if_ena.c revision 1.25 1 /*-
2 * BSD LICENSE
3 *
4 * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #ifdef _KERNEL_OPT
32 #include "opt_net_mpsafe.h"
33 #endif
34
35 #include <sys/cdefs.h>
36 #if 0
37 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
38 #endif
39 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.25 2020/08/03 19:44:06 jmcneill Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/kthread.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/module.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 #include <sys/time.h>
54 #include <sys/workqueue.h>
55 #include <sys/callout.h>
56 #include <sys/interrupt.h>
57 #include <sys/cpu.h>
58
59 #include <net/if_ether.h>
60 #include <net/if_vlanvar.h>
61
62 #include <dev/pci/if_enavar.h>
63
64 #ifdef NET_MPSAFE
65 #define WQ_FLAGS WQ_MPSAFE
66 #define CALLOUT_FLAGS CALLOUT_MPSAFE
67 #else
68 #define WQ_FLAGS 0
69 #define CALLOUT_FLAGS 0
70 #endif
71
72 /*********************************************************
73 * Function prototypes
74 *********************************************************/
75 static int ena_probe(device_t, cfdata_t, void *);
76 static int ena_intr_msix_mgmnt(void *);
77 static int ena_allocate_pci_resources(struct pci_attach_args *,
78 struct ena_adapter *);
79 static void ena_free_pci_resources(struct ena_adapter *);
80 static int ena_change_mtu(struct ifnet *, int);
81 static void ena_init_io_rings_common(struct ena_adapter *,
82 struct ena_ring *, uint16_t);
83 static void ena_init_io_rings(struct ena_adapter *);
84 static void ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
85 static void ena_free_all_io_rings_resources(struct ena_adapter *);
86 #if 0
87 static int ena_setup_tx_dma_tag(struct ena_adapter *);
88 static int ena_free_tx_dma_tag(struct ena_adapter *);
89 static int ena_setup_rx_dma_tag(struct ena_adapter *);
90 static int ena_free_rx_dma_tag(struct ena_adapter *);
91 #endif
92 static int ena_setup_tx_resources(struct ena_adapter *, int);
93 static void ena_free_tx_resources(struct ena_adapter *, int);
94 static int ena_setup_all_tx_resources(struct ena_adapter *);
95 static void ena_free_all_tx_resources(struct ena_adapter *);
96 static inline int validate_rx_req_id(struct ena_ring *, uint16_t);
97 static int ena_setup_rx_resources(struct ena_adapter *, unsigned int);
98 static void ena_free_rx_resources(struct ena_adapter *, unsigned int);
99 static int ena_setup_all_rx_resources(struct ena_adapter *);
100 static void ena_free_all_rx_resources(struct ena_adapter *);
101 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *,
102 struct ena_rx_buffer *);
103 static void ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
104 struct ena_rx_buffer *);
105 static int ena_refill_rx_bufs(struct ena_ring *, uint32_t);
106 static void ena_free_rx_bufs(struct ena_adapter *, unsigned int);
107 static void ena_refill_all_rx_bufs(struct ena_adapter *);
108 static void ena_free_all_rx_bufs(struct ena_adapter *);
109 static void ena_free_tx_bufs(struct ena_adapter *, unsigned int);
110 static void ena_free_all_tx_bufs(struct ena_adapter *);
111 static void ena_destroy_all_tx_queues(struct ena_adapter *);
112 static void ena_destroy_all_rx_queues(struct ena_adapter *);
113 static void ena_destroy_all_io_queues(struct ena_adapter *);
114 static int ena_create_io_queues(struct ena_adapter *);
115 static int ena_tx_cleanup(struct ena_ring *);
116 static void ena_deferred_rx_cleanup(struct work *, void *);
117 static int ena_rx_cleanup(struct ena_ring *);
118 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
119 #if 0
120 static void ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
121 struct mbuf *);
122 #endif
123 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
124 struct ena_com_rx_ctx *, uint16_t *);
125 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
126 struct mbuf *);
127 static int ena_handle_msix(void *);
128 static int ena_enable_msix(struct ena_adapter *);
129 static int ena_request_mgmnt_irq(struct ena_adapter *);
130 static int ena_request_io_irq(struct ena_adapter *);
131 static void ena_free_mgmnt_irq(struct ena_adapter *);
132 static void ena_free_io_irq(struct ena_adapter *);
133 static void ena_free_irqs(struct ena_adapter*);
134 static void ena_disable_msix(struct ena_adapter *);
135 static void ena_unmask_all_io_irqs(struct ena_adapter *);
136 static int ena_rss_configure(struct ena_adapter *);
137 static int ena_up_complete(struct ena_adapter *);
138 static int ena_up(struct ena_adapter *);
139 static void ena_down(struct ena_adapter *);
140 #if 0
141 static uint64_t ena_get_counter(struct ifnet *, ift_counter);
142 #endif
143 static int ena_media_change(struct ifnet *);
144 static void ena_media_status(struct ifnet *, struct ifmediareq *);
145 static int ena_init(struct ifnet *);
146 static int ena_ioctl(struct ifnet *, u_long, void *);
147 static int ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
148 static void ena_update_host_info(struct ena_admin_host_info *, struct ifnet *);
149 static void ena_update_hwassist(struct ena_adapter *);
150 static int ena_setup_ifnet(device_t, struct ena_adapter *,
151 struct ena_com_dev_get_features_ctx *);
152 static void ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
153 static int ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
154 struct mbuf **mbuf);
155 static int ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
156 static void ena_start_xmit(struct ena_ring *);
157 static int ena_mq_start(struct ifnet *, struct mbuf *);
158 static void ena_deferred_mq_start(struct work *, void *);
159 #if 0
160 static void ena_qflush(struct ifnet *);
161 #endif
162 static int ena_calc_io_queue_num(struct pci_attach_args *,
163 struct ena_adapter *, struct ena_com_dev_get_features_ctx *);
164 static int ena_calc_queue_size(struct ena_adapter *, uint16_t *,
165 uint16_t *, struct ena_com_dev_get_features_ctx *);
166 #if 0
167 static int ena_rss_init_default(struct ena_adapter *);
168 static void ena_rss_init_default_deferred(void *);
169 #endif
170 static void ena_config_host_info(struct ena_com_dev *);
171 static void ena_attach(device_t, device_t, void *);
172 static int ena_detach(device_t, int);
173 static int ena_device_init(struct ena_adapter *, device_t,
174 struct ena_com_dev_get_features_ctx *, int *);
175 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
176 int);
177 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *);
178 static void unimplemented_aenq_handler(void *,
179 struct ena_admin_aenq_entry *);
180 static void ena_timer_service(void *);
181
182 static const char ena_version[] =
183 DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
184
185 #if 0
186 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
187 #endif
188
189 /*
190 * Tuneable number of buffers in the buf-ring (drbr)
191 */
192 static int ena_buf_ring_size = 4096;
193 #if 0
194 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
195 &ena_buf_ring_size, 0, "Size of the bufring");
196 #endif
197
198 /*
199 * Logging level for changing verbosity of the output
200 */
201 int ena_log_level = ENA_ALERT | ENA_WARNING;
202 #if 0
203 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
204 &ena_log_level, 0, "Logging level indicating verbosity of the logs");
205 #endif
206
207 static const ena_vendor_info_t ena_vendor_info_array[] = {
208 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
209 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
210 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
211 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
212 /* Last entry */
213 { 0, 0, 0 }
214 };
215
216 /*
217 * Contains pointers to event handlers, e.g. link state chage.
218 */
219 static struct ena_aenq_handlers aenq_handlers;
220
221 int
222 ena_dma_alloc(device_t dmadev, bus_size_t size,
223 ena_mem_handle_t *dma , int mapflags)
224 {
225 struct ena_adapter *adapter = device_private(dmadev);
226 uint32_t maxsize;
227 bus_dma_segment_t seg;
228 int error, nsegs;
229
230 maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
231
232 #if 0
233 /* XXX what is this needed for ? */
234 dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
235 if (unlikely(dma_space_addr == 0))
236 dma_space_addr = BUS_SPACE_MAXADDR;
237 #endif
238
239 dma->tag = adapter->sc_dmat;
240
241 if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
242 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
243 ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
244 (uintmax_t)maxsize, error);
245 goto fail_create;
246 }
247
248 error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &seg, 1, &nsegs,
249 BUS_DMA_ALLOCNOW);
250 if (error) {
251 ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
252 (uintmax_t)maxsize, error);
253 goto fail_alloc;
254 }
255
256 error = bus_dmamem_map(dma->tag, &seg, nsegs, maxsize,
257 &dma->vaddr, BUS_DMA_COHERENT);
258 if (error) {
259 ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
260 (uintmax_t)maxsize, error);
261 goto fail_map;
262 }
263 memset(dma->vaddr, 0, maxsize);
264
265 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
266 maxsize, NULL, mapflags);
267 if (error) {
268 ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
269 goto fail_load;
270 }
271 dma->paddr = dma->map->dm_segs[0].ds_addr;
272
273 return (0);
274
275 fail_load:
276 bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
277 fail_map:
278 bus_dmamem_free(dma->tag, &seg, nsegs);
279 fail_alloc:
280 bus_dmamap_destroy(adapter->sc_dmat, dma->map);
281 fail_create:
282 return (error);
283 }
284
285 static int
286 ena_allocate_pci_resources(struct pci_attach_args *pa,
287 struct ena_adapter *adapter)
288 {
289 pcireg_t memtype, reg;
290 bus_addr_t memaddr;
291 bus_size_t mapsize;
292 int flags, error;
293 int msixoff;
294
295 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
296 if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM) {
297 aprint_error_dev(adapter->pdev, "invalid type (type=0x%x)\n",
298 memtype);
299 return ENXIO;
300 }
301 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
302 if (((reg & PCI_COMMAND_MASTER_ENABLE) == 0) ||
303 ((reg & PCI_COMMAND_MEM_ENABLE) == 0)) {
304 /*
305 * Enable address decoding for memory range in case BIOS or
306 * UEFI didn't set it.
307 */
308 reg |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
309 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
310 reg);
311 }
312
313 adapter->sc_btag = pa->pa_memt;
314 error = pci_mapreg_info(pa->pa_pc, pa->pa_tag, ENA_REG_BAR,
315 memtype, &memaddr, &mapsize, &flags);
316 if (error) {
317 aprint_error_dev(adapter->pdev, "can't get map info\n");
318 return ENXIO;
319 }
320
321 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff,
322 NULL)) {
323 pcireg_t msixtbl;
324 uint32_t table_offset;
325 int bir;
326
327 msixtbl = pci_conf_read(pa->pa_pc, pa->pa_tag,
328 msixoff + PCI_MSIX_TBLOFFSET);
329 table_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK;
330 bir = msixtbl & PCI_MSIX_TBLBIR_MASK;
331 if (bir == PCI_MAPREG_NUM(ENA_REG_BAR))
332 mapsize = table_offset;
333 }
334
335 error = bus_space_map(adapter->sc_btag, memaddr, mapsize, flags,
336 &adapter->sc_bhandle);
337 if (error != 0) {
338 aprint_error_dev(adapter->pdev,
339 "can't map mem space (error=%d)\n", error);
340 return ENXIO;
341 }
342
343 return (0);
344 }
345
346 static void
347 ena_free_pci_resources(struct ena_adapter *adapter)
348 {
349 /* Nothing to do */
350 }
351
352 static int
353 ena_probe(device_t parent, cfdata_t match, void *aux)
354 {
355 struct pci_attach_args *pa = aux;
356 const ena_vendor_info_t *ent;
357
358 for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
359 ent = &ena_vendor_info_array[i];
360
361 if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
362 (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
363 return 1;
364 }
365 }
366
367 return 0;
368 }
369
370 static int
371 ena_change_mtu(struct ifnet *ifp, int new_mtu)
372 {
373 struct ena_adapter *adapter = if_getsoftc(ifp);
374 int rc;
375
376 if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
377 device_printf(adapter->pdev, "Invalid MTU setting. "
378 "new_mtu: %d max mtu: %d min mtu: %d\n",
379 new_mtu, adapter->max_mtu, ENA_MIN_MTU);
380 return (EINVAL);
381 }
382
383 rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
384 if (likely(rc == 0)) {
385 ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
386 if_setmtu(ifp, new_mtu);
387 } else {
388 device_printf(adapter->pdev, "Failed to set MTU to %d\n",
389 new_mtu);
390 }
391
392 return (rc);
393 }
394
395 #define EVCNT_INIT(st, f) \
396 do { \
397 evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL, \
398 st->name, #f); \
399 } while (0)
400
401 static inline void
402 ena_alloc_counters_rx(struct ena_stats_rx *st, int queue)
403 {
404 snprintf(st->name, sizeof(st->name), "ena rxq%d", queue);
405
406 EVCNT_INIT(st, cnt);
407 EVCNT_INIT(st, bytes);
408 EVCNT_INIT(st, refil_partial);
409 EVCNT_INIT(st, bad_csum);
410 EVCNT_INIT(st, mjum_alloc_fail);
411 EVCNT_INIT(st, mbuf_alloc_fail);
412 EVCNT_INIT(st, dma_mapping_err);
413 EVCNT_INIT(st, bad_desc_num);
414 EVCNT_INIT(st, bad_req_id);
415 EVCNT_INIT(st, empty_rx_ring);
416
417 /* Make sure all code is updated when new fields added */
418 CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
419 + sizeof(st->empty_rx_ring) == sizeof(*st));
420 }
421
422 static inline void
423 ena_alloc_counters_tx(struct ena_stats_tx *st, int queue)
424 {
425 snprintf(st->name, sizeof(st->name), "ena txq%d", queue);
426
427 EVCNT_INIT(st, cnt);
428 EVCNT_INIT(st, bytes);
429 EVCNT_INIT(st, prepare_ctx_err);
430 EVCNT_INIT(st, dma_mapping_err);
431 EVCNT_INIT(st, doorbells);
432 EVCNT_INIT(st, missing_tx_comp);
433 EVCNT_INIT(st, bad_req_id);
434 EVCNT_INIT(st, collapse);
435 EVCNT_INIT(st, collapse_err);
436
437 /* Make sure all code is updated when new fields added */
438 CTASSERT(offsetof(struct ena_stats_tx, collapse_err)
439 + sizeof(st->collapse_err) == sizeof(*st));
440 }
441
442 static inline void
443 ena_alloc_counters_dev(struct ena_stats_dev *st, int queue)
444 {
445 snprintf(st->name, sizeof(st->name), "ena dev ioq%d", queue);
446
447 EVCNT_INIT(st, wd_expired);
448 EVCNT_INIT(st, interface_up);
449 EVCNT_INIT(st, interface_down);
450 EVCNT_INIT(st, admin_q_pause);
451
452 /* Make sure all code is updated when new fields added */
453 CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
454 + sizeof(st->admin_q_pause) == sizeof(*st));
455 }
456
457 static inline void
458 ena_alloc_counters_hwstats(struct ena_hw_stats *st, int queue)
459 {
460 snprintf(st->name, sizeof(st->name), "ena hw ioq%d", queue);
461
462 EVCNT_INIT(st, rx_packets);
463 EVCNT_INIT(st, tx_packets);
464 EVCNT_INIT(st, rx_bytes);
465 EVCNT_INIT(st, tx_bytes);
466 EVCNT_INIT(st, rx_drops);
467
468 /* Make sure all code is updated when new fields added */
469 CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
470 + sizeof(st->rx_drops) == sizeof(*st));
471 }
472 static inline void
473 ena_free_counters(struct evcnt *begin, int size)
474 {
475 struct evcnt *end = (struct evcnt *)((char *)begin + size);
476
477 for (; begin < end; ++begin)
478 counter_u64_free(*begin);
479 }
480
481 static inline void
482 ena_reset_counters(struct evcnt *begin, int size)
483 {
484 struct evcnt *end = (struct evcnt *)((char *)begin + size);
485
486 for (; begin < end; ++begin)
487 counter_u64_zero(*begin);
488 }
489
490 static void
491 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
492 uint16_t qid)
493 {
494
495 ring->qid = qid;
496 ring->adapter = adapter;
497 ring->ena_dev = adapter->ena_dev;
498 }
499
500 static void
501 ena_init_io_rings(struct ena_adapter *adapter)
502 {
503 struct ena_com_dev *ena_dev;
504 struct ena_ring *txr, *rxr;
505 struct ena_que *que;
506 int i;
507
508 ena_dev = adapter->ena_dev;
509
510 for (i = 0; i < adapter->num_queues; i++) {
511 txr = &adapter->tx_ring[i];
512 rxr = &adapter->rx_ring[i];
513
514 /* TX/RX common ring state */
515 ena_init_io_rings_common(adapter, txr, i);
516 ena_init_io_rings_common(adapter, rxr, i);
517
518 /* TX specific ring state */
519 txr->ring_size = adapter->tx_ring_size;
520 txr->tx_max_header_size = ena_dev->tx_max_header_size;
521 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
522 txr->smoothed_interval =
523 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
524
525 /* Allocate a buf ring */
526 txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
527 M_WAITOK, &txr->ring_mtx);
528
529 /* Alloc TX statistics. */
530 ena_alloc_counters_tx(&txr->tx_stats, i);
531
532 /* RX specific ring state */
533 rxr->ring_size = adapter->rx_ring_size;
534 rxr->smoothed_interval =
535 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
536
537 /* Alloc RX statistics. */
538 ena_alloc_counters_rx(&rxr->rx_stats, i);
539
540 /* Initialize locks */
541 snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
542 device_xname(adapter->pdev), i);
543 snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
544 device_xname(adapter->pdev), i);
545
546 mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
547 mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
548
549 que = &adapter->que[i];
550 que->adapter = adapter;
551 que->id = i;
552 que->tx_ring = txr;
553 que->rx_ring = rxr;
554
555 txr->que = que;
556 rxr->que = que;
557
558 rxr->empty_rx_queue = 0;
559 }
560 }
561
562 static void
563 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
564 {
565 struct ena_ring *txr = &adapter->tx_ring[qid];
566 struct ena_ring *rxr = &adapter->rx_ring[qid];
567
568 ena_free_counters((struct evcnt *)&txr->tx_stats,
569 sizeof(txr->tx_stats));
570 ena_free_counters((struct evcnt *)&rxr->rx_stats,
571 sizeof(rxr->rx_stats));
572
573 ENA_RING_MTX_LOCK(txr);
574 drbr_free(txr->br, M_DEVBUF);
575 ENA_RING_MTX_UNLOCK(txr);
576
577 mutex_destroy(&txr->ring_mtx);
578 mutex_destroy(&rxr->ring_mtx);
579 }
580
581 static void
582 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
583 {
584 int i;
585
586 for (i = 0; i < adapter->num_queues; i++)
587 ena_free_io_ring_resources(adapter, i);
588
589 }
590
591 #if 0
592 static int
593 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
594 {
595 int ret;
596
597 /* Create DMA tag for Tx buffers */
598 ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
599 1, 0, /* alignment, bounds */
600 ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window */
601 BUS_SPACE_MAXADDR, /* highaddr of excl window */
602 NULL, NULL, /* filter, filterarg */
603 ENA_TSO_MAXSIZE, /* maxsize */
604 adapter->max_tx_sgl_size - 1, /* nsegments */
605 ENA_TSO_MAXSIZE, /* maxsegsize */
606 0, /* flags */
607 NULL, /* lockfunc */
608 NULL, /* lockfuncarg */
609 &adapter->tx_buf_tag);
610
611 return (ret);
612 }
613 #endif
614
615 #if 0
616 static int
617 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
618 {
619 int ret;
620
621 /* Create DMA tag for Rx buffers*/
622 ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent */
623 1, 0, /* alignment, bounds */
624 ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window */
625 BUS_SPACE_MAXADDR, /* highaddr of excl window */
626 NULL, NULL, /* filter, filterarg */
627 MJUM16BYTES, /* maxsize */
628 adapter->max_rx_sgl_size, /* nsegments */
629 MJUM16BYTES, /* maxsegsize */
630 0, /* flags */
631 NULL, /* lockfunc */
632 NULL, /* lockarg */
633 &adapter->rx_buf_tag);
634
635 return (ret);
636 }
637 #endif
638
639 /**
640 * ena_setup_tx_resources - allocate Tx resources (Descriptors)
641 * @adapter: network interface device structure
642 * @qid: queue index
643 *
644 * Returns 0 on success, otherwise on failure.
645 **/
646 static int
647 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
648 {
649 struct ena_que *que = &adapter->que[qid];
650 struct ena_ring *tx_ring = que->tx_ring;
651 int size, i, err;
652 #ifdef RSS
653 cpuset_t cpu_mask;
654 #endif
655
656 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
657 tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
658
659 size = sizeof(uint16_t) * tx_ring->ring_size;
660 tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
661
662 /* Req id stack for TX OOO completions */
663 for (i = 0; i < tx_ring->ring_size; i++)
664 tx_ring->free_tx_ids[i] = i;
665
666 /* Reset TX statistics. */
667 ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
668 sizeof(tx_ring->tx_stats));
669
670 tx_ring->next_to_use = 0;
671 tx_ring->next_to_clean = 0;
672
673 /* Make sure that drbr is empty */
674 ENA_RING_MTX_LOCK(tx_ring);
675 drbr_flush(adapter->ifp, tx_ring->br);
676 ENA_RING_MTX_UNLOCK(tx_ring);
677
678 /* ... and create the buffer DMA maps */
679 for (i = 0; i < tx_ring->ring_size; i++) {
680 err = bus_dmamap_create(adapter->sc_dmat,
681 ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
682 ENA_TSO_MAXSIZE, 0, 0,
683 &tx_ring->tx_buffer_info[i].map);
684 if (unlikely(err != 0)) {
685 ena_trace(ENA_ALERT,
686 "Unable to create Tx DMA map for buffer %d\n", i);
687 goto err_buf_info_unmap;
688 }
689 }
690
691 /* Allocate workqueues */
692 int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
693 ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
694 if (unlikely(rc != 0)) {
695 ena_trace(ENA_ALERT,
696 "Unable to create workqueue for enqueue task\n");
697 i = tx_ring->ring_size;
698 goto err_buf_info_unmap;
699 }
700
701 #if 0
702 /* RSS set cpu for thread */
703 #ifdef RSS
704 CPU_SETOF(que->cpu, &cpu_mask);
705 taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET,
706 &cpu_mask, "%s tx_ring enq (bucket %d)",
707 device_xname(adapter->pdev), que->cpu);
708 #else /* RSS */
709 taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET,
710 "%s txeq %d", device_xname(adapter->pdev), que->cpu);
711 #endif /* RSS */
712 #endif
713
714 return (0);
715
716 err_buf_info_unmap:
717 while (i--) {
718 bus_dmamap_destroy(adapter->sc_dmat,
719 tx_ring->tx_buffer_info[i].map);
720 }
721 free(tx_ring->free_tx_ids, M_DEVBUF);
722 tx_ring->free_tx_ids = NULL;
723 free(tx_ring->tx_buffer_info, M_DEVBUF);
724 tx_ring->tx_buffer_info = NULL;
725
726 return (ENOMEM);
727 }
728
729 /**
730 * ena_free_tx_resources - Free Tx Resources per Queue
731 * @adapter: network interface device structure
732 * @qid: queue index
733 *
734 * Free all transmit software resources
735 **/
736 static void
737 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
738 {
739 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
740
741 workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
742 workqueue_destroy(tx_ring->enqueue_tq);
743 tx_ring->enqueue_tq = NULL;
744
745 ENA_RING_MTX_LOCK(tx_ring);
746 /* Flush buffer ring, */
747 drbr_flush(adapter->ifp, tx_ring->br);
748
749 /* Free buffer DMA maps, */
750 for (int i = 0; i < tx_ring->ring_size; i++) {
751 m_freem(tx_ring->tx_buffer_info[i].mbuf);
752 tx_ring->tx_buffer_info[i].mbuf = NULL;
753 bus_dmamap_unload(adapter->sc_dmat,
754 tx_ring->tx_buffer_info[i].map);
755 bus_dmamap_destroy(adapter->sc_dmat,
756 tx_ring->tx_buffer_info[i].map);
757 }
758 ENA_RING_MTX_UNLOCK(tx_ring);
759
760 /* And free allocated memory. */
761 free(tx_ring->tx_buffer_info, M_DEVBUF);
762 tx_ring->tx_buffer_info = NULL;
763
764 free(tx_ring->free_tx_ids, M_DEVBUF);
765 tx_ring->free_tx_ids = NULL;
766 }
767
768 /**
769 * ena_setup_all_tx_resources - allocate all queues Tx resources
770 * @adapter: network interface device structure
771 *
772 * Returns 0 on success, otherwise on failure.
773 **/
774 static int
775 ena_setup_all_tx_resources(struct ena_adapter *adapter)
776 {
777 int i, rc;
778
779 for (i = 0; i < adapter->num_queues; i++) {
780 rc = ena_setup_tx_resources(adapter, i);
781 if (rc != 0) {
782 device_printf(adapter->pdev,
783 "Allocation for Tx Queue %u failed\n", i);
784 goto err_setup_tx;
785 }
786 }
787
788 return (0);
789
790 err_setup_tx:
791 /* Rewind the index freeing the rings as we go */
792 while (i--)
793 ena_free_tx_resources(adapter, i);
794 return (rc);
795 }
796
797 /**
798 * ena_free_all_tx_resources - Free Tx Resources for All Queues
799 * @adapter: network interface device structure
800 *
801 * Free all transmit software resources
802 **/
803 static void
804 ena_free_all_tx_resources(struct ena_adapter *adapter)
805 {
806 int i;
807
808 for (i = 0; i < adapter->num_queues; i++)
809 ena_free_tx_resources(adapter, i);
810 }
811
812 static inline int
813 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
814 {
815 if (likely(req_id < rx_ring->ring_size))
816 return (0);
817
818 device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
819 req_id);
820 counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
821
822 /* Trigger device reset */
823 rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
824 rx_ring->adapter->trigger_reset = true;
825
826 return (EFAULT);
827 }
828
829 /**
830 * ena_setup_rx_resources - allocate Rx resources (Descriptors)
831 * @adapter: network interface device structure
832 * @qid: queue index
833 *
834 * Returns 0 on success, otherwise on failure.
835 **/
836 static int
837 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
838 {
839 struct ena_que *que = &adapter->que[qid];
840 struct ena_ring *rx_ring = que->rx_ring;
841 int size, err, i;
842 #ifdef RSS
843 cpuset_t cpu_mask;
844 #endif
845
846 size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
847
848 /*
849 * Alloc extra element so in rx path
850 * we can always prefetch rx_info + 1
851 */
852 size += sizeof(struct ena_rx_buffer);
853
854 rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
855
856 size = sizeof(uint16_t) * rx_ring->ring_size;
857 rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
858
859 for (i = 0; i < rx_ring->ring_size; i++)
860 rx_ring->free_rx_ids[i] = i;
861
862 /* Reset RX statistics. */
863 ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
864 sizeof(rx_ring->rx_stats));
865
866 rx_ring->next_to_clean = 0;
867 rx_ring->next_to_use = 0;
868
869 /* ... and create the buffer DMA maps */
870 for (i = 0; i < rx_ring->ring_size; i++) {
871 err = bus_dmamap_create(adapter->sc_dmat,
872 MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
873 0, 0,
874 &(rx_ring->rx_buffer_info[i].map));
875 if (err != 0) {
876 ena_trace(ENA_ALERT,
877 "Unable to create Rx DMA map for buffer %d\n", i);
878 goto err_buf_info_unmap;
879 }
880 }
881
882 #ifdef LRO
883 /* Create LRO for the ring */
884 if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
885 int err = tcp_lro_init(&rx_ring->lro);
886 if (err != 0) {
887 device_printf(adapter->pdev,
888 "LRO[%d] Initialization failed!\n", qid);
889 } else {
890 ena_trace(ENA_INFO,
891 "RX Soft LRO[%d] Initialized\n", qid);
892 rx_ring->lro.ifp = adapter->ifp;
893 }
894 }
895 #endif
896
897 /* Allocate workqueues */
898 int rc = workqueue_create(&rx_ring->cmpl_tq, "ena_rx_comp",
899 ena_deferred_rx_cleanup, rx_ring, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
900 if (unlikely(rc != 0)) {
901 ena_trace(ENA_ALERT,
902 "Unable to create workqueue for RX completion task\n");
903 goto err_buf_info_unmap;
904 }
905
906 #if 0
907 /* RSS set cpu for thread */
908 #ifdef RSS
909 CPU_SETOF(que->cpu, &cpu_mask);
910 taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask,
911 "%s rx_ring cmpl (bucket %d)",
912 device_xname(adapter->pdev), que->cpu);
913 #else
914 taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET,
915 "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu);
916 #endif
917 #endif
918
919 return (0);
920
921 err_buf_info_unmap:
922 while (i--) {
923 bus_dmamap_destroy(adapter->sc_dmat,
924 rx_ring->rx_buffer_info[i].map);
925 }
926
927 free(rx_ring->free_rx_ids, M_DEVBUF);
928 rx_ring->free_rx_ids = NULL;
929 free(rx_ring->rx_buffer_info, M_DEVBUF);
930 rx_ring->rx_buffer_info = NULL;
931 return (ENOMEM);
932 }
933
934 /**
935 * ena_free_rx_resources - Free Rx Resources
936 * @adapter: network interface device structure
937 * @qid: queue index
938 *
939 * Free all receive software resources
940 **/
941 static void
942 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
943 {
944 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
945
946 workqueue_wait(rx_ring->cmpl_tq, &rx_ring->cmpl_task);
947 workqueue_destroy(rx_ring->cmpl_tq);
948 rx_ring->cmpl_tq = NULL;
949
950 /* Free buffer DMA maps, */
951 for (int i = 0; i < rx_ring->ring_size; i++) {
952 m_freem(rx_ring->rx_buffer_info[i].mbuf);
953 rx_ring->rx_buffer_info[i].mbuf = NULL;
954 bus_dmamap_unload(adapter->sc_dmat,
955 rx_ring->rx_buffer_info[i].map);
956 bus_dmamap_destroy(adapter->sc_dmat,
957 rx_ring->rx_buffer_info[i].map);
958 }
959
960 #ifdef LRO
961 /* free LRO resources, */
962 tcp_lro_free(&rx_ring->lro);
963 #endif
964
965 /* free allocated memory */
966 free(rx_ring->rx_buffer_info, M_DEVBUF);
967 rx_ring->rx_buffer_info = NULL;
968
969 free(rx_ring->free_rx_ids, M_DEVBUF);
970 rx_ring->free_rx_ids = NULL;
971 }
972
973 /**
974 * ena_setup_all_rx_resources - allocate all queues Rx resources
975 * @adapter: network interface device structure
976 *
977 * Returns 0 on success, otherwise on failure.
978 **/
979 static int
980 ena_setup_all_rx_resources(struct ena_adapter *adapter)
981 {
982 int i, rc = 0;
983
984 for (i = 0; i < adapter->num_queues; i++) {
985 rc = ena_setup_rx_resources(adapter, i);
986 if (rc != 0) {
987 device_printf(adapter->pdev,
988 "Allocation for Rx Queue %u failed\n", i);
989 goto err_setup_rx;
990 }
991 }
992 return (0);
993
994 err_setup_rx:
995 /* rewind the index freeing the rings as we go */
996 while (i--)
997 ena_free_rx_resources(adapter, i);
998 return (rc);
999 }
1000
1001 /**
1002 * ena_free_all_rx_resources - Free Rx resources for all queues
1003 * @adapter: network interface device structure
1004 *
1005 * Free all receive software resources
1006 **/
1007 static void
1008 ena_free_all_rx_resources(struct ena_adapter *adapter)
1009 {
1010 int i;
1011
1012 for (i = 0; i < adapter->num_queues; i++)
1013 ena_free_rx_resources(adapter, i);
1014 }
1015
1016 static inline int
1017 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
1018 struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
1019 {
1020 struct ena_com_buf *ena_buf;
1021 int error;
1022 int mlen;
1023
1024 /* if previous allocated frag is not used */
1025 if (unlikely(rx_info->mbuf != NULL))
1026 return (0);
1027
1028 /* Get mbuf using UMA allocator */
1029 rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES);
1030
1031 if (unlikely(rx_info->mbuf == NULL)) {
1032 counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1);
1033 rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1034 if (unlikely(rx_info->mbuf == NULL)) {
1035 counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1036 return (ENOMEM);
1037 }
1038 mlen = MCLBYTES;
1039 } else {
1040 mlen = MJUM16BYTES;
1041 }
1042 /* Set mbuf length*/
1043 rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
1044
1045 /* Map packets for DMA */
1046 ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1047 "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
1048 adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
1049 error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
1050 rx_info->mbuf, BUS_DMA_NOWAIT);
1051 if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
1052 ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
1053 "nsegs: %d\n", error, rx_info->map->dm_nsegs);
1054 counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
1055 goto exit;
1056
1057 }
1058
1059 bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
1060 rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1061
1062 ena_buf = &rx_info->ena_buf;
1063 ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
1064 ena_buf->len = mlen;
1065
1066 ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1067 "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
1068 rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
1069
1070 return (0);
1071
1072 exit:
1073 m_freem(rx_info->mbuf);
1074 rx_info->mbuf = NULL;
1075 return (EFAULT);
1076 }
1077
1078 static void
1079 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
1080 struct ena_rx_buffer *rx_info)
1081 {
1082
1083 if (rx_info->mbuf == NULL) {
1084 ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
1085 return;
1086 }
1087
1088 bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
1089 m_freem(rx_info->mbuf);
1090 rx_info->mbuf = NULL;
1091 }
1092
1093 /**
1094 * ena_refill_rx_bufs - Refills ring with descriptors
1095 * @rx_ring: the ring which we want to feed with free descriptors
1096 * @num: number of descriptors to refill
1097 * Refills the ring with newly allocated DMA-mapped mbufs for receiving
1098 **/
1099 static int
1100 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
1101 {
1102 struct ena_adapter *adapter = rx_ring->adapter;
1103 uint16_t next_to_use, req_id;
1104 uint32_t i;
1105 int rc;
1106
1107 ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
1108 rx_ring->qid);
1109
1110 next_to_use = rx_ring->next_to_use;
1111
1112 for (i = 0; i < num; i++) {
1113 struct ena_rx_buffer *rx_info;
1114
1115 ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
1116 "RX buffer - next to use: %d", next_to_use);
1117
1118 req_id = rx_ring->free_rx_ids[next_to_use];
1119 rc = validate_rx_req_id(rx_ring, req_id);
1120 if (unlikely(rc != 0))
1121 break;
1122
1123 rx_info = &rx_ring->rx_buffer_info[req_id];
1124
1125 rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
1126 if (unlikely(rc != 0)) {
1127 ena_trace(ENA_WARNING,
1128 "failed to alloc buffer for rx queue %d\n",
1129 rx_ring->qid);
1130 break;
1131 }
1132 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1133 &rx_info->ena_buf, req_id);
1134 if (unlikely(rc != 0)) {
1135 ena_trace(ENA_WARNING,
1136 "failed to add buffer for rx queue %d\n",
1137 rx_ring->qid);
1138 break;
1139 }
1140 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1141 rx_ring->ring_size);
1142 }
1143
1144 if (unlikely(i < num)) {
1145 counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
1146 ena_trace(ENA_WARNING,
1147 "refilled rx qid %d with only %d mbufs (from %d)\n",
1148 rx_ring->qid, i, num);
1149 }
1150
1151 if (likely(i != 0)) {
1152 wmb();
1153 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1154 }
1155 rx_ring->next_to_use = next_to_use;
1156 return (i);
1157 }
1158
1159 static void
1160 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
1161 {
1162 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1163 unsigned int i;
1164
1165 for (i = 0; i < rx_ring->ring_size; i++) {
1166 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1167
1168 if (rx_info->mbuf != NULL)
1169 ena_free_rx_mbuf(adapter, rx_ring, rx_info);
1170 }
1171 }
1172
1173 /**
1174 * ena_refill_all_rx_bufs - allocate all queues Rx buffers
1175 * @adapter: network interface device structure
1176 *
1177 */
1178 static void
1179 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1180 {
1181 struct ena_ring *rx_ring;
1182 int i, rc, bufs_num;
1183
1184 for (i = 0; i < adapter->num_queues; i++) {
1185 rx_ring = &adapter->rx_ring[i];
1186 bufs_num = rx_ring->ring_size - 1;
1187 rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1188
1189 if (unlikely(rc != bufs_num))
1190 ena_trace(ENA_WARNING, "refilling Queue %d failed. "
1191 "Allocated %d buffers from: %d\n", i, rc, bufs_num);
1192 }
1193 }
1194
1195 static void
1196 ena_free_all_rx_bufs(struct ena_adapter *adapter)
1197 {
1198 int i;
1199
1200 for (i = 0; i < adapter->num_queues; i++)
1201 ena_free_rx_bufs(adapter, i);
1202 }
1203
1204 /**
1205 * ena_free_tx_bufs - Free Tx Buffers per Queue
1206 * @adapter: network interface device structure
1207 * @qid: queue index
1208 **/
1209 static void
1210 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
1211 {
1212 bool print_once = true;
1213 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
1214
1215 ENA_RING_MTX_LOCK(tx_ring);
1216 for (int i = 0; i < tx_ring->ring_size; i++) {
1217 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1218
1219 if (tx_info->mbuf == NULL)
1220 continue;
1221
1222 if (print_once) {
1223 device_printf(adapter->pdev,
1224 "free uncompleted tx mbuf qid %d idx 0x%x",
1225 qid, i);
1226 print_once = false;
1227 } else {
1228 ena_trace(ENA_DBG,
1229 "free uncompleted tx mbuf qid %d idx 0x%x",
1230 qid, i);
1231 }
1232
1233 bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1234 m_free(tx_info->mbuf);
1235 tx_info->mbuf = NULL;
1236 }
1237 ENA_RING_MTX_UNLOCK(tx_ring);
1238 }
1239
1240 static void
1241 ena_free_all_tx_bufs(struct ena_adapter *adapter)
1242 {
1243
1244 for (int i = 0; i < adapter->num_queues; i++)
1245 ena_free_tx_bufs(adapter, i);
1246 }
1247
1248 static void
1249 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1250 {
1251 uint16_t ena_qid;
1252 int i;
1253
1254 for (i = 0; i < adapter->num_queues; i++) {
1255 ena_qid = ENA_IO_TXQ_IDX(i);
1256 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1257 }
1258 }
1259
1260 static void
1261 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1262 {
1263 uint16_t ena_qid;
1264 int i;
1265
1266 for (i = 0; i < adapter->num_queues; i++) {
1267 ena_qid = ENA_IO_RXQ_IDX(i);
1268 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1269 }
1270 }
1271
1272 static void
1273 ena_destroy_all_io_queues(struct ena_adapter *adapter)
1274 {
1275 ena_destroy_all_tx_queues(adapter);
1276 ena_destroy_all_rx_queues(adapter);
1277 }
1278
1279 static inline int
1280 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
1281 {
1282 struct ena_adapter *adapter = tx_ring->adapter;
1283 struct ena_tx_buffer *tx_info = NULL;
1284
1285 if (likely(req_id < tx_ring->ring_size)) {
1286 tx_info = &tx_ring->tx_buffer_info[req_id];
1287 if (tx_info->mbuf != NULL)
1288 return (0);
1289 }
1290
1291 if (tx_info->mbuf == NULL)
1292 device_printf(adapter->pdev,
1293 "tx_info doesn't have valid mbuf\n");
1294 else
1295 device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
1296
1297 counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
1298
1299 return (EFAULT);
1300 }
1301
1302 static int
1303 ena_create_io_queues(struct ena_adapter *adapter)
1304 {
1305 struct ena_com_dev *ena_dev = adapter->ena_dev;
1306 struct ena_com_create_io_ctx ctx;
1307 struct ena_ring *ring;
1308 uint16_t ena_qid;
1309 uint32_t msix_vector;
1310 int rc, i;
1311
1312 /* Create TX queues */
1313 for (i = 0; i < adapter->num_queues; i++) {
1314 msix_vector = ENA_IO_IRQ_IDX(i);
1315 ena_qid = ENA_IO_TXQ_IDX(i);
1316 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1317 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1318 ctx.queue_size = adapter->tx_ring_size;
1319 ctx.msix_vector = msix_vector;
1320 ctx.qid = ena_qid;
1321 rc = ena_com_create_io_queue(ena_dev, &ctx);
1322 if (rc != 0) {
1323 device_printf(adapter->pdev,
1324 "Failed to create io TX queue #%d rc: %d\n", i, rc);
1325 goto err_tx;
1326 }
1327 ring = &adapter->tx_ring[i];
1328 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1329 &ring->ena_com_io_sq,
1330 &ring->ena_com_io_cq);
1331 if (rc != 0) {
1332 device_printf(adapter->pdev,
1333 "Failed to get TX queue handlers. TX queue num"
1334 " %d rc: %d\n", i, rc);
1335 ena_com_destroy_io_queue(ena_dev, ena_qid);
1336 goto err_tx;
1337 }
1338 }
1339
1340 /* Create RX queues */
1341 for (i = 0; i < adapter->num_queues; i++) {
1342 msix_vector = ENA_IO_IRQ_IDX(i);
1343 ena_qid = ENA_IO_RXQ_IDX(i);
1344 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1345 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1346 ctx.queue_size = adapter->rx_ring_size;
1347 ctx.msix_vector = msix_vector;
1348 ctx.qid = ena_qid;
1349 rc = ena_com_create_io_queue(ena_dev, &ctx);
1350 if (unlikely(rc != 0)) {
1351 device_printf(adapter->pdev,
1352 "Failed to create io RX queue[%d] rc: %d\n", i, rc);
1353 goto err_rx;
1354 }
1355
1356 ring = &adapter->rx_ring[i];
1357 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1358 &ring->ena_com_io_sq,
1359 &ring->ena_com_io_cq);
1360 if (unlikely(rc != 0)) {
1361 device_printf(adapter->pdev,
1362 "Failed to get RX queue handlers. RX queue num"
1363 " %d rc: %d\n", i, rc);
1364 ena_com_destroy_io_queue(ena_dev, ena_qid);
1365 goto err_rx;
1366 }
1367 }
1368
1369 return (0);
1370
1371 err_rx:
1372 while (i--)
1373 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
1374 i = adapter->num_queues;
1375 err_tx:
1376 while (i--)
1377 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1378
1379 return (ENXIO);
1380 }
1381
1382 /**
1383 * ena_tx_cleanup - clear sent packets and corresponding descriptors
1384 * @tx_ring: ring for which we want to clean packets
1385 *
1386 * Once packets are sent, we ask the device in a loop for no longer used
1387 * descriptors. We find the related mbuf chain in a map (index in an array)
1388 * and free it, then update ring state.
1389 * This is performed in "endless" loop, updating ring pointers every
1390 * TX_COMMIT. The first check of free descriptor is performed before the actual
1391 * loop, then repeated at the loop end.
1392 **/
1393 static int
1394 ena_tx_cleanup(struct ena_ring *tx_ring)
1395 {
1396 struct ena_adapter *adapter;
1397 struct ena_com_io_cq* io_cq;
1398 uint16_t next_to_clean;
1399 uint16_t req_id;
1400 uint16_t ena_qid;
1401 unsigned int total_done = 0;
1402 int rc;
1403 int commit = TX_COMMIT;
1404 int budget = TX_BUDGET;
1405 int work_done;
1406
1407 adapter = tx_ring->que->adapter;
1408 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
1409 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1410 next_to_clean = tx_ring->next_to_clean;
1411
1412 do {
1413 struct ena_tx_buffer *tx_info;
1414 struct mbuf *mbuf;
1415
1416 rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
1417 if (unlikely(rc != 0))
1418 break;
1419
1420 rc = validate_tx_req_id(tx_ring, req_id);
1421 if (unlikely(rc != 0))
1422 break;
1423
1424 tx_info = &tx_ring->tx_buffer_info[req_id];
1425
1426 mbuf = tx_info->mbuf;
1427
1428 tx_info->mbuf = NULL;
1429 bintime_clear(&tx_info->timestamp);
1430
1431 if (likely(tx_info->num_of_bufs != 0)) {
1432 /* Map is no longer required */
1433 bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1434 }
1435
1436 ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
1437 tx_ring->qid, mbuf);
1438
1439 m_freem(mbuf);
1440
1441 total_done += tx_info->tx_descs;
1442
1443 tx_ring->free_tx_ids[next_to_clean] = req_id;
1444 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1445 tx_ring->ring_size);
1446
1447 if (unlikely(--commit == 0)) {
1448 commit = TX_COMMIT;
1449 /* update ring state every TX_COMMIT descriptor */
1450 tx_ring->next_to_clean = next_to_clean;
1451 ena_com_comp_ack(
1452 &adapter->ena_dev->io_sq_queues[ena_qid],
1453 total_done);
1454 ena_com_update_dev_comp_head(io_cq);
1455 total_done = 0;
1456 }
1457 } while (likely(--budget));
1458
1459 work_done = TX_BUDGET - budget;
1460
1461 ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
1462 tx_ring->qid, work_done);
1463
1464 /* If there is still something to commit update ring state */
1465 if (likely(commit != TX_COMMIT)) {
1466 tx_ring->next_to_clean = next_to_clean;
1467 ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
1468 total_done);
1469 ena_com_update_dev_comp_head(io_cq);
1470 }
1471
1472 if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
1473 workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
1474
1475 return (work_done);
1476 }
1477
1478 #if 0
1479 static void
1480 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1481 struct mbuf *mbuf)
1482 {
1483 struct ena_adapter *adapter = rx_ring->adapter;
1484
1485 if (likely(adapter->rss_support)) {
1486 mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
1487
1488 if (ena_rx_ctx->frag &&
1489 (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
1490 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1491 return;
1492 }
1493
1494 switch (ena_rx_ctx->l3_proto) {
1495 case ENA_ETH_IO_L3_PROTO_IPV4:
1496 switch (ena_rx_ctx->l4_proto) {
1497 case ENA_ETH_IO_L4_PROTO_TCP:
1498 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
1499 break;
1500 case ENA_ETH_IO_L4_PROTO_UDP:
1501 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
1502 break;
1503 default:
1504 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
1505 }
1506 break;
1507 case ENA_ETH_IO_L3_PROTO_IPV6:
1508 switch (ena_rx_ctx->l4_proto) {
1509 case ENA_ETH_IO_L4_PROTO_TCP:
1510 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
1511 break;
1512 case ENA_ETH_IO_L4_PROTO_UDP:
1513 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
1514 break;
1515 default:
1516 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
1517 }
1518 break;
1519 case ENA_ETH_IO_L3_PROTO_UNKNOWN:
1520 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1521 break;
1522 default:
1523 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1524 }
1525 } else {
1526 mbuf->m_pkthdr.flowid = rx_ring->qid;
1527 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1528 }
1529 }
1530 #endif
1531
1532 /**
1533 * ena_rx_mbuf - assemble mbuf from descriptors
1534 * @rx_ring: ring for which we want to clean packets
1535 * @ena_bufs: buffer info
1536 * @ena_rx_ctx: metadata for this packet(s)
1537 * @next_to_clean: ring pointer, will be updated only upon success
1538 *
1539 **/
1540 static struct mbuf*
1541 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
1542 struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
1543 {
1544 struct mbuf *mbuf;
1545 struct ena_rx_buffer *rx_info;
1546 struct ena_adapter *adapter;
1547 unsigned int descs = ena_rx_ctx->descs;
1548 uint16_t ntc, len, req_id, buf = 0;
1549
1550 ntc = *next_to_clean;
1551 adapter = rx_ring->adapter;
1552 rx_info = &rx_ring->rx_buffer_info[ntc];
1553
1554 if (unlikely(rx_info->mbuf == NULL)) {
1555 device_printf(adapter->pdev, "NULL mbuf in rx_info");
1556 return (NULL);
1557 }
1558
1559 len = ena_bufs[buf].len;
1560 req_id = ena_bufs[buf].req_id;
1561 rx_info = &rx_ring->rx_buffer_info[req_id];
1562
1563 ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
1564 rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
1565
1566 mbuf = rx_info->mbuf;
1567 KASSERT(mbuf->m_flags & M_PKTHDR);
1568 mbuf->m_pkthdr.len = len;
1569 mbuf->m_len = len;
1570 m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
1571
1572 /* Fill mbuf with hash key and it's interpretation for optimization */
1573 #if 0
1574 ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
1575 #endif
1576
1577 ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf %p, flags=0x%x, len: %d",
1578 mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
1579
1580 /* DMA address is not needed anymore, unmap it */
1581 bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1582
1583 rx_info->mbuf = NULL;
1584 rx_ring->free_rx_ids[ntc] = req_id;
1585 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1586
1587 /*
1588 * While we have more than 1 descriptors for one rcvd packet, append
1589 * other mbufs to the main one
1590 */
1591 while (--descs) {
1592 ++buf;
1593 len = ena_bufs[buf].len;
1594 req_id = ena_bufs[buf].req_id;
1595 rx_info = &rx_ring->rx_buffer_info[req_id];
1596
1597 if (unlikely(rx_info->mbuf == NULL)) {
1598 device_printf(adapter->pdev, "NULL mbuf in rx_info");
1599 /*
1600 * If one of the required mbufs was not allocated yet,
1601 * we can break there.
1602 * All earlier used descriptors will be reallocated
1603 * later and not used mbufs can be reused.
1604 * The next_to_clean pointer will not be updated in case
1605 * of an error, so caller should advance it manually
1606 * in error handling routine to keep it up to date
1607 * with hw ring.
1608 */
1609 m_freem(mbuf);
1610 return (NULL);
1611 }
1612
1613 if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
1614 counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1615 ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
1616 mbuf);
1617 }
1618
1619 ena_trace(ENA_DBG | ENA_RXPTH,
1620 "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
1621
1622 /* Free already appended mbuf, it won't be useful anymore */
1623 bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1624 m_freem(rx_info->mbuf);
1625 rx_info->mbuf = NULL;
1626
1627 rx_ring->free_rx_ids[ntc] = req_id;
1628 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1629 }
1630
1631 *next_to_clean = ntc;
1632
1633 return (mbuf);
1634 }
1635
1636 /**
1637 * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
1638 **/
1639 static inline void
1640 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1641 struct mbuf *mbuf)
1642 {
1643
1644 /* IPv4 */
1645 if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
1646 mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1647 if (ena_rx_ctx->l3_csum_err) {
1648 /* ipv4 checksum error */
1649 mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1650 counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1651 ena_trace(ENA_DBG, "RX IPv4 header checksum error");
1652 return;
1653 }
1654
1655 /* TCP/UDP */
1656 if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1657 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1658 mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
1659 if (ena_rx_ctx->l4_csum_err) {
1660 /* TCP/UDP checksum error */
1661 mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1662 counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1663 ena_trace(ENA_DBG, "RX L4 checksum error");
1664 }
1665 }
1666 }
1667 /* IPv6 */
1668 else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
1669 /* TCP/UDP */
1670 if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1671 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1672 mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
1673 if (ena_rx_ctx->l4_csum_err) {
1674 /* TCP/UDP checksum error */
1675 mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1676 counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1677 ena_trace(ENA_DBG, "RX L4 checksum error");
1678 }
1679 }
1680 }
1681 }
1682
1683 static void
1684 ena_deferred_rx_cleanup(struct work *wk, void *arg)
1685 {
1686 struct ena_ring *rx_ring = arg;
1687 int budget = CLEAN_BUDGET;
1688
1689 atomic_swap_uint(&rx_ring->task_pending, 0);
1690
1691 ENA_RING_MTX_LOCK(rx_ring);
1692 /*
1693 * If deferred task was executed, perform cleanup of all awaiting
1694 * descs (or until given budget is depleted to avoid infinite loop).
1695 */
1696 while (likely(budget--)) {
1697 if (ena_rx_cleanup(rx_ring) == 0)
1698 break;
1699 }
1700 ENA_RING_MTX_UNLOCK(rx_ring);
1701 }
1702
1703 /**
1704 * ena_rx_cleanup - handle rx irq
1705 * @arg: ring for which irq is being handled
1706 **/
1707 static int
1708 ena_rx_cleanup(struct ena_ring *rx_ring)
1709 {
1710 struct ena_adapter *adapter;
1711 struct mbuf *mbuf;
1712 struct ena_com_rx_ctx ena_rx_ctx;
1713 struct ena_com_io_cq* io_cq;
1714 struct ena_com_io_sq* io_sq;
1715 struct ifnet *ifp;
1716 uint16_t ena_qid;
1717 uint16_t next_to_clean;
1718 uint32_t refill_required;
1719 uint32_t refill_threshold;
1720 uint32_t do_if_input = 0;
1721 unsigned int qid;
1722 int rc, i;
1723 int budget = RX_BUDGET;
1724
1725 adapter = rx_ring->que->adapter;
1726 ifp = adapter->ifp;
1727 qid = rx_ring->que->id;
1728 ena_qid = ENA_IO_RXQ_IDX(qid);
1729 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1730 io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
1731 next_to_clean = rx_ring->next_to_clean;
1732
1733 ena_trace(ENA_DBG, "rx: qid %d", qid);
1734
1735 do {
1736 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1737 ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
1738 ena_rx_ctx.descs = 0;
1739 rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
1740
1741 if (unlikely(rc != 0))
1742 goto error;
1743
1744 if (unlikely(ena_rx_ctx.descs == 0))
1745 break;
1746
1747 ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
1748 "descs #: %d l3 proto %d l4 proto %d hash: %x",
1749 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1750 ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1751
1752 /* Receive mbuf from the ring */
1753 mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
1754 &ena_rx_ctx, &next_to_clean);
1755
1756 /* Exit if we failed to retrieve a buffer */
1757 if (unlikely(mbuf == NULL)) {
1758 for (i = 0; i < ena_rx_ctx.descs; ++i) {
1759 rx_ring->free_rx_ids[next_to_clean] =
1760 rx_ring->ena_bufs[i].req_id;
1761 next_to_clean =
1762 ENA_RX_RING_IDX_NEXT(next_to_clean,
1763 rx_ring->ring_size);
1764
1765 }
1766 break;
1767 }
1768
1769 if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
1770 ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
1771 ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
1772 ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
1773 ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
1774 ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
1775 }
1776
1777 counter_enter();
1778 counter_u64_add_protected(rx_ring->rx_stats.bytes,
1779 mbuf->m_pkthdr.len);
1780 counter_u64_add_protected(adapter->hw_stats.rx_bytes,
1781 mbuf->m_pkthdr.len);
1782 counter_exit();
1783 /*
1784 * LRO is only for IP/TCP packets and TCP checksum of the packet
1785 * should be computed by hardware.
1786 */
1787 do_if_input = 1;
1788 #ifdef LRO
1789 if (((ifp->if_capenable & IFCAP_LRO) != 0) &&
1790 ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
1791 (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
1792 /*
1793 * Send to the stack if:
1794 * - LRO not enabled, or
1795 * - no LRO resources, or
1796 * - lro enqueue fails
1797 */
1798 if ((rx_ring->lro.lro_cnt != 0) &&
1799 (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
1800 do_if_input = 0;
1801 }
1802 #endif
1803 if (do_if_input != 0) {
1804 ena_trace(ENA_DBG | ENA_RXPTH,
1805 "calling if_input() with mbuf %p", mbuf);
1806 if_percpuq_enqueue(ifp->if_percpuq, mbuf);
1807 }
1808
1809 counter_enter();
1810 counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
1811 counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
1812 counter_exit();
1813 } while (--budget);
1814
1815 rx_ring->next_to_clean = next_to_clean;
1816
1817 refill_required = ena_com_free_desc(io_sq);
1818 refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
1819
1820 if (refill_required > refill_threshold) {
1821 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1822 ena_refill_rx_bufs(rx_ring, refill_required);
1823 }
1824
1825 #ifdef LRO
1826 tcp_lro_flush_all(&rx_ring->lro);
1827 #endif
1828
1829 return (RX_BUDGET - budget);
1830
1831 error:
1832 counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
1833 return (RX_BUDGET - budget);
1834 }
1835
1836 /*********************************************************************
1837 *
1838 * MSIX & Interrupt Service routine
1839 *
1840 **********************************************************************/
1841
1842 /**
1843 * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
1844 * @arg: interrupt number
1845 **/
1846 static int
1847 ena_intr_msix_mgmnt(void *arg)
1848 {
1849 struct ena_adapter *adapter = (struct ena_adapter *)arg;
1850
1851 ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1852 if (likely(adapter->running))
1853 ena_com_aenq_intr_handler(adapter->ena_dev, arg);
1854
1855 return 1;
1856 }
1857
1858 /**
1859 * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
1860 * @arg: interrupt number
1861 **/
1862 static int
1863 ena_handle_msix(void *arg)
1864 {
1865 struct ena_que *que = arg;
1866 struct ena_adapter *adapter = que->adapter;
1867 struct ifnet *ifp = adapter->ifp;
1868 struct ena_ring *tx_ring;
1869 struct ena_ring *rx_ring;
1870 struct ena_com_io_cq* io_cq;
1871 struct ena_eth_io_intr_reg intr_reg;
1872 int qid, ena_qid;
1873 int txc, rxc, i;
1874
1875 if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1876 return 0;
1877
1878 ena_trace(ENA_DBG, "MSI-X TX/RX routine");
1879
1880 tx_ring = que->tx_ring;
1881 rx_ring = que->rx_ring;
1882 qid = que->id;
1883 ena_qid = ENA_IO_TXQ_IDX(qid);
1884 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1885
1886 for (i = 0; i < CLEAN_BUDGET; ++i) {
1887 /*
1888 * If lock cannot be acquired, then deferred cleanup task was
1889 * being executed and rx ring is being cleaned up in
1890 * another thread.
1891 */
1892 if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) {
1893 rxc = ena_rx_cleanup(rx_ring);
1894 ENA_RING_MTX_UNLOCK(rx_ring);
1895 } else {
1896 rxc = 0;
1897 }
1898
1899 /* Protection from calling ena_tx_cleanup from ena_start_xmit */
1900 ENA_RING_MTX_LOCK(tx_ring);
1901 txc = ena_tx_cleanup(tx_ring);
1902 ENA_RING_MTX_UNLOCK(tx_ring);
1903
1904 if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1905 return 0;
1906
1907 if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
1908 break;
1909 }
1910
1911 /* Signal that work is done and unmask interrupt */
1912 ena_com_update_intr_reg(&intr_reg,
1913 RX_IRQ_INTERVAL,
1914 TX_IRQ_INTERVAL,
1915 true);
1916 ena_com_unmask_intr(io_cq, &intr_reg);
1917
1918 return 1;
1919 }
1920
1921 static int
1922 ena_enable_msix(struct ena_adapter *adapter)
1923 {
1924 int msix_req;
1925 int counts[PCI_INTR_TYPE_SIZE];
1926 int max_type;
1927
1928 /* Reserved the max msix vectors we might need */
1929 msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
1930
1931 counts[PCI_INTR_TYPE_INTX] = 0;
1932 counts[PCI_INTR_TYPE_MSI] = 0;
1933 counts[PCI_INTR_TYPE_MSIX] = msix_req;
1934 max_type = PCI_INTR_TYPE_MSIX;
1935
1936 if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
1937 max_type) != 0) {
1938 aprint_error_dev(adapter->pdev,
1939 "failed to allocate interrupt\n");
1940 return ENOSPC;
1941 }
1942
1943 adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
1944
1945 if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
1946 device_printf(adapter->pdev,
1947 "Enable only %d MSI-x (out of %d), reduce "
1948 "the number of queues\n", adapter->sc_nintrs, msix_req);
1949 adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
1950 }
1951
1952 return 0;
1953 }
1954
1955 #if 0
1956 static void
1957 ena_setup_io_intr(struct ena_adapter *adapter)
1958 {
1959 static int last_bind_cpu = -1;
1960 int irq_idx;
1961
1962 for (int i = 0; i < adapter->num_queues; i++) {
1963 irq_idx = ENA_IO_IRQ_IDX(i);
1964
1965 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1966 "%s-TxRx-%d", device_xname(adapter->pdev), i);
1967 adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
1968 adapter->irq_tbl[irq_idx].data = &adapter->que[i];
1969 adapter->irq_tbl[irq_idx].vector =
1970 adapter->msix_entries[irq_idx].vector;
1971 ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
1972 adapter->msix_entries[irq_idx].vector);
1973 #ifdef RSS
1974 adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1975 rss_getcpu(i % rss_getnumbuckets());
1976 #else
1977 /*
1978 * We still want to bind rings to the corresponding cpu
1979 * using something similar to the RSS round-robin technique.
1980 */
1981 if (unlikely(last_bind_cpu < 0))
1982 last_bind_cpu = CPU_FIRST();
1983 adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
1984 last_bind_cpu;
1985 last_bind_cpu = CPU_NEXT(last_bind_cpu);
1986 #endif
1987 }
1988 }
1989 #endif
1990
1991 static int
1992 ena_request_mgmnt_irq(struct ena_adapter *adapter)
1993 {
1994 const char *intrstr;
1995 char intrbuf[PCI_INTRSTR_LEN];
1996 char intr_xname[INTRDEVNAMEBUF];
1997 pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
1998 const int irq_slot = ENA_MGMNT_IRQ_IDX;
1999
2000 KASSERT(adapter->sc_intrs != NULL);
2001 KASSERT(adapter->sc_ihs[irq_slot] == NULL);
2002
2003 snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
2004 device_xname(adapter->pdev));
2005 intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
2006 intrbuf, sizeof(intrbuf));
2007
2008 adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
2009 pc, adapter->sc_intrs[irq_slot],
2010 IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
2011
2012 if (adapter->sc_ihs[irq_slot] == NULL) {
2013 device_printf(adapter->pdev, "failed to register "
2014 "interrupt handler for MGMNT irq %s\n",
2015 intrstr);
2016 return ENOMEM;
2017 }
2018
2019 aprint_normal_dev(adapter->pdev,
2020 "for MGMNT interrupting at %s\n", intrstr);
2021
2022 return 0;
2023 }
2024
2025 static int
2026 ena_request_io_irq(struct ena_adapter *adapter)
2027 {
2028 const char *intrstr;
2029 char intrbuf[PCI_INTRSTR_LEN];
2030 char intr_xname[INTRDEVNAMEBUF];
2031 pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
2032 const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2033 void *vih;
2034 kcpuset_t *affinity;
2035 int i;
2036
2037 KASSERT(adapter->sc_intrs != NULL);
2038
2039 kcpuset_create(&affinity, false);
2040
2041 for (i = 0; i < adapter->num_queues; i++) {
2042 int irq_slot = i + irq_off;
2043 int affinity_to = (irq_slot) % ncpu;
2044
2045 KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
2046 KASSERT(adapter->sc_ihs[irq_slot] == NULL);
2047
2048 snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
2049 device_xname(adapter->pdev), i);
2050 intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
2051 intrbuf, sizeof(intrbuf));
2052
2053 vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
2054 adapter->sc_intrs[irq_slot], IPL_NET,
2055 ena_handle_msix, &adapter->que[i], intr_xname);
2056
2057 if (adapter->sc_ihs[ENA_MGMNT_IRQ_IDX] == NULL) {
2058 device_printf(adapter->pdev, "failed to register "
2059 "interrupt handler for IO queue %d irq %s\n",
2060 i, intrstr);
2061 goto err;
2062 }
2063
2064 kcpuset_zero(affinity);
2065 /* Round-robin affinity */
2066 kcpuset_set(affinity, affinity_to);
2067 int error = interrupt_distribute(vih, affinity, NULL);
2068 if (error == 0) {
2069 aprint_normal_dev(adapter->pdev,
2070 "for IO queue %d interrupting at %s"
2071 " affinity to %u\n", i, intrstr, affinity_to);
2072 } else {
2073 aprint_normal_dev(adapter->pdev,
2074 "for IO queue %d interrupting at %s\n", i, intrstr);
2075 }
2076
2077 adapter->sc_ihs[irq_slot] = vih;
2078
2079 #ifdef RSS
2080 ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
2081 i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
2082 #else
2083 ena_trace(ENA_INFO, "queue %d - cpu %d\n",
2084 i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
2085 #endif
2086 }
2087
2088 kcpuset_destroy(affinity);
2089 return 0;
2090
2091 err:
2092 kcpuset_destroy(affinity);
2093
2094 for (i--; i >= 0; i--) {
2095 int irq_slot __diagused = i + irq_off;
2096 KASSERT(adapter->sc_ihs[irq_slot] != NULL);
2097 pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[i]);
2098 adapter->sc_ihs[i] = NULL;
2099 }
2100
2101 return ENOSPC;
2102 }
2103
2104 static void
2105 ena_free_mgmnt_irq(struct ena_adapter *adapter)
2106 {
2107 const int irq_slot = ENA_MGMNT_IRQ_IDX;
2108
2109 if (adapter->sc_ihs[irq_slot]) {
2110 pci_intr_disestablish(adapter->sc_pa.pa_pc,
2111 adapter->sc_ihs[irq_slot]);
2112 adapter->sc_ihs[irq_slot] = NULL;
2113 }
2114 }
2115
2116 static void
2117 ena_free_io_irq(struct ena_adapter *adapter)
2118 {
2119 const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2120
2121 for (int i = 0; i < adapter->num_queues; i++) {
2122 int irq_slot = i + irq_off;
2123
2124 if (adapter->sc_ihs[irq_slot]) {
2125 pci_intr_disestablish(adapter->sc_pa.pa_pc,
2126 adapter->sc_ihs[i]);
2127 adapter->sc_ihs[i] = NULL;
2128 }
2129 }
2130 }
2131
2132 static void
2133 ena_free_irqs(struct ena_adapter* adapter)
2134 {
2135
2136 ena_free_io_irq(adapter);
2137 ena_free_mgmnt_irq(adapter);
2138 ena_disable_msix(adapter);
2139 }
2140
2141 static void
2142 ena_disable_msix(struct ena_adapter *adapter)
2143 {
2144 pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
2145 adapter->sc_nintrs);
2146 }
2147
2148 static void
2149 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
2150 {
2151 struct ena_com_io_cq* io_cq;
2152 struct ena_eth_io_intr_reg intr_reg;
2153 uint16_t ena_qid;
2154 int i;
2155
2156 /* Unmask interrupts for all queues */
2157 for (i = 0; i < adapter->num_queues; i++) {
2158 ena_qid = ENA_IO_TXQ_IDX(i);
2159 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
2160 ena_com_update_intr_reg(&intr_reg, 0, 0, true);
2161 ena_com_unmask_intr(io_cq, &intr_reg);
2162 }
2163 }
2164
2165 /* Configure the Rx forwarding */
2166 static int
2167 ena_rss_configure(struct ena_adapter *adapter)
2168 {
2169 struct ena_com_dev *ena_dev = adapter->ena_dev;
2170 int rc;
2171
2172 /* Set indirect table */
2173 rc = ena_com_indirect_table_set(ena_dev);
2174 if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2175 return (rc);
2176
2177 /* Configure hash function (if supported) */
2178 rc = ena_com_set_hash_function(ena_dev);
2179 if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2180 return (rc);
2181
2182 /* Configure hash inputs (if supported) */
2183 rc = ena_com_set_hash_ctrl(ena_dev);
2184 if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2185 return (rc);
2186
2187 return (0);
2188 }
2189
2190 static int
2191 ena_up_complete(struct ena_adapter *adapter)
2192 {
2193 int rc;
2194
2195 if (likely(adapter->rss_support)) {
2196 rc = ena_rss_configure(adapter);
2197 if (rc != 0)
2198 return (rc);
2199 }
2200
2201 rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
2202 if (unlikely(rc != 0))
2203 return (rc);
2204
2205 ena_refill_all_rx_bufs(adapter);
2206 ena_reset_counters((struct evcnt *)&adapter->hw_stats,
2207 sizeof(adapter->hw_stats));
2208
2209 return (0);
2210 }
2211
2212 static int
2213 ena_up(struct ena_adapter *adapter)
2214 {
2215 int rc = 0;
2216
2217 #if 0
2218 if (unlikely(device_is_attached(adapter->pdev) == 0)) {
2219 device_printf(adapter->pdev, "device is not attached!\n");
2220 return (ENXIO);
2221 }
2222 #endif
2223
2224 if (unlikely(!adapter->running)) {
2225 device_printf(adapter->pdev, "device is not running!\n");
2226 return (ENXIO);
2227 }
2228
2229 if (!adapter->up) {
2230 device_printf(adapter->pdev, "device is going UP\n");
2231
2232 /* setup interrupts for IO queues */
2233 rc = ena_request_io_irq(adapter);
2234 if (unlikely(rc != 0)) {
2235 ena_trace(ENA_ALERT, "err_req_irq");
2236 goto err_req_irq;
2237 }
2238
2239 /* allocate transmit descriptors */
2240 rc = ena_setup_all_tx_resources(adapter);
2241 if (unlikely(rc != 0)) {
2242 ena_trace(ENA_ALERT, "err_setup_tx");
2243 goto err_setup_tx;
2244 }
2245
2246 /* allocate receive descriptors */
2247 rc = ena_setup_all_rx_resources(adapter);
2248 if (unlikely(rc != 0)) {
2249 ena_trace(ENA_ALERT, "err_setup_rx");
2250 goto err_setup_rx;
2251 }
2252
2253 /* create IO queues for Rx & Tx */
2254 rc = ena_create_io_queues(adapter);
2255 if (unlikely(rc != 0)) {
2256 ena_trace(ENA_ALERT,
2257 "create IO queues failed");
2258 goto err_io_que;
2259 }
2260
2261 if (unlikely(adapter->link_status))
2262 if_link_state_change(adapter->ifp, LINK_STATE_UP);
2263
2264 rc = ena_up_complete(adapter);
2265 if (unlikely(rc != 0))
2266 goto err_up_complete;
2267
2268 counter_u64_add(adapter->dev_stats.interface_up, 1);
2269
2270 ena_update_hwassist(adapter);
2271
2272 if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
2273 IFF_OACTIVE);
2274
2275 callout_schedule(&adapter->timer_service, hz);
2276
2277 adapter->up = true;
2278
2279 ena_unmask_all_io_irqs(adapter);
2280 }
2281
2282 return (0);
2283
2284 err_up_complete:
2285 ena_destroy_all_io_queues(adapter);
2286 err_io_que:
2287 ena_free_all_rx_resources(adapter);
2288 err_setup_rx:
2289 ena_free_all_tx_resources(adapter);
2290 err_setup_tx:
2291 ena_free_io_irq(adapter);
2292 err_req_irq:
2293 return (rc);
2294 }
2295
2296 #if 0
2297 static uint64_t
2298 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
2299 {
2300 struct ena_adapter *adapter;
2301 struct ena_hw_stats *stats;
2302
2303 adapter = if_getsoftc(ifp);
2304 stats = &adapter->hw_stats;
2305
2306 switch (cnt) {
2307 case IFCOUNTER_IPACKETS:
2308 return (counter_u64_fetch(stats->rx_packets));
2309 case IFCOUNTER_OPACKETS:
2310 return (counter_u64_fetch(stats->tx_packets));
2311 case IFCOUNTER_IBYTES:
2312 return (counter_u64_fetch(stats->rx_bytes));
2313 case IFCOUNTER_OBYTES:
2314 return (counter_u64_fetch(stats->tx_bytes));
2315 case IFCOUNTER_IQDROPS:
2316 return (counter_u64_fetch(stats->rx_drops));
2317 default:
2318 return (if_get_counter_default(ifp, cnt));
2319 }
2320 }
2321 #endif
2322
2323 static int
2324 ena_media_change(struct ifnet *ifp)
2325 {
2326 /* Media Change is not supported by firmware */
2327 return (0);
2328 }
2329
2330 static void
2331 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2332 {
2333 struct ena_adapter *adapter = if_getsoftc(ifp);
2334 ena_trace(ENA_DBG, "enter");
2335
2336 mutex_enter(&adapter->global_mtx);
2337
2338 ifmr->ifm_status = IFM_AVALID;
2339 ifmr->ifm_active = IFM_ETHER;
2340
2341 if (!adapter->link_status) {
2342 mutex_exit(&adapter->global_mtx);
2343 ena_trace(ENA_INFO, "link_status = false");
2344 return;
2345 }
2346
2347 ifmr->ifm_status |= IFM_ACTIVE;
2348 ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2349
2350 mutex_exit(&adapter->global_mtx);
2351 }
2352
2353 static int
2354 ena_init(struct ifnet *ifp)
2355 {
2356 struct ena_adapter *adapter = if_getsoftc(ifp);
2357
2358 if (!adapter->up) {
2359 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2360 ena_up(adapter);
2361 rw_exit(&adapter->ioctl_sx);
2362 }
2363
2364 return 0;
2365 }
2366
2367 static int
2368 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
2369 {
2370 struct ena_adapter *adapter;
2371 struct ifreq *ifr;
2372 int rc;
2373
2374 adapter = ifp->if_softc;
2375 ifr = (struct ifreq *)data;
2376
2377 /*
2378 * Acquiring lock to prevent from running up and down routines parallel.
2379 */
2380 rc = 0;
2381 switch (command) {
2382 case SIOCSIFMTU:
2383 if (ifp->if_mtu == ifr->ifr_mtu)
2384 break;
2385 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2386 ena_down(adapter);
2387
2388 ena_change_mtu(ifp, ifr->ifr_mtu);
2389
2390 rc = ena_up(adapter);
2391 rw_exit(&adapter->ioctl_sx);
2392 break;
2393
2394 case SIOCSIFFLAGS:
2395 if ((ifp->if_flags & IFF_UP) != 0) {
2396 if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2397 if ((ifp->if_flags & (IFF_PROMISC |
2398 IFF_ALLMULTI)) != 0) {
2399 device_printf(adapter->pdev,
2400 "ioctl promisc/allmulti\n");
2401 }
2402 } else {
2403 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2404 rc = ena_up(adapter);
2405 rw_exit(&adapter->ioctl_sx);
2406 }
2407 } else {
2408 if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2409 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2410 ena_down(adapter);
2411 rw_exit(&adapter->ioctl_sx);
2412 }
2413 }
2414 break;
2415
2416 case SIOCADDMULTI:
2417 case SIOCDELMULTI:
2418 break;
2419
2420 case SIOCSIFCAP:
2421 {
2422 struct ifcapreq *ifcr = data;
2423 int reinit = 0;
2424
2425 if (ifcr->ifcr_capenable != ifp->if_capenable) {
2426 ifp->if_capenable = ifcr->ifcr_capenable;
2427 reinit = 1;
2428 }
2429
2430 if ((reinit != 0) &&
2431 ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
2432 rw_enter(&adapter->ioctl_sx, RW_WRITER);
2433 ena_down(adapter);
2434 rc = ena_up(adapter);
2435 rw_exit(&adapter->ioctl_sx);
2436 }
2437 }
2438
2439 break;
2440 default:
2441 rc = ether_ioctl(ifp, command, data);
2442 break;
2443 }
2444
2445 return (rc);
2446 }
2447
2448 static int
2449 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
2450 {
2451 int caps = 0;
2452
2453 if ((feat->offload.tx &
2454 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2455 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
2456 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
2457 caps |= IFCAP_CSUM_IPv4_Tx;
2458
2459 if ((feat->offload.tx &
2460 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
2461 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
2462 caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
2463
2464 if ((feat->offload.tx &
2465 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
2466 caps |= IFCAP_TSOv4;
2467
2468 if ((feat->offload.tx &
2469 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
2470 caps |= IFCAP_TSOv6;
2471
2472 if ((feat->offload.rx_supported &
2473 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
2474 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
2475 caps |= IFCAP_CSUM_IPv4_Rx;
2476
2477 if ((feat->offload.rx_supported &
2478 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
2479 caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
2480
2481 caps |= IFCAP_LRO;
2482
2483 return (caps);
2484 }
2485
2486 static void
2487 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
2488 {
2489
2490 host_info->supported_network_features[0] =
2491 (uint32_t)if_getcapabilities(ifp);
2492 }
2493
2494 static void
2495 ena_update_hwassist(struct ena_adapter *adapter)
2496 {
2497 struct ifnet *ifp = adapter->ifp;
2498 uint32_t feat = adapter->tx_offload_cap;
2499 int cap = if_getcapenable(ifp);
2500 int flags = 0;
2501
2502 if_clearhwassist(ifp);
2503
2504 if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2505 != 0) {
2506 if ((feat &
2507 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
2508 flags |= M_CSUM_IPv4;
2509 if ((feat &
2510 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2511 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
2512 flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
2513 }
2514
2515 if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
2516 flags |= M_CSUM_TCPv6;
2517
2518 if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
2519 flags |= M_CSUM_UDPv6;
2520
2521 if ((cap & IFCAP_TSOv4) != 0)
2522 flags |= M_CSUM_TSOv4;
2523
2524 if ((cap & IFCAP_TSOv6) != 0)
2525 flags |= M_CSUM_TSOv6;
2526
2527 if_sethwassistbits(ifp, flags, 0);
2528 }
2529
2530 static int
2531 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
2532 struct ena_com_dev_get_features_ctx *feat)
2533 {
2534 struct ifnet *ifp;
2535 int caps = 0;
2536
2537 ifp = adapter->ifp = &adapter->sc_ec.ec_if;
2538 if (unlikely(ifp == NULL)) {
2539 ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
2540 return (ENXIO);
2541 }
2542 if_initname(ifp, "ena", device_unit(pdev));
2543 if_setdev(ifp, pdev);
2544 if_setsoftc(ifp, adapter);
2545
2546 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2547 if_setinitfn(ifp, ena_init);
2548 if_settransmitfn(ifp, ena_mq_start);
2549 #if 0
2550 if_setqflushfn(ifp, ena_qflush);
2551 #endif
2552 if_setioctlfn(ifp, ena_ioctl);
2553 #if 0
2554 if_setgetcounterfn(ifp, ena_get_counter);
2555 #endif
2556
2557 if_setsendqlen(ifp, adapter->tx_ring_size);
2558 if_setsendqready(ifp);
2559 if_setmtu(ifp, ETHERMTU);
2560 if_setbaudrate(ifp, 0);
2561 /* Zeroize capabilities... */
2562 if_setcapabilities(ifp, 0);
2563 if_setcapenable(ifp, 0);
2564 /* check hardware support */
2565 caps = ena_get_dev_offloads(feat);
2566 /* ... and set them */
2567 if_setcapabilitiesbit(ifp, caps, 0);
2568 adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2569
2570 #if 0
2571 /* TSO parameters */
2572 /* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
2573 ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
2574 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
2575 ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
2576 ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
2577 #endif
2578
2579 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2580 if_setcapenable(ifp, if_getcapabilities(ifp));
2581
2582 /*
2583 * Specify the media types supported by this adapter and register
2584 * callbacks to update media and link information
2585 */
2586 adapter->sc_ec.ec_ifmedia = &adapter->media;
2587 ifmedia_init(&adapter->media, IFM_IMASK,
2588 ena_media_change, ena_media_status);
2589 ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2590 ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2591
2592 if_attach(ifp);
2593 if_deferred_start_init(ifp, NULL);
2594
2595 ether_ifattach(ifp, adapter->mac_addr);
2596
2597 return (0);
2598 }
2599
2600 static void
2601 ena_down(struct ena_adapter *adapter)
2602 {
2603 int rc;
2604
2605 if (adapter->up) {
2606 device_printf(adapter->pdev, "device is going DOWN\n");
2607
2608 callout_halt(&adapter->timer_service, &adapter->global_mtx);
2609
2610 adapter->up = false;
2611 if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
2612 IFF_RUNNING);
2613
2614 ena_free_io_irq(adapter);
2615
2616 if (adapter->trigger_reset) {
2617 rc = ena_com_dev_reset(adapter->ena_dev,
2618 adapter->reset_reason);
2619 if (unlikely(rc != 0))
2620 device_printf(adapter->pdev,
2621 "Device reset failed\n");
2622 }
2623
2624 ena_destroy_all_io_queues(adapter);
2625
2626 ena_free_all_tx_bufs(adapter);
2627 ena_free_all_rx_bufs(adapter);
2628 ena_free_all_tx_resources(adapter);
2629 ena_free_all_rx_resources(adapter);
2630
2631 counter_u64_add(adapter->dev_stats.interface_down, 1);
2632 }
2633 }
2634
2635 static void
2636 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
2637 {
2638 struct ena_com_tx_meta *ena_meta;
2639 struct ether_vlan_header *eh;
2640 u32 mss;
2641 bool offload;
2642 uint16_t etype;
2643 int ehdrlen;
2644 struct ip *ip;
2645 int iphlen;
2646 struct tcphdr *th;
2647
2648 offload = false;
2649 ena_meta = &ena_tx_ctx->ena_meta;
2650
2651 #if 0
2652 u32 mss = mbuf->m_pkthdr.tso_segsz;
2653
2654 if (mss != 0)
2655 offload = true;
2656 #else
2657 mss = mbuf->m_pkthdr.len; /* XXX don't have tso_segsz */
2658 #endif
2659
2660 if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
2661 offload = true;
2662
2663 if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
2664 offload = true;
2665
2666 if (!offload) {
2667 ena_tx_ctx->meta_valid = 0;
2668 return;
2669 }
2670
2671 /* Determine where frame payload starts. */
2672 eh = mtod(mbuf, struct ether_vlan_header *);
2673 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2674 etype = ntohs(eh->evl_proto);
2675 ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2676 } else {
2677 etype = htons(eh->evl_encap_proto);
2678 ehdrlen = ETHER_HDR_LEN;
2679 }
2680
2681 ip = (struct ip *)(mbuf->m_data + ehdrlen);
2682 iphlen = ip->ip_hl << 2;
2683 th = (struct tcphdr *)((vaddr_t)ip + iphlen);
2684
2685 if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
2686 ena_tx_ctx->l3_csum_enable = 1;
2687 }
2688 if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
2689 ena_tx_ctx->tso_enable = 1;
2690 ena_meta->l4_hdr_len = (th->th_off);
2691 }
2692
2693 switch (etype) {
2694 case ETHERTYPE_IP:
2695 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2696 if ((ip->ip_off & htons(IP_DF)) != 0)
2697 ena_tx_ctx->df = 1;
2698 break;
2699 case ETHERTYPE_IPV6:
2700 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2701
2702 default:
2703 break;
2704 }
2705
2706 if (ip->ip_p == IPPROTO_TCP) {
2707 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2708 if ((mbuf->m_pkthdr.csum_flags &
2709 (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
2710 ena_tx_ctx->l4_csum_enable = 1;
2711 else
2712 ena_tx_ctx->l4_csum_enable = 0;
2713 } else if (ip->ip_p == IPPROTO_UDP) {
2714 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2715 if ((mbuf->m_pkthdr.csum_flags &
2716 (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2717 ena_tx_ctx->l4_csum_enable = 1;
2718 else
2719 ena_tx_ctx->l4_csum_enable = 0;
2720 } else {
2721 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
2722 ena_tx_ctx->l4_csum_enable = 0;
2723 }
2724
2725 ena_meta->mss = mss;
2726 ena_meta->l3_hdr_len = iphlen;
2727 ena_meta->l3_hdr_offset = ehdrlen;
2728 ena_tx_ctx->meta_valid = 1;
2729 }
2730
2731 static int
2732 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2733 {
2734 struct ena_adapter *adapter;
2735 struct mbuf *collapsed_mbuf;
2736 int num_frags;
2737
2738 adapter = tx_ring->adapter;
2739 num_frags = ena_mbuf_count(*mbuf);
2740
2741 /* One segment must be reserved for configuration descriptor. */
2742 if (num_frags < adapter->max_tx_sgl_size)
2743 return (0);
2744 counter_u64_add(tx_ring->tx_stats.collapse, 1);
2745
2746 collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
2747 adapter->max_tx_sgl_size - 1);
2748 if (unlikely(collapsed_mbuf == NULL)) {
2749 counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
2750 return (ENOMEM);
2751 }
2752
2753 /* If mbuf was collapsed succesfully, original mbuf is released. */
2754 *mbuf = collapsed_mbuf;
2755
2756 return (0);
2757 }
2758
2759 static int
2760 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2761 {
2762 struct ena_adapter *adapter;
2763 struct ena_tx_buffer *tx_info;
2764 struct ena_com_tx_ctx ena_tx_ctx;
2765 struct ena_com_dev *ena_dev;
2766 struct ena_com_buf *ena_buf;
2767 struct ena_com_io_sq* io_sq;
2768 void *push_hdr;
2769 uint16_t next_to_use;
2770 uint16_t req_id;
2771 uint16_t ena_qid;
2772 uint32_t header_len;
2773 int i, rc;
2774 int nb_hw_desc;
2775
2776 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2777 adapter = tx_ring->que->adapter;
2778 ena_dev = adapter->ena_dev;
2779 io_sq = &ena_dev->io_sq_queues[ena_qid];
2780
2781 rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
2782 if (unlikely(rc != 0)) {
2783 ena_trace(ENA_WARNING,
2784 "Failed to collapse mbuf! err: %d", rc);
2785 return (rc);
2786 }
2787
2788 next_to_use = tx_ring->next_to_use;
2789 req_id = tx_ring->free_tx_ids[next_to_use];
2790 tx_info = &tx_ring->tx_buffer_info[req_id];
2791
2792 tx_info->mbuf = *mbuf;
2793 tx_info->num_of_bufs = 0;
2794
2795 ena_buf = tx_info->bufs;
2796
2797 ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
2798
2799 /*
2800 * header_len is just a hint for the device. Because FreeBSD is not
2801 * giving us information about packet header length and it is not
2802 * guaranteed that all packet headers will be in the 1st mbuf, setting
2803 * header_len to 0 is making the device ignore this value and resolve
2804 * header on it's own.
2805 */
2806 header_len = 0;
2807 push_hdr = NULL;
2808
2809 rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
2810 *mbuf, BUS_DMA_NOWAIT);
2811
2812 if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
2813 ena_trace(ENA_WARNING,
2814 "dmamap load failed! err: %d nsegs: %d", rc,
2815 tx_info->map->dm_nsegs);
2816 counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
2817 tx_info->mbuf = NULL;
2818 if (rc == ENOMEM)
2819 return (ENA_COM_NO_MEM);
2820 else
2821 return (ENA_COM_INVAL);
2822 }
2823
2824 for (i = 0; i < tx_info->map->dm_nsegs; i++) {
2825 ena_buf->len = tx_info->map->dm_segs[i].ds_len;
2826 ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
2827 ena_buf++;
2828 }
2829 tx_info->num_of_bufs = tx_info->map->dm_nsegs;
2830
2831 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2832 ena_tx_ctx.ena_bufs = tx_info->bufs;
2833 ena_tx_ctx.push_header = push_hdr;
2834 ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2835 ena_tx_ctx.req_id = req_id;
2836 ena_tx_ctx.header_len = header_len;
2837
2838 /* Set flags and meta data */
2839 ena_tx_csum(&ena_tx_ctx, *mbuf);
2840 /* Prepare the packet's descriptors and send them to device */
2841 rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
2842 if (unlikely(rc != 0)) {
2843 device_printf(adapter->pdev, "failed to prepare tx bufs\n");
2844 counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
2845 goto dma_error;
2846 }
2847
2848 counter_enter();
2849 counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
2850 counter_u64_add_protected(tx_ring->tx_stats.bytes,
2851 (*mbuf)->m_pkthdr.len);
2852
2853 counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
2854 counter_u64_add_protected(adapter->hw_stats.tx_bytes,
2855 (*mbuf)->m_pkthdr.len);
2856 counter_exit();
2857
2858 tx_info->tx_descs = nb_hw_desc;
2859 getbinuptime(&tx_info->timestamp);
2860 tx_info->print_once = true;
2861
2862 tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
2863 tx_ring->ring_size);
2864
2865 bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
2866 tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2867
2868 return (0);
2869
2870 dma_error:
2871 tx_info->mbuf = NULL;
2872 bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
2873
2874 return (rc);
2875 }
2876
2877 static void
2878 ena_start_xmit(struct ena_ring *tx_ring)
2879 {
2880 struct mbuf *mbuf;
2881 struct ena_adapter *adapter = tx_ring->adapter;
2882 struct ena_com_io_sq* io_sq;
2883 int ena_qid;
2884 int acum_pkts = 0;
2885 int ret = 0;
2886
2887 if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2888 return;
2889
2890 if (unlikely(!adapter->link_status))
2891 return;
2892
2893 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2894 io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
2895
2896 while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
2897 ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
2898 " header csum flags %#jx",
2899 mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
2900
2901 if (unlikely(!ena_com_sq_have_enough_space(io_sq,
2902 ENA_TX_CLEANUP_THRESHOLD)))
2903 ena_tx_cleanup(tx_ring);
2904
2905 if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
2906 if (ret == ENA_COM_NO_MEM) {
2907 drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2908 } else if (ret == ENA_COM_NO_SPACE) {
2909 drbr_putback(adapter->ifp, tx_ring->br, mbuf);
2910 } else {
2911 m_freem(mbuf);
2912 drbr_advance(adapter->ifp, tx_ring->br);
2913 }
2914
2915 break;
2916 }
2917
2918 drbr_advance(adapter->ifp, tx_ring->br);
2919
2920 if (unlikely((if_getdrvflags(adapter->ifp) &
2921 IFF_RUNNING) == 0))
2922 return;
2923
2924 acum_pkts++;
2925
2926 /*
2927 * If there's a BPF listener, bounce a copy of this frame
2928 * to him.
2929 */
2930 bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
2931
2932 if (unlikely(acum_pkts == DB_THRESHOLD)) {
2933 acum_pkts = 0;
2934 wmb();
2935 /* Trigger the dma engine */
2936 ena_com_write_sq_doorbell(io_sq);
2937 counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2938 }
2939
2940 }
2941
2942 if (likely(acum_pkts != 0)) {
2943 wmb();
2944 /* Trigger the dma engine */
2945 ena_com_write_sq_doorbell(io_sq);
2946 counter_u64_add(tx_ring->tx_stats.doorbells, 1);
2947 }
2948
2949 if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
2950 ena_tx_cleanup(tx_ring);
2951 }
2952
2953 static void
2954 ena_deferred_mq_start(struct work *wk, void *arg)
2955 {
2956 struct ena_ring *tx_ring = (struct ena_ring *)arg;
2957 struct ifnet *ifp = tx_ring->adapter->ifp;
2958
2959 atomic_swap_uint(&tx_ring->task_pending, 0);
2960
2961 while (!drbr_empty(ifp, tx_ring->br) &&
2962 (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
2963 ENA_RING_MTX_LOCK(tx_ring);
2964 ena_start_xmit(tx_ring);
2965 ENA_RING_MTX_UNLOCK(tx_ring);
2966 }
2967 }
2968
2969 static int
2970 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
2971 {
2972 struct ena_adapter *adapter = ifp->if_softc;
2973 struct ena_ring *tx_ring;
2974 int ret, is_drbr_empty;
2975 uint32_t i;
2976
2977 if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2978 return (ENODEV);
2979
2980 /* Which queue to use */
2981 /*
2982 * If everything is setup correctly, it should be the
2983 * same bucket that the current CPU we're on is.
2984 * It should improve performance.
2985 */
2986 #if 0
2987 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
2988 #ifdef RSS
2989 if (rss_hash2bucket(m->m_pkthdr.flowid,
2990 M_HASHTYPE_GET(m), &i) == 0) {
2991 i = i % adapter->num_queues;
2992
2993 } else
2994 #endif
2995 {
2996 i = m->m_pkthdr.flowid % adapter->num_queues;
2997 }
2998 } else {
2999 #endif
3000 i = cpu_index(curcpu()) % adapter->num_queues;
3001 #if 0
3002 }
3003 #endif
3004 tx_ring = &adapter->tx_ring[i];
3005
3006 /* Check if drbr is empty before putting packet */
3007 is_drbr_empty = drbr_empty(ifp, tx_ring->br);
3008 ret = drbr_enqueue(ifp, tx_ring->br, m);
3009 if (unlikely(ret != 0)) {
3010 if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
3011 workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
3012 curcpu());
3013 return (ret);
3014 }
3015
3016 if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
3017 ena_start_xmit(tx_ring);
3018 ENA_RING_MTX_UNLOCK(tx_ring);
3019 } else {
3020 if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
3021 workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
3022 curcpu());
3023 }
3024
3025 return (0);
3026 }
3027
3028 #if 0
3029 static void
3030 ena_qflush(struct ifnet *ifp)
3031 {
3032 struct ena_adapter *adapter = ifp->if_softc;
3033 struct ena_ring *tx_ring = adapter->tx_ring;
3034 int i;
3035
3036 for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
3037 if (!drbr_empty(ifp, tx_ring->br)) {
3038 ENA_RING_MTX_LOCK(tx_ring);
3039 drbr_flush(ifp, tx_ring->br);
3040 ENA_RING_MTX_UNLOCK(tx_ring);
3041 }
3042
3043 if_qflush(ifp);
3044 }
3045 #endif
3046
3047 static int
3048 ena_calc_io_queue_num(struct pci_attach_args *pa,
3049 struct ena_adapter *adapter,
3050 struct ena_com_dev_get_features_ctx *get_feat_ctx)
3051 {
3052 int io_sq_num, io_cq_num, io_queue_num;
3053
3054 io_sq_num = get_feat_ctx->max_queues.max_sq_num;
3055 io_cq_num = get_feat_ctx->max_queues.max_cq_num;
3056
3057 io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
3058 io_queue_num = min_t(int, io_queue_num, io_sq_num);
3059 io_queue_num = min_t(int, io_queue_num, io_cq_num);
3060 /* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */
3061 io_queue_num = min_t(int, io_queue_num,
3062 pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
3063 #ifdef RSS
3064 io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets());
3065 #endif
3066
3067 return (io_queue_num);
3068 }
3069
3070 static int
3071 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
3072 uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
3073 {
3074 uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
3075 uint32_t v;
3076 uint32_t q;
3077
3078 queue_size = min_t(uint32_t, queue_size,
3079 feat->max_queues.max_cq_depth);
3080 queue_size = min_t(uint32_t, queue_size,
3081 feat->max_queues.max_sq_depth);
3082
3083 /* round down to the nearest power of 2 */
3084 v = queue_size;
3085 while (v != 0) {
3086 if (powerof2(queue_size) != 0)
3087 break;
3088 v /= 2;
3089 q = rounddown2(queue_size, v);
3090 if (q != 0) {
3091 queue_size = q;
3092 break;
3093 }
3094 }
3095
3096 if (unlikely(queue_size == 0)) {
3097 device_printf(adapter->pdev, "Invalid queue size\n");
3098 return (ENA_COM_FAULT);
3099 }
3100
3101 *max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3102 feat->max_queues.max_packet_tx_descs);
3103 *max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3104 feat->max_queues.max_packet_rx_descs);
3105
3106 return (queue_size);
3107 }
3108
3109 #if 0
3110 static int
3111 ena_rss_init_default(struct ena_adapter *adapter)
3112 {
3113 struct ena_com_dev *ena_dev = adapter->ena_dev;
3114 device_t dev = adapter->pdev;
3115 int qid, rc, i;
3116
3117 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3118 if (unlikely(rc != 0)) {
3119 device_printf(dev, "Cannot init indirect table\n");
3120 return (rc);
3121 }
3122
3123 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3124 #ifdef RSS
3125 qid = rss_get_indirection_to_bucket(i);
3126 qid = qid % adapter->num_queues;
3127 #else
3128 qid = i % adapter->num_queues;
3129 #endif
3130 rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3131 ENA_IO_RXQ_IDX(qid));
3132 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3133 device_printf(dev, "Cannot fill indirect table\n");
3134 goto err_rss_destroy;
3135 }
3136 }
3137
3138 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
3139 ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
3140 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3141 device_printf(dev, "Cannot fill hash function\n");
3142 goto err_rss_destroy;
3143 }
3144
3145 rc = ena_com_set_default_hash_ctrl(ena_dev);
3146 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3147 device_printf(dev, "Cannot fill hash control\n");
3148 goto err_rss_destroy;
3149 }
3150
3151 return (0);
3152
3153 err_rss_destroy:
3154 ena_com_rss_destroy(ena_dev);
3155 return (rc);
3156 }
3157
3158 static void
3159 ena_rss_init_default_deferred(void *arg)
3160 {
3161 struct ena_adapter *adapter;
3162 devclass_t dc;
3163 int max;
3164 int rc;
3165
3166 dc = devclass_find("ena");
3167 if (unlikely(dc == NULL)) {
3168 ena_trace(ENA_ALERT, "No devclass ena\n");
3169 return;
3170 }
3171
3172 max = devclass_get_maxunit(dc);
3173 while (max-- >= 0) {
3174 adapter = devclass_get_softc(dc, max);
3175 if (adapter != NULL) {
3176 rc = ena_rss_init_default(adapter);
3177 adapter->rss_support = true;
3178 if (unlikely(rc != 0)) {
3179 device_printf(adapter->pdev,
3180 "WARNING: RSS was not properly initialized,"
3181 " it will affect bandwidth\n");
3182 adapter->rss_support = false;
3183 }
3184 }
3185 }
3186 }
3187 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL);
3188 #endif
3189
3190 static void
3191 ena_config_host_info(struct ena_com_dev *ena_dev)
3192 {
3193 struct ena_admin_host_info *host_info;
3194 int rc;
3195
3196 /* Allocate only the host info */
3197 rc = ena_com_allocate_host_info(ena_dev);
3198 if (unlikely(rc != 0)) {
3199 ena_trace(ENA_ALERT, "Cannot allocate host info\n");
3200 return;
3201 }
3202
3203 host_info = ena_dev->host_attr.host_info;
3204
3205 host_info->os_type = ENA_ADMIN_OS_FREEBSD;
3206 host_info->kernel_ver = osreldate;
3207
3208 snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
3209 "%d", osreldate);
3210 host_info->os_dist = 0;
3211 strncpy(host_info->os_dist_str, osrelease,
3212 sizeof(host_info->os_dist_str) - 1);
3213
3214 host_info->driver_version =
3215 (DRV_MODULE_VER_MAJOR) |
3216 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3217 (DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
3218
3219 rc = ena_com_set_host_attributes(ena_dev);
3220 if (unlikely(rc != 0)) {
3221 if (rc == EOPNOTSUPP)
3222 ena_trace(ENA_WARNING, "Cannot set host attributes\n");
3223 else
3224 ena_trace(ENA_ALERT, "Cannot set host attributes\n");
3225
3226 goto err;
3227 }
3228
3229 return;
3230
3231 err:
3232 ena_com_delete_host_info(ena_dev);
3233 }
3234
3235 static int
3236 ena_device_init(struct ena_adapter *adapter, device_t pdev,
3237 struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
3238 {
3239 struct ena_com_dev* ena_dev = adapter->ena_dev;
3240 bool readless_supported;
3241 uint32_t aenq_groups;
3242 int dma_width;
3243 int rc;
3244
3245 rc = ena_com_mmio_reg_read_request_init(ena_dev);
3246 if (unlikely(rc != 0)) {
3247 device_printf(pdev, "failed to init mmio read less\n");
3248 return (rc);
3249 }
3250
3251 /*
3252 * The PCIe configuration space revision id indicate if mmio reg
3253 * read is disabled
3254 */
3255 const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
3256 readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
3257 ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3258
3259 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3260 if (unlikely(rc != 0)) {
3261 device_printf(pdev, "Can not reset device\n");
3262 goto err_mmio_read_less;
3263 }
3264
3265 rc = ena_com_validate_version(ena_dev);
3266 if (unlikely(rc != 0)) {
3267 device_printf(pdev, "device version is too low\n");
3268 goto err_mmio_read_less;
3269 }
3270
3271 dma_width = ena_com_get_dma_width(ena_dev);
3272 if (unlikely(dma_width < 0)) {
3273 device_printf(pdev, "Invalid dma width value %d", dma_width);
3274 rc = dma_width;
3275 goto err_mmio_read_less;
3276 }
3277 adapter->dma_width = dma_width;
3278
3279 /* ENA admin level init */
3280 rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
3281 if (unlikely(rc != 0)) {
3282 device_printf(pdev,
3283 "Can not initialize ena admin queue with device\n");
3284 goto err_mmio_read_less;
3285 }
3286
3287 /*
3288 * To enable the msix interrupts the driver needs to know the number
3289 * of queues. So the driver uses polling mode to retrieve this
3290 * information
3291 */
3292 ena_com_set_admin_polling_mode(ena_dev, true);
3293
3294 ena_config_host_info(ena_dev);
3295
3296 /* Get Device Attributes */
3297 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3298 if (unlikely(rc != 0)) {
3299 device_printf(pdev,
3300 "Cannot get attribute for ena device rc: %d\n", rc);
3301 goto err_admin_init;
3302 }
3303
3304 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
3305
3306 aenq_groups &= get_feat_ctx->aenq.supported_groups;
3307 rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3308 if (unlikely(rc != 0)) {
3309 device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
3310 goto err_admin_init;
3311 }
3312
3313 *wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3314
3315 return (0);
3316
3317 err_admin_init:
3318 ena_com_delete_host_info(ena_dev);
3319 ena_com_admin_destroy(ena_dev);
3320 err_mmio_read_less:
3321 ena_com_mmio_reg_read_request_destroy(ena_dev);
3322
3323 return (rc);
3324 }
3325
3326 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
3327 int io_vectors)
3328 {
3329 struct ena_com_dev *ena_dev = adapter->ena_dev;
3330 int rc;
3331
3332 rc = ena_enable_msix(adapter);
3333 if (unlikely(rc != 0)) {
3334 device_printf(adapter->pdev, "Error with MSI-X enablement\n");
3335 return (rc);
3336 }
3337
3338 rc = ena_request_mgmnt_irq(adapter);
3339 if (unlikely(rc != 0)) {
3340 device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
3341 goto err_disable_msix;
3342 }
3343
3344 ena_com_set_admin_polling_mode(ena_dev, false);
3345
3346 ena_com_admin_aenq_enable(ena_dev);
3347
3348 return (0);
3349
3350 err_disable_msix:
3351 ena_disable_msix(adapter);
3352
3353 return (rc);
3354 }
3355
3356 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
3357 static void ena_keep_alive_wd(void *adapter_data,
3358 struct ena_admin_aenq_entry *aenq_e)
3359 {
3360 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3361 struct ena_admin_aenq_keep_alive_desc *desc;
3362 uint64_t rx_drops;
3363
3364 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3365
3366 rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3367 counter_u64_zero(adapter->hw_stats.rx_drops);
3368 counter_u64_add(adapter->hw_stats.rx_drops, rx_drops);
3369
3370 atomic_store_release(&adapter->keep_alive_timestamp, getsbinuptime());
3371 }
3372
3373 /* Check for keep alive expiration */
3374 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3375 {
3376 sbintime_t timestamp, time;
3377
3378 if (adapter->wd_active == 0)
3379 return;
3380
3381 if (likely(adapter->keep_alive_timeout == 0))
3382 return;
3383
3384 timestamp = atomic_load_acquire(&adapter->keep_alive_timestamp);
3385
3386 time = getsbinuptime() - timestamp;
3387 if (unlikely(time > adapter->keep_alive_timeout)) {
3388 device_printf(adapter->pdev,
3389 "Keep alive watchdog timeout.\n");
3390 counter_u64_add(adapter->dev_stats.wd_expired, 1);
3391 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3392 adapter->trigger_reset = true;
3393 }
3394 }
3395
3396 /* Check if admin queue is enabled */
3397 static void check_for_admin_com_state(struct ena_adapter *adapter)
3398 {
3399 if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
3400 false)) {
3401 device_printf(adapter->pdev,
3402 "ENA admin queue is not in running state!\n");
3403 counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
3404 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3405 adapter->trigger_reset = true;
3406 }
3407 }
3408
3409 static int
3410 check_missing_comp_in_queue(struct ena_adapter *adapter,
3411 struct ena_ring *tx_ring)
3412 {
3413 struct bintime curtime, time;
3414 struct ena_tx_buffer *tx_buf;
3415 uint32_t missed_tx = 0;
3416 int i;
3417
3418 getbinuptime(&curtime);
3419
3420 for (i = 0; i < tx_ring->ring_size; i++) {
3421 tx_buf = &tx_ring->tx_buffer_info[i];
3422
3423 if (bintime_isset(&tx_buf->timestamp) == 0)
3424 continue;
3425
3426 time = curtime;
3427 bintime_sub(&time, &tx_buf->timestamp);
3428
3429 /* Check again if packet is still waiting */
3430 if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
3431
3432 if (!tx_buf->print_once)
3433 ena_trace(ENA_WARNING, "Found a Tx that wasn't "
3434 "completed on time, qid %d, index %d.\n",
3435 tx_ring->qid, i);
3436
3437 tx_buf->print_once = true;
3438 missed_tx++;
3439 counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
3440
3441 if (unlikely(missed_tx >
3442 adapter->missing_tx_threshold)) {
3443 device_printf(adapter->pdev,
3444 "The number of lost tx completion "
3445 "is above the threshold (%d > %d). "
3446 "Reset the device\n",
3447 missed_tx, adapter->missing_tx_threshold);
3448 adapter->reset_reason =
3449 ENA_REGS_RESET_MISS_TX_CMPL;
3450 adapter->trigger_reset = true;
3451 return (EIO);
3452 }
3453 }
3454 }
3455
3456 return (0);
3457 }
3458
3459 /*
3460 * Check for TX which were not completed on time.
3461 * Timeout is defined by "missing_tx_timeout".
3462 * Reset will be performed if number of incompleted
3463 * transactions exceeds "missing_tx_threshold".
3464 */
3465 static void
3466 check_for_missing_tx_completions(struct ena_adapter *adapter)
3467 {
3468 struct ena_ring *tx_ring;
3469 int i, budget, rc;
3470
3471 /* Make sure the driver doesn't turn the device in other process */
3472 rmb();
3473
3474 if (!adapter->up)
3475 return;
3476
3477 if (adapter->trigger_reset)
3478 return;
3479
3480 if (adapter->missing_tx_timeout == 0)
3481 return;
3482
3483 budget = adapter->missing_tx_max_queues;
3484
3485 for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
3486 tx_ring = &adapter->tx_ring[i];
3487
3488 rc = check_missing_comp_in_queue(adapter, tx_ring);
3489 if (unlikely(rc != 0))
3490 return;
3491
3492 budget--;
3493 if (budget == 0) {
3494 i++;
3495 break;
3496 }
3497 }
3498
3499 adapter->next_monitored_tx_qid = i % adapter->num_queues;
3500 }
3501
3502 /* trigger deferred rx cleanup after 2 consecutive detections */
3503 #define EMPTY_RX_REFILL 2
3504 /* For the rare case where the device runs out of Rx descriptors and the
3505 * msix handler failed to refill new Rx descriptors (due to a lack of memory
3506 * for example).
3507 * This case will lead to a deadlock:
3508 * The device won't send interrupts since all the new Rx packets will be dropped
3509 * The msix handler won't allocate new Rx descriptors so the device won't be
3510 * able to send new packets.
3511 *
3512 * When such a situation is detected - execute rx cleanup task in another thread
3513 */
3514 static void
3515 check_for_empty_rx_ring(struct ena_adapter *adapter)
3516 {
3517 struct ena_ring *rx_ring;
3518 int i, refill_required;
3519
3520 if (!adapter->up)
3521 return;
3522
3523 if (adapter->trigger_reset)
3524 return;
3525
3526 for (i = 0; i < adapter->num_queues; i++) {
3527 rx_ring = &adapter->rx_ring[i];
3528
3529 refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
3530 if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3531 rx_ring->empty_rx_queue++;
3532
3533 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
3534 counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
3535 1);
3536
3537 device_printf(adapter->pdev,
3538 "trigger refill for ring %d\n", i);
3539
3540 if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
3541 workqueue_enqueue(rx_ring->cmpl_tq,
3542 &rx_ring->cmpl_task, curcpu());
3543 rx_ring->empty_rx_queue = 0;
3544 }
3545 } else {
3546 rx_ring->empty_rx_queue = 0;
3547 }
3548 }
3549 }
3550
3551 static void
3552 ena_timer_service(void *data)
3553 {
3554 struct ena_adapter *adapter = (struct ena_adapter *)data;
3555 struct ena_admin_host_info *host_info =
3556 adapter->ena_dev->host_attr.host_info;
3557
3558 check_for_missing_keep_alive(adapter);
3559
3560 check_for_admin_com_state(adapter);
3561
3562 check_for_missing_tx_completions(adapter);
3563
3564 check_for_empty_rx_ring(adapter);
3565
3566 if (host_info != NULL)
3567 ena_update_host_info(host_info, adapter->ifp);
3568
3569 if (unlikely(adapter->trigger_reset)) {
3570 device_printf(adapter->pdev, "Trigger reset is on\n");
3571 workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
3572 curcpu());
3573 return;
3574 }
3575
3576 /*
3577 * Schedule another timeout one second from now.
3578 */
3579 callout_schedule(&adapter->timer_service, hz);
3580 }
3581
3582 static void
3583 ena_reset_task(struct work *wk, void *arg)
3584 {
3585 struct ena_com_dev_get_features_ctx get_feat_ctx;
3586 struct ena_adapter *adapter = (struct ena_adapter *)arg;
3587 struct ena_com_dev *ena_dev = adapter->ena_dev;
3588 bool dev_up;
3589 int rc;
3590
3591 if (unlikely(!adapter->trigger_reset)) {
3592 device_printf(adapter->pdev,
3593 "device reset scheduled but trigger_reset is off\n");
3594 return;
3595 }
3596
3597 rw_enter(&adapter->ioctl_sx, RW_WRITER);
3598
3599 callout_halt(&adapter->timer_service, &adapter->global_mtx);
3600
3601 dev_up = adapter->up;
3602
3603 ena_com_set_admin_running_state(ena_dev, false);
3604 ena_down(adapter);
3605 ena_free_mgmnt_irq(adapter);
3606 ena_disable_msix(adapter);
3607 ena_com_abort_admin_commands(ena_dev);
3608 ena_com_wait_for_abort_completion(ena_dev);
3609 ena_com_admin_destroy(ena_dev);
3610 ena_com_mmio_reg_read_request_destroy(ena_dev);
3611
3612 adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3613 adapter->trigger_reset = false;
3614
3615 /* Finished destroy part. Restart the device */
3616 rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
3617 &adapter->wd_active);
3618 if (unlikely(rc != 0)) {
3619 device_printf(adapter->pdev,
3620 "ENA device init failed! (err: %d)\n", rc);
3621 goto err_dev_free;
3622 }
3623
3624 /* XXX dealloc and realloc MSI-X, probably a waste */
3625 rc = ena_enable_msix_and_set_admin_interrupts(adapter,
3626 adapter->num_queues);
3627 if (unlikely(rc != 0)) {
3628 device_printf(adapter->pdev, "Enable MSI-X failed\n");
3629 goto err_com_free;
3630 }
3631
3632 /* If the interface was up before the reset bring it up */
3633 if (dev_up) {
3634 rc = ena_up(adapter);
3635 if (unlikely(rc != 0)) {
3636 device_printf(adapter->pdev,
3637 "Failed to create I/O queues\n");
3638 goto err_msix_free;
3639 }
3640 }
3641
3642 callout_schedule(&adapter->timer_service, hz);
3643
3644 rw_exit(&adapter->ioctl_sx);
3645
3646 return;
3647
3648 err_msix_free:
3649 ena_free_mgmnt_irq(adapter);
3650 ena_disable_msix(adapter);
3651 err_com_free:
3652 ena_com_admin_destroy(ena_dev);
3653 err_dev_free:
3654 device_printf(adapter->pdev, "ENA reset failed!\n");
3655 adapter->running = false;
3656 rw_exit(&adapter->ioctl_sx);
3657 }
3658
3659 /**
3660 * ena_attach - Device Initialization Routine
3661 * @pdev: device information struct
3662 *
3663 * Returns 0 on success, otherwise on failure.
3664 *
3665 * ena_attach initializes an adapter identified by a device structure.
3666 * The OS initialization, configuring of the adapter private structure,
3667 * and a hardware reset occur.
3668 **/
3669 static void
3670 ena_attach(device_t parent, device_t self, void *aux)
3671 {
3672 struct pci_attach_args *pa = aux;
3673 struct ena_com_dev_get_features_ctx get_feat_ctx;
3674 static int version_printed;
3675 struct ena_adapter *adapter = device_private(self);
3676 struct ena_com_dev *ena_dev = NULL;
3677 uint16_t tx_sgl_size = 0;
3678 uint16_t rx_sgl_size = 0;
3679 pcireg_t reg;
3680 int io_queue_num;
3681 int queue_size;
3682 int rc;
3683
3684 adapter->pdev = self;
3685 adapter->ifp = &adapter->sc_ec.ec_if;
3686 adapter->sc_pa = *pa; /* used after attach for adapter reset too */
3687
3688 if (pci_dma64_available(pa))
3689 adapter->sc_dmat = pa->pa_dmat64;
3690 else
3691 adapter->sc_dmat = pa->pa_dmat;
3692
3693 pci_aprint_devinfo(pa, NULL);
3694
3695 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
3696 if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
3697 reg |= PCI_COMMAND_MASTER_ENABLE;
3698 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
3699 }
3700
3701 mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_NET);
3702 rw_init(&adapter->ioctl_sx);
3703
3704 /* Set up the timer service */
3705 adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
3706 adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
3707 adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
3708 adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
3709
3710 if (version_printed++ == 0)
3711 device_printf(parent, "%s\n", ena_version);
3712
3713 rc = ena_allocate_pci_resources(pa, adapter);
3714 if (unlikely(rc != 0)) {
3715 device_printf(parent, "PCI resource allocation failed!\n");
3716 ena_free_pci_resources(adapter);
3717 return;
3718 }
3719
3720 /* Allocate memory for ena_dev structure */
3721 ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
3722 M_WAITOK | M_ZERO);
3723
3724 adapter->ena_dev = ena_dev;
3725 ena_dev->dmadev = self;
3726 ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
3727 M_WAITOK | M_ZERO);
3728
3729 /* Store register resources */
3730 ((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
3731 ((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
3732
3733 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3734
3735 /* Device initialization */
3736 rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
3737 if (unlikely(rc != 0)) {
3738 device_printf(self, "ENA device init failed! (err: %d)\n", rc);
3739 rc = ENXIO;
3740 goto err_bus_free;
3741 }
3742
3743 adapter->keep_alive_timestamp = getsbinuptime();
3744
3745 adapter->tx_offload_cap = get_feat_ctx.offload.tx;
3746
3747 /* Set for sure that interface is not up */
3748 adapter->up = false;
3749
3750 memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
3751 ETHER_ADDR_LEN);
3752
3753 /* calculate IO queue number to create */
3754 io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
3755
3756 ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
3757 io_queue_num);
3758 adapter->num_queues = io_queue_num;
3759
3760 adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
3761
3762 /* calculatre ring sizes */
3763 queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
3764 &rx_sgl_size, &get_feat_ctx);
3765 if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
3766 rc = ENA_COM_FAULT;
3767 goto err_com_free;
3768 }
3769
3770 adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3771
3772 adapter->tx_ring_size = queue_size;
3773 adapter->rx_ring_size = queue_size;
3774
3775 adapter->max_tx_sgl_size = tx_sgl_size;
3776 adapter->max_rx_sgl_size = rx_sgl_size;
3777
3778 #if 0
3779 /* set up dma tags for rx and tx buffers */
3780 rc = ena_setup_tx_dma_tag(adapter);
3781 if (unlikely(rc != 0)) {
3782 device_printf(self, "Failed to create TX DMA tag\n");
3783 goto err_com_free;
3784 }
3785
3786 rc = ena_setup_rx_dma_tag(adapter);
3787 if (unlikely(rc != 0)) {
3788 device_printf(self, "Failed to create RX DMA tag\n");
3789 goto err_tx_tag_free;
3790 }
3791 #endif
3792
3793 /* initialize rings basic information */
3794 device_printf(self, "initialize %d io queues\n", io_queue_num);
3795 ena_init_io_rings(adapter);
3796
3797 /* setup network interface */
3798 rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
3799 if (unlikely(rc != 0)) {
3800 device_printf(self, "Error with network interface setup\n");
3801 goto err_io_free;
3802 }
3803
3804 rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
3805 if (unlikely(rc != 0)) {
3806 device_printf(self,
3807 "Failed to enable and set the admin interrupts\n");
3808 goto err_ifp_free;
3809 }
3810
3811 callout_init(&adapter->timer_service, CALLOUT_FLAGS);
3812 callout_setfunc(&adapter->timer_service, ena_timer_service, adapter);
3813
3814 /* Initialize reset task queue */
3815 rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
3816 ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
3817 if (unlikely(rc != 0)) {
3818 ena_trace(ENA_ALERT,
3819 "Unable to create workqueue for reset task\n");
3820 goto err_ifp_free;
3821 }
3822
3823 /* Initialize statistics */
3824 ena_alloc_counters_dev(&adapter->dev_stats, io_queue_num);
3825 ena_alloc_counters_hwstats(&adapter->hw_stats, io_queue_num);
3826 #if 0
3827 ena_sysctl_add_nodes(adapter);
3828 #endif
3829
3830 /* Tell the stack that the interface is not active */
3831 if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
3832
3833 adapter->running = true;
3834 return;
3835
3836 err_ifp_free:
3837 if_detach(adapter->ifp);
3838 if_free(adapter->ifp);
3839 err_io_free:
3840 ena_free_all_io_rings_resources(adapter);
3841 #if 0
3842 ena_free_rx_dma_tag(adapter);
3843 err_tx_tag_free:
3844 ena_free_tx_dma_tag(adapter);
3845 #endif
3846 err_com_free:
3847 ena_com_admin_destroy(ena_dev);
3848 ena_com_delete_host_info(ena_dev);
3849 ena_com_mmio_reg_read_request_destroy(ena_dev);
3850 err_bus_free:
3851 free(ena_dev->bus, M_DEVBUF);
3852 free(ena_dev, M_DEVBUF);
3853 ena_free_pci_resources(adapter);
3854 }
3855
3856 /**
3857 * ena_detach - Device Removal Routine
3858 * @pdev: device information struct
3859 *
3860 * ena_detach is called by the device subsystem to alert the driver
3861 * that it should release a PCI device.
3862 **/
3863 static int
3864 ena_detach(device_t pdev, int flags)
3865 {
3866 struct ena_adapter *adapter = device_private(pdev);
3867 struct ena_com_dev *ena_dev = adapter->ena_dev;
3868 #if 0
3869 int rc;
3870 #endif
3871
3872 /* Make sure VLANS are not using driver */
3873 if (VLAN_ATTACHED(&adapter->sc_ec)) {
3874 device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
3875 return (EBUSY);
3876 }
3877
3878 /* Free reset task and callout */
3879 callout_halt(&adapter->timer_service, &adapter->global_mtx);
3880 callout_destroy(&adapter->timer_service);
3881 workqueue_wait(adapter->reset_tq, &adapter->reset_task);
3882 workqueue_destroy(adapter->reset_tq);
3883 adapter->reset_tq = NULL;
3884
3885 rw_enter(&adapter->ioctl_sx, RW_WRITER);
3886 ena_down(adapter);
3887 rw_exit(&adapter->ioctl_sx);
3888
3889 if (adapter->ifp != NULL) {
3890 ether_ifdetach(adapter->ifp);
3891 if_free(adapter->ifp);
3892 }
3893 ifmedia_fini(&adapter->media);
3894
3895 ena_free_all_io_rings_resources(adapter);
3896
3897 ena_free_counters((struct evcnt *)&adapter->hw_stats,
3898 sizeof(struct ena_hw_stats));
3899 ena_free_counters((struct evcnt *)&adapter->dev_stats,
3900 sizeof(struct ena_stats_dev));
3901
3902 if (likely(adapter->rss_support))
3903 ena_com_rss_destroy(ena_dev);
3904
3905 #if 0
3906 rc = ena_free_rx_dma_tag(adapter);
3907 if (unlikely(rc != 0))
3908 device_printf(adapter->pdev,
3909 "Unmapped RX DMA tag associations\n");
3910
3911 rc = ena_free_tx_dma_tag(adapter);
3912 if (unlikely(rc != 0))
3913 device_printf(adapter->pdev,
3914 "Unmapped TX DMA tag associations\n");
3915 #endif
3916
3917 /* Reset the device only if the device is running. */
3918 if (adapter->running)
3919 ena_com_dev_reset(ena_dev, adapter->reset_reason);
3920
3921 ena_com_delete_host_info(ena_dev);
3922
3923 ena_free_irqs(adapter);
3924
3925 ena_com_abort_admin_commands(ena_dev);
3926
3927 ena_com_wait_for_abort_completion(ena_dev);
3928
3929 ena_com_admin_destroy(ena_dev);
3930
3931 ena_com_mmio_reg_read_request_destroy(ena_dev);
3932
3933 ena_free_pci_resources(adapter);
3934
3935 mutex_destroy(&adapter->global_mtx);
3936 rw_destroy(&adapter->ioctl_sx);
3937
3938 if (ena_dev->bus != NULL)
3939 free(ena_dev->bus, M_DEVBUF);
3940
3941 if (ena_dev != NULL)
3942 free(ena_dev, M_DEVBUF);
3943
3944 return 0;
3945 }
3946
3947 /******************************************************************************
3948 ******************************** AENQ Handlers *******************************
3949 *****************************************************************************/
3950 /**
3951 * ena_update_on_link_change:
3952 * Notify the network interface about the change in link status
3953 **/
3954 static void
3955 ena_update_on_link_change(void *adapter_data,
3956 struct ena_admin_aenq_entry *aenq_e)
3957 {
3958 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3959 struct ena_admin_aenq_link_change_desc *aenq_desc;
3960 int status;
3961 struct ifnet *ifp;
3962
3963 aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3964 ifp = adapter->ifp;
3965 status = aenq_desc->flags &
3966 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
3967
3968 if (status != 0) {
3969 device_printf(adapter->pdev, "link is UP\n");
3970 if_link_state_change(ifp, LINK_STATE_UP);
3971 } else if (status == 0) {
3972 device_printf(adapter->pdev, "link is DOWN\n");
3973 if_link_state_change(ifp, LINK_STATE_DOWN);
3974 } else {
3975 device_printf(adapter->pdev, "invalid value recvd\n");
3976 BUG();
3977 }
3978
3979 adapter->link_status = status;
3980 }
3981
3982 /**
3983 * This handler will called for unknown event group or unimplemented handlers
3984 **/
3985 static void
3986 unimplemented_aenq_handler(void *data,
3987 struct ena_admin_aenq_entry *aenq_e)
3988 {
3989 return;
3990 }
3991
3992 static struct ena_aenq_handlers aenq_handlers = {
3993 .handlers = {
3994 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3995 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
3996 },
3997 .unimplemented_handler = unimplemented_aenq_handler
3998 };
3999
4000 #ifdef __FreeBSD__
4001 /*********************************************************************
4002 * FreeBSD Device Interface Entry Points
4003 *********************************************************************/
4004
4005 static device_method_t ena_methods[] = {
4006 /* Device interface */
4007 DEVMETHOD(device_probe, ena_probe),
4008 DEVMETHOD(device_attach, ena_attach),
4009 DEVMETHOD(device_detach, ena_detach),
4010 DEVMETHOD_END
4011 };
4012
4013 static driver_t ena_driver = {
4014 "ena", ena_methods, sizeof(struct ena_adapter),
4015 };
4016
4017 devclass_t ena_devclass;
4018 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
4019 MODULE_DEPEND(ena, pci, 1, 1, 1);
4020 MODULE_DEPEND(ena, ether, 1, 1, 1);
4021
4022 /*********************************************************************/
4023 #endif /* __FreeBSD__ */
4024
4025 #ifdef __NetBSD__
4026 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
4027 ena_detach, NULL);
4028 #endif /* __NetBSD */
4029