Home | History | Annotate | Line # | Download | only in pci
if_ena.c revision 1.24
      1 /*-
      2  * BSD LICENSE
      3  *
      4  * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  *
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 #include <sys/cdefs.h>
     31 #if 0
     32 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
     33 #endif
     34 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.24 2020/03/03 21:42:31 jdolecek Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/bus.h>
     39 #include <sys/endian.h>
     40 #include <sys/kernel.h>
     41 #include <sys/kthread.h>
     42 #include <sys/malloc.h>
     43 #include <sys/mbuf.h>
     44 #include <sys/module.h>
     45 #include <sys/socket.h>
     46 #include <sys/sockio.h>
     47 #include <sys/sysctl.h>
     48 #include <sys/time.h>
     49 #include <sys/workqueue.h>
     50 #include <sys/callout.h>
     51 #include <sys/interrupt.h>
     52 #include <sys/cpu.h>
     53 
     54 #include <net/if_ether.h>
     55 #include <net/if_vlanvar.h>
     56 
     57 #include <dev/pci/if_enavar.h>
     58 
     59 /*********************************************************
     60  *  Function prototypes
     61  *********************************************************/
     62 static int	ena_probe(device_t, cfdata_t, void *);
     63 static int	ena_intr_msix_mgmnt(void *);
     64 static int	ena_allocate_pci_resources(struct pci_attach_args *,
     65 		    struct ena_adapter *);
     66 static void	ena_free_pci_resources(struct ena_adapter *);
     67 static int	ena_change_mtu(struct ifnet *, int);
     68 static void	ena_init_io_rings_common(struct ena_adapter *,
     69     struct ena_ring *, uint16_t);
     70 static void	ena_init_io_rings(struct ena_adapter *);
     71 static void	ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
     72 static void	ena_free_all_io_rings_resources(struct ena_adapter *);
     73 #if 0
     74 static int	ena_setup_tx_dma_tag(struct ena_adapter *);
     75 static int	ena_free_tx_dma_tag(struct ena_adapter *);
     76 static int	ena_setup_rx_dma_tag(struct ena_adapter *);
     77 static int	ena_free_rx_dma_tag(struct ena_adapter *);
     78 #endif
     79 static int	ena_setup_tx_resources(struct ena_adapter *, int);
     80 static void	ena_free_tx_resources(struct ena_adapter *, int);
     81 static int	ena_setup_all_tx_resources(struct ena_adapter *);
     82 static void	ena_free_all_tx_resources(struct ena_adapter *);
     83 static inline int validate_rx_req_id(struct ena_ring *, uint16_t);
     84 static int	ena_setup_rx_resources(struct ena_adapter *, unsigned int);
     85 static void	ena_free_rx_resources(struct ena_adapter *, unsigned int);
     86 static int	ena_setup_all_rx_resources(struct ena_adapter *);
     87 static void	ena_free_all_rx_resources(struct ena_adapter *);
     88 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *,
     89     struct ena_rx_buffer *);
     90 static void	ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
     91     struct ena_rx_buffer *);
     92 static int	ena_refill_rx_bufs(struct ena_ring *, uint32_t);
     93 static void	ena_free_rx_bufs(struct ena_adapter *, unsigned int);
     94 static void	ena_refill_all_rx_bufs(struct ena_adapter *);
     95 static void	ena_free_all_rx_bufs(struct ena_adapter *);
     96 static void	ena_free_tx_bufs(struct ena_adapter *, unsigned int);
     97 static void	ena_free_all_tx_bufs(struct ena_adapter *);
     98 static void	ena_destroy_all_tx_queues(struct ena_adapter *);
     99 static void	ena_destroy_all_rx_queues(struct ena_adapter *);
    100 static void	ena_destroy_all_io_queues(struct ena_adapter *);
    101 static int	ena_create_io_queues(struct ena_adapter *);
    102 static int	ena_tx_cleanup(struct ena_ring *);
    103 static void	ena_deferred_rx_cleanup(struct work *, void *);
    104 static int	ena_rx_cleanup(struct ena_ring *);
    105 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
    106 #if 0
    107 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
    108     struct mbuf *);
    109 #endif
    110 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
    111     struct ena_com_rx_ctx *, uint16_t *);
    112 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
    113     struct mbuf *);
    114 static int	ena_handle_msix(void *);
    115 static int	ena_enable_msix(struct ena_adapter *);
    116 static int	ena_request_mgmnt_irq(struct ena_adapter *);
    117 static int	ena_request_io_irq(struct ena_adapter *);
    118 static void	ena_free_mgmnt_irq(struct ena_adapter *);
    119 static void	ena_free_io_irq(struct ena_adapter *);
    120 static void	ena_free_irqs(struct ena_adapter*);
    121 static void	ena_disable_msix(struct ena_adapter *);
    122 static void	ena_unmask_all_io_irqs(struct ena_adapter *);
    123 static int	ena_rss_configure(struct ena_adapter *);
    124 static int	ena_up_complete(struct ena_adapter *);
    125 static int	ena_up(struct ena_adapter *);
    126 static void	ena_down(struct ena_adapter *);
    127 #if 0
    128 static uint64_t	ena_get_counter(struct ifnet *, ift_counter);
    129 #endif
    130 static int	ena_media_change(struct ifnet *);
    131 static void	ena_media_status(struct ifnet *, struct ifmediareq *);
    132 static int	ena_init(struct ifnet *);
    133 static int	ena_ioctl(struct ifnet *, u_long, void *);
    134 static int	ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
    135 static void	ena_update_host_info(struct ena_admin_host_info *, struct ifnet *);
    136 static void	ena_update_hwassist(struct ena_adapter *);
    137 static int	ena_setup_ifnet(device_t, struct ena_adapter *,
    138     struct ena_com_dev_get_features_ctx *);
    139 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
    140 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
    141     struct mbuf **mbuf);
    142 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
    143 static void	ena_start_xmit(struct ena_ring *);
    144 static int	ena_mq_start(struct ifnet *, struct mbuf *);
    145 static void	ena_deferred_mq_start(struct work *, void *);
    146 #if 0
    147 static void	ena_qflush(struct ifnet *);
    148 #endif
    149 static int	ena_calc_io_queue_num(struct pci_attach_args *,
    150     struct ena_adapter *, struct ena_com_dev_get_features_ctx *);
    151 static int	ena_calc_queue_size(struct ena_adapter *, uint16_t *,
    152     uint16_t *, struct ena_com_dev_get_features_ctx *);
    153 #if 0
    154 static int	ena_rss_init_default(struct ena_adapter *);
    155 static void	ena_rss_init_default_deferred(void *);
    156 #endif
    157 static void	ena_config_host_info(struct ena_com_dev *);
    158 static void	ena_attach(device_t, device_t, void *);
    159 static int	ena_detach(device_t, int);
    160 static int	ena_device_init(struct ena_adapter *, device_t,
    161     struct ena_com_dev_get_features_ctx *, int *);
    162 static int	ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
    163     int);
    164 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *);
    165 static void	unimplemented_aenq_handler(void *,
    166     struct ena_admin_aenq_entry *);
    167 static void	ena_timer_service(void *);
    168 
    169 static const char ena_version[] =
    170     DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
    171 
    172 #if 0
    173 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
    174 #endif
    175 
    176 /*
    177  * Tuneable number of buffers in the buf-ring (drbr)
    178  */
    179 static int ena_buf_ring_size = 4096;
    180 #if 0
    181 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
    182     &ena_buf_ring_size, 0, "Size of the bufring");
    183 #endif
    184 
    185 /*
    186  * Logging level for changing verbosity of the output
    187  */
    188 int ena_log_level = ENA_ALERT | ENA_WARNING;
    189 #if 0
    190 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
    191     &ena_log_level, 0, "Logging level indicating verbosity of the logs");
    192 #endif
    193 
    194 static const ena_vendor_info_t ena_vendor_info_array[] = {
    195     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
    196     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
    197     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
    198     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
    199     /* Last entry */
    200     { 0, 0, 0 }
    201 };
    202 
    203 /*
    204  * Contains pointers to event handlers, e.g. link state chage.
    205  */
    206 static struct ena_aenq_handlers aenq_handlers;
    207 
    208 int
    209 ena_dma_alloc(device_t dmadev, bus_size_t size,
    210     ena_mem_handle_t *dma , int mapflags)
    211 {
    212 	struct ena_adapter *adapter = device_private(dmadev);
    213 	uint32_t maxsize;
    214 	bus_dma_segment_t seg;
    215 	int error, nsegs;
    216 
    217 	maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
    218 
    219 #if 0
    220 	/* XXX what is this needed for ? */
    221 	dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
    222 	if (unlikely(dma_space_addr == 0))
    223 		dma_space_addr = BUS_SPACE_MAXADDR;
    224 #endif
    225 
    226 	dma->tag = adapter->sc_dmat;
    227 
    228         if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
    229             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
    230 		ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
    231 		    (uintmax_t)maxsize, error);
    232                 goto fail_create;
    233 	}
    234 
    235 	error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &seg, 1, &nsegs,
    236 	    BUS_DMA_ALLOCNOW);
    237 	if (error) {
    238 		ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
    239 		    (uintmax_t)maxsize, error);
    240 		goto fail_alloc;
    241 	}
    242 
    243 	error = bus_dmamem_map(dma->tag, &seg, nsegs, maxsize,
    244 	    &dma->vaddr, BUS_DMA_COHERENT);
    245 	if (error) {
    246 		ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
    247 		    (uintmax_t)maxsize, error);
    248 		goto fail_map;
    249 	}
    250 	memset(dma->vaddr, 0, maxsize);
    251 
    252 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
    253 	    maxsize, NULL, mapflags);
    254 	if (error) {
    255 		ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
    256 		goto fail_load;
    257 	}
    258 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    259 
    260 	return (0);
    261 
    262 fail_load:
    263 	bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
    264 fail_map:
    265 	bus_dmamem_free(dma->tag, &seg, nsegs);
    266 fail_alloc:
    267 	bus_dmamap_destroy(adapter->sc_dmat, dma->map);
    268 fail_create:
    269 	return (error);
    270 }
    271 
    272 static int
    273 ena_allocate_pci_resources(struct pci_attach_args *pa,
    274     struct ena_adapter *adapter)
    275 {
    276 	pcireg_t memtype, reg;
    277 	bus_addr_t memaddr;
    278 	bus_size_t mapsize;
    279 	int flags, error;
    280 	int msixoff;
    281 
    282 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
    283 	if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM) {
    284 		aprint_error_dev(adapter->pdev, "invalid type (type=0x%x)\n",
    285 		    memtype);
    286 		return ENXIO;
    287 	}
    288 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    289 	if (((reg & PCI_COMMAND_MASTER_ENABLE) == 0) ||
    290 	    ((reg & PCI_COMMAND_MEM_ENABLE) == 0)) {
    291 		/*
    292 		 * Enable address decoding for memory range in case BIOS or
    293 		 * UEFI didn't set it.
    294 		 */
    295 		reg |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
    296         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    297 		    reg);
    298 	}
    299 
    300 	adapter->sc_btag = pa->pa_memt;
    301 	error = pci_mapreg_info(pa->pa_pc, pa->pa_tag, ENA_REG_BAR,
    302 	    memtype, &memaddr, &mapsize, &flags);
    303 	if (error) {
    304 		aprint_error_dev(adapter->pdev, "can't get map info\n");
    305 		return ENXIO;
    306 	}
    307 
    308 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff,
    309 	    NULL)) {
    310 		pcireg_t msixtbl;
    311 		uint32_t table_offset;
    312 		int bir;
    313 
    314 		msixtbl = pci_conf_read(pa->pa_pc, pa->pa_tag,
    315 		    msixoff + PCI_MSIX_TBLOFFSET);
    316 		table_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK;
    317 		bir = msixtbl & PCI_MSIX_TBLBIR_MASK;
    318 		if (bir == PCI_MAPREG_NUM(ENA_REG_BAR))
    319 			mapsize = table_offset;
    320 	}
    321 
    322 	error = bus_space_map(adapter->sc_btag, memaddr, mapsize, flags,
    323 	    &adapter->sc_bhandle);
    324 	if (error != 0) {
    325 		aprint_error_dev(adapter->pdev,
    326 		    "can't map mem space (error=%d)\n", error);
    327 		return ENXIO;
    328 	}
    329 
    330 	return (0);
    331 }
    332 
    333 static void
    334 ena_free_pci_resources(struct ena_adapter *adapter)
    335 {
    336 	/* Nothing to do */
    337 }
    338 
    339 static int
    340 ena_probe(device_t parent, cfdata_t match, void *aux)
    341 {
    342 	struct pci_attach_args *pa = aux;
    343 	const ena_vendor_info_t *ent;
    344 
    345 	for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
    346 		ent = &ena_vendor_info_array[i];
    347 
    348 		if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
    349 		    (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
    350 			return 1;
    351 		}
    352 	}
    353 
    354 	return 0;
    355 }
    356 
    357 static int
    358 ena_change_mtu(struct ifnet *ifp, int new_mtu)
    359 {
    360 	struct ena_adapter *adapter = if_getsoftc(ifp);
    361 	int rc;
    362 
    363 	if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
    364 		device_printf(adapter->pdev, "Invalid MTU setting. "
    365 		    "new_mtu: %d max mtu: %d min mtu: %d\n",
    366 		    new_mtu, adapter->max_mtu, ENA_MIN_MTU);
    367 		return (EINVAL);
    368 	}
    369 
    370 	rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
    371 	if (likely(rc == 0)) {
    372 		ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
    373 		if_setmtu(ifp, new_mtu);
    374 	} else {
    375 		device_printf(adapter->pdev, "Failed to set MTU to %d\n",
    376 		    new_mtu);
    377 	}
    378 
    379 	return (rc);
    380 }
    381 
    382 #define EVCNT_INIT(st, f) \
    383 	do {								\
    384 		evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL,	\
    385 		    st->name, #f);					\
    386 	} while (0)
    387 
    388 static inline void
    389 ena_alloc_counters_rx(struct ena_stats_rx *st, int queue)
    390 {
    391 	snprintf(st->name, sizeof(st->name), "ena rxq%d", queue);
    392 
    393 	EVCNT_INIT(st, cnt);
    394 	EVCNT_INIT(st, bytes);
    395 	EVCNT_INIT(st, refil_partial);
    396 	EVCNT_INIT(st, bad_csum);
    397 	EVCNT_INIT(st, mjum_alloc_fail);
    398 	EVCNT_INIT(st, mbuf_alloc_fail);
    399 	EVCNT_INIT(st, dma_mapping_err);
    400 	EVCNT_INIT(st, bad_desc_num);
    401 	EVCNT_INIT(st, bad_req_id);
    402 	EVCNT_INIT(st, empty_rx_ring);
    403 
    404 	/* Make sure all code is updated when new fields added */
    405 	CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
    406 	    + sizeof(st->empty_rx_ring) == sizeof(*st));
    407 }
    408 
    409 static inline void
    410 ena_alloc_counters_tx(struct ena_stats_tx *st, int queue)
    411 {
    412 	snprintf(st->name, sizeof(st->name), "ena txq%d", queue);
    413 
    414 	EVCNT_INIT(st, cnt);
    415 	EVCNT_INIT(st, bytes);
    416 	EVCNT_INIT(st, prepare_ctx_err);
    417 	EVCNT_INIT(st, dma_mapping_err);
    418 	EVCNT_INIT(st, doorbells);
    419 	EVCNT_INIT(st, missing_tx_comp);
    420 	EVCNT_INIT(st, bad_req_id);
    421 	EVCNT_INIT(st, collapse);
    422 	EVCNT_INIT(st, collapse_err);
    423 
    424 	/* Make sure all code is updated when new fields added */
    425 	CTASSERT(offsetof(struct ena_stats_tx, collapse_err)
    426 	    + sizeof(st->collapse_err) == sizeof(*st));
    427 }
    428 
    429 static inline void
    430 ena_alloc_counters_dev(struct ena_stats_dev *st, int queue)
    431 {
    432 	snprintf(st->name, sizeof(st->name), "ena dev ioq%d", queue);
    433 
    434 	EVCNT_INIT(st, wd_expired);
    435 	EVCNT_INIT(st, interface_up);
    436 	EVCNT_INIT(st, interface_down);
    437 	EVCNT_INIT(st, admin_q_pause);
    438 
    439 	/* Make sure all code is updated when new fields added */
    440 	CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
    441 	    + sizeof(st->admin_q_pause) == sizeof(*st));
    442 }
    443 
    444 static inline void
    445 ena_alloc_counters_hwstats(struct ena_hw_stats *st, int queue)
    446 {
    447 	snprintf(st->name, sizeof(st->name), "ena hw ioq%d", queue);
    448 
    449 	EVCNT_INIT(st, rx_packets);
    450 	EVCNT_INIT(st, tx_packets);
    451 	EVCNT_INIT(st, rx_bytes);
    452 	EVCNT_INIT(st, tx_bytes);
    453 	EVCNT_INIT(st, rx_drops);
    454 
    455 	/* Make sure all code is updated when new fields added */
    456 	CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
    457 	    + sizeof(st->rx_drops) == sizeof(*st));
    458 }
    459 static inline void
    460 ena_free_counters(struct evcnt *begin, int size)
    461 {
    462 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
    463 
    464 	for (; begin < end; ++begin)
    465 		counter_u64_free(*begin);
    466 }
    467 
    468 static inline void
    469 ena_reset_counters(struct evcnt *begin, int size)
    470 {
    471 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
    472 
    473 	for (; begin < end; ++begin)
    474 		counter_u64_zero(*begin);
    475 }
    476 
    477 static void
    478 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
    479     uint16_t qid)
    480 {
    481 
    482 	ring->qid = qid;
    483 	ring->adapter = adapter;
    484 	ring->ena_dev = adapter->ena_dev;
    485 }
    486 
    487 static void
    488 ena_init_io_rings(struct ena_adapter *adapter)
    489 {
    490 	struct ena_com_dev *ena_dev;
    491 	struct ena_ring *txr, *rxr;
    492 	struct ena_que *que;
    493 	int i;
    494 
    495 	ena_dev = adapter->ena_dev;
    496 
    497 	for (i = 0; i < adapter->num_queues; i++) {
    498 		txr = &adapter->tx_ring[i];
    499 		rxr = &adapter->rx_ring[i];
    500 
    501 		/* TX/RX common ring state */
    502 		ena_init_io_rings_common(adapter, txr, i);
    503 		ena_init_io_rings_common(adapter, rxr, i);
    504 
    505 		/* TX specific ring state */
    506 		txr->ring_size = adapter->tx_ring_size;
    507 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
    508 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
    509 		txr->smoothed_interval =
    510 		    ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
    511 
    512 		/* Allocate a buf ring */
    513 		txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
    514 		    M_WAITOK, &txr->ring_mtx);
    515 
    516 		/* Alloc TX statistics. */
    517 		ena_alloc_counters_tx(&txr->tx_stats, i);
    518 
    519 		/* RX specific ring state */
    520 		rxr->ring_size = adapter->rx_ring_size;
    521 		rxr->smoothed_interval =
    522 		    ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
    523 
    524 		/* Alloc RX statistics. */
    525 		ena_alloc_counters_rx(&rxr->rx_stats, i);
    526 
    527 		/* Initialize locks */
    528 		snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
    529 		    device_xname(adapter->pdev), i);
    530 		snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
    531 		    device_xname(adapter->pdev), i);
    532 
    533 		mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
    534 		mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
    535 
    536 		que = &adapter->que[i];
    537 		que->adapter = adapter;
    538 		que->id = i;
    539 		que->tx_ring = txr;
    540 		que->rx_ring = rxr;
    541 
    542 		txr->que = que;
    543 		rxr->que = que;
    544 
    545 		rxr->empty_rx_queue = 0;
    546 	}
    547 }
    548 
    549 static void
    550 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
    551 {
    552 	struct ena_ring *txr = &adapter->tx_ring[qid];
    553 	struct ena_ring *rxr = &adapter->rx_ring[qid];
    554 
    555 	ena_free_counters((struct evcnt *)&txr->tx_stats,
    556 	    sizeof(txr->tx_stats));
    557 	ena_free_counters((struct evcnt *)&rxr->rx_stats,
    558 	    sizeof(rxr->rx_stats));
    559 
    560 	ENA_RING_MTX_LOCK(txr);
    561 	drbr_free(txr->br, M_DEVBUF);
    562 	ENA_RING_MTX_UNLOCK(txr);
    563 
    564 	mutex_destroy(&txr->ring_mtx);
    565 	mutex_destroy(&rxr->ring_mtx);
    566 }
    567 
    568 static void
    569 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
    570 {
    571 	int i;
    572 
    573 	for (i = 0; i < adapter->num_queues; i++)
    574 		ena_free_io_ring_resources(adapter, i);
    575 
    576 }
    577 
    578 #if 0
    579 static int
    580 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
    581 {
    582 	int ret;
    583 
    584 	/* Create DMA tag for Tx buffers */
    585 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
    586 	    1, 0,				  /* alignment, bounds 	     */
    587 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
    588 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
    589 	    NULL, NULL,				  /* filter, filterarg 	     */
    590 	    ENA_TSO_MAXSIZE,			  /* maxsize 		     */
    591 	    adapter->max_tx_sgl_size - 1,	  /* nsegments 		     */
    592 	    ENA_TSO_MAXSIZE,			  /* maxsegsize 	     */
    593 	    0,					  /* flags 		     */
    594 	    NULL,				  /* lockfunc 		     */
    595 	    NULL,				  /* lockfuncarg 	     */
    596 	    &adapter->tx_buf_tag);
    597 
    598 	return (ret);
    599 }
    600 #endif
    601 
    602 #if 0
    603 static int
    604 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
    605 {
    606 	int ret;
    607 
    608 	/* Create DMA tag for Rx buffers*/
    609 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent   */
    610 	    1, 0,				  /* alignment, bounds 	     */
    611 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
    612 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
    613 	    NULL, NULL,				  /* filter, filterarg 	     */
    614 	    MJUM16BYTES,			  /* maxsize 		     */
    615 	    adapter->max_rx_sgl_size,		  /* nsegments 		     */
    616 	    MJUM16BYTES,			  /* maxsegsize 	     */
    617 	    0,					  /* flags 		     */
    618 	    NULL,				  /* lockfunc 		     */
    619 	    NULL,				  /* lockarg 		     */
    620 	    &adapter->rx_buf_tag);
    621 
    622 	return (ret);
    623 }
    624 #endif
    625 
    626 /**
    627  * ena_setup_tx_resources - allocate Tx resources (Descriptors)
    628  * @adapter: network interface device structure
    629  * @qid: queue index
    630  *
    631  * Returns 0 on success, otherwise on failure.
    632  **/
    633 static int
    634 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
    635 {
    636 	struct ena_que *que = &adapter->que[qid];
    637 	struct ena_ring *tx_ring = que->tx_ring;
    638 	int size, i, err;
    639 #ifdef	RSS
    640 	cpuset_t cpu_mask;
    641 #endif
    642 
    643 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
    644 	tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
    645 
    646 	size = sizeof(uint16_t) * tx_ring->ring_size;
    647 	tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
    648 
    649 	/* Req id stack for TX OOO completions */
    650 	for (i = 0; i < tx_ring->ring_size; i++)
    651 		tx_ring->free_tx_ids[i] = i;
    652 
    653 	/* Reset TX statistics. */
    654 	ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
    655 	    sizeof(tx_ring->tx_stats));
    656 
    657 	tx_ring->next_to_use = 0;
    658 	tx_ring->next_to_clean = 0;
    659 
    660 	/* Make sure that drbr is empty */
    661 	ENA_RING_MTX_LOCK(tx_ring);
    662 	drbr_flush(adapter->ifp, tx_ring->br);
    663 	ENA_RING_MTX_UNLOCK(tx_ring);
    664 
    665 	/* ... and create the buffer DMA maps */
    666 	for (i = 0; i < tx_ring->ring_size; i++) {
    667 		err = bus_dmamap_create(adapter->sc_dmat,
    668 		    ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
    669 		    ENA_TSO_MAXSIZE, 0, 0,
    670 		    &tx_ring->tx_buffer_info[i].map);
    671 		if (unlikely(err != 0)) {
    672 			ena_trace(ENA_ALERT,
    673 			     "Unable to create Tx DMA map for buffer %d\n", i);
    674 			goto err_buf_info_unmap;
    675 		}
    676 	}
    677 
    678 	/* Allocate workqueues */
    679 	int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
    680 	    ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
    681 	if (unlikely(rc != 0)) {
    682 		ena_trace(ENA_ALERT,
    683 		    "Unable to create workqueue for enqueue task\n");
    684 		i = tx_ring->ring_size;
    685 		goto err_buf_info_unmap;
    686 	}
    687 
    688 #if 0
    689 	/* RSS set cpu for thread */
    690 #ifdef RSS
    691 	CPU_SETOF(que->cpu, &cpu_mask);
    692 	taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET,
    693 	    &cpu_mask, "%s tx_ring enq (bucket %d)",
    694 	    device_xname(adapter->pdev), que->cpu);
    695 #else /* RSS */
    696 	taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET,
    697 	    "%s txeq %d", device_xname(adapter->pdev), que->cpu);
    698 #endif /* RSS */
    699 #endif
    700 
    701 	return (0);
    702 
    703 err_buf_info_unmap:
    704 	while (i--) {
    705 		bus_dmamap_destroy(adapter->sc_dmat,
    706 		    tx_ring->tx_buffer_info[i].map);
    707 	}
    708 	free(tx_ring->free_tx_ids, M_DEVBUF);
    709 	tx_ring->free_tx_ids = NULL;
    710 	free(tx_ring->tx_buffer_info, M_DEVBUF);
    711 	tx_ring->tx_buffer_info = NULL;
    712 
    713 	return (ENOMEM);
    714 }
    715 
    716 /**
    717  * ena_free_tx_resources - Free Tx Resources per Queue
    718  * @adapter: network interface device structure
    719  * @qid: queue index
    720  *
    721  * Free all transmit software resources
    722  **/
    723 static void
    724 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
    725 {
    726 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
    727 
    728 	workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
    729 	workqueue_destroy(tx_ring->enqueue_tq);
    730 	tx_ring->enqueue_tq = NULL;
    731 
    732 	ENA_RING_MTX_LOCK(tx_ring);
    733 	/* Flush buffer ring, */
    734 	drbr_flush(adapter->ifp, tx_ring->br);
    735 
    736 	/* Free buffer DMA maps, */
    737 	for (int i = 0; i < tx_ring->ring_size; i++) {
    738 		m_freem(tx_ring->tx_buffer_info[i].mbuf);
    739 		tx_ring->tx_buffer_info[i].mbuf = NULL;
    740 		bus_dmamap_unload(adapter->sc_dmat,
    741 		    tx_ring->tx_buffer_info[i].map);
    742 		bus_dmamap_destroy(adapter->sc_dmat,
    743 		    tx_ring->tx_buffer_info[i].map);
    744 	}
    745 	ENA_RING_MTX_UNLOCK(tx_ring);
    746 
    747 	/* And free allocated memory. */
    748 	free(tx_ring->tx_buffer_info, M_DEVBUF);
    749 	tx_ring->tx_buffer_info = NULL;
    750 
    751 	free(tx_ring->free_tx_ids, M_DEVBUF);
    752 	tx_ring->free_tx_ids = NULL;
    753 }
    754 
    755 /**
    756  * ena_setup_all_tx_resources - allocate all queues Tx resources
    757  * @adapter: network interface device structure
    758  *
    759  * Returns 0 on success, otherwise on failure.
    760  **/
    761 static int
    762 ena_setup_all_tx_resources(struct ena_adapter *adapter)
    763 {
    764 	int i, rc;
    765 
    766 	for (i = 0; i < adapter->num_queues; i++) {
    767 		rc = ena_setup_tx_resources(adapter, i);
    768 		if (rc != 0) {
    769 			device_printf(adapter->pdev,
    770 			    "Allocation for Tx Queue %u failed\n", i);
    771 			goto err_setup_tx;
    772 		}
    773 	}
    774 
    775 	return (0);
    776 
    777 err_setup_tx:
    778 	/* Rewind the index freeing the rings as we go */
    779 	while (i--)
    780 		ena_free_tx_resources(adapter, i);
    781 	return (rc);
    782 }
    783 
    784 /**
    785  * ena_free_all_tx_resources - Free Tx Resources for All Queues
    786  * @adapter: network interface device structure
    787  *
    788  * Free all transmit software resources
    789  **/
    790 static void
    791 ena_free_all_tx_resources(struct ena_adapter *adapter)
    792 {
    793 	int i;
    794 
    795 	for (i = 0; i < adapter->num_queues; i++)
    796 		ena_free_tx_resources(adapter, i);
    797 }
    798 
    799 static inline int
    800 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
    801 {
    802 	if (likely(req_id < rx_ring->ring_size))
    803 		return (0);
    804 
    805 	device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
    806 	    req_id);
    807 	counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
    808 
    809 	/* Trigger device reset */
    810 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
    811 	rx_ring->adapter->trigger_reset = true;
    812 
    813 	return (EFAULT);
    814 }
    815 
    816 /**
    817  * ena_setup_rx_resources - allocate Rx resources (Descriptors)
    818  * @adapter: network interface device structure
    819  * @qid: queue index
    820  *
    821  * Returns 0 on success, otherwise on failure.
    822  **/
    823 static int
    824 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
    825 {
    826 	struct ena_que *que = &adapter->que[qid];
    827 	struct ena_ring *rx_ring = que->rx_ring;
    828 	int size, err, i;
    829 #ifdef	RSS
    830 	cpuset_t cpu_mask;
    831 #endif
    832 
    833 	size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
    834 
    835 	/*
    836 	 * Alloc extra element so in rx path
    837 	 * we can always prefetch rx_info + 1
    838 	 */
    839 	size += sizeof(struct ena_rx_buffer);
    840 
    841 	rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
    842 
    843 	size = sizeof(uint16_t) * rx_ring->ring_size;
    844 	rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
    845 
    846 	for (i = 0; i < rx_ring->ring_size; i++)
    847 		rx_ring->free_rx_ids[i] = i;
    848 
    849 	/* Reset RX statistics. */
    850 	ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
    851 	    sizeof(rx_ring->rx_stats));
    852 
    853 	rx_ring->next_to_clean = 0;
    854 	rx_ring->next_to_use = 0;
    855 
    856 	/* ... and create the buffer DMA maps */
    857 	for (i = 0; i < rx_ring->ring_size; i++) {
    858 		err = bus_dmamap_create(adapter->sc_dmat,
    859 		    MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
    860 		    0, 0,
    861 		    &(rx_ring->rx_buffer_info[i].map));
    862 		if (err != 0) {
    863 			ena_trace(ENA_ALERT,
    864 			    "Unable to create Rx DMA map for buffer %d\n", i);
    865 			goto err_buf_info_unmap;
    866 		}
    867 	}
    868 
    869 #ifdef LRO
    870 	/* Create LRO for the ring */
    871 	if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
    872 		int err = tcp_lro_init(&rx_ring->lro);
    873 		if (err != 0) {
    874 			device_printf(adapter->pdev,
    875 			    "LRO[%d] Initialization failed!\n", qid);
    876 		} else {
    877 			ena_trace(ENA_INFO,
    878 			    "RX Soft LRO[%d] Initialized\n", qid);
    879 			rx_ring->lro.ifp = adapter->ifp;
    880 		}
    881 	}
    882 #endif
    883 
    884 	/* Allocate workqueues */
    885 	int rc = workqueue_create(&rx_ring->cmpl_tq, "ena_rx_comp",
    886 	    ena_deferred_rx_cleanup, rx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
    887 	if (unlikely(rc != 0)) {
    888 		ena_trace(ENA_ALERT,
    889 		    "Unable to create workqueue for RX completion task\n");
    890 		goto err_buf_info_unmap;
    891 	}
    892 
    893 #if 0
    894 	/* RSS set cpu for thread */
    895 #ifdef RSS
    896 	CPU_SETOF(que->cpu, &cpu_mask);
    897 	taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask,
    898 	    "%s rx_ring cmpl (bucket %d)",
    899 	    device_xname(adapter->pdev), que->cpu);
    900 #else
    901 	taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET,
    902 	    "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu);
    903 #endif
    904 #endif
    905 
    906 	return (0);
    907 
    908 err_buf_info_unmap:
    909 	while (i--) {
    910 		bus_dmamap_destroy(adapter->sc_dmat,
    911 		    rx_ring->rx_buffer_info[i].map);
    912 	}
    913 
    914 	free(rx_ring->free_rx_ids, M_DEVBUF);
    915 	rx_ring->free_rx_ids = NULL;
    916 	free(rx_ring->rx_buffer_info, M_DEVBUF);
    917 	rx_ring->rx_buffer_info = NULL;
    918 	return (ENOMEM);
    919 }
    920 
    921 /**
    922  * ena_free_rx_resources - Free Rx Resources
    923  * @adapter: network interface device structure
    924  * @qid: queue index
    925  *
    926  * Free all receive software resources
    927  **/
    928 static void
    929 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
    930 {
    931 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
    932 
    933 	workqueue_wait(rx_ring->cmpl_tq, &rx_ring->cmpl_task);
    934 	workqueue_destroy(rx_ring->cmpl_tq);
    935 	rx_ring->cmpl_tq = NULL;
    936 
    937 	/* Free buffer DMA maps, */
    938 	for (int i = 0; i < rx_ring->ring_size; i++) {
    939 		m_freem(rx_ring->rx_buffer_info[i].mbuf);
    940 		rx_ring->rx_buffer_info[i].mbuf = NULL;
    941 		bus_dmamap_unload(adapter->sc_dmat,
    942 		    rx_ring->rx_buffer_info[i].map);
    943 		bus_dmamap_destroy(adapter->sc_dmat,
    944 		    rx_ring->rx_buffer_info[i].map);
    945 	}
    946 
    947 #ifdef LRO
    948 	/* free LRO resources, */
    949 	tcp_lro_free(&rx_ring->lro);
    950 #endif
    951 
    952 	/* free allocated memory */
    953 	free(rx_ring->rx_buffer_info, M_DEVBUF);
    954 	rx_ring->rx_buffer_info = NULL;
    955 
    956 	free(rx_ring->free_rx_ids, M_DEVBUF);
    957 	rx_ring->free_rx_ids = NULL;
    958 }
    959 
    960 /**
    961  * ena_setup_all_rx_resources - allocate all queues Rx resources
    962  * @adapter: network interface device structure
    963  *
    964  * Returns 0 on success, otherwise on failure.
    965  **/
    966 static int
    967 ena_setup_all_rx_resources(struct ena_adapter *adapter)
    968 {
    969 	int i, rc = 0;
    970 
    971 	for (i = 0; i < adapter->num_queues; i++) {
    972 		rc = ena_setup_rx_resources(adapter, i);
    973 		if (rc != 0) {
    974 			device_printf(adapter->pdev,
    975 			    "Allocation for Rx Queue %u failed\n", i);
    976 			goto err_setup_rx;
    977 		}
    978 	}
    979 	return (0);
    980 
    981 err_setup_rx:
    982 	/* rewind the index freeing the rings as we go */
    983 	while (i--)
    984 		ena_free_rx_resources(adapter, i);
    985 	return (rc);
    986 }
    987 
    988 /**
    989  * ena_free_all_rx_resources - Free Rx resources for all queues
    990  * @adapter: network interface device structure
    991  *
    992  * Free all receive software resources
    993  **/
    994 static void
    995 ena_free_all_rx_resources(struct ena_adapter *adapter)
    996 {
    997 	int i;
    998 
    999 	for (i = 0; i < adapter->num_queues; i++)
   1000 		ena_free_rx_resources(adapter, i);
   1001 }
   1002 
   1003 static inline int
   1004 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
   1005     struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
   1006 {
   1007 	struct ena_com_buf *ena_buf;
   1008 	int error;
   1009 	int mlen;
   1010 
   1011 	/* if previous allocated frag is not used */
   1012 	if (unlikely(rx_info->mbuf != NULL))
   1013 		return (0);
   1014 
   1015 	/* Get mbuf using UMA allocator */
   1016 	rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES);
   1017 
   1018 	if (unlikely(rx_info->mbuf == NULL)) {
   1019 		counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1);
   1020 		rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
   1021 		if (unlikely(rx_info->mbuf == NULL)) {
   1022 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
   1023 			return (ENOMEM);
   1024 		}
   1025 		mlen = MCLBYTES;
   1026 	} else {
   1027 		mlen = MJUM16BYTES;
   1028 	}
   1029 	/* Set mbuf length*/
   1030 	rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
   1031 
   1032 	/* Map packets for DMA */
   1033 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
   1034 	    "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
   1035 	    adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
   1036 	error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
   1037 	    rx_info->mbuf, BUS_DMA_NOWAIT);
   1038 	if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
   1039 		ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
   1040 		    "nsegs: %d\n", error, rx_info->map->dm_nsegs);
   1041 		counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
   1042 		goto exit;
   1043 
   1044 	}
   1045 
   1046 	bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
   1047 	    rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
   1048 
   1049 	ena_buf = &rx_info->ena_buf;
   1050 	ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
   1051 	ena_buf->len = mlen;
   1052 
   1053 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
   1054 	    "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
   1055 	    rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
   1056 
   1057 	return (0);
   1058 
   1059 exit:
   1060 	m_freem(rx_info->mbuf);
   1061 	rx_info->mbuf = NULL;
   1062 	return (EFAULT);
   1063 }
   1064 
   1065 static void
   1066 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
   1067     struct ena_rx_buffer *rx_info)
   1068 {
   1069 
   1070 	if (rx_info->mbuf == NULL) {
   1071 		ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
   1072 		return;
   1073 	}
   1074 
   1075 	bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
   1076 	m_freem(rx_info->mbuf);
   1077 	rx_info->mbuf = NULL;
   1078 }
   1079 
   1080 /**
   1081  * ena_refill_rx_bufs - Refills ring with descriptors
   1082  * @rx_ring: the ring which we want to feed with free descriptors
   1083  * @num: number of descriptors to refill
   1084  * Refills the ring with newly allocated DMA-mapped mbufs for receiving
   1085  **/
   1086 static int
   1087 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
   1088 {
   1089 	struct ena_adapter *adapter = rx_ring->adapter;
   1090 	uint16_t next_to_use, req_id;
   1091 	uint32_t i;
   1092 	int rc;
   1093 
   1094 	ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
   1095 	    rx_ring->qid);
   1096 
   1097 	next_to_use = rx_ring->next_to_use;
   1098 
   1099 	for (i = 0; i < num; i++) {
   1100 		struct ena_rx_buffer *rx_info;
   1101 
   1102 		ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
   1103 		    "RX buffer - next to use: %d", next_to_use);
   1104 
   1105 		req_id = rx_ring->free_rx_ids[next_to_use];
   1106 		rc = validate_rx_req_id(rx_ring, req_id);
   1107 		if (unlikely(rc != 0))
   1108 			break;
   1109 
   1110 		rx_info = &rx_ring->rx_buffer_info[req_id];
   1111 
   1112 		rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
   1113 		if (unlikely(rc != 0)) {
   1114 			ena_trace(ENA_WARNING,
   1115 			    "failed to alloc buffer for rx queue %d\n",
   1116 			    rx_ring->qid);
   1117 			break;
   1118 		}
   1119 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
   1120 		    &rx_info->ena_buf, req_id);
   1121 		if (unlikely(rc != 0)) {
   1122 			ena_trace(ENA_WARNING,
   1123 			    "failed to add buffer for rx queue %d\n",
   1124 			    rx_ring->qid);
   1125 			break;
   1126 		}
   1127 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
   1128 		    rx_ring->ring_size);
   1129 	}
   1130 
   1131 	if (unlikely(i < num)) {
   1132 		counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
   1133 		ena_trace(ENA_WARNING,
   1134 		     "refilled rx qid %d with only %d mbufs (from %d)\n",
   1135 		     rx_ring->qid, i, num);
   1136 	}
   1137 
   1138 	if (likely(i != 0)) {
   1139 		wmb();
   1140 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
   1141 	}
   1142 	rx_ring->next_to_use = next_to_use;
   1143 	return (i);
   1144 }
   1145 
   1146 static void
   1147 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
   1148 {
   1149 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
   1150 	unsigned int i;
   1151 
   1152 	for (i = 0; i < rx_ring->ring_size; i++) {
   1153 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
   1154 
   1155 		if (rx_info->mbuf != NULL)
   1156 			ena_free_rx_mbuf(adapter, rx_ring, rx_info);
   1157 	}
   1158 }
   1159 
   1160 /**
   1161  * ena_refill_all_rx_bufs - allocate all queues Rx buffers
   1162  * @adapter: network interface device structure
   1163  *
   1164  */
   1165 static void
   1166 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
   1167 {
   1168 	struct ena_ring *rx_ring;
   1169 	int i, rc, bufs_num;
   1170 
   1171 	for (i = 0; i < adapter->num_queues; i++) {
   1172 		rx_ring = &adapter->rx_ring[i];
   1173 		bufs_num = rx_ring->ring_size - 1;
   1174 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
   1175 
   1176 		if (unlikely(rc != bufs_num))
   1177 			ena_trace(ENA_WARNING, "refilling Queue %d failed. "
   1178 			    "Allocated %d buffers from: %d\n", i, rc, bufs_num);
   1179 	}
   1180 }
   1181 
   1182 static void
   1183 ena_free_all_rx_bufs(struct ena_adapter *adapter)
   1184 {
   1185 	int i;
   1186 
   1187 	for (i = 0; i < adapter->num_queues; i++)
   1188 		ena_free_rx_bufs(adapter, i);
   1189 }
   1190 
   1191 /**
   1192  * ena_free_tx_bufs - Free Tx Buffers per Queue
   1193  * @adapter: network interface device structure
   1194  * @qid: queue index
   1195  **/
   1196 static void
   1197 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
   1198 {
   1199 	bool print_once = true;
   1200 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
   1201 
   1202 	ENA_RING_MTX_LOCK(tx_ring);
   1203 	for (int i = 0; i < tx_ring->ring_size; i++) {
   1204 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
   1205 
   1206 		if (tx_info->mbuf == NULL)
   1207 			continue;
   1208 
   1209 		if (print_once) {
   1210 			device_printf(adapter->pdev,
   1211 			    "free uncompleted tx mbuf qid %d idx 0x%x",
   1212 			    qid, i);
   1213 			print_once = false;
   1214 		} else {
   1215 			ena_trace(ENA_DBG,
   1216 			    "free uncompleted tx mbuf qid %d idx 0x%x",
   1217 			     qid, i);
   1218 		}
   1219 
   1220 		bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   1221 		m_free(tx_info->mbuf);
   1222 		tx_info->mbuf = NULL;
   1223 	}
   1224 	ENA_RING_MTX_UNLOCK(tx_ring);
   1225 }
   1226 
   1227 static void
   1228 ena_free_all_tx_bufs(struct ena_adapter *adapter)
   1229 {
   1230 
   1231 	for (int i = 0; i < adapter->num_queues; i++)
   1232 		ena_free_tx_bufs(adapter, i);
   1233 }
   1234 
   1235 static void
   1236 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
   1237 {
   1238 	uint16_t ena_qid;
   1239 	int i;
   1240 
   1241 	for (i = 0; i < adapter->num_queues; i++) {
   1242 		ena_qid = ENA_IO_TXQ_IDX(i);
   1243 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
   1244 	}
   1245 }
   1246 
   1247 static void
   1248 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
   1249 {
   1250 	uint16_t ena_qid;
   1251 	int i;
   1252 
   1253 	for (i = 0; i < adapter->num_queues; i++) {
   1254 		ena_qid = ENA_IO_RXQ_IDX(i);
   1255 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
   1256 	}
   1257 }
   1258 
   1259 static void
   1260 ena_destroy_all_io_queues(struct ena_adapter *adapter)
   1261 {
   1262 	ena_destroy_all_tx_queues(adapter);
   1263 	ena_destroy_all_rx_queues(adapter);
   1264 }
   1265 
   1266 static inline int
   1267 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
   1268 {
   1269 	struct ena_adapter *adapter = tx_ring->adapter;
   1270 	struct ena_tx_buffer *tx_info = NULL;
   1271 
   1272 	if (likely(req_id < tx_ring->ring_size)) {
   1273 		tx_info = &tx_ring->tx_buffer_info[req_id];
   1274 		if (tx_info->mbuf != NULL)
   1275 			return (0);
   1276 	}
   1277 
   1278 	if (tx_info->mbuf == NULL)
   1279 		device_printf(adapter->pdev,
   1280 		    "tx_info doesn't have valid mbuf\n");
   1281 	else
   1282 		device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
   1283 
   1284 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
   1285 
   1286 	return (EFAULT);
   1287 }
   1288 
   1289 static int
   1290 ena_create_io_queues(struct ena_adapter *adapter)
   1291 {
   1292 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   1293 	struct ena_com_create_io_ctx ctx;
   1294 	struct ena_ring *ring;
   1295 	uint16_t ena_qid;
   1296 	uint32_t msix_vector;
   1297 	int rc, i;
   1298 
   1299 	/* Create TX queues */
   1300 	for (i = 0; i < adapter->num_queues; i++) {
   1301 		msix_vector = ENA_IO_IRQ_IDX(i);
   1302 		ena_qid = ENA_IO_TXQ_IDX(i);
   1303 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
   1304 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
   1305 		ctx.queue_size = adapter->tx_ring_size;
   1306 		ctx.msix_vector = msix_vector;
   1307 		ctx.qid = ena_qid;
   1308 		rc = ena_com_create_io_queue(ena_dev, &ctx);
   1309 		if (rc != 0) {
   1310 			device_printf(adapter->pdev,
   1311 			    "Failed to create io TX queue #%d rc: %d\n", i, rc);
   1312 			goto err_tx;
   1313 		}
   1314 		ring = &adapter->tx_ring[i];
   1315 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
   1316 		    &ring->ena_com_io_sq,
   1317 		    &ring->ena_com_io_cq);
   1318 		if (rc != 0) {
   1319 			device_printf(adapter->pdev,
   1320 			    "Failed to get TX queue handlers. TX queue num"
   1321 			    " %d rc: %d\n", i, rc);
   1322 			ena_com_destroy_io_queue(ena_dev, ena_qid);
   1323 			goto err_tx;
   1324 		}
   1325 	}
   1326 
   1327 	/* Create RX queues */
   1328 	for (i = 0; i < adapter->num_queues; i++) {
   1329 		msix_vector = ENA_IO_IRQ_IDX(i);
   1330 		ena_qid = ENA_IO_RXQ_IDX(i);
   1331 		ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
   1332 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
   1333 		ctx.queue_size = adapter->rx_ring_size;
   1334 		ctx.msix_vector = msix_vector;
   1335 		ctx.qid = ena_qid;
   1336 		rc = ena_com_create_io_queue(ena_dev, &ctx);
   1337 		if (unlikely(rc != 0)) {
   1338 			device_printf(adapter->pdev,
   1339 			    "Failed to create io RX queue[%d] rc: %d\n", i, rc);
   1340 			goto err_rx;
   1341 		}
   1342 
   1343 		ring = &adapter->rx_ring[i];
   1344 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
   1345 		    &ring->ena_com_io_sq,
   1346 		    &ring->ena_com_io_cq);
   1347 		if (unlikely(rc != 0)) {
   1348 			device_printf(adapter->pdev,
   1349 			    "Failed to get RX queue handlers. RX queue num"
   1350 			    " %d rc: %d\n", i, rc);
   1351 			ena_com_destroy_io_queue(ena_dev, ena_qid);
   1352 			goto err_rx;
   1353 		}
   1354 	}
   1355 
   1356 	return (0);
   1357 
   1358 err_rx:
   1359 	while (i--)
   1360 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
   1361 	i = adapter->num_queues;
   1362 err_tx:
   1363 	while (i--)
   1364 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
   1365 
   1366 	return (ENXIO);
   1367 }
   1368 
   1369 /**
   1370  * ena_tx_cleanup - clear sent packets and corresponding descriptors
   1371  * @tx_ring: ring for which we want to clean packets
   1372  *
   1373  * Once packets are sent, we ask the device in a loop for no longer used
   1374  * descriptors. We find the related mbuf chain in a map (index in an array)
   1375  * and free it, then update ring state.
   1376  * This is performed in "endless" loop, updating ring pointers every
   1377  * TX_COMMIT. The first check of free descriptor is performed before the actual
   1378  * loop, then repeated at the loop end.
   1379  **/
   1380 static int
   1381 ena_tx_cleanup(struct ena_ring *tx_ring)
   1382 {
   1383 	struct ena_adapter *adapter;
   1384 	struct ena_com_io_cq* io_cq;
   1385 	uint16_t next_to_clean;
   1386 	uint16_t req_id;
   1387 	uint16_t ena_qid;
   1388 	unsigned int total_done = 0;
   1389 	int rc;
   1390 	int commit = TX_COMMIT;
   1391 	int budget = TX_BUDGET;
   1392 	int work_done;
   1393 
   1394 	adapter = tx_ring->que->adapter;
   1395 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   1396 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1397 	next_to_clean = tx_ring->next_to_clean;
   1398 
   1399 	do {
   1400 		struct ena_tx_buffer *tx_info;
   1401 		struct mbuf *mbuf;
   1402 
   1403 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
   1404 		if (unlikely(rc != 0))
   1405 			break;
   1406 
   1407 		rc = validate_tx_req_id(tx_ring, req_id);
   1408 		if (unlikely(rc != 0))
   1409 			break;
   1410 
   1411 		tx_info = &tx_ring->tx_buffer_info[req_id];
   1412 
   1413 		mbuf = tx_info->mbuf;
   1414 
   1415 		tx_info->mbuf = NULL;
   1416 		bintime_clear(&tx_info->timestamp);
   1417 
   1418 		if (likely(tx_info->num_of_bufs != 0)) {
   1419 			/* Map is no longer required */
   1420 			bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   1421 		}
   1422 
   1423 		ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
   1424 		    tx_ring->qid, mbuf);
   1425 
   1426 		m_freem(mbuf);
   1427 
   1428 		total_done += tx_info->tx_descs;
   1429 
   1430 		tx_ring->free_tx_ids[next_to_clean] = req_id;
   1431 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
   1432 		    tx_ring->ring_size);
   1433 
   1434 		if (unlikely(--commit == 0)) {
   1435 			commit = TX_COMMIT;
   1436 			/* update ring state every TX_COMMIT descriptor */
   1437 			tx_ring->next_to_clean = next_to_clean;
   1438 			ena_com_comp_ack(
   1439 			    &adapter->ena_dev->io_sq_queues[ena_qid],
   1440 			    total_done);
   1441 			ena_com_update_dev_comp_head(io_cq);
   1442 			total_done = 0;
   1443 		}
   1444 	} while (likely(--budget));
   1445 
   1446 	work_done = TX_BUDGET - budget;
   1447 
   1448 	ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
   1449 	tx_ring->qid, work_done);
   1450 
   1451 	/* If there is still something to commit update ring state */
   1452 	if (likely(commit != TX_COMMIT)) {
   1453 		tx_ring->next_to_clean = next_to_clean;
   1454 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
   1455 		    total_done);
   1456 		ena_com_update_dev_comp_head(io_cq);
   1457 	}
   1458 
   1459 	if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   1460 		workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
   1461 
   1462 	return (work_done);
   1463 }
   1464 
   1465 #if 0
   1466 static void
   1467 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
   1468     struct mbuf *mbuf)
   1469 {
   1470 	struct ena_adapter *adapter = rx_ring->adapter;
   1471 
   1472 	if (likely(adapter->rss_support)) {
   1473 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
   1474 
   1475 		if (ena_rx_ctx->frag &&
   1476 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
   1477 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
   1478 			return;
   1479 		}
   1480 
   1481 		switch (ena_rx_ctx->l3_proto) {
   1482 		case ENA_ETH_IO_L3_PROTO_IPV4:
   1483 			switch (ena_rx_ctx->l4_proto) {
   1484 			case ENA_ETH_IO_L4_PROTO_TCP:
   1485 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
   1486 				break;
   1487 			case ENA_ETH_IO_L4_PROTO_UDP:
   1488 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
   1489 				break;
   1490 			default:
   1491 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
   1492 			}
   1493 			break;
   1494 		case ENA_ETH_IO_L3_PROTO_IPV6:
   1495 			switch (ena_rx_ctx->l4_proto) {
   1496 			case ENA_ETH_IO_L4_PROTO_TCP:
   1497 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
   1498 				break;
   1499 			case ENA_ETH_IO_L4_PROTO_UDP:
   1500 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
   1501 				break;
   1502 			default:
   1503 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
   1504 			}
   1505 			break;
   1506 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
   1507 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
   1508 			break;
   1509 		default:
   1510 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
   1511 		}
   1512 	} else {
   1513 		mbuf->m_pkthdr.flowid = rx_ring->qid;
   1514 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
   1515 	}
   1516 }
   1517 #endif
   1518 
   1519 /**
   1520  * ena_rx_mbuf - assemble mbuf from descriptors
   1521  * @rx_ring: ring for which we want to clean packets
   1522  * @ena_bufs: buffer info
   1523  * @ena_rx_ctx: metadata for this packet(s)
   1524  * @next_to_clean: ring pointer, will be updated only upon success
   1525  *
   1526  **/
   1527 static struct mbuf*
   1528 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
   1529     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
   1530 {
   1531 	struct mbuf *mbuf;
   1532 	struct ena_rx_buffer *rx_info;
   1533 	struct ena_adapter *adapter;
   1534 	unsigned int descs = ena_rx_ctx->descs;
   1535 	uint16_t ntc, len, req_id, buf = 0;
   1536 
   1537 	ntc = *next_to_clean;
   1538 	adapter = rx_ring->adapter;
   1539 	rx_info = &rx_ring->rx_buffer_info[ntc];
   1540 
   1541 	if (unlikely(rx_info->mbuf == NULL)) {
   1542 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
   1543 		return (NULL);
   1544 	}
   1545 
   1546 	len = ena_bufs[buf].len;
   1547 	req_id = ena_bufs[buf].req_id;
   1548 	rx_info = &rx_ring->rx_buffer_info[req_id];
   1549 
   1550 	ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
   1551 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
   1552 
   1553 	mbuf = rx_info->mbuf;
   1554 	KASSERT(mbuf->m_flags & M_PKTHDR);
   1555 	mbuf->m_pkthdr.len = len;
   1556 	mbuf->m_len = len;
   1557 	m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
   1558 
   1559 	/* Fill mbuf with hash key and it's interpretation for optimization */
   1560 #if 0
   1561 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
   1562 #endif
   1563 
   1564 	ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf %p, flags=0x%x, len: %d",
   1565 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
   1566 
   1567 	/* DMA address is not needed anymore, unmap it */
   1568 	bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
   1569 
   1570 	rx_info->mbuf = NULL;
   1571 	rx_ring->free_rx_ids[ntc] = req_id;
   1572 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
   1573 
   1574 	/*
   1575 	 * While we have more than 1 descriptors for one rcvd packet, append
   1576 	 * other mbufs to the main one
   1577 	 */
   1578 	while (--descs) {
   1579 		++buf;
   1580 		len = ena_bufs[buf].len;
   1581 		req_id = ena_bufs[buf].req_id;
   1582 		rx_info = &rx_ring->rx_buffer_info[req_id];
   1583 
   1584 		if (unlikely(rx_info->mbuf == NULL)) {
   1585 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
   1586 			/*
   1587 			 * If one of the required mbufs was not allocated yet,
   1588 			 * we can break there.
   1589 			 * All earlier used descriptors will be reallocated
   1590 			 * later and not used mbufs can be reused.
   1591 			 * The next_to_clean pointer will not be updated in case
   1592 			 * of an error, so caller should advance it manually
   1593 			 * in error handling routine to keep it up to date
   1594 			 * with hw ring.
   1595 			 */
   1596 			m_freem(mbuf);
   1597 			return (NULL);
   1598 		}
   1599 
   1600 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
   1601 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
   1602 			ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
   1603 			    mbuf);
   1604 		}
   1605 
   1606 		ena_trace(ENA_DBG | ENA_RXPTH,
   1607 		    "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
   1608 
   1609 		/* Free already appended mbuf, it won't be useful anymore */
   1610 		bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
   1611 		m_freem(rx_info->mbuf);
   1612 		rx_info->mbuf = NULL;
   1613 
   1614 		rx_ring->free_rx_ids[ntc] = req_id;
   1615 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
   1616 	}
   1617 
   1618 	*next_to_clean = ntc;
   1619 
   1620 	return (mbuf);
   1621 }
   1622 
   1623 /**
   1624  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
   1625  **/
   1626 static inline void
   1627 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
   1628     struct mbuf *mbuf)
   1629 {
   1630 
   1631 	/* IPv4 */
   1632 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
   1633 		mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1634 		if (ena_rx_ctx->l3_csum_err) {
   1635 			/* ipv4 checksum error */
   1636 			mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1637 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1638 			ena_trace(ENA_DBG, "RX IPv4 header checksum error");
   1639 			return;
   1640 		}
   1641 
   1642 		/*  TCP/UDP */
   1643 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
   1644 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
   1645 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
   1646 			if (ena_rx_ctx->l4_csum_err) {
   1647 				/* TCP/UDP checksum error */
   1648 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1649 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1650 				ena_trace(ENA_DBG, "RX L4 checksum error");
   1651 			}
   1652 		}
   1653 	}
   1654 	/* IPv6 */
   1655 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
   1656 		/*  TCP/UDP */
   1657 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
   1658 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
   1659 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
   1660 			if (ena_rx_ctx->l4_csum_err) {
   1661 				/* TCP/UDP checksum error */
   1662 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1663 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1664 				ena_trace(ENA_DBG, "RX L4 checksum error");
   1665 			}
   1666 		}
   1667 	}
   1668 }
   1669 
   1670 static void
   1671 ena_deferred_rx_cleanup(struct work *wk, void *arg)
   1672 {
   1673 	struct ena_ring *rx_ring = arg;
   1674 	int budget = CLEAN_BUDGET;
   1675 
   1676 	atomic_swap_uint(&rx_ring->task_pending, 0);
   1677 
   1678 	ENA_RING_MTX_LOCK(rx_ring);
   1679 	/*
   1680 	 * If deferred task was executed, perform cleanup of all awaiting
   1681 	 * descs (or until given budget is depleted to avoid infinite loop).
   1682 	 */
   1683 	while (likely(budget--)) {
   1684 		if (ena_rx_cleanup(rx_ring) == 0)
   1685 			break;
   1686 	}
   1687 	ENA_RING_MTX_UNLOCK(rx_ring);
   1688 }
   1689 
   1690 /**
   1691  * ena_rx_cleanup - handle rx irq
   1692  * @arg: ring for which irq is being handled
   1693  **/
   1694 static int
   1695 ena_rx_cleanup(struct ena_ring *rx_ring)
   1696 {
   1697 	struct ena_adapter *adapter;
   1698 	struct mbuf *mbuf;
   1699 	struct ena_com_rx_ctx ena_rx_ctx;
   1700 	struct ena_com_io_cq* io_cq;
   1701 	struct ena_com_io_sq* io_sq;
   1702 	struct ifnet *ifp;
   1703 	uint16_t ena_qid;
   1704 	uint16_t next_to_clean;
   1705 	uint32_t refill_required;
   1706 	uint32_t refill_threshold;
   1707 	uint32_t do_if_input = 0;
   1708 	unsigned int qid;
   1709 	int rc, i;
   1710 	int budget = RX_BUDGET;
   1711 
   1712 	adapter = rx_ring->que->adapter;
   1713 	ifp = adapter->ifp;
   1714 	qid = rx_ring->que->id;
   1715 	ena_qid = ENA_IO_RXQ_IDX(qid);
   1716 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1717 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
   1718 	next_to_clean = rx_ring->next_to_clean;
   1719 
   1720 	ena_trace(ENA_DBG, "rx: qid %d", qid);
   1721 
   1722 	do {
   1723 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
   1724 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
   1725 		ena_rx_ctx.descs = 0;
   1726 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
   1727 
   1728 		if (unlikely(rc != 0))
   1729 			goto error;
   1730 
   1731 		if (unlikely(ena_rx_ctx.descs == 0))
   1732 			break;
   1733 
   1734 		ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
   1735 		    "descs #: %d l3 proto %d l4 proto %d hash: %x",
   1736 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
   1737 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
   1738 
   1739 		/* Receive mbuf from the ring */
   1740 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
   1741 		    &ena_rx_ctx, &next_to_clean);
   1742 
   1743 		/* Exit if we failed to retrieve a buffer */
   1744 		if (unlikely(mbuf == NULL)) {
   1745 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
   1746 				rx_ring->free_rx_ids[next_to_clean] =
   1747 				    rx_ring->ena_bufs[i].req_id;
   1748 				next_to_clean =
   1749 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
   1750 				    rx_ring->ring_size);
   1751 
   1752 			}
   1753 			break;
   1754 		}
   1755 
   1756 		if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
   1757 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
   1758 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
   1759 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
   1760 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
   1761 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
   1762 		}
   1763 
   1764 		counter_enter();
   1765 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
   1766 		    mbuf->m_pkthdr.len);
   1767 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
   1768 		    mbuf->m_pkthdr.len);
   1769 		counter_exit();
   1770 		/*
   1771 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
   1772 		 * should be computed by hardware.
   1773 		 */
   1774 		do_if_input = 1;
   1775 #ifdef LRO
   1776 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
   1777 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
   1778 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
   1779 			/*
   1780 			 * Send to the stack if:
   1781 			 *  - LRO not enabled, or
   1782 			 *  - no LRO resources, or
   1783 			 *  - lro enqueue fails
   1784 			 */
   1785 			if ((rx_ring->lro.lro_cnt != 0) &&
   1786 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
   1787 					do_if_input = 0;
   1788 		}
   1789 #endif
   1790 		if (do_if_input != 0) {
   1791 			ena_trace(ENA_DBG | ENA_RXPTH,
   1792 			    "calling if_input() with mbuf %p", mbuf);
   1793 			if_percpuq_enqueue(ifp->if_percpuq, mbuf);
   1794 		}
   1795 
   1796 		counter_enter();
   1797 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
   1798 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
   1799 		counter_exit();
   1800 	} while (--budget);
   1801 
   1802 	rx_ring->next_to_clean = next_to_clean;
   1803 
   1804 	refill_required = ena_com_free_desc(io_sq);
   1805 	refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
   1806 
   1807 	if (refill_required > refill_threshold) {
   1808 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
   1809 		ena_refill_rx_bufs(rx_ring, refill_required);
   1810 	}
   1811 
   1812 #ifdef LRO
   1813 	tcp_lro_flush_all(&rx_ring->lro);
   1814 #endif
   1815 
   1816 	return (RX_BUDGET - budget);
   1817 
   1818 error:
   1819 	counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
   1820 	return (RX_BUDGET - budget);
   1821 }
   1822 
   1823 /*********************************************************************
   1824  *
   1825  *  MSIX & Interrupt Service routine
   1826  *
   1827  **********************************************************************/
   1828 
   1829 /**
   1830  * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
   1831  * @arg: interrupt number
   1832  **/
   1833 static int
   1834 ena_intr_msix_mgmnt(void *arg)
   1835 {
   1836 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
   1837 
   1838 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
   1839 	if (likely(adapter->running))
   1840 		ena_com_aenq_intr_handler(adapter->ena_dev, arg);
   1841 
   1842 	return 1;
   1843 }
   1844 
   1845 /**
   1846  * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
   1847  * @arg: interrupt number
   1848  **/
   1849 static int
   1850 ena_handle_msix(void *arg)
   1851 {
   1852 	struct ena_que	*que = arg;
   1853 	struct ena_adapter *adapter = que->adapter;
   1854 	struct ifnet *ifp = adapter->ifp;
   1855 	struct ena_ring *tx_ring;
   1856 	struct ena_ring *rx_ring;
   1857 	struct ena_com_io_cq* io_cq;
   1858 	struct ena_eth_io_intr_reg intr_reg;
   1859 	int qid, ena_qid;
   1860 	int txc, rxc, i;
   1861 
   1862 	if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
   1863 		return 0;
   1864 
   1865 	ena_trace(ENA_DBG, "MSI-X TX/RX routine");
   1866 
   1867 	tx_ring = que->tx_ring;
   1868 	rx_ring = que->rx_ring;
   1869 	qid = que->id;
   1870 	ena_qid = ENA_IO_TXQ_IDX(qid);
   1871 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1872 
   1873 	for (i = 0; i < CLEAN_BUDGET; ++i) {
   1874 		/*
   1875 		 * If lock cannot be acquired, then deferred cleanup task was
   1876 		 * being executed and rx ring is being cleaned up in
   1877 		 * another thread.
   1878 		 */
   1879 		if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) {
   1880 			rxc = ena_rx_cleanup(rx_ring);
   1881 			ENA_RING_MTX_UNLOCK(rx_ring);
   1882 		} else {
   1883 			rxc = 0;
   1884 		}
   1885 
   1886 		/* Protection from calling ena_tx_cleanup from ena_start_xmit */
   1887 		ENA_RING_MTX_LOCK(tx_ring);
   1888 		txc = ena_tx_cleanup(tx_ring);
   1889 		ENA_RING_MTX_UNLOCK(tx_ring);
   1890 
   1891 		if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
   1892 			return 0;
   1893 
   1894 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
   1895 		       break;
   1896 	}
   1897 
   1898 	/* Signal that work is done and unmask interrupt */
   1899 	ena_com_update_intr_reg(&intr_reg,
   1900 	    RX_IRQ_INTERVAL,
   1901 	    TX_IRQ_INTERVAL,
   1902 	    true);
   1903 	ena_com_unmask_intr(io_cq, &intr_reg);
   1904 
   1905 	return 1;
   1906 }
   1907 
   1908 static int
   1909 ena_enable_msix(struct ena_adapter *adapter)
   1910 {
   1911 	int msix_req;
   1912 	int counts[PCI_INTR_TYPE_SIZE];
   1913 	int max_type;
   1914 
   1915 	/* Reserved the max msix vectors we might need */
   1916 	msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
   1917 
   1918 	counts[PCI_INTR_TYPE_INTX] = 0;
   1919 	counts[PCI_INTR_TYPE_MSI] = 0;
   1920 	counts[PCI_INTR_TYPE_MSIX] = msix_req;
   1921 	max_type = PCI_INTR_TYPE_MSIX;
   1922 
   1923 	if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
   1924 	    max_type) != 0) {
   1925 		aprint_error_dev(adapter->pdev,
   1926 		    "failed to allocate interrupt\n");
   1927 		return ENOSPC;
   1928 	}
   1929 
   1930 	adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
   1931 
   1932 	if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
   1933 		device_printf(adapter->pdev,
   1934 		    "Enable only %d MSI-x (out of %d), reduce "
   1935 		    "the number of queues\n", adapter->sc_nintrs, msix_req);
   1936 		adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
   1937 	}
   1938 
   1939 	return 0;
   1940 }
   1941 
   1942 #if 0
   1943 static void
   1944 ena_setup_io_intr(struct ena_adapter *adapter)
   1945 {
   1946 	static int last_bind_cpu = -1;
   1947 	int irq_idx;
   1948 
   1949 	for (int i = 0; i < adapter->num_queues; i++) {
   1950 		irq_idx = ENA_IO_IRQ_IDX(i);
   1951 
   1952 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
   1953 		    "%s-TxRx-%d", device_xname(adapter->pdev), i);
   1954 		adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
   1955 		adapter->irq_tbl[irq_idx].data = &adapter->que[i];
   1956 		adapter->irq_tbl[irq_idx].vector =
   1957 		    adapter->msix_entries[irq_idx].vector;
   1958 		ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
   1959 		    adapter->msix_entries[irq_idx].vector);
   1960 #ifdef	RSS
   1961 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
   1962 		    rss_getcpu(i % rss_getnumbuckets());
   1963 #else
   1964 		/*
   1965 		 * We still want to bind rings to the corresponding cpu
   1966 		 * using something similar to the RSS round-robin technique.
   1967 		 */
   1968 		if (unlikely(last_bind_cpu < 0))
   1969 			last_bind_cpu = CPU_FIRST();
   1970 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
   1971 		    last_bind_cpu;
   1972 		last_bind_cpu = CPU_NEXT(last_bind_cpu);
   1973 #endif
   1974 	}
   1975 }
   1976 #endif
   1977 
   1978 static int
   1979 ena_request_mgmnt_irq(struct ena_adapter *adapter)
   1980 {
   1981 	const char *intrstr;
   1982 	char intrbuf[PCI_INTRSTR_LEN];
   1983 	char intr_xname[INTRDEVNAMEBUF];
   1984 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
   1985 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
   1986 
   1987 	KASSERT(adapter->sc_intrs != NULL);
   1988 	KASSERT(adapter->sc_ihs[irq_slot] == NULL);
   1989 
   1990 	snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
   1991 	    device_xname(adapter->pdev));
   1992 	intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
   1993 	    intrbuf, sizeof(intrbuf));
   1994 
   1995 	adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
   1996 	    pc, adapter->sc_intrs[irq_slot],
   1997 	    IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
   1998 
   1999 	if (adapter->sc_ihs[irq_slot] == NULL) {
   2000 		device_printf(adapter->pdev, "failed to register "
   2001 		    "interrupt handler for MGMNT irq %s\n",
   2002 		    intrstr);
   2003 		return ENOMEM;
   2004 	}
   2005 
   2006 	aprint_normal_dev(adapter->pdev,
   2007 	    "for MGMNT interrupting at %s\n", intrstr);
   2008 
   2009 	return 0;
   2010 }
   2011 
   2012 static int
   2013 ena_request_io_irq(struct ena_adapter *adapter)
   2014 {
   2015 	const char *intrstr;
   2016 	char intrbuf[PCI_INTRSTR_LEN];
   2017 	char intr_xname[INTRDEVNAMEBUF];
   2018 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
   2019 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
   2020 	void *vih;
   2021 	kcpuset_t *affinity;
   2022 	int i;
   2023 
   2024 	KASSERT(adapter->sc_intrs != NULL);
   2025 
   2026 	kcpuset_create(&affinity, false);
   2027 
   2028 	for (i = 0; i < adapter->num_queues; i++) {
   2029 		int irq_slot = i + irq_off;
   2030 		int affinity_to = (irq_slot) % ncpu;
   2031 
   2032 		KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
   2033 		KASSERT(adapter->sc_ihs[irq_slot] == NULL);
   2034 
   2035 		snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
   2036 		    device_xname(adapter->pdev), i);
   2037 		intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
   2038 		    intrbuf, sizeof(intrbuf));
   2039 
   2040 		vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
   2041 		    adapter->sc_intrs[irq_slot], IPL_NET,
   2042 		    ena_handle_msix, &adapter->que[i], intr_xname);
   2043 
   2044 		if (adapter->sc_ihs[ENA_MGMNT_IRQ_IDX] == NULL) {
   2045 			device_printf(adapter->pdev, "failed to register "
   2046 			    "interrupt handler for IO queue %d irq %s\n",
   2047 			    i, intrstr);
   2048 			goto err;
   2049 		}
   2050 
   2051 		kcpuset_zero(affinity);
   2052 		/* Round-robin affinity */
   2053 		kcpuset_set(affinity, affinity_to);
   2054 		int error = interrupt_distribute(vih, affinity, NULL);
   2055 		if (error == 0) {
   2056 			aprint_normal_dev(adapter->pdev,
   2057 			    "for IO queue %d interrupting at %s"
   2058 			    " affinity to %u\n", i, intrstr, affinity_to);
   2059 		} else {
   2060 			aprint_normal_dev(adapter->pdev,
   2061 			    "for IO queue %d interrupting at %s\n", i, intrstr);
   2062 		}
   2063 
   2064 		adapter->sc_ihs[irq_slot] = vih;
   2065 
   2066 #ifdef	RSS
   2067 		ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
   2068 		    i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
   2069 #else
   2070 		ena_trace(ENA_INFO, "queue %d - cpu %d\n",
   2071 		    i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
   2072 #endif
   2073 	}
   2074 
   2075 	kcpuset_destroy(affinity);
   2076 	return 0;
   2077 
   2078 err:
   2079 	kcpuset_destroy(affinity);
   2080 
   2081 	for (i--; i >= 0; i--) {
   2082 		int irq_slot __diagused = i + irq_off;
   2083 		KASSERT(adapter->sc_ihs[irq_slot] != NULL);
   2084 		pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[i]);
   2085 		adapter->sc_ihs[i] = NULL;
   2086 	}
   2087 
   2088 	return ENOSPC;
   2089 }
   2090 
   2091 static void
   2092 ena_free_mgmnt_irq(struct ena_adapter *adapter)
   2093 {
   2094 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
   2095 
   2096 	if (adapter->sc_ihs[irq_slot]) {
   2097 		pci_intr_disestablish(adapter->sc_pa.pa_pc,
   2098 		    adapter->sc_ihs[irq_slot]);
   2099 		adapter->sc_ihs[irq_slot] = NULL;
   2100 	}
   2101 }
   2102 
   2103 static void
   2104 ena_free_io_irq(struct ena_adapter *adapter)
   2105 {
   2106 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
   2107 
   2108 	for (int i = 0; i < adapter->num_queues; i++) {
   2109 		int irq_slot = i + irq_off;
   2110 
   2111 		if (adapter->sc_ihs[irq_slot]) {
   2112 			pci_intr_disestablish(adapter->sc_pa.pa_pc,
   2113 			    adapter->sc_ihs[i]);
   2114 			adapter->sc_ihs[i] = NULL;
   2115 		}
   2116 	}
   2117 }
   2118 
   2119 static void
   2120 ena_free_irqs(struct ena_adapter* adapter)
   2121 {
   2122 
   2123 	ena_free_io_irq(adapter);
   2124 	ena_free_mgmnt_irq(adapter);
   2125 	ena_disable_msix(adapter);
   2126 }
   2127 
   2128 static void
   2129 ena_disable_msix(struct ena_adapter *adapter)
   2130 {
   2131 	pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
   2132 	    adapter->sc_nintrs);
   2133 }
   2134 
   2135 static void
   2136 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
   2137 {
   2138 	struct ena_com_io_cq* io_cq;
   2139 	struct ena_eth_io_intr_reg intr_reg;
   2140 	uint16_t ena_qid;
   2141 	int i;
   2142 
   2143 	/* Unmask interrupts for all queues */
   2144 	for (i = 0; i < adapter->num_queues; i++) {
   2145 		ena_qid = ENA_IO_TXQ_IDX(i);
   2146 		io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   2147 		ena_com_update_intr_reg(&intr_reg, 0, 0, true);
   2148 		ena_com_unmask_intr(io_cq, &intr_reg);
   2149 	}
   2150 }
   2151 
   2152 /* Configure the Rx forwarding */
   2153 static int
   2154 ena_rss_configure(struct ena_adapter *adapter)
   2155 {
   2156 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   2157 	int rc;
   2158 
   2159 	/* Set indirect table */
   2160 	rc = ena_com_indirect_table_set(ena_dev);
   2161 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2162 		return (rc);
   2163 
   2164 	/* Configure hash function (if supported) */
   2165 	rc = ena_com_set_hash_function(ena_dev);
   2166 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2167 		return (rc);
   2168 
   2169 	/* Configure hash inputs (if supported) */
   2170 	rc = ena_com_set_hash_ctrl(ena_dev);
   2171 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2172 		return (rc);
   2173 
   2174 	return (0);
   2175 }
   2176 
   2177 static int
   2178 ena_up_complete(struct ena_adapter *adapter)
   2179 {
   2180 	int rc;
   2181 
   2182 	if (likely(adapter->rss_support)) {
   2183 		rc = ena_rss_configure(adapter);
   2184 		if (rc != 0)
   2185 			return (rc);
   2186 	}
   2187 
   2188 	rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
   2189 	if (unlikely(rc != 0))
   2190 		return (rc);
   2191 
   2192 	ena_refill_all_rx_bufs(adapter);
   2193 	ena_reset_counters((struct evcnt *)&adapter->hw_stats,
   2194 	    sizeof(adapter->hw_stats));
   2195 
   2196 	return (0);
   2197 }
   2198 
   2199 static int
   2200 ena_up(struct ena_adapter *adapter)
   2201 {
   2202 	int rc = 0;
   2203 
   2204 #if 0
   2205 	if (unlikely(device_is_attached(adapter->pdev) == 0)) {
   2206 		device_printf(adapter->pdev, "device is not attached!\n");
   2207 		return (ENXIO);
   2208 	}
   2209 #endif
   2210 
   2211 	if (unlikely(!adapter->running)) {
   2212 		device_printf(adapter->pdev, "device is not running!\n");
   2213 		return (ENXIO);
   2214 	}
   2215 
   2216 	if (!adapter->up) {
   2217 		device_printf(adapter->pdev, "device is going UP\n");
   2218 
   2219 		/* setup interrupts for IO queues */
   2220 		rc = ena_request_io_irq(adapter);
   2221 		if (unlikely(rc != 0)) {
   2222 			ena_trace(ENA_ALERT, "err_req_irq");
   2223 			goto err_req_irq;
   2224 		}
   2225 
   2226 		/* allocate transmit descriptors */
   2227 		rc = ena_setup_all_tx_resources(adapter);
   2228 		if (unlikely(rc != 0)) {
   2229 			ena_trace(ENA_ALERT, "err_setup_tx");
   2230 			goto err_setup_tx;
   2231 		}
   2232 
   2233 		/* allocate receive descriptors */
   2234 		rc = ena_setup_all_rx_resources(adapter);
   2235 		if (unlikely(rc != 0)) {
   2236 			ena_trace(ENA_ALERT, "err_setup_rx");
   2237 			goto err_setup_rx;
   2238 		}
   2239 
   2240 		/* create IO queues for Rx & Tx */
   2241 		rc = ena_create_io_queues(adapter);
   2242 		if (unlikely(rc != 0)) {
   2243 			ena_trace(ENA_ALERT,
   2244 			    "create IO queues failed");
   2245 			goto err_io_que;
   2246 		}
   2247 
   2248 		if (unlikely(adapter->link_status))
   2249 			if_link_state_change(adapter->ifp, LINK_STATE_UP);
   2250 
   2251 		rc = ena_up_complete(adapter);
   2252 		if (unlikely(rc != 0))
   2253 			goto err_up_complete;
   2254 
   2255 		counter_u64_add(adapter->dev_stats.interface_up, 1);
   2256 
   2257 		ena_update_hwassist(adapter);
   2258 
   2259 		if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
   2260 		    IFF_OACTIVE);
   2261 
   2262 		callout_schedule(&adapter->timer_service, hz);
   2263 
   2264 		adapter->up = true;
   2265 
   2266 		ena_unmask_all_io_irqs(adapter);
   2267 	}
   2268 
   2269 	return (0);
   2270 
   2271 err_up_complete:
   2272 	ena_destroy_all_io_queues(adapter);
   2273 err_io_que:
   2274 	ena_free_all_rx_resources(adapter);
   2275 err_setup_rx:
   2276 	ena_free_all_tx_resources(adapter);
   2277 err_setup_tx:
   2278 	ena_free_io_irq(adapter);
   2279 err_req_irq:
   2280 	return (rc);
   2281 }
   2282 
   2283 #if 0
   2284 static uint64_t
   2285 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
   2286 {
   2287 	struct ena_adapter *adapter;
   2288 	struct ena_hw_stats *stats;
   2289 
   2290 	adapter = if_getsoftc(ifp);
   2291 	stats = &adapter->hw_stats;
   2292 
   2293 	switch (cnt) {
   2294 	case IFCOUNTER_IPACKETS:
   2295 		return (counter_u64_fetch(stats->rx_packets));
   2296 	case IFCOUNTER_OPACKETS:
   2297 		return (counter_u64_fetch(stats->tx_packets));
   2298 	case IFCOUNTER_IBYTES:
   2299 		return (counter_u64_fetch(stats->rx_bytes));
   2300 	case IFCOUNTER_OBYTES:
   2301 		return (counter_u64_fetch(stats->tx_bytes));
   2302 	case IFCOUNTER_IQDROPS:
   2303 		return (counter_u64_fetch(stats->rx_drops));
   2304 	default:
   2305 		return (if_get_counter_default(ifp, cnt));
   2306 	}
   2307 }
   2308 #endif
   2309 
   2310 static int
   2311 ena_media_change(struct ifnet *ifp)
   2312 {
   2313 	/* Media Change is not supported by firmware */
   2314 	return (0);
   2315 }
   2316 
   2317 static void
   2318 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
   2319 {
   2320 	struct ena_adapter *adapter = if_getsoftc(ifp);
   2321 	ena_trace(ENA_DBG, "enter");
   2322 
   2323 	mutex_enter(&adapter->global_mtx);
   2324 
   2325 	ifmr->ifm_status = IFM_AVALID;
   2326 	ifmr->ifm_active = IFM_ETHER;
   2327 
   2328 	if (!adapter->link_status) {
   2329 		mutex_exit(&adapter->global_mtx);
   2330 		ena_trace(ENA_INFO, "link_status = false");
   2331 		return;
   2332 	}
   2333 
   2334 	ifmr->ifm_status |= IFM_ACTIVE;
   2335 	ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
   2336 
   2337 	mutex_exit(&adapter->global_mtx);
   2338 }
   2339 
   2340 static int
   2341 ena_init(struct ifnet *ifp)
   2342 {
   2343 	struct ena_adapter *adapter = if_getsoftc(ifp);
   2344 
   2345 	if (!adapter->up) {
   2346 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2347 		ena_up(adapter);
   2348 		rw_exit(&adapter->ioctl_sx);
   2349 	}
   2350 
   2351 	return 0;
   2352 }
   2353 
   2354 static int
   2355 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
   2356 {
   2357 	struct ena_adapter *adapter;
   2358 	struct ifreq *ifr;
   2359 	int rc;
   2360 
   2361 	adapter = ifp->if_softc;
   2362 	ifr = (struct ifreq *)data;
   2363 
   2364 	/*
   2365 	 * Acquiring lock to prevent from running up and down routines parallel.
   2366 	 */
   2367 	rc = 0;
   2368 	switch (command) {
   2369 	case SIOCSIFMTU:
   2370 		if (ifp->if_mtu == ifr->ifr_mtu)
   2371 			break;
   2372 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2373 		ena_down(adapter);
   2374 
   2375 		ena_change_mtu(ifp, ifr->ifr_mtu);
   2376 
   2377 		rc = ena_up(adapter);
   2378 		rw_exit(&adapter->ioctl_sx);
   2379 		break;
   2380 
   2381 	case SIOCSIFFLAGS:
   2382 		if ((ifp->if_flags & IFF_UP) != 0) {
   2383 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
   2384 				if ((ifp->if_flags & (IFF_PROMISC |
   2385 				    IFF_ALLMULTI)) != 0) {
   2386 					device_printf(adapter->pdev,
   2387 					    "ioctl promisc/allmulti\n");
   2388 				}
   2389 			} else {
   2390 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2391 				rc = ena_up(adapter);
   2392 				rw_exit(&adapter->ioctl_sx);
   2393 			}
   2394 		} else {
   2395 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
   2396 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2397 				ena_down(adapter);
   2398 				rw_exit(&adapter->ioctl_sx);
   2399 			}
   2400 		}
   2401 		break;
   2402 
   2403 	case SIOCADDMULTI:
   2404 	case SIOCDELMULTI:
   2405 		break;
   2406 
   2407 	case SIOCSIFCAP:
   2408 		{
   2409 			struct ifcapreq *ifcr = data;
   2410 			int reinit = 0;
   2411 
   2412 			if (ifcr->ifcr_capenable != ifp->if_capenable) {
   2413 				ifp->if_capenable = ifcr->ifcr_capenable;
   2414 				reinit = 1;
   2415 			}
   2416 
   2417 			if ((reinit != 0) &&
   2418 			    ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
   2419 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2420 				ena_down(adapter);
   2421 				rc = ena_up(adapter);
   2422 				rw_exit(&adapter->ioctl_sx);
   2423 			}
   2424 		}
   2425 
   2426 		break;
   2427 	default:
   2428 		rc = ether_ioctl(ifp, command, data);
   2429 		break;
   2430 	}
   2431 
   2432 	return (rc);
   2433 }
   2434 
   2435 static int
   2436 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
   2437 {
   2438 	int caps = 0;
   2439 
   2440 	if ((feat->offload.tx &
   2441 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
   2442 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
   2443 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
   2444 		caps |= IFCAP_CSUM_IPv4_Tx;
   2445 
   2446 	if ((feat->offload.tx &
   2447 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
   2448 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
   2449 		caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
   2450 
   2451 	if ((feat->offload.tx &
   2452 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
   2453 		caps |= IFCAP_TSOv4;
   2454 
   2455 	if ((feat->offload.tx &
   2456 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
   2457 		caps |= IFCAP_TSOv6;
   2458 
   2459 	if ((feat->offload.rx_supported &
   2460 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
   2461 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
   2462 		caps |= IFCAP_CSUM_IPv4_Rx;
   2463 
   2464 	if ((feat->offload.rx_supported &
   2465 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
   2466 		caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
   2467 
   2468 	caps |= IFCAP_LRO;
   2469 
   2470 	return (caps);
   2471 }
   2472 
   2473 static void
   2474 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
   2475 {
   2476 
   2477 	host_info->supported_network_features[0] =
   2478 	    (uint32_t)if_getcapabilities(ifp);
   2479 }
   2480 
   2481 static void
   2482 ena_update_hwassist(struct ena_adapter *adapter)
   2483 {
   2484 	struct ifnet *ifp = adapter->ifp;
   2485 	uint32_t feat = adapter->tx_offload_cap;
   2486 	int cap = if_getcapenable(ifp);
   2487 	int flags = 0;
   2488 
   2489 	if_clearhwassist(ifp);
   2490 
   2491 	if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2492 	    != 0) {
   2493 		if ((feat &
   2494 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
   2495 			flags |= M_CSUM_IPv4;
   2496 		if ((feat &
   2497 		    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
   2498 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
   2499 			flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
   2500 	}
   2501 
   2502 	if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
   2503 		flags |= M_CSUM_TCPv6;
   2504 
   2505 	if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
   2506 		flags |= M_CSUM_UDPv6;
   2507 
   2508 	if ((cap & IFCAP_TSOv4) != 0)
   2509 		flags |= M_CSUM_TSOv4;
   2510 
   2511 	if ((cap & IFCAP_TSOv6) != 0)
   2512 		flags |= M_CSUM_TSOv6;
   2513 
   2514 	if_sethwassistbits(ifp, flags, 0);
   2515 }
   2516 
   2517 static int
   2518 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
   2519     struct ena_com_dev_get_features_ctx *feat)
   2520 {
   2521 	struct ifnet *ifp;
   2522 	int caps = 0;
   2523 
   2524 	ifp = adapter->ifp = &adapter->sc_ec.ec_if;
   2525 	if (unlikely(ifp == NULL)) {
   2526 		ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
   2527 		return (ENXIO);
   2528 	}
   2529 	if_initname(ifp, "ena", device_unit(pdev));
   2530 	if_setdev(ifp, pdev);
   2531 	if_setsoftc(ifp, adapter);
   2532 
   2533 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
   2534 	if_setinitfn(ifp, ena_init);
   2535 	if_settransmitfn(ifp, ena_mq_start);
   2536 #if 0
   2537 	if_setqflushfn(ifp, ena_qflush);
   2538 #endif
   2539 	if_setioctlfn(ifp, ena_ioctl);
   2540 #if 0
   2541 	if_setgetcounterfn(ifp, ena_get_counter);
   2542 #endif
   2543 
   2544 	if_setsendqlen(ifp, adapter->tx_ring_size);
   2545 	if_setsendqready(ifp);
   2546 	if_setmtu(ifp, ETHERMTU);
   2547 	if_setbaudrate(ifp, 0);
   2548 	/* Zeroize capabilities... */
   2549 	if_setcapabilities(ifp, 0);
   2550 	if_setcapenable(ifp, 0);
   2551 	/* check hardware support */
   2552 	caps = ena_get_dev_offloads(feat);
   2553 	/* ... and set them */
   2554 	if_setcapabilitiesbit(ifp, caps, 0);
   2555 	adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2556 
   2557 #if 0
   2558 	/* TSO parameters */
   2559 	/* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
   2560 	ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
   2561 	    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
   2562 	ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
   2563 	ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
   2564 #endif
   2565 
   2566 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
   2567 	if_setcapenable(ifp, if_getcapabilities(ifp));
   2568 
   2569 	/*
   2570 	 * Specify the media types supported by this adapter and register
   2571 	 * callbacks to update media and link information
   2572 	 */
   2573 	adapter->sc_ec.ec_ifmedia = &adapter->media;
   2574 	ifmedia_init(&adapter->media, IFM_IMASK,
   2575 	    ena_media_change, ena_media_status);
   2576 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
   2577 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
   2578 
   2579 	if_attach(ifp);
   2580 	if_deferred_start_init(ifp, NULL);
   2581 
   2582 	ether_ifattach(ifp, adapter->mac_addr);
   2583 
   2584 	return (0);
   2585 }
   2586 
   2587 static void
   2588 ena_down(struct ena_adapter *adapter)
   2589 {
   2590 	int rc;
   2591 
   2592 	if (adapter->up) {
   2593 		device_printf(adapter->pdev, "device is going DOWN\n");
   2594 
   2595 		callout_halt(&adapter->timer_service, &adapter->global_mtx);
   2596 
   2597 		adapter->up = false;
   2598 		if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
   2599 		    IFF_RUNNING);
   2600 
   2601 		ena_free_io_irq(adapter);
   2602 
   2603 		if (adapter->trigger_reset) {
   2604 			rc = ena_com_dev_reset(adapter->ena_dev,
   2605 			    adapter->reset_reason);
   2606 			if (unlikely(rc != 0))
   2607 				device_printf(adapter->pdev,
   2608 				    "Device reset failed\n");
   2609 		}
   2610 
   2611 		ena_destroy_all_io_queues(adapter);
   2612 
   2613 		ena_free_all_tx_bufs(adapter);
   2614 		ena_free_all_rx_bufs(adapter);
   2615 		ena_free_all_tx_resources(adapter);
   2616 		ena_free_all_rx_resources(adapter);
   2617 
   2618 		counter_u64_add(adapter->dev_stats.interface_down, 1);
   2619 	}
   2620 }
   2621 
   2622 static void
   2623 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
   2624 {
   2625 	struct ena_com_tx_meta *ena_meta;
   2626 	struct ether_vlan_header *eh;
   2627 	u32 mss;
   2628 	bool offload;
   2629 	uint16_t etype;
   2630 	int ehdrlen;
   2631 	struct ip *ip;
   2632 	int iphlen;
   2633 	struct tcphdr *th;
   2634 
   2635 	offload = false;
   2636 	ena_meta = &ena_tx_ctx->ena_meta;
   2637 
   2638 #if 0
   2639 	u32 mss = mbuf->m_pkthdr.tso_segsz;
   2640 
   2641 	if (mss != 0)
   2642 		offload = true;
   2643 #else
   2644 	mss = mbuf->m_pkthdr.len;	/* XXX don't have tso_segsz */
   2645 #endif
   2646 
   2647 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
   2648 		offload = true;
   2649 
   2650 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
   2651 		offload = true;
   2652 
   2653 	if (!offload) {
   2654 		ena_tx_ctx->meta_valid = 0;
   2655 		return;
   2656 	}
   2657 
   2658 	/* Determine where frame payload starts. */
   2659 	eh = mtod(mbuf, struct ether_vlan_header *);
   2660 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
   2661 		etype = ntohs(eh->evl_proto);
   2662 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   2663 	} else {
   2664 		etype = htons(eh->evl_encap_proto);
   2665 		ehdrlen = ETHER_HDR_LEN;
   2666 	}
   2667 
   2668 	ip = (struct ip *)(mbuf->m_data + ehdrlen);
   2669 	iphlen = ip->ip_hl << 2;
   2670 	th = (struct tcphdr *)((vaddr_t)ip + iphlen);
   2671 
   2672 	if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
   2673 		ena_tx_ctx->l3_csum_enable = 1;
   2674 	}
   2675 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
   2676 		ena_tx_ctx->tso_enable = 1;
   2677 		ena_meta->l4_hdr_len = (th->th_off);
   2678 	}
   2679 
   2680 	switch (etype) {
   2681 	case ETHERTYPE_IP:
   2682 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
   2683 		if ((ip->ip_off & htons(IP_DF)) != 0)
   2684 			ena_tx_ctx->df = 1;
   2685 		break;
   2686 	case ETHERTYPE_IPV6:
   2687 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
   2688 
   2689 	default:
   2690 		break;
   2691 	}
   2692 
   2693 	if (ip->ip_p == IPPROTO_TCP) {
   2694 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
   2695 		if ((mbuf->m_pkthdr.csum_flags &
   2696 		    (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
   2697 			ena_tx_ctx->l4_csum_enable = 1;
   2698 		else
   2699 			ena_tx_ctx->l4_csum_enable = 0;
   2700 	} else if (ip->ip_p == IPPROTO_UDP) {
   2701 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
   2702 		if ((mbuf->m_pkthdr.csum_flags &
   2703 		    (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
   2704 			ena_tx_ctx->l4_csum_enable = 1;
   2705 		else
   2706 			ena_tx_ctx->l4_csum_enable = 0;
   2707 	} else {
   2708 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
   2709 		ena_tx_ctx->l4_csum_enable = 0;
   2710 	}
   2711 
   2712 	ena_meta->mss = mss;
   2713 	ena_meta->l3_hdr_len = iphlen;
   2714 	ena_meta->l3_hdr_offset = ehdrlen;
   2715 	ena_tx_ctx->meta_valid = 1;
   2716 }
   2717 
   2718 static int
   2719 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
   2720 {
   2721 	struct ena_adapter *adapter;
   2722 	struct mbuf *collapsed_mbuf;
   2723 	int num_frags;
   2724 
   2725 	adapter = tx_ring->adapter;
   2726 	num_frags = ena_mbuf_count(*mbuf);
   2727 
   2728 	/* One segment must be reserved for configuration descriptor. */
   2729 	if (num_frags < adapter->max_tx_sgl_size)
   2730 		return (0);
   2731 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
   2732 
   2733 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
   2734 	    adapter->max_tx_sgl_size - 1);
   2735 	if (unlikely(collapsed_mbuf == NULL)) {
   2736 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
   2737 		return (ENOMEM);
   2738 	}
   2739 
   2740 	/* If mbuf was collapsed succesfully, original mbuf is released. */
   2741 	*mbuf = collapsed_mbuf;
   2742 
   2743 	return (0);
   2744 }
   2745 
   2746 static int
   2747 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
   2748 {
   2749 	struct ena_adapter *adapter;
   2750 	struct ena_tx_buffer *tx_info;
   2751 	struct ena_com_tx_ctx ena_tx_ctx;
   2752 	struct ena_com_dev *ena_dev;
   2753 	struct ena_com_buf *ena_buf;
   2754 	struct ena_com_io_sq* io_sq;
   2755 	void *push_hdr;
   2756 	uint16_t next_to_use;
   2757 	uint16_t req_id;
   2758 	uint16_t ena_qid;
   2759 	uint32_t header_len;
   2760 	int i, rc;
   2761 	int nb_hw_desc;
   2762 
   2763 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   2764 	adapter = tx_ring->que->adapter;
   2765 	ena_dev = adapter->ena_dev;
   2766 	io_sq = &ena_dev->io_sq_queues[ena_qid];
   2767 
   2768 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
   2769 	if (unlikely(rc != 0)) {
   2770 		ena_trace(ENA_WARNING,
   2771 		    "Failed to collapse mbuf! err: %d", rc);
   2772 		return (rc);
   2773 	}
   2774 
   2775 	next_to_use = tx_ring->next_to_use;
   2776 	req_id = tx_ring->free_tx_ids[next_to_use];
   2777 	tx_info = &tx_ring->tx_buffer_info[req_id];
   2778 
   2779 	tx_info->mbuf = *mbuf;
   2780 	tx_info->num_of_bufs = 0;
   2781 
   2782 	ena_buf = tx_info->bufs;
   2783 
   2784 	ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
   2785 
   2786 	/*
   2787 	 * header_len is just a hint for the device. Because FreeBSD is not
   2788 	 * giving us information about packet header length and it is not
   2789 	 * guaranteed that all packet headers will be in the 1st mbuf, setting
   2790 	 * header_len to 0 is making the device ignore this value and resolve
   2791 	 * header on it's own.
   2792 	 */
   2793 	header_len = 0;
   2794 	push_hdr = NULL;
   2795 
   2796 	rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
   2797 	    *mbuf, BUS_DMA_NOWAIT);
   2798 
   2799 	if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
   2800 		ena_trace(ENA_WARNING,
   2801 		    "dmamap load failed! err: %d nsegs: %d", rc,
   2802 		    tx_info->map->dm_nsegs);
   2803 		counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
   2804 		tx_info->mbuf = NULL;
   2805 		if (rc == ENOMEM)
   2806 			return (ENA_COM_NO_MEM);
   2807 		else
   2808 			return (ENA_COM_INVAL);
   2809 	}
   2810 
   2811 	for (i = 0; i < tx_info->map->dm_nsegs; i++) {
   2812 		ena_buf->len = tx_info->map->dm_segs[i].ds_len;
   2813 		ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
   2814 		ena_buf++;
   2815 	}
   2816 	tx_info->num_of_bufs = tx_info->map->dm_nsegs;
   2817 
   2818 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
   2819 	ena_tx_ctx.ena_bufs = tx_info->bufs;
   2820 	ena_tx_ctx.push_header = push_hdr;
   2821 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
   2822 	ena_tx_ctx.req_id = req_id;
   2823 	ena_tx_ctx.header_len = header_len;
   2824 
   2825 	/* Set flags and meta data */
   2826 	ena_tx_csum(&ena_tx_ctx, *mbuf);
   2827 	/* Prepare the packet's descriptors and send them to device */
   2828 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
   2829 	if (unlikely(rc != 0)) {
   2830 		device_printf(adapter->pdev, "failed to prepare tx bufs\n");
   2831 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
   2832 		goto dma_error;
   2833 	}
   2834 
   2835 	counter_enter();
   2836 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
   2837 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
   2838 	    (*mbuf)->m_pkthdr.len);
   2839 
   2840 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
   2841 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
   2842 	    (*mbuf)->m_pkthdr.len);
   2843 	counter_exit();
   2844 
   2845 	tx_info->tx_descs = nb_hw_desc;
   2846 	getbinuptime(&tx_info->timestamp);
   2847 	tx_info->print_once = true;
   2848 
   2849 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
   2850 	    tx_ring->ring_size);
   2851 
   2852 	bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
   2853 	    tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2854 
   2855 	return (0);
   2856 
   2857 dma_error:
   2858 	tx_info->mbuf = NULL;
   2859 	bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   2860 
   2861 	return (rc);
   2862 }
   2863 
   2864 static void
   2865 ena_start_xmit(struct ena_ring *tx_ring)
   2866 {
   2867 	struct mbuf *mbuf;
   2868 	struct ena_adapter *adapter = tx_ring->adapter;
   2869 	struct ena_com_io_sq* io_sq;
   2870 	int ena_qid;
   2871 	int acum_pkts = 0;
   2872 	int ret = 0;
   2873 
   2874 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
   2875 		return;
   2876 
   2877 	if (unlikely(!adapter->link_status))
   2878 		return;
   2879 
   2880 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   2881 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
   2882 
   2883 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
   2884 		ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
   2885 		    " header csum flags %#jx",
   2886 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
   2887 
   2888 		if (unlikely(!ena_com_sq_have_enough_space(io_sq,
   2889 		    ENA_TX_CLEANUP_THRESHOLD)))
   2890 			ena_tx_cleanup(tx_ring);
   2891 
   2892 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
   2893 			if (ret == ENA_COM_NO_MEM) {
   2894 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
   2895 			} else if (ret == ENA_COM_NO_SPACE) {
   2896 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
   2897 			} else {
   2898 				m_freem(mbuf);
   2899 				drbr_advance(adapter->ifp, tx_ring->br);
   2900 			}
   2901 
   2902 			break;
   2903 		}
   2904 
   2905 		drbr_advance(adapter->ifp, tx_ring->br);
   2906 
   2907 		if (unlikely((if_getdrvflags(adapter->ifp) &
   2908 		    IFF_RUNNING) == 0))
   2909 			return;
   2910 
   2911 		acum_pkts++;
   2912 
   2913 		/*
   2914 		 * If there's a BPF listener, bounce a copy of this frame
   2915 		 * to him.
   2916 		 */
   2917 		bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
   2918 
   2919 		if (unlikely(acum_pkts == DB_THRESHOLD)) {
   2920 			acum_pkts = 0;
   2921 			wmb();
   2922 			/* Trigger the dma engine */
   2923 			ena_com_write_sq_doorbell(io_sq);
   2924 			counter_u64_add(tx_ring->tx_stats.doorbells, 1);
   2925 		}
   2926 
   2927 	}
   2928 
   2929 	if (likely(acum_pkts != 0)) {
   2930 		wmb();
   2931 		/* Trigger the dma engine */
   2932 		ena_com_write_sq_doorbell(io_sq);
   2933 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
   2934 	}
   2935 
   2936 	if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
   2937 		ena_tx_cleanup(tx_ring);
   2938 }
   2939 
   2940 static void
   2941 ena_deferred_mq_start(struct work *wk, void *arg)
   2942 {
   2943 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
   2944 	struct ifnet *ifp = tx_ring->adapter->ifp;
   2945 
   2946 	atomic_swap_uint(&tx_ring->task_pending, 0);
   2947 
   2948 	while (!drbr_empty(ifp, tx_ring->br) &&
   2949 	    (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
   2950 		ENA_RING_MTX_LOCK(tx_ring);
   2951 		ena_start_xmit(tx_ring);
   2952 		ENA_RING_MTX_UNLOCK(tx_ring);
   2953 	}
   2954 }
   2955 
   2956 static int
   2957 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
   2958 {
   2959 	struct ena_adapter *adapter = ifp->if_softc;
   2960 	struct ena_ring *tx_ring;
   2961 	int ret, is_drbr_empty;
   2962 	uint32_t i;
   2963 
   2964 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
   2965 		return (ENODEV);
   2966 
   2967 	/* Which queue to use */
   2968 	/*
   2969 	 * If everything is setup correctly, it should be the
   2970 	 * same bucket that the current CPU we're on is.
   2971 	 * It should improve performance.
   2972 	 */
   2973 #if 0
   2974 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
   2975 #ifdef	RSS
   2976 		if (rss_hash2bucket(m->m_pkthdr.flowid,
   2977 		    M_HASHTYPE_GET(m), &i) == 0) {
   2978 			i = i % adapter->num_queues;
   2979 
   2980 		} else
   2981 #endif
   2982 		{
   2983 			i = m->m_pkthdr.flowid % adapter->num_queues;
   2984 		}
   2985 	} else {
   2986 #endif
   2987 		i = cpu_index(curcpu()) % adapter->num_queues;
   2988 #if 0
   2989 	}
   2990 #endif
   2991 	tx_ring = &adapter->tx_ring[i];
   2992 
   2993 	/* Check if drbr is empty before putting packet */
   2994 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
   2995 	ret = drbr_enqueue(ifp, tx_ring->br, m);
   2996 	if (unlikely(ret != 0)) {
   2997 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   2998 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
   2999 			    curcpu());
   3000 		return (ret);
   3001 	}
   3002 
   3003 	if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
   3004 		ena_start_xmit(tx_ring);
   3005 		ENA_RING_MTX_UNLOCK(tx_ring);
   3006 	} else {
   3007 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   3008 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
   3009 			    curcpu());
   3010 	}
   3011 
   3012 	return (0);
   3013 }
   3014 
   3015 #if 0
   3016 static void
   3017 ena_qflush(struct ifnet *ifp)
   3018 {
   3019 	struct ena_adapter *adapter = ifp->if_softc;
   3020 	struct ena_ring *tx_ring = adapter->tx_ring;
   3021 	int i;
   3022 
   3023 	for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
   3024 		if (!drbr_empty(ifp, tx_ring->br)) {
   3025 			ENA_RING_MTX_LOCK(tx_ring);
   3026 			drbr_flush(ifp, tx_ring->br);
   3027 			ENA_RING_MTX_UNLOCK(tx_ring);
   3028 		}
   3029 
   3030 	if_qflush(ifp);
   3031 }
   3032 #endif
   3033 
   3034 static int
   3035 ena_calc_io_queue_num(struct pci_attach_args *pa,
   3036     struct ena_adapter *adapter,
   3037     struct ena_com_dev_get_features_ctx *get_feat_ctx)
   3038 {
   3039 	int io_sq_num, io_cq_num, io_queue_num;
   3040 
   3041 	io_sq_num = get_feat_ctx->max_queues.max_sq_num;
   3042 	io_cq_num = get_feat_ctx->max_queues.max_cq_num;
   3043 
   3044 	io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
   3045 	io_queue_num = min_t(int, io_queue_num, io_sq_num);
   3046 	io_queue_num = min_t(int, io_queue_num, io_cq_num);
   3047 	/* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */
   3048 	io_queue_num = min_t(int, io_queue_num,
   3049 	    pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
   3050 #ifdef	RSS
   3051 	io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets());
   3052 #endif
   3053 
   3054 	return (io_queue_num);
   3055 }
   3056 
   3057 static int
   3058 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
   3059     uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
   3060 {
   3061 	uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
   3062 	uint32_t v;
   3063 	uint32_t q;
   3064 
   3065 	queue_size = min_t(uint32_t, queue_size,
   3066 	    feat->max_queues.max_cq_depth);
   3067 	queue_size = min_t(uint32_t, queue_size,
   3068 	    feat->max_queues.max_sq_depth);
   3069 
   3070 	/* round down to the nearest power of 2 */
   3071 	v = queue_size;
   3072 	while (v != 0) {
   3073 		if (powerof2(queue_size) != 0)
   3074 			break;
   3075 		v /= 2;
   3076 		q = rounddown2(queue_size, v);
   3077 		if (q != 0) {
   3078 			queue_size = q;
   3079 			break;
   3080 		}
   3081 	}
   3082 
   3083 	if (unlikely(queue_size == 0)) {
   3084 		device_printf(adapter->pdev, "Invalid queue size\n");
   3085 		return (ENA_COM_FAULT);
   3086 	}
   3087 
   3088 	*max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
   3089 	    feat->max_queues.max_packet_tx_descs);
   3090 	*max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
   3091 	    feat->max_queues.max_packet_rx_descs);
   3092 
   3093 	return (queue_size);
   3094 }
   3095 
   3096 #if 0
   3097 static int
   3098 ena_rss_init_default(struct ena_adapter *adapter)
   3099 {
   3100 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3101 	device_t dev = adapter->pdev;
   3102 	int qid, rc, i;
   3103 
   3104 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
   3105 	if (unlikely(rc != 0)) {
   3106 		device_printf(dev, "Cannot init indirect table\n");
   3107 		return (rc);
   3108 	}
   3109 
   3110 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
   3111 #ifdef	RSS
   3112 		qid = rss_get_indirection_to_bucket(i);
   3113 		qid = qid % adapter->num_queues;
   3114 #else
   3115 		qid = i % adapter->num_queues;
   3116 #endif
   3117 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
   3118 		    ENA_IO_RXQ_IDX(qid));
   3119 		if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3120 			device_printf(dev, "Cannot fill indirect table\n");
   3121 			goto err_rss_destroy;
   3122 		}
   3123 	}
   3124 
   3125 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
   3126 	    ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
   3127 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3128 		device_printf(dev, "Cannot fill hash function\n");
   3129 		goto err_rss_destroy;
   3130 	}
   3131 
   3132 	rc = ena_com_set_default_hash_ctrl(ena_dev);
   3133 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3134 		device_printf(dev, "Cannot fill hash control\n");
   3135 		goto err_rss_destroy;
   3136 	}
   3137 
   3138 	return (0);
   3139 
   3140 err_rss_destroy:
   3141 	ena_com_rss_destroy(ena_dev);
   3142 	return (rc);
   3143 }
   3144 
   3145 static void
   3146 ena_rss_init_default_deferred(void *arg)
   3147 {
   3148 	struct ena_adapter *adapter;
   3149 	devclass_t dc;
   3150 	int max;
   3151 	int rc;
   3152 
   3153 	dc = devclass_find("ena");
   3154 	if (unlikely(dc == NULL)) {
   3155 		ena_trace(ENA_ALERT, "No devclass ena\n");
   3156 		return;
   3157 	}
   3158 
   3159 	max = devclass_get_maxunit(dc);
   3160 	while (max-- >= 0) {
   3161 		adapter = devclass_get_softc(dc, max);
   3162 		if (adapter != NULL) {
   3163 			rc = ena_rss_init_default(adapter);
   3164 			adapter->rss_support = true;
   3165 			if (unlikely(rc != 0)) {
   3166 				device_printf(adapter->pdev,
   3167 				    "WARNING: RSS was not properly initialized,"
   3168 				    " it will affect bandwidth\n");
   3169 				adapter->rss_support = false;
   3170 			}
   3171 		}
   3172 	}
   3173 }
   3174 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL);
   3175 #endif
   3176 
   3177 static void
   3178 ena_config_host_info(struct ena_com_dev *ena_dev)
   3179 {
   3180 	struct ena_admin_host_info *host_info;
   3181 	int rc;
   3182 
   3183 	/* Allocate only the host info */
   3184 	rc = ena_com_allocate_host_info(ena_dev);
   3185 	if (unlikely(rc != 0)) {
   3186 		ena_trace(ENA_ALERT, "Cannot allocate host info\n");
   3187 		return;
   3188 	}
   3189 
   3190 	host_info = ena_dev->host_attr.host_info;
   3191 
   3192 	host_info->os_type = ENA_ADMIN_OS_FREEBSD;
   3193 	host_info->kernel_ver = osreldate;
   3194 
   3195 	snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
   3196 	    "%d", osreldate);
   3197 	host_info->os_dist = 0;
   3198 	strncpy(host_info->os_dist_str, osrelease,
   3199 	    sizeof(host_info->os_dist_str) - 1);
   3200 
   3201 	host_info->driver_version =
   3202 		(DRV_MODULE_VER_MAJOR) |
   3203 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
   3204 		(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
   3205 
   3206 	rc = ena_com_set_host_attributes(ena_dev);
   3207 	if (unlikely(rc != 0)) {
   3208 		if (rc == EOPNOTSUPP)
   3209 			ena_trace(ENA_WARNING, "Cannot set host attributes\n");
   3210 		else
   3211 			ena_trace(ENA_ALERT, "Cannot set host attributes\n");
   3212 
   3213 		goto err;
   3214 	}
   3215 
   3216 	return;
   3217 
   3218 err:
   3219 	ena_com_delete_host_info(ena_dev);
   3220 }
   3221 
   3222 static int
   3223 ena_device_init(struct ena_adapter *adapter, device_t pdev,
   3224     struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
   3225 {
   3226 	struct ena_com_dev* ena_dev = adapter->ena_dev;
   3227 	bool readless_supported;
   3228 	uint32_t aenq_groups;
   3229 	int dma_width;
   3230 	int rc;
   3231 
   3232 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
   3233 	if (unlikely(rc != 0)) {
   3234 		device_printf(pdev, "failed to init mmio read less\n");
   3235 		return (rc);
   3236 	}
   3237 
   3238 	/*
   3239 	 * The PCIe configuration space revision id indicate if mmio reg
   3240 	 * read is disabled
   3241 	 */
   3242 	const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
   3243 	readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
   3244 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
   3245 
   3246 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
   3247 	if (unlikely(rc != 0)) {
   3248 		device_printf(pdev, "Can not reset device\n");
   3249 		goto err_mmio_read_less;
   3250 	}
   3251 
   3252 	rc = ena_com_validate_version(ena_dev);
   3253 	if (unlikely(rc != 0)) {
   3254 		device_printf(pdev, "device version is too low\n");
   3255 		goto err_mmio_read_less;
   3256 	}
   3257 
   3258 	dma_width = ena_com_get_dma_width(ena_dev);
   3259 	if (unlikely(dma_width < 0)) {
   3260 		device_printf(pdev, "Invalid dma width value %d", dma_width);
   3261 		rc = dma_width;
   3262 		goto err_mmio_read_less;
   3263 	}
   3264 	adapter->dma_width = dma_width;
   3265 
   3266 	/* ENA admin level init */
   3267 	rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
   3268 	if (unlikely(rc != 0)) {
   3269 		device_printf(pdev,
   3270 		    "Can not initialize ena admin queue with device\n");
   3271 		goto err_mmio_read_less;
   3272 	}
   3273 
   3274 	/*
   3275 	 * To enable the msix interrupts the driver needs to know the number
   3276 	 * of queues. So the driver uses polling mode to retrieve this
   3277 	 * information
   3278 	 */
   3279 	ena_com_set_admin_polling_mode(ena_dev, true);
   3280 
   3281 	ena_config_host_info(ena_dev);
   3282 
   3283 	/* Get Device Attributes */
   3284 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
   3285 	if (unlikely(rc != 0)) {
   3286 		device_printf(pdev,
   3287 		    "Cannot get attribute for ena device rc: %d\n", rc);
   3288 		goto err_admin_init;
   3289 	}
   3290 
   3291 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
   3292 
   3293 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
   3294 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
   3295 	if (unlikely(rc != 0)) {
   3296 		device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
   3297 		goto err_admin_init;
   3298 	}
   3299 
   3300 	*wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
   3301 
   3302 	return (0);
   3303 
   3304 err_admin_init:
   3305 	ena_com_delete_host_info(ena_dev);
   3306 	ena_com_admin_destroy(ena_dev);
   3307 err_mmio_read_less:
   3308 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3309 
   3310 	return (rc);
   3311 }
   3312 
   3313 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
   3314     int io_vectors)
   3315 {
   3316 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3317 	int rc;
   3318 
   3319 	rc = ena_enable_msix(adapter);
   3320 	if (unlikely(rc != 0)) {
   3321 		device_printf(adapter->pdev, "Error with MSI-X enablement\n");
   3322 		return (rc);
   3323 	}
   3324 
   3325 	rc = ena_request_mgmnt_irq(adapter);
   3326 	if (unlikely(rc != 0)) {
   3327 		device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
   3328 		goto err_disable_msix;
   3329 	}
   3330 
   3331 	ena_com_set_admin_polling_mode(ena_dev, false);
   3332 
   3333 	ena_com_admin_aenq_enable(ena_dev);
   3334 
   3335 	return (0);
   3336 
   3337 err_disable_msix:
   3338 	ena_disable_msix(adapter);
   3339 
   3340 	return (rc);
   3341 }
   3342 
   3343 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
   3344 static void ena_keep_alive_wd(void *adapter_data,
   3345     struct ena_admin_aenq_entry *aenq_e)
   3346 {
   3347 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
   3348 	struct ena_admin_aenq_keep_alive_desc *desc;
   3349 	uint64_t rx_drops;
   3350 
   3351 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
   3352 
   3353 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
   3354 	counter_u64_zero(adapter->hw_stats.rx_drops);
   3355 	counter_u64_add(adapter->hw_stats.rx_drops, rx_drops);
   3356 
   3357 	atomic_store_release(&adapter->keep_alive_timestamp, getsbinuptime());
   3358 }
   3359 
   3360 /* Check for keep alive expiration */
   3361 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
   3362 {
   3363 	sbintime_t timestamp, time;
   3364 
   3365 	if (adapter->wd_active == 0)
   3366 		return;
   3367 
   3368 	if (likely(adapter->keep_alive_timeout == 0))
   3369 		return;
   3370 
   3371 	timestamp = atomic_load_acquire(&adapter->keep_alive_timestamp);
   3372 
   3373 	time = getsbinuptime() - timestamp;
   3374 	if (unlikely(time > adapter->keep_alive_timeout)) {
   3375 		device_printf(adapter->pdev,
   3376 		    "Keep alive watchdog timeout.\n");
   3377 		counter_u64_add(adapter->dev_stats.wd_expired, 1);
   3378 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
   3379 		adapter->trigger_reset = true;
   3380 	}
   3381 }
   3382 
   3383 /* Check if admin queue is enabled */
   3384 static void check_for_admin_com_state(struct ena_adapter *adapter)
   3385 {
   3386 	if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
   3387 	    false)) {
   3388 		device_printf(adapter->pdev,
   3389 		    "ENA admin queue is not in running state!\n");
   3390 		counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
   3391 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
   3392 		adapter->trigger_reset = true;
   3393 	}
   3394 }
   3395 
   3396 static int
   3397 check_missing_comp_in_queue(struct ena_adapter *adapter,
   3398     struct ena_ring *tx_ring)
   3399 {
   3400 	struct bintime curtime, time;
   3401 	struct ena_tx_buffer *tx_buf;
   3402 	uint32_t missed_tx = 0;
   3403 	int i;
   3404 
   3405 	getbinuptime(&curtime);
   3406 
   3407 	for (i = 0; i < tx_ring->ring_size; i++) {
   3408 		tx_buf = &tx_ring->tx_buffer_info[i];
   3409 
   3410 		if (bintime_isset(&tx_buf->timestamp) == 0)
   3411 			continue;
   3412 
   3413 		time = curtime;
   3414 		bintime_sub(&time, &tx_buf->timestamp);
   3415 
   3416 		/* Check again if packet is still waiting */
   3417 		if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
   3418 
   3419 			if (!tx_buf->print_once)
   3420 				ena_trace(ENA_WARNING, "Found a Tx that wasn't "
   3421 				    "completed on time, qid %d, index %d.\n",
   3422 				    tx_ring->qid, i);
   3423 
   3424 			tx_buf->print_once = true;
   3425 			missed_tx++;
   3426 			counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
   3427 
   3428 			if (unlikely(missed_tx >
   3429 			    adapter->missing_tx_threshold)) {
   3430 				device_printf(adapter->pdev,
   3431 				    "The number of lost tx completion "
   3432 				    "is above the threshold (%d > %d). "
   3433 				    "Reset the device\n",
   3434 				    missed_tx, adapter->missing_tx_threshold);
   3435 				adapter->reset_reason =
   3436 				    ENA_REGS_RESET_MISS_TX_CMPL;
   3437 				adapter->trigger_reset = true;
   3438 				return (EIO);
   3439 			}
   3440 		}
   3441 	}
   3442 
   3443 	return (0);
   3444 }
   3445 
   3446 /*
   3447  * Check for TX which were not completed on time.
   3448  * Timeout is defined by "missing_tx_timeout".
   3449  * Reset will be performed if number of incompleted
   3450  * transactions exceeds "missing_tx_threshold".
   3451  */
   3452 static void
   3453 check_for_missing_tx_completions(struct ena_adapter *adapter)
   3454 {
   3455 	struct ena_ring *tx_ring;
   3456 	int i, budget, rc;
   3457 
   3458 	/* Make sure the driver doesn't turn the device in other process */
   3459 	rmb();
   3460 
   3461 	if (!adapter->up)
   3462 		return;
   3463 
   3464 	if (adapter->trigger_reset)
   3465 		return;
   3466 
   3467 	if (adapter->missing_tx_timeout == 0)
   3468 		return;
   3469 
   3470 	budget = adapter->missing_tx_max_queues;
   3471 
   3472 	for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
   3473 		tx_ring = &adapter->tx_ring[i];
   3474 
   3475 		rc = check_missing_comp_in_queue(adapter, tx_ring);
   3476 		if (unlikely(rc != 0))
   3477 			return;
   3478 
   3479 		budget--;
   3480 		if (budget == 0) {
   3481 			i++;
   3482 			break;
   3483 		}
   3484 	}
   3485 
   3486 	adapter->next_monitored_tx_qid = i % adapter->num_queues;
   3487 }
   3488 
   3489 /* trigger deferred rx cleanup after 2 consecutive detections */
   3490 #define EMPTY_RX_REFILL 2
   3491 /* For the rare case where the device runs out of Rx descriptors and the
   3492  * msix handler failed to refill new Rx descriptors (due to a lack of memory
   3493  * for example).
   3494  * This case will lead to a deadlock:
   3495  * The device won't send interrupts since all the new Rx packets will be dropped
   3496  * The msix handler won't allocate new Rx descriptors so the device won't be
   3497  * able to send new packets.
   3498  *
   3499  * When such a situation is detected - execute rx cleanup task in another thread
   3500  */
   3501 static void
   3502 check_for_empty_rx_ring(struct ena_adapter *adapter)
   3503 {
   3504 	struct ena_ring *rx_ring;
   3505 	int i, refill_required;
   3506 
   3507 	if (!adapter->up)
   3508 		return;
   3509 
   3510 	if (adapter->trigger_reset)
   3511 		return;
   3512 
   3513 	for (i = 0; i < adapter->num_queues; i++) {
   3514 		rx_ring = &adapter->rx_ring[i];
   3515 
   3516 		refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
   3517 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
   3518 			rx_ring->empty_rx_queue++;
   3519 
   3520 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL)	{
   3521 				counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
   3522 				    1);
   3523 
   3524 				device_printf(adapter->pdev,
   3525 				    "trigger refill for ring %d\n", i);
   3526 
   3527 				if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
   3528 					workqueue_enqueue(rx_ring->cmpl_tq,
   3529 					    &rx_ring->cmpl_task, curcpu());
   3530 				rx_ring->empty_rx_queue = 0;
   3531 			}
   3532 		} else {
   3533 			rx_ring->empty_rx_queue = 0;
   3534 		}
   3535 	}
   3536 }
   3537 
   3538 static void
   3539 ena_timer_service(void *data)
   3540 {
   3541 	struct ena_adapter *adapter = (struct ena_adapter *)data;
   3542 	struct ena_admin_host_info *host_info =
   3543 	    adapter->ena_dev->host_attr.host_info;
   3544 
   3545 	check_for_missing_keep_alive(adapter);
   3546 
   3547 	check_for_admin_com_state(adapter);
   3548 
   3549 	check_for_missing_tx_completions(adapter);
   3550 
   3551 	check_for_empty_rx_ring(adapter);
   3552 
   3553 	if (host_info != NULL)
   3554 		ena_update_host_info(host_info, adapter->ifp);
   3555 
   3556 	if (unlikely(adapter->trigger_reset)) {
   3557 		device_printf(adapter->pdev, "Trigger reset is on\n");
   3558 		workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
   3559 		    curcpu());
   3560 		return;
   3561 	}
   3562 
   3563 	/*
   3564 	 * Schedule another timeout one second from now.
   3565 	 */
   3566 	callout_schedule(&adapter->timer_service, hz);
   3567 }
   3568 
   3569 static void
   3570 ena_reset_task(struct work *wk, void *arg)
   3571 {
   3572 	struct ena_com_dev_get_features_ctx get_feat_ctx;
   3573 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
   3574 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3575 	bool dev_up;
   3576 	int rc;
   3577 
   3578 	if (unlikely(!adapter->trigger_reset)) {
   3579 		device_printf(adapter->pdev,
   3580 		    "device reset scheduled but trigger_reset is off\n");
   3581 		return;
   3582 	}
   3583 
   3584 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
   3585 
   3586 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
   3587 
   3588 	dev_up = adapter->up;
   3589 
   3590 	ena_com_set_admin_running_state(ena_dev, false);
   3591 	ena_down(adapter);
   3592 	ena_free_mgmnt_irq(adapter);
   3593 	ena_disable_msix(adapter);
   3594 	ena_com_abort_admin_commands(ena_dev);
   3595 	ena_com_wait_for_abort_completion(ena_dev);
   3596 	ena_com_admin_destroy(ena_dev);
   3597 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3598 
   3599 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
   3600 	adapter->trigger_reset = false;
   3601 
   3602 	/* Finished destroy part. Restart the device */
   3603 	rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
   3604 	    &adapter->wd_active);
   3605 	if (unlikely(rc != 0)) {
   3606 		device_printf(adapter->pdev,
   3607 		    "ENA device init failed! (err: %d)\n", rc);
   3608 		goto err_dev_free;
   3609 	}
   3610 
   3611 	/* XXX dealloc and realloc MSI-X, probably a waste */
   3612 	rc = ena_enable_msix_and_set_admin_interrupts(adapter,
   3613 	    adapter->num_queues);
   3614 	if (unlikely(rc != 0)) {
   3615 		device_printf(adapter->pdev, "Enable MSI-X failed\n");
   3616 		goto err_com_free;
   3617 	}
   3618 
   3619 	/* If the interface was up before the reset bring it up */
   3620 	if (dev_up) {
   3621 		rc = ena_up(adapter);
   3622 		if (unlikely(rc != 0)) {
   3623 			device_printf(adapter->pdev,
   3624 			    "Failed to create I/O queues\n");
   3625 			goto err_msix_free;
   3626 		}
   3627 	}
   3628 
   3629 	callout_schedule(&adapter->timer_service, hz);
   3630 
   3631 	rw_exit(&adapter->ioctl_sx);
   3632 
   3633 	return;
   3634 
   3635 err_msix_free:
   3636 	ena_free_mgmnt_irq(adapter);
   3637 	ena_disable_msix(adapter);
   3638 err_com_free:
   3639 	ena_com_admin_destroy(ena_dev);
   3640 err_dev_free:
   3641 	device_printf(adapter->pdev, "ENA reset failed!\n");
   3642 	adapter->running = false;
   3643 	rw_exit(&adapter->ioctl_sx);
   3644 }
   3645 
   3646 /**
   3647  * ena_attach - Device Initialization Routine
   3648  * @pdev: device information struct
   3649  *
   3650  * Returns 0 on success, otherwise on failure.
   3651  *
   3652  * ena_attach initializes an adapter identified by a device structure.
   3653  * The OS initialization, configuring of the adapter private structure,
   3654  * and a hardware reset occur.
   3655  **/
   3656 static void
   3657 ena_attach(device_t parent, device_t self, void *aux)
   3658 {
   3659 	struct pci_attach_args *pa = aux;
   3660 	struct ena_com_dev_get_features_ctx get_feat_ctx;
   3661 	static int version_printed;
   3662 	struct ena_adapter *adapter = device_private(self);
   3663 	struct ena_com_dev *ena_dev = NULL;
   3664 	uint16_t tx_sgl_size = 0;
   3665 	uint16_t rx_sgl_size = 0;
   3666 	pcireg_t reg;
   3667 	int io_queue_num;
   3668 	int queue_size;
   3669 	int rc;
   3670 
   3671 	adapter->pdev = self;
   3672 	adapter->ifp = &adapter->sc_ec.ec_if;
   3673 	adapter->sc_pa = *pa;	/* used after attach for adapter reset too */
   3674 
   3675 	if (pci_dma64_available(pa))
   3676 		adapter->sc_dmat = pa->pa_dmat64;
   3677 	else
   3678 		adapter->sc_dmat = pa->pa_dmat;
   3679 
   3680 	pci_aprint_devinfo(pa, NULL);
   3681 
   3682 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   3683 	if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
   3684 		reg |= PCI_COMMAND_MASTER_ENABLE;
   3685         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
   3686 	}
   3687 
   3688 	mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_NET);
   3689 	rw_init(&adapter->ioctl_sx);
   3690 
   3691 	/* Set up the timer service */
   3692 	adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
   3693 	adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
   3694 	adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
   3695 	adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
   3696 
   3697 	if (version_printed++ == 0)
   3698 		device_printf(parent, "%s\n", ena_version);
   3699 
   3700 	rc = ena_allocate_pci_resources(pa, adapter);
   3701 	if (unlikely(rc != 0)) {
   3702 		device_printf(parent, "PCI resource allocation failed!\n");
   3703 		ena_free_pci_resources(adapter);
   3704 		return;
   3705 	}
   3706 
   3707 	/* Allocate memory for ena_dev structure */
   3708 	ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
   3709 	    M_WAITOK | M_ZERO);
   3710 
   3711 	adapter->ena_dev = ena_dev;
   3712 	ena_dev->dmadev = self;
   3713 	ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
   3714 	    M_WAITOK | M_ZERO);
   3715 
   3716 	/* Store register resources */
   3717 	((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
   3718 	((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
   3719 
   3720 	ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
   3721 
   3722 	/* Device initialization */
   3723 	rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
   3724 	if (unlikely(rc != 0)) {
   3725 		device_printf(self, "ENA device init failed! (err: %d)\n", rc);
   3726 		rc = ENXIO;
   3727 		goto err_bus_free;
   3728 	}
   3729 
   3730 	adapter->keep_alive_timestamp = getsbinuptime();
   3731 
   3732 	adapter->tx_offload_cap = get_feat_ctx.offload.tx;
   3733 
   3734 	/* Set for sure that interface is not up */
   3735 	adapter->up = false;
   3736 
   3737 	memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
   3738 	    ETHER_ADDR_LEN);
   3739 
   3740 	/* calculate IO queue number to create */
   3741 	io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
   3742 
   3743 	ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
   3744 	    io_queue_num);
   3745 	adapter->num_queues = io_queue_num;
   3746 
   3747 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
   3748 
   3749 	/* calculatre ring sizes */
   3750 	queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
   3751 	    &rx_sgl_size, &get_feat_ctx);
   3752 	if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
   3753 		rc = ENA_COM_FAULT;
   3754 		goto err_com_free;
   3755 	}
   3756 
   3757 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
   3758 
   3759 	adapter->tx_ring_size = queue_size;
   3760 	adapter->rx_ring_size = queue_size;
   3761 
   3762 	adapter->max_tx_sgl_size = tx_sgl_size;
   3763 	adapter->max_rx_sgl_size = rx_sgl_size;
   3764 
   3765 #if 0
   3766 	/* set up dma tags for rx and tx buffers */
   3767 	rc = ena_setup_tx_dma_tag(adapter);
   3768 	if (unlikely(rc != 0)) {
   3769 		device_printf(self, "Failed to create TX DMA tag\n");
   3770 		goto err_com_free;
   3771 	}
   3772 
   3773 	rc = ena_setup_rx_dma_tag(adapter);
   3774 	if (unlikely(rc != 0)) {
   3775 		device_printf(self, "Failed to create RX DMA tag\n");
   3776 		goto err_tx_tag_free;
   3777 	}
   3778 #endif
   3779 
   3780 	/* initialize rings basic information */
   3781 	device_printf(self, "initialize %d io queues\n", io_queue_num);
   3782 	ena_init_io_rings(adapter);
   3783 
   3784 	/* setup network interface */
   3785 	rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
   3786 	if (unlikely(rc != 0)) {
   3787 		device_printf(self, "Error with network interface setup\n");
   3788 		goto err_io_free;
   3789 	}
   3790 
   3791 	rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
   3792 	if (unlikely(rc != 0)) {
   3793 		device_printf(self,
   3794 		    "Failed to enable and set the admin interrupts\n");
   3795 		goto err_ifp_free;
   3796 	}
   3797 
   3798 	callout_init(&adapter->timer_service, CALLOUT_MPSAFE);
   3799 	callout_setfunc(&adapter->timer_service, ena_timer_service, adapter);
   3800 
   3801 	/* Initialize reset task queue */
   3802 	rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
   3803 	    ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
   3804 	if (unlikely(rc != 0)) {
   3805 		ena_trace(ENA_ALERT,
   3806 		    "Unable to create workqueue for reset task\n");
   3807 		goto err_ifp_free;
   3808 	}
   3809 
   3810 	/* Initialize statistics */
   3811 	ena_alloc_counters_dev(&adapter->dev_stats, io_queue_num);
   3812 	ena_alloc_counters_hwstats(&adapter->hw_stats, io_queue_num);
   3813 #if 0
   3814 	ena_sysctl_add_nodes(adapter);
   3815 #endif
   3816 
   3817 	/* Tell the stack that the interface is not active */
   3818 	if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
   3819 
   3820 	adapter->running = true;
   3821 	return;
   3822 
   3823 err_ifp_free:
   3824 	if_detach(adapter->ifp);
   3825 	if_free(adapter->ifp);
   3826 err_io_free:
   3827 	ena_free_all_io_rings_resources(adapter);
   3828 #if 0
   3829 	ena_free_rx_dma_tag(adapter);
   3830 err_tx_tag_free:
   3831 	ena_free_tx_dma_tag(adapter);
   3832 #endif
   3833 err_com_free:
   3834 	ena_com_admin_destroy(ena_dev);
   3835 	ena_com_delete_host_info(ena_dev);
   3836 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3837 err_bus_free:
   3838 	free(ena_dev->bus, M_DEVBUF);
   3839 	free(ena_dev, M_DEVBUF);
   3840 	ena_free_pci_resources(adapter);
   3841 }
   3842 
   3843 /**
   3844  * ena_detach - Device Removal Routine
   3845  * @pdev: device information struct
   3846  *
   3847  * ena_detach is called by the device subsystem to alert the driver
   3848  * that it should release a PCI device.
   3849  **/
   3850 static int
   3851 ena_detach(device_t pdev, int flags)
   3852 {
   3853 	struct ena_adapter *adapter = device_private(pdev);
   3854 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3855 #if 0
   3856 	int rc;
   3857 #endif
   3858 
   3859 	/* Make sure VLANS are not using driver */
   3860 	if (VLAN_ATTACHED(&adapter->sc_ec)) {
   3861 		device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
   3862 		return (EBUSY);
   3863 	}
   3864 
   3865 	/* Free reset task and callout */
   3866 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
   3867 	callout_destroy(&adapter->timer_service);
   3868 	workqueue_wait(adapter->reset_tq, &adapter->reset_task);
   3869 	workqueue_destroy(adapter->reset_tq);
   3870 	adapter->reset_tq = NULL;
   3871 
   3872 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
   3873 	ena_down(adapter);
   3874 	rw_exit(&adapter->ioctl_sx);
   3875 
   3876 	if (adapter->ifp != NULL) {
   3877 		ether_ifdetach(adapter->ifp);
   3878 		if_free(adapter->ifp);
   3879 	}
   3880 	ifmedia_fini(&adapter->media);
   3881 
   3882 	ena_free_all_io_rings_resources(adapter);
   3883 
   3884 	ena_free_counters((struct evcnt *)&adapter->hw_stats,
   3885 	    sizeof(struct ena_hw_stats));
   3886 	ena_free_counters((struct evcnt *)&adapter->dev_stats,
   3887 	    sizeof(struct ena_stats_dev));
   3888 
   3889 	if (likely(adapter->rss_support))
   3890 		ena_com_rss_destroy(ena_dev);
   3891 
   3892 #if 0
   3893 	rc = ena_free_rx_dma_tag(adapter);
   3894 	if (unlikely(rc != 0))
   3895 		device_printf(adapter->pdev,
   3896 		    "Unmapped RX DMA tag associations\n");
   3897 
   3898 	rc = ena_free_tx_dma_tag(adapter);
   3899 	if (unlikely(rc != 0))
   3900 		device_printf(adapter->pdev,
   3901 		    "Unmapped TX DMA tag associations\n");
   3902 #endif
   3903 
   3904 	/* Reset the device only if the device is running. */
   3905 	if (adapter->running)
   3906 		ena_com_dev_reset(ena_dev, adapter->reset_reason);
   3907 
   3908 	ena_com_delete_host_info(ena_dev);
   3909 
   3910 	ena_free_irqs(adapter);
   3911 
   3912 	ena_com_abort_admin_commands(ena_dev);
   3913 
   3914 	ena_com_wait_for_abort_completion(ena_dev);
   3915 
   3916 	ena_com_admin_destroy(ena_dev);
   3917 
   3918 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3919 
   3920 	ena_free_pci_resources(adapter);
   3921 
   3922 	mutex_destroy(&adapter->global_mtx);
   3923 	rw_destroy(&adapter->ioctl_sx);
   3924 
   3925 	if (ena_dev->bus != NULL)
   3926 		free(ena_dev->bus, M_DEVBUF);
   3927 
   3928 	if (ena_dev != NULL)
   3929 		free(ena_dev, M_DEVBUF);
   3930 
   3931 	return 0;
   3932 }
   3933 
   3934 /******************************************************************************
   3935  ******************************** AENQ Handlers *******************************
   3936  *****************************************************************************/
   3937 /**
   3938  * ena_update_on_link_change:
   3939  * Notify the network interface about the change in link status
   3940  **/
   3941 static void
   3942 ena_update_on_link_change(void *adapter_data,
   3943     struct ena_admin_aenq_entry *aenq_e)
   3944 {
   3945 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
   3946 	struct ena_admin_aenq_link_change_desc *aenq_desc;
   3947 	int status;
   3948 	struct ifnet *ifp;
   3949 
   3950 	aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
   3951 	ifp = adapter->ifp;
   3952 	status = aenq_desc->flags &
   3953 	    ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
   3954 
   3955 	if (status != 0) {
   3956 		device_printf(adapter->pdev, "link is UP\n");
   3957 		if_link_state_change(ifp, LINK_STATE_UP);
   3958 	} else if (status == 0) {
   3959 		device_printf(adapter->pdev, "link is DOWN\n");
   3960 		if_link_state_change(ifp, LINK_STATE_DOWN);
   3961 	} else {
   3962 		device_printf(adapter->pdev, "invalid value recvd\n");
   3963 		BUG();
   3964 	}
   3965 
   3966 	adapter->link_status = status;
   3967 }
   3968 
   3969 /**
   3970  * This handler will called for unknown event group or unimplemented handlers
   3971  **/
   3972 static void
   3973 unimplemented_aenq_handler(void *data,
   3974     struct ena_admin_aenq_entry *aenq_e)
   3975 {
   3976 	return;
   3977 }
   3978 
   3979 static struct ena_aenq_handlers aenq_handlers = {
   3980     .handlers = {
   3981 	    [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
   3982 	    [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
   3983     },
   3984     .unimplemented_handler = unimplemented_aenq_handler
   3985 };
   3986 
   3987 #ifdef __FreeBSD__
   3988 /*********************************************************************
   3989  *  FreeBSD Device Interface Entry Points
   3990  *********************************************************************/
   3991 
   3992 static device_method_t ena_methods[] = {
   3993     /* Device interface */
   3994     DEVMETHOD(device_probe, ena_probe),
   3995     DEVMETHOD(device_attach, ena_attach),
   3996     DEVMETHOD(device_detach, ena_detach),
   3997     DEVMETHOD_END
   3998 };
   3999 
   4000 static driver_t ena_driver = {
   4001     "ena", ena_methods, sizeof(struct ena_adapter),
   4002 };
   4003 
   4004 devclass_t ena_devclass;
   4005 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
   4006 MODULE_DEPEND(ena, pci, 1, 1, 1);
   4007 MODULE_DEPEND(ena, ether, 1, 1, 1);
   4008 
   4009 /*********************************************************************/
   4010 #endif /* __FreeBSD__ */
   4011 
   4012 #ifdef __NetBSD__
   4013 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
   4014 	ena_detach, NULL);
   4015 #endif /* __NetBSD */
   4016