikely(rc != 0)) {
   3336 		device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
   3337 		goto err_disable_msix;
   3338 	}
   3339 
   3340 	ena_com_set_admin_polling_mode(ena_dev, false);
   3341 
   3342 	ena_com_admin_aenq_enable(ena_dev);
   3343 
   3344 	return (0);
   3345 
   3346 err_disable_msix:
   3347 	ena_disable_msix(adapter);
   3348 
   3349 	return (rc);
   3350 }
   3351 
   3352 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
   3353 static void ena_keep_alive_wd(void *adapter_data,
   3354     struct ena_admin_aenq_entry *aenq_e)
   3355 {
   3356 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
   3357 	struct ena_admin_aenq_keep_alive_desc *desc;
   3358 	sbintime_t stime;
   3359 	uint64_t rx_drops;
   3360 
   3361 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
   3362 
   3363 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
   3364 	counter_u64_zero(adapter->hw_stats.rx_drops);
   3365 	counter_u64_add(adapter->hw_stats.rx_drops, rx_drops);
   3366 
   3367 	stime = getsbinuptime();
   3368 	(void) atomic_swap_64(&adapter->keep_alive_timestamp, stime);
   3369 }
   3370 
   3371 /* Check for keep alive expiration */
   3372 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
   3373 {
   3374 	sbintime_t timestamp, time;
   3375 
   3376 	if (adapter->wd_active == 0)
   3377 		return;
   3378 
   3379 	if (likely(adapter->keep_alive_timeout == 0))
   3380 		return;
   3381 
   3382 	/* FreeBSD uses atomic_load_acq_64() in place of the membar + read */
   3383 	membar_sync();
   3384 	timestamp = adapter->keep_alive_timestamp;
   3385 
   3386 	time = getsbinuptime() - timestamp;
   3387 	if (unlikely(time > adapter->keep_alive_timeout)) {
   3388 		device_printf(adapter->pdev,
   3389 		    "Keep alive watchdog timeout.\n");
   3390 		counter_u64_add(adapter->dev_stats.wd_expired, 1);
   3391 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
   3392 		adapter->trigger_reset = true;
   3393 	}
   3394 }
   3395 
   3396 /* Check if admin queue is enabled */
   3397 static void check_for_admin_com_state(struct ena_adapter *adapter)
   3398 {
   3399 	if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
   3400 	    false)) {
   3401 		device_printf(adapter->pdev,
   3402 		    "ENA admin queue is not in running state!\n");
   3403 		counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
   3404 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
   3405 		adapter->trigger_reset = true;
   3406 	}
   3407 }
   3408 
   3409 static int
   3410 check_missing_comp_in_queue(struct ena_adapter *adapter,
   3411     struct ena_ring *tx_ring)
   3412 {
   3413 	struct bintime curtime, time;
   3414 	struct ena_tx_buffer *tx_buf;
   3415 	uint32_t missed_tx = 0;
   3416 	int i;
   3417 
   3418 	getbinuptime(&curtime);
   3419 
   3420 	for (i = 0; i < tx_ring->ring_size; i++) {
   3421 		tx_buf = &tx_ring->tx_buffer_info[i];
   3422 
   3423 		if (bintime_isset(&tx_buf->timestamp) == 0)
   3424 			continue;
   3425 
   3426 		time = curtime;
   3427 		bintime_sub(&time, &tx_buf->timestamp);
   3428 
   3429 		/* Check again if packet is still waiting */
   3430 		if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
   3431 
   3432 			if (!tx_buf->print_once)
   3433 				ena_trace(ENA_WARNING, "Found a Tx that wasn't "
   3434 				    "completed on time, qid %d, index %d.\n",
   3435 				    tx_ring->qid, i);
   3436 
   3437 			tx_buf->print_once = true;
   3438 			missed_tx++;
   3439 			counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
   3440 
   3441 			if (unlikely(missed_tx >
   3442 			    adapter->missing_tx_threshold)) {
   3443 				device_printf(adapter->pdev,
   3444 				    "The number of lost tx completion "
   3445 				    "is above the threshold (%d > %d). "
   3446 				    "Reset the device\n",
   3447 				    missed_tx, adapter->missing_tx_threshold);
   3448 				adapter->reset_reason =
   3449 				    ENA_REGS_RESET_MISS_TX_CMPL;
   3450 				adapter->trigger_reset = true;
   3451 				return (EIO);
   3452 			}
   3453 		}
   3454 	}
   3455 
   3456 	return (0);
   3457 }
   3458 
   3459 /*
   3460  * Check for TX which were not completed on time.
   3461  * Timeout is defined by "missing_tx_timeout".
   3462  * Reset will be performed if number of incompleted
   3463  * transactions exceeds "missing_tx_threshold".
   3464  */
   3465 static void
   3466 check_for_missing_tx_completions(struct ena_adapter *adapter)
   3467 {
   3468 	struct ena_ring *tx_ring;
   3469 	int i, budget, rc;
   3470 
   3471 	/* Make sure the driver doesn't turn the device in other process */
   3472 	rmb();
   3473 
   3474 	if (!adapter->up)
   3475 		return;
   3476 
   3477 	if (adapter->trigger_reset)
   3478 		return;
   3479 
   3480 	if (adapter->missing_tx_timeout == 0)
   3481 		return;
   3482 
   3483 	budget = adapter->missing_tx_max_queues;
   3484 
   3485 	for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
   3486 		tx_ring = &adapter->tx_ring[i];
   3487 
   3488 		rc = check_missing_comp_in_queue(adapter, tx_ring);
   3489 		if (unlikely(rc != 0))
   3490 			return;
   3491 
   3492 		budget--;
   3493 		if (budget == 0) {
   3494 			i++;
   3495 			break;
   3496 		}
   3497 	}
   3498 
   3499 	adapter->next_monitored_tx_qid = i % adapter->num_queues;
   3500 }
   3501 
   3502 /* trigger deferred rx cleanup after 2 consecutive detections */
   3503 #define EMPTY_RX_REFILL 2
   3504 /* For the rare case where the device runs out of Rx descriptors and the
   3505  * msix handler failed to refill new Rx descriptors (due to a lack of memory
   3506  * for example).
   3507  * This case will lead to a deadlock:
   3508  * The device won't send interrupts since all the new Rx packets will be dropped
   3509  * The msix handler won't allocate new Rx descriptors so the device won't be
   3510  * able to send new packets.
   3511  *
   3512  * When such a situation is detected - execute rx cleanup task in another thread
   3513  */
   3514 static void
   3515 check_for_empty_rx_ring(struct ena_adapter *adapter)
   3516 {
   3517 	struct ena_ring *rx_ring;
   3518 	int i, refill_required;
   3519 
   3520 	if (!adapter->up)
   3521 		return;
   3522 
   3523 	if (adapter->trigger_reset)
   3524 		return;
   3525 
   3526 	for (i = 0; i < adapter->num_queues; i++) {
   3527 		rx_ring = &adapter->rx_ring[i];
   3528 
   3529 		refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
   3530 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
   3531 			rx_ring->empty_rx_queue++;
   3532 
   3533 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL)	{
   3534 				counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
   3535 				    1);
   3536 
   3537 				device_printf(adapter->pdev,
   3538 				    "trigger refill for ring %d\n", i);
   3539 
   3540 				if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
   3541 					workqueue_enqueue(rx_ring->cmpl_tq,
   3542 					    &rx_ring->cmpl_task, curcpu());
   3543 				rx_ring->empty_rx_queue = 0;
   3544 			}
   3545 		} else {
   3546 			rx_ring->empty_rx_queue = 0;
   3547 		}
   3548 	}
   3549 }
   3550 
   3551 static void
   3552 ena_timer_service(void *data)
   3553 {
   3554 	struct ena_adapter *adapter = (struct ena_adapter *)data;
   3555 	struct ena_admin_host_info *host_info =
   3556 	    adapter->ena_dev->host_attr.host_info;
   3557 
   3558 	check_for_missing_keep_alive(adapter);
   3559 
   3560 	check_for_admin_com_state(adapter);
   3561 
   3562 	check_for_missing_tx_completions(adapter);
   3563 
   3564 	check_for_empty_rx_ring(adapter);
   3565 
   3566 	if (host_info != NULL)
   3567 		ena_update_host_info(host_info, adapter->ifp);
   3568 
   3569 	if (unlikely(adapter->trigger_reset)) {
   3570 		device_printf(adapter->pdev, "Trigger reset is on\n");
   3571 		workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
   3572 		    curcpu());
   3573 		return;
   3574 	}
   3575 
   3576 	/*
   3577 	 * Schedule another timeout one second from now.
   3578 	 */
   3579 	callout_schedule(&adapter->timer_service, hz);
   3580 }
   3581 
   3582 static void
   3583 ena_reset_task(struct work *wk, void *arg)
   3584 {
   3585 	struct ena_com_dev_get_features_ctx get_feat_ctx;
   3586 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
   3587 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3588 	bool dev_up;
   3589 	int rc;
   3590 
   3591 	if (unlikely(!adapter->trigger_reset)) {
   3592 		device_printf(adapter->pdev,
   3593 		    "device reset scheduled but trigger_reset is off\n");
   3594 		return;
   3595 	}
   3596 
   3597 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
   3598 
   3599 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
   3600 
   3601 	dev_up = adapter->up;
   3602 
   3603 	ena_com_set_admin_running_state(ena_dev, false);
   3604 	ena_down(adapter);
   3605 	ena_free_mgmnt_irq(adapter);
   3606 	ena_disable_msix(adapter);
   3607 	ena_com_abort_admin_commands(ena_dev);
   3608 	ena_com_wait_for_abort_completion(ena_dev);
   3609 	ena_com_admin_destroy(ena_dev);
   3610 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3611 
   3612 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
   3613 	adapter->trigger_reset = false;
   3614 
   3615 	/* Finished destroy part. Restart the device */
   3616 	rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
   3617 	    &adapter->wd_active);
   3618 	if (unlikely(rc != 0)) {
   3619 		device_printf(adapter->pdev,
   3620 		    "ENA device init failed! (err: %d)\n", rc);
   3621 		goto err_dev_free;
   3622 	}
   3623 
   3624 	/* XXX dealloc and realloc MSI-X, probably a waste */
   3625 	rc = ena_enable_msix_and_set_admin_interrupts(adapter,
   3626 	    adapter->num_queues);
   3627 	if (unlikely(rc != 0)) {
   3628 		device_printf(adapter->pdev, "Enable MSI-X failed\n");
   3629 		goto err_com_free;
   3630 	}
   3631 
   3632 	/* If the interface was up before the reset bring it up */
   3633 	if (dev_up) {
   3634 		rc = ena_up(adapter);
   3635 		if (unlikely(rc != 0)) {
   3636 			device_printf(adapter->pdev,
   3637 			    "Failed to create I/O queues\n");
   3638 			goto err_msix_free;
   3639 		}
   3640 	}
   3641 
   3642 	callout_reset(&adapter->timer_service, hz,
   3643 	    ena_timer_service, (void *)adapter);
   3644 
   3645 	rw_exit(&adapter->ioctl_sx);
   3646 
   3647 	return;
   3648 
   3649 err_msix_free:
   3650 	ena_free_mgmnt_irq(adapter);
   3651 	ena_disable_msix(adapter);
   3652 err_com_free:
   3653 	ena_com_admin_destroy(ena_dev);
   3654 err_dev_free:
   3655 	device_printf(adapter->pdev, "ENA reset failed!\n");
   3656 	adapter->running = false;
   3657 	rw_exit(&adapter->ioctl_sx);
   3658 }
   3659 
   3660 /**
   3661  * ena_attach - Device Initialization Routine
   3662  * @pdev: device information struct
   3663  *
   3664  * Returns 0 on success, otherwise on failure.
   3665  *
   3666  * ena_attach initializes an adapter identified by a device structure.
   3667  * The OS initialization, configuring of the adapter private structure,
   3668  * and a hardware reset occur.
   3669  **/
   3670 static void
   3671 ena_attach(device_t parent, device_t self, void *aux)
   3672 {
   3673 	struct pci_attach_args *pa = aux;
   3674 	struct ena_com_dev_get_features_ctx get_feat_ctx;
   3675 	static int version_printed;
   3676 	struct ena_adapter *adapter = device_private(self);
   3677 	struct ena_com_dev *ena_dev = NULL;
   3678 	uint16_t tx_sgl_size = 0;
   3679 	uint16_t rx_sgl_size = 0;
   3680 	pcireg_t reg;
   3681 	int io_queue_num;
   3682 	int queue_size;
   3683 	int rc;
   3684 
   3685 	adapter->pdev = self;
   3686 	adapter->ifp = &adapter->sc_ec.ec_if;
   3687 	adapter->sc_pa = *pa;	/* used after attach for adapter reset too */
   3688 
   3689 	if (pci_dma64_available(pa))
   3690 		adapter->sc_dmat = pa->pa_dmat64;
   3691 	else
   3692 		adapter->sc_dmat = pa->pa_dmat;
   3693 
   3694 	pci_aprint_devinfo(pa, NULL);
   3695 
   3696 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   3697 	if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
   3698 		reg |= PCI_COMMAND_MASTER_ENABLE;
   3699         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
   3700 	}
   3701 
   3702 	mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_NET);
   3703 	rw_init(&adapter->ioctl_sx);
   3704 
   3705 	/* Set up the timer service */
   3706 	adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
   3707 	adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
   3708 	adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
   3709 	adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
   3710 
   3711 	if (version_printed++ == 0)
   3712 		device_printf(parent, "%s\n", ena_version);
   3713 
   3714 	rc = ena_allocate_pci_resources(pa, adapter);
   3715 	if (unlikely(rc != 0)) {
   3716 		device_printf(parent, "PCI resource allocation failed!\n");
   3717 		ena_free_pci_resources(adapter);
   3718 		return;
   3719 	}
   3720 
   3721 	/* Allocate memory for ena_dev structure */
   3722 	ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
   3723 	    M_WAITOK | M_ZERO);
   3724 
   3725 	adapter->ena_dev = ena_dev;
   3726 	ena_dev->dmadev = self;
   3727 	ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
   3728 	    M_WAITOK | M_ZERO);
   3729 
   3730 	/* Store register resources */
   3731 	((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
   3732 	((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
   3733 
   3734 	ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
   3735 
   3736 	/* Device initialization */
   3737 	rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
   3738 	if (unlikely(rc != 0)) {
   3739 		device_printf(self, "ENA device init failed! (err: %d)\n", rc);
   3740 		rc = ENXIO;
   3741 		goto err_bus_free;
   3742 	}
   3743 
   3744 	adapter->keep_alive_timestamp = getsbinuptime();
   3745 
   3746 	adapter->tx_offload_cap = get_feat_ctx.offload.tx;
   3747 
   3748 	/* Set for sure that interface is not up */
   3749 	adapter->up = false;
   3750 
   3751 	memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
   3752 	    ETHER_ADDR_LEN);
   3753 
   3754 	/* calculate IO queue number to create */
   3755 	io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
   3756 
   3757 	ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
   3758 	    io_queue_num);
   3759 	adapter->num_queues = io_queue_num;
   3760 
   3761 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
   3762 
   3763 	/* calculatre ring sizes */
   3764 	queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
   3765 	    &rx_sgl_size, &get_feat_ctx);
   3766 	if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
   3767 		rc = ENA_COM_FAULT;
   3768 		goto err_com_free;
   3769 	}
   3770 
   3771 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
   3772 
   3773 	adapter->tx_ring_size = queue_size;
   3774 	adapter->rx_ring_size = queue_size;
   3775 
   3776 	adapter->max_tx_sgl_size = tx_sgl_size;
   3777 	adapter->max_rx_sgl_size = rx_sgl_size;
   3778 
   3779 #if 0
   3780 	/* set up dma tags for rx and tx buffers */
   3781 	rc = ena_setup_tx_dma_tag(adapter);
   3782 	if (unlikely(rc != 0)) {
   3783 		device_printf(self, "Failed to create TX DMA tag\n");
   3784 		goto err_com_free;
   3785 	}
   3786 
   3787 	rc = ena_setup_rx_dma_tag(adapter);
   3788 	if (unlikely(rc != 0)) {
   3789 		device_printf(self, "Failed to create RX DMA tag\n");
   3790 		goto err_tx_tag_free;
   3791 	}
   3792 #endif
   3793 
   3794 	/* initialize rings basic information */
   3795 	device_printf(self, "initialize %d io queues\n", io_queue_num);
   3796 	ena_init_io_rings(adapter);
   3797 
   3798 	/* setup network interface */
   3799 	rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
   3800 	if (unlikely(rc != 0)) {
   3801 		device_printf(self, "Error with network interface setup\n");
   3802 		goto err_io_free;
   3803 	}
   3804 
   3805 	rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
   3806 	if (unlikely(rc != 0)) {
   3807 		device_printf(self,
   3808 		    "Failed to enable and set the admin interrupts\n");
   3809 		goto err_ifp_free;
   3810 	}
   3811 
   3812 	callout_init(&adapter->timer_service, CALLOUT_MPSAFE);
   3813 
   3814 	/* Initialize reset task queue */
   3815 	rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
   3816 	    ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
   3817 	if (unlikely(rc != 0)) {
   3818 		ena_trace(ENA_ALERT,
   3819 		    "Unable to create workqueue for reset task\n");
   3820 		goto err_ifp_free;
   3821 	}
   3822 
   3823 	/* Initialize statistics */
   3824 	ena_alloc_counters_dev(&adapter->dev_stats, io_queue_num);
   3825 	ena_alloc_counters_hwstats(&adapter->hw_stats, io_queue_num);
   3826 #if 0
   3827 	ena_sysctl_add_nodes(adapter);
   3828 #endif
   3829 
   3830 	/* Tell the stack that the interface is not active */
   3831 	if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
   3832 
   3833 	adapter->running = true;
   3834 	return;
   3835 
   3836 err_ifp_free:
   3837 	if_detach(adapter->ifp);
   3838 	if_free(adapter->ifp);
   3839 err_io_free:
   3840 	ena_free_all_io_rings_resources(adapter);
   3841 #if 0
   3842 	ena_free_rx_dma_tag(adapter);
   3843 err_tx_tag_free:
   3844 	ena_free_tx_dma_tag(adapter);
   3845 #endif
   3846 err_com_free:
   3847 	ena_com_admin_destroy(ena_dev);
   3848 	ena_com_delete_host_info(ena_dev);
   3849 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3850 err_bus_free:
   3851 	free(ena_dev->bus, M_DEVBUF);
   3852 	free(ena_dev, M_DEVBUF);
   3853 	ena_free_pci_resources(adapter);
   3854 }
   3855 
   3856 /**
   3857  * ena_detach - Device Removal Routine
   3858  * @pdev: device information struct
   3859  *
   3860  * ena_detach is called by the device subsystem to alert the driver
   3861  * that it should release a PCI device.
   3862  **/
   3863 static int
   3864 ena_detach(device_t pdev, int flags)
   3865 {
   3866 	struct ena_adapter *adapter = device_private(pdev);
   3867 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3868 #if 0
   3869 	int rc;
   3870 #endif
   3871 
   3872 	/* Make sure VLANS are not using driver */
   3873 	if (VLAN_ATTACHED(&adapter->sc_ec)) {
   3874 		device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
   3875 		return (EBUSY);
   3876 	}
   3877 
   3878 	/* Free reset task and callout */
   3879 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
   3880 	callout_destroy(&adapter->timer_service);
   3881 	workqueue_wait(adapter->reset_tq, &adapter->reset_task);
   3882 	workqueue_destroy(adapter->reset_tq);
   3883 	adapter->reset_tq = NULL;
   3884 
   3885 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
   3886 	ena_down(adapter);
   3887 	rw_exit(&adapter->ioctl_sx);
   3888 
   3889 	if (adapter->ifp != NULL) {
   3890 		ether_ifdetach(adapter->ifp);
   3891 		if_free(adapter->ifp);
   3892 	}
   3893 
   3894 	ena_free_all_io_rings_resources(adapter);
   3895 
   3896 	ena_free_counters((struct evcnt *)&adapter->hw_stats,
   3897 	    sizeof(struct ena_hw_stats));
   3898 	ena_free_counters((struct evcnt *)&adapter->dev_stats,
   3899 	    sizeof(struct ena_stats_dev));
   3900 
   3901 	if (likely(adapter->rss_support))
   3902 		ena_com_rss_destroy(ena_dev);
   3903 
   3904 #if 0
   3905 	rc = ena_free_rx_dma_tag(adapter);
   3906 	if (unlikely(rc != 0))
   3907 		device_printf(adapter->pdev,
   3908 		    "Unmapped RX DMA tag associations\n");
   3909 
   3910 	rc = ena_free_tx_dma_tag(adapter);
   3911 	if (unlikely(rc != 0))
   3912 		device_printf(adapter->pdev,
   3913 		    "Unmapped TX DMA tag associations\n");
   3914 #endif
   3915 
   3916 	/* Reset the device only if the device is running. */
   3917 	if (adapter->running)
   3918 		ena_com_dev_reset(ena_dev, adapter->reset_reason);
   3919 
   3920 	ena_com_delete_host_info(ena_dev);
   3921 
   3922 	ena_free_irqs(adapter);
   3923 
   3924 	ena_com_abort_admin_commands(ena_dev);
   3925 
   3926 	ena_com_wait_for_abort_completion(ena_dev);
   3927 
   3928 	ena_com_admin_destroy(ena_dev);
   3929 
   3930 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3931 
   3932 	ena_free_pci_resources(adapter);
   3933 
   3934 	mutex_destroy(&adapter->global_mtx);
   3935 	rw_destroy(&adapter->ioctl_sx);
   3936 
   3937 	if (ena_dev->bus != NULL)
   3938 		free(ena_dev->bus, M_DEVBUF);
   3939 
   3940 	if (ena_dev != NULL)
   3941 		free(ena_dev, M_DEVBUF);
   3942 
   3943 	return 0;
   3944 }
   3945 
   3946 /******************************************************************************
   3947  ******************************** AENQ Handlers *******************************
   3948  *****************************************************************************/
   3949 /**
   3950  * ena_update_on_link_change:
   3951  * Notify the network interface about the change in link status
   3952  **/
   3953 static void
   3954 ena_update_on_link_change(void *adapter_data,
   3955     struct ena_admin_aenq_entry *aenq_e)
   3956 {
   3957 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
   3958 	struct ena_admin_aenq_link_change_desc *aenq_desc;
   3959 	int status;
   3960 	struct ifnet *ifp;
   3961 
   3962 	aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
   3963 	ifp = adapter->ifp;
   3964 	status = aenq_desc->flags &
   3965 	    ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
   3966 
   3967 	if (status != 0) {
   3968 		device_printf(adapter->pdev, "link is UP\n");
   3969 		if_link_state_change(ifp, LINK_STATE_UP);
   3970 	} else if (status == 0) {
   3971 		device_printf(adapter->pdev, "link is DOWN\n");
   3972 		if_link_state_change(ifp, LINK_STATE_DOWN);
   3973 	} else {
   3974 		device_printf(adapter->pdev, "invalid value recvd\n");
   3975 		BUG();
   3976 	}
   3977 
   3978 	adapter->link_status = status;
   3979 }
   3980 
   3981 /**
   3982  * This handler will called for unknown event group or unimplemented handlers
   3983  **/
   3984 static void
   3985 unimplemented_aenq_handler(void *data,
   3986     struct ena_admin_aenq_entry *aenq_e)
   3987 {
   3988 	return;
   3989 }
   3990 
   3991 static struct ena_aenq_handlers aenq_handlers = {
   3992     .handlers = {
   3993 	    [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
   3994 	    [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
   3995     },
   3996     .unimplemented_handler = unimplemented_aenq_handler
   3997 };
   3998 
   3999 #ifdef __FreeBSD__
   4000 /*********************************************************************
   4001  *  FreeBSD Device Interface Entry Points
   4002  *********************************************************************/
   4003 
   4004 static device_method_t ena_methods[] = {
   4005     /* Device interface */
   4006     DEVMETHOD(device_probe, ena_probe),
   4007     DEVMETHOD(device_attach, ena_attach),
   4008     DEVMETHOD(device_detach, ena_detach),
   4009     DEVMETHOD_END
   4010 };
   4011 
   4012 static driver_t ena_driver = {
   4013     "ena", ena_methods, sizeof(struct ena_adapter),
   4014 };
   4015 
   4016 devclass_t ena_devclass;
   4017 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
   4018 MODULE_DEPEND(ena, pci, 1, 1, 1);
   4019 MODULE_DEPEND(ena, ether, 1, 1, 1);
   4020 
   4021 /*********************************************************************/
   4022 #endif /* __FreeBSD__ */
   4023 
   4024 #ifdef __NetBSD__
   4025 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
   4026 	ena_detach, NULL);
   4027 #endif /* __NetBSD */
   4028