Home | History | Annotate | Line # | Download | only in pci
if_ena.c revision 1.25
      1 /*-
      2  * BSD LICENSE
      3  *
      4  * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  *
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 #ifdef _KERNEL_OPT
     32 #include "opt_net_mpsafe.h"
     33 #endif
     34 
     35 #include <sys/cdefs.h>
     36 #if 0
     37 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
     38 #endif
     39 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.25 2020/08/03 19:44:06 jmcneill Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/bus.h>
     44 #include <sys/endian.h>
     45 #include <sys/kernel.h>
     46 #include <sys/kthread.h>
     47 #include <sys/malloc.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/module.h>
     50 #include <sys/socket.h>
     51 #include <sys/sockio.h>
     52 #include <sys/sysctl.h>
     53 #include <sys/time.h>
     54 #include <sys/workqueue.h>
     55 #include <sys/callout.h>
     56 #include <sys/interrupt.h>
     57 #include <sys/cpu.h>
     58 
     59 #include <net/if_ether.h>
     60 #include <net/if_vlanvar.h>
     61 
     62 #include <dev/pci/if_enavar.h>
     63 
     64 #ifdef NET_MPSAFE
     65 #define	WQ_FLAGS	WQ_MPSAFE
     66 #define	CALLOUT_FLAGS	CALLOUT_MPSAFE
     67 #else
     68 #define	WQ_FLAGS	0
     69 #define	CALLOUT_FLAGS	0
     70 #endif
     71 
     72 /*********************************************************
     73  *  Function prototypes
     74  *********************************************************/
     75 static int	ena_probe(device_t, cfdata_t, void *);
     76 static int	ena_intr_msix_mgmnt(void *);
     77 static int	ena_allocate_pci_resources(struct pci_attach_args *,
     78 		    struct ena_adapter *);
     79 static void	ena_free_pci_resources(struct ena_adapter *);
     80 static int	ena_change_mtu(struct ifnet *, int);
     81 static void	ena_init_io_rings_common(struct ena_adapter *,
     82     struct ena_ring *, uint16_t);
     83 static void	ena_init_io_rings(struct ena_adapter *);
     84 static void	ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
     85 static void	ena_free_all_io_rings_resources(struct ena_adapter *);
     86 #if 0
     87 static int	ena_setup_tx_dma_tag(struct ena_adapter *);
     88 static int	ena_free_tx_dma_tag(struct ena_adapter *);
     89 static int	ena_setup_rx_dma_tag(struct ena_adapter *);
     90 static int	ena_free_rx_dma_tag(struct ena_adapter *);
     91 #endif
     92 static int	ena_setup_tx_resources(struct ena_adapter *, int);
     93 static void	ena_free_tx_resources(struct ena_adapter *, int);
     94 static int	ena_setup_all_tx_resources(struct ena_adapter *);
     95 static void	ena_free_all_tx_resources(struct ena_adapter *);
     96 static inline int validate_rx_req_id(struct ena_ring *, uint16_t);
     97 static int	ena_setup_rx_resources(struct ena_adapter *, unsigned int);
     98 static void	ena_free_rx_resources(struct ena_adapter *, unsigned int);
     99 static int	ena_setup_all_rx_resources(struct ena_adapter *);
    100 static void	ena_free_all_rx_resources(struct ena_adapter *);
    101 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *,
    102     struct ena_rx_buffer *);
    103 static void	ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
    104     struct ena_rx_buffer *);
    105 static int	ena_refill_rx_bufs(struct ena_ring *, uint32_t);
    106 static void	ena_free_rx_bufs(struct ena_adapter *, unsigned int);
    107 static void	ena_refill_all_rx_bufs(struct ena_adapter *);
    108 static void	ena_free_all_rx_bufs(struct ena_adapter *);
    109 static void	ena_free_tx_bufs(struct ena_adapter *, unsigned int);
    110 static void	ena_free_all_tx_bufs(struct ena_adapter *);
    111 static void	ena_destroy_all_tx_queues(struct ena_adapter *);
    112 static void	ena_destroy_all_rx_queues(struct ena_adapter *);
    113 static void	ena_destroy_all_io_queues(struct ena_adapter *);
    114 static int	ena_create_io_queues(struct ena_adapter *);
    115 static int	ena_tx_cleanup(struct ena_ring *);
    116 static void	ena_deferred_rx_cleanup(struct work *, void *);
    117 static int	ena_rx_cleanup(struct ena_ring *);
    118 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
    119 #if 0
    120 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
    121     struct mbuf *);
    122 #endif
    123 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
    124     struct ena_com_rx_ctx *, uint16_t *);
    125 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
    126     struct mbuf *);
    127 static int	ena_handle_msix(void *);
    128 static int	ena_enable_msix(struct ena_adapter *);
    129 static int	ena_request_mgmnt_irq(struct ena_adapter *);
    130 static int	ena_request_io_irq(struct ena_adapter *);
    131 static void	ena_free_mgmnt_irq(struct ena_adapter *);
    132 static void	ena_free_io_irq(struct ena_adapter *);
    133 static void	ena_free_irqs(struct ena_adapter*);
    134 static void	ena_disable_msix(struct ena_adapter *);
    135 static void	ena_unmask_all_io_irqs(struct ena_adapter *);
    136 static int	ena_rss_configure(struct ena_adapter *);
    137 static int	ena_up_complete(struct ena_adapter *);
    138 static int	ena_up(struct ena_adapter *);
    139 static void	ena_down(struct ena_adapter *);
    140 #if 0
    141 static uint64_t	ena_get_counter(struct ifnet *, ift_counter);
    142 #endif
    143 static int	ena_media_change(struct ifnet *);
    144 static void	ena_media_status(struct ifnet *, struct ifmediareq *);
    145 static int	ena_init(struct ifnet *);
    146 static int	ena_ioctl(struct ifnet *, u_long, void *);
    147 static int	ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
    148 static void	ena_update_host_info(struct ena_admin_host_info *, struct ifnet *);
    149 static void	ena_update_hwassist(struct ena_adapter *);
    150 static int	ena_setup_ifnet(device_t, struct ena_adapter *,
    151     struct ena_com_dev_get_features_ctx *);
    152 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
    153 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
    154     struct mbuf **mbuf);
    155 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
    156 static void	ena_start_xmit(struct ena_ring *);
    157 static int	ena_mq_start(struct ifnet *, struct mbuf *);
    158 static void	ena_deferred_mq_start(struct work *, void *);
    159 #if 0
    160 static void	ena_qflush(struct ifnet *);
    161 #endif
    162 static int	ena_calc_io_queue_num(struct pci_attach_args *,
    163     struct ena_adapter *, struct ena_com_dev_get_features_ctx *);
    164 static int	ena_calc_queue_size(struct ena_adapter *, uint16_t *,
    165     uint16_t *, struct ena_com_dev_get_features_ctx *);
    166 #if 0
    167 static int	ena_rss_init_default(struct ena_adapter *);
    168 static void	ena_rss_init_default_deferred(void *);
    169 #endif
    170 static void	ena_config_host_info(struct ena_com_dev *);
    171 static void	ena_attach(device_t, device_t, void *);
    172 static int	ena_detach(device_t, int);
    173 static int	ena_device_init(struct ena_adapter *, device_t,
    174     struct ena_com_dev_get_features_ctx *, int *);
    175 static int	ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
    176     int);
    177 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *);
    178 static void	unimplemented_aenq_handler(void *,
    179     struct ena_admin_aenq_entry *);
    180 static void	ena_timer_service(void *);
    181 
    182 static const char ena_version[] =
    183     DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
    184 
    185 #if 0
    186 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
    187 #endif
    188 
    189 /*
    190  * Tuneable number of buffers in the buf-ring (drbr)
    191  */
    192 static int ena_buf_ring_size = 4096;
    193 #if 0
    194 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
    195     &ena_buf_ring_size, 0, "Size of the bufring");
    196 #endif
    197 
    198 /*
    199  * Logging level for changing verbosity of the output
    200  */
    201 int ena_log_level = ENA_ALERT | ENA_WARNING;
    202 #if 0
    203 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
    204     &ena_log_level, 0, "Logging level indicating verbosity of the logs");
    205 #endif
    206 
    207 static const ena_vendor_info_t ena_vendor_info_array[] = {
    208     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
    209     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
    210     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
    211     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
    212     /* Last entry */
    213     { 0, 0, 0 }
    214 };
    215 
    216 /*
    217  * Contains pointers to event handlers, e.g. link state chage.
    218  */
    219 static struct ena_aenq_handlers aenq_handlers;
    220 
    221 int
    222 ena_dma_alloc(device_t dmadev, bus_size_t size,
    223     ena_mem_handle_t *dma , int mapflags)
    224 {
    225 	struct ena_adapter *adapter = device_private(dmadev);
    226 	uint32_t maxsize;
    227 	bus_dma_segment_t seg;
    228 	int error, nsegs;
    229 
    230 	maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
    231 
    232 #if 0
    233 	/* XXX what is this needed for ? */
    234 	dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
    235 	if (unlikely(dma_space_addr == 0))
    236 		dma_space_addr = BUS_SPACE_MAXADDR;
    237 #endif
    238 
    239 	dma->tag = adapter->sc_dmat;
    240 
    241         if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
    242             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
    243 		ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
    244 		    (uintmax_t)maxsize, error);
    245                 goto fail_create;
    246 	}
    247 
    248 	error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &seg, 1, &nsegs,
    249 	    BUS_DMA_ALLOCNOW);
    250 	if (error) {
    251 		ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
    252 		    (uintmax_t)maxsize, error);
    253 		goto fail_alloc;
    254 	}
    255 
    256 	error = bus_dmamem_map(dma->tag, &seg, nsegs, maxsize,
    257 	    &dma->vaddr, BUS_DMA_COHERENT);
    258 	if (error) {
    259 		ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
    260 		    (uintmax_t)maxsize, error);
    261 		goto fail_map;
    262 	}
    263 	memset(dma->vaddr, 0, maxsize);
    264 
    265 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
    266 	    maxsize, NULL, mapflags);
    267 	if (error) {
    268 		ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
    269 		goto fail_load;
    270 	}
    271 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    272 
    273 	return (0);
    274 
    275 fail_load:
    276 	bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
    277 fail_map:
    278 	bus_dmamem_free(dma->tag, &seg, nsegs);
    279 fail_alloc:
    280 	bus_dmamap_destroy(adapter->sc_dmat, dma->map);
    281 fail_create:
    282 	return (error);
    283 }
    284 
    285 static int
    286 ena_allocate_pci_resources(struct pci_attach_args *pa,
    287     struct ena_adapter *adapter)
    288 {
    289 	pcireg_t memtype, reg;
    290 	bus_addr_t memaddr;
    291 	bus_size_t mapsize;
    292 	int flags, error;
    293 	int msixoff;
    294 
    295 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
    296 	if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM) {
    297 		aprint_error_dev(adapter->pdev, "invalid type (type=0x%x)\n",
    298 		    memtype);
    299 		return ENXIO;
    300 	}
    301 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    302 	if (((reg & PCI_COMMAND_MASTER_ENABLE) == 0) ||
    303 	    ((reg & PCI_COMMAND_MEM_ENABLE) == 0)) {
    304 		/*
    305 		 * Enable address decoding for memory range in case BIOS or
    306 		 * UEFI didn't set it.
    307 		 */
    308 		reg |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
    309         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    310 		    reg);
    311 	}
    312 
    313 	adapter->sc_btag = pa->pa_memt;
    314 	error = pci_mapreg_info(pa->pa_pc, pa->pa_tag, ENA_REG_BAR,
    315 	    memtype, &memaddr, &mapsize, &flags);
    316 	if (error) {
    317 		aprint_error_dev(adapter->pdev, "can't get map info\n");
    318 		return ENXIO;
    319 	}
    320 
    321 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff,
    322 	    NULL)) {
    323 		pcireg_t msixtbl;
    324 		uint32_t table_offset;
    325 		int bir;
    326 
    327 		msixtbl = pci_conf_read(pa->pa_pc, pa->pa_tag,
    328 		    msixoff + PCI_MSIX_TBLOFFSET);
    329 		table_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK;
    330 		bir = msixtbl & PCI_MSIX_TBLBIR_MASK;
    331 		if (bir == PCI_MAPREG_NUM(ENA_REG_BAR))
    332 			mapsize = table_offset;
    333 	}
    334 
    335 	error = bus_space_map(adapter->sc_btag, memaddr, mapsize, flags,
    336 	    &adapter->sc_bhandle);
    337 	if (error != 0) {
    338 		aprint_error_dev(adapter->pdev,
    339 		    "can't map mem space (error=%d)\n", error);
    340 		return ENXIO;
    341 	}
    342 
    343 	return (0);
    344 }
    345 
    346 static void
    347 ena_free_pci_resources(struct ena_adapter *adapter)
    348 {
    349 	/* Nothing to do */
    350 }
    351 
    352 static int
    353 ena_probe(device_t parent, cfdata_t match, void *aux)
    354 {
    355 	struct pci_attach_args *pa = aux;
    356 	const ena_vendor_info_t *ent;
    357 
    358 	for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
    359 		ent = &ena_vendor_info_array[i];
    360 
    361 		if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
    362 		    (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
    363 			return 1;
    364 		}
    365 	}
    366 
    367 	return 0;
    368 }
    369 
    370 static int
    371 ena_change_mtu(struct ifnet *ifp, int new_mtu)
    372 {
    373 	struct ena_adapter *adapter = if_getsoftc(ifp);
    374 	int rc;
    375 
    376 	if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
    377 		device_printf(adapter->pdev, "Invalid MTU setting. "
    378 		    "new_mtu: %d max mtu: %d min mtu: %d\n",
    379 		    new_mtu, adapter->max_mtu, ENA_MIN_MTU);
    380 		return (EINVAL);
    381 	}
    382 
    383 	rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
    384 	if (likely(rc == 0)) {
    385 		ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
    386 		if_setmtu(ifp, new_mtu);
    387 	} else {
    388 		device_printf(adapter->pdev, "Failed to set MTU to %d\n",
    389 		    new_mtu);
    390 	}
    391 
    392 	return (rc);
    393 }
    394 
    395 #define EVCNT_INIT(st, f) \
    396 	do {								\
    397 		evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL,	\
    398 		    st->name, #f);					\
    399 	} while (0)
    400 
    401 static inline void
    402 ena_alloc_counters_rx(struct ena_stats_rx *st, int queue)
    403 {
    404 	snprintf(st->name, sizeof(st->name), "ena rxq%d", queue);
    405 
    406 	EVCNT_INIT(st, cnt);
    407 	EVCNT_INIT(st, bytes);
    408 	EVCNT_INIT(st, refil_partial);
    409 	EVCNT_INIT(st, bad_csum);
    410 	EVCNT_INIT(st, mjum_alloc_fail);
    411 	EVCNT_INIT(st, mbuf_alloc_fail);
    412 	EVCNT_INIT(st, dma_mapping_err);
    413 	EVCNT_INIT(st, bad_desc_num);
    414 	EVCNT_INIT(st, bad_req_id);
    415 	EVCNT_INIT(st, empty_rx_ring);
    416 
    417 	/* Make sure all code is updated when new fields added */
    418 	CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
    419 	    + sizeof(st->empty_rx_ring) == sizeof(*st));
    420 }
    421 
    422 static inline void
    423 ena_alloc_counters_tx(struct ena_stats_tx *st, int queue)
    424 {
    425 	snprintf(st->name, sizeof(st->name), "ena txq%d", queue);
    426 
    427 	EVCNT_INIT(st, cnt);
    428 	EVCNT_INIT(st, bytes);
    429 	EVCNT_INIT(st, prepare_ctx_err);
    430 	EVCNT_INIT(st, dma_mapping_err);
    431 	EVCNT_INIT(st, doorbells);
    432 	EVCNT_INIT(st, missing_tx_comp);
    433 	EVCNT_INIT(st, bad_req_id);
    434 	EVCNT_INIT(st, collapse);
    435 	EVCNT_INIT(st, collapse_err);
    436 
    437 	/* Make sure all code is updated when new fields added */
    438 	CTASSERT(offsetof(struct ena_stats_tx, collapse_err)
    439 	    + sizeof(st->collapse_err) == sizeof(*st));
    440 }
    441 
    442 static inline void
    443 ena_alloc_counters_dev(struct ena_stats_dev *st, int queue)
    444 {
    445 	snprintf(st->name, sizeof(st->name), "ena dev ioq%d", queue);
    446 
    447 	EVCNT_INIT(st, wd_expired);
    448 	EVCNT_INIT(st, interface_up);
    449 	EVCNT_INIT(st, interface_down);
    450 	EVCNT_INIT(st, admin_q_pause);
    451 
    452 	/* Make sure all code is updated when new fields added */
    453 	CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
    454 	    + sizeof(st->admin_q_pause) == sizeof(*st));
    455 }
    456 
    457 static inline void
    458 ena_alloc_counters_hwstats(struct ena_hw_stats *st, int queue)
    459 {
    460 	snprintf(st->name, sizeof(st->name), "ena hw ioq%d", queue);
    461 
    462 	EVCNT_INIT(st, rx_packets);
    463 	EVCNT_INIT(st, tx_packets);
    464 	EVCNT_INIT(st, rx_bytes);
    465 	EVCNT_INIT(st, tx_bytes);
    466 	EVCNT_INIT(st, rx_drops);
    467 
    468 	/* Make sure all code is updated when new fields added */
    469 	CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
    470 	    + sizeof(st->rx_drops) == sizeof(*st));
    471 }
    472 static inline void
    473 ena_free_counters(struct evcnt *begin, int size)
    474 {
    475 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
    476 
    477 	for (; begin < end; ++begin)
    478 		counter_u64_free(*begin);
    479 }
    480 
    481 static inline void
    482 ena_reset_counters(struct evcnt *begin, int size)
    483 {
    484 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
    485 
    486 	for (; begin < end; ++begin)
    487 		counter_u64_zero(*begin);
    488 }
    489 
    490 static void
    491 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
    492     uint16_t qid)
    493 {
    494 
    495 	ring->qid = qid;
    496 	ring->adapter = adapter;
    497 	ring->ena_dev = adapter->ena_dev;
    498 }
    499 
    500 static void
    501 ena_init_io_rings(struct ena_adapter *adapter)
    502 {
    503 	struct ena_com_dev *ena_dev;
    504 	struct ena_ring *txr, *rxr;
    505 	struct ena_que *que;
    506 	int i;
    507 
    508 	ena_dev = adapter->ena_dev;
    509 
    510 	for (i = 0; i < adapter->num_queues; i++) {
    511 		txr = &adapter->tx_ring[i];
    512 		rxr = &adapter->rx_ring[i];
    513 
    514 		/* TX/RX common ring state */
    515 		ena_init_io_rings_common(adapter, txr, i);
    516 		ena_init_io_rings_common(adapter, rxr, i);
    517 
    518 		/* TX specific ring state */
    519 		txr->ring_size = adapter->tx_ring_size;
    520 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
    521 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
    522 		txr->smoothed_interval =
    523 		    ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
    524 
    525 		/* Allocate a buf ring */
    526 		txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
    527 		    M_WAITOK, &txr->ring_mtx);
    528 
    529 		/* Alloc TX statistics. */
    530 		ena_alloc_counters_tx(&txr->tx_stats, i);
    531 
    532 		/* RX specific ring state */
    533 		rxr->ring_size = adapter->rx_ring_size;
    534 		rxr->smoothed_interval =
    535 		    ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
    536 
    537 		/* Alloc RX statistics. */
    538 		ena_alloc_counters_rx(&rxr->rx_stats, i);
    539 
    540 		/* Initialize locks */
    541 		snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
    542 		    device_xname(adapter->pdev), i);
    543 		snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
    544 		    device_xname(adapter->pdev), i);
    545 
    546 		mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
    547 		mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
    548 
    549 		que = &adapter->que[i];
    550 		que->adapter = adapter;
    551 		que->id = i;
    552 		que->tx_ring = txr;
    553 		que->rx_ring = rxr;
    554 
    555 		txr->que = que;
    556 		rxr->que = que;
    557 
    558 		rxr->empty_rx_queue = 0;
    559 	}
    560 }
    561 
    562 static void
    563 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
    564 {
    565 	struct ena_ring *txr = &adapter->tx_ring[qid];
    566 	struct ena_ring *rxr = &adapter->rx_ring[qid];
    567 
    568 	ena_free_counters((struct evcnt *)&txr->tx_stats,
    569 	    sizeof(txr->tx_stats));
    570 	ena_free_counters((struct evcnt *)&rxr->rx_stats,
    571 	    sizeof(rxr->rx_stats));
    572 
    573 	ENA_RING_MTX_LOCK(txr);
    574 	drbr_free(txr->br, M_DEVBUF);
    575 	ENA_RING_MTX_UNLOCK(txr);
    576 
    577 	mutex_destroy(&txr->ring_mtx);
    578 	mutex_destroy(&rxr->ring_mtx);
    579 }
    580 
    581 static void
    582 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
    583 {
    584 	int i;
    585 
    586 	for (i = 0; i < adapter->num_queues; i++)
    587 		ena_free_io_ring_resources(adapter, i);
    588 
    589 }
    590 
    591 #if 0
    592 static int
    593 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
    594 {
    595 	int ret;
    596 
    597 	/* Create DMA tag for Tx buffers */
    598 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
    599 	    1, 0,				  /* alignment, bounds 	     */
    600 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
    601 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
    602 	    NULL, NULL,				  /* filter, filterarg 	     */
    603 	    ENA_TSO_MAXSIZE,			  /* maxsize 		     */
    604 	    adapter->max_tx_sgl_size - 1,	  /* nsegments 		     */
    605 	    ENA_TSO_MAXSIZE,			  /* maxsegsize 	     */
    606 	    0,					  /* flags 		     */
    607 	    NULL,				  /* lockfunc 		     */
    608 	    NULL,				  /* lockfuncarg 	     */
    609 	    &adapter->tx_buf_tag);
    610 
    611 	return (ret);
    612 }
    613 #endif
    614 
    615 #if 0
    616 static int
    617 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
    618 {
    619 	int ret;
    620 
    621 	/* Create DMA tag for Rx buffers*/
    622 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent   */
    623 	    1, 0,				  /* alignment, bounds 	     */
    624 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
    625 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
    626 	    NULL, NULL,				  /* filter, filterarg 	     */
    627 	    MJUM16BYTES,			  /* maxsize 		     */
    628 	    adapter->max_rx_sgl_size,		  /* nsegments 		     */
    629 	    MJUM16BYTES,			  /* maxsegsize 	     */
    630 	    0,					  /* flags 		     */
    631 	    NULL,				  /* lockfunc 		     */
    632 	    NULL,				  /* lockarg 		     */
    633 	    &adapter->rx_buf_tag);
    634 
    635 	return (ret);
    636 }
    637 #endif
    638 
    639 /**
    640  * ena_setup_tx_resources - allocate Tx resources (Descriptors)
    641  * @adapter: network interface device structure
    642  * @qid: queue index
    643  *
    644  * Returns 0 on success, otherwise on failure.
    645  **/
    646 static int
    647 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
    648 {
    649 	struct ena_que *que = &adapter->que[qid];
    650 	struct ena_ring *tx_ring = que->tx_ring;
    651 	int size, i, err;
    652 #ifdef	RSS
    653 	cpuset_t cpu_mask;
    654 #endif
    655 
    656 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
    657 	tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
    658 
    659 	size = sizeof(uint16_t) * tx_ring->ring_size;
    660 	tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
    661 
    662 	/* Req id stack for TX OOO completions */
    663 	for (i = 0; i < tx_ring->ring_size; i++)
    664 		tx_ring->free_tx_ids[i] = i;
    665 
    666 	/* Reset TX statistics. */
    667 	ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
    668 	    sizeof(tx_ring->tx_stats));
    669 
    670 	tx_ring->next_to_use = 0;
    671 	tx_ring->next_to_clean = 0;
    672 
    673 	/* Make sure that drbr is empty */
    674 	ENA_RING_MTX_LOCK(tx_ring);
    675 	drbr_flush(adapter->ifp, tx_ring->br);
    676 	ENA_RING_MTX_UNLOCK(tx_ring);
    677 
    678 	/* ... and create the buffer DMA maps */
    679 	for (i = 0; i < tx_ring->ring_size; i++) {
    680 		err = bus_dmamap_create(adapter->sc_dmat,
    681 		    ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
    682 		    ENA_TSO_MAXSIZE, 0, 0,
    683 		    &tx_ring->tx_buffer_info[i].map);
    684 		if (unlikely(err != 0)) {
    685 			ena_trace(ENA_ALERT,
    686 			     "Unable to create Tx DMA map for buffer %d\n", i);
    687 			goto err_buf_info_unmap;
    688 		}
    689 	}
    690 
    691 	/* Allocate workqueues */
    692 	int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
    693 	    ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
    694 	if (unlikely(rc != 0)) {
    695 		ena_trace(ENA_ALERT,
    696 		    "Unable to create workqueue for enqueue task\n");
    697 		i = tx_ring->ring_size;
    698 		goto err_buf_info_unmap;
    699 	}
    700 
    701 #if 0
    702 	/* RSS set cpu for thread */
    703 #ifdef RSS
    704 	CPU_SETOF(que->cpu, &cpu_mask);
    705 	taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET,
    706 	    &cpu_mask, "%s tx_ring enq (bucket %d)",
    707 	    device_xname(adapter->pdev), que->cpu);
    708 #else /* RSS */
    709 	taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET,
    710 	    "%s txeq %d", device_xname(adapter->pdev), que->cpu);
    711 #endif /* RSS */
    712 #endif
    713 
    714 	return (0);
    715 
    716 err_buf_info_unmap:
    717 	while (i--) {
    718 		bus_dmamap_destroy(adapter->sc_dmat,
    719 		    tx_ring->tx_buffer_info[i].map);
    720 	}
    721 	free(tx_ring->free_tx_ids, M_DEVBUF);
    722 	tx_ring->free_tx_ids = NULL;
    723 	free(tx_ring->tx_buffer_info, M_DEVBUF);
    724 	tx_ring->tx_buffer_info = NULL;
    725 
    726 	return (ENOMEM);
    727 }
    728 
    729 /**
    730  * ena_free_tx_resources - Free Tx Resources per Queue
    731  * @adapter: network interface device structure
    732  * @qid: queue index
    733  *
    734  * Free all transmit software resources
    735  **/
    736 static void
    737 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
    738 {
    739 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
    740 
    741 	workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
    742 	workqueue_destroy(tx_ring->enqueue_tq);
    743 	tx_ring->enqueue_tq = NULL;
    744 
    745 	ENA_RING_MTX_LOCK(tx_ring);
    746 	/* Flush buffer ring, */
    747 	drbr_flush(adapter->ifp, tx_ring->br);
    748 
    749 	/* Free buffer DMA maps, */
    750 	for (int i = 0; i < tx_ring->ring_size; i++) {
    751 		m_freem(tx_ring->tx_buffer_info[i].mbuf);
    752 		tx_ring->tx_buffer_info[i].mbuf = NULL;
    753 		bus_dmamap_unload(adapter->sc_dmat,
    754 		    tx_ring->tx_buffer_info[i].map);
    755 		bus_dmamap_destroy(adapter->sc_dmat,
    756 		    tx_ring->tx_buffer_info[i].map);
    757 	}
    758 	ENA_RING_MTX_UNLOCK(tx_ring);
    759 
    760 	/* And free allocated memory. */
    761 	free(tx_ring->tx_buffer_info, M_DEVBUF);
    762 	tx_ring->tx_buffer_info = NULL;
    763 
    764 	free(tx_ring->free_tx_ids, M_DEVBUF);
    765 	tx_ring->free_tx_ids = NULL;
    766 }
    767 
    768 /**
    769  * ena_setup_all_tx_resources - allocate all queues Tx resources
    770  * @adapter: network interface device structure
    771  *
    772  * Returns 0 on success, otherwise on failure.
    773  **/
    774 static int
    775 ena_setup_all_tx_resources(struct ena_adapter *adapter)
    776 {
    777 	int i, rc;
    778 
    779 	for (i = 0; i < adapter->num_queues; i++) {
    780 		rc = ena_setup_tx_resources(adapter, i);
    781 		if (rc != 0) {
    782 			device_printf(adapter->pdev,
    783 			    "Allocation for Tx Queue %u failed\n", i);
    784 			goto err_setup_tx;
    785 		}
    786 	}
    787 
    788 	return (0);
    789 
    790 err_setup_tx:
    791 	/* Rewind the index freeing the rings as we go */
    792 	while (i--)
    793 		ena_free_tx_resources(adapter, i);
    794 	return (rc);
    795 }
    796 
    797 /**
    798  * ena_free_all_tx_resources - Free Tx Resources for All Queues
    799  * @adapter: network interface device structure
    800  *
    801  * Free all transmit software resources
    802  **/
    803 static void
    804 ena_free_all_tx_resources(struct ena_adapter *adapter)
    805 {
    806 	int i;
    807 
    808 	for (i = 0; i < adapter->num_queues; i++)
    809 		ena_free_tx_resources(adapter, i);
    810 }
    811 
    812 static inline int
    813 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
    814 {
    815 	if (likely(req_id < rx_ring->ring_size))
    816 		return (0);
    817 
    818 	device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
    819 	    req_id);
    820 	counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
    821 
    822 	/* Trigger device reset */
    823 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
    824 	rx_ring->adapter->trigger_reset = true;
    825 
    826 	return (EFAULT);
    827 }
    828 
    829 /**
    830  * ena_setup_rx_resources - allocate Rx resources (Descriptors)
    831  * @adapter: network interface device structure
    832  * @qid: queue index
    833  *
    834  * Returns 0 on success, otherwise on failure.
    835  **/
    836 static int
    837 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
    838 {
    839 	struct ena_que *que = &adapter->que[qid];
    840 	struct ena_ring *rx_ring = que->rx_ring;
    841 	int size, err, i;
    842 #ifdef	RSS
    843 	cpuset_t cpu_mask;
    844 #endif
    845 
    846 	size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
    847 
    848 	/*
    849 	 * Alloc extra element so in rx path
    850 	 * we can always prefetch rx_info + 1
    851 	 */
    852 	size += sizeof(struct ena_rx_buffer);
    853 
    854 	rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
    855 
    856 	size = sizeof(uint16_t) * rx_ring->ring_size;
    857 	rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
    858 
    859 	for (i = 0; i < rx_ring->ring_size; i++)
    860 		rx_ring->free_rx_ids[i] = i;
    861 
    862 	/* Reset RX statistics. */
    863 	ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
    864 	    sizeof(rx_ring->rx_stats));
    865 
    866 	rx_ring->next_to_clean = 0;
    867 	rx_ring->next_to_use = 0;
    868 
    869 	/* ... and create the buffer DMA maps */
    870 	for (i = 0; i < rx_ring->ring_size; i++) {
    871 		err = bus_dmamap_create(adapter->sc_dmat,
    872 		    MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
    873 		    0, 0,
    874 		    &(rx_ring->rx_buffer_info[i].map));
    875 		if (err != 0) {
    876 			ena_trace(ENA_ALERT,
    877 			    "Unable to create Rx DMA map for buffer %d\n", i);
    878 			goto err_buf_info_unmap;
    879 		}
    880 	}
    881 
    882 #ifdef LRO
    883 	/* Create LRO for the ring */
    884 	if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
    885 		int err = tcp_lro_init(&rx_ring->lro);
    886 		if (err != 0) {
    887 			device_printf(adapter->pdev,
    888 			    "LRO[%d] Initialization failed!\n", qid);
    889 		} else {
    890 			ena_trace(ENA_INFO,
    891 			    "RX Soft LRO[%d] Initialized\n", qid);
    892 			rx_ring->lro.ifp = adapter->ifp;
    893 		}
    894 	}
    895 #endif
    896 
    897 	/* Allocate workqueues */
    898 	int rc = workqueue_create(&rx_ring->cmpl_tq, "ena_rx_comp",
    899 	    ena_deferred_rx_cleanup, rx_ring, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
    900 	if (unlikely(rc != 0)) {
    901 		ena_trace(ENA_ALERT,
    902 		    "Unable to create workqueue for RX completion task\n");
    903 		goto err_buf_info_unmap;
    904 	}
    905 
    906 #if 0
    907 	/* RSS set cpu for thread */
    908 #ifdef RSS
    909 	CPU_SETOF(que->cpu, &cpu_mask);
    910 	taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask,
    911 	    "%s rx_ring cmpl (bucket %d)",
    912 	    device_xname(adapter->pdev), que->cpu);
    913 #else
    914 	taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET,
    915 	    "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu);
    916 #endif
    917 #endif
    918 
    919 	return (0);
    920 
    921 err_buf_info_unmap:
    922 	while (i--) {
    923 		bus_dmamap_destroy(adapter->sc_dmat,
    924 		    rx_ring->rx_buffer_info[i].map);
    925 	}
    926 
    927 	free(rx_ring->free_rx_ids, M_DEVBUF);
    928 	rx_ring->free_rx_ids = NULL;
    929 	free(rx_ring->rx_buffer_info, M_DEVBUF);
    930 	rx_ring->rx_buffer_info = NULL;
    931 	return (ENOMEM);
    932 }
    933 
    934 /**
    935  * ena_free_rx_resources - Free Rx Resources
    936  * @adapter: network interface device structure
    937  * @qid: queue index
    938  *
    939  * Free all receive software resources
    940  **/
    941 static void
    942 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
    943 {
    944 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
    945 
    946 	workqueue_wait(rx_ring->cmpl_tq, &rx_ring->cmpl_task);
    947 	workqueue_destroy(rx_ring->cmpl_tq);
    948 	rx_ring->cmpl_tq = NULL;
    949 
    950 	/* Free buffer DMA maps, */
    951 	for (int i = 0; i < rx_ring->ring_size; i++) {
    952 		m_freem(rx_ring->rx_buffer_info[i].mbuf);
    953 		rx_ring->rx_buffer_info[i].mbuf = NULL;
    954 		bus_dmamap_unload(adapter->sc_dmat,
    955 		    rx_ring->rx_buffer_info[i].map);
    956 		bus_dmamap_destroy(adapter->sc_dmat,
    957 		    rx_ring->rx_buffer_info[i].map);
    958 	}
    959 
    960 #ifdef LRO
    961 	/* free LRO resources, */
    962 	tcp_lro_free(&rx_ring->lro);
    963 #endif
    964 
    965 	/* free allocated memory */
    966 	free(rx_ring->rx_buffer_info, M_DEVBUF);
    967 	rx_ring->rx_buffer_info = NULL;
    968 
    969 	free(rx_ring->free_rx_ids, M_DEVBUF);
    970 	rx_ring->free_rx_ids = NULL;
    971 }
    972 
    973 /**
    974  * ena_setup_all_rx_resources - allocate all queues Rx resources
    975  * @adapter: network interface device structure
    976  *
    977  * Returns 0 on success, otherwise on failure.
    978  **/
    979 static int
    980 ena_setup_all_rx_resources(struct ena_adapter *adapter)
    981 {
    982 	int i, rc = 0;
    983 
    984 	for (i = 0; i < adapter->num_queues; i++) {
    985 		rc = ena_setup_rx_resources(adapter, i);
    986 		if (rc != 0) {
    987 			device_printf(adapter->pdev,
    988 			    "Allocation for Rx Queue %u failed\n", i);
    989 			goto err_setup_rx;
    990 		}
    991 	}
    992 	return (0);
    993 
    994 err_setup_rx:
    995 	/* rewind the index freeing the rings as we go */
    996 	while (i--)
    997 		ena_free_rx_resources(adapter, i);
    998 	return (rc);
    999 }
   1000 
   1001 /**
   1002  * ena_free_all_rx_resources - Free Rx resources for all queues
   1003  * @adapter: network interface device structure
   1004  *
   1005  * Free all receive software resources
   1006  **/
   1007 static void
   1008 ena_free_all_rx_resources(struct ena_adapter *adapter)
   1009 {
   1010 	int i;
   1011 
   1012 	for (i = 0; i < adapter->num_queues; i++)
   1013 		ena_free_rx_resources(adapter, i);
   1014 }
   1015 
   1016 static inline int
   1017 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
   1018     struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
   1019 {
   1020 	struct ena_com_buf *ena_buf;
   1021 	int error;
   1022 	int mlen;
   1023 
   1024 	/* if previous allocated frag is not used */
   1025 	if (unlikely(rx_info->mbuf != NULL))
   1026 		return (0);
   1027 
   1028 	/* Get mbuf using UMA allocator */
   1029 	rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES);
   1030 
   1031 	if (unlikely(rx_info->mbuf == NULL)) {
   1032 		counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1);
   1033 		rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
   1034 		if (unlikely(rx_info->mbuf == NULL)) {
   1035 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
   1036 			return (ENOMEM);
   1037 		}
   1038 		mlen = MCLBYTES;
   1039 	} else {
   1040 		mlen = MJUM16BYTES;
   1041 	}
   1042 	/* Set mbuf length*/
   1043 	rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
   1044 
   1045 	/* Map packets for DMA */
   1046 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
   1047 	    "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
   1048 	    adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
   1049 	error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
   1050 	    rx_info->mbuf, BUS_DMA_NOWAIT);
   1051 	if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
   1052 		ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
   1053 		    "nsegs: %d\n", error, rx_info->map->dm_nsegs);
   1054 		counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
   1055 		goto exit;
   1056 
   1057 	}
   1058 
   1059 	bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
   1060 	    rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
   1061 
   1062 	ena_buf = &rx_info->ena_buf;
   1063 	ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
   1064 	ena_buf->len = mlen;
   1065 
   1066 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
   1067 	    "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
   1068 	    rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
   1069 
   1070 	return (0);
   1071 
   1072 exit:
   1073 	m_freem(rx_info->mbuf);
   1074 	rx_info->mbuf = NULL;
   1075 	return (EFAULT);
   1076 }
   1077 
   1078 static void
   1079 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
   1080     struct ena_rx_buffer *rx_info)
   1081 {
   1082 
   1083 	if (rx_info->mbuf == NULL) {
   1084 		ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
   1085 		return;
   1086 	}
   1087 
   1088 	bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
   1089 	m_freem(rx_info->mbuf);
   1090 	rx_info->mbuf = NULL;
   1091 }
   1092 
   1093 /**
   1094  * ena_refill_rx_bufs - Refills ring with descriptors
   1095  * @rx_ring: the ring which we want to feed with free descriptors
   1096  * @num: number of descriptors to refill
   1097  * Refills the ring with newly allocated DMA-mapped mbufs for receiving
   1098  **/
   1099 static int
   1100 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
   1101 {
   1102 	struct ena_adapter *adapter = rx_ring->adapter;
   1103 	uint16_t next_to_use, req_id;
   1104 	uint32_t i;
   1105 	int rc;
   1106 
   1107 	ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
   1108 	    rx_ring->qid);
   1109 
   1110 	next_to_use = rx_ring->next_to_use;
   1111 
   1112 	for (i = 0; i < num; i++) {
   1113 		struct ena_rx_buffer *rx_info;
   1114 
   1115 		ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
   1116 		    "RX buffer - next to use: %d", next_to_use);
   1117 
   1118 		req_id = rx_ring->free_rx_ids[next_to_use];
   1119 		rc = validate_rx_req_id(rx_ring, req_id);
   1120 		if (unlikely(rc != 0))
   1121 			break;
   1122 
   1123 		rx_info = &rx_ring->rx_buffer_info[req_id];
   1124 
   1125 		rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
   1126 		if (unlikely(rc != 0)) {
   1127 			ena_trace(ENA_WARNING,
   1128 			    "failed to alloc buffer for rx queue %d\n",
   1129 			    rx_ring->qid);
   1130 			break;
   1131 		}
   1132 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
   1133 		    &rx_info->ena_buf, req_id);
   1134 		if (unlikely(rc != 0)) {
   1135 			ena_trace(ENA_WARNING,
   1136 			    "failed to add buffer for rx queue %d\n",
   1137 			    rx_ring->qid);
   1138 			break;
   1139 		}
   1140 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
   1141 		    rx_ring->ring_size);
   1142 	}
   1143 
   1144 	if (unlikely(i < num)) {
   1145 		counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
   1146 		ena_trace(ENA_WARNING,
   1147 		     "refilled rx qid %d with only %d mbufs (from %d)\n",
   1148 		     rx_ring->qid, i, num);
   1149 	}
   1150 
   1151 	if (likely(i != 0)) {
   1152 		wmb();
   1153 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
   1154 	}
   1155 	rx_ring->next_to_use = next_to_use;
   1156 	return (i);
   1157 }
   1158 
   1159 static void
   1160 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
   1161 {
   1162 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
   1163 	unsigned int i;
   1164 
   1165 	for (i = 0; i < rx_ring->ring_size; i++) {
   1166 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
   1167 
   1168 		if (rx_info->mbuf != NULL)
   1169 			ena_free_rx_mbuf(adapter, rx_ring, rx_info);
   1170 	}
   1171 }
   1172 
   1173 /**
   1174  * ena_refill_all_rx_bufs - allocate all queues Rx buffers
   1175  * @adapter: network interface device structure
   1176  *
   1177  */
   1178 static void
   1179 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
   1180 {
   1181 	struct ena_ring *rx_ring;
   1182 	int i, rc, bufs_num;
   1183 
   1184 	for (i = 0; i < adapter->num_queues; i++) {
   1185 		rx_ring = &adapter->rx_ring[i];
   1186 		bufs_num = rx_ring->ring_size - 1;
   1187 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
   1188 
   1189 		if (unlikely(rc != bufs_num))
   1190 			ena_trace(ENA_WARNING, "refilling Queue %d failed. "
   1191 			    "Allocated %d buffers from: %d\n", i, rc, bufs_num);
   1192 	}
   1193 }
   1194 
   1195 static void
   1196 ena_free_all_rx_bufs(struct ena_adapter *adapter)
   1197 {
   1198 	int i;
   1199 
   1200 	for (i = 0; i < adapter->num_queues; i++)
   1201 		ena_free_rx_bufs(adapter, i);
   1202 }
   1203 
   1204 /**
   1205  * ena_free_tx_bufs - Free Tx Buffers per Queue
   1206  * @adapter: network interface device structure
   1207  * @qid: queue index
   1208  **/
   1209 static void
   1210 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
   1211 {
   1212 	bool print_once = true;
   1213 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
   1214 
   1215 	ENA_RING_MTX_LOCK(tx_ring);
   1216 	for (int i = 0; i < tx_ring->ring_size; i++) {
   1217 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
   1218 
   1219 		if (tx_info->mbuf == NULL)
   1220 			continue;
   1221 
   1222 		if (print_once) {
   1223 			device_printf(adapter->pdev,
   1224 			    "free uncompleted tx mbuf qid %d idx 0x%x",
   1225 			    qid, i);
   1226 			print_once = false;
   1227 		} else {
   1228 			ena_trace(ENA_DBG,
   1229 			    "free uncompleted tx mbuf qid %d idx 0x%x",
   1230 			     qid, i);
   1231 		}
   1232 
   1233 		bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   1234 		m_free(tx_info->mbuf);
   1235 		tx_info->mbuf = NULL;
   1236 	}
   1237 	ENA_RING_MTX_UNLOCK(tx_ring);
   1238 }
   1239 
   1240 static void
   1241 ena_free_all_tx_bufs(struct ena_adapter *adapter)
   1242 {
   1243 
   1244 	for (int i = 0; i < adapter->num_queues; i++)
   1245 		ena_free_tx_bufs(adapter, i);
   1246 }
   1247 
   1248 static void
   1249 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
   1250 {
   1251 	uint16_t ena_qid;
   1252 	int i;
   1253 
   1254 	for (i = 0; i < adapter->num_queues; i++) {
   1255 		ena_qid = ENA_IO_TXQ_IDX(i);
   1256 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
   1257 	}
   1258 }
   1259 
   1260 static void
   1261 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
   1262 {
   1263 	uint16_t ena_qid;
   1264 	int i;
   1265 
   1266 	for (i = 0; i < adapter->num_queues; i++) {
   1267 		ena_qid = ENA_IO_RXQ_IDX(i);
   1268 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
   1269 	}
   1270 }
   1271 
   1272 static void
   1273 ena_destroy_all_io_queues(struct ena_adapter *adapter)
   1274 {
   1275 	ena_destroy_all_tx_queues(adapter);
   1276 	ena_destroy_all_rx_queues(adapter);
   1277 }
   1278 
   1279 static inline int
   1280 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
   1281 {
   1282 	struct ena_adapter *adapter = tx_ring->adapter;
   1283 	struct ena_tx_buffer *tx_info = NULL;
   1284 
   1285 	if (likely(req_id < tx_ring->ring_size)) {
   1286 		tx_info = &tx_ring->tx_buffer_info[req_id];
   1287 		if (tx_info->mbuf != NULL)
   1288 			return (0);
   1289 	}
   1290 
   1291 	if (tx_info->mbuf == NULL)
   1292 		device_printf(adapter->pdev,
   1293 		    "tx_info doesn't have valid mbuf\n");
   1294 	else
   1295 		device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
   1296 
   1297 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
   1298 
   1299 	return (EFAULT);
   1300 }
   1301 
   1302 static int
   1303 ena_create_io_queues(struct ena_adapter *adapter)
   1304 {
   1305 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   1306 	struct ena_com_create_io_ctx ctx;
   1307 	struct ena_ring *ring;
   1308 	uint16_t ena_qid;
   1309 	uint32_t msix_vector;
   1310 	int rc, i;
   1311 
   1312 	/* Create TX queues */
   1313 	for (i = 0; i < adapter->num_queues; i++) {
   1314 		msix_vector = ENA_IO_IRQ_IDX(i);
   1315 		ena_qid = ENA_IO_TXQ_IDX(i);
   1316 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
   1317 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
   1318 		ctx.queue_size = adapter->tx_ring_size;
   1319 		ctx.msix_vector = msix_vector;
   1320 		ctx.qid = ena_qid;
   1321 		rc = ena_com_create_io_queue(ena_dev, &ctx);
   1322 		if (rc != 0) {
   1323 			device_printf(adapter->pdev,
   1324 			    "Failed to create io TX queue #%d rc: %d\n", i, rc);
   1325 			goto err_tx;
   1326 		}
   1327 		ring = &adapter->tx_ring[i];
   1328 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
   1329 		    &ring->ena_com_io_sq,
   1330 		    &ring->ena_com_io_cq);
   1331 		if (rc != 0) {
   1332 			device_printf(adapter->pdev,
   1333 			    "Failed to get TX queue handlers. TX queue num"
   1334 			    " %d rc: %d\n", i, rc);
   1335 			ena_com_destroy_io_queue(ena_dev, ena_qid);
   1336 			goto err_tx;
   1337 		}
   1338 	}
   1339 
   1340 	/* Create RX queues */
   1341 	for (i = 0; i < adapter->num_queues; i++) {
   1342 		msix_vector = ENA_IO_IRQ_IDX(i);
   1343 		ena_qid = ENA_IO_RXQ_IDX(i);
   1344 		ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
   1345 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
   1346 		ctx.queue_size = adapter->rx_ring_size;
   1347 		ctx.msix_vector = msix_vector;
   1348 		ctx.qid = ena_qid;
   1349 		rc = ena_com_create_io_queue(ena_dev, &ctx);
   1350 		if (unlikely(rc != 0)) {
   1351 			device_printf(adapter->pdev,
   1352 			    "Failed to create io RX queue[%d] rc: %d\n", i, rc);
   1353 			goto err_rx;
   1354 		}
   1355 
   1356 		ring = &adapter->rx_ring[i];
   1357 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
   1358 		    &ring->ena_com_io_sq,
   1359 		    &ring->ena_com_io_cq);
   1360 		if (unlikely(rc != 0)) {
   1361 			device_printf(adapter->pdev,
   1362 			    "Failed to get RX queue handlers. RX queue num"
   1363 			    " %d rc: %d\n", i, rc);
   1364 			ena_com_destroy_io_queue(ena_dev, ena_qid);
   1365 			goto err_rx;
   1366 		}
   1367 	}
   1368 
   1369 	return (0);
   1370 
   1371 err_rx:
   1372 	while (i--)
   1373 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
   1374 	i = adapter->num_queues;
   1375 err_tx:
   1376 	while (i--)
   1377 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
   1378 
   1379 	return (ENXIO);
   1380 }
   1381 
   1382 /**
   1383  * ena_tx_cleanup - clear sent packets and corresponding descriptors
   1384  * @tx_ring: ring for which we want to clean packets
   1385  *
   1386  * Once packets are sent, we ask the device in a loop for no longer used
   1387  * descriptors. We find the related mbuf chain in a map (index in an array)
   1388  * and free it, then update ring state.
   1389  * This is performed in "endless" loop, updating ring pointers every
   1390  * TX_COMMIT. The first check of free descriptor is performed before the actual
   1391  * loop, then repeated at the loop end.
   1392  **/
   1393 static int
   1394 ena_tx_cleanup(struct ena_ring *tx_ring)
   1395 {
   1396 	struct ena_adapter *adapter;
   1397 	struct ena_com_io_cq* io_cq;
   1398 	uint16_t next_to_clean;
   1399 	uint16_t req_id;
   1400 	uint16_t ena_qid;
   1401 	unsigned int total_done = 0;
   1402 	int rc;
   1403 	int commit = TX_COMMIT;
   1404 	int budget = TX_BUDGET;
   1405 	int work_done;
   1406 
   1407 	adapter = tx_ring->que->adapter;
   1408 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   1409 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1410 	next_to_clean = tx_ring->next_to_clean;
   1411 
   1412 	do {
   1413 		struct ena_tx_buffer *tx_info;
   1414 		struct mbuf *mbuf;
   1415 
   1416 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
   1417 		if (unlikely(rc != 0))
   1418 			break;
   1419 
   1420 		rc = validate_tx_req_id(tx_ring, req_id);
   1421 		if (unlikely(rc != 0))
   1422 			break;
   1423 
   1424 		tx_info = &tx_ring->tx_buffer_info[req_id];
   1425 
   1426 		mbuf = tx_info->mbuf;
   1427 
   1428 		tx_info->mbuf = NULL;
   1429 		bintime_clear(&tx_info->timestamp);
   1430 
   1431 		if (likely(tx_info->num_of_bufs != 0)) {
   1432 			/* Map is no longer required */
   1433 			bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   1434 		}
   1435 
   1436 		ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
   1437 		    tx_ring->qid, mbuf);
   1438 
   1439 		m_freem(mbuf);
   1440 
   1441 		total_done += tx_info->tx_descs;
   1442 
   1443 		tx_ring->free_tx_ids[next_to_clean] = req_id;
   1444 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
   1445 		    tx_ring->ring_size);
   1446 
   1447 		if (unlikely(--commit == 0)) {
   1448 			commit = TX_COMMIT;
   1449 			/* update ring state every TX_COMMIT descriptor */
   1450 			tx_ring->next_to_clean = next_to_clean;
   1451 			ena_com_comp_ack(
   1452 			    &adapter->ena_dev->io_sq_queues[ena_qid],
   1453 			    total_done);
   1454 			ena_com_update_dev_comp_head(io_cq);
   1455 			total_done = 0;
   1456 		}
   1457 	} while (likely(--budget));
   1458 
   1459 	work_done = TX_BUDGET - budget;
   1460 
   1461 	ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
   1462 	tx_ring->qid, work_done);
   1463 
   1464 	/* If there is still something to commit update ring state */
   1465 	if (likely(commit != TX_COMMIT)) {
   1466 		tx_ring->next_to_clean = next_to_clean;
   1467 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
   1468 		    total_done);
   1469 		ena_com_update_dev_comp_head(io_cq);
   1470 	}
   1471 
   1472 	if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   1473 		workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
   1474 
   1475 	return (work_done);
   1476 }
   1477 
   1478 #if 0
   1479 static void
   1480 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
   1481     struct mbuf *mbuf)
   1482 {
   1483 	struct ena_adapter *adapter = rx_ring->adapter;
   1484 
   1485 	if (likely(adapter->rss_support)) {
   1486 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
   1487 
   1488 		if (ena_rx_ctx->frag &&
   1489 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
   1490 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
   1491 			return;
   1492 		}
   1493 
   1494 		switch (ena_rx_ctx->l3_proto) {
   1495 		case ENA_ETH_IO_L3_PROTO_IPV4:
   1496 			switch (ena_rx_ctx->l4_proto) {
   1497 			case ENA_ETH_IO_L4_PROTO_TCP:
   1498 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
   1499 				break;
   1500 			case ENA_ETH_IO_L4_PROTO_UDP:
   1501 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
   1502 				break;
   1503 			default:
   1504 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
   1505 			}
   1506 			break;
   1507 		case ENA_ETH_IO_L3_PROTO_IPV6:
   1508 			switch (ena_rx_ctx->l4_proto) {
   1509 			case ENA_ETH_IO_L4_PROTO_TCP:
   1510 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
   1511 				break;
   1512 			case ENA_ETH_IO_L4_PROTO_UDP:
   1513 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
   1514 				break;
   1515 			default:
   1516 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
   1517 			}
   1518 			break;
   1519 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
   1520 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
   1521 			break;
   1522 		default:
   1523 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
   1524 		}
   1525 	} else {
   1526 		mbuf->m_pkthdr.flowid = rx_ring->qid;
   1527 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
   1528 	}
   1529 }
   1530 #endif
   1531 
   1532 /**
   1533  * ena_rx_mbuf - assemble mbuf from descriptors
   1534  * @rx_ring: ring for which we want to clean packets
   1535  * @ena_bufs: buffer info
   1536  * @ena_rx_ctx: metadata for this packet(s)
   1537  * @next_to_clean: ring pointer, will be updated only upon success
   1538  *
   1539  **/
   1540 static struct mbuf*
   1541 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
   1542     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
   1543 {
   1544 	struct mbuf *mbuf;
   1545 	struct ena_rx_buffer *rx_info;
   1546 	struct ena_adapter *adapter;
   1547 	unsigned int descs = ena_rx_ctx->descs;
   1548 	uint16_t ntc, len, req_id, buf = 0;
   1549 
   1550 	ntc = *next_to_clean;
   1551 	adapter = rx_ring->adapter;
   1552 	rx_info = &rx_ring->rx_buffer_info[ntc];
   1553 
   1554 	if (unlikely(rx_info->mbuf == NULL)) {
   1555 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
   1556 		return (NULL);
   1557 	}
   1558 
   1559 	len = ena_bufs[buf].len;
   1560 	req_id = ena_bufs[buf].req_id;
   1561 	rx_info = &rx_ring->rx_buffer_info[req_id];
   1562 
   1563 	ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
   1564 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
   1565 
   1566 	mbuf = rx_info->mbuf;
   1567 	KASSERT(mbuf->m_flags & M_PKTHDR);
   1568 	mbuf->m_pkthdr.len = len;
   1569 	mbuf->m_len = len;
   1570 	m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
   1571 
   1572 	/* Fill mbuf with hash key and it's interpretation for optimization */
   1573 #if 0
   1574 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
   1575 #endif
   1576 
   1577 	ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf %p, flags=0x%x, len: %d",
   1578 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
   1579 
   1580 	/* DMA address is not needed anymore, unmap it */
   1581 	bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
   1582 
   1583 	rx_info->mbuf = NULL;
   1584 	rx_ring->free_rx_ids[ntc] = req_id;
   1585 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
   1586 
   1587 	/*
   1588 	 * While we have more than 1 descriptors for one rcvd packet, append
   1589 	 * other mbufs to the main one
   1590 	 */
   1591 	while (--descs) {
   1592 		++buf;
   1593 		len = ena_bufs[buf].len;
   1594 		req_id = ena_bufs[buf].req_id;
   1595 		rx_info = &rx_ring->rx_buffer_info[req_id];
   1596 
   1597 		if (unlikely(rx_info->mbuf == NULL)) {
   1598 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
   1599 			/*
   1600 			 * If one of the required mbufs was not allocated yet,
   1601 			 * we can break there.
   1602 			 * All earlier used descriptors will be reallocated
   1603 			 * later and not used mbufs can be reused.
   1604 			 * The next_to_clean pointer will not be updated in case
   1605 			 * of an error, so caller should advance it manually
   1606 			 * in error handling routine to keep it up to date
   1607 			 * with hw ring.
   1608 			 */
   1609 			m_freem(mbuf);
   1610 			return (NULL);
   1611 		}
   1612 
   1613 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
   1614 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
   1615 			ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
   1616 			    mbuf);
   1617 		}
   1618 
   1619 		ena_trace(ENA_DBG | ENA_RXPTH,
   1620 		    "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
   1621 
   1622 		/* Free already appended mbuf, it won't be useful anymore */
   1623 		bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
   1624 		m_freem(rx_info->mbuf);
   1625 		rx_info->mbuf = NULL;
   1626 
   1627 		rx_ring->free_rx_ids[ntc] = req_id;
   1628 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
   1629 	}
   1630 
   1631 	*next_to_clean = ntc;
   1632 
   1633 	return (mbuf);
   1634 }
   1635 
   1636 /**
   1637  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
   1638  **/
   1639 static inline void
   1640 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
   1641     struct mbuf *mbuf)
   1642 {
   1643 
   1644 	/* IPv4 */
   1645 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
   1646 		mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1647 		if (ena_rx_ctx->l3_csum_err) {
   1648 			/* ipv4 checksum error */
   1649 			mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1650 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1651 			ena_trace(ENA_DBG, "RX IPv4 header checksum error");
   1652 			return;
   1653 		}
   1654 
   1655 		/*  TCP/UDP */
   1656 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
   1657 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
   1658 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
   1659 			if (ena_rx_ctx->l4_csum_err) {
   1660 				/* TCP/UDP checksum error */
   1661 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1662 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1663 				ena_trace(ENA_DBG, "RX L4 checksum error");
   1664 			}
   1665 		}
   1666 	}
   1667 	/* IPv6 */
   1668 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
   1669 		/*  TCP/UDP */
   1670 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
   1671 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
   1672 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
   1673 			if (ena_rx_ctx->l4_csum_err) {
   1674 				/* TCP/UDP checksum error */
   1675 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1676 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1677 				ena_trace(ENA_DBG, "RX L4 checksum error");
   1678 			}
   1679 		}
   1680 	}
   1681 }
   1682 
   1683 static void
   1684 ena_deferred_rx_cleanup(struct work *wk, void *arg)
   1685 {
   1686 	struct ena_ring *rx_ring = arg;
   1687 	int budget = CLEAN_BUDGET;
   1688 
   1689 	atomic_swap_uint(&rx_ring->task_pending, 0);
   1690 
   1691 	ENA_RING_MTX_LOCK(rx_ring);
   1692 	/*
   1693 	 * If deferred task was executed, perform cleanup of all awaiting
   1694 	 * descs (or until given budget is depleted to avoid infinite loop).
   1695 	 */
   1696 	while (likely(budget--)) {
   1697 		if (ena_rx_cleanup(rx_ring) == 0)
   1698 			break;
   1699 	}
   1700 	ENA_RING_MTX_UNLOCK(rx_ring);
   1701 }
   1702 
   1703 /**
   1704  * ena_rx_cleanup - handle rx irq
   1705  * @arg: ring for which irq is being handled
   1706  **/
   1707 static int
   1708 ena_rx_cleanup(struct ena_ring *rx_ring)
   1709 {
   1710 	struct ena_adapter *adapter;
   1711 	struct mbuf *mbuf;
   1712 	struct ena_com_rx_ctx ena_rx_ctx;
   1713 	struct ena_com_io_cq* io_cq;
   1714 	struct ena_com_io_sq* io_sq;
   1715 	struct ifnet *ifp;
   1716 	uint16_t ena_qid;
   1717 	uint16_t next_to_clean;
   1718 	uint32_t refill_required;
   1719 	uint32_t refill_threshold;
   1720 	uint32_t do_if_input = 0;
   1721 	unsigned int qid;
   1722 	int rc, i;
   1723 	int budget = RX_BUDGET;
   1724 
   1725 	adapter = rx_ring->que->adapter;
   1726 	ifp = adapter->ifp;
   1727 	qid = rx_ring->que->id;
   1728 	ena_qid = ENA_IO_RXQ_IDX(qid);
   1729 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1730 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
   1731 	next_to_clean = rx_ring->next_to_clean;
   1732 
   1733 	ena_trace(ENA_DBG, "rx: qid %d", qid);
   1734 
   1735 	do {
   1736 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
   1737 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
   1738 		ena_rx_ctx.descs = 0;
   1739 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
   1740 
   1741 		if (unlikely(rc != 0))
   1742 			goto error;
   1743 
   1744 		if (unlikely(ena_rx_ctx.descs == 0))
   1745 			break;
   1746 
   1747 		ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
   1748 		    "descs #: %d l3 proto %d l4 proto %d hash: %x",
   1749 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
   1750 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
   1751 
   1752 		/* Receive mbuf from the ring */
   1753 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
   1754 		    &ena_rx_ctx, &next_to_clean);
   1755 
   1756 		/* Exit if we failed to retrieve a buffer */
   1757 		if (unlikely(mbuf == NULL)) {
   1758 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
   1759 				rx_ring->free_rx_ids[next_to_clean] =
   1760 				    rx_ring->ena_bufs[i].req_id;
   1761 				next_to_clean =
   1762 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
   1763 				    rx_ring->ring_size);
   1764 
   1765 			}
   1766 			break;
   1767 		}
   1768 
   1769 		if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
   1770 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
   1771 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
   1772 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
   1773 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
   1774 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
   1775 		}
   1776 
   1777 		counter_enter();
   1778 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
   1779 		    mbuf->m_pkthdr.len);
   1780 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
   1781 		    mbuf->m_pkthdr.len);
   1782 		counter_exit();
   1783 		/*
   1784 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
   1785 		 * should be computed by hardware.
   1786 		 */
   1787 		do_if_input = 1;
   1788 #ifdef LRO
   1789 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
   1790 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
   1791 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
   1792 			/*
   1793 			 * Send to the stack if:
   1794 			 *  - LRO not enabled, or
   1795 			 *  - no LRO resources, or
   1796 			 *  - lro enqueue fails
   1797 			 */
   1798 			if ((rx_ring->lro.lro_cnt != 0) &&
   1799 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
   1800 					do_if_input = 0;
   1801 		}
   1802 #endif
   1803 		if (do_if_input != 0) {
   1804 			ena_trace(ENA_DBG | ENA_RXPTH,
   1805 			    "calling if_input() with mbuf %p", mbuf);
   1806 			if_percpuq_enqueue(ifp->if_percpuq, mbuf);
   1807 		}
   1808 
   1809 		counter_enter();
   1810 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
   1811 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
   1812 		counter_exit();
   1813 	} while (--budget);
   1814 
   1815 	rx_ring->next_to_clean = next_to_clean;
   1816 
   1817 	refill_required = ena_com_free_desc(io_sq);
   1818 	refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
   1819 
   1820 	if (refill_required > refill_threshold) {
   1821 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
   1822 		ena_refill_rx_bufs(rx_ring, refill_required);
   1823 	}
   1824 
   1825 #ifdef LRO
   1826 	tcp_lro_flush_all(&rx_ring->lro);
   1827 #endif
   1828 
   1829 	return (RX_BUDGET - budget);
   1830 
   1831 error:
   1832 	counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
   1833 	return (RX_BUDGET - budget);
   1834 }
   1835 
   1836 /*********************************************************************
   1837  *
   1838  *  MSIX & Interrupt Service routine
   1839  *
   1840  **********************************************************************/
   1841 
   1842 /**
   1843  * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
   1844  * @arg: interrupt number
   1845  **/
   1846 static int
   1847 ena_intr_msix_mgmnt(void *arg)
   1848 {
   1849 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
   1850 
   1851 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
   1852 	if (likely(adapter->running))
   1853 		ena_com_aenq_intr_handler(adapter->ena_dev, arg);
   1854 
   1855 	return 1;
   1856 }
   1857 
   1858 /**
   1859  * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
   1860  * @arg: interrupt number
   1861  **/
   1862 static int
   1863 ena_handle_msix(void *arg)
   1864 {
   1865 	struct ena_que	*que = arg;
   1866 	struct ena_adapter *adapter = que->adapter;
   1867 	struct ifnet *ifp = adapter->ifp;
   1868 	struct ena_ring *tx_ring;
   1869 	struct ena_ring *rx_ring;
   1870 	struct ena_com_io_cq* io_cq;
   1871 	struct ena_eth_io_intr_reg intr_reg;
   1872 	int qid, ena_qid;
   1873 	int txc, rxc, i;
   1874 
   1875 	if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
   1876 		return 0;
   1877 
   1878 	ena_trace(ENA_DBG, "MSI-X TX/RX routine");
   1879 
   1880 	tx_ring = que->tx_ring;
   1881 	rx_ring = que->rx_ring;
   1882 	qid = que->id;
   1883 	ena_qid = ENA_IO_TXQ_IDX(qid);
   1884 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1885 
   1886 	for (i = 0; i < CLEAN_BUDGET; ++i) {
   1887 		/*
   1888 		 * If lock cannot be acquired, then deferred cleanup task was
   1889 		 * being executed and rx ring is being cleaned up in
   1890 		 * another thread.
   1891 		 */
   1892 		if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) {
   1893 			rxc = ena_rx_cleanup(rx_ring);
   1894 			ENA_RING_MTX_UNLOCK(rx_ring);
   1895 		} else {
   1896 			rxc = 0;
   1897 		}
   1898 
   1899 		/* Protection from calling ena_tx_cleanup from ena_start_xmit */
   1900 		ENA_RING_MTX_LOCK(tx_ring);
   1901 		txc = ena_tx_cleanup(tx_ring);
   1902 		ENA_RING_MTX_UNLOCK(tx_ring);
   1903 
   1904 		if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
   1905 			return 0;
   1906 
   1907 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
   1908 		       break;
   1909 	}
   1910 
   1911 	/* Signal that work is done and unmask interrupt */
   1912 	ena_com_update_intr_reg(&intr_reg,
   1913 	    RX_IRQ_INTERVAL,
   1914 	    TX_IRQ_INTERVAL,
   1915 	    true);
   1916 	ena_com_unmask_intr(io_cq, &intr_reg);
   1917 
   1918 	return 1;
   1919 }
   1920 
   1921 static int
   1922 ena_enable_msix(struct ena_adapter *adapter)
   1923 {
   1924 	int msix_req;
   1925 	int counts[PCI_INTR_TYPE_SIZE];
   1926 	int max_type;
   1927 
   1928 	/* Reserved the max msix vectors we might need */
   1929 	msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
   1930 
   1931 	counts[PCI_INTR_TYPE_INTX] = 0;
   1932 	counts[PCI_INTR_TYPE_MSI] = 0;
   1933 	counts[PCI_INTR_TYPE_MSIX] = msix_req;
   1934 	max_type = PCI_INTR_TYPE_MSIX;
   1935 
   1936 	if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
   1937 	    max_type) != 0) {
   1938 		aprint_error_dev(adapter->pdev,
   1939 		    "failed to allocate interrupt\n");
   1940 		return ENOSPC;
   1941 	}
   1942 
   1943 	adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
   1944 
   1945 	if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
   1946 		device_printf(adapter->pdev,
   1947 		    "Enable only %d MSI-x (out of %d), reduce "
   1948 		    "the number of queues\n", adapter->sc_nintrs, msix_req);
   1949 		adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
   1950 	}
   1951 
   1952 	return 0;
   1953 }
   1954 
   1955 #if 0
   1956 static void
   1957 ena_setup_io_intr(struct ena_adapter *adapter)
   1958 {
   1959 	static int last_bind_cpu = -1;
   1960 	int irq_idx;
   1961 
   1962 	for (int i = 0; i < adapter->num_queues; i++) {
   1963 		irq_idx = ENA_IO_IRQ_IDX(i);
   1964 
   1965 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
   1966 		    "%s-TxRx-%d", device_xname(adapter->pdev), i);
   1967 		adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
   1968 		adapter->irq_tbl[irq_idx].data = &adapter->que[i];
   1969 		adapter->irq_tbl[irq_idx].vector =
   1970 		    adapter->msix_entries[irq_idx].vector;
   1971 		ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
   1972 		    adapter->msix_entries[irq_idx].vector);
   1973 #ifdef	RSS
   1974 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
   1975 		    rss_getcpu(i % rss_getnumbuckets());
   1976 #else
   1977 		/*
   1978 		 * We still want to bind rings to the corresponding cpu
   1979 		 * using something similar to the RSS round-robin technique.
   1980 		 */
   1981 		if (unlikely(last_bind_cpu < 0))
   1982 			last_bind_cpu = CPU_FIRST();
   1983 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
   1984 		    last_bind_cpu;
   1985 		last_bind_cpu = CPU_NEXT(last_bind_cpu);
   1986 #endif
   1987 	}
   1988 }
   1989 #endif
   1990 
   1991 static int
   1992 ena_request_mgmnt_irq(struct ena_adapter *adapter)
   1993 {
   1994 	const char *intrstr;
   1995 	char intrbuf[PCI_INTRSTR_LEN];
   1996 	char intr_xname[INTRDEVNAMEBUF];
   1997 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
   1998 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
   1999 
   2000 	KASSERT(adapter->sc_intrs != NULL);
   2001 	KASSERT(adapter->sc_ihs[irq_slot] == NULL);
   2002 
   2003 	snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
   2004 	    device_xname(adapter->pdev));
   2005 	intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
   2006 	    intrbuf, sizeof(intrbuf));
   2007 
   2008 	adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
   2009 	    pc, adapter->sc_intrs[irq_slot],
   2010 	    IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
   2011 
   2012 	if (adapter->sc_ihs[irq_slot] == NULL) {
   2013 		device_printf(adapter->pdev, "failed to register "
   2014 		    "interrupt handler for MGMNT irq %s\n",
   2015 		    intrstr);
   2016 		return ENOMEM;
   2017 	}
   2018 
   2019 	aprint_normal_dev(adapter->pdev,
   2020 	    "for MGMNT interrupting at %s\n", intrstr);
   2021 
   2022 	return 0;
   2023 }
   2024 
   2025 static int
   2026 ena_request_io_irq(struct ena_adapter *adapter)
   2027 {
   2028 	const char *intrstr;
   2029 	char intrbuf[PCI_INTRSTR_LEN];
   2030 	char intr_xname[INTRDEVNAMEBUF];
   2031 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
   2032 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
   2033 	void *vih;
   2034 	kcpuset_t *affinity;
   2035 	int i;
   2036 
   2037 	KASSERT(adapter->sc_intrs != NULL);
   2038 
   2039 	kcpuset_create(&affinity, false);
   2040 
   2041 	for (i = 0; i < adapter->num_queues; i++) {
   2042 		int irq_slot = i + irq_off;
   2043 		int affinity_to = (irq_slot) % ncpu;
   2044 
   2045 		KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
   2046 		KASSERT(adapter->sc_ihs[irq_slot] == NULL);
   2047 
   2048 		snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
   2049 		    device_xname(adapter->pdev), i);
   2050 		intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
   2051 		    intrbuf, sizeof(intrbuf));
   2052 
   2053 		vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
   2054 		    adapter->sc_intrs[irq_slot], IPL_NET,
   2055 		    ena_handle_msix, &adapter->que[i], intr_xname);
   2056 
   2057 		if (adapter->sc_ihs[ENA_MGMNT_IRQ_IDX] == NULL) {
   2058 			device_printf(adapter->pdev, "failed to register "
   2059 			    "interrupt handler for IO queue %d irq %s\n",
   2060 			    i, intrstr);
   2061 			goto err;
   2062 		}
   2063 
   2064 		kcpuset_zero(affinity);
   2065 		/* Round-robin affinity */
   2066 		kcpuset_set(affinity, affinity_to);
   2067 		int error = interrupt_distribute(vih, affinity, NULL);
   2068 		if (error == 0) {
   2069 			aprint_normal_dev(adapter->pdev,
   2070 			    "for IO queue %d interrupting at %s"
   2071 			    " affinity to %u\n", i, intrstr, affinity_to);
   2072 		} else {
   2073 			aprint_normal_dev(adapter->pdev,
   2074 			    "for IO queue %d interrupting at %s\n", i, intrstr);
   2075 		}
   2076 
   2077 		adapter->sc_ihs[irq_slot] = vih;
   2078 
   2079 #ifdef	RSS
   2080 		ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
   2081 		    i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
   2082 #else
   2083 		ena_trace(ENA_INFO, "queue %d - cpu %d\n",
   2084 		    i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
   2085 #endif
   2086 	}
   2087 
   2088 	kcpuset_destroy(affinity);
   2089 	return 0;
   2090 
   2091 err:
   2092 	kcpuset_destroy(affinity);
   2093 
   2094 	for (i--; i >= 0; i--) {
   2095 		int irq_slot __diagused = i + irq_off;
   2096 		KASSERT(adapter->sc_ihs[irq_slot] != NULL);
   2097 		pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[i]);
   2098 		adapter->sc_ihs[i] = NULL;
   2099 	}
   2100 
   2101 	return ENOSPC;
   2102 }
   2103 
   2104 static void
   2105 ena_free_mgmnt_irq(struct ena_adapter *adapter)
   2106 {
   2107 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
   2108 
   2109 	if (adapter->sc_ihs[irq_slot]) {
   2110 		pci_intr_disestablish(adapter->sc_pa.pa_pc,
   2111 		    adapter->sc_ihs[irq_slot]);
   2112 		adapter->sc_ihs[irq_slot] = NULL;
   2113 	}
   2114 }
   2115 
   2116 static void
   2117 ena_free_io_irq(struct ena_adapter *adapter)
   2118 {
   2119 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
   2120 
   2121 	for (int i = 0; i < adapter->num_queues; i++) {
   2122 		int irq_slot = i + irq_off;
   2123 
   2124 		if (adapter->sc_ihs[irq_slot]) {
   2125 			pci_intr_disestablish(adapter->sc_pa.pa_pc,
   2126 			    adapter->sc_ihs[i]);
   2127 			adapter->sc_ihs[i] = NULL;
   2128 		}
   2129 	}
   2130 }
   2131 
   2132 static void
   2133 ena_free_irqs(struct ena_adapter* adapter)
   2134 {
   2135 
   2136 	ena_free_io_irq(adapter);
   2137 	ena_free_mgmnt_irq(adapter);
   2138 	ena_disable_msix(adapter);
   2139 }
   2140 
   2141 static void
   2142 ena_disable_msix(struct ena_adapter *adapter)
   2143 {
   2144 	pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
   2145 	    adapter->sc_nintrs);
   2146 }
   2147 
   2148 static void
   2149 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
   2150 {
   2151 	struct ena_com_io_cq* io_cq;
   2152 	struct ena_eth_io_intr_reg intr_reg;
   2153 	uint16_t ena_qid;
   2154 	int i;
   2155 
   2156 	/* Unmask interrupts for all queues */
   2157 	for (i = 0; i < adapter->num_queues; i++) {
   2158 		ena_qid = ENA_IO_TXQ_IDX(i);
   2159 		io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   2160 		ena_com_update_intr_reg(&intr_reg, 0, 0, true);
   2161 		ena_com_unmask_intr(io_cq, &intr_reg);
   2162 	}
   2163 }
   2164 
   2165 /* Configure the Rx forwarding */
   2166 static int
   2167 ena_rss_configure(struct ena_adapter *adapter)
   2168 {
   2169 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   2170 	int rc;
   2171 
   2172 	/* Set indirect table */
   2173 	rc = ena_com_indirect_table_set(ena_dev);
   2174 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2175 		return (rc);
   2176 
   2177 	/* Configure hash function (if supported) */
   2178 	rc = ena_com_set_hash_function(ena_dev);
   2179 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2180 		return (rc);
   2181 
   2182 	/* Configure hash inputs (if supported) */
   2183 	rc = ena_com_set_hash_ctrl(ena_dev);
   2184 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2185 		return (rc);
   2186 
   2187 	return (0);
   2188 }
   2189 
   2190 static int
   2191 ena_up_complete(struct ena_adapter *adapter)
   2192 {
   2193 	int rc;
   2194 
   2195 	if (likely(adapter->rss_support)) {
   2196 		rc = ena_rss_configure(adapter);
   2197 		if (rc != 0)
   2198 			return (rc);
   2199 	}
   2200 
   2201 	rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
   2202 	if (unlikely(rc != 0))
   2203 		return (rc);
   2204 
   2205 	ena_refill_all_rx_bufs(adapter);
   2206 	ena_reset_counters((struct evcnt *)&adapter->hw_stats,
   2207 	    sizeof(adapter->hw_stats));
   2208 
   2209 	return (0);
   2210 }
   2211 
   2212 static int
   2213 ena_up(struct ena_adapter *adapter)
   2214 {
   2215 	int rc = 0;
   2216 
   2217 #if 0
   2218 	if (unlikely(device_is_attached(adapter->pdev) == 0)) {
   2219 		device_printf(adapter->pdev, "device is not attached!\n");
   2220 		return (ENXIO);
   2221 	}
   2222 #endif
   2223 
   2224 	if (unlikely(!adapter->running)) {
   2225 		device_printf(adapter->pdev, "device is not running!\n");
   2226 		return (ENXIO);
   2227 	}
   2228 
   2229 	if (!adapter->up) {
   2230 		device_printf(adapter->pdev, "device is going UP\n");
   2231 
   2232 		/* setup interrupts for IO queues */
   2233 		rc = ena_request_io_irq(adapter);
   2234 		if (unlikely(rc != 0)) {
   2235 			ena_trace(ENA_ALERT, "err_req_irq");
   2236 			goto err_req_irq;
   2237 		}
   2238 
   2239 		/* allocate transmit descriptors */
   2240 		rc = ena_setup_all_tx_resources(adapter);
   2241 		if (unlikely(rc != 0)) {
   2242 			ena_trace(ENA_ALERT, "err_setup_tx");
   2243 			goto err_setup_tx;
   2244 		}
   2245 
   2246 		/* allocate receive descriptors */
   2247 		rc = ena_setup_all_rx_resources(adapter);
   2248 		if (unlikely(rc != 0)) {
   2249 			ena_trace(ENA_ALERT, "err_setup_rx");
   2250 			goto err_setup_rx;
   2251 		}
   2252 
   2253 		/* create IO queues for Rx & Tx */
   2254 		rc = ena_create_io_queues(adapter);
   2255 		if (unlikely(rc != 0)) {
   2256 			ena_trace(ENA_ALERT,
   2257 			    "create IO queues failed");
   2258 			goto err_io_que;
   2259 		}
   2260 
   2261 		if (unlikely(adapter->link_status))
   2262 			if_link_state_change(adapter->ifp, LINK_STATE_UP);
   2263 
   2264 		rc = ena_up_complete(adapter);
   2265 		if (unlikely(rc != 0))
   2266 			goto err_up_complete;
   2267 
   2268 		counter_u64_add(adapter->dev_stats.interface_up, 1);
   2269 
   2270 		ena_update_hwassist(adapter);
   2271 
   2272 		if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
   2273 		    IFF_OACTIVE);
   2274 
   2275 		callout_schedule(&adapter->timer_service, hz);
   2276 
   2277 		adapter->up = true;
   2278 
   2279 		ena_unmask_all_io_irqs(adapter);
   2280 	}
   2281 
   2282 	return (0);
   2283 
   2284 err_up_complete:
   2285 	ena_destroy_all_io_queues(adapter);
   2286 err_io_que:
   2287 	ena_free_all_rx_resources(adapter);
   2288 err_setup_rx:
   2289 	ena_free_all_tx_resources(adapter);
   2290 err_setup_tx:
   2291 	ena_free_io_irq(adapter);
   2292 err_req_irq:
   2293 	return (rc);
   2294 }
   2295 
   2296 #if 0
   2297 static uint64_t
   2298 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
   2299 {
   2300 	struct ena_adapter *adapter;
   2301 	struct ena_hw_stats *stats;
   2302 
   2303 	adapter = if_getsoftc(ifp);
   2304 	stats = &adapter->hw_stats;
   2305 
   2306 	switch (cnt) {
   2307 	case IFCOUNTER_IPACKETS:
   2308 		return (counter_u64_fetch(stats->rx_packets));
   2309 	case IFCOUNTER_OPACKETS:
   2310 		return (counter_u64_fetch(stats->tx_packets));
   2311 	case IFCOUNTER_IBYTES:
   2312 		return (counter_u64_fetch(stats->rx_bytes));
   2313 	case IFCOUNTER_OBYTES:
   2314 		return (counter_u64_fetch(stats->tx_bytes));
   2315 	case IFCOUNTER_IQDROPS:
   2316 		return (counter_u64_fetch(stats->rx_drops));
   2317 	default:
   2318 		return (if_get_counter_default(ifp, cnt));
   2319 	}
   2320 }
   2321 #endif
   2322 
   2323 static int
   2324 ena_media_change(struct ifnet *ifp)
   2325 {
   2326 	/* Media Change is not supported by firmware */
   2327 	return (0);
   2328 }
   2329 
   2330 static void
   2331 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
   2332 {
   2333 	struct ena_adapter *adapter = if_getsoftc(ifp);
   2334 	ena_trace(ENA_DBG, "enter");
   2335 
   2336 	mutex_enter(&adapter->global_mtx);
   2337 
   2338 	ifmr->ifm_status = IFM_AVALID;
   2339 	ifmr->ifm_active = IFM_ETHER;
   2340 
   2341 	if (!adapter->link_status) {
   2342 		mutex_exit(&adapter->global_mtx);
   2343 		ena_trace(ENA_INFO, "link_status = false");
   2344 		return;
   2345 	}
   2346 
   2347 	ifmr->ifm_status |= IFM_ACTIVE;
   2348 	ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
   2349 
   2350 	mutex_exit(&adapter->global_mtx);
   2351 }
   2352 
   2353 static int
   2354 ena_init(struct ifnet *ifp)
   2355 {
   2356 	struct ena_adapter *adapter = if_getsoftc(ifp);
   2357 
   2358 	if (!adapter->up) {
   2359 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2360 		ena_up(adapter);
   2361 		rw_exit(&adapter->ioctl_sx);
   2362 	}
   2363 
   2364 	return 0;
   2365 }
   2366 
   2367 static int
   2368 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
   2369 {
   2370 	struct ena_adapter *adapter;
   2371 	struct ifreq *ifr;
   2372 	int rc;
   2373 
   2374 	adapter = ifp->if_softc;
   2375 	ifr = (struct ifreq *)data;
   2376 
   2377 	/*
   2378 	 * Acquiring lock to prevent from running up and down routines parallel.
   2379 	 */
   2380 	rc = 0;
   2381 	switch (command) {
   2382 	case SIOCSIFMTU:
   2383 		if (ifp->if_mtu == ifr->ifr_mtu)
   2384 			break;
   2385 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2386 		ena_down(adapter);
   2387 
   2388 		ena_change_mtu(ifp, ifr->ifr_mtu);
   2389 
   2390 		rc = ena_up(adapter);
   2391 		rw_exit(&adapter->ioctl_sx);
   2392 		break;
   2393 
   2394 	case SIOCSIFFLAGS:
   2395 		if ((ifp->if_flags & IFF_UP) != 0) {
   2396 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
   2397 				if ((ifp->if_flags & (IFF_PROMISC |
   2398 				    IFF_ALLMULTI)) != 0) {
   2399 					device_printf(adapter->pdev,
   2400 					    "ioctl promisc/allmulti\n");
   2401 				}
   2402 			} else {
   2403 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2404 				rc = ena_up(adapter);
   2405 				rw_exit(&adapter->ioctl_sx);
   2406 			}
   2407 		} else {
   2408 			if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
   2409 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2410 				ena_down(adapter);
   2411 				rw_exit(&adapter->ioctl_sx);
   2412 			}
   2413 		}
   2414 		break;
   2415 
   2416 	case SIOCADDMULTI:
   2417 	case SIOCDELMULTI:
   2418 		break;
   2419 
   2420 	case SIOCSIFCAP:
   2421 		{
   2422 			struct ifcapreq *ifcr = data;
   2423 			int reinit = 0;
   2424 
   2425 			if (ifcr->ifcr_capenable != ifp->if_capenable) {
   2426 				ifp->if_capenable = ifcr->ifcr_capenable;
   2427 				reinit = 1;
   2428 			}
   2429 
   2430 			if ((reinit != 0) &&
   2431 			    ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
   2432 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2433 				ena_down(adapter);
   2434 				rc = ena_up(adapter);
   2435 				rw_exit(&adapter->ioctl_sx);
   2436 			}
   2437 		}
   2438 
   2439 		break;
   2440 	default:
   2441 		rc = ether_ioctl(ifp, command, data);
   2442 		break;
   2443 	}
   2444 
   2445 	return (rc);
   2446 }
   2447 
   2448 static int
   2449 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
   2450 {
   2451 	int caps = 0;
   2452 
   2453 	if ((feat->offload.tx &
   2454 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
   2455 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
   2456 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
   2457 		caps |= IFCAP_CSUM_IPv4_Tx;
   2458 
   2459 	if ((feat->offload.tx &
   2460 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
   2461 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
   2462 		caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
   2463 
   2464 	if ((feat->offload.tx &
   2465 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
   2466 		caps |= IFCAP_TSOv4;
   2467 
   2468 	if ((feat->offload.tx &
   2469 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
   2470 		caps |= IFCAP_TSOv6;
   2471 
   2472 	if ((feat->offload.rx_supported &
   2473 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
   2474 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
   2475 		caps |= IFCAP_CSUM_IPv4_Rx;
   2476 
   2477 	if ((feat->offload.rx_supported &
   2478 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
   2479 		caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
   2480 
   2481 	caps |= IFCAP_LRO;
   2482 
   2483 	return (caps);
   2484 }
   2485 
   2486 static void
   2487 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
   2488 {
   2489 
   2490 	host_info->supported_network_features[0] =
   2491 	    (uint32_t)if_getcapabilities(ifp);
   2492 }
   2493 
   2494 static void
   2495 ena_update_hwassist(struct ena_adapter *adapter)
   2496 {
   2497 	struct ifnet *ifp = adapter->ifp;
   2498 	uint32_t feat = adapter->tx_offload_cap;
   2499 	int cap = if_getcapenable(ifp);
   2500 	int flags = 0;
   2501 
   2502 	if_clearhwassist(ifp);
   2503 
   2504 	if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2505 	    != 0) {
   2506 		if ((feat &
   2507 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
   2508 			flags |= M_CSUM_IPv4;
   2509 		if ((feat &
   2510 		    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
   2511 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
   2512 			flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
   2513 	}
   2514 
   2515 	if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
   2516 		flags |= M_CSUM_TCPv6;
   2517 
   2518 	if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
   2519 		flags |= M_CSUM_UDPv6;
   2520 
   2521 	if ((cap & IFCAP_TSOv4) != 0)
   2522 		flags |= M_CSUM_TSOv4;
   2523 
   2524 	if ((cap & IFCAP_TSOv6) != 0)
   2525 		flags |= M_CSUM_TSOv6;
   2526 
   2527 	if_sethwassistbits(ifp, flags, 0);
   2528 }
   2529 
   2530 static int
   2531 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
   2532     struct ena_com_dev_get_features_ctx *feat)
   2533 {
   2534 	struct ifnet *ifp;
   2535 	int caps = 0;
   2536 
   2537 	ifp = adapter->ifp = &adapter->sc_ec.ec_if;
   2538 	if (unlikely(ifp == NULL)) {
   2539 		ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
   2540 		return (ENXIO);
   2541 	}
   2542 	if_initname(ifp, "ena", device_unit(pdev));
   2543 	if_setdev(ifp, pdev);
   2544 	if_setsoftc(ifp, adapter);
   2545 
   2546 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
   2547 	if_setinitfn(ifp, ena_init);
   2548 	if_settransmitfn(ifp, ena_mq_start);
   2549 #if 0
   2550 	if_setqflushfn(ifp, ena_qflush);
   2551 #endif
   2552 	if_setioctlfn(ifp, ena_ioctl);
   2553 #if 0
   2554 	if_setgetcounterfn(ifp, ena_get_counter);
   2555 #endif
   2556 
   2557 	if_setsendqlen(ifp, adapter->tx_ring_size);
   2558 	if_setsendqready(ifp);
   2559 	if_setmtu(ifp, ETHERMTU);
   2560 	if_setbaudrate(ifp, 0);
   2561 	/* Zeroize capabilities... */
   2562 	if_setcapabilities(ifp, 0);
   2563 	if_setcapenable(ifp, 0);
   2564 	/* check hardware support */
   2565 	caps = ena_get_dev_offloads(feat);
   2566 	/* ... and set them */
   2567 	if_setcapabilitiesbit(ifp, caps, 0);
   2568 	adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2569 
   2570 #if 0
   2571 	/* TSO parameters */
   2572 	/* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
   2573 	ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
   2574 	    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
   2575 	ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
   2576 	ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
   2577 #endif
   2578 
   2579 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
   2580 	if_setcapenable(ifp, if_getcapabilities(ifp));
   2581 
   2582 	/*
   2583 	 * Specify the media types supported by this adapter and register
   2584 	 * callbacks to update media and link information
   2585 	 */
   2586 	adapter->sc_ec.ec_ifmedia = &adapter->media;
   2587 	ifmedia_init(&adapter->media, IFM_IMASK,
   2588 	    ena_media_change, ena_media_status);
   2589 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
   2590 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
   2591 
   2592 	if_attach(ifp);
   2593 	if_deferred_start_init(ifp, NULL);
   2594 
   2595 	ether_ifattach(ifp, adapter->mac_addr);
   2596 
   2597 	return (0);
   2598 }
   2599 
   2600 static void
   2601 ena_down(struct ena_adapter *adapter)
   2602 {
   2603 	int rc;
   2604 
   2605 	if (adapter->up) {
   2606 		device_printf(adapter->pdev, "device is going DOWN\n");
   2607 
   2608 		callout_halt(&adapter->timer_service, &adapter->global_mtx);
   2609 
   2610 		adapter->up = false;
   2611 		if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
   2612 		    IFF_RUNNING);
   2613 
   2614 		ena_free_io_irq(adapter);
   2615 
   2616 		if (adapter->trigger_reset) {
   2617 			rc = ena_com_dev_reset(adapter->ena_dev,
   2618 			    adapter->reset_reason);
   2619 			if (unlikely(rc != 0))
   2620 				device_printf(adapter->pdev,
   2621 				    "Device reset failed\n");
   2622 		}
   2623 
   2624 		ena_destroy_all_io_queues(adapter);
   2625 
   2626 		ena_free_all_tx_bufs(adapter);
   2627 		ena_free_all_rx_bufs(adapter);
   2628 		ena_free_all_tx_resources(adapter);
   2629 		ena_free_all_rx_resources(adapter);
   2630 
   2631 		counter_u64_add(adapter->dev_stats.interface_down, 1);
   2632 	}
   2633 }
   2634 
   2635 static void
   2636 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
   2637 {
   2638 	struct ena_com_tx_meta *ena_meta;
   2639 	struct ether_vlan_header *eh;
   2640 	u32 mss;
   2641 	bool offload;
   2642 	uint16_t etype;
   2643 	int ehdrlen;
   2644 	struct ip *ip;
   2645 	int iphlen;
   2646 	struct tcphdr *th;
   2647 
   2648 	offload = false;
   2649 	ena_meta = &ena_tx_ctx->ena_meta;
   2650 
   2651 #if 0
   2652 	u32 mss = mbuf->m_pkthdr.tso_segsz;
   2653 
   2654 	if (mss != 0)
   2655 		offload = true;
   2656 #else
   2657 	mss = mbuf->m_pkthdr.len;	/* XXX don't have tso_segsz */
   2658 #endif
   2659 
   2660 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
   2661 		offload = true;
   2662 
   2663 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
   2664 		offload = true;
   2665 
   2666 	if (!offload) {
   2667 		ena_tx_ctx->meta_valid = 0;
   2668 		return;
   2669 	}
   2670 
   2671 	/* Determine where frame payload starts. */
   2672 	eh = mtod(mbuf, struct ether_vlan_header *);
   2673 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
   2674 		etype = ntohs(eh->evl_proto);
   2675 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   2676 	} else {
   2677 		etype = htons(eh->evl_encap_proto);
   2678 		ehdrlen = ETHER_HDR_LEN;
   2679 	}
   2680 
   2681 	ip = (struct ip *)(mbuf->m_data + ehdrlen);
   2682 	iphlen = ip->ip_hl << 2;
   2683 	th = (struct tcphdr *)((vaddr_t)ip + iphlen);
   2684 
   2685 	if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
   2686 		ena_tx_ctx->l3_csum_enable = 1;
   2687 	}
   2688 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
   2689 		ena_tx_ctx->tso_enable = 1;
   2690 		ena_meta->l4_hdr_len = (th->th_off);
   2691 	}
   2692 
   2693 	switch (etype) {
   2694 	case ETHERTYPE_IP:
   2695 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
   2696 		if ((ip->ip_off & htons(IP_DF)) != 0)
   2697 			ena_tx_ctx->df = 1;
   2698 		break;
   2699 	case ETHERTYPE_IPV6:
   2700 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
   2701 
   2702 	default:
   2703 		break;
   2704 	}
   2705 
   2706 	if (ip->ip_p == IPPROTO_TCP) {
   2707 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
   2708 		if ((mbuf->m_pkthdr.csum_flags &
   2709 		    (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
   2710 			ena_tx_ctx->l4_csum_enable = 1;
   2711 		else
   2712 			ena_tx_ctx->l4_csum_enable = 0;
   2713 	} else if (ip->ip_p == IPPROTO_UDP) {
   2714 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
   2715 		if ((mbuf->m_pkthdr.csum_flags &
   2716 		    (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
   2717 			ena_tx_ctx->l4_csum_enable = 1;
   2718 		else
   2719 			ena_tx_ctx->l4_csum_enable = 0;
   2720 	} else {
   2721 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
   2722 		ena_tx_ctx->l4_csum_enable = 0;
   2723 	}
   2724 
   2725 	ena_meta->mss = mss;
   2726 	ena_meta->l3_hdr_len = iphlen;
   2727 	ena_meta->l3_hdr_offset = ehdrlen;
   2728 	ena_tx_ctx->meta_valid = 1;
   2729 }
   2730 
   2731 static int
   2732 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
   2733 {
   2734 	struct ena_adapter *adapter;
   2735 	struct mbuf *collapsed_mbuf;
   2736 	int num_frags;
   2737 
   2738 	adapter = tx_ring->adapter;
   2739 	num_frags = ena_mbuf_count(*mbuf);
   2740 
   2741 	/* One segment must be reserved for configuration descriptor. */
   2742 	if (num_frags < adapter->max_tx_sgl_size)
   2743 		return (0);
   2744 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
   2745 
   2746 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
   2747 	    adapter->max_tx_sgl_size - 1);
   2748 	if (unlikely(collapsed_mbuf == NULL)) {
   2749 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
   2750 		return (ENOMEM);
   2751 	}
   2752 
   2753 	/* If mbuf was collapsed succesfully, original mbuf is released. */
   2754 	*mbuf = collapsed_mbuf;
   2755 
   2756 	return (0);
   2757 }
   2758 
   2759 static int
   2760 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
   2761 {
   2762 	struct ena_adapter *adapter;
   2763 	struct ena_tx_buffer *tx_info;
   2764 	struct ena_com_tx_ctx ena_tx_ctx;
   2765 	struct ena_com_dev *ena_dev;
   2766 	struct ena_com_buf *ena_buf;
   2767 	struct ena_com_io_sq* io_sq;
   2768 	void *push_hdr;
   2769 	uint16_t next_to_use;
   2770 	uint16_t req_id;
   2771 	uint16_t ena_qid;
   2772 	uint32_t header_len;
   2773 	int i, rc;
   2774 	int nb_hw_desc;
   2775 
   2776 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   2777 	adapter = tx_ring->que->adapter;
   2778 	ena_dev = adapter->ena_dev;
   2779 	io_sq = &ena_dev->io_sq_queues[ena_qid];
   2780 
   2781 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
   2782 	if (unlikely(rc != 0)) {
   2783 		ena_trace(ENA_WARNING,
   2784 		    "Failed to collapse mbuf! err: %d", rc);
   2785 		return (rc);
   2786 	}
   2787 
   2788 	next_to_use = tx_ring->next_to_use;
   2789 	req_id = tx_ring->free_tx_ids[next_to_use];
   2790 	tx_info = &tx_ring->tx_buffer_info[req_id];
   2791 
   2792 	tx_info->mbuf = *mbuf;
   2793 	tx_info->num_of_bufs = 0;
   2794 
   2795 	ena_buf = tx_info->bufs;
   2796 
   2797 	ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
   2798 
   2799 	/*
   2800 	 * header_len is just a hint for the device. Because FreeBSD is not
   2801 	 * giving us information about packet header length and it is not
   2802 	 * guaranteed that all packet headers will be in the 1st mbuf, setting
   2803 	 * header_len to 0 is making the device ignore this value and resolve
   2804 	 * header on it's own.
   2805 	 */
   2806 	header_len = 0;
   2807 	push_hdr = NULL;
   2808 
   2809 	rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
   2810 	    *mbuf, BUS_DMA_NOWAIT);
   2811 
   2812 	if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
   2813 		ena_trace(ENA_WARNING,
   2814 		    "dmamap load failed! err: %d nsegs: %d", rc,
   2815 		    tx_info->map->dm_nsegs);
   2816 		counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
   2817 		tx_info->mbuf = NULL;
   2818 		if (rc == ENOMEM)
   2819 			return (ENA_COM_NO_MEM);
   2820 		else
   2821 			return (ENA_COM_INVAL);
   2822 	}
   2823 
   2824 	for (i = 0; i < tx_info->map->dm_nsegs; i++) {
   2825 		ena_buf->len = tx_info->map->dm_segs[i].ds_len;
   2826 		ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
   2827 		ena_buf++;
   2828 	}
   2829 	tx_info->num_of_bufs = tx_info->map->dm_nsegs;
   2830 
   2831 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
   2832 	ena_tx_ctx.ena_bufs = tx_info->bufs;
   2833 	ena_tx_ctx.push_header = push_hdr;
   2834 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
   2835 	ena_tx_ctx.req_id = req_id;
   2836 	ena_tx_ctx.header_len = header_len;
   2837 
   2838 	/* Set flags and meta data */
   2839 	ena_tx_csum(&ena_tx_ctx, *mbuf);
   2840 	/* Prepare the packet's descriptors and send them to device */
   2841 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
   2842 	if (unlikely(rc != 0)) {
   2843 		device_printf(adapter->pdev, "failed to prepare tx bufs\n");
   2844 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
   2845 		goto dma_error;
   2846 	}
   2847 
   2848 	counter_enter();
   2849 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
   2850 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
   2851 	    (*mbuf)->m_pkthdr.len);
   2852 
   2853 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
   2854 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
   2855 	    (*mbuf)->m_pkthdr.len);
   2856 	counter_exit();
   2857 
   2858 	tx_info->tx_descs = nb_hw_desc;
   2859 	getbinuptime(&tx_info->timestamp);
   2860 	tx_info->print_once = true;
   2861 
   2862 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
   2863 	    tx_ring->ring_size);
   2864 
   2865 	bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
   2866 	    tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2867 
   2868 	return (0);
   2869 
   2870 dma_error:
   2871 	tx_info->mbuf = NULL;
   2872 	bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   2873 
   2874 	return (rc);
   2875 }
   2876 
   2877 static void
   2878 ena_start_xmit(struct ena_ring *tx_ring)
   2879 {
   2880 	struct mbuf *mbuf;
   2881 	struct ena_adapter *adapter = tx_ring->adapter;
   2882 	struct ena_com_io_sq* io_sq;
   2883 	int ena_qid;
   2884 	int acum_pkts = 0;
   2885 	int ret = 0;
   2886 
   2887 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
   2888 		return;
   2889 
   2890 	if (unlikely(!adapter->link_status))
   2891 		return;
   2892 
   2893 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   2894 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
   2895 
   2896 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
   2897 		ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
   2898 		    " header csum flags %#jx",
   2899 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
   2900 
   2901 		if (unlikely(!ena_com_sq_have_enough_space(io_sq,
   2902 		    ENA_TX_CLEANUP_THRESHOLD)))
   2903 			ena_tx_cleanup(tx_ring);
   2904 
   2905 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
   2906 			if (ret == ENA_COM_NO_MEM) {
   2907 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
   2908 			} else if (ret == ENA_COM_NO_SPACE) {
   2909 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
   2910 			} else {
   2911 				m_freem(mbuf);
   2912 				drbr_advance(adapter->ifp, tx_ring->br);
   2913 			}
   2914 
   2915 			break;
   2916 		}
   2917 
   2918 		drbr_advance(adapter->ifp, tx_ring->br);
   2919 
   2920 		if (unlikely((if_getdrvflags(adapter->ifp) &
   2921 		    IFF_RUNNING) == 0))
   2922 			return;
   2923 
   2924 		acum_pkts++;
   2925 
   2926 		/*
   2927 		 * If there's a BPF listener, bounce a copy of this frame
   2928 		 * to him.
   2929 		 */
   2930 		bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
   2931 
   2932 		if (unlikely(acum_pkts == DB_THRESHOLD)) {
   2933 			acum_pkts = 0;
   2934 			wmb();
   2935 			/* Trigger the dma engine */
   2936 			ena_com_write_sq_doorbell(io_sq);
   2937 			counter_u64_add(tx_ring->tx_stats.doorbells, 1);
   2938 		}
   2939 
   2940 	}
   2941 
   2942 	if (likely(acum_pkts != 0)) {
   2943 		wmb();
   2944 		/* Trigger the dma engine */
   2945 		ena_com_write_sq_doorbell(io_sq);
   2946 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
   2947 	}
   2948 
   2949 	if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
   2950 		ena_tx_cleanup(tx_ring);
   2951 }
   2952 
   2953 static void
   2954 ena_deferred_mq_start(struct work *wk, void *arg)
   2955 {
   2956 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
   2957 	struct ifnet *ifp = tx_ring->adapter->ifp;
   2958 
   2959 	atomic_swap_uint(&tx_ring->task_pending, 0);
   2960 
   2961 	while (!drbr_empty(ifp, tx_ring->br) &&
   2962 	    (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
   2963 		ENA_RING_MTX_LOCK(tx_ring);
   2964 		ena_start_xmit(tx_ring);
   2965 		ENA_RING_MTX_UNLOCK(tx_ring);
   2966 	}
   2967 }
   2968 
   2969 static int
   2970 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
   2971 {
   2972 	struct ena_adapter *adapter = ifp->if_softc;
   2973 	struct ena_ring *tx_ring;
   2974 	int ret, is_drbr_empty;
   2975 	uint32_t i;
   2976 
   2977 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
   2978 		return (ENODEV);
   2979 
   2980 	/* Which queue to use */
   2981 	/*
   2982 	 * If everything is setup correctly, it should be the
   2983 	 * same bucket that the current CPU we're on is.
   2984 	 * It should improve performance.
   2985 	 */
   2986 #if 0
   2987 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
   2988 #ifdef	RSS
   2989 		if (rss_hash2bucket(m->m_pkthdr.flowid,
   2990 		    M_HASHTYPE_GET(m), &i) == 0) {
   2991 			i = i % adapter->num_queues;
   2992 
   2993 		} else
   2994 #endif
   2995 		{
   2996 			i = m->m_pkthdr.flowid % adapter->num_queues;
   2997 		}
   2998 	} else {
   2999 #endif
   3000 		i = cpu_index(curcpu()) % adapter->num_queues;
   3001 #if 0
   3002 	}
   3003 #endif
   3004 	tx_ring = &adapter->tx_ring[i];
   3005 
   3006 	/* Check if drbr is empty before putting packet */
   3007 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
   3008 	ret = drbr_enqueue(ifp, tx_ring->br, m);
   3009 	if (unlikely(ret != 0)) {
   3010 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   3011 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
   3012 			    curcpu());
   3013 		return (ret);
   3014 	}
   3015 
   3016 	if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
   3017 		ena_start_xmit(tx_ring);
   3018 		ENA_RING_MTX_UNLOCK(tx_ring);
   3019 	} else {
   3020 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   3021 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
   3022 			    curcpu());
   3023 	}
   3024 
   3025 	return (0);
   3026 }
   3027 
   3028 #if 0
   3029 static void
   3030 ena_qflush(struct ifnet *ifp)
   3031 {
   3032 	struct ena_adapter *adapter = ifp->if_softc;
   3033 	struct ena_ring *tx_ring = adapter->tx_ring;
   3034 	int i;
   3035 
   3036 	for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
   3037 		if (!drbr_empty(ifp, tx_ring->br)) {
   3038 			ENA_RING_MTX_LOCK(tx_ring);
   3039 			drbr_flush(ifp, tx_ring->br);
   3040 			ENA_RING_MTX_UNLOCK(tx_ring);
   3041 		}
   3042 
   3043 	if_qflush(ifp);
   3044 }
   3045 #endif
   3046 
   3047 static int
   3048 ena_calc_io_queue_num(struct pci_attach_args *pa,
   3049     struct ena_adapter *adapter,
   3050     struct ena_com_dev_get_features_ctx *get_feat_ctx)
   3051 {
   3052 	int io_sq_num, io_cq_num, io_queue_num;
   3053 
   3054 	io_sq_num = get_feat_ctx->max_queues.max_sq_num;
   3055 	io_cq_num = get_feat_ctx->max_queues.max_cq_num;
   3056 
   3057 	io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
   3058 	io_queue_num = min_t(int, io_queue_num, io_sq_num);
   3059 	io_queue_num = min_t(int, io_queue_num, io_cq_num);
   3060 	/* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */
   3061 	io_queue_num = min_t(int, io_queue_num,
   3062 	    pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
   3063 #ifdef	RSS
   3064 	io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets());
   3065 #endif
   3066 
   3067 	return (io_queue_num);
   3068 }
   3069 
   3070 static int
   3071 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
   3072     uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
   3073 {
   3074 	uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
   3075 	uint32_t v;
   3076 	uint32_t q;
   3077 
   3078 	queue_size = min_t(uint32_t, queue_size,
   3079 	    feat->max_queues.max_cq_depth);
   3080 	queue_size = min_t(uint32_t, queue_size,
   3081 	    feat->max_queues.max_sq_depth);
   3082 
   3083 	/* round down to the nearest power of 2 */
   3084 	v = queue_size;
   3085 	while (v != 0) {
   3086 		if (powerof2(queue_size) != 0)
   3087 			break;
   3088 		v /= 2;
   3089 		q = rounddown2(queue_size, v);
   3090 		if (q != 0) {
   3091 			queue_size = q;
   3092 			break;
   3093 		}
   3094 	}
   3095 
   3096 	if (unlikely(queue_size == 0)) {
   3097 		device_printf(adapter->pdev, "Invalid queue size\n");
   3098 		return (ENA_COM_FAULT);
   3099 	}
   3100 
   3101 	*max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
   3102 	    feat->max_queues.max_packet_tx_descs);
   3103 	*max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
   3104 	    feat->max_queues.max_packet_rx_descs);
   3105 
   3106 	return (queue_size);
   3107 }
   3108 
   3109 #if 0
   3110 static int
   3111 ena_rss_init_default(struct ena_adapter *adapter)
   3112 {
   3113 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3114 	device_t dev = adapter->pdev;
   3115 	int qid, rc, i;
   3116 
   3117 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
   3118 	if (unlikely(rc != 0)) {
   3119 		device_printf(dev, "Cannot init indirect table\n");
   3120 		return (rc);
   3121 	}
   3122 
   3123 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
   3124 #ifdef	RSS
   3125 		qid = rss_get_indirection_to_bucket(i);
   3126 		qid = qid % adapter->num_queues;
   3127 #else
   3128 		qid = i % adapter->num_queues;
   3129 #endif
   3130 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
   3131 		    ENA_IO_RXQ_IDX(qid));
   3132 		if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3133 			device_printf(dev, "Cannot fill indirect table\n");
   3134 			goto err_rss_destroy;
   3135 		}
   3136 	}
   3137 
   3138 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
   3139 	    ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
   3140 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3141 		device_printf(dev, "Cannot fill hash function\n");
   3142 		goto err_rss_destroy;
   3143 	}
   3144 
   3145 	rc = ena_com_set_default_hash_ctrl(ena_dev);
   3146 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3147 		device_printf(dev, "Cannot fill hash control\n");
   3148 		goto err_rss_destroy;
   3149 	}
   3150 
   3151 	return (0);
   3152 
   3153 err_rss_destroy:
   3154 	ena_com_rss_destroy(ena_dev);
   3155 	return (rc);
   3156 }
   3157 
   3158 static void
   3159 ena_rss_init_default_deferred(void *arg)
   3160 {
   3161 	struct ena_adapter *adapter;
   3162 	devclass_t dc;
   3163 	int max;
   3164 	int rc;
   3165 
   3166 	dc = devclass_find("ena");
   3167 	if (unlikely(dc == NULL)) {
   3168 		ena_trace(ENA_ALERT, "No devclass ena\n");
   3169 		return;
   3170 	}
   3171 
   3172 	max = devclass_get_maxunit(dc);
   3173 	while (max-- >= 0) {
   3174 		adapter = devclass_get_softc(dc, max);
   3175 		if (adapter != NULL) {
   3176 			rc = ena_rss_init_default(adapter);
   3177 			adapter->rss_support = true;
   3178 			if (unlikely(rc != 0)) {
   3179 				device_printf(adapter->pdev,
   3180 				    "WARNING: RSS was not properly initialized,"
   3181 				    " it will affect bandwidth\n");
   3182 				adapter->rss_support = false;
   3183 			}
   3184 		}
   3185 	}
   3186 }
   3187 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL);
   3188 #endif
   3189 
   3190 static void
   3191 ena_config_host_info(struct ena_com_dev *ena_dev)
   3192 {
   3193 	struct ena_admin_host_info *host_info;
   3194 	int rc;
   3195 
   3196 	/* Allocate only the host info */
   3197 	rc = ena_com_allocate_host_info(ena_dev);
   3198 	if (unlikely(rc != 0)) {
   3199 		ena_trace(ENA_ALERT, "Cannot allocate host info\n");
   3200 		return;
   3201 	}
   3202 
   3203 	host_info = ena_dev->host_attr.host_info;
   3204 
   3205 	host_info->os_type = ENA_ADMIN_OS_FREEBSD;
   3206 	host_info->kernel_ver = osreldate;
   3207 
   3208 	snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
   3209 	    "%d", osreldate);
   3210 	host_info->os_dist = 0;
   3211 	strncpy(host_info->os_dist_str, osrelease,
   3212 	    sizeof(host_info->os_dist_str) - 1);
   3213 
   3214 	host_info->driver_version =
   3215 		(DRV_MODULE_VER_MAJOR) |
   3216 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
   3217 		(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
   3218 
   3219 	rc = ena_com_set_host_attributes(ena_dev);
   3220 	if (unlikely(rc != 0)) {
   3221 		if (rc == EOPNOTSUPP)
   3222 			ena_trace(ENA_WARNING, "Cannot set host attributes\n");
   3223 		else
   3224 			ena_trace(ENA_ALERT, "Cannot set host attributes\n");
   3225 
   3226 		goto err;
   3227 	}
   3228 
   3229 	return;
   3230 
   3231 err:
   3232 	ena_com_delete_host_info(ena_dev);
   3233 }
   3234 
   3235 static int
   3236 ena_device_init(struct ena_adapter *adapter, device_t pdev,
   3237     struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
   3238 {
   3239 	struct ena_com_dev* ena_dev = adapter->ena_dev;
   3240 	bool readless_supported;
   3241 	uint32_t aenq_groups;
   3242 	int dma_width;
   3243 	int rc;
   3244 
   3245 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
   3246 	if (unlikely(rc != 0)) {
   3247 		device_printf(pdev, "failed to init mmio read less\n");
   3248 		return (rc);
   3249 	}
   3250 
   3251 	/*
   3252 	 * The PCIe configuration space revision id indicate if mmio reg
   3253 	 * read is disabled
   3254 	 */
   3255 	const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
   3256 	readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
   3257 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
   3258 
   3259 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
   3260 	if (unlikely(rc != 0)) {
   3261 		device_printf(pdev, "Can not reset device\n");
   3262 		goto err_mmio_read_less;
   3263 	}
   3264 
   3265 	rc = ena_com_validate_version(ena_dev);
   3266 	if (unlikely(rc != 0)) {
   3267 		device_printf(pdev, "device version is too low\n");
   3268 		goto err_mmio_read_less;
   3269 	}
   3270 
   3271 	dma_width = ena_com_get_dma_width(ena_dev);
   3272 	if (unlikely(dma_width < 0)) {
   3273 		device_printf(pdev, "Invalid dma width value %d", dma_width);
   3274 		rc = dma_width;
   3275 		goto err_mmio_read_less;
   3276 	}
   3277 	adapter->dma_width = dma_width;
   3278 
   3279 	/* ENA admin level init */
   3280 	rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
   3281 	if (unlikely(rc != 0)) {
   3282 		device_printf(pdev,
   3283 		    "Can not initialize ena admin queue with device\n");
   3284 		goto err_mmio_read_less;
   3285 	}
   3286 
   3287 	/*
   3288 	 * To enable the msix interrupts the driver needs to know the number
   3289 	 * of queues. So the driver uses polling mode to retrieve this
   3290 	 * information
   3291 	 */
   3292 	ena_com_set_admin_polling_mode(ena_dev, true);
   3293 
   3294 	ena_config_host_info(ena_dev);
   3295 
   3296 	/* Get Device Attributes */
   3297 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
   3298 	if (unlikely(rc != 0)) {
   3299 		device_printf(pdev,
   3300 		    "Cannot get attribute for ena device rc: %d\n", rc);
   3301 		goto err_admin_init;
   3302 	}
   3303 
   3304 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
   3305 
   3306 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
   3307 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
   3308 	if (unlikely(rc != 0)) {
   3309 		device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
   3310 		goto err_admin_init;
   3311 	}
   3312 
   3313 	*wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
   3314 
   3315 	return (0);
   3316 
   3317 err_admin_init:
   3318 	ena_com_delete_host_info(ena_dev);
   3319 	ena_com_admin_destroy(ena_dev);
   3320 err_mmio_read_less:
   3321 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3322 
   3323 	return (rc);
   3324 }
   3325 
   3326 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
   3327     int io_vectors)
   3328 {
   3329 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3330 	int rc;
   3331 
   3332 	rc = ena_enable_msix(adapter);
   3333 	if (unlikely(rc != 0)) {
   3334 		device_printf(adapter->pdev, "Error with MSI-X enablement\n");
   3335 		return (rc);
   3336 	}
   3337 
   3338 	rc = ena_request_mgmnt_irq(adapter);
   3339 	if (unlikely(rc != 0)) {
   3340 		device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
   3341 		goto err_disable_msix;
   3342 	}
   3343 
   3344 	ena_com_set_admin_polling_mode(ena_dev, false);
   3345 
   3346 	ena_com_admin_aenq_enable(ena_dev);
   3347 
   3348 	return (0);
   3349 
   3350 err_disable_msix:
   3351 	ena_disable_msix(adapter);
   3352 
   3353 	return (rc);
   3354 }
   3355 
   3356 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
   3357 static void ena_keep_alive_wd(void *adapter_data,
   3358     struct ena_admin_aenq_entry *aenq_e)
   3359 {
   3360 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
   3361 	struct ena_admin_aenq_keep_alive_desc *desc;
   3362 	uint64_t rx_drops;
   3363 
   3364 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
   3365 
   3366 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
   3367 	counter_u64_zero(adapter->hw_stats.rx_drops);
   3368 	counter_u64_add(adapter->hw_stats.rx_drops, rx_drops);
   3369 
   3370 	atomic_store_release(&adapter->keep_alive_timestamp, getsbinuptime());
   3371 }
   3372 
   3373 /* Check for keep alive expiration */
   3374 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
   3375 {
   3376 	sbintime_t timestamp, time;
   3377 
   3378 	if (adapter->wd_active == 0)
   3379 		return;
   3380 
   3381 	if (likely(adapter->keep_alive_timeout == 0))
   3382 		return;
   3383 
   3384 	timestamp = atomic_load_acquire(&adapter->keep_alive_timestamp);
   3385 
   3386 	time = getsbinuptime() - timestamp;
   3387 	if (unlikely(time > adapter->keep_alive_timeout)) {
   3388 		device_printf(adapter->pdev,
   3389 		    "Keep alive watchdog timeout.\n");
   3390 		counter_u64_add(adapter->dev_stats.wd_expired, 1);
   3391 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
   3392 		adapter->trigger_reset = true;
   3393 	}
   3394 }
   3395 
   3396 /* Check if admin queue is enabled */
   3397 static void check_for_admin_com_state(struct ena_adapter *adapter)
   3398 {
   3399 	if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
   3400 	    false)) {
   3401 		device_printf(adapter->pdev,
   3402 		    "ENA admin queue is not in running state!\n");
   3403 		counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
   3404 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
   3405 		adapter->trigger_reset = true;
   3406 	}
   3407 }
   3408 
   3409 static int
   3410 check_missing_comp_in_queue(struct ena_adapter *adapter,
   3411     struct ena_ring *tx_ring)
   3412 {
   3413 	struct bintime curtime, time;
   3414 	struct ena_tx_buffer *tx_buf;
   3415 	uint32_t missed_tx = 0;
   3416 	int i;
   3417 
   3418 	getbinuptime(&curtime);
   3419 
   3420 	for (i = 0; i < tx_ring->ring_size; i++) {
   3421 		tx_buf = &tx_ring->tx_buffer_info[i];
   3422 
   3423 		if (bintime_isset(&tx_buf->timestamp) == 0)
   3424 			continue;
   3425 
   3426 		time = curtime;
   3427 		bintime_sub(&time, &tx_buf->timestamp);
   3428 
   3429 		/* Check again if packet is still waiting */
   3430 		if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
   3431 
   3432 			if (!tx_buf->print_once)
   3433 				ena_trace(ENA_WARNING, "Found a Tx that wasn't "
   3434 				    "completed on time, qid %d, index %d.\n",
   3435 				    tx_ring->qid, i);
   3436 
   3437 			tx_buf->print_once = true;
   3438 			missed_tx++;
   3439 			counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
   3440 
   3441 			if (unlikely(missed_tx >
   3442 			    adapter->missing_tx_threshold)) {
   3443 				device_printf(adapter->pdev,
   3444 				    "The number of lost tx completion "
   3445 				    "is above the threshold (%d > %d). "
   3446 				    "Reset the device\n",
   3447 				    missed_tx, adapter->missing_tx_threshold);
   3448 				adapter->reset_reason =
   3449 				    ENA_REGS_RESET_MISS_TX_CMPL;
   3450 				adapter->trigger_reset = true;
   3451 				return (EIO);
   3452 			}
   3453 		}
   3454 	}
   3455 
   3456 	return (0);
   3457 }
   3458 
   3459 /*
   3460  * Check for TX which were not completed on time.
   3461  * Timeout is defined by "missing_tx_timeout".
   3462  * Reset will be performed if number of incompleted
   3463  * transactions exceeds "missing_tx_threshold".
   3464  */
   3465 static void
   3466 check_for_missing_tx_completions(struct ena_adapter *adapter)
   3467 {
   3468 	struct ena_ring *tx_ring;
   3469 	int i, budget, rc;
   3470 
   3471 	/* Make sure the driver doesn't turn the device in other process */
   3472 	rmb();
   3473 
   3474 	if (!adapter->up)
   3475 		return;
   3476 
   3477 	if (adapter->trigger_reset)
   3478 		return;
   3479 
   3480 	if (adapter->missing_tx_timeout == 0)
   3481 		return;
   3482 
   3483 	budget = adapter->missing_tx_max_queues;
   3484 
   3485 	for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
   3486 		tx_ring = &adapter->tx_ring[i];
   3487 
   3488 		rc = check_missing_comp_in_queue(adapter, tx_ring);
   3489 		if (unlikely(rc != 0))
   3490 			return;
   3491 
   3492 		budget--;
   3493 		if (budget == 0) {
   3494 			i++;
   3495 			break;
   3496 		}
   3497 	}
   3498 
   3499 	adapter->next_monitored_tx_qid = i % adapter->num_queues;
   3500 }
   3501 
   3502 /* trigger deferred rx cleanup after 2 consecutive detections */
   3503 #define EMPTY_RX_REFILL 2
   3504 /* For the rare case where the device runs out of Rx descriptors and the
   3505  * msix handler failed to refill new Rx descriptors (due to a lack of memory
   3506  * for example).
   3507  * This case will lead to a deadlock:
   3508  * The device won't send interrupts since all the new Rx packets will be dropped
   3509  * The msix handler won't allocate new Rx descriptors so the device won't be
   3510  * able to send new packets.
   3511  *
   3512  * When such a situation is detected - execute rx cleanup task in another thread
   3513  */
   3514 static void
   3515 check_for_empty_rx_ring(struct ena_adapter *adapter)
   3516 {
   3517 	struct ena_ring *rx_ring;
   3518 	int i, refill_required;
   3519 
   3520 	if (!adapter->up)
   3521 		return;
   3522 
   3523 	if (adapter->trigger_reset)
   3524 		return;
   3525 
   3526 	for (i = 0; i < adapter->num_queues; i++) {
   3527 		rx_ring = &adapter->rx_ring[i];
   3528 
   3529 		refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
   3530 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
   3531 			rx_ring->empty_rx_queue++;
   3532 
   3533 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL)	{
   3534 				counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
   3535 				    1);
   3536 
   3537 				device_printf(adapter->pdev,
   3538 				    "trigger refill for ring %d\n", i);
   3539 
   3540 				if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
   3541 					workqueue_enqueue(rx_ring->cmpl_tq,
   3542 					    &rx_ring->cmpl_task, curcpu());
   3543 				rx_ring->empty_rx_queue = 0;
   3544 			}
   3545 		} else {
   3546 			rx_ring->empty_rx_queue = 0;
   3547 		}
   3548 	}
   3549 }
   3550 
   3551 static void
   3552 ena_timer_service(void *data)
   3553 {
   3554 	struct ena_adapter *adapter = (struct ena_adapter *)data;
   3555 	struct ena_admin_host_info *host_info =
   3556 	    adapter->ena_dev->host_attr.host_info;
   3557 
   3558 	check_for_missing_keep_alive(adapter);
   3559 
   3560 	check_for_admin_com_state(adapter);
   3561 
   3562 	check_for_missing_tx_completions(adapter);
   3563 
   3564 	check_for_empty_rx_ring(adapter);
   3565 
   3566 	if (host_info != NULL)
   3567 		ena_update_host_info(host_info, adapter->ifp);
   3568 
   3569 	if (unlikely(adapter->trigger_reset)) {
   3570 		device_printf(adapter->pdev, "Trigger reset is on\n");
   3571 		workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
   3572 		    curcpu());
   3573 		return;
   3574 	}
   3575 
   3576 	/*
   3577 	 * Schedule another timeout one second from now.
   3578 	 */
   3579 	callout_schedule(&adapter->timer_service, hz);
   3580 }
   3581 
   3582 static void
   3583 ena_reset_task(struct work *wk, void *arg)
   3584 {
   3585 	struct ena_com_dev_get_features_ctx get_feat_ctx;
   3586 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
   3587 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3588 	bool dev_up;
   3589 	int rc;
   3590 
   3591 	if (unlikely(!adapter->trigger_reset)) {
   3592 		device_printf(adapter->pdev,
   3593 		    "device reset scheduled but trigger_reset is off\n");
   3594 		return;
   3595 	}
   3596 
   3597 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
   3598 
   3599 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
   3600 
   3601 	dev_up = adapter->up;
   3602 
   3603 	ena_com_set_admin_running_state(ena_dev, false);
   3604 	ena_down(adapter);
   3605 	ena_free_mgmnt_irq(adapter);
   3606 	ena_disable_msix(adapter);
   3607 	ena_com_abort_admin_commands(ena_dev);
   3608 	ena_com_wait_for_abort_completion(ena_dev);
   3609 	ena_com_admin_destroy(ena_dev);
   3610 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3611 
   3612 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
   3613 	adapter->trigger_reset = false;
   3614 
   3615 	/* Finished destroy part. Restart the device */
   3616 	rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
   3617 	    &adapter->wd_active);
   3618 	if (unlikely(rc != 0)) {
   3619 		device_printf(adapter->pdev,
   3620 		    "ENA device init failed! (err: %d)\n", rc);
   3621 		goto err_dev_free;
   3622 	}
   3623 
   3624 	/* XXX dealloc and realloc MSI-X, probably a waste */
   3625 	rc = ena_enable_msix_and_set_admin_interrupts(adapter,
   3626 	    adapter->num_queues);
   3627 	if (unlikely(rc != 0)) {
   3628 		device_printf(adapter->pdev, "Enable MSI-X failed\n");
   3629 		goto err_com_free;
   3630 	}
   3631 
   3632 	/* If the interface was up before the reset bring it up */
   3633 	if (dev_up) {
   3634 		rc = ena_up(adapter);
   3635 		if (unlikely(rc != 0)) {
   3636 			device_printf(adapter->pdev,
   3637 			    "Failed to create I/O queues\n");
   3638 			goto err_msix_free;
   3639 		}
   3640 	}
   3641 
   3642 	callout_schedule(&adapter->timer_service, hz);
   3643 
   3644 	rw_exit(&adapter->ioctl_sx);
   3645 
   3646 	return;
   3647 
   3648 err_msix_free:
   3649 	ena_free_mgmnt_irq(adapter);
   3650 	ena_disable_msix(adapter);
   3651 err_com_free:
   3652 	ena_com_admin_destroy(ena_dev);
   3653 err_dev_free:
   3654 	device_printf(adapter->pdev, "ENA reset failed!\n");
   3655 	adapter->running = false;
   3656 	rw_exit(&adapter->ioctl_sx);
   3657 }
   3658 
   3659 /**
   3660  * ena_attach - Device Initialization Routine
   3661  * @pdev: device information struct
   3662  *
   3663  * Returns 0 on success, otherwise on failure.
   3664  *
   3665  * ena_attach initializes an adapter identified by a device structure.
   3666  * The OS initialization, configuring of the adapter private structure,
   3667  * and a hardware reset occur.
   3668  **/
   3669 static void
   3670 ena_attach(device_t parent, device_t self, void *aux)
   3671 {
   3672 	struct pci_attach_args *pa = aux;
   3673 	struct ena_com_dev_get_features_ctx get_feat_ctx;
   3674 	static int version_printed;
   3675 	struct ena_adapter *adapter = device_private(self);
   3676 	struct ena_com_dev *ena_dev = NULL;
   3677 	uint16_t tx_sgl_size = 0;
   3678 	uint16_t rx_sgl_size = 0;
   3679 	pcireg_t reg;
   3680 	int io_queue_num;
   3681 	int queue_size;
   3682 	int rc;
   3683 
   3684 	adapter->pdev = self;
   3685 	adapter->ifp = &adapter->sc_ec.ec_if;
   3686 	adapter->sc_pa = *pa;	/* used after attach for adapter reset too */
   3687 
   3688 	if (pci_dma64_available(pa))
   3689 		adapter->sc_dmat = pa->pa_dmat64;
   3690 	else
   3691 		adapter->sc_dmat = pa->pa_dmat;
   3692 
   3693 	pci_aprint_devinfo(pa, NULL);
   3694 
   3695 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   3696 	if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
   3697 		reg |= PCI_COMMAND_MASTER_ENABLE;
   3698         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
   3699 	}
   3700 
   3701 	mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_NET);
   3702 	rw_init(&adapter->ioctl_sx);
   3703 
   3704 	/* Set up the timer service */
   3705 	adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
   3706 	adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
   3707 	adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
   3708 	adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
   3709 
   3710 	if (version_printed++ == 0)
   3711 		device_printf(parent, "%s\n", ena_version);
   3712 
   3713 	rc = ena_allocate_pci_resources(pa, adapter);
   3714 	if (unlikely(rc != 0)) {
   3715 		device_printf(parent, "PCI resource allocation failed!\n");
   3716 		ena_free_pci_resources(adapter);
   3717 		return;
   3718 	}
   3719 
   3720 	/* Allocate memory for ena_dev structure */
   3721 	ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
   3722 	    M_WAITOK | M_ZERO);
   3723 
   3724 	adapter->ena_dev = ena_dev;
   3725 	ena_dev->dmadev = self;
   3726 	ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
   3727 	    M_WAITOK | M_ZERO);
   3728 
   3729 	/* Store register resources */
   3730 	((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
   3731 	((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
   3732 
   3733 	ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
   3734 
   3735 	/* Device initialization */
   3736 	rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
   3737 	if (unlikely(rc != 0)) {
   3738 		device_printf(self, "ENA device init failed! (err: %d)\n", rc);
   3739 		rc = ENXIO;
   3740 		goto err_bus_free;
   3741 	}
   3742 
   3743 	adapter->keep_alive_timestamp = getsbinuptime();
   3744 
   3745 	adapter->tx_offload_cap = get_feat_ctx.offload.tx;
   3746 
   3747 	/* Set for sure that interface is not up */
   3748 	adapter->up = false;
   3749 
   3750 	memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
   3751 	    ETHER_ADDR_LEN);
   3752 
   3753 	/* calculate IO queue number to create */
   3754 	io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
   3755 
   3756 	ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
   3757 	    io_queue_num);
   3758 	adapter->num_queues = io_queue_num;
   3759 
   3760 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
   3761 
   3762 	/* calculatre ring sizes */
   3763 	queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
   3764 	    &rx_sgl_size, &get_feat_ctx);
   3765 	if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
   3766 		rc = ENA_COM_FAULT;
   3767 		goto err_com_free;
   3768 	}
   3769 
   3770 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
   3771 
   3772 	adapter->tx_ring_size = queue_size;
   3773 	adapter->rx_ring_size = queue_size;
   3774 
   3775 	adapter->max_tx_sgl_size = tx_sgl_size;
   3776 	adapter->max_rx_sgl_size = rx_sgl_size;
   3777 
   3778 #if 0
   3779 	/* set up dma tags for rx and tx buffers */
   3780 	rc = ena_setup_tx_dma_tag(adapter);
   3781 	if (unlikely(rc != 0)) {
   3782 		device_printf(self, "Failed to create TX DMA tag\n");
   3783 		goto err_com_free;
   3784 	}
   3785 
   3786 	rc = ena_setup_rx_dma_tag(adapter);
   3787 	if (unlikely(rc != 0)) {
   3788 		device_printf(self, "Failed to create RX DMA tag\n");
   3789 		goto err_tx_tag_free;
   3790 	}
   3791 #endif
   3792 
   3793 	/* initialize rings basic information */
   3794 	device_printf(self, "initialize %d io queues\n", io_queue_num);
   3795 	ena_init_io_rings(adapter);
   3796 
   3797 	/* setup network interface */
   3798 	rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
   3799 	if (unlikely(rc != 0)) {
   3800 		device_printf(self, "Error with network interface setup\n");
   3801 		goto err_io_free;
   3802 	}
   3803 
   3804 	rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
   3805 	if (unlikely(rc != 0)) {
   3806 		device_printf(self,
   3807 		    "Failed to enable and set the admin interrupts\n");
   3808 		goto err_ifp_free;
   3809 	}
   3810 
   3811 	callout_init(&adapter->timer_service, CALLOUT_FLAGS);
   3812 	callout_setfunc(&adapter->timer_service, ena_timer_service, adapter);
   3813 
   3814 	/* Initialize reset task queue */
   3815 	rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
   3816 	    ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
   3817 	if (unlikely(rc != 0)) {
   3818 		ena_trace(ENA_ALERT,
   3819 		    "Unable to create workqueue for reset task\n");
   3820 		goto err_ifp_free;
   3821 	}
   3822 
   3823 	/* Initialize statistics */
   3824 	ena_alloc_counters_dev(&adapter->dev_stats, io_queue_num);
   3825 	ena_alloc_counters_hwstats(&adapter->hw_stats, io_queue_num);
   3826 #if 0
   3827 	ena_sysctl_add_nodes(adapter);
   3828 #endif
   3829 
   3830 	/* Tell the stack that the interface is not active */
   3831 	if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
   3832 
   3833 	adapter->running = true;
   3834 	return;
   3835 
   3836 err_ifp_free:
   3837 	if_detach(adapter->ifp);
   3838 	if_free(adapter->ifp);
   3839 err_io_free:
   3840 	ena_free_all_io_rings_resources(adapter);
   3841 #if 0
   3842 	ena_free_rx_dma_tag(adapter);
   3843 err_tx_tag_free:
   3844 	ena_free_tx_dma_tag(adapter);
   3845 #endif
   3846 err_com_free:
   3847 	ena_com_admin_destroy(ena_dev);
   3848 	ena_com_delete_host_info(ena_dev);
   3849 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3850 err_bus_free:
   3851 	free(ena_dev->bus, M_DEVBUF);
   3852 	free(ena_dev, M_DEVBUF);
   3853 	ena_free_pci_resources(adapter);
   3854 }
   3855 
   3856 /**
   3857  * ena_detach - Device Removal Routine
   3858  * @pdev: device information struct
   3859  *
   3860  * ena_detach is called by the device subsystem to alert the driver
   3861  * that it should release a PCI device.
   3862  **/
   3863 static int
   3864 ena_detach(device_t pdev, int flags)
   3865 {
   3866 	struct ena_adapter *adapter = device_private(pdev);
   3867 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3868 #if 0
   3869 	int rc;
   3870 #endif
   3871 
   3872 	/* Make sure VLANS are not using driver */
   3873 	if (VLAN_ATTACHED(&adapter->sc_ec)) {
   3874 		device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
   3875 		return (EBUSY);
   3876 	}
   3877 
   3878 	/* Free reset task and callout */
   3879 	callout_halt(&adapter->timer_service, &adapter->global_mtx);
   3880 	callout_destroy(&adapter->timer_service);
   3881 	workqueue_wait(adapter->reset_tq, &adapter->reset_task);
   3882 	workqueue_destroy(adapter->reset_tq);
   3883 	adapter->reset_tq = NULL;
   3884 
   3885 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
   3886 	ena_down(adapter);
   3887 	rw_exit(&adapter->ioctl_sx);
   3888 
   3889 	if (adapter->ifp != NULL) {
   3890 		ether_ifdetach(adapter->ifp);
   3891 		if_free(adapter->ifp);
   3892 	}
   3893 	ifmedia_fini(&adapter->media);
   3894 
   3895 	ena_free_all_io_rings_resources(adapter);
   3896 
   3897 	ena_free_counters((struct evcnt *)&adapter->hw_stats,
   3898 	    sizeof(struct ena_hw_stats));
   3899 	ena_free_counters((struct evcnt *)&adapter->dev_stats,
   3900 	    sizeof(struct ena_stats_dev));
   3901 
   3902 	if (likely(adapter->rss_support))
   3903 		ena_com_rss_destroy(ena_dev);
   3904 
   3905 #if 0
   3906 	rc = ena_free_rx_dma_tag(adapter);
   3907 	if (unlikely(rc != 0))
   3908 		device_printf(adapter->pdev,
   3909 		    "Unmapped RX DMA tag associations\n");
   3910 
   3911 	rc = ena_free_tx_dma_tag(adapter);
   3912 	if (unlikely(rc != 0))
   3913 		device_printf(adapter->pdev,
   3914 		    "Unmapped TX DMA tag associations\n");
   3915 #endif
   3916 
   3917 	/* Reset the device only if the device is running. */
   3918 	if (adapter->running)
   3919 		ena_com_dev_reset(ena_dev, adapter->reset_reason);
   3920 
   3921 	ena_com_delete_host_info(ena_dev);
   3922 
   3923 	ena_free_irqs(adapter);
   3924 
   3925 	ena_com_abort_admin_commands(ena_dev);
   3926 
   3927 	ena_com_wait_for_abort_completion(ena_dev);
   3928 
   3929 	ena_com_admin_destroy(ena_dev);
   3930 
   3931 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3932 
   3933 	ena_free_pci_resources(adapter);
   3934 
   3935 	mutex_destroy(&adapter->global_mtx);
   3936 	rw_destroy(&adapter->ioctl_sx);
   3937 
   3938 	if (ena_dev->bus != NULL)
   3939 		free(ena_dev->bus, M_DEVBUF);
   3940 
   3941 	if (ena_dev != NULL)
   3942 		free(ena_dev, M_DEVBUF);
   3943 
   3944 	return 0;
   3945 }
   3946 
   3947 /******************************************************************************
   3948  ******************************** AENQ Handlers *******************************
   3949  *****************************************************************************/
   3950 /**
   3951  * ena_update_on_link_change:
   3952  * Notify the network interface about the change in link status
   3953  **/
   3954 static void
   3955 ena_update_on_link_change(void *adapter_data,
   3956     struct ena_admin_aenq_entry *aenq_e)
   3957 {
   3958 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
   3959 	struct ena_admin_aenq_link_change_desc *aenq_desc;
   3960 	int status;
   3961 	struct ifnet *ifp;
   3962 
   3963 	aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
   3964 	ifp = adapter->ifp;
   3965 	status = aenq_desc->flags &
   3966 	    ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
   3967 
   3968 	if (status != 0) {
   3969 		device_printf(adapter->pdev, "link is UP\n");
   3970 		if_link_state_change(ifp, LINK_STATE_UP);
   3971 	} else if (status == 0) {
   3972 		device_printf(adapter->pdev, "link is DOWN\n");
   3973 		if_link_state_change(ifp, LINK_STATE_DOWN);
   3974 	} else {
   3975 		device_printf(adapter->pdev, "invalid value recvd\n");
   3976 		BUG();
   3977 	}
   3978 
   3979 	adapter->link_status = status;
   3980 }
   3981 
   3982 /**
   3983  * This handler will called for unknown event group or unimplemented handlers
   3984  **/
   3985 static void
   3986 unimplemented_aenq_handler(void *data,
   3987     struct ena_admin_aenq_entry *aenq_e)
   3988 {
   3989 	return;
   3990 }
   3991 
   3992 static struct ena_aenq_handlers aenq_handlers = {
   3993     .handlers = {
   3994 	    [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
   3995 	    [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
   3996     },
   3997     .unimplemented_handler = unimplemented_aenq_handler
   3998 };
   3999 
   4000 #ifdef __FreeBSD__
   4001 /*********************************************************************
   4002  *  FreeBSD Device Interface Entry Points
   4003  *********************************************************************/
   4004 
   4005 static device_method_t ena_methods[] = {
   4006     /* Device interface */
   4007     DEVMETHOD(device_probe, ena_probe),
   4008     DEVMETHOD(device_attach, ena_attach),
   4009     DEVMETHOD(device_detach, ena_detach),
   4010     DEVMETHOD_END
   4011 };
   4012 
   4013 static driver_t ena_driver = {
   4014     "ena", ena_methods, sizeof(struct ena_adapter),
   4015 };
   4016 
   4017 devclass_t ena_devclass;
   4018 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
   4019 MODULE_DEPEND(ena, pci, 1, 1, 1);
   4020 MODULE_DEPEND(ena, ether, 1, 1, 1);
   4021 
   4022 /*********************************************************************/
   4023 #endif /* __FreeBSD__ */
   4024 
   4025 #ifdef __NetBSD__
   4026 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
   4027 	ena_detach, NULL);
   4028 #endif /* __NetBSD */
   4029