Home | History | Annotate | Line # | Download | only in pci
if_ena.c revision 1.3
      1 /*-
      2  * BSD LICENSE
      3  *
      4  * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  *
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 #include <sys/cdefs.h>
     31 #if 0
     32 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
     33 #endif
     34 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.3 2018/06/01 09:34:39 maxv Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/bus.h>
     39 #include <sys/endian.h>
     40 #include <sys/kernel.h>
     41 #include <sys/kthread.h>
     42 #include <sys/malloc.h>
     43 #include <sys/mbuf.h>
     44 #include <sys/module.h>
     45 #include <sys/socket.h>
     46 #include <sys/sockio.h>
     47 #include <sys/sysctl.h>
     48 #include <sys/time.h>
     49 #include <sys/workqueue.h>
     50 
     51 #include <sys/bus.h>
     52 
     53 #include <dev/pci/if_enavar.h>
     54 
     55 /*********************************************************
     56  *  Function prototypes
     57  *********************************************************/
     58 static int	ena_probe(device_t, cfdata_t, void *);
     59 static void	ena_intr_msix_mgmnt(void *);
     60 static int	ena_allocate_pci_resources(struct ena_adapter*);
     61 static void	ena_free_pci_resources(struct ena_adapter *);
     62 static int	ena_change_mtu(struct ifnet *, int);
     63 static inline void ena_alloc_counters(struct evcnt *, int);
     64 static inline void ena_free_counters(struct evcnt *, int);
     65 static inline void ena_reset_counters(struct evcnt *, int);
     66 static void	ena_init_io_rings_common(struct ena_adapter *,
     67     struct ena_ring *, uint16_t);
     68 static void	ena_init_io_rings(struct ena_adapter *);
     69 static void	ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
     70 static void	ena_free_all_io_rings_resources(struct ena_adapter *);
     71 static int	ena_setup_tx_dma_tag(struct ena_adapter *);
     72 static int	ena_free_tx_dma_tag(struct ena_adapter *);
     73 static int	ena_setup_rx_dma_tag(struct ena_adapter *);
     74 static int	ena_free_rx_dma_tag(struct ena_adapter *);
     75 static int	ena_setup_tx_resources(struct ena_adapter *, int);
     76 static void	ena_free_tx_resources(struct ena_adapter *, int);
     77 static int	ena_setup_all_tx_resources(struct ena_adapter *);
     78 static void	ena_free_all_tx_resources(struct ena_adapter *);
     79 static inline int validate_rx_req_id(struct ena_ring *, uint16_t);
     80 static int	ena_setup_rx_resources(struct ena_adapter *, unsigned int);
     81 static void	ena_free_rx_resources(struct ena_adapter *, unsigned int);
     82 static int	ena_setup_all_rx_resources(struct ena_adapter *);
     83 static void	ena_free_all_rx_resources(struct ena_adapter *);
     84 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *,
     85     struct ena_rx_buffer *);
     86 static void	ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
     87     struct ena_rx_buffer *);
     88 static int	ena_refill_rx_bufs(struct ena_ring *, uint32_t);
     89 static void	ena_free_rx_bufs(struct ena_adapter *, unsigned int);
     90 static void	ena_refill_all_rx_bufs(struct ena_adapter *);
     91 static void	ena_free_all_rx_bufs(struct ena_adapter *);
     92 static void	ena_free_tx_bufs(struct ena_adapter *, unsigned int);
     93 static void	ena_free_all_tx_bufs(struct ena_adapter *);
     94 static void	ena_destroy_all_tx_queues(struct ena_adapter *);
     95 static void	ena_destroy_all_rx_queues(struct ena_adapter *);
     96 static void	ena_destroy_all_io_queues(struct ena_adapter *);
     97 static int	ena_create_io_queues(struct ena_adapter *);
     98 static int	ena_tx_cleanup(struct ena_ring *);
     99 static void	ena_deferred_rx_cleanup(void *, int);
    100 static int	ena_rx_cleanup(struct ena_ring *);
    101 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
    102 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
    103     struct mbuf *);
    104 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
    105     struct ena_com_rx_ctx *, uint16_t *);
    106 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
    107     struct mbuf *);
    108 static void	ena_handle_msix(void *);
    109 static int	ena_enable_msix(struct ena_adapter *);
    110 static void	ena_setup_mgmnt_intr(struct ena_adapter *);
    111 static void	ena_setup_io_intr(struct ena_adapter *);
    112 static int	ena_request_mgmnt_irq(struct ena_adapter *);
    113 static int	ena_request_io_irq(struct ena_adapter *);
    114 static void	ena_free_mgmnt_irq(struct ena_adapter *);
    115 static void	ena_free_io_irq(struct ena_adapter *);
    116 static void	ena_free_irqs(struct ena_adapter*);
    117 static void	ena_disable_msix(struct ena_adapter *);
    118 static void	ena_unmask_all_io_irqs(struct ena_adapter *);
    119 static int	ena_rss_configure(struct ena_adapter *);
    120 static int	ena_up_complete(struct ena_adapter *);
    121 static int	ena_up(struct ena_adapter *);
    122 static void	ena_down(struct ena_adapter *);
    123 #if 0
    124 static uint64_t	ena_get_counter(struct ifnet *, ift_counter);
    125 #endif
    126 static int	ena_media_change(struct ifnet *);
    127 static void	ena_media_status(struct ifnet *, struct ifmediareq *);
    128 static void	ena_init(void *);
    129 static int	ena_ioctl(struct ifnet *, u_long, void *);
    130 static int	ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
    131 static void	ena_update_host_info(struct ena_admin_host_info *, struct ifnet *);
    132 static void	ena_update_hwassist(struct ena_adapter *);
    133 static int	ena_setup_ifnet(device_t, struct ena_adapter *,
    134     struct ena_com_dev_get_features_ctx *);
    135 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
    136 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
    137     struct mbuf **mbuf);
    138 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
    139 static void	ena_start_xmit(struct ena_ring *);
    140 static int	ena_mq_start(struct ifnet *, struct mbuf *);
    141 static void	ena_deferred_mq_start(void *, int);
    142 static void	ena_qflush(struct ifnet *);
    143 static int	ena_calc_io_queue_num(struct ena_adapter *,
    144     struct ena_com_dev_get_features_ctx *);
    145 static int	ena_calc_queue_size(struct ena_adapter *, uint16_t *,
    146     uint16_t *, struct ena_com_dev_get_features_ctx *);
    147 static int	ena_rss_init_default(struct ena_adapter *);
    148 static void	ena_rss_init_default_deferred(void *);
    149 static void	ena_config_host_info(struct ena_com_dev *);
    150 static int	ena_attach(device_t parent, device_t self, void *aux);
    151 static int	ena_detach(device_t);
    152 static int	ena_device_init(struct ena_adapter *, device_t,
    153     struct ena_com_dev_get_features_ctx *, int *);
    154 static int	ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
    155     int);
    156 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *);
    157 static void	unimplemented_aenq_handler(void *,
    158     struct ena_admin_aenq_entry *);
    159 static void	ena_timer_service(void *);
    160 
    161 static const char ena_version[] =
    162     DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
    163 
    164 #if 0
    165 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
    166 #endif
    167 
    168 /*
    169  * Tuneable number of buffers in the buf-ring (drbr)
    170  */
    171 static int ena_buf_ring_size = 4096;
    172 #if 0
    173 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
    174     &ena_buf_ring_size, 0, "Size of the bufring");
    175 #endif
    176 
    177 /*
    178  * Logging level for changing verbosity of the output
    179  */
    180 int ena_log_level = ENA_ALERT | ENA_WARNING;
    181 #if 0
    182 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
    183     &ena_log_level, 0, "Logging level indicating verbosity of the logs");
    184 #endif
    185 
    186 static const ena_vendor_info_t ena_vendor_info_array[] = {
    187     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
    188     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
    189     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
    190     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
    191     /* Last entry */
    192     { 0, 0, 0 }
    193 };
    194 
    195 /*
    196  * Contains pointers to event handlers, e.g. link state chage.
    197  */
    198 static struct ena_aenq_handlers aenq_handlers;
    199 
    200 int
    201 ena_dma_alloc(device_t dmadev, bus_size_t size,
    202     ena_mem_handle_t *dma , int mapflags)
    203 {
    204 	struct ena_adapter *adapter = device_private(dmadev);
    205 	uint32_t maxsize;
    206 	bus_dma_segment_t seg;
    207 	int error, nsegs;
    208 
    209 	maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
    210 
    211 #if 0
    212 	/* XXX what is this needed for ? */
    213 	dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
    214 	if (unlikely(dma_space_addr == 0))
    215 		dma_space_addr = BUS_SPACE_MAXADDR;
    216 #endif
    217 
    218 	dma->tag = adapter->sc_dmat;
    219 
    220         if (bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
    221             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map) != 0) {
    222 		ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
    223 		    (uintmax_t)maxsize, error);
    224                 goto fail_create;
    225 	}
    226 
    227 	error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &seg, 1, &nsegs,
    228 	    BUS_DMA_ALLOCNOW);
    229 	if (error) {
    230 		ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
    231 		    (uintmax_t)maxsize, error);
    232 		goto fail_alloc;
    233 	}
    234 
    235 	error = bus_dmamem_map(dma->tag, &seg, nsegs, maxsize,
    236 	    &dma->vaddr, BUS_DMA_COHERENT);
    237 	if (error) {
    238 		ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
    239 		    (uintmax_t)maxsize, error);
    240 		goto fail_map;
    241 	}
    242 	memset(dma->vaddr, 0, maxsize);
    243 
    244 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
    245 	    maxsize, NULL, mapflags);
    246 	if (error) {
    247 		ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
    248 		goto fail_load;
    249 	}
    250 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    251 
    252 	return (0);
    253 
    254 fail_load:
    255 	bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
    256 fail_map:
    257 	bus_dmamem_free(dma->tag, &seg, nsegs);
    258 fail_alloc:
    259 	bus_dmamap_destroy(adapter->sc_dmat, dma->map);
    260 fail_create:
    261 	return (error);
    262 }
    263 
    264 static int
    265 ena_allocate_pci_resources(struct ena_adapter* adapter)
    266 {
    267 	device_t pdev = adapter->pdev;
    268 	int rid;
    269 
    270 	rid = PCIR_BAR(ENA_REG_BAR);
    271 	adapter->memory = NULL;
    272 	adapter->registers = bus_alloc_resource_any(pdev, SYS_RES_MEMORY,
    273 	    &rid, RF_ACTIVE);
    274 	if (unlikely(adapter->registers == NULL)) {
    275 		device_printf(pdev, "Unable to allocate bus resource: "
    276 		    "registers\n");
    277 		return (ENXIO);
    278 	}
    279 
    280 	return (0);
    281 }
    282 
    283 static void
    284 ena_free_pci_resources(struct ena_adapter *adapter)
    285 {
    286 	device_t pdev = adapter->pdev;
    287 
    288 	if (adapter->memory != NULL) {
    289 		bus_release_resource(pdev, SYS_RES_MEMORY,
    290 		    PCIR_BAR(ENA_MEM_BAR), adapter->memory);
    291 	}
    292 
    293 	if (adapter->registers != NULL) {
    294 		bus_release_resource(pdev, SYS_RES_MEMORY,
    295 		    PCIR_BAR(ENA_REG_BAR), adapter->registers);
    296 	}
    297 }
    298 
    299 static int
    300 ena_probe(device_t parent, cfdata_t match, void *aux)
    301 {
    302 	struct pci_attach_args *pa = aux;
    303 	const ena_vendor_info_t *ent;
    304 
    305 	for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
    306 		ent = &ena_vendor_info_array[i];
    307 
    308 		if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
    309 		    (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
    310 			return 1;
    311 		}
    312 	}
    313 
    314 	return 0;
    315 }
    316 
    317 static int
    318 ena_change_mtu(struct ifnet *ifp, int new_mtu)
    319 {
    320 	struct ena_adapter *adapter = if_getsoftc(ifp);
    321 	int rc;
    322 
    323 	if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
    324 		device_printf(adapter->pdev, "Invalid MTU setting. "
    325 		    "new_mtu: %d max mtu: %d min mtu: %d\n",
    326 		    new_mtu, adapter->max_mtu, ENA_MIN_MTU);
    327 		return (EINVAL);
    328 	}
    329 
    330 	rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
    331 	if (likely(rc == 0)) {
    332 		ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
    333 		if_setmtu(ifp, new_mtu);
    334 	} else {
    335 		device_printf(adapter->pdev, "Failed to set MTU to %d\n",
    336 		    new_mtu);
    337 	}
    338 
    339 	return (rc);
    340 }
    341 
    342 static inline void
    343 ena_alloc_counters(struct evcnt *begin, int size)
    344 {
    345 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
    346 
    347 	for (; begin < end; ++begin)
    348 		*begin = counter_u64_alloc(M_WAITOK);
    349 }
    350 
    351 static inline void
    352 ena_free_counters(struct evcnt *begin, int size)
    353 {
    354 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
    355 
    356 	for (; begin < end; ++begin)
    357 		counter_u64_free(*begin);
    358 }
    359 
    360 static inline void
    361 ena_reset_counters(struct evcnt *begin, int size)
    362 {
    363 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
    364 
    365 	for (; begin < end; ++begin)
    366 		counter_u64_zero(*begin);
    367 }
    368 
    369 static void
    370 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
    371     uint16_t qid)
    372 {
    373 
    374 	ring->qid = qid;
    375 	ring->adapter = adapter;
    376 	ring->ena_dev = adapter->ena_dev;
    377 }
    378 
    379 static void
    380 ena_init_io_rings(struct ena_adapter *adapter)
    381 {
    382 	struct ena_com_dev *ena_dev;
    383 	struct ena_ring *txr, *rxr;
    384 	struct ena_que *que;
    385 	int i;
    386 
    387 	ena_dev = adapter->ena_dev;
    388 
    389 	for (i = 0; i < adapter->num_queues; i++) {
    390 		txr = &adapter->tx_ring[i];
    391 		rxr = &adapter->rx_ring[i];
    392 
    393 		/* TX/RX common ring state */
    394 		ena_init_io_rings_common(adapter, txr, i);
    395 		ena_init_io_rings_common(adapter, rxr, i);
    396 
    397 		/* TX specific ring state */
    398 		txr->ring_size = adapter->tx_ring_size;
    399 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
    400 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
    401 		txr->smoothed_interval =
    402 		    ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
    403 
    404 		/* Allocate a buf ring */
    405 		txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
    406 		    M_WAITOK, &txr->ring_mtx);
    407 
    408 		/* Alloc TX statistics. */
    409 		ena_alloc_counters((struct evcnt *)&txr->tx_stats,
    410 		    sizeof(txr->tx_stats));
    411 
    412 		/* RX specific ring state */
    413 		rxr->ring_size = adapter->rx_ring_size;
    414 		rxr->smoothed_interval =
    415 		    ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
    416 
    417 		/* Alloc RX statistics. */
    418 		ena_alloc_counters((struct evcnt *)&rxr->rx_stats,
    419 		    sizeof(rxr->rx_stats));
    420 
    421 		/* Initialize locks */
    422 		snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
    423 		    device_xname(adapter->pdev), i);
    424 		snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
    425 		    device_xname(adapter->pdev), i);
    426 
    427 		mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
    428 		mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
    429 
    430 		que = &adapter->que[i];
    431 		que->adapter = adapter;
    432 		que->id = i;
    433 		que->tx_ring = txr;
    434 		que->rx_ring = rxr;
    435 
    436 		txr->que = que;
    437 		rxr->que = que;
    438 
    439 		rxr->empty_rx_queue = 0;
    440 	}
    441 }
    442 
    443 static void
    444 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
    445 {
    446 	struct ena_ring *txr = &adapter->tx_ring[qid];
    447 	struct ena_ring *rxr = &adapter->rx_ring[qid];
    448 
    449 	ena_free_counters((struct evcnt *)&txr->tx_stats,
    450 	    sizeof(txr->tx_stats));
    451 	ena_free_counters((struct evcnt *)&rxr->rx_stats,
    452 	    sizeof(rxr->rx_stats));
    453 
    454 	ENA_RING_MTX_LOCK(txr);
    455 	drbr_free(txr->br, M_DEVBUF);
    456 	ENA_RING_MTX_UNLOCK(txr);
    457 
    458 	mutex_destroy(&txr->ring_mtx);
    459 	mutex_destroy(&rxr->ring_mtx);
    460 }
    461 
    462 static void
    463 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
    464 {
    465 	int i;
    466 
    467 	for (i = 0; i < adapter->num_queues; i++)
    468 		ena_free_io_ring_resources(adapter, i);
    469 
    470 }
    471 
    472 #if 0
    473 static int
    474 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
    475 {
    476 	int ret;
    477 
    478 	/* Create DMA tag for Tx buffers */
    479 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
    480 	    1, 0,				  /* alignment, bounds 	     */
    481 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
    482 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
    483 	    NULL, NULL,				  /* filter, filterarg 	     */
    484 	    ENA_TSO_MAXSIZE,			  /* maxsize 		     */
    485 	    adapter->max_tx_sgl_size - 1,	  /* nsegments 		     */
    486 	    ENA_TSO_MAXSIZE,			  /* maxsegsize 	     */
    487 	    0,					  /* flags 		     */
    488 	    NULL,				  /* lockfunc 		     */
    489 	    NULL,				  /* lockfuncarg 	     */
    490 	    &adapter->tx_buf_tag);
    491 
    492 	return (ret);
    493 }
    494 #endif
    495 
    496 #if 0
    497 static int
    498 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
    499 {
    500 	int ret;
    501 
    502 	/* Create DMA tag for Rx buffers*/
    503 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent   */
    504 	    1, 0,				  /* alignment, bounds 	     */
    505 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
    506 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
    507 	    NULL, NULL,				  /* filter, filterarg 	     */
    508 	    MJUM16BYTES,			  /* maxsize 		     */
    509 	    adapter->max_rx_sgl_size,		  /* nsegments 		     */
    510 	    MJUM16BYTES,			  /* maxsegsize 	     */
    511 	    0,					  /* flags 		     */
    512 	    NULL,				  /* lockfunc 		     */
    513 	    NULL,				  /* lockarg 		     */
    514 	    &adapter->rx_buf_tag);
    515 
    516 	return (ret);
    517 }
    518 #endif
    519 
    520 /**
    521  * ena_setup_tx_resources - allocate Tx resources (Descriptors)
    522  * @adapter: network interface device structure
    523  * @qid: queue index
    524  *
    525  * Returns 0 on success, otherwise on failure.
    526  **/
    527 static int
    528 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
    529 {
    530 	struct ena_que *que = &adapter->que[qid];
    531 	struct ena_ring *tx_ring = que->tx_ring;
    532 	int size, i, err;
    533 #ifdef	RSS
    534 	cpuset_t cpu_mask;
    535 #endif
    536 
    537 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
    538 
    539 	tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
    540 	if (unlikely(tx_ring->tx_buffer_info == NULL))
    541 		return (ENOMEM);
    542 
    543 	size = sizeof(uint16_t) * tx_ring->ring_size;
    544 	tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
    545 	if (unlikely(tx_ring->free_tx_ids == NULL))
    546 		goto err_buf_info_free;
    547 
    548 	/* Req id stack for TX OOO completions */
    549 	for (i = 0; i < tx_ring->ring_size; i++)
    550 		tx_ring->free_tx_ids[i] = i;
    551 
    552 	/* Reset TX statistics. */
    553 	ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
    554 	    sizeof(tx_ring->tx_stats));
    555 
    556 	tx_ring->next_to_use = 0;
    557 	tx_ring->next_to_clean = 0;
    558 
    559 	/* Make sure that drbr is empty */
    560 	ENA_RING_MTX_LOCK(tx_ring);
    561 	drbr_flush(adapter->ifp, tx_ring->br);
    562 	ENA_RING_MTX_UNLOCK(tx_ring);
    563 
    564 	/* ... and create the buffer DMA maps */
    565 	for (i = 0; i < tx_ring->ring_size; i++) {
    566 		err = bus_dmamap_create(adapter->sc_dmat, 0,
    567 		    &tx_ring->tx_buffer_info[i].map);
    568 		if (unlikely(err != 0)) {
    569 			ena_trace(ENA_ALERT,
    570 			     "Unable to create Tx DMA map for buffer %d\n", i);
    571 			goto err_buf_info_unmap;
    572 		}
    573 	}
    574 
    575 	/* Allocate taskqueues */
    576 	TASK_INIT(&tx_ring->enqueue_task, 0, ena_deferred_mq_start, tx_ring);
    577 	tx_ring->enqueue_tq = taskqueue_create_fast("ena_tx_enque", M_NOWAIT,
    578 	    taskqueue_thread_enqueue, &tx_ring->enqueue_tq);
    579 	if (unlikely(tx_ring->enqueue_tq == NULL)) {
    580 		ena_trace(ENA_ALERT,
    581 		    "Unable to create taskqueue for enqueue task\n");
    582 		i = tx_ring->ring_size;
    583 		goto err_buf_info_unmap;
    584 	}
    585 
    586 	/* RSS set cpu for thread */
    587 #ifdef RSS
    588 	CPU_SETOF(que->cpu, &cpu_mask);
    589 	taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET,
    590 	    &cpu_mask, "%s tx_ring enq (bucket %d)",
    591 	    device_xname(adapter->pdev), que->cpu);
    592 #else /* RSS */
    593 	taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET,
    594 	    "%s txeq %d", device_xname(adapter->pdev), que->cpu);
    595 #endif /* RSS */
    596 
    597 	return (0);
    598 
    599 err_buf_info_unmap:
    600 	while (i--) {
    601 		bus_dmamap_destroy(adapter->sc_dmat,
    602 		    tx_ring->tx_buffer_info[i].map);
    603 	}
    604 	free(tx_ring->free_tx_ids, M_DEVBUF);
    605 	tx_ring->free_tx_ids = NULL;
    606 err_buf_info_free:
    607 	free(tx_ring->tx_buffer_info, M_DEVBUF);
    608 	tx_ring->tx_buffer_info = NULL;
    609 
    610 	return (ENOMEM);
    611 }
    612 
    613 /**
    614  * ena_free_tx_resources - Free Tx Resources per Queue
    615  * @adapter: network interface device structure
    616  * @qid: queue index
    617  *
    618  * Free all transmit software resources
    619  **/
    620 static void
    621 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
    622 {
    623 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
    624 
    625 	while (taskqueue_cancel(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
    626 	    NULL))
    627 		taskqueue_drain(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
    628 
    629 	taskqueue_free(tx_ring->enqueue_tq);
    630 
    631 	ENA_RING_MTX_LOCK(tx_ring);
    632 	/* Flush buffer ring, */
    633 	drbr_flush(adapter->ifp, tx_ring->br);
    634 
    635 	/* Free buffer DMA maps, */
    636 	for (int i = 0; i < tx_ring->ring_size; i++) {
    637 		m_freem(tx_ring->tx_buffer_info[i].mbuf);
    638 		tx_ring->tx_buffer_info[i].mbuf = NULL;
    639 		bus_dmamap_unload(adapter->sc_dmat,
    640 		    tx_ring->tx_buffer_info[i].map);
    641 		bus_dmamap_destroy(adapter->sc_dmat,
    642 		    tx_ring->tx_buffer_info[i].map);
    643 	}
    644 	ENA_RING_MTX_UNLOCK(tx_ring);
    645 
    646 	/* And free allocated memory. */
    647 	free(tx_ring->tx_buffer_info, M_DEVBUF);
    648 	tx_ring->tx_buffer_info = NULL;
    649 
    650 	free(tx_ring->free_tx_ids, M_DEVBUF);
    651 	tx_ring->free_tx_ids = NULL;
    652 }
    653 
    654 /**
    655  * ena_setup_all_tx_resources - allocate all queues Tx resources
    656  * @adapter: network interface device structure
    657  *
    658  * Returns 0 on success, otherwise on failure.
    659  **/
    660 static int
    661 ena_setup_all_tx_resources(struct ena_adapter *adapter)
    662 {
    663 	int i, rc;
    664 
    665 	for (i = 0; i < adapter->num_queues; i++) {
    666 		rc = ena_setup_tx_resources(adapter, i);
    667 		if (rc != 0) {
    668 			device_printf(adapter->pdev,
    669 			    "Allocation for Tx Queue %u failed\n", i);
    670 			goto err_setup_tx;
    671 		}
    672 	}
    673 
    674 	return (0);
    675 
    676 err_setup_tx:
    677 	/* Rewind the index freeing the rings as we go */
    678 	while (i--)
    679 		ena_free_tx_resources(adapter, i);
    680 	return (rc);
    681 }
    682 
    683 /**
    684  * ena_free_all_tx_resources - Free Tx Resources for All Queues
    685  * @adapter: network interface device structure
    686  *
    687  * Free all transmit software resources
    688  **/
    689 static void
    690 ena_free_all_tx_resources(struct ena_adapter *adapter)
    691 {
    692 	int i;
    693 
    694 	for (i = 0; i < adapter->num_queues; i++)
    695 		ena_free_tx_resources(adapter, i);
    696 }
    697 
    698 static inline int
    699 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
    700 {
    701 	if (likely(req_id < rx_ring->ring_size))
    702 		return (0);
    703 
    704 	device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
    705 	    req_id);
    706 	counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
    707 
    708 	/* Trigger device reset */
    709 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
    710 	rx_ring->adapter->trigger_reset = true;
    711 
    712 	return (EFAULT);
    713 }
    714 
    715 /**
    716  * ena_setup_rx_resources - allocate Rx resources (Descriptors)
    717  * @adapter: network interface device structure
    718  * @qid: queue index
    719  *
    720  * Returns 0 on success, otherwise on failure.
    721  **/
    722 static int
    723 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
    724 {
    725 	struct ena_que *que = &adapter->que[qid];
    726 	struct ena_ring *rx_ring = que->rx_ring;
    727 	int size, err, i;
    728 #ifdef	RSS
    729 	cpuset_t cpu_mask;
    730 #endif
    731 
    732 	size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
    733 
    734 	/*
    735 	 * Alloc extra element so in rx path
    736 	 * we can always prefetch rx_info + 1
    737 	 */
    738 	size += sizeof(struct ena_rx_buffer);
    739 
    740 	rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
    741 
    742 	size = sizeof(uint16_t) * rx_ring->ring_size;
    743 	rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
    744 
    745 	for (i = 0; i < rx_ring->ring_size; i++)
    746 		rx_ring->free_rx_ids[i] = i;
    747 
    748 	/* Reset RX statistics. */
    749 	ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
    750 	    sizeof(rx_ring->rx_stats));
    751 
    752 	rx_ring->next_to_clean = 0;
    753 	rx_ring->next_to_use = 0;
    754 
    755 	/* ... and create the buffer DMA maps */
    756 	for (i = 0; i < rx_ring->ring_size; i++) {
    757 		err = bus_dmamap_create(adapter->sc_dmat, 0,
    758 		    &(rx_ring->rx_buffer_info[i].map));
    759 		if (err != 0) {
    760 			ena_trace(ENA_ALERT,
    761 			    "Unable to create Rx DMA map for buffer %d\n", i);
    762 			goto err_buf_info_unmap;
    763 		}
    764 	}
    765 
    766 #ifdef LRO
    767 	/* Create LRO for the ring */
    768 	if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
    769 		int err = tcp_lro_init(&rx_ring->lro);
    770 		if (err != 0) {
    771 			device_printf(adapter->pdev,
    772 			    "LRO[%d] Initialization failed!\n", qid);
    773 		} else {
    774 			ena_trace(ENA_INFO,
    775 			    "RX Soft LRO[%d] Initialized\n", qid);
    776 			rx_ring->lro.ifp = adapter->ifp;
    777 		}
    778 	}
    779 #endif
    780 
    781 	/* Allocate taskqueues */
    782 	TASK_INIT(&rx_ring->cmpl_task, 0, ena_deferred_rx_cleanup, rx_ring);
    783 	rx_ring->cmpl_tq = taskqueue_create_fast("ena RX completion", M_WAITOK,
    784 	    taskqueue_thread_enqueue, &rx_ring->cmpl_tq);
    785 
    786 	/* RSS set cpu for thread */
    787 #ifdef RSS
    788 	CPU_SETOF(que->cpu, &cpu_mask);
    789 	taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask,
    790 	    "%s rx_ring cmpl (bucket %d)",
    791 	    device_xname(adapter->pdev), que->cpu);
    792 #else
    793 	taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET,
    794 	    "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu);
    795 #endif
    796 
    797 	return (0);
    798 
    799 err_buf_info_unmap:
    800 	while (i--) {
    801 		bus_dmamap_destroy(adapter->sc_dmat,
    802 		    rx_ring->rx_buffer_info[i].map);
    803 	}
    804 
    805 	free(rx_ring->free_rx_ids, M_DEVBUF);
    806 	rx_ring->free_rx_ids = NULL;
    807 	free(rx_ring->rx_buffer_info, M_DEVBUF);
    808 	rx_ring->rx_buffer_info = NULL;
    809 	return (ENOMEM);
    810 }
    811 
    812 /**
    813  * ena_free_rx_resources - Free Rx Resources
    814  * @adapter: network interface device structure
    815  * @qid: queue index
    816  *
    817  * Free all receive software resources
    818  **/
    819 static void
    820 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
    821 {
    822 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
    823 
    824 	while (taskqueue_cancel(rx_ring->cmpl_tq, &rx_ring->cmpl_task, NULL) != 0)
    825 		taskqueue_drain(rx_ring->cmpl_tq, &rx_ring->cmpl_task);
    826 
    827 	taskqueue_free(rx_ring->cmpl_tq);
    828 
    829 	/* Free buffer DMA maps, */
    830 	for (int i = 0; i < rx_ring->ring_size; i++) {
    831 		m_freem(rx_ring->rx_buffer_info[i].mbuf);
    832 		rx_ring->rx_buffer_info[i].mbuf = NULL;
    833 		bus_dmamap_unload(adapter->sc_dmat,
    834 		    rx_ring->rx_buffer_info[i].map);
    835 		bus_dmamap_destroy(adapter->sc_dmat,
    836 		    rx_ring->rx_buffer_info[i].map);
    837 	}
    838 
    839 #ifdef LRO
    840 	/* free LRO resources, */
    841 	tcp_lro_free(&rx_ring->lro);
    842 #endif
    843 
    844 	/* free allocated memory */
    845 	free(rx_ring->rx_buffer_info, M_DEVBUF);
    846 	rx_ring->rx_buffer_info = NULL;
    847 
    848 	free(rx_ring->free_rx_ids, M_DEVBUF);
    849 	rx_ring->free_rx_ids = NULL;
    850 }
    851 
    852 /**
    853  * ena_setup_all_rx_resources - allocate all queues Rx resources
    854  * @adapter: network interface device structure
    855  *
    856  * Returns 0 on success, otherwise on failure.
    857  **/
    858 static int
    859 ena_setup_all_rx_resources(struct ena_adapter *adapter)
    860 {
    861 	int i, rc = 0;
    862 
    863 	for (i = 0; i < adapter->num_queues; i++) {
    864 		rc = ena_setup_rx_resources(adapter, i);
    865 		if (rc != 0) {
    866 			device_printf(adapter->pdev,
    867 			    "Allocation for Rx Queue %u failed\n", i);
    868 			goto err_setup_rx;
    869 		}
    870 	}
    871 	return (0);
    872 
    873 err_setup_rx:
    874 	/* rewind the index freeing the rings as we go */
    875 	while (i--)
    876 		ena_free_rx_resources(adapter, i);
    877 	return (rc);
    878 }
    879 
    880 /**
    881  * ena_free_all_rx_resources - Free Rx resources for all queues
    882  * @adapter: network interface device structure
    883  *
    884  * Free all receive software resources
    885  **/
    886 static void
    887 ena_free_all_rx_resources(struct ena_adapter *adapter)
    888 {
    889 	int i;
    890 
    891 	for (i = 0; i < adapter->num_queues; i++)
    892 		ena_free_rx_resources(adapter, i);
    893 }
    894 
    895 static inline int
    896 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
    897     struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
    898 {
    899 	struct ena_com_buf *ena_buf;
    900 	bus_dma_segment_t segs[1];
    901 	int nsegs, error;
    902 	int mlen;
    903 
    904 	/* if previous allocated frag is not used */
    905 	if (unlikely(rx_info->mbuf != NULL))
    906 		return (0);
    907 
    908 	/* Get mbuf using UMA allocator */
    909 	rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES);
    910 
    911 	if (unlikely(rx_info->mbuf == NULL)) {
    912 		counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1);
    913 		rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
    914 		if (unlikely(rx_info->mbuf == NULL)) {
    915 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
    916 			return (ENOMEM);
    917 		}
    918 		mlen = MCLBYTES;
    919 	} else {
    920 		mlen = MJUM16BYTES;
    921 	}
    922 	/* Set mbuf length*/
    923 	rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
    924 
    925 	/* Map packets for DMA */
    926 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
    927 	    "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
    928 	    adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
    929 	error = bus_dmamap_load_mbuf_sg(adapter->sc_dmat, rx_info->map,
    930 	    rx_info->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
    931 	if (unlikely((error != 0) || (nsegs != 1))) {
    932 		ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
    933 		    "nsegs: %d\n", error, nsegs);
    934 		counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
    935 		goto exit;
    936 
    937 	}
    938 
    939 	bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0, mlen,
    940 	    BUS_DMASYNC_PREREAD);
    941 
    942 	ena_buf = &rx_info->ena_buf;
    943 	ena_buf->paddr = segs[0].ds_addr;
    944 	ena_buf->len = mlen;
    945 
    946 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
    947 	    "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
    948 	    rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
    949 
    950 	return (0);
    951 
    952 exit:
    953 	m_freem(rx_info->mbuf);
    954 	rx_info->mbuf = NULL;
    955 	return (EFAULT);
    956 }
    957 
    958 static void
    959 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
    960     struct ena_rx_buffer *rx_info)
    961 {
    962 
    963 	if (rx_info->mbuf == NULL) {
    964 		ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
    965 		return;
    966 	}
    967 
    968 	bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
    969 	m_freem(rx_info->mbuf);
    970 	rx_info->mbuf = NULL;
    971 }
    972 
    973 /**
    974  * ena_refill_rx_bufs - Refills ring with descriptors
    975  * @rx_ring: the ring which we want to feed with free descriptors
    976  * @num: number of descriptors to refill
    977  * Refills the ring with newly allocated DMA-mapped mbufs for receiving
    978  **/
    979 static int
    980 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
    981 {
    982 	struct ena_adapter *adapter = rx_ring->adapter;
    983 	uint16_t next_to_use, req_id;
    984 	uint32_t i;
    985 	int rc;
    986 
    987 	ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
    988 	    rx_ring->qid);
    989 
    990 	next_to_use = rx_ring->next_to_use;
    991 
    992 	for (i = 0; i < num; i++) {
    993 		struct ena_rx_buffer *rx_info;
    994 
    995 		ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
    996 		    "RX buffer - next to use: %d", next_to_use);
    997 
    998 		req_id = rx_ring->free_rx_ids[next_to_use];
    999 		rc = validate_rx_req_id(rx_ring, req_id);
   1000 		if (unlikely(rc != 0))
   1001 			break;
   1002 
   1003 		rx_info = &rx_ring->rx_buffer_info[req_id];
   1004 
   1005 		rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
   1006 		if (unlikely(rc != 0)) {
   1007 			ena_trace(ENA_WARNING,
   1008 			    "failed to alloc buffer for rx queue %d\n",
   1009 			    rx_ring->qid);
   1010 			break;
   1011 		}
   1012 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
   1013 		    &rx_info->ena_buf, req_id);
   1014 		if (unlikely(rc != 0)) {
   1015 			ena_trace(ENA_WARNING,
   1016 			    "failed to add buffer for rx queue %d\n",
   1017 			    rx_ring->qid);
   1018 			break;
   1019 		}
   1020 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
   1021 		    rx_ring->ring_size);
   1022 	}
   1023 
   1024 	if (unlikely(i < num)) {
   1025 		counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
   1026 		ena_trace(ENA_WARNING,
   1027 		     "refilled rx qid %d with only %d mbufs (from %d)\n",
   1028 		     rx_ring->qid, i, num);
   1029 	}
   1030 
   1031 	if (likely(i != 0)) {
   1032 		wmb();
   1033 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
   1034 	}
   1035 	rx_ring->next_to_use = next_to_use;
   1036 	return (i);
   1037 }
   1038 
   1039 static void
   1040 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
   1041 {
   1042 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
   1043 	unsigned int i;
   1044 
   1045 	for (i = 0; i < rx_ring->ring_size; i++) {
   1046 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
   1047 
   1048 		if (rx_info->mbuf != NULL)
   1049 			ena_free_rx_mbuf(adapter, rx_ring, rx_info);
   1050 	}
   1051 }
   1052 
   1053 /**
   1054  * ena_refill_all_rx_bufs - allocate all queues Rx buffers
   1055  * @adapter: network interface device structure
   1056  *
   1057  */
   1058 static void
   1059 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
   1060 {
   1061 	struct ena_ring *rx_ring;
   1062 	int i, rc, bufs_num;
   1063 
   1064 	for (i = 0; i < adapter->num_queues; i++) {
   1065 		rx_ring = &adapter->rx_ring[i];
   1066 		bufs_num = rx_ring->ring_size - 1;
   1067 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
   1068 
   1069 		if (unlikely(rc != bufs_num))
   1070 			ena_trace(ENA_WARNING, "refilling Queue %d failed. "
   1071 			    "Allocated %d buffers from: %d\n", i, rc, bufs_num);
   1072 	}
   1073 }
   1074 
   1075 static void
   1076 ena_free_all_rx_bufs(struct ena_adapter *adapter)
   1077 {
   1078 	int i;
   1079 
   1080 	for (i = 0; i < adapter->num_queues; i++)
   1081 		ena_free_rx_bufs(adapter, i);
   1082 }
   1083 
   1084 /**
   1085  * ena_free_tx_bufs - Free Tx Buffers per Queue
   1086  * @adapter: network interface device structure
   1087  * @qid: queue index
   1088  **/
   1089 static void
   1090 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
   1091 {
   1092 	bool print_once = true;
   1093 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
   1094 
   1095 	ENA_RING_MTX_LOCK(tx_ring);
   1096 	for (int i = 0; i < tx_ring->ring_size; i++) {
   1097 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
   1098 
   1099 		if (tx_info->mbuf == NULL)
   1100 			continue;
   1101 
   1102 		if (print_once) {
   1103 			device_printf(adapter->pdev,
   1104 			    "free uncompleted tx mbuf qid %d idx 0x%x",
   1105 			    qid, i);
   1106 			print_once = false;
   1107 		} else {
   1108 			ena_trace(ENA_DBG,
   1109 			    "free uncompleted tx mbuf qid %d idx 0x%x",
   1110 			     qid, i);
   1111 		}
   1112 
   1113 		bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   1114 		m_free(tx_info->mbuf);
   1115 		tx_info->mbuf = NULL;
   1116 	}
   1117 	ENA_RING_MTX_UNLOCK(tx_ring);
   1118 }
   1119 
   1120 static void
   1121 ena_free_all_tx_bufs(struct ena_adapter *adapter)
   1122 {
   1123 
   1124 	for (int i = 0; i < adapter->num_queues; i++)
   1125 		ena_free_tx_bufs(adapter, i);
   1126 }
   1127 
   1128 static void
   1129 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
   1130 {
   1131 	uint16_t ena_qid;
   1132 	int i;
   1133 
   1134 	for (i = 0; i < adapter->num_queues; i++) {
   1135 		ena_qid = ENA_IO_TXQ_IDX(i);
   1136 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
   1137 	}
   1138 }
   1139 
   1140 static void
   1141 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
   1142 {
   1143 	uint16_t ena_qid;
   1144 	int i;
   1145 
   1146 	for (i = 0; i < adapter->num_queues; i++) {
   1147 		ena_qid = ENA_IO_RXQ_IDX(i);
   1148 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
   1149 	}
   1150 }
   1151 
   1152 static void
   1153 ena_destroy_all_io_queues(struct ena_adapter *adapter)
   1154 {
   1155 	ena_destroy_all_tx_queues(adapter);
   1156 	ena_destroy_all_rx_queues(adapter);
   1157 }
   1158 
   1159 static inline int
   1160 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
   1161 {
   1162 	struct ena_adapter *adapter = tx_ring->adapter;
   1163 	struct ena_tx_buffer *tx_info = NULL;
   1164 
   1165 	if (likely(req_id < tx_ring->ring_size)) {
   1166 		tx_info = &tx_ring->tx_buffer_info[req_id];
   1167 		if (tx_info->mbuf != NULL)
   1168 			return (0);
   1169 	}
   1170 
   1171 	if (tx_info->mbuf == NULL)
   1172 		device_printf(adapter->pdev,
   1173 		    "tx_info doesn't have valid mbuf\n");
   1174 	else
   1175 		device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
   1176 
   1177 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
   1178 
   1179 	return (EFAULT);
   1180 }
   1181 
   1182 static int
   1183 ena_create_io_queues(struct ena_adapter *adapter)
   1184 {
   1185 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   1186 	struct ena_com_create_io_ctx ctx;
   1187 	struct ena_ring *ring;
   1188 	uint16_t ena_qid;
   1189 	uint32_t msix_vector;
   1190 	int rc, i;
   1191 
   1192 	/* Create TX queues */
   1193 	for (i = 0; i < adapter->num_queues; i++) {
   1194 		msix_vector = ENA_IO_IRQ_IDX(i);
   1195 		ena_qid = ENA_IO_TXQ_IDX(i);
   1196 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
   1197 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
   1198 		ctx.queue_size = adapter->tx_ring_size;
   1199 		ctx.msix_vector = msix_vector;
   1200 		ctx.qid = ena_qid;
   1201 		rc = ena_com_create_io_queue(ena_dev, &ctx);
   1202 		if (rc != 0) {
   1203 			device_printf(adapter->pdev,
   1204 			    "Failed to create io TX queue #%d rc: %d\n", i, rc);
   1205 			goto err_tx;
   1206 		}
   1207 		ring = &adapter->tx_ring[i];
   1208 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
   1209 		    &ring->ena_com_io_sq,
   1210 		    &ring->ena_com_io_cq);
   1211 		if (rc != 0) {
   1212 			device_printf(adapter->pdev,
   1213 			    "Failed to get TX queue handlers. TX queue num"
   1214 			    " %d rc: %d\n", i, rc);
   1215 			ena_com_destroy_io_queue(ena_dev, ena_qid);
   1216 			goto err_tx;
   1217 		}
   1218 	}
   1219 
   1220 	/* Create RX queues */
   1221 	for (i = 0; i < adapter->num_queues; i++) {
   1222 		msix_vector = ENA_IO_IRQ_IDX(i);
   1223 		ena_qid = ENA_IO_RXQ_IDX(i);
   1224 		ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
   1225 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
   1226 		ctx.queue_size = adapter->rx_ring_size;
   1227 		ctx.msix_vector = msix_vector;
   1228 		ctx.qid = ena_qid;
   1229 		rc = ena_com_create_io_queue(ena_dev, &ctx);
   1230 		if (unlikely(rc != 0)) {
   1231 			device_printf(adapter->pdev,
   1232 			    "Failed to create io RX queue[%d] rc: %d\n", i, rc);
   1233 			goto err_rx;
   1234 		}
   1235 
   1236 		ring = &adapter->rx_ring[i];
   1237 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
   1238 		    &ring->ena_com_io_sq,
   1239 		    &ring->ena_com_io_cq);
   1240 		if (unlikely(rc != 0)) {
   1241 			device_printf(adapter->pdev,
   1242 			    "Failed to get RX queue handlers. RX queue num"
   1243 			    " %d rc: %d\n", i, rc);
   1244 			ena_com_destroy_io_queue(ena_dev, ena_qid);
   1245 			goto err_rx;
   1246 		}
   1247 	}
   1248 
   1249 	return (0);
   1250 
   1251 err_rx:
   1252 	while (i--)
   1253 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
   1254 	i = adapter->num_queues;
   1255 err_tx:
   1256 	while (i--)
   1257 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
   1258 
   1259 	return (ENXIO);
   1260 }
   1261 
   1262 /**
   1263  * ena_tx_cleanup - clear sent packets and corresponding descriptors
   1264  * @tx_ring: ring for which we want to clean packets
   1265  *
   1266  * Once packets are sent, we ask the device in a loop for no longer used
   1267  * descriptors. We find the related mbuf chain in a map (index in an array)
   1268  * and free it, then update ring state.
   1269  * This is performed in "endless" loop, updating ring pointers every
   1270  * TX_COMMIT. The first check of free descriptor is performed before the actual
   1271  * loop, then repeated at the loop end.
   1272  **/
   1273 static int
   1274 ena_tx_cleanup(struct ena_ring *tx_ring)
   1275 {
   1276 	struct ena_adapter *adapter;
   1277 	struct ena_com_io_cq* io_cq;
   1278 	uint16_t next_to_clean;
   1279 	uint16_t req_id;
   1280 	uint16_t ena_qid;
   1281 	unsigned int total_done = 0;
   1282 	int rc;
   1283 	int commit = TX_COMMIT;
   1284 	int budget = TX_BUDGET;
   1285 	int work_done;
   1286 
   1287 	adapter = tx_ring->que->adapter;
   1288 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   1289 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1290 	next_to_clean = tx_ring->next_to_clean;
   1291 
   1292 	do {
   1293 		struct ena_tx_buffer *tx_info;
   1294 		struct mbuf *mbuf;
   1295 
   1296 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
   1297 		if (unlikely(rc != 0))
   1298 			break;
   1299 
   1300 		rc = validate_tx_req_id(tx_ring, req_id);
   1301 		if (unlikely(rc != 0))
   1302 			break;
   1303 
   1304 		tx_info = &tx_ring->tx_buffer_info[req_id];
   1305 
   1306 		mbuf = tx_info->mbuf;
   1307 
   1308 		tx_info->mbuf = NULL;
   1309 		bintime_clear(&tx_info->timestamp);
   1310 
   1311 		if (likely(tx_info->num_of_bufs != 0)) {
   1312 			/* Map is no longer required */
   1313 			bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   1314 		}
   1315 
   1316 		ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
   1317 		    tx_ring->qid, mbuf);
   1318 
   1319 		m_freem(mbuf);
   1320 
   1321 		total_done += tx_info->tx_descs;
   1322 
   1323 		tx_ring->free_tx_ids[next_to_clean] = req_id;
   1324 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
   1325 		    tx_ring->ring_size);
   1326 
   1327 		if (unlikely(--commit == 0)) {
   1328 			commit = TX_COMMIT;
   1329 			/* update ring state every TX_COMMIT descriptor */
   1330 			tx_ring->next_to_clean = next_to_clean;
   1331 			ena_com_comp_ack(
   1332 			    &adapter->ena_dev->io_sq_queues[ena_qid],
   1333 			    total_done);
   1334 			ena_com_update_dev_comp_head(io_cq);
   1335 			total_done = 0;
   1336 		}
   1337 	} while (likely(--budget));
   1338 
   1339 	work_done = TX_BUDGET - budget;
   1340 
   1341 	ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
   1342 	tx_ring->qid, work_done);
   1343 
   1344 	/* If there is still something to commit update ring state */
   1345 	if (likely(commit != TX_COMMIT)) {
   1346 		tx_ring->next_to_clean = next_to_clean;
   1347 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
   1348 		    total_done);
   1349 		ena_com_update_dev_comp_head(io_cq);
   1350 	}
   1351 
   1352 	taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
   1353 
   1354 	return (work_done);
   1355 }
   1356 
   1357 static void
   1358 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
   1359     struct mbuf *mbuf)
   1360 {
   1361 	struct ena_adapter *adapter = rx_ring->adapter;
   1362 
   1363 	if (likely(adapter->rss_support)) {
   1364 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
   1365 
   1366 		if (ena_rx_ctx->frag &&
   1367 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
   1368 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
   1369 			return;
   1370 		}
   1371 
   1372 		switch (ena_rx_ctx->l3_proto) {
   1373 		case ENA_ETH_IO_L3_PROTO_IPV4:
   1374 			switch (ena_rx_ctx->l4_proto) {
   1375 			case ENA_ETH_IO_L4_PROTO_TCP:
   1376 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
   1377 				break;
   1378 			case ENA_ETH_IO_L4_PROTO_UDP:
   1379 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
   1380 				break;
   1381 			default:
   1382 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
   1383 			}
   1384 			break;
   1385 		case ENA_ETH_IO_L3_PROTO_IPV6:
   1386 			switch (ena_rx_ctx->l4_proto) {
   1387 			case ENA_ETH_IO_L4_PROTO_TCP:
   1388 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
   1389 				break;
   1390 			case ENA_ETH_IO_L4_PROTO_UDP:
   1391 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
   1392 				break;
   1393 			default:
   1394 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
   1395 			}
   1396 			break;
   1397 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
   1398 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
   1399 			break;
   1400 		default:
   1401 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
   1402 		}
   1403 	} else {
   1404 		mbuf->m_pkthdr.flowid = rx_ring->qid;
   1405 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
   1406 	}
   1407 }
   1408 
   1409 /**
   1410  * ena_rx_mbuf - assemble mbuf from descriptors
   1411  * @rx_ring: ring for which we want to clean packets
   1412  * @ena_bufs: buffer info
   1413  * @ena_rx_ctx: metadata for this packet(s)
   1414  * @next_to_clean: ring pointer, will be updated only upon success
   1415  *
   1416  **/
   1417 static struct mbuf*
   1418 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
   1419     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
   1420 {
   1421 	struct mbuf *mbuf;
   1422 	struct ena_rx_buffer *rx_info;
   1423 	struct ena_adapter *adapter;
   1424 	unsigned int descs = ena_rx_ctx->descs;
   1425 	uint16_t ntc, len, req_id, buf = 0;
   1426 
   1427 	ntc = *next_to_clean;
   1428 	adapter = rx_ring->adapter;
   1429 	rx_info = &rx_ring->rx_buffer_info[ntc];
   1430 
   1431 	if (unlikely(rx_info->mbuf == NULL)) {
   1432 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
   1433 		return (NULL);
   1434 	}
   1435 
   1436 	len = ena_bufs[buf].len;
   1437 	req_id = ena_bufs[buf].req_id;
   1438 	rx_info = &rx_ring->rx_buffer_info[req_id];
   1439 
   1440 	ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
   1441 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
   1442 
   1443 	mbuf = rx_info->mbuf;
   1444 	KASSERT(mbuf->m_flags & M_PKTHDR);
   1445 	mbuf->m_pkthdr.len = len;
   1446 	mbuf->m_len = len;
   1447 	mbuf->m_pkthdr.rcvif = rx_ring->que->adapter->ifp;
   1448 
   1449 	/* Fill mbuf with hash key and it's interpretation for optimization */
   1450 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
   1451 
   1452 	ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d",
   1453 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
   1454 
   1455 	/* DMA address is not needed anymore, unmap it */
   1456 	bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
   1457 
   1458 	rx_info->mbuf = NULL;
   1459 	rx_ring->free_rx_ids[ntc] = req_id;
   1460 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
   1461 
   1462 	/*
   1463 	 * While we have more than 1 descriptors for one rcvd packet, append
   1464 	 * other mbufs to the main one
   1465 	 */
   1466 	while (--descs) {
   1467 		++buf;
   1468 		len = ena_bufs[buf].len;
   1469 		req_id = ena_bufs[buf].req_id;
   1470 		rx_info = &rx_ring->rx_buffer_info[req_id];
   1471 
   1472 		if (unlikely(rx_info->mbuf == NULL)) {
   1473 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
   1474 			/*
   1475 			 * If one of the required mbufs was not allocated yet,
   1476 			 * we can break there.
   1477 			 * All earlier used descriptors will be reallocated
   1478 			 * later and not used mbufs can be reused.
   1479 			 * The next_to_clean pointer will not be updated in case
   1480 			 * of an error, so caller should advance it manually
   1481 			 * in error handling routine to keep it up to date
   1482 			 * with hw ring.
   1483 			 */
   1484 			m_freem(mbuf);
   1485 			return (NULL);
   1486 		}
   1487 
   1488 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
   1489 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
   1490 			ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
   1491 			    mbuf);
   1492 		}
   1493 
   1494 		ena_trace(ENA_DBG | ENA_RXPTH,
   1495 		    "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
   1496 
   1497 		/* Free already appended mbuf, it won't be useful anymore */
   1498 		bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
   1499 		m_freem(rx_info->mbuf);
   1500 		rx_info->mbuf = NULL;
   1501 
   1502 		rx_ring->free_rx_ids[ntc] = req_id;
   1503 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
   1504 	}
   1505 
   1506 	*next_to_clean = ntc;
   1507 
   1508 	return (mbuf);
   1509 }
   1510 
   1511 /**
   1512  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
   1513  **/
   1514 static inline void
   1515 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
   1516     struct mbuf *mbuf)
   1517 {
   1518 
   1519 	/* if IP and error */
   1520 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
   1521 	    ena_rx_ctx->l3_csum_err)) {
   1522 		/* ipv4 checksum error */
   1523 		mbuf->m_pkthdr.csum_flags = 0;
   1524 		counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1525 		ena_trace(ENA_DBG, "RX IPv4 header checksum error");
   1526 		return;
   1527 	}
   1528 
   1529 	/* if TCP/UDP */
   1530 	if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
   1531 	    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
   1532 		if (ena_rx_ctx->l4_csum_err) {
   1533 			/* TCP/UDP checksum error */
   1534 			mbuf->m_pkthdr.csum_flags = 0;
   1535 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1536 			ena_trace(ENA_DBG, "RX L4 checksum error");
   1537 		} else {
   1538 			mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
   1539 			mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
   1540 		}
   1541 	}
   1542 }
   1543 
   1544 static void
   1545 ena_deferred_rx_cleanup(void *arg, int pending)
   1546 {
   1547 	struct ena_ring *rx_ring = arg;
   1548 	int budget = CLEAN_BUDGET;
   1549 
   1550 	ENA_RING_MTX_LOCK(rx_ring);
   1551 	/*
   1552 	 * If deferred task was executed, perform cleanup of all awaiting
   1553 	 * descs (or until given budget is depleted to avoid infinite loop).
   1554 	 */
   1555 	while (likely(budget--)) {
   1556 		if (ena_rx_cleanup(rx_ring) == 0)
   1557 			break;
   1558 	}
   1559 	ENA_RING_MTX_UNLOCK(rx_ring);
   1560 }
   1561 
   1562 /**
   1563  * ena_rx_cleanup - handle rx irq
   1564  * @arg: ring for which irq is being handled
   1565  **/
   1566 static int
   1567 ena_rx_cleanup(struct ena_ring *rx_ring)
   1568 {
   1569 	struct ena_adapter *adapter;
   1570 	struct mbuf *mbuf;
   1571 	struct ena_com_rx_ctx ena_rx_ctx;
   1572 	struct ena_com_io_cq* io_cq;
   1573 	struct ena_com_io_sq* io_sq;
   1574 	struct ifnet *ifp;
   1575 	uint16_t ena_qid;
   1576 	uint16_t next_to_clean;
   1577 	uint32_t refill_required;
   1578 	uint32_t refill_threshold;
   1579 	uint32_t do_if_input = 0;
   1580 	unsigned int qid;
   1581 	int rc, i;
   1582 	int budget = RX_BUDGET;
   1583 
   1584 	adapter = rx_ring->que->adapter;
   1585 	ifp = adapter->ifp;
   1586 	qid = rx_ring->que->id;
   1587 	ena_qid = ENA_IO_RXQ_IDX(qid);
   1588 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1589 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
   1590 	next_to_clean = rx_ring->next_to_clean;
   1591 
   1592 	ena_trace(ENA_DBG, "rx: qid %d", qid);
   1593 
   1594 	do {
   1595 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
   1596 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
   1597 		ena_rx_ctx.descs = 0;
   1598 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
   1599 
   1600 		if (unlikely(rc != 0))
   1601 			goto error;
   1602 
   1603 		if (unlikely(ena_rx_ctx.descs == 0))
   1604 			break;
   1605 
   1606 		ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
   1607 		    "descs #: %d l3 proto %d l4 proto %d hash: %x",
   1608 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
   1609 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
   1610 
   1611 		/* Receive mbuf from the ring */
   1612 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
   1613 		    &ena_rx_ctx, &next_to_clean);
   1614 
   1615 		/* Exit if we failed to retrieve a buffer */
   1616 		if (unlikely(mbuf == NULL)) {
   1617 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
   1618 				rx_ring->free_rx_ids[next_to_clean] =
   1619 				    rx_ring->ena_bufs[i].req_id;
   1620 				next_to_clean =
   1621 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
   1622 				    rx_ring->ring_size);
   1623 
   1624 			}
   1625 			break;
   1626 		}
   1627 
   1628 		if (((ifp->if_capenable & IFCAP_RXCSUM) != 0) ||
   1629 		    ((ifp->if_capenable & IFCAP_RXCSUM_IPV6) != 0)) {
   1630 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
   1631 		}
   1632 
   1633 		counter_enter();
   1634 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
   1635 		    mbuf->m_pkthdr.len);
   1636 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
   1637 		    mbuf->m_pkthdr.len);
   1638 		counter_exit();
   1639 #ifdef LRO
   1640 		/*
   1641 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
   1642 		 * should be computed by hardware.
   1643 		 */
   1644 		do_if_input = 1;
   1645 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
   1646 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
   1647 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
   1648 			/*
   1649 			 * Send to the stack if:
   1650 			 *  - LRO not enabled, or
   1651 			 *  - no LRO resources, or
   1652 			 *  - lro enqueue fails
   1653 			 */
   1654 			if ((rx_ring->lro.lro_cnt != 0) &&
   1655 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
   1656 					do_if_input = 0;
   1657 		}
   1658 		if (do_if_input != 0) {
   1659 			ena_trace(ENA_DBG | ENA_RXPTH,
   1660 			    "calling if_input() with mbuf %p", mbuf);
   1661 			(*ifp->if_input)(ifp, mbuf);
   1662 		}
   1663 #endif
   1664 
   1665 		counter_enter();
   1666 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
   1667 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
   1668 		counter_exit();
   1669 	} while (--budget);
   1670 
   1671 	rx_ring->next_to_clean = next_to_clean;
   1672 
   1673 	refill_required = ena_com_free_desc(io_sq);
   1674 	refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
   1675 
   1676 	if (refill_required > refill_threshold) {
   1677 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
   1678 		ena_refill_rx_bufs(rx_ring, refill_required);
   1679 	}
   1680 
   1681 #ifdef LRO
   1682 	tcp_lro_flush_all(&rx_ring->lro);
   1683 #endif
   1684 
   1685 	return (RX_BUDGET - budget);
   1686 
   1687 error:
   1688 	counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
   1689 	return (RX_BUDGET - budget);
   1690 }
   1691 
   1692 /*********************************************************************
   1693  *
   1694  *  MSIX & Interrupt Service routine
   1695  *
   1696  **********************************************************************/
   1697 
   1698 /**
   1699  * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
   1700  * @arg: interrupt number
   1701  **/
   1702 static void
   1703 ena_intr_msix_mgmnt(void *arg)
   1704 {
   1705 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
   1706 
   1707 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
   1708 	if (likely(adapter->running))
   1709 		ena_com_aenq_intr_handler(adapter->ena_dev, arg);
   1710 }
   1711 
   1712 /**
   1713  * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
   1714  * @arg: interrupt number
   1715  **/
   1716 static void
   1717 ena_handle_msix(void *arg)
   1718 {
   1719 	struct ena_que	*que = arg;
   1720 	struct ena_adapter *adapter = que->adapter;
   1721 	struct ifnet *ifp = adapter->ifp;
   1722 	struct ena_ring *tx_ring;
   1723 	struct ena_ring *rx_ring;
   1724 	struct ena_com_io_cq* io_cq;
   1725 	struct ena_eth_io_intr_reg intr_reg;
   1726 	int qid, ena_qid;
   1727 	int txc, rxc, i;
   1728 
   1729 	if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
   1730 		return;
   1731 
   1732 	ena_trace(ENA_DBG, "MSI-X TX/RX routine");
   1733 
   1734 	tx_ring = que->tx_ring;
   1735 	rx_ring = que->rx_ring;
   1736 	qid = que->id;
   1737 	ena_qid = ENA_IO_TXQ_IDX(qid);
   1738 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1739 
   1740 	for (i = 0; i < CLEAN_BUDGET; ++i) {
   1741 		/*
   1742 		 * If lock cannot be acquired, then deferred cleanup task was
   1743 		 * being executed and rx ring is being cleaned up in
   1744 		 * another thread.
   1745 		 */
   1746 		if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) {
   1747 			rxc = ena_rx_cleanup(rx_ring);
   1748 			ENA_RING_MTX_UNLOCK(rx_ring);
   1749 		} else {
   1750 			rxc = 0;
   1751 		}
   1752 
   1753 		/* Protection from calling ena_tx_cleanup from ena_start_xmit */
   1754 		ENA_RING_MTX_LOCK(tx_ring);
   1755 		txc = ena_tx_cleanup(tx_ring);
   1756 		ENA_RING_MTX_UNLOCK(tx_ring);
   1757 
   1758 		if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
   1759 			return;
   1760 
   1761 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
   1762 		       break;
   1763 	}
   1764 
   1765 	/* Signal that work is done and unmask interrupt */
   1766 	ena_com_update_intr_reg(&intr_reg,
   1767 	    RX_IRQ_INTERVAL,
   1768 	    TX_IRQ_INTERVAL,
   1769 	    true);
   1770 	ena_com_unmask_intr(io_cq, &intr_reg);
   1771 }
   1772 
   1773 static int
   1774 ena_enable_msix(struct ena_adapter *adapter)
   1775 {
   1776 	device_t dev = adapter->pdev;
   1777 	int msix_vecs, msix_req;
   1778 	int i, rc = 0;
   1779 
   1780 	/* Reserved the max msix vectors we might need */
   1781 	msix_vecs = ENA_MAX_MSIX_VEC(adapter->num_queues);
   1782 
   1783 	adapter->msix_entries = malloc(msix_vecs * sizeof(struct msix_entry),
   1784 	    M_DEVBUF, M_WAITOK | M_ZERO);
   1785 
   1786 	ena_trace(ENA_DBG, "trying to enable MSI-X, vectors: %d", msix_vecs);
   1787 
   1788 	for (i = 0; i < msix_vecs; i++) {
   1789 		adapter->msix_entries[i].entry = i;
   1790 		/* Vectors must start from 1 */
   1791 		adapter->msix_entries[i].vector = i + 1;
   1792 	}
   1793 
   1794 	msix_req = msix_vecs;
   1795 	rc = pci_alloc_msix(dev, &msix_vecs);
   1796 	if (unlikely(rc != 0)) {
   1797 		device_printf(dev,
   1798 		    "Failed to enable MSIX, vectors %d rc %d\n", msix_vecs, rc);
   1799 
   1800 		rc = ENOSPC;
   1801 		goto err_msix_free;
   1802 	}
   1803 
   1804 	if (msix_vecs != msix_req) {
   1805 		device_printf(dev, "Enable only %d MSI-x (out of %d), reduce "
   1806 		    "the number of queues\n", msix_vecs, msix_req);
   1807 		adapter->num_queues = msix_vecs - ENA_ADMIN_MSIX_VEC;
   1808 	}
   1809 
   1810 	adapter->msix_vecs = msix_vecs;
   1811 	adapter->msix_enabled = true;
   1812 
   1813 	return (0);
   1814 
   1815 err_msix_free:
   1816 	free(adapter->msix_entries, M_DEVBUF);
   1817 	adapter->msix_entries = NULL;
   1818 
   1819 	return (rc);
   1820 }
   1821 
   1822 static void
   1823 ena_setup_mgmnt_intr(struct ena_adapter *adapter)
   1824 {
   1825 
   1826 	snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
   1827 	    ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
   1828 	    device_xname(adapter->pdev));
   1829 	/*
   1830 	 * Handler is NULL on purpose, it will be set
   1831 	 * when mgmnt interrupt is acquired
   1832 	 */
   1833 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = NULL;
   1834 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
   1835 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
   1836 	    adapter->msix_entries[ENA_MGMNT_IRQ_IDX].vector;
   1837 }
   1838 
   1839 static void
   1840 ena_setup_io_intr(struct ena_adapter *adapter)
   1841 {
   1842 	static int last_bind_cpu = -1;
   1843 	int irq_idx;
   1844 
   1845 	for (int i = 0; i < adapter->num_queues; i++) {
   1846 		irq_idx = ENA_IO_IRQ_IDX(i);
   1847 
   1848 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
   1849 		    "%s-TxRx-%d", device_xname(adapter->pdev), i);
   1850 		adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
   1851 		adapter->irq_tbl[irq_idx].data = &adapter->que[i];
   1852 		adapter->irq_tbl[irq_idx].vector =
   1853 		    adapter->msix_entries[irq_idx].vector;
   1854 		ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
   1855 		    adapter->msix_entries[irq_idx].vector);
   1856 #ifdef	RSS
   1857 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
   1858 		    rss_getcpu(i % rss_getnumbuckets());
   1859 #else
   1860 		/*
   1861 		 * We still want to bind rings to the corresponding cpu
   1862 		 * using something similar to the RSS round-robin technique.
   1863 		 */
   1864 		if (unlikely(last_bind_cpu < 0))
   1865 			last_bind_cpu = CPU_FIRST();
   1866 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
   1867 		    last_bind_cpu;
   1868 		last_bind_cpu = CPU_NEXT(last_bind_cpu);
   1869 #endif
   1870 	}
   1871 }
   1872 
   1873 static int
   1874 ena_request_mgmnt_irq(struct ena_adapter *adapter)
   1875 {
   1876 	struct ena_irq *irq;
   1877 	unsigned long flags;
   1878 	int rc, rcc;
   1879 
   1880 	flags = RF_ACTIVE | RF_SHAREABLE;
   1881 
   1882 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
   1883 	irq->res = bus_alloc_resource_any(adapter->pdev, SYS_RES_IRQ,
   1884 	    &irq->vector, flags);
   1885 
   1886 	if (unlikely(irq->res == NULL)) {
   1887 		device_printf(adapter->pdev, "could not allocate "
   1888 		    "irq vector: %d\n", irq->vector);
   1889 		return (ENXIO);
   1890 	}
   1891 
   1892 	rc = bus_activate_resource(adapter->pdev, SYS_RES_IRQ,
   1893 	    irq->vector, irq->res);
   1894 	if (unlikely(rc != 0)) {
   1895 		device_printf(adapter->pdev, "could not activate "
   1896 		    "irq vector: %d\n", irq->vector);
   1897 		goto err_res_free;
   1898 	}
   1899 
   1900 	rc = bus_setup_intr(adapter->pdev, irq->res,
   1901 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, ena_intr_msix_mgmnt,
   1902 	    irq->data, &irq->cookie);
   1903 	if (unlikely(rc != 0)) {
   1904 		device_printf(adapter->pdev, "failed to register "
   1905 		    "interrupt handler for irq %ju: %d\n",
   1906 		    rman_get_start(irq->res), rc);
   1907 		goto err_res_free;
   1908 	}
   1909 	irq->requested = true;
   1910 
   1911 	return (rc);
   1912 
   1913 err_res_free:
   1914 	ena_trace(ENA_INFO | ENA_ADMQ, "releasing resource for irq %d\n",
   1915 	    irq->vector);
   1916 	rcc = bus_release_resource(adapter->pdev, SYS_RES_IRQ,
   1917 	    irq->vector, irq->res);
   1918 	if (unlikely(rcc != 0))
   1919 		device_printf(adapter->pdev, "dev has no parent while "
   1920 		    "releasing res for irq: %d\n", irq->vector);
   1921 	irq->res = NULL;
   1922 
   1923 	return (rc);
   1924 }
   1925 
   1926 static int
   1927 ena_request_io_irq(struct ena_adapter *adapter)
   1928 {
   1929 	struct ena_irq *irq;
   1930 	unsigned long flags = 0;
   1931 	int rc = 0, i, rcc;
   1932 
   1933 	if (unlikely(adapter->msix_enabled == 0)) {
   1934 		device_printf(adapter->pdev,
   1935 		    "failed to request I/O IRQ: MSI-X is not enabled\n");
   1936 		return (EINVAL);
   1937 	} else {
   1938 		flags = RF_ACTIVE | RF_SHAREABLE;
   1939 	}
   1940 
   1941 	for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
   1942 		irq = &adapter->irq_tbl[i];
   1943 
   1944 		if (unlikely(irq->requested))
   1945 			continue;
   1946 
   1947 		irq->res = bus_alloc_resource_any(adapter->pdev, SYS_RES_IRQ,
   1948 		    &irq->vector, flags);
   1949 		if (unlikely(irq->res == NULL)) {
   1950 			device_printf(adapter->pdev, "could not allocate "
   1951 			    "irq vector: %d\n", irq->vector);
   1952 			goto err;
   1953 		}
   1954 
   1955 		rc = bus_setup_intr(adapter->pdev, irq->res,
   1956 		    INTR_TYPE_NET | INTR_MPSAFE, NULL,
   1957 		    irq->handler, irq->data, &irq->cookie);
   1958 		 if (unlikely(rc != 0)) {
   1959 			device_printf(adapter->pdev, "failed to register "
   1960 			    "interrupt handler for irq %ju: %d\n",
   1961 			    rman_get_start(irq->res), rc);
   1962 			goto err;
   1963 		}
   1964 		irq->requested = true;
   1965 
   1966 #ifdef	RSS
   1967 		ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
   1968 		    i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
   1969 #else
   1970 		ena_trace(ENA_INFO, "queue %d - cpu %d\n",
   1971 		    i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
   1972 #endif
   1973 	}
   1974 
   1975 	return (rc);
   1976 
   1977 err:
   1978 
   1979 	for (; i >= ENA_IO_IRQ_FIRST_IDX; i--) {
   1980 		irq = &adapter->irq_tbl[i];
   1981 		rcc = 0;
   1982 
   1983 		/* Once we entered err: section and irq->requested is true we
   1984 		   free both intr and resources */
   1985 		if (irq->requested)
   1986 			rcc = bus_teardown_intr(adapter->pdev, irq->res, irq->cookie);
   1987 		if (unlikely(rcc != 0))
   1988 			device_printf(adapter->pdev, "could not release"
   1989 			    " irq: %d, error: %d\n", irq->vector, rcc);
   1990 
   1991 		/* If we entred err: section without irq->requested set we know
   1992 		   it was bus_alloc_resource_any() that needs cleanup, provided
   1993 		   res is not NULL. In case res is NULL no work in needed in
   1994 		   this iteration */
   1995 		rcc = 0;
   1996 		if (irq->res != NULL) {
   1997 			rcc = bus_release_resource(adapter->pdev, SYS_RES_IRQ,
   1998 			    irq->vector, irq->res);
   1999 		}
   2000 		if (unlikely(rcc != 0))
   2001 			device_printf(adapter->pdev, "dev has no parent while "
   2002 			    "releasing res for irq: %d\n", irq->vector);
   2003 		irq->requested = false;
   2004 		irq->res = NULL;
   2005 	}
   2006 
   2007 	return (rc);
   2008 }
   2009 
   2010 static void
   2011 ena_free_mgmnt_irq(struct ena_adapter *adapter)
   2012 {
   2013 	struct ena_irq *irq;
   2014 	int rc;
   2015 
   2016 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
   2017 	if (irq->requested) {
   2018 		ena_trace(ENA_INFO | ENA_ADMQ, "tear down irq: %d\n",
   2019 		    irq->vector);
   2020 		rc = bus_teardown_intr(adapter->pdev, irq->res, irq->cookie);
   2021 		if (unlikely(rc != 0))
   2022 			device_printf(adapter->pdev, "failed to tear "
   2023 			    "down irq: %d\n", irq->vector);
   2024 		irq->requested = 0;
   2025 	}
   2026 
   2027 	if (irq->res != NULL) {
   2028 		ena_trace(ENA_INFO | ENA_ADMQ, "release resource irq: %d\n",
   2029 		    irq->vector);
   2030 		rc = bus_release_resource(adapter->pdev, SYS_RES_IRQ,
   2031 		    irq->vector, irq->res);
   2032 		irq->res = NULL;
   2033 		if (unlikely(rc != 0))
   2034 			device_printf(adapter->pdev, "dev has no parent while "
   2035 			    "releasing res for irq: %d\n", irq->vector);
   2036 	}
   2037 }
   2038 
   2039 static void
   2040 ena_free_io_irq(struct ena_adapter *adapter)
   2041 {
   2042 	struct ena_irq *irq;
   2043 	int rc;
   2044 
   2045 	for (int i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
   2046 		irq = &adapter->irq_tbl[i];
   2047 		if (irq->requested) {
   2048 			ena_trace(ENA_INFO | ENA_IOQ, "tear down irq: %d\n",
   2049 			    irq->vector);
   2050 			rc = bus_teardown_intr(adapter->pdev, irq->res,
   2051 			    irq->cookie);
   2052 			if (unlikely(rc != 0)) {
   2053 				device_printf(adapter->pdev, "failed to tear "
   2054 				    "down irq: %d\n", irq->vector);
   2055 			}
   2056 			irq->requested = 0;
   2057 		}
   2058 
   2059 		if (irq->res != NULL) {
   2060 			ena_trace(ENA_INFO | ENA_IOQ, "release resource irq: %d\n",
   2061 			    irq->vector);
   2062 			rc = bus_release_resource(adapter->pdev, SYS_RES_IRQ,
   2063 			    irq->vector, irq->res);
   2064 			irq->res = NULL;
   2065 			if (unlikely(rc != 0)) {
   2066 				device_printf(adapter->pdev, "dev has no parent"
   2067 				    " while releasing res for irq: %d\n",
   2068 				    irq->vector);
   2069 			}
   2070 		}
   2071 	}
   2072 }
   2073 
   2074 static void
   2075 ena_free_irqs(struct ena_adapter* adapter)
   2076 {
   2077 
   2078 	ena_free_io_irq(adapter);
   2079 	ena_free_mgmnt_irq(adapter);
   2080 	ena_disable_msix(adapter);
   2081 }
   2082 
   2083 static void
   2084 ena_disable_msix(struct ena_adapter *adapter)
   2085 {
   2086 
   2087 	pci_release_msi(adapter->pdev);
   2088 
   2089 	adapter->msix_vecs = 0;
   2090 	free(adapter->msix_entries, M_DEVBUF);
   2091 	adapter->msix_entries = NULL;
   2092 }
   2093 
   2094 static void
   2095 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
   2096 {
   2097 	struct ena_com_io_cq* io_cq;
   2098 	struct ena_eth_io_intr_reg intr_reg;
   2099 	uint16_t ena_qid;
   2100 	int i;
   2101 
   2102 	/* Unmask interrupts for all queues */
   2103 	for (i = 0; i < adapter->num_queues; i++) {
   2104 		ena_qid = ENA_IO_TXQ_IDX(i);
   2105 		io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   2106 		ena_com_update_intr_reg(&intr_reg, 0, 0, true);
   2107 		ena_com_unmask_intr(io_cq, &intr_reg);
   2108 	}
   2109 }
   2110 
   2111 /* Configure the Rx forwarding */
   2112 static int
   2113 ena_rss_configure(struct ena_adapter *adapter)
   2114 {
   2115 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   2116 	int rc;
   2117 
   2118 	/* Set indirect table */
   2119 	rc = ena_com_indirect_table_set(ena_dev);
   2120 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2121 		return (rc);
   2122 
   2123 	/* Configure hash function (if supported) */
   2124 	rc = ena_com_set_hash_function(ena_dev);
   2125 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2126 		return (rc);
   2127 
   2128 	/* Configure hash inputs (if supported) */
   2129 	rc = ena_com_set_hash_ctrl(ena_dev);
   2130 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2131 		return (rc);
   2132 
   2133 	return (0);
   2134 }
   2135 
   2136 static int
   2137 ena_up_complete(struct ena_adapter *adapter)
   2138 {
   2139 	int rc;
   2140 
   2141 	if (likely(adapter->rss_support)) {
   2142 		rc = ena_rss_configure(adapter);
   2143 		if (rc != 0)
   2144 			return (rc);
   2145 	}
   2146 
   2147 	rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
   2148 	if (unlikely(rc != 0))
   2149 		return (rc);
   2150 
   2151 	ena_refill_all_rx_bufs(adapter);
   2152 	ena_reset_counters((struct evcnt *)&adapter->hw_stats,
   2153 	    sizeof(adapter->hw_stats));
   2154 
   2155 	return (0);
   2156 }
   2157 
   2158 static int
   2159 ena_up(struct ena_adapter *adapter)
   2160 {
   2161 	int rc = 0;
   2162 
   2163 	if (unlikely(device_is_attached(adapter->pdev) == 0)) {
   2164 		device_printf(adapter->pdev, "device is not attached!\n");
   2165 		return (ENXIO);
   2166 	}
   2167 
   2168 	if (unlikely(!adapter->running)) {
   2169 		device_printf(adapter->pdev, "device is not running!\n");
   2170 		return (ENXIO);
   2171 	}
   2172 
   2173 	if (!adapter->up) {
   2174 		device_printf(adapter->pdev, "device is going UP\n");
   2175 
   2176 		/* setup interrupts for IO queues */
   2177 		ena_setup_io_intr(adapter);
   2178 		rc = ena_request_io_irq(adapter);
   2179 		if (unlikely(rc != 0)) {
   2180 			ena_trace(ENA_ALERT, "err_req_irq");
   2181 			goto err_req_irq;
   2182 		}
   2183 
   2184 		/* allocate transmit descriptors */
   2185 		rc = ena_setup_all_tx_resources(adapter);
   2186 		if (unlikely(rc != 0)) {
   2187 			ena_trace(ENA_ALERT, "err_setup_tx");
   2188 			goto err_setup_tx;
   2189 		}
   2190 
   2191 		/* allocate receive descriptors */
   2192 		rc = ena_setup_all_rx_resources(adapter);
   2193 		if (unlikely(rc != 0)) {
   2194 			ena_trace(ENA_ALERT, "err_setup_rx");
   2195 			goto err_setup_rx;
   2196 		}
   2197 
   2198 		/* create IO queues for Rx & Tx */
   2199 		rc = ena_create_io_queues(adapter);
   2200 		if (unlikely(rc != 0)) {
   2201 			ena_trace(ENA_ALERT,
   2202 			    "create IO queues failed");
   2203 			goto err_io_que;
   2204 		}
   2205 
   2206 		if (unlikely(adapter->link_status))
   2207 			if_link_state_change(adapter->ifp, LINK_STATE_UP);
   2208 
   2209 		rc = ena_up_complete(adapter);
   2210 		if (unlikely(rc != 0))
   2211 			goto err_up_complete;
   2212 
   2213 		counter_u64_add(adapter->dev_stats.interface_up, 1);
   2214 
   2215 		ena_update_hwassist(adapter);
   2216 
   2217 		if_setdrvflagbits(adapter->ifp, IFF_DRV_RUNNING,
   2218 		    IFF_DRV_OACTIVE);
   2219 
   2220 		callout_reset_sbt(&adapter->timer_service, SBT_1S, SBT_1S,
   2221 		    ena_timer_service, (void *)adapter, 0);
   2222 
   2223 		adapter->up = true;
   2224 
   2225 		ena_unmask_all_io_irqs(adapter);
   2226 	}
   2227 
   2228 	return (0);
   2229 
   2230 err_up_complete:
   2231 	ena_destroy_all_io_queues(adapter);
   2232 err_io_que:
   2233 	ena_free_all_rx_resources(adapter);
   2234 err_setup_rx:
   2235 	ena_free_all_tx_resources(adapter);
   2236 err_setup_tx:
   2237 	ena_free_io_irq(adapter);
   2238 err_req_irq:
   2239 	return (rc);
   2240 }
   2241 
   2242 #if 0
   2243 static uint64_t
   2244 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
   2245 {
   2246 	struct ena_adapter *adapter;
   2247 	struct ena_hw_stats *stats;
   2248 
   2249 	adapter = if_getsoftc(ifp);
   2250 	stats = &adapter->hw_stats;
   2251 
   2252 	switch (cnt) {
   2253 	case IFCOUNTER_IPACKETS:
   2254 		return (counter_u64_fetch(stats->rx_packets));
   2255 	case IFCOUNTER_OPACKETS:
   2256 		return (counter_u64_fetch(stats->tx_packets));
   2257 	case IFCOUNTER_IBYTES:
   2258 		return (counter_u64_fetch(stats->rx_bytes));
   2259 	case IFCOUNTER_OBYTES:
   2260 		return (counter_u64_fetch(stats->tx_bytes));
   2261 	case IFCOUNTER_IQDROPS:
   2262 		return (counter_u64_fetch(stats->rx_drops));
   2263 	default:
   2264 		return (if_get_counter_default(ifp, cnt));
   2265 	}
   2266 }
   2267 #endif
   2268 
   2269 static int
   2270 ena_media_change(struct ifnet *ifp)
   2271 {
   2272 	/* Media Change is not supported by firmware */
   2273 	return (0);
   2274 }
   2275 
   2276 static void
   2277 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
   2278 {
   2279 	struct ena_adapter *adapter = if_getsoftc(ifp);
   2280 	ena_trace(ENA_DBG, "enter");
   2281 
   2282 	mutex_enter(&adapter->global_mtx);
   2283 
   2284 	ifmr->ifm_status = IFM_AVALID;
   2285 	ifmr->ifm_active = IFM_ETHER;
   2286 
   2287 	if (!adapter->link_status) {
   2288 		mutex_exit(&adapter->global_mtx);
   2289 		ena_trace(ENA_INFO, "link_status = false");
   2290 		return;
   2291 	}
   2292 
   2293 	ifmr->ifm_status |= IFM_ACTIVE;
   2294 	ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
   2295 
   2296 	mutex_exit(&adapter->global_mtx);
   2297 }
   2298 
   2299 static void
   2300 ena_init(void *arg)
   2301 {
   2302 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
   2303 
   2304 	if (!adapter->up) {
   2305 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2306 		ena_up(adapter);
   2307 		rw_exit(&adapter->ioctl_sx);
   2308 	}
   2309 }
   2310 
   2311 static int
   2312 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
   2313 {
   2314 	struct ena_adapter *adapter;
   2315 	struct ifreq *ifr;
   2316 	int rc;
   2317 
   2318 	adapter = ifp->if_softc;
   2319 	ifr = (struct ifreq *)data;
   2320 
   2321 	/*
   2322 	 * Acquiring lock to prevent from running up and down routines parallel.
   2323 	 */
   2324 	rc = 0;
   2325 	switch (command) {
   2326 	case SIOCSIFMTU:
   2327 		if (ifp->if_mtu == ifr->ifr_mtu)
   2328 			break;
   2329 		rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2330 		ena_down(adapter);
   2331 
   2332 		ena_change_mtu(ifp, ifr->ifr_mtu);
   2333 
   2334 		rc = ena_up(adapter);
   2335 		rw_exit(&adapter->ioctl_sx);
   2336 		break;
   2337 
   2338 	case SIOCSIFFLAGS:
   2339 		if ((ifp->if_flags & IFF_UP) != 0) {
   2340 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
   2341 				if ((ifp->if_flags & (IFF_PROMISC |
   2342 				    IFF_ALLMULTI)) != 0) {
   2343 					device_printf(adapter->pdev,
   2344 					    "ioctl promisc/allmulti\n");
   2345 				}
   2346 			} else {
   2347 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2348 				rc = ena_up(adapter);
   2349 				rw_exit(&adapter->ioctl_sx);
   2350 			}
   2351 		} else {
   2352 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
   2353 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2354 				ena_down(adapter);
   2355 				rw_exit(&adapter->ioctl_sx);
   2356 			}
   2357 		}
   2358 		break;
   2359 
   2360 	case SIOCADDMULTI:
   2361 	case SIOCDELMULTI:
   2362 		break;
   2363 
   2364 	case SIOCSIFMEDIA:
   2365 	case SIOCGIFMEDIA:
   2366 		rc = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
   2367 		break;
   2368 
   2369 	case SIOCSIFCAP:
   2370 		{
   2371 			int reinit = 0;
   2372 
   2373 			if (ifr->ifr_reqcap != ifp->if_capenable) {
   2374 				ifp->if_capenable = ifr->ifr_reqcap;
   2375 				reinit = 1;
   2376 			}
   2377 
   2378 			if ((reinit != 0) &&
   2379 			    ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)) {
   2380 				rw_enter(&adapter->ioctl_sx, RW_WRITER);
   2381 				ena_down(adapter);
   2382 				rc = ena_up(adapter);
   2383 				rw_exit(&adapter->ioctl_sx);
   2384 			}
   2385 		}
   2386 
   2387 		break;
   2388 	default:
   2389 		rc = ether_ioctl(ifp, command, data);
   2390 		break;
   2391 	}
   2392 
   2393 	return (rc);
   2394 }
   2395 
   2396 static int
   2397 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
   2398 {
   2399 	int caps = 0;
   2400 
   2401 	if ((feat->offload.tx &
   2402 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
   2403 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
   2404 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
   2405 		caps |= IFCAP_TXCSUM;
   2406 
   2407 	if ((feat->offload.tx &
   2408 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
   2409 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
   2410 		caps |= IFCAP_TXCSUM_IPV6;
   2411 
   2412 	if ((feat->offload.tx &
   2413 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
   2414 		caps |= IFCAP_TSO4;
   2415 
   2416 	if ((feat->offload.tx &
   2417 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
   2418 		caps |= IFCAP_TSO6;
   2419 
   2420 	if ((feat->offload.rx_supported &
   2421 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
   2422 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
   2423 		caps |= IFCAP_RXCSUM;
   2424 
   2425 	if ((feat->offload.rx_supported &
   2426 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
   2427 		caps |= IFCAP_RXCSUM_IPV6;
   2428 
   2429 	caps |= IFCAP_LRO | IFCAP_JUMBO_MTU;
   2430 
   2431 	return (caps);
   2432 }
   2433 
   2434 static void
   2435 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
   2436 {
   2437 
   2438 	host_info->supported_network_features[0] =
   2439 	    (uint32_t)if_getcapabilities(ifp);
   2440 }
   2441 
   2442 static void
   2443 ena_update_hwassist(struct ena_adapter *adapter)
   2444 {
   2445 	struct ifnet *ifp = adapter->ifp;
   2446 	uint32_t feat = adapter->tx_offload_cap;
   2447 	int cap = if_getcapenable(ifp);
   2448 	int flags = 0;
   2449 
   2450 	if_clearhwassist(ifp);
   2451 
   2452 	if ((cap & IFCAP_TXCSUM) != 0) {
   2453 		if ((feat &
   2454 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
   2455 			flags |= CSUM_IP;
   2456 		if ((feat &
   2457 		    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
   2458 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
   2459 			flags |= CSUM_IP_UDP | CSUM_IP_TCP;
   2460 	}
   2461 
   2462 	if ((cap & IFCAP_TXCSUM_IPV6) != 0)
   2463 		flags |= CSUM_IP6_UDP | CSUM_IP6_TCP;
   2464 
   2465 	if ((cap & IFCAP_TSO4) != 0)
   2466 		flags |= CSUM_IP_TSO;
   2467 
   2468 	if ((cap & IFCAP_TSO6) != 0)
   2469 		flags |= CSUM_IP6_TSO;
   2470 
   2471 	if_sethwassistbits(ifp, flags, 0);
   2472 }
   2473 
   2474 static int
   2475 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
   2476     struct ena_com_dev_get_features_ctx *feat)
   2477 {
   2478 	struct ifnet *ifp;
   2479 	int caps = 0;
   2480 
   2481 	ifp = adapter->ifp = if_gethandle(IFT_ETHER);
   2482 	if (unlikely(ifp == NULL)) {
   2483 		ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
   2484 		return (ENXIO);
   2485 	}
   2486 	if_initname(ifp, device_xname(pdev), device_get_unit(pdev));
   2487 	if_setdev(ifp, pdev);
   2488 	if_setsoftc(ifp, adapter);
   2489 
   2490 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
   2491 	if_setinitfn(ifp, ena_init);
   2492 	if_settransmitfn(ifp, ena_mq_start);
   2493 	if_setqflushfn(ifp, ena_qflush);
   2494 	if_setioctlfn(ifp, ena_ioctl);
   2495 	if_setgetcounterfn(ifp, ena_get_counter);
   2496 
   2497 	if_setsendqlen(ifp, adapter->tx_ring_size);
   2498 	if_setsendqready(ifp);
   2499 	if_setmtu(ifp, ETHERMTU);
   2500 	if_setbaudrate(ifp, 0);
   2501 	/* Zeroize capabilities... */
   2502 	if_setcapabilities(ifp, 0);
   2503 	if_setcapenable(ifp, 0);
   2504 	/* check hardware support */
   2505 	caps = ena_get_dev_offloads(feat);
   2506 	/* ... and set them */
   2507 	if_setcapabilitiesbit(ifp, caps, 0);
   2508 
   2509 	/* TSO parameters */
   2510 	ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
   2511 	    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
   2512 	ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
   2513 	ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
   2514 
   2515 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
   2516 	if_setcapenable(ifp, if_getcapabilities(ifp));
   2517 
   2518 	/*
   2519 	 * Specify the media types supported by this adapter and register
   2520 	 * callbacks to update media and link information
   2521 	 */
   2522 	ifmedia_init(&adapter->media, IFM_IMASK,
   2523 	    ena_media_change, ena_media_status);
   2524 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
   2525 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
   2526 
   2527 	ether_ifattach(ifp, adapter->mac_addr);
   2528 
   2529 	return (0);
   2530 }
   2531 
   2532 static void
   2533 ena_down(struct ena_adapter *adapter)
   2534 {
   2535 	int rc;
   2536 
   2537 	if (adapter->up) {
   2538 		device_printf(adapter->pdev, "device is going DOWN\n");
   2539 
   2540 		callout_drain(&adapter->timer_service);
   2541 
   2542 		adapter->up = false;
   2543 		if_setdrvflagbits(adapter->ifp, IFF_DRV_OACTIVE,
   2544 		    IFF_DRV_RUNNING);
   2545 
   2546 		ena_free_io_irq(adapter);
   2547 
   2548 		if (adapter->trigger_reset) {
   2549 			rc = ena_com_dev_reset(adapter->ena_dev,
   2550 			    adapter->reset_reason);
   2551 			if (unlikely(rc != 0))
   2552 				device_printf(adapter->pdev,
   2553 				    "Device reset failed\n");
   2554 		}
   2555 
   2556 		ena_destroy_all_io_queues(adapter);
   2557 
   2558 		ena_free_all_tx_bufs(adapter);
   2559 		ena_free_all_rx_bufs(adapter);
   2560 		ena_free_all_tx_resources(adapter);
   2561 		ena_free_all_rx_resources(adapter);
   2562 
   2563 		counter_u64_add(adapter->dev_stats.interface_down, 1);
   2564 	}
   2565 }
   2566 
   2567 static void
   2568 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
   2569 {
   2570 	struct ena_com_tx_meta *ena_meta;
   2571 	struct ether_vlan_header *eh;
   2572 	u32 mss;
   2573 	bool offload;
   2574 	uint16_t etype;
   2575 	int ehdrlen;
   2576 	struct ip *ip;
   2577 	int iphlen;
   2578 	struct tcphdr *th;
   2579 
   2580 	offload = false;
   2581 	ena_meta = &ena_tx_ctx->ena_meta;
   2582 	mss = mbuf->m_pkthdr.tso_segsz;
   2583 
   2584 	if (mss != 0)
   2585 		offload = true;
   2586 
   2587 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0)
   2588 		offload = true;
   2589 
   2590 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
   2591 		offload = true;
   2592 
   2593 	if (!offload) {
   2594 		ena_tx_ctx->meta_valid = 0;
   2595 		return;
   2596 	}
   2597 
   2598 	/* Determine where frame payload starts. */
   2599 	eh = mtod(mbuf, struct ether_vlan_header *);
   2600 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
   2601 		etype = ntohs(eh->evl_proto);
   2602 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   2603 	} else {
   2604 		etype = ntohs(eh->evl_encap_proto);
   2605 		ehdrlen = ETHER_HDR_LEN;
   2606 	}
   2607 
   2608 	ip = (struct ip *)(mbuf->m_data + ehdrlen);
   2609 	iphlen = ip->ip_hl << 2;
   2610 	th = (struct tcphdr *)((vaddr_t)ip + iphlen);
   2611 
   2612 	if ((mbuf->m_pkthdr.csum_flags & CSUM_IP) != 0) {
   2613 		ena_tx_ctx->l3_csum_enable = 1;
   2614 	}
   2615 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
   2616 		ena_tx_ctx->tso_enable = 1;
   2617 		ena_meta->l4_hdr_len = (th->th_off);
   2618 	}
   2619 
   2620 	switch (etype) {
   2621 	case ETHERTYPE_IP:
   2622 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
   2623 		if ((ip->ip_off & htons(IP_DF)) != 0)
   2624 			ena_tx_ctx->df = 1;
   2625 		break;
   2626 	case ETHERTYPE_IPV6:
   2627 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
   2628 
   2629 	default:
   2630 		break;
   2631 	}
   2632 
   2633 	if (ip->ip_p == IPPROTO_TCP) {
   2634 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
   2635 		if ((mbuf->m_pkthdr.csum_flags &
   2636 		    (CSUM_IP_TCP | CSUM_IP6_TCP)) != 0)
   2637 			ena_tx_ctx->l4_csum_enable = 1;
   2638 		else
   2639 			ena_tx_ctx->l4_csum_enable = 0;
   2640 	} else if (ip->ip_p == IPPROTO_UDP) {
   2641 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
   2642 		if ((mbuf->m_pkthdr.csum_flags &
   2643 		    (CSUM_IP_UDP | CSUM_IP6_UDP)) != 0)
   2644 			ena_tx_ctx->l4_csum_enable = 1;
   2645 		else
   2646 			ena_tx_ctx->l4_csum_enable = 0;
   2647 	} else {
   2648 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
   2649 		ena_tx_ctx->l4_csum_enable = 0;
   2650 	}
   2651 
   2652 	ena_meta->mss = mss;
   2653 	ena_meta->l3_hdr_len = iphlen;
   2654 	ena_meta->l3_hdr_offset = ehdrlen;
   2655 	ena_tx_ctx->meta_valid = 1;
   2656 }
   2657 
   2658 static int
   2659 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
   2660 {
   2661 	struct ena_adapter *adapter;
   2662 	struct mbuf *collapsed_mbuf;
   2663 	int num_frags;
   2664 
   2665 	adapter = tx_ring->adapter;
   2666 	num_frags = ena_mbuf_count(*mbuf);
   2667 
   2668 	/* One segment must be reserved for configuration descriptor. */
   2669 	if (num_frags < adapter->max_tx_sgl_size)
   2670 		return (0);
   2671 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
   2672 
   2673 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
   2674 	    adapter->max_tx_sgl_size - 1);
   2675 	if (unlikely(collapsed_mbuf == NULL)) {
   2676 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
   2677 		return (ENOMEM);
   2678 	}
   2679 
   2680 	/* If mbuf was collapsed succesfully, original mbuf is released. */
   2681 	*mbuf = collapsed_mbuf;
   2682 
   2683 	return (0);
   2684 }
   2685 
   2686 static int
   2687 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
   2688 {
   2689 	struct ena_adapter *adapter;
   2690 	struct ena_tx_buffer *tx_info;
   2691 	struct ena_com_tx_ctx ena_tx_ctx;
   2692 	struct ena_com_dev *ena_dev;
   2693 	struct ena_com_buf *ena_buf;
   2694 	struct ena_com_io_sq* io_sq;
   2695 	bus_dma_segment_t segs[ENA_BUS_DMA_SEGS];
   2696 	void *push_hdr;
   2697 	uint16_t next_to_use;
   2698 	uint16_t req_id;
   2699 	uint16_t push_len;
   2700 	uint16_t ena_qid;
   2701 	uint32_t nsegs, header_len;
   2702 	int i, rc;
   2703 	int nb_hw_desc;
   2704 
   2705 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   2706 	adapter = tx_ring->que->adapter;
   2707 	ena_dev = adapter->ena_dev;
   2708 	io_sq = &ena_dev->io_sq_queues[ena_qid];
   2709 
   2710 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
   2711 	if (unlikely(rc != 0)) {
   2712 		ena_trace(ENA_WARNING,
   2713 		    "Failed to collapse mbuf! err: %d", rc);
   2714 		return (rc);
   2715 	}
   2716 
   2717 	next_to_use = tx_ring->next_to_use;
   2718 	req_id = tx_ring->free_tx_ids[next_to_use];
   2719 	tx_info = &tx_ring->tx_buffer_info[req_id];
   2720 
   2721 	tx_info->mbuf = *mbuf;
   2722 	tx_info->num_of_bufs = 0;
   2723 
   2724 	ena_buf = tx_info->bufs;
   2725 
   2726 	ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
   2727 
   2728 	push_len = 0;
   2729 	/*
   2730 	 * header_len is just a hint for the device. Because FreeBSD is not
   2731 	 * giving us information about packet header length and it is not
   2732 	 * guaranteed that all packet headers will be in the 1st mbuf, setting
   2733 	 * header_len to 0 is making the device ignore this value and resolve
   2734 	 * header on it's own.
   2735 	 */
   2736 	header_len = 0;
   2737 	push_hdr = NULL;
   2738 
   2739 	rc = bus_dmamap_load_mbuf_sg(adapter->sc_dmat, tx_info->map,
   2740 	    *mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
   2741 
   2742 	if (unlikely((rc != 0) || (nsegs == 0))) {
   2743 		ena_trace(ENA_WARNING,
   2744 		    "dmamap load failed! err: %d nsegs: %d", rc, nsegs);
   2745 		counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
   2746 		tx_info->mbuf = NULL;
   2747 		if (rc == ENOMEM)
   2748 			return (ENA_COM_NO_MEM);
   2749 		else
   2750 			return (ENA_COM_INVAL);
   2751 	}
   2752 
   2753 	for (i = 0; i < nsegs; i++) {
   2754 		ena_buf->len = segs[i].ds_len;
   2755 		ena_buf->paddr = segs[i].ds_addr;
   2756 		ena_buf++;
   2757 	}
   2758 	tx_info->num_of_bufs = nsegs;
   2759 
   2760 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
   2761 	ena_tx_ctx.ena_bufs = tx_info->bufs;
   2762 	ena_tx_ctx.push_header = push_hdr;
   2763 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
   2764 	ena_tx_ctx.req_id = req_id;
   2765 	ena_tx_ctx.header_len = header_len;
   2766 
   2767 	/* Set flags and meta data */
   2768 	ena_tx_csum(&ena_tx_ctx, *mbuf);
   2769 	/* Prepare the packet's descriptors and send them to device */
   2770 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
   2771 	if (unlikely(rc != 0)) {
   2772 		device_printf(adapter->pdev, "failed to prepare tx bufs\n");
   2773 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
   2774 		goto dma_error;
   2775 	}
   2776 
   2777 	counter_enter();
   2778 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
   2779 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
   2780 	    (*mbuf)->m_pkthdr.len);
   2781 
   2782 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
   2783 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
   2784 	    (*mbuf)->m_pkthdr.len);
   2785 	counter_exit();
   2786 
   2787 	tx_info->tx_descs = nb_hw_desc;
   2788 	getbinuptime(&tx_info->timestamp);
   2789 	tx_info->print_once = true;
   2790 
   2791 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
   2792 	    tx_ring->ring_size);
   2793 
   2794 	bus_dmamap_sync(adapter->sc_dmat, tx_info->map,
   2795 	    BUS_DMASYNC_PREWRITE);
   2796 
   2797 	return (0);
   2798 
   2799 dma_error:
   2800 	tx_info->mbuf = NULL;
   2801 	bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   2802 
   2803 	return (rc);
   2804 }
   2805 
   2806 static void
   2807 ena_start_xmit(struct ena_ring *tx_ring)
   2808 {
   2809 	struct mbuf *mbuf;
   2810 	struct ena_adapter *adapter = tx_ring->adapter;
   2811 	struct ena_com_io_sq* io_sq;
   2812 	int ena_qid;
   2813 	int acum_pkts = 0;
   2814 	int ret = 0;
   2815 
   2816 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
   2817 		return;
   2818 
   2819 	if (unlikely(!adapter->link_status))
   2820 		return;
   2821 
   2822 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   2823 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
   2824 
   2825 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
   2826 		ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
   2827 		    " header csum flags %#jx",
   2828 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
   2829 
   2830 		if (unlikely(!ena_com_sq_have_enough_space(io_sq,
   2831 		    ENA_TX_CLEANUP_THRESHOLD)))
   2832 			ena_tx_cleanup(tx_ring);
   2833 
   2834 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
   2835 			if (ret == ENA_COM_NO_MEM) {
   2836 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
   2837 			} else if (ret == ENA_COM_NO_SPACE) {
   2838 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
   2839 			} else {
   2840 				m_freem(mbuf);
   2841 				drbr_advance(adapter->ifp, tx_ring->br);
   2842 			}
   2843 
   2844 			break;
   2845 		}
   2846 
   2847 		drbr_advance(adapter->ifp, tx_ring->br);
   2848 
   2849 		if (unlikely((if_getdrvflags(adapter->ifp) &
   2850 		    IFF_DRV_RUNNING) == 0))
   2851 			return;
   2852 
   2853 		acum_pkts++;
   2854 
   2855 		BPF_MTAP(adapter->ifp, mbuf);
   2856 
   2857 		if (unlikely(acum_pkts == DB_THRESHOLD)) {
   2858 			acum_pkts = 0;
   2859 			wmb();
   2860 			/* Trigger the dma engine */
   2861 			ena_com_write_sq_doorbell(io_sq);
   2862 			counter_u64_add(tx_ring->tx_stats.doorbells, 1);
   2863 		}
   2864 
   2865 	}
   2866 
   2867 	if (likely(acum_pkts != 0)) {
   2868 		wmb();
   2869 		/* Trigger the dma engine */
   2870 		ena_com_write_sq_doorbell(io_sq);
   2871 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
   2872 	}
   2873 
   2874 	if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
   2875 		ena_tx_cleanup(tx_ring);
   2876 }
   2877 
   2878 static void
   2879 ena_deferred_mq_start(void *arg, int pending)
   2880 {
   2881 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
   2882 	struct ifnet *ifp = tx_ring->adapter->ifp;
   2883 
   2884 	while (!drbr_empty(ifp, tx_ring->br) &&
   2885 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
   2886 		ENA_RING_MTX_LOCK(tx_ring);
   2887 		ena_start_xmit(tx_ring);
   2888 		ENA_RING_MTX_UNLOCK(tx_ring);
   2889 	}
   2890 }
   2891 
   2892 static int
   2893 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
   2894 {
   2895 	struct ena_adapter *adapter = ifp->if_softc;
   2896 	struct ena_ring *tx_ring;
   2897 	int ret, is_drbr_empty;
   2898 	uint32_t i;
   2899 
   2900 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
   2901 		return (ENODEV);
   2902 
   2903 	/* Which queue to use */
   2904 	/*
   2905 	 * If everything is setup correctly, it should be the
   2906 	 * same bucket that the current CPU we're on is.
   2907 	 * It should improve performance.
   2908 	 */
   2909 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
   2910 #ifdef	RSS
   2911 		if (rss_hash2bucket(m->m_pkthdr.flowid,
   2912 		    M_HASHTYPE_GET(m), &i) == 0) {
   2913 			i = i % adapter->num_queues;
   2914 
   2915 		} else
   2916 #endif
   2917 		{
   2918 			i = m->m_pkthdr.flowid % adapter->num_queues;
   2919 		}
   2920 	} else {
   2921 		i = curcpu % adapter->num_queues;
   2922 	}
   2923 	tx_ring = &adapter->tx_ring[i];
   2924 
   2925 	/* Check if drbr is empty before putting packet */
   2926 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
   2927 	ret = drbr_enqueue(ifp, tx_ring->br, m);
   2928 	if (unlikely(ret != 0)) {
   2929 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
   2930 		return (ret);
   2931 	}
   2932 
   2933 	if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
   2934 		ena_start_xmit(tx_ring);
   2935 		ENA_RING_MTX_UNLOCK(tx_ring);
   2936 	} else {
   2937 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
   2938 	}
   2939 
   2940 	return (0);
   2941 }
   2942 
   2943 static void
   2944 ena_qflush(struct ifnet *ifp)
   2945 {
   2946 	struct ena_adapter *adapter = ifp->if_softc;
   2947 	struct ena_ring *tx_ring = adapter->tx_ring;
   2948 	int i;
   2949 
   2950 	for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
   2951 		if (!drbr_empty(ifp, tx_ring->br)) {
   2952 			ENA_RING_MTX_LOCK(tx_ring);
   2953 			drbr_flush(ifp, tx_ring->br);
   2954 			ENA_RING_MTX_UNLOCK(tx_ring);
   2955 		}
   2956 
   2957 	if_qflush(ifp);
   2958 }
   2959 
   2960 static int
   2961 ena_calc_io_queue_num(struct ena_adapter *adapter,
   2962     struct ena_com_dev_get_features_ctx *get_feat_ctx)
   2963 {
   2964 	int io_sq_num, io_cq_num, io_queue_num;
   2965 
   2966 	io_sq_num = get_feat_ctx->max_queues.max_sq_num;
   2967 	io_cq_num = get_feat_ctx->max_queues.max_cq_num;
   2968 
   2969 	io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
   2970 	io_queue_num = min_t(int, io_queue_num, io_sq_num);
   2971 	io_queue_num = min_t(int, io_queue_num, io_cq_num);
   2972 	/* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */
   2973 	io_queue_num = min_t(int, io_queue_num,
   2974 	    pci_msix_count(adapter->pdev) - 1);
   2975 #ifdef	RSS
   2976 	io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets());
   2977 #endif
   2978 
   2979 	return (io_queue_num);
   2980 }
   2981 
   2982 static int
   2983 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
   2984     uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
   2985 {
   2986 	uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
   2987 	uint32_t v;
   2988 	uint32_t q;
   2989 
   2990 	queue_size = min_t(uint32_t, queue_size,
   2991 	    feat->max_queues.max_cq_depth);
   2992 	queue_size = min_t(uint32_t, queue_size,
   2993 	    feat->max_queues.max_sq_depth);
   2994 
   2995 	/* round down to the nearest power of 2 */
   2996 	v = queue_size;
   2997 	while (v != 0) {
   2998 		if (powerof2(queue_size) != 0)
   2999 			break;
   3000 		v /= 2;
   3001 		q = rounddown2(queue_size, v);
   3002 		if (q != 0) {
   3003 			queue_size = q;
   3004 			break;
   3005 		}
   3006 	}
   3007 
   3008 	if (unlikely(queue_size == 0)) {
   3009 		device_printf(adapter->pdev, "Invalid queue size\n");
   3010 		return (ENA_COM_FAULT);
   3011 	}
   3012 
   3013 	*max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
   3014 	    feat->max_queues.max_packet_tx_descs);
   3015 	*max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
   3016 	    feat->max_queues.max_packet_rx_descs);
   3017 
   3018 	return (queue_size);
   3019 }
   3020 
   3021 static int
   3022 ena_rss_init_default(struct ena_adapter *adapter)
   3023 {
   3024 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3025 	device_t dev = adapter->pdev;
   3026 	int qid, rc, i;
   3027 
   3028 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
   3029 	if (unlikely(rc != 0)) {
   3030 		device_printf(dev, "Cannot init indirect table\n");
   3031 		return (rc);
   3032 	}
   3033 
   3034 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
   3035 #ifdef	RSS
   3036 		qid = rss_get_indirection_to_bucket(i);
   3037 		qid = qid % adapter->num_queues;
   3038 #else
   3039 		qid = i % adapter->num_queues;
   3040 #endif
   3041 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
   3042 		    ENA_IO_RXQ_IDX(qid));
   3043 		if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3044 			device_printf(dev, "Cannot fill indirect table\n");
   3045 			goto err_rss_destroy;
   3046 		}
   3047 	}
   3048 
   3049 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
   3050 	    ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
   3051 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3052 		device_printf(dev, "Cannot fill hash function\n");
   3053 		goto err_rss_destroy;
   3054 	}
   3055 
   3056 	rc = ena_com_set_default_hash_ctrl(ena_dev);
   3057 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3058 		device_printf(dev, "Cannot fill hash control\n");
   3059 		goto err_rss_destroy;
   3060 	}
   3061 
   3062 	return (0);
   3063 
   3064 err_rss_destroy:
   3065 	ena_com_rss_destroy(ena_dev);
   3066 	return (rc);
   3067 }
   3068 
   3069 static void
   3070 ena_rss_init_default_deferred(void *arg)
   3071 {
   3072 	struct ena_adapter *adapter;
   3073 	devclass_t dc;
   3074 	int max;
   3075 	int rc;
   3076 
   3077 	dc = devclass_find("ena");
   3078 	if (unlikely(dc == NULL)) {
   3079 		ena_trace(ENA_ALERT, "No devclass ena\n");
   3080 		return;
   3081 	}
   3082 
   3083 	max = devclass_get_maxunit(dc);
   3084 	while (max-- >= 0) {
   3085 		adapter = devclass_get_softc(dc, max);
   3086 		if (adapter != NULL) {
   3087 			rc = ena_rss_init_default(adapter);
   3088 			adapter->rss_support = true;
   3089 			if (unlikely(rc != 0)) {
   3090 				device_printf(adapter->pdev,
   3091 				    "WARNING: RSS was not properly initialized,"
   3092 				    " it will affect bandwidth\n");
   3093 				adapter->rss_support = false;
   3094 			}
   3095 		}
   3096 	}
   3097 }
   3098 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL);
   3099 
   3100 static void
   3101 ena_config_host_info(struct ena_com_dev *ena_dev)
   3102 {
   3103 	struct ena_admin_host_info *host_info;
   3104 	int rc;
   3105 
   3106 	/* Allocate only the host info */
   3107 	rc = ena_com_allocate_host_info(ena_dev);
   3108 	if (unlikely(rc != 0)) {
   3109 		ena_trace(ENA_ALERT, "Cannot allocate host info\n");
   3110 		return;
   3111 	}
   3112 
   3113 	host_info = ena_dev->host_attr.host_info;
   3114 
   3115 	host_info->os_type = ENA_ADMIN_OS_FREEBSD;
   3116 	host_info->kernel_ver = osreldate;
   3117 
   3118 	snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
   3119 	    "%d", osreldate);
   3120 	host_info->os_dist = 0;
   3121 	strncpy(host_info->os_dist_str, osrelease,
   3122 	    sizeof(host_info->os_dist_str) - 1);
   3123 
   3124 	host_info->driver_version =
   3125 		(DRV_MODULE_VER_MAJOR) |
   3126 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
   3127 		(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
   3128 
   3129 	rc = ena_com_set_host_attributes(ena_dev);
   3130 	if (unlikely(rc != 0)) {
   3131 		if (rc == EOPNOTSUPP)
   3132 			ena_trace(ENA_WARNING, "Cannot set host attributes\n");
   3133 		else
   3134 			ena_trace(ENA_ALERT, "Cannot set host attributes\n");
   3135 
   3136 		goto err;
   3137 	}
   3138 
   3139 	return;
   3140 
   3141 err:
   3142 	ena_com_delete_host_info(ena_dev);
   3143 }
   3144 
   3145 static int
   3146 ena_device_init(struct ena_adapter *adapter, device_t pdev,
   3147     struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
   3148 {
   3149 	struct ena_com_dev* ena_dev = adapter->ena_dev;
   3150 	bool readless_supported;
   3151 	uint32_t aenq_groups;
   3152 	int dma_width;
   3153 	int rc;
   3154 
   3155 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
   3156 	if (unlikely(rc != 0)) {
   3157 		device_printf(pdev, "failed to init mmio read less\n");
   3158 		return (rc);
   3159 	}
   3160 
   3161 	/*
   3162 	 * The PCIe configuration space revision id indicate if mmio reg
   3163 	 * read is disabled
   3164 	 */
   3165 	readless_supported = !(pci_get_revid(pdev) & ENA_MMIO_DISABLE_REG_READ);
   3166 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
   3167 
   3168 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
   3169 	if (unlikely(rc != 0)) {
   3170 		device_printf(pdev, "Can not reset device\n");
   3171 		goto err_mmio_read_less;
   3172 	}
   3173 
   3174 	rc = ena_com_validate_version(ena_dev);
   3175 	if (unlikely(rc != 0)) {
   3176 		device_printf(pdev, "device version is too low\n");
   3177 		goto err_mmio_read_less;
   3178 	}
   3179 
   3180 	dma_width = ena_com_get_dma_width(ena_dev);
   3181 	if (unlikely(dma_width < 0)) {
   3182 		device_printf(pdev, "Invalid dma width value %d", dma_width);
   3183 		rc = dma_width;
   3184 		goto err_mmio_read_less;
   3185 	}
   3186 	adapter->dma_width = dma_width;
   3187 
   3188 	/* ENA admin level init */
   3189 	rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
   3190 	if (unlikely(rc != 0)) {
   3191 		device_printf(pdev,
   3192 		    "Can not initialize ena admin queue with device\n");
   3193 		goto err_mmio_read_less;
   3194 	}
   3195 
   3196 	/*
   3197 	 * To enable the msix interrupts the driver needs to know the number
   3198 	 * of queues. So the driver uses polling mode to retrieve this
   3199 	 * information
   3200 	 */
   3201 	ena_com_set_admin_polling_mode(ena_dev, true);
   3202 
   3203 	ena_config_host_info(ena_dev);
   3204 
   3205 	/* Get Device Attributes */
   3206 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
   3207 	if (unlikely(rc != 0)) {
   3208 		device_printf(pdev,
   3209 		    "Cannot get attribute for ena device rc: %d\n", rc);
   3210 		goto err_admin_init;
   3211 	}
   3212 
   3213 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
   3214 
   3215 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
   3216 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
   3217 	if (unlikely(rc != 0)) {
   3218 		device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
   3219 		goto err_admin_init;
   3220 	}
   3221 
   3222 	*wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
   3223 
   3224 	return (0);
   3225 
   3226 err_admin_init:
   3227 	ena_com_delete_host_info(ena_dev);
   3228 	ena_com_admin_destroy(ena_dev);
   3229 err_mmio_read_less:
   3230 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3231 
   3232 	return (rc);
   3233 }
   3234 
   3235 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
   3236     int io_vectors)
   3237 {
   3238 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3239 	int rc;
   3240 
   3241 	rc = ena_enable_msix(adapter);
   3242 	if (unlikely(rc != 0)) {
   3243 		device_printf(adapter->pdev, "Error with MSI-X enablement\n");
   3244 		return (rc);
   3245 	}
   3246 
   3247 	ena_setup_mgmnt_intr(adapter);
   3248 
   3249 	rc = ena_request_mgmnt_irq(adapter);
   3250 	if (unlikely(rc != 0)) {
   3251 		device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
   3252 		goto err_disable_msix;
   3253 	}
   3254 
   3255 	ena_com_set_admin_polling_mode(ena_dev, false);
   3256 
   3257 	ena_com_admin_aenq_enable(ena_dev);
   3258 
   3259 	return (0);
   3260 
   3261 err_disable_msix:
   3262 	ena_disable_msix(adapter);
   3263 
   3264 	return (rc);
   3265 }
   3266 
   3267 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
   3268 static void ena_keep_alive_wd(void *adapter_data,
   3269     struct ena_admin_aenq_entry *aenq_e)
   3270 {
   3271 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
   3272 	struct ena_admin_aenq_keep_alive_desc *desc;
   3273 	sbintime_t stime;
   3274 	uint64_t rx_drops;
   3275 
   3276 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
   3277 
   3278 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
   3279 	counter_u64_zero(adapter->hw_stats.rx_drops);
   3280 	counter_u64_add(adapter->hw_stats.rx_drops, rx_drops);
   3281 
   3282 	stime = getsbinuptime();
   3283 	atomic_store_rel_64(&adapter->keep_alive_timestamp, stime);
   3284 }
   3285 
   3286 /* Check for keep alive expiration */
   3287 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
   3288 {
   3289 	sbintime_t timestamp, time;
   3290 
   3291 	if (adapter->wd_active == 0)
   3292 		return;
   3293 
   3294 	if (likely(adapter->keep_alive_timeout == 0))
   3295 		return;
   3296 
   3297 	timestamp = atomic_load_acq_64(&adapter->keep_alive_timestamp);
   3298 	time = getsbinuptime() - timestamp;
   3299 	if (unlikely(time > adapter->keep_alive_timeout)) {
   3300 		device_printf(adapter->pdev,
   3301 		    "Keep alive watchdog timeout.\n");
   3302 		counter_u64_add(adapter->dev_stats.wd_expired, 1);
   3303 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
   3304 		adapter->trigger_reset = true;
   3305 	}
   3306 }
   3307 
   3308 /* Check if admin queue is enabled */
   3309 static void check_for_admin_com_state(struct ena_adapter *adapter)
   3310 {
   3311 	if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
   3312 	    false)) {
   3313 		device_printf(adapter->pdev,
   3314 		    "ENA admin queue is not in running state!\n");
   3315 		counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
   3316 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
   3317 		adapter->trigger_reset = true;
   3318 	}
   3319 }
   3320 
   3321 static int
   3322 check_missing_comp_in_queue(struct ena_adapter *adapter,
   3323     struct ena_ring *tx_ring)
   3324 {
   3325 	struct bintime curtime, time;
   3326 	struct ena_tx_buffer *tx_buf;
   3327 	uint32_t missed_tx = 0;
   3328 	int i;
   3329 
   3330 	getbinuptime(&curtime);
   3331 
   3332 	for (i = 0; i < tx_ring->ring_size; i++) {
   3333 		tx_buf = &tx_ring->tx_buffer_info[i];
   3334 
   3335 		if (bintime_isset(&tx_buf->timestamp) == 0)
   3336 			continue;
   3337 
   3338 		time = curtime;
   3339 		bintime_sub(&time, &tx_buf->timestamp);
   3340 
   3341 		/* Check again if packet is still waiting */
   3342 		if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
   3343 
   3344 			if (!tx_buf->print_once)
   3345 				ena_trace(ENA_WARNING, "Found a Tx that wasn't "
   3346 				    "completed on time, qid %d, index %d.\n",
   3347 				    tx_ring->qid, i);
   3348 
   3349 			tx_buf->print_once = true;
   3350 			missed_tx++;
   3351 			counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
   3352 
   3353 			if (unlikely(missed_tx >
   3354 			    adapter->missing_tx_threshold)) {
   3355 				device_printf(adapter->pdev,
   3356 				    "The number of lost tx completion "
   3357 				    "is above the threshold (%d > %d). "
   3358 				    "Reset the device\n",
   3359 				    missed_tx, adapter->missing_tx_threshold);
   3360 				adapter->reset_reason =
   3361 				    ENA_REGS_RESET_MISS_TX_CMPL;
   3362 				adapter->trigger_reset = true;
   3363 				return (EIO);
   3364 			}
   3365 		}
   3366 	}
   3367 
   3368 	return (0);
   3369 }
   3370 
   3371 /*
   3372  * Check for TX which were not completed on time.
   3373  * Timeout is defined by "missing_tx_timeout".
   3374  * Reset will be performed if number of incompleted
   3375  * transactions exceeds "missing_tx_threshold".
   3376  */
   3377 static void
   3378 check_for_missing_tx_completions(struct ena_adapter *adapter)
   3379 {
   3380 	struct ena_ring *tx_ring;
   3381 	int i, budget, rc;
   3382 
   3383 	/* Make sure the driver doesn't turn the device in other process */
   3384 	rmb();
   3385 
   3386 	if (!adapter->up)
   3387 		return;
   3388 
   3389 	if (adapter->trigger_reset)
   3390 		return;
   3391 
   3392 	if (adapter->missing_tx_timeout == 0)
   3393 		return;
   3394 
   3395 	budget = adapter->missing_tx_max_queues;
   3396 
   3397 	for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
   3398 		tx_ring = &adapter->tx_ring[i];
   3399 
   3400 		rc = check_missing_comp_in_queue(adapter, tx_ring);
   3401 		if (unlikely(rc != 0))
   3402 			return;
   3403 
   3404 		budget--;
   3405 		if (budget == 0) {
   3406 			i++;
   3407 			break;
   3408 		}
   3409 	}
   3410 
   3411 	adapter->next_monitored_tx_qid = i % adapter->num_queues;
   3412 }
   3413 
   3414 /* trigger deferred rx cleanup after 2 consecutive detections */
   3415 #define EMPTY_RX_REFILL 2
   3416 /* For the rare case where the device runs out of Rx descriptors and the
   3417  * msix handler failed to refill new Rx descriptors (due to a lack of memory
   3418  * for example).
   3419  * This case will lead to a deadlock:
   3420  * The device won't send interrupts since all the new Rx packets will be dropped
   3421  * The msix handler won't allocate new Rx descriptors so the device won't be
   3422  * able to send new packets.
   3423  *
   3424  * When such a situation is detected - execute rx cleanup task in another thread
   3425  */
   3426 static void
   3427 check_for_empty_rx_ring(struct ena_adapter *adapter)
   3428 {
   3429 	struct ena_ring *rx_ring;
   3430 	int i, refill_required;
   3431 
   3432 	if (!adapter->up)
   3433 		return;
   3434 
   3435 	if (adapter->trigger_reset)
   3436 		return;
   3437 
   3438 	for (i = 0; i < adapter->num_queues; i++) {
   3439 		rx_ring = &adapter->rx_ring[i];
   3440 
   3441 		refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
   3442 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
   3443 			rx_ring->empty_rx_queue++;
   3444 
   3445 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL)	{
   3446 				counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
   3447 				    1);
   3448 
   3449 				device_printf(adapter->pdev,
   3450 				    "trigger refill for ring %d\n", i);
   3451 
   3452 				taskqueue_enqueue(rx_ring->cmpl_tq,
   3453 				    &rx_ring->cmpl_task);
   3454 				rx_ring->empty_rx_queue = 0;
   3455 			}
   3456 		} else {
   3457 			rx_ring->empty_rx_queue = 0;
   3458 		}
   3459 	}
   3460 }
   3461 
   3462 static void
   3463 ena_timer_service(void *data)
   3464 {
   3465 	struct ena_adapter *adapter = (struct ena_adapter *)data;
   3466 	struct ena_admin_host_info *host_info =
   3467 	    adapter->ena_dev->host_attr.host_info;
   3468 
   3469 	check_for_missing_keep_alive(adapter);
   3470 
   3471 	check_for_admin_com_state(adapter);
   3472 
   3473 	check_for_missing_tx_completions(adapter);
   3474 
   3475 	check_for_empty_rx_ring(adapter);
   3476 
   3477 	if (host_info != NULL)
   3478 		ena_update_host_info(host_info, adapter->ifp);
   3479 
   3480 	if (unlikely(adapter->trigger_reset)) {
   3481 		device_printf(adapter->pdev, "Trigger reset is on\n");
   3482 		taskqueue_enqueue(adapter->reset_tq, &adapter->reset_task);
   3483 		return;
   3484 	}
   3485 
   3486 	/*
   3487 	 * Schedule another timeout one second from now.
   3488 	 */
   3489 	callout_schedule_sbt(&adapter->timer_service, SBT_1S, SBT_1S, 0);
   3490 }
   3491 
   3492 static void
   3493 ena_reset_task(void *arg, int pending)
   3494 {
   3495 	struct ena_com_dev_get_features_ctx get_feat_ctx;
   3496 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
   3497 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3498 	bool dev_up;
   3499 	int rc;
   3500 
   3501 	if (unlikely(!adapter->trigger_reset)) {
   3502 		device_printf(adapter->pdev,
   3503 		    "device reset scheduled but trigger_reset is off\n");
   3504 		return;
   3505 	}
   3506 
   3507 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
   3508 
   3509 	callout_drain(&adapter->timer_service);
   3510 
   3511 	dev_up = adapter->up;
   3512 
   3513 	ena_com_set_admin_running_state(ena_dev, false);
   3514 	ena_down(adapter);
   3515 	ena_free_mgmnt_irq(adapter);
   3516 	ena_disable_msix(adapter);
   3517 	ena_com_abort_admin_commands(ena_dev);
   3518 	ena_com_wait_for_abort_completion(ena_dev);
   3519 	ena_com_admin_destroy(ena_dev);
   3520 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3521 
   3522 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
   3523 	adapter->trigger_reset = false;
   3524 
   3525 	/* Finished destroy part. Restart the device */
   3526 	rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
   3527 	    &adapter->wd_active);
   3528 	if (unlikely(rc != 0)) {
   3529 		device_printf(adapter->pdev,
   3530 		    "ENA device init failed! (err: %d)\n", rc);
   3531 		goto err_dev_free;
   3532 	}
   3533 
   3534 	rc = ena_enable_msix_and_set_admin_interrupts(adapter,
   3535 	    adapter->num_queues);
   3536 	if (unlikely(rc != 0)) {
   3537 		device_printf(adapter->pdev, "Enable MSI-X failed\n");
   3538 		goto err_com_free;
   3539 	}
   3540 
   3541 	/* If the interface was up before the reset bring it up */
   3542 	if (dev_up) {
   3543 		rc = ena_up(adapter);
   3544 		if (unlikely(rc != 0)) {
   3545 			device_printf(adapter->pdev,
   3546 			    "Failed to create I/O queues\n");
   3547 			goto err_msix_free;
   3548 		}
   3549 	}
   3550 
   3551 	callout_reset_sbt(&adapter->timer_service, SBT_1S, SBT_1S,
   3552 	    ena_timer_service, (void *)adapter, 0);
   3553 
   3554 	rw_exit(&adapter->ioctl_sx);
   3555 
   3556 	return;
   3557 
   3558 err_msix_free:
   3559 	ena_free_mgmnt_irq(adapter);
   3560 	ena_disable_msix(adapter);
   3561 err_com_free:
   3562 	ena_com_admin_destroy(ena_dev);
   3563 err_dev_free:
   3564 	device_printf(adapter->pdev, "ENA reset failed!\n");
   3565 	adapter->running = false;
   3566 	rw_exit(&adapter->ioctl_sx);
   3567 }
   3568 
   3569 /**
   3570  * ena_attach - Device Initialization Routine
   3571  * @pdev: device information struct
   3572  *
   3573  * Returns 0 on success, otherwise on failure.
   3574  *
   3575  * ena_attach initializes an adapter identified by a device structure.
   3576  * The OS initialization, configuring of the adapter private structure,
   3577  * and a hardware reset occur.
   3578  **/
   3579 static int
   3580 ena_attach(device_t parent, device_t self, void *aux)
   3581 {
   3582 	struct pci_attach_args *pa = aux;
   3583 	struct ena_com_dev_get_features_ctx get_feat_ctx;
   3584 	static int version_printed;
   3585 	struct ena_adapter *adapter = device_private(parent);
   3586 	struct ena_com_dev *ena_dev = NULL;
   3587 	uint16_t tx_sgl_size = 0;
   3588 	uint16_t rx_sgl_size = 0;
   3589 	pcireg_t reg;
   3590 	int io_queue_num;
   3591 	int queue_size;
   3592 	int rc;
   3593 
   3594 	adapter->pdev = self;
   3595 	adapter->ifp = &adapter->sc_ec.ec_if;
   3596 
   3597 	if (pci_dma64_available(pa))
   3598 		adapter->sc_dmat = pa->pa_dmat64;
   3599 	else
   3600 		adapter->sc_dmat = pa->pa_dmat;
   3601 
   3602 	pci_aprint_devinfo(pa, NULL);
   3603 
   3604 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   3605 	if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
   3606 		reg |= PCI_COMMAND_MASTER_ENABLE;
   3607         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
   3608 	}
   3609 
   3610 	mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_NET);
   3611 	rw_init(&adapter->ioctl_sx);
   3612 
   3613 	/* Set up the timer service */
   3614 	callout_init_mtx(&adapter->timer_service, &adapter->global_mtx, 0);
   3615 	adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
   3616 	adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
   3617 	adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
   3618 	adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
   3619 
   3620 	if (version_printed++ == 0)
   3621 		device_printf(parent, "%s\n", ena_version);
   3622 
   3623 	rc = ena_allocate_pci_resources(adapter);
   3624 	if (unlikely(rc != 0)) {
   3625 		device_printf(parent, "PCI resource allocation failed!\n");
   3626 		ena_free_pci_resources(adapter);
   3627 		return (rc);
   3628 	}
   3629 
   3630 	/* Allocate memory for ena_dev structure */
   3631 	ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
   3632 	    M_WAITOK | M_ZERO);
   3633 
   3634 	adapter->ena_dev = ena_dev;
   3635 	ena_dev->dmadev = self;
   3636 	ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
   3637 	    M_WAITOK | M_ZERO);
   3638 
   3639 	/* Store register resources */
   3640 	((struct ena_bus*)(ena_dev->bus))->reg_bar_t =
   3641 	    rman_get_bustag(adapter->registers);
   3642 	((struct ena_bus*)(ena_dev->bus))->reg_bar_h =
   3643 	    rman_get_bushandle(adapter->registers);
   3644 
   3645 	if (unlikely(((struct ena_bus*)(ena_dev->bus))->reg_bar_h == 0)) {
   3646 		device_printf(pdev, "failed to pmap registers bar\n");
   3647 		rc = ENXIO;
   3648 		goto err_bus_free;
   3649 	}
   3650 
   3651 	ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
   3652 
   3653 	/* Device initialization */
   3654 	rc = ena_device_init(adapter, pdev, &get_feat_ctx, &adapter->wd_active);
   3655 	if (unlikely(rc != 0)) {
   3656 		device_printf(pdev, "ENA device init failed! (err: %d)\n", rc);
   3657 		rc = ENXIO;
   3658 		goto err_bus_free;
   3659 	}
   3660 
   3661 	adapter->keep_alive_timestamp = getsbinuptime();
   3662 
   3663 	adapter->tx_offload_cap = get_feat_ctx.offload.tx;
   3664 
   3665 	/* Set for sure that interface is not up */
   3666 	adapter->up = false;
   3667 
   3668 	memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
   3669 	    ETHER_ADDR_LEN);
   3670 
   3671 	/* calculate IO queue number to create */
   3672 	io_queue_num = ena_calc_io_queue_num(adapter, &get_feat_ctx);
   3673 
   3674 	ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
   3675 	    io_queue_num);
   3676 	adapter->num_queues = io_queue_num;
   3677 
   3678 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
   3679 
   3680 	/* calculatre ring sizes */
   3681 	queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
   3682 	    &rx_sgl_size, &get_feat_ctx);
   3683 	if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
   3684 		rc = ENA_COM_FAULT;
   3685 		goto err_com_free;
   3686 	}
   3687 
   3688 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
   3689 
   3690 	adapter->tx_ring_size = queue_size;
   3691 	adapter->rx_ring_size = queue_size;
   3692 
   3693 	adapter->max_tx_sgl_size = tx_sgl_size;
   3694 	adapter->max_rx_sgl_size = rx_sgl_size;
   3695 
   3696 	/* set up dma tags for rx and tx buffers */
   3697 	rc = ena_setup_tx_dma_tag(adapter);
   3698 	if (unlikely(rc != 0)) {
   3699 		device_printf(pdev, "Failed to create TX DMA tag\n");
   3700 		goto err_com_free;
   3701 	}
   3702 
   3703 	rc = ena_setup_rx_dma_tag(adapter);
   3704 	if (unlikely(rc != 0)) {
   3705 		device_printf(pdev, "Failed to create RX DMA tag\n");
   3706 		goto err_tx_tag_free;
   3707 	}
   3708 
   3709 	/* initialize rings basic information */
   3710 	device_printf(pdev, "initalize %d io queues\n", io_queue_num);
   3711 	ena_init_io_rings(adapter);
   3712 
   3713 	/* setup network interface */
   3714 	rc = ena_setup_ifnet(pdev, adapter, &get_feat_ctx);
   3715 	if (unlikely(rc != 0)) {
   3716 		device_printf(pdev, "Error with network interface setup\n");
   3717 		goto err_io_free;
   3718 	}
   3719 
   3720 	rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
   3721 	if (unlikely(rc != 0)) {
   3722 		device_printf(pdev,
   3723 		    "Failed to enable and set the admin interrupts\n");
   3724 		goto err_ifp_free;
   3725 	}
   3726 
   3727 	/* Initialize reset task queue */
   3728 	TASK_INIT(&adapter->reset_task, 0, ena_reset_task, adapter);
   3729 	adapter->reset_tq = taskqueue_create("ena_reset_enqueue",
   3730 	    M_WAITOK | M_ZERO, taskqueue_thread_enqueue, &adapter->reset_tq);
   3731 	taskqueue_start_threads(&adapter->reset_tq, 1, IPL_NET,
   3732 	    "%s rstq", device_xname(adapter->pdev));
   3733 
   3734 	/* Initialize statistics */
   3735 	ena_alloc_counters((struct evcnt *)&adapter->dev_stats,
   3736 	    sizeof(struct ena_stats_dev));
   3737 	ena_alloc_counters((struct evcnt *)&adapter->hw_stats,
   3738 	    sizeof(struct ena_hw_stats));
   3739 	ena_sysctl_add_nodes(adapter);
   3740 
   3741 	/* Tell the stack that the interface is not active */
   3742 	if_setdrvflagbits(adapter->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
   3743 
   3744 	adapter->running = true;
   3745 	return (0);
   3746 
   3747 err_ifp_free:
   3748 	if_detach(adapter->ifp);
   3749 	if_free(adapter->ifp);
   3750 err_io_free:
   3751 	ena_free_all_io_rings_resources(adapter);
   3752 	ena_free_rx_dma_tag(adapter);
   3753 err_tx_tag_free:
   3754 	ena_free_tx_dma_tag(adapter);
   3755 err_com_free:
   3756 	ena_com_admin_destroy(ena_dev);
   3757 	ena_com_delete_host_info(ena_dev);
   3758 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3759 err_bus_free:
   3760 	free(ena_dev->bus, M_DEVBUF);
   3761 	free(ena_dev, M_DEVBUF);
   3762 	ena_free_pci_resources(adapter);
   3763 
   3764 	return (rc);
   3765 }
   3766 
   3767 /**
   3768  * ena_detach - Device Removal Routine
   3769  * @pdev: device information struct
   3770  *
   3771  * ena_detach is called by the device subsystem to alert the driver
   3772  * that it should release a PCI device.
   3773  **/
   3774 static int
   3775 ena_detach(device_t pdev)
   3776 {
   3777 	struct ena_adapter *adapter = device_private(pdev);
   3778 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3779 	int rc;
   3780 
   3781 	/* Make sure VLANS are not using driver */
   3782 	if (adapter->ifp->if_vlantrunk != NULL) {
   3783 		device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
   3784 		return (EBUSY);
   3785 	}
   3786 
   3787 	/* Free reset task and callout */
   3788 	callout_drain(&adapter->timer_service);
   3789 	while (taskqueue_cancel(adapter->reset_tq, &adapter->reset_task, NULL))
   3790 		taskqueue_drain(adapter->reset_tq, &adapter->reset_task);
   3791 	taskqueue_free(adapter->reset_tq);
   3792 
   3793 	rw_enter(&adapter->ioctl_sx, RW_WRITER);
   3794 	ena_down(adapter);
   3795 	rw_exit(&adapter->ioctl_sx);
   3796 
   3797 	if (adapter->ifp != NULL) {
   3798 		ether_ifdetach(adapter->ifp);
   3799 		if_free(adapter->ifp);
   3800 	}
   3801 
   3802 	ena_free_all_io_rings_resources(adapter);
   3803 
   3804 	ena_free_counters((struct evcnt *)&adapter->hw_stats,
   3805 	    sizeof(struct ena_hw_stats));
   3806 	ena_free_counters((struct evcnt *)&adapter->dev_stats,
   3807 	    sizeof(struct ena_stats_dev));
   3808 
   3809 	if (likely(adapter->rss_support))
   3810 		ena_com_rss_destroy(ena_dev);
   3811 
   3812 	rc = ena_free_rx_dma_tag(adapter);
   3813 	if (unlikely(rc != 0))
   3814 		device_printf(adapter->pdev,
   3815 		    "Unmapped RX DMA tag associations\n");
   3816 
   3817 	rc = ena_free_tx_dma_tag(adapter);
   3818 	if (unlikely(rc != 0))
   3819 		device_printf(adapter->pdev,
   3820 		    "Unmapped TX DMA tag associations\n");
   3821 
   3822 	/* Reset the device only if the device is running. */
   3823 	if (adapter->running)
   3824 		ena_com_dev_reset(ena_dev, adapter->reset_reason);
   3825 
   3826 	ena_com_delete_host_info(ena_dev);
   3827 
   3828 	ena_free_irqs(adapter);
   3829 
   3830 	ena_com_abort_admin_commands(ena_dev);
   3831 
   3832 	ena_com_wait_for_abort_completion(ena_dev);
   3833 
   3834 	ena_com_admin_destroy(ena_dev);
   3835 
   3836 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3837 
   3838 	ena_free_pci_resources(adapter);
   3839 
   3840 	mutex_destroy(&adapter->global_mtx);
   3841 	rw_destroy(&adapter->ioctl_sx);
   3842 
   3843 	if (ena_dev->bus != NULL)
   3844 		free(ena_dev->bus, M_DEVBUF);
   3845 
   3846 	if (ena_dev != NULL)
   3847 		free(ena_dev, M_DEVBUF);
   3848 
   3849 	return (bus_generic_detach(pdev));
   3850 }
   3851 
   3852 /******************************************************************************
   3853  ******************************** AENQ Handlers *******************************
   3854  *****************************************************************************/
   3855 /**
   3856  * ena_update_on_link_change:
   3857  * Notify the network interface about the change in link status
   3858  **/
   3859 static void
   3860 ena_update_on_link_change(void *adapter_data,
   3861     struct ena_admin_aenq_entry *aenq_e)
   3862 {
   3863 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
   3864 	struct ena_admin_aenq_link_change_desc *aenq_desc;
   3865 	int status;
   3866 	struct ifnet *ifp;
   3867 
   3868 	aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
   3869 	ifp = adapter->ifp;
   3870 	status = aenq_desc->flags &
   3871 	    ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
   3872 
   3873 	if (status != 0) {
   3874 		device_printf(adapter->pdev, "link is UP\n");
   3875 		if_link_state_change(ifp, LINK_STATE_UP);
   3876 	} else if (status == 0) {
   3877 		device_printf(adapter->pdev, "link is DOWN\n");
   3878 		if_link_state_change(ifp, LINK_STATE_DOWN);
   3879 	} else {
   3880 		device_printf(adapter->pdev, "invalid value recvd\n");
   3881 		BUG();
   3882 	}
   3883 
   3884 	adapter->link_status = status;
   3885 }
   3886 
   3887 /**
   3888  * This handler will called for unknown event group or unimplemented handlers
   3889  **/
   3890 static void
   3891 unimplemented_aenq_handler(void *data,
   3892     struct ena_admin_aenq_entry *aenq_e)
   3893 {
   3894 	return;
   3895 }
   3896 
   3897 static struct ena_aenq_handlers aenq_handlers = {
   3898     .handlers = {
   3899 	    [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
   3900 	    [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
   3901     },
   3902     .unimplemented_handler = unimplemented_aenq_handler
   3903 };
   3904 
   3905 #ifdef __FreeBSD__
   3906 /*********************************************************************
   3907  *  FreeBSD Device Interface Entry Points
   3908  *********************************************************************/
   3909 
   3910 static device_method_t ena_methods[] = {
   3911     /* Device interface */
   3912     DEVMETHOD(device_probe, ena_probe),
   3913     DEVMETHOD(device_attach, ena_attach),
   3914     DEVMETHOD(device_detach, ena_detach),
   3915     DEVMETHOD_END
   3916 };
   3917 
   3918 static driver_t ena_driver = {
   3919     "ena", ena_methods, sizeof(struct ena_adapter),
   3920 };
   3921 
   3922 devclass_t ena_devclass;
   3923 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
   3924 MODULE_DEPEND(ena, pci, 1, 1, 1);
   3925 MODULE_DEPEND(ena, ether, 1, 1, 1);
   3926 
   3927 /*********************************************************************/
   3928 #endif /* __FreeBSD__ */
   3929