if_ena.c revision 1.32 1 /*-
2 * BSD LICENSE
3 *
4 * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #ifdef _KERNEL_OPT
32 #include "opt_net_mpsafe.h"
33 #endif
34
35 #include <sys/cdefs.h>
36 #if 0
37 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
38 #endif
39 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.32 2021/09/23 10:31:23 jmcneill Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/kthread.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/module.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 #include <sys/time.h>
54 #include <sys/workqueue.h>
55 #include <sys/callout.h>
56 #include <sys/interrupt.h>
57 #include <sys/cpu.h>
58
59 #include <net/if_ether.h>
60 #include <net/if_vlanvar.h>
61
62 #include <dev/pci/if_enavar.h>
63
64 #ifdef NET_MPSAFE
65 #define WQ_FLAGS WQ_MPSAFE
66 #define CALLOUT_FLAGS CALLOUT_MPSAFE
67 #else
68 #define WQ_FLAGS 0
69 #define CALLOUT_FLAGS 0
70 #endif
71
72 /*********************************************************
73 * Function prototypes
74 *********************************************************/
75 /* cfattach interface functions */
76 static int ena_probe(device_t, cfdata_t, void *);
77 static void ena_attach(device_t, device_t, void *);
78 static int ena_detach(device_t, int);
79
80 /* ifnet interface functions */
81 static int ena_init(struct ifnet *);
82 static void ena_stop(struct ifnet *, int);
83 static int ena_ioctl(struct ifnet *, u_long, void *);
84 static int ena_media_change(struct ifnet *);
85 static void ena_media_status(struct ifnet *, struct ifmediareq *);
86 static int ena_mq_start(struct ifnet *, struct mbuf *);
87
88 /* attach or detach */
89 static int ena_calc_io_queue_num(struct pci_attach_args *,
90 struct ena_adapter *,
91 struct ena_com_dev_get_features_ctx *);
92 static int ena_calc_queue_size(struct ena_adapter *, uint16_t *,
93 uint16_t *, struct ena_com_dev_get_features_ctx *);
94
95 static int ena_allocate_pci_resources(struct pci_attach_args *,
96 struct ena_adapter *);
97 static void ena_free_pci_resources(struct ena_adapter *);
98 static void ena_free_irqs(struct ena_adapter*);
99
100 static void ena_init_io_rings_common(struct ena_adapter *,
101 struct ena_ring *, uint16_t);
102 static void ena_init_io_rings(struct ena_adapter *);
103 static void ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
104 static void ena_free_all_io_rings_resources(struct ena_adapter *);
105
106 static int ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
107 static int ena_setup_ifnet(device_t, struct ena_adapter *,
108 struct ena_com_dev_get_features_ctx *);
109
110 static inline void ena_alloc_counters_rx(struct ena_adapter *,
111 struct ena_stats_rx *, int);
112 static inline void ena_alloc_counters_tx(struct ena_adapter *,
113 struct ena_stats_tx *, int);
114 static inline void ena_alloc_counters_dev(struct ena_adapter *,
115 struct ena_stats_dev *, int);
116 static inline void ena_alloc_counters_hwstats(struct ena_adapter *,
117 struct ena_hw_stats *, int);
118 static inline void ena_free_counters(struct evcnt *, int, int);
119
120 /* attach or detach or ena_reset_task() */
121 static void ena_reset_task(struct work *, void *);
122
123 static void ena_free_mgmnt_irq(struct ena_adapter *);
124 static void ena_disable_msix(struct ena_adapter *);
125 static void ena_config_host_info(struct ena_com_dev *);
126 static int ena_device_init(struct ena_adapter *, device_t,
127 struct ena_com_dev_get_features_ctx *, int *);
128 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
129 int);
130 static int ena_enable_msix(struct ena_adapter *);
131 static int ena_request_mgmnt_irq(struct ena_adapter *);
132
133 /* I/F up or down */
134 static int ena_up_complete(struct ena_adapter *);
135 static int ena_up(struct ena_adapter *);
136 static void ena_down(struct ena_adapter *);
137 static void ena_set_stopping_flag(struct ena_adapter *, bool);
138
139 static int ena_setup_rx_resources(struct ena_adapter *, unsigned int);
140 static int ena_setup_all_rx_resources(struct ena_adapter *);
141 static void ena_free_rx_resources(struct ena_adapter *, unsigned int);
142 static void ena_free_all_rx_resources(struct ena_adapter *);
143 static void ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
144 struct ena_rx_buffer *);
145 static void ena_free_rx_bufs(struct ena_adapter *, unsigned int);
146 static void ena_free_all_rx_bufs(struct ena_adapter *);
147
148 static int ena_setup_tx_resources(struct ena_adapter *, int);
149 static int ena_setup_all_tx_resources(struct ena_adapter *);
150 static void ena_free_tx_resources(struct ena_adapter *, int);
151 static void ena_free_all_tx_resources(struct ena_adapter *);
152 static void ena_free_tx_bufs(struct ena_adapter *, unsigned int);
153 static void ena_free_all_tx_bufs(struct ena_adapter *);
154
155 static int ena_request_io_irq(struct ena_adapter *);
156 static void ena_free_io_irq(struct ena_adapter *);
157 static int ena_create_io_queues(struct ena_adapter *);
158 static void ena_destroy_all_tx_queues(struct ena_adapter *);
159 static void ena_destroy_all_rx_queues(struct ena_adapter *);
160 static void ena_destroy_all_io_queues(struct ena_adapter *);
161
162 static void ena_update_hwassist(struct ena_adapter *);
163 static int ena_rss_configure(struct ena_adapter *);
164 static void ena_unmask_all_io_irqs(struct ena_adapter *);
165 static inline void ena_reset_counters(struct evcnt *, int, int);
166
167 /* other hardware interrupt, workqueue, softint context */
168 static int ena_intr_msix_mgmnt(void *);
169 static void ena_update_on_link_change(void *,
170 struct ena_admin_aenq_entry *);
171 static void ena_keep_alive_wd(void *,
172 struct ena_admin_aenq_entry *);
173 static void unimplemented_aenq_handler(void *,
174 struct ena_admin_aenq_entry *);
175
176 static int ena_handle_msix(void *);
177 static void ena_cleanup(struct work *, void *);
178 static inline int validate_rx_req_id(struct ena_ring *, uint16_t);
179 static inline int ena_alloc_rx_mbuf(struct ena_adapter *,
180 struct ena_ring *, struct ena_rx_buffer *);
181 static int ena_refill_rx_bufs(struct ena_ring *, uint32_t);
182 static void ena_refill_all_rx_bufs(struct ena_adapter *);
183 static int ena_rx_cleanup(struct ena_ring *);
184 static struct mbuf* ena_rx_mbuf(struct ena_ring *,
185 struct ena_com_rx_buf_info *,
186 struct ena_com_rx_ctx *, uint16_t *);
187 static inline void ena_rx_checksum(struct ena_ring *,
188 struct ena_com_rx_ctx *, struct mbuf *);
189
190 static int ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
191 struct mbuf **mbuf);
192 static int ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
193 static void ena_start_xmit(struct ena_ring *);
194 static void ena_deferred_mq_start(struct work *, void *);
195 static int ena_tx_cleanup(struct ena_ring *);
196 static void ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
197 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
198
199 /* other */
200 static int ena_change_mtu(struct ifnet *, int);
201
202 static void ena_timer_service(void *);
203 static void check_for_missing_keep_alive(struct ena_adapter *);
204 static void check_for_admin_com_state(struct ena_adapter *);
205 static int check_missing_comp_in_queue(struct ena_adapter *, struct ena_ring*);
206 static void check_for_missing_tx_completions(struct ena_adapter *);
207 static void check_for_empty_rx_ring(struct ena_adapter *);
208 static void ena_update_host_info(struct ena_admin_host_info *,
209 struct ifnet *);
210
211 #if 0
212 static int ena_setup_tx_dma_tag(struct ena_adapter *);
213 static int ena_free_tx_dma_tag(struct ena_adapter *);
214 static int ena_setup_rx_dma_tag(struct ena_adapter *);
215 static int ena_free_rx_dma_tag(struct ena_adapter *);
216 static void ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
217 struct mbuf *);
218 static uint64_t ena_get_counter(struct ifnet *, ift_counter);
219 static void ena_qflush(struct ifnet *);
220 static int ena_rss_init_default(struct ena_adapter *);
221 static void ena_rss_init_default_deferred(void *);
222 #endif
223
224 static const char ena_version[] =
225 DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
226
227 #if 0
228 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
229 #endif
230
231 /*
232 * Tuneable number of buffers in the buf-ring (drbr)
233 */
234 static int ena_buf_ring_size = 4096;
235 #if 0
236 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
237 &ena_buf_ring_size, 0, "Size of the bufring");
238 #endif
239
240 /*
241 * Logging level for changing verbosity of the output
242 */
243 int ena_log_level = ENA_ALERT | ENA_WARNING;
244 #if 0
245 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
246 &ena_log_level, 0, "Logging level indicating verbosity of the logs");
247 #endif
248
249 static const ena_vendor_info_t ena_vendor_info_array[] = {
250 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
251 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
252 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
253 { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
254 /* Last entry */
255 { 0, 0, 0 }
256 };
257
258 /*
259 * Contains pointers to event handlers, e.g. link state change.
260 */
261 static struct ena_aenq_handlers aenq_handlers;
262
263 int
264 ena_dma_alloc(device_t dmadev, bus_size_t size,
265 ena_mem_handle_t *dma , int mapflags)
266 {
267 struct ena_adapter *adapter = device_private(dmadev);
268 bus_size_t maxsize;
269 int error;
270
271 maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
272
273 #if 0
274 /* XXX what is this needed for ? */
275 dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
276 if (unlikely(dma_space_addr == 0))
277 dma_space_addr = BUS_SPACE_MAXADDR;
278 #endif
279
280 dma->tag = adapter->sc_dmat;
281
282 if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
283 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
284 ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
285 (uintmax_t)maxsize, error);
286 goto fail_create;
287 }
288
289 error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &dma->seg, 1, &dma->nseg,
290 BUS_DMA_ALLOCNOW);
291 if (error) {
292 ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
293 (uintmax_t)maxsize, error);
294 goto fail_alloc;
295 }
296
297 error = bus_dmamem_map(dma->tag, &dma->seg, dma->nseg, maxsize,
298 &dma->vaddr, BUS_DMA_COHERENT);
299 if (error) {
300 ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
301 (uintmax_t)maxsize, error);
302 goto fail_map;
303 }
304 memset(dma->vaddr, 0, maxsize);
305
306 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
307 maxsize, NULL, mapflags);
308 if (error) {
309 ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
310 goto fail_load;
311 }
312 dma->paddr = dma->map->dm_segs[0].ds_addr;
313
314 return (0);
315
316 fail_load:
317 bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
318 fail_map:
319 bus_dmamem_free(dma->tag, &dma->seg, dma->nseg);
320 fail_alloc:
321 bus_dmamap_destroy(adapter->sc_dmat, dma->map);
322 fail_create:
323 return (error);
324 }
325
326 static int
327 ena_allocate_pci_resources(struct pci_attach_args *pa,
328 struct ena_adapter *adapter)
329 {
330 pcireg_t memtype, reg;
331 int flags, error;
332 int msixoff;
333
334 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
335 if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM) {
336 aprint_error_dev(adapter->pdev, "invalid type (type=0x%x)\n",
337 memtype);
338 return ENXIO;
339 }
340 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
341 if (((reg & PCI_COMMAND_MASTER_ENABLE) == 0) ||
342 ((reg & PCI_COMMAND_MEM_ENABLE) == 0)) {
343 /*
344 * Enable address decoding for memory range in case BIOS or
345 * UEFI didn't set it.
346 */
347 reg |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
348 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
349 reg);
350 }
351
352 adapter->sc_btag = pa->pa_memt;
353 error = pci_mapreg_info(pa->pa_pc, pa->pa_tag, ENA_REG_BAR,
354 memtype, &adapter->sc_memaddr, &adapter->sc_mapsize, &flags);
355 if (error) {
356 aprint_error_dev(adapter->pdev, "can't get map info\n");
357 return ENXIO;
358 }
359
360 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff,
361 NULL)) {
362 pcireg_t msixtbl;
363 bus_size_t table_offset;
364 int bir;
365
366 msixtbl = pci_conf_read(pa->pa_pc, pa->pa_tag,
367 msixoff + PCI_MSIX_TBLOFFSET);
368 table_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK;
369 bir = msixtbl & PCI_MSIX_TBLBIR_MASK;
370 if (bir == PCI_MAPREG_NUM(ENA_REG_BAR))
371 adapter->sc_mapsize = table_offset;
372 }
373
374 error = bus_space_map(adapter->sc_btag, adapter->sc_memaddr,
375 adapter->sc_mapsize, flags, &adapter->sc_bhandle);
376 if (error != 0) {
377 aprint_error_dev(adapter->pdev,
378 "can't map mem space (error=%d)\n", error);
379 return ENXIO;
380 }
381
382 return (0);
383 }
384
385 static void
386 ena_free_pci_resources(struct ena_adapter *adapter)
387 {
388 if (adapter->sc_mapsize != 0) {
389 bus_space_unmap(adapter->sc_btag, adapter->sc_bhandle,
390 adapter->sc_mapsize);
391 }
392 }
393
394 static int
395 ena_probe(device_t parent, cfdata_t match, void *aux)
396 {
397 struct pci_attach_args *pa = aux;
398 const ena_vendor_info_t *ent;
399
400 for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
401 ent = &ena_vendor_info_array[i];
402
403 if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
404 (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
405 return 1;
406 }
407 }
408
409 return 0;
410 }
411
412 static int
413 ena_change_mtu(struct ifnet *ifp, int new_mtu)
414 {
415 struct ena_adapter *adapter = if_getsoftc(ifp);
416 int rc;
417
418 if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
419 device_printf(adapter->pdev, "Invalid MTU setting. "
420 "new_mtu: %d max mtu: %d min mtu: %d\n",
421 new_mtu, adapter->max_mtu, ENA_MIN_MTU);
422 return (EINVAL);
423 }
424
425 rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
426 if (likely(rc == 0)) {
427 ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
428 if_setmtu(ifp, new_mtu);
429 } else {
430 device_printf(adapter->pdev, "Failed to set MTU to %d\n",
431 new_mtu);
432 }
433
434 return (rc);
435 }
436
437 #define EVCNT_INIT(st, f) \
438 do { \
439 evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL, \
440 st->name, #f); \
441 } while (0)
442
443 static inline void
444 ena_alloc_counters_rx(struct ena_adapter *adapter, struct ena_stats_rx *st, int queue)
445 {
446 snprintf(st->name, sizeof(st->name), "%s rxq%d",
447 device_xname(adapter->pdev), queue);
448
449 EVCNT_INIT(st, cnt);
450 EVCNT_INIT(st, bytes);
451 EVCNT_INIT(st, refil_partial);
452 EVCNT_INIT(st, bad_csum);
453 EVCNT_INIT(st, mbuf_alloc_fail);
454 EVCNT_INIT(st, dma_mapping_err);
455 EVCNT_INIT(st, bad_desc_num);
456 EVCNT_INIT(st, bad_req_id);
457 EVCNT_INIT(st, empty_rx_ring);
458
459 /* Make sure all code is updated when new fields added */
460 CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
461 + sizeof(st->empty_rx_ring) == sizeof(*st));
462 }
463
464 static inline void
465 ena_alloc_counters_tx(struct ena_adapter *adapter, struct ena_stats_tx *st, int queue)
466 {
467 snprintf(st->name, sizeof(st->name), "%s txq%d",
468 device_xname(adapter->pdev), queue);
469
470 EVCNT_INIT(st, cnt);
471 EVCNT_INIT(st, bytes);
472 EVCNT_INIT(st, prepare_ctx_err);
473 EVCNT_INIT(st, dma_mapping_err);
474 EVCNT_INIT(st, doorbells);
475 EVCNT_INIT(st, missing_tx_comp);
476 EVCNT_INIT(st, bad_req_id);
477 EVCNT_INIT(st, collapse);
478 EVCNT_INIT(st, collapse_err);
479 EVCNT_INIT(st, pcq_drops);
480
481 /* Make sure all code is updated when new fields added */
482 CTASSERT(offsetof(struct ena_stats_tx, pcq_drops)
483 + sizeof(st->pcq_drops) == sizeof(*st));
484 }
485
486 static inline void
487 ena_alloc_counters_dev(struct ena_adapter *adapter, struct ena_stats_dev *st, int queue)
488 {
489 snprintf(st->name, sizeof(st->name), "%s dev ioq%d",
490 device_xname(adapter->pdev), queue);
491
492 EVCNT_INIT(st, wd_expired);
493 EVCNT_INIT(st, interface_up);
494 EVCNT_INIT(st, interface_down);
495 EVCNT_INIT(st, admin_q_pause);
496
497 /* Make sure all code is updated when new fields added */
498 CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
499 + sizeof(st->admin_q_pause) == sizeof(*st));
500 }
501
502 static inline void
503 ena_alloc_counters_hwstats(struct ena_adapter *adapter, struct ena_hw_stats *st, int queue)
504 {
505 snprintf(st->name, sizeof(st->name), "%s hw ioq%d",
506 device_xname(adapter->pdev), queue);
507
508 EVCNT_INIT(st, rx_packets);
509 EVCNT_INIT(st, tx_packets);
510 EVCNT_INIT(st, rx_bytes);
511 EVCNT_INIT(st, tx_bytes);
512 EVCNT_INIT(st, rx_drops);
513
514 /* Make sure all code is updated when new fields added */
515 CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
516 + sizeof(st->rx_drops) == sizeof(*st));
517 }
518 static inline void
519 ena_free_counters(struct evcnt *begin, int size, int offset)
520 {
521 struct evcnt *end = (struct evcnt *)((char *)begin + size);
522 begin = (struct evcnt *)((char *)begin + offset);
523
524 for (; begin < end; ++begin)
525 counter_u64_free(*begin);
526 }
527
528 static inline void
529 ena_reset_counters(struct evcnt *begin, int size, int offset)
530 {
531 struct evcnt *end = (struct evcnt *)((char *)begin + size);
532 begin = (struct evcnt *)((char *)begin + offset);
533
534 for (; begin < end; ++begin)
535 counter_u64_zero(*begin);
536 }
537
538 static void
539 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
540 uint16_t qid)
541 {
542
543 ring->qid = qid;
544 ring->adapter = adapter;
545 ring->ena_dev = adapter->ena_dev;
546 }
547
548 static void
549 ena_init_io_rings(struct ena_adapter *adapter)
550 {
551 struct ena_com_dev *ena_dev;
552 struct ena_ring *txr, *rxr;
553 struct ena_que *que;
554 int i;
555
556 ena_dev = adapter->ena_dev;
557
558 for (i = 0; i < adapter->num_queues; i++) {
559 txr = &adapter->tx_ring[i];
560 rxr = &adapter->rx_ring[i];
561
562 /* TX/RX common ring state */
563 ena_init_io_rings_common(adapter, txr, i);
564 ena_init_io_rings_common(adapter, rxr, i);
565
566 /* TX specific ring state */
567 txr->ring_size = adapter->tx_ring_size;
568 txr->tx_max_header_size = ena_dev->tx_max_header_size;
569 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
570 txr->smoothed_interval =
571 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
572
573 /* Allocate a buf ring */
574 txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
575 M_WAITOK, &txr->ring_mtx);
576
577 /* Alloc TX statistics. */
578 ena_alloc_counters_tx(adapter, &txr->tx_stats, i);
579
580 /* RX specific ring state */
581 rxr->ring_size = adapter->rx_ring_size;
582 rxr->smoothed_interval =
583 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
584
585 /* Alloc RX statistics. */
586 ena_alloc_counters_rx(adapter, &rxr->rx_stats, i);
587
588 /* Initialize locks */
589 snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
590 device_xname(adapter->pdev), i);
591 snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
592 device_xname(adapter->pdev), i);
593
594 mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
595 mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
596
597 que = &adapter->que[i];
598 que->adapter = adapter;
599 que->id = i;
600 que->tx_ring = txr;
601 que->rx_ring = rxr;
602
603 txr->que = que;
604 rxr->que = que;
605
606 rxr->empty_rx_queue = 0;
607 }
608 }
609
610 static void
611 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
612 {
613 struct ena_ring *txr = &adapter->tx_ring[qid];
614 struct ena_ring *rxr = &adapter->rx_ring[qid];
615
616 ena_free_counters((struct evcnt *)&txr->tx_stats,
617 sizeof(txr->tx_stats), offsetof(struct ena_stats_tx, cnt));
618 ena_free_counters((struct evcnt *)&rxr->rx_stats,
619 sizeof(rxr->rx_stats), offsetof(struct ena_stats_rx, cnt));
620
621 mutex_destroy(&txr->ring_mtx);
622 mutex_destroy(&rxr->ring_mtx);
623 }
624
625 static void
626 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
627 {
628 int i;
629
630 for (i = 0; i < adapter->num_queues; i++)
631 ena_free_io_ring_resources(adapter, i);
632
633 }
634
635 #if 0
636 static int
637 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
638 {
639 int ret;
640
641 /* Create DMA tag for Tx buffers */
642 ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
643 1, 0, /* alignment, bounds */
644 ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window */
645 BUS_SPACE_MAXADDR, /* highaddr of excl window */
646 NULL, NULL, /* filter, filterarg */
647 ENA_TSO_MAXSIZE, /* maxsize */
648 adapter->max_tx_sgl_size - 1, /* nsegments */
649 ENA_TSO_MAXSIZE, /* maxsegsize */
650 0, /* flags */
651 NULL, /* lockfunc */
652 NULL, /* lockfuncarg */
653 &adapter->tx_buf_tag);
654
655 return (ret);
656 }
657 #endif
658
659 #if 0
660 static int
661 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
662 {
663 int ret;
664
665 /* Create DMA tag for Rx buffers*/
666 ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent */
667 1, 0, /* alignment, bounds */
668 ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window */
669 BUS_SPACE_MAXADDR, /* highaddr of excl window */
670 NULL, NULL, /* filter, filterarg */
671 MJUM16BYTES, /* maxsize */
672 adapter->max_rx_sgl_size, /* nsegments */
673 MJUM16BYTES, /* maxsegsize */
674 0, /* flags */
675 NULL, /* lockfunc */
676 NULL, /* lockarg */
677 &adapter->rx_buf_tag);
678
679 return (ret);
680 }
681 #endif
682
683 /**
684 * ena_setup_tx_resources - allocate Tx resources (Descriptors)
685 * @adapter: network interface device structure
686 * @qid: queue index
687 *
688 * Returns 0 on success, otherwise on failure.
689 **/
690 static int
691 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
692 {
693 struct ena_que *que = &adapter->que[qid];
694 struct ena_ring *tx_ring = que->tx_ring;
695 int size, i, err;
696 #ifdef RSS
697 cpuset_t cpu_mask;
698 #endif
699
700 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
701 tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
702
703 size = sizeof(uint16_t) * tx_ring->ring_size;
704 tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
705
706 /* Req id stack for TX OOO completions */
707 for (i = 0; i < tx_ring->ring_size; i++)
708 tx_ring->free_tx_ids[i] = i;
709
710 /* Reset TX statistics. */
711 ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
712 sizeof(tx_ring->tx_stats),
713 offsetof(struct ena_stats_tx, cnt));
714
715 tx_ring->next_to_use = 0;
716 tx_ring->next_to_clean = 0;
717
718 tx_ring->br = pcq_create(ENA_DEFAULT_RING_SIZE, KM_SLEEP);
719
720 /* ... and create the buffer DMA maps */
721 for (i = 0; i < tx_ring->ring_size; i++) {
722 err = bus_dmamap_create(adapter->sc_dmat,
723 ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
724 ENA_TSO_MAXSIZE, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
725 &tx_ring->tx_buffer_info[i].map);
726 if (unlikely(err != 0)) {
727 ena_trace(ENA_ALERT,
728 "Unable to create Tx DMA map for buffer %d\n", i);
729 goto err_buf_info_unmap;
730 }
731 }
732
733 /* Allocate workqueues */
734 int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
735 ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
736 if (unlikely(rc != 0)) {
737 ena_trace(ENA_ALERT,
738 "Unable to create workqueue for enqueue task\n");
739 i = tx_ring->ring_size;
740 goto err_buf_info_unmap;
741 }
742
743 #if 0
744 /* RSS set cpu for thread */
745 #ifdef RSS
746 CPU_SETOF(que->cpu, &cpu_mask);
747 taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET,
748 &cpu_mask, "%s tx_ring enq (bucket %d)",
749 device_xname(adapter->pdev), que->cpu);
750 #else /* RSS */
751 taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET,
752 "%s txeq %d", device_xname(adapter->pdev), que->cpu);
753 #endif /* RSS */
754 #endif
755
756 return (0);
757
758 err_buf_info_unmap:
759 while (i--) {
760 bus_dmamap_destroy(adapter->sc_dmat,
761 tx_ring->tx_buffer_info[i].map);
762 }
763 free(tx_ring->free_tx_ids, M_DEVBUF);
764 tx_ring->free_tx_ids = NULL;
765 free(tx_ring->tx_buffer_info, M_DEVBUF);
766 tx_ring->tx_buffer_info = NULL;
767
768 return (ENOMEM);
769 }
770
771 /**
772 * ena_free_tx_resources - Free Tx Resources per Queue
773 * @adapter: network interface device structure
774 * @qid: queue index
775 *
776 * Free all transmit software resources
777 **/
778 static void
779 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
780 {
781 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
782 struct mbuf *m;
783
784 workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
785 workqueue_destroy(tx_ring->enqueue_tq);
786 tx_ring->enqueue_tq = NULL;
787
788 /* Flush buffer ring, */
789 while ((m = pcq_get(tx_ring->br)) != NULL)
790 m_freem(m);
791 pcq_destroy(tx_ring->br);
792 tx_ring->br = NULL;
793
794 /* Free buffer DMA maps, */
795 for (int i = 0; i < tx_ring->ring_size; i++) {
796 m_freem(tx_ring->tx_buffer_info[i].mbuf);
797 tx_ring->tx_buffer_info[i].mbuf = NULL;
798 bus_dmamap_unload(adapter->sc_dmat,
799 tx_ring->tx_buffer_info[i].map);
800 bus_dmamap_destroy(adapter->sc_dmat,
801 tx_ring->tx_buffer_info[i].map);
802 }
803
804 /* And free allocated memory. */
805 free(tx_ring->tx_buffer_info, M_DEVBUF);
806 tx_ring->tx_buffer_info = NULL;
807
808 free(tx_ring->free_tx_ids, M_DEVBUF);
809 tx_ring->free_tx_ids = NULL;
810 }
811
812 /**
813 * ena_setup_all_tx_resources - allocate all queues Tx resources
814 * @adapter: network interface device structure
815 *
816 * Returns 0 on success, otherwise on failure.
817 **/
818 static int
819 ena_setup_all_tx_resources(struct ena_adapter *adapter)
820 {
821 int i, rc;
822
823 for (i = 0; i < adapter->num_queues; i++) {
824 rc = ena_setup_tx_resources(adapter, i);
825 if (rc != 0) {
826 device_printf(adapter->pdev,
827 "Allocation for Tx Queue %u failed\n", i);
828 goto err_setup_tx;
829 }
830 }
831
832 return (0);
833
834 err_setup_tx:
835 /* Rewind the index freeing the rings as we go */
836 while (i--)
837 ena_free_tx_resources(adapter, i);
838 return (rc);
839 }
840
841 /**
842 * ena_free_all_tx_resources - Free Tx Resources for All Queues
843 * @adapter: network interface device structure
844 *
845 * Free all transmit software resources
846 **/
847 static void
848 ena_free_all_tx_resources(struct ena_adapter *adapter)
849 {
850 int i;
851
852 for (i = 0; i < adapter->num_queues; i++)
853 ena_free_tx_resources(adapter, i);
854 }
855
856 static inline int
857 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
858 {
859 if (likely(req_id < rx_ring->ring_size))
860 return (0);
861
862 device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
863 req_id);
864 counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
865
866 /* Trigger device reset */
867 rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
868 ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, rx_ring->adapter);
869
870 return (EFAULT);
871 }
872
873 /**
874 * ena_setup_rx_resources - allocate Rx resources (Descriptors)
875 * @adapter: network interface device structure
876 * @qid: queue index
877 *
878 * Returns 0 on success, otherwise on failure.
879 **/
880 static int
881 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
882 {
883 struct ena_que *que = &adapter->que[qid];
884 struct ena_ring *rx_ring = que->rx_ring;
885 int size, err, i;
886 #ifdef RSS
887 cpuset_t cpu_mask;
888 #endif
889
890 size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
891
892 /*
893 * Alloc extra element so in rx path
894 * we can always prefetch rx_info + 1
895 */
896 size += sizeof(struct ena_rx_buffer);
897
898 rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
899
900 size = sizeof(uint16_t) * rx_ring->ring_size;
901 rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
902
903 for (i = 0; i < rx_ring->ring_size; i++)
904 rx_ring->free_rx_ids[i] = i;
905
906 /* Reset RX statistics. */
907 ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
908 sizeof(rx_ring->rx_stats),
909 offsetof(struct ena_stats_rx, cnt));
910
911 rx_ring->next_to_clean = 0;
912 rx_ring->next_to_use = 0;
913
914 /* ... and create the buffer DMA maps */
915 for (i = 0; i < rx_ring->ring_size; i++) {
916 err = bus_dmamap_create(adapter->sc_dmat,
917 MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
918 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
919 &(rx_ring->rx_buffer_info[i].map));
920 if (err != 0) {
921 ena_trace(ENA_ALERT,
922 "Unable to create Rx DMA map for buffer %d\n", i);
923 goto err_buf_info_unmap;
924 }
925 }
926
927 #ifdef LRO
928 /* Create LRO for the ring */
929 if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
930 int err = tcp_lro_init(&rx_ring->lro);
931 if (err != 0) {
932 device_printf(adapter->pdev,
933 "LRO[%d] Initialization failed!\n", qid);
934 } else {
935 ena_trace(ENA_INFO,
936 "RX Soft LRO[%d] Initialized\n", qid);
937 rx_ring->lro.ifp = adapter->ifp;
938 }
939 }
940 #endif
941
942 /* Allocate workqueues */
943 int rc = workqueue_create(&rx_ring->cleanup_tq, "ena_rx_comp",
944 ena_cleanup, que, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
945 if (unlikely(rc != 0)) {
946 ena_trace(ENA_ALERT,
947 "Unable to create workqueue for RX completion task\n");
948 goto err_buf_info_unmap;
949 }
950
951 #if 0
952 /* RSS set cpu for thread */
953 #ifdef RSS
954 CPU_SETOF(que->cpu, &cpu_mask);
955 taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask,
956 "%s rx_ring cmpl (bucket %d)",
957 device_xname(adapter->pdev), que->cpu);
958 #else
959 taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET,
960 "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu);
961 #endif
962 #endif
963
964 return (0);
965
966 err_buf_info_unmap:
967 while (i--) {
968 bus_dmamap_destroy(adapter->sc_dmat,
969 rx_ring->rx_buffer_info[i].map);
970 }
971
972 free(rx_ring->free_rx_ids, M_DEVBUF);
973 rx_ring->free_rx_ids = NULL;
974 free(rx_ring->rx_buffer_info, M_DEVBUF);
975 rx_ring->rx_buffer_info = NULL;
976 return (ENOMEM);
977 }
978
979 /**
980 * ena_free_rx_resources - Free Rx Resources
981 * @adapter: network interface device structure
982 * @qid: queue index
983 *
984 * Free all receive software resources
985 **/
986 static void
987 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
988 {
989 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
990
991 workqueue_wait(rx_ring->cleanup_tq, &rx_ring->cleanup_task);
992 workqueue_destroy(rx_ring->cleanup_tq);
993 rx_ring->cleanup_tq = NULL;
994
995 /* Free buffer DMA maps, */
996 for (int i = 0; i < rx_ring->ring_size; i++) {
997 m_freem(rx_ring->rx_buffer_info[i].mbuf);
998 rx_ring->rx_buffer_info[i].mbuf = NULL;
999 bus_dmamap_unload(adapter->sc_dmat,
1000 rx_ring->rx_buffer_info[i].map);
1001 bus_dmamap_destroy(adapter->sc_dmat,
1002 rx_ring->rx_buffer_info[i].map);
1003 }
1004
1005 #ifdef LRO
1006 /* free LRO resources, */
1007 tcp_lro_free(&rx_ring->lro);
1008 #endif
1009
1010 /* free allocated memory */
1011 free(rx_ring->rx_buffer_info, M_DEVBUF);
1012 rx_ring->rx_buffer_info = NULL;
1013
1014 free(rx_ring->free_rx_ids, M_DEVBUF);
1015 rx_ring->free_rx_ids = NULL;
1016 }
1017
1018 /**
1019 * ena_setup_all_rx_resources - allocate all queues Rx resources
1020 * @adapter: network interface device structure
1021 *
1022 * Returns 0 on success, otherwise on failure.
1023 **/
1024 static int
1025 ena_setup_all_rx_resources(struct ena_adapter *adapter)
1026 {
1027 int i, rc = 0;
1028
1029 for (i = 0; i < adapter->num_queues; i++) {
1030 rc = ena_setup_rx_resources(adapter, i);
1031 if (rc != 0) {
1032 device_printf(adapter->pdev,
1033 "Allocation for Rx Queue %u failed\n", i);
1034 goto err_setup_rx;
1035 }
1036 }
1037 return (0);
1038
1039 err_setup_rx:
1040 /* rewind the index freeing the rings as we go */
1041 while (i--)
1042 ena_free_rx_resources(adapter, i);
1043 return (rc);
1044 }
1045
1046 /**
1047 * ena_free_all_rx_resources - Free Rx resources for all queues
1048 * @adapter: network interface device structure
1049 *
1050 * Free all receive software resources
1051 **/
1052 static void
1053 ena_free_all_rx_resources(struct ena_adapter *adapter)
1054 {
1055 int i;
1056
1057 for (i = 0; i < adapter->num_queues; i++)
1058 ena_free_rx_resources(adapter, i);
1059 }
1060
1061 static inline int
1062 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
1063 struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
1064 {
1065 struct ena_com_buf *ena_buf;
1066 int error;
1067 int mlen;
1068
1069 /* if previous allocated frag is not used */
1070 if (unlikely(rx_info->mbuf != NULL))
1071 return (0);
1072
1073 rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1074 if (unlikely(rx_info->mbuf == NULL)) {
1075 counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1076 return (ENOMEM);
1077 }
1078 mlen = MCLBYTES;
1079
1080 /* Set mbuf length*/
1081 rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
1082
1083 /* Map packets for DMA */
1084 ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1085 "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
1086 adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
1087 error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
1088 rx_info->mbuf, BUS_DMA_NOWAIT);
1089 if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
1090 ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
1091 "nsegs: %d\n", error, rx_info->map->dm_nsegs);
1092 counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
1093 goto exit;
1094
1095 }
1096
1097 bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
1098 rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1099
1100 ena_buf = &rx_info->ena_buf;
1101 ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
1102 ena_buf->len = mlen;
1103
1104 ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
1105 "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
1106 rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
1107
1108 return (0);
1109
1110 exit:
1111 m_freem(rx_info->mbuf);
1112 rx_info->mbuf = NULL;
1113 return (EFAULT);
1114 }
1115
1116 static void
1117 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
1118 struct ena_rx_buffer *rx_info)
1119 {
1120
1121 if (rx_info->mbuf == NULL) {
1122 ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
1123 return;
1124 }
1125
1126 bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
1127 m_freem(rx_info->mbuf);
1128 rx_info->mbuf = NULL;
1129 }
1130
1131 /**
1132 * ena_refill_rx_bufs - Refills ring with descriptors
1133 * @rx_ring: the ring which we want to feed with free descriptors
1134 * @num: number of descriptors to refill
1135 * Refills the ring with newly allocated DMA-mapped mbufs for receiving
1136 **/
1137 static int
1138 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
1139 {
1140 struct ena_adapter *adapter = rx_ring->adapter;
1141 uint16_t next_to_use, req_id;
1142 uint32_t i;
1143 int rc;
1144
1145 ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
1146 rx_ring->qid);
1147
1148 next_to_use = rx_ring->next_to_use;
1149
1150 for (i = 0; i < num; i++) {
1151 struct ena_rx_buffer *rx_info;
1152
1153 ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
1154 "RX buffer - next to use: %d", next_to_use);
1155
1156 req_id = rx_ring->free_rx_ids[next_to_use];
1157 rc = validate_rx_req_id(rx_ring, req_id);
1158 if (unlikely(rc != 0))
1159 break;
1160
1161 rx_info = &rx_ring->rx_buffer_info[req_id];
1162
1163 rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
1164 if (unlikely(rc != 0)) {
1165 ena_trace(ENA_WARNING,
1166 "failed to alloc buffer for rx queue %d\n",
1167 rx_ring->qid);
1168 break;
1169 }
1170 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1171 &rx_info->ena_buf, req_id);
1172 if (unlikely(rc != 0)) {
1173 ena_trace(ENA_WARNING,
1174 "failed to add buffer for rx queue %d\n",
1175 rx_ring->qid);
1176 break;
1177 }
1178 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1179 rx_ring->ring_size);
1180 }
1181
1182 if (unlikely(i < num)) {
1183 counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
1184 ena_trace(ENA_WARNING,
1185 "refilled rx qid %d with only %d mbufs (from %d)\n",
1186 rx_ring->qid, i, num);
1187 }
1188
1189 if (likely(i != 0)) {
1190 wmb();
1191 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1192 }
1193 rx_ring->next_to_use = next_to_use;
1194 return (i);
1195 }
1196
1197 static void
1198 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
1199 {
1200 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1201 unsigned int i;
1202
1203 for (i = 0; i < rx_ring->ring_size; i++) {
1204 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1205
1206 if (rx_info->mbuf != NULL)
1207 ena_free_rx_mbuf(adapter, rx_ring, rx_info);
1208 }
1209 }
1210
1211 /**
1212 * ena_refill_all_rx_bufs - allocate all queues Rx buffers
1213 * @adapter: network interface device structure
1214 *
1215 */
1216 static void
1217 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1218 {
1219 struct ena_ring *rx_ring;
1220 int i, rc, bufs_num;
1221
1222 for (i = 0; i < adapter->num_queues; i++) {
1223 rx_ring = &adapter->rx_ring[i];
1224 bufs_num = rx_ring->ring_size - 1;
1225 rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1226
1227 if (unlikely(rc != bufs_num))
1228 ena_trace(ENA_WARNING, "refilling Queue %d failed. "
1229 "Allocated %d buffers from: %d\n", i, rc, bufs_num);
1230 }
1231 }
1232
1233 static void
1234 ena_free_all_rx_bufs(struct ena_adapter *adapter)
1235 {
1236 int i;
1237
1238 for (i = 0; i < adapter->num_queues; i++)
1239 ena_free_rx_bufs(adapter, i);
1240 }
1241
1242 /**
1243 * ena_free_tx_bufs - Free Tx Buffers per Queue
1244 * @adapter: network interface device structure
1245 * @qid: queue index
1246 **/
1247 static void
1248 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
1249 {
1250 bool print_once = true;
1251 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
1252
1253 for (int i = 0; i < tx_ring->ring_size; i++) {
1254 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1255
1256 if (tx_info->mbuf == NULL)
1257 continue;
1258
1259 if (print_once) {
1260 device_printf(adapter->pdev,
1261 "free uncompleted tx mbuf qid %d idx 0x%x",
1262 qid, i);
1263 print_once = false;
1264 } else {
1265 ena_trace(ENA_DBG,
1266 "free uncompleted tx mbuf qid %d idx 0x%x",
1267 qid, i);
1268 }
1269
1270 bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1271 m_free(tx_info->mbuf);
1272 tx_info->mbuf = NULL;
1273 }
1274 }
1275
1276 static void
1277 ena_free_all_tx_bufs(struct ena_adapter *adapter)
1278 {
1279
1280 for (int i = 0; i < adapter->num_queues; i++)
1281 ena_free_tx_bufs(adapter, i);
1282 }
1283
1284 static void
1285 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1286 {
1287 uint16_t ena_qid;
1288 int i;
1289
1290 for (i = 0; i < adapter->num_queues; i++) {
1291 ena_qid = ENA_IO_TXQ_IDX(i);
1292 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1293 }
1294 }
1295
1296 static void
1297 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1298 {
1299 uint16_t ena_qid;
1300 int i;
1301
1302 for (i = 0; i < adapter->num_queues; i++) {
1303 ena_qid = ENA_IO_RXQ_IDX(i);
1304 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1305 }
1306 }
1307
1308 static void
1309 ena_destroy_all_io_queues(struct ena_adapter *adapter)
1310 {
1311 ena_destroy_all_tx_queues(adapter);
1312 ena_destroy_all_rx_queues(adapter);
1313 }
1314
1315 static inline int
1316 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
1317 {
1318 struct ena_adapter *adapter = tx_ring->adapter;
1319 struct ena_tx_buffer *tx_info = NULL;
1320 KASSERT(ENA_RING_MTX_OWNED(tx_ring));
1321
1322 if (likely(req_id < tx_ring->ring_size)) {
1323 tx_info = &tx_ring->tx_buffer_info[req_id];
1324 if (tx_info->mbuf != NULL)
1325 return (0);
1326 }
1327
1328 if (tx_info->mbuf == NULL)
1329 device_printf(adapter->pdev,
1330 "tx_info doesn't have valid mbuf\n");
1331 else
1332 device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
1333
1334 counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
1335
1336 return (EFAULT);
1337 }
1338
1339 static int
1340 ena_create_io_queues(struct ena_adapter *adapter)
1341 {
1342 struct ena_com_dev *ena_dev = adapter->ena_dev;
1343 struct ena_com_create_io_ctx ctx;
1344 struct ena_ring *ring;
1345 uint16_t ena_qid;
1346 uint32_t msix_vector;
1347 int rc, i;
1348
1349 /* Create TX queues */
1350 for (i = 0; i < adapter->num_queues; i++) {
1351 msix_vector = ENA_IO_IRQ_IDX(i);
1352 ena_qid = ENA_IO_TXQ_IDX(i);
1353 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1354 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1355 ctx.queue_size = adapter->tx_ring_size;
1356 ctx.msix_vector = msix_vector;
1357 ctx.qid = ena_qid;
1358 rc = ena_com_create_io_queue(ena_dev, &ctx);
1359 if (rc != 0) {
1360 device_printf(adapter->pdev,
1361 "Failed to create io TX queue #%d rc: %d\n", i, rc);
1362 goto err_tx;
1363 }
1364 ring = &adapter->tx_ring[i];
1365 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1366 &ring->ena_com_io_sq,
1367 &ring->ena_com_io_cq);
1368 if (rc != 0) {
1369 device_printf(adapter->pdev,
1370 "Failed to get TX queue handlers. TX queue num"
1371 " %d rc: %d\n", i, rc);
1372 ena_com_destroy_io_queue(ena_dev, ena_qid);
1373 goto err_tx;
1374 }
1375 }
1376
1377 /* Create RX queues */
1378 for (i = 0; i < adapter->num_queues; i++) {
1379 msix_vector = ENA_IO_IRQ_IDX(i);
1380 ena_qid = ENA_IO_RXQ_IDX(i);
1381 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1382 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1383 ctx.queue_size = adapter->rx_ring_size;
1384 ctx.msix_vector = msix_vector;
1385 ctx.qid = ena_qid;
1386 rc = ena_com_create_io_queue(ena_dev, &ctx);
1387 if (unlikely(rc != 0)) {
1388 device_printf(adapter->pdev,
1389 "Failed to create io RX queue[%d] rc: %d\n", i, rc);
1390 goto err_rx;
1391 }
1392
1393 ring = &adapter->rx_ring[i];
1394 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1395 &ring->ena_com_io_sq,
1396 &ring->ena_com_io_cq);
1397 if (unlikely(rc != 0)) {
1398 device_printf(adapter->pdev,
1399 "Failed to get RX queue handlers. RX queue num"
1400 " %d rc: %d\n", i, rc);
1401 ena_com_destroy_io_queue(ena_dev, ena_qid);
1402 goto err_rx;
1403 }
1404 }
1405
1406 return (0);
1407
1408 err_rx:
1409 while (i--)
1410 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
1411 i = adapter->num_queues;
1412 err_tx:
1413 while (i--)
1414 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1415
1416 return (ENXIO);
1417 }
1418
1419 /**
1420 * ena_tx_cleanup - clear sent packets and corresponding descriptors
1421 * @tx_ring: ring for which we want to clean packets
1422 *
1423 * Once packets are sent, we ask the device in a loop for no longer used
1424 * descriptors. We find the related mbuf chain in a map (index in an array)
1425 * and free it, then update ring state.
1426 * This is performed in "endless" loop, updating ring pointers every
1427 * TX_COMMIT. The first check of free descriptor is performed before the actual
1428 * loop, then repeated at the loop end.
1429 **/
1430 static int
1431 ena_tx_cleanup(struct ena_ring *tx_ring)
1432 {
1433 struct ena_adapter *adapter;
1434 struct ena_com_io_cq* io_cq;
1435 uint16_t next_to_clean;
1436 uint16_t req_id;
1437 uint16_t ena_qid;
1438 unsigned int total_done = 0;
1439 int rc;
1440 int commit = TX_COMMIT;
1441 int budget = TX_BUDGET;
1442 int work_done;
1443
1444 KASSERT(ENA_RING_MTX_OWNED(tx_ring));
1445
1446 adapter = tx_ring->que->adapter;
1447 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
1448 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1449 next_to_clean = tx_ring->next_to_clean;
1450
1451 do {
1452 struct ena_tx_buffer *tx_info;
1453 struct mbuf *mbuf;
1454
1455 rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
1456 if (unlikely(rc != 0))
1457 break;
1458
1459 rc = validate_tx_req_id(tx_ring, req_id);
1460 if (unlikely(rc != 0))
1461 break;
1462
1463 tx_info = &tx_ring->tx_buffer_info[req_id];
1464
1465 mbuf = tx_info->mbuf;
1466
1467 tx_info->mbuf = NULL;
1468 bintime_clear(&tx_info->timestamp);
1469
1470 if (likely(tx_info->num_of_bufs != 0)) {
1471 /* Map is no longer required */
1472 bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
1473 }
1474
1475 ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
1476 tx_ring->qid, mbuf);
1477
1478 m_freem(mbuf);
1479
1480 total_done += tx_info->tx_descs;
1481
1482 tx_ring->free_tx_ids[next_to_clean] = req_id;
1483 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1484 tx_ring->ring_size);
1485
1486 if (unlikely(--commit == 0)) {
1487 commit = TX_COMMIT;
1488 /* update ring state every TX_COMMIT descriptor */
1489 tx_ring->next_to_clean = next_to_clean;
1490 ena_com_comp_ack(
1491 &adapter->ena_dev->io_sq_queues[ena_qid],
1492 total_done);
1493 ena_com_update_dev_comp_head(io_cq);
1494 total_done = 0;
1495 }
1496 } while (likely(--budget));
1497
1498 work_done = TX_BUDGET - budget;
1499
1500 ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
1501 tx_ring->qid, work_done);
1502
1503 /* If there is still something to commit update ring state */
1504 if (likely(commit != TX_COMMIT)) {
1505 tx_ring->next_to_clean = next_to_clean;
1506 ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
1507 total_done);
1508 ena_com_update_dev_comp_head(io_cq);
1509 }
1510
1511 if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
1512 workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
1513
1514 return (work_done);
1515 }
1516
1517 #if 0
1518 static void
1519 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1520 struct mbuf *mbuf)
1521 {
1522 struct ena_adapter *adapter = rx_ring->adapter;
1523
1524 if (likely(adapter->rss_support)) {
1525 mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
1526
1527 if (ena_rx_ctx->frag &&
1528 (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
1529 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1530 return;
1531 }
1532
1533 switch (ena_rx_ctx->l3_proto) {
1534 case ENA_ETH_IO_L3_PROTO_IPV4:
1535 switch (ena_rx_ctx->l4_proto) {
1536 case ENA_ETH_IO_L4_PROTO_TCP:
1537 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
1538 break;
1539 case ENA_ETH_IO_L4_PROTO_UDP:
1540 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
1541 break;
1542 default:
1543 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
1544 }
1545 break;
1546 case ENA_ETH_IO_L3_PROTO_IPV6:
1547 switch (ena_rx_ctx->l4_proto) {
1548 case ENA_ETH_IO_L4_PROTO_TCP:
1549 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
1550 break;
1551 case ENA_ETH_IO_L4_PROTO_UDP:
1552 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
1553 break;
1554 default:
1555 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
1556 }
1557 break;
1558 case ENA_ETH_IO_L3_PROTO_UNKNOWN:
1559 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1560 break;
1561 default:
1562 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
1563 }
1564 } else {
1565 mbuf->m_pkthdr.flowid = rx_ring->qid;
1566 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
1567 }
1568 }
1569 #endif
1570
1571 /**
1572 * ena_rx_mbuf - assemble mbuf from descriptors
1573 * @rx_ring: ring for which we want to clean packets
1574 * @ena_bufs: buffer info
1575 * @ena_rx_ctx: metadata for this packet(s)
1576 * @next_to_clean: ring pointer, will be updated only upon success
1577 *
1578 **/
1579 static struct mbuf*
1580 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
1581 struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
1582 {
1583 struct mbuf *mbuf;
1584 struct ena_rx_buffer *rx_info;
1585 struct ena_adapter *adapter;
1586 unsigned int descs = ena_rx_ctx->descs;
1587 uint16_t ntc, len, req_id, buf = 0;
1588
1589 ntc = *next_to_clean;
1590 adapter = rx_ring->adapter;
1591
1592 len = ena_bufs[buf].len;
1593 req_id = ena_bufs[buf].req_id;
1594 rx_info = &rx_ring->rx_buffer_info[req_id];
1595 if (unlikely(rx_info->mbuf == NULL)) {
1596 device_printf(adapter->pdev, "NULL mbuf in rx_info");
1597 return (NULL);
1598 }
1599
1600 ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
1601 rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
1602
1603 mbuf = rx_info->mbuf;
1604 KASSERT(mbuf->m_flags & M_PKTHDR);
1605 mbuf->m_pkthdr.len = len;
1606 mbuf->m_len = len;
1607 m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
1608
1609 /* Fill mbuf with hash key and it's interpretation for optimization */
1610 #if 0
1611 ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
1612 #endif
1613
1614 ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf %p, flags=0x%x, len: %d",
1615 mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
1616
1617 /* DMA address is not needed anymore, unmap it */
1618 bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1619
1620 rx_info->mbuf = NULL;
1621 rx_ring->free_rx_ids[ntc] = req_id;
1622 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1623
1624 /*
1625 * While we have more than 1 descriptors for one rcvd packet, append
1626 * other mbufs to the main one
1627 */
1628 while (--descs) {
1629 ++buf;
1630 len = ena_bufs[buf].len;
1631 req_id = ena_bufs[buf].req_id;
1632 rx_info = &rx_ring->rx_buffer_info[req_id];
1633
1634 if (unlikely(rx_info->mbuf == NULL)) {
1635 device_printf(adapter->pdev, "NULL mbuf in rx_info");
1636 /*
1637 * If one of the required mbufs was not allocated yet,
1638 * we can break there.
1639 * All earlier used descriptors will be reallocated
1640 * later and not used mbufs can be reused.
1641 * The next_to_clean pointer will not be updated in case
1642 * of an error, so caller should advance it manually
1643 * in error handling routine to keep it up to date
1644 * with hw ring.
1645 */
1646 m_freem(mbuf);
1647 return (NULL);
1648 }
1649
1650 if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
1651 counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
1652 ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
1653 mbuf);
1654 }
1655
1656 ena_trace(ENA_DBG | ENA_RXPTH,
1657 "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
1658
1659 /* Free already appended mbuf, it won't be useful anymore */
1660 bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
1661 m_freem(rx_info->mbuf);
1662 rx_info->mbuf = NULL;
1663
1664 rx_ring->free_rx_ids[ntc] = req_id;
1665 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
1666 }
1667
1668 *next_to_clean = ntc;
1669
1670 return (mbuf);
1671 }
1672
1673 /**
1674 * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
1675 **/
1676 static inline void
1677 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
1678 struct mbuf *mbuf)
1679 {
1680
1681 /* IPv4 */
1682 if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
1683 mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1684 if (ena_rx_ctx->l3_csum_err) {
1685 /* ipv4 checksum error */
1686 mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1687 counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1688 ena_trace(ENA_DBG, "RX IPv4 header checksum error");
1689 return;
1690 }
1691
1692 /* TCP/UDP */
1693 if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1694 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1695 mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
1696 if (ena_rx_ctx->l4_csum_err) {
1697 /* TCP/UDP checksum error */
1698 mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1699 counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1700 ena_trace(ENA_DBG, "RX L4 checksum error");
1701 }
1702 }
1703 }
1704 /* IPv6 */
1705 else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
1706 /* TCP/UDP */
1707 if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1708 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
1709 mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
1710 if (ena_rx_ctx->l4_csum_err) {
1711 /* TCP/UDP checksum error */
1712 mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1713 counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
1714 ena_trace(ENA_DBG, "RX L4 checksum error");
1715 }
1716 }
1717 }
1718 }
1719
1720 /**
1721 * ena_rx_cleanup - handle rx irq
1722 * @arg: ring for which irq is being handled
1723 **/
1724 static int
1725 ena_rx_cleanup(struct ena_ring *rx_ring)
1726 {
1727 struct ena_adapter *adapter;
1728 struct mbuf *mbuf;
1729 struct ena_com_rx_ctx ena_rx_ctx;
1730 struct ena_com_io_cq* io_cq;
1731 struct ena_com_io_sq* io_sq;
1732 struct ifnet *ifp;
1733 uint16_t ena_qid;
1734 uint16_t next_to_clean;
1735 uint32_t refill_required;
1736 uint32_t refill_threshold;
1737 uint32_t do_if_input = 0;
1738 unsigned int qid;
1739 int rc, i;
1740 int budget = RX_BUDGET;
1741
1742 adapter = rx_ring->que->adapter;
1743 ifp = adapter->ifp;
1744 qid = rx_ring->que->id;
1745 ena_qid = ENA_IO_RXQ_IDX(qid);
1746 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1747 io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
1748 next_to_clean = rx_ring->next_to_clean;
1749
1750 ena_trace(ENA_DBG, "rx: qid %d", qid);
1751
1752 do {
1753 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1754 ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
1755 ena_rx_ctx.descs = 0;
1756 rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
1757
1758 if (unlikely(rc != 0))
1759 goto error;
1760
1761 if (unlikely(ena_rx_ctx.descs == 0))
1762 break;
1763
1764 ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
1765 "descs #: %d l3 proto %d l4 proto %d hash: %x",
1766 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1767 ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1768
1769 /* Receive mbuf from the ring */
1770 mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
1771 &ena_rx_ctx, &next_to_clean);
1772
1773 /* Exit if we failed to retrieve a buffer */
1774 if (unlikely(mbuf == NULL)) {
1775 for (i = 0; i < ena_rx_ctx.descs; ++i) {
1776 rx_ring->free_rx_ids[next_to_clean] =
1777 rx_ring->ena_bufs[i].req_id;
1778 next_to_clean =
1779 ENA_RX_RING_IDX_NEXT(next_to_clean,
1780 rx_ring->ring_size);
1781
1782 }
1783 if_statinc(ifp, if_ierrors);
1784 break;
1785 }
1786
1787 if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
1788 ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
1789 ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
1790 ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
1791 ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
1792 ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
1793 }
1794
1795 counter_enter();
1796 counter_u64_add_protected(rx_ring->rx_stats.bytes,
1797 mbuf->m_pkthdr.len);
1798 counter_u64_add_protected(adapter->hw_stats.rx_bytes,
1799 mbuf->m_pkthdr.len);
1800 counter_exit();
1801 /*
1802 * LRO is only for IP/TCP packets and TCP checksum of the packet
1803 * should be computed by hardware.
1804 */
1805 do_if_input = 1;
1806 #ifdef LRO
1807 if (((ifp->if_capenable & IFCAP_LRO) != 0) &&
1808 ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
1809 (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
1810 /*
1811 * Send to the stack if:
1812 * - LRO not enabled, or
1813 * - no LRO resources, or
1814 * - lro enqueue fails
1815 */
1816 if ((rx_ring->lro.lro_cnt != 0) &&
1817 (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
1818 do_if_input = 0;
1819 }
1820 #endif
1821 if (do_if_input != 0) {
1822 ena_trace(ENA_DBG | ENA_RXPTH,
1823 "calling if_input() with mbuf %p", mbuf);
1824 if_percpuq_enqueue(ifp->if_percpuq, mbuf);
1825 }
1826
1827 counter_enter();
1828 counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
1829 counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
1830 counter_exit();
1831 } while (--budget);
1832
1833 rx_ring->next_to_clean = next_to_clean;
1834
1835 refill_required = ena_com_free_desc(io_sq);
1836 refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
1837
1838 if (refill_required > refill_threshold) {
1839 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1840 ena_refill_rx_bufs(rx_ring, refill_required);
1841 }
1842
1843 #ifdef LRO
1844 tcp_lro_flush_all(&rx_ring->lro);
1845 #endif
1846
1847 return (RX_BUDGET - budget);
1848
1849 error:
1850 counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
1851 return (RX_BUDGET - budget);
1852 }
1853
1854 /*********************************************************************
1855 *
1856 * MSIX & Interrupt Service routine
1857 *
1858 **********************************************************************/
1859
1860 /**
1861 * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
1862 * @arg: interrupt number
1863 **/
1864 static int
1865 ena_intr_msix_mgmnt(void *arg)
1866 {
1867 struct ena_adapter *adapter = (struct ena_adapter *)arg;
1868
1869 ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1870 if (likely(ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter)))
1871 ena_com_aenq_intr_handler(adapter->ena_dev, arg);
1872
1873 return 1;
1874 }
1875
1876 /**
1877 * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
1878 * @arg: interrupt number
1879 **/
1880 static int
1881 ena_handle_msix(void *arg)
1882 {
1883 struct ena_que *queue = arg;
1884 struct ena_ring *rx_ring = queue->rx_ring;
1885
1886 ENA_RING_MTX_LOCK(rx_ring);
1887 if (unlikely(rx_ring->stopping)) {
1888 ENA_RING_MTX_UNLOCK(rx_ring);
1889 return 0;
1890 }
1891
1892 if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
1893 workqueue_enqueue(rx_ring->cleanup_tq, &rx_ring->cleanup_task,
1894 curcpu());
1895
1896 ENA_RING_MTX_UNLOCK(rx_ring);
1897 return 1;
1898 }
1899
1900 static void
1901 ena_cleanup(struct work *wk, void *arg)
1902 {
1903 struct ena_que *que = arg;
1904 struct ena_adapter *adapter = que->adapter;
1905 struct ifnet *ifp = adapter->ifp;
1906 struct ena_ring *tx_ring = que->tx_ring;
1907 struct ena_ring *rx_ring = que->rx_ring;
1908 struct ena_com_io_cq* io_cq;
1909 struct ena_eth_io_intr_reg intr_reg;
1910 int qid, ena_qid;
1911 int txc, rxc, i;
1912
1913 atomic_swap_uint(&rx_ring->task_pending, 0);
1914
1915 if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1916 return;
1917
1918 ena_trace(ENA_DBG, "MSI-X TX/RX routine");
1919
1920 qid = que->id;
1921 ena_qid = ENA_IO_TXQ_IDX(qid);
1922 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
1923
1924 for (i = 0; i < CLEAN_BUDGET; ++i) {
1925 /*
1926 * If lock cannot be acquired, then deferred cleanup task was
1927 * being executed and rx ring is being cleaned up in
1928 * another thread.
1929 */
1930 ENA_RING_MTX_LOCK(rx_ring);
1931 if (rx_ring->stopping) {
1932 ENA_RING_MTX_UNLOCK(rx_ring);
1933 return;
1934 }
1935 ENA_RING_MTX_UNLOCK(rx_ring);
1936 rxc = ena_rx_cleanup(rx_ring);
1937
1938 /* Protection from calling ena_tx_cleanup from ena_start_xmit */
1939 ENA_RING_MTX_LOCK(tx_ring);
1940 if (tx_ring->stopping) {
1941 ENA_RING_MTX_UNLOCK(tx_ring);
1942 return;
1943 }
1944 txc = ena_tx_cleanup(tx_ring);
1945 ENA_RING_MTX_UNLOCK(tx_ring);
1946
1947 if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
1948 return;
1949
1950 if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
1951 break;
1952 }
1953
1954 /* Signal that work is done and unmask interrupt */
1955 ena_com_update_intr_reg(&intr_reg,
1956 RX_IRQ_INTERVAL,
1957 TX_IRQ_INTERVAL,
1958 true);
1959 ena_com_unmask_intr(io_cq, &intr_reg);
1960 }
1961
1962 static int
1963 ena_enable_msix(struct ena_adapter *adapter)
1964 {
1965 int msix_req;
1966 int counts[PCI_INTR_TYPE_SIZE];
1967 int max_type;
1968
1969 /* Reserved the max msix vectors we might need */
1970 msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
1971
1972 counts[PCI_INTR_TYPE_INTX] = 0;
1973 counts[PCI_INTR_TYPE_MSI] = 0;
1974 counts[PCI_INTR_TYPE_MSIX] = msix_req;
1975 max_type = PCI_INTR_TYPE_MSIX;
1976
1977 if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
1978 max_type) != 0) {
1979 aprint_error_dev(adapter->pdev,
1980 "failed to allocate interrupt\n");
1981 return ENOSPC;
1982 }
1983
1984 adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
1985
1986 if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
1987 device_printf(adapter->pdev,
1988 "Enable only %d MSI-x (out of %d), reduce "
1989 "the number of queues\n", adapter->sc_nintrs, msix_req);
1990 adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
1991 }
1992
1993 return 0;
1994 }
1995
1996 #if 0
1997 static void
1998 ena_setup_io_intr(struct ena_adapter *adapter)
1999 {
2000 static int last_bind_cpu = -1;
2001 int irq_idx;
2002
2003 for (int i = 0; i < adapter->num_queues; i++) {
2004 irq_idx = ENA_IO_IRQ_IDX(i);
2005
2006 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
2007 "%s-TxRx-%d", device_xname(adapter->pdev), i);
2008 adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
2009 adapter->irq_tbl[irq_idx].data = &adapter->que[i];
2010 adapter->irq_tbl[irq_idx].vector =
2011 adapter->msix_entries[irq_idx].vector;
2012 ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
2013 adapter->msix_entries[irq_idx].vector);
2014 #ifdef RSS
2015 adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
2016 rss_getcpu(i % rss_getnumbuckets());
2017 #else
2018 /*
2019 * We still want to bind rings to the corresponding cpu
2020 * using something similar to the RSS round-robin technique.
2021 */
2022 if (unlikely(last_bind_cpu < 0))
2023 last_bind_cpu = CPU_FIRST();
2024 adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
2025 last_bind_cpu;
2026 last_bind_cpu = CPU_NEXT(last_bind_cpu);
2027 #endif
2028 }
2029 }
2030 #endif
2031
2032 static int
2033 ena_request_mgmnt_irq(struct ena_adapter *adapter)
2034 {
2035 const char *intrstr;
2036 char intrbuf[PCI_INTRSTR_LEN];
2037 char intr_xname[INTRDEVNAMEBUF];
2038 pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
2039 const int irq_slot = ENA_MGMNT_IRQ_IDX;
2040
2041 KASSERT(adapter->sc_intrs != NULL);
2042 KASSERT(adapter->sc_ihs[irq_slot] == NULL);
2043
2044 snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
2045 device_xname(adapter->pdev));
2046 intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
2047 intrbuf, sizeof(intrbuf));
2048
2049 adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
2050 pc, adapter->sc_intrs[irq_slot],
2051 IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
2052
2053 if (adapter->sc_ihs[irq_slot] == NULL) {
2054 device_printf(adapter->pdev, "failed to register "
2055 "interrupt handler for MGMNT irq %s\n",
2056 intrstr);
2057 return ENOMEM;
2058 }
2059
2060 aprint_normal_dev(adapter->pdev,
2061 "for MGMNT interrupting at %s\n", intrstr);
2062
2063 return 0;
2064 }
2065
2066 static int
2067 ena_request_io_irq(struct ena_adapter *adapter)
2068 {
2069 const char *intrstr;
2070 char intrbuf[PCI_INTRSTR_LEN];
2071 char intr_xname[INTRDEVNAMEBUF];
2072 pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
2073 const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2074 void *vih;
2075 kcpuset_t *affinity;
2076 int i;
2077
2078 KASSERT(adapter->sc_intrs != NULL);
2079
2080 kcpuset_create(&affinity, false);
2081
2082 for (i = 0; i < adapter->num_queues; i++) {
2083 int irq_slot = i + irq_off;
2084 int affinity_to = (irq_slot) % ncpu;
2085
2086 KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
2087 KASSERT(adapter->sc_ihs[irq_slot] == NULL);
2088
2089 snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
2090 device_xname(adapter->pdev), i);
2091 intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
2092 intrbuf, sizeof(intrbuf));
2093
2094 vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
2095 adapter->sc_intrs[irq_slot], IPL_NET,
2096 ena_handle_msix, &adapter->que[i], intr_xname);
2097
2098 if (vih == NULL) {
2099 device_printf(adapter->pdev, "failed to register "
2100 "interrupt handler for IO queue %d irq %s\n",
2101 i, intrstr);
2102 goto err;
2103 }
2104
2105 kcpuset_zero(affinity);
2106 /* Round-robin affinity */
2107 kcpuset_set(affinity, affinity_to);
2108 int error = interrupt_distribute(vih, affinity, NULL);
2109 if (error == 0) {
2110 aprint_normal_dev(adapter->pdev,
2111 "for IO queue %d interrupting at %s"
2112 " affinity to %u\n", i, intrstr, affinity_to);
2113 } else {
2114 aprint_normal_dev(adapter->pdev,
2115 "for IO queue %d interrupting at %s\n", i, intrstr);
2116 }
2117
2118 adapter->sc_ihs[irq_slot] = vih;
2119
2120 #ifdef RSS
2121 ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
2122 i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
2123 #else
2124 ena_trace(ENA_INFO, "queue %d - cpu %d\n",
2125 i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
2126 #endif
2127 }
2128
2129 kcpuset_destroy(affinity);
2130 return 0;
2131
2132 err:
2133 kcpuset_destroy(affinity);
2134
2135 for (i--; i >= 0; i--) {
2136 int irq_slot __diagused = i + irq_off;
2137 KASSERT(adapter->sc_ihs[irq_slot] != NULL);
2138 pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[irq_slot]);
2139 adapter->sc_ihs[irq_slot] = NULL;
2140 }
2141
2142 return ENOSPC;
2143 }
2144
2145 static void
2146 ena_free_mgmnt_irq(struct ena_adapter *adapter)
2147 {
2148 const int irq_slot = ENA_MGMNT_IRQ_IDX;
2149
2150 if (adapter->sc_ihs[irq_slot]) {
2151 pci_intr_disestablish(adapter->sc_pa.pa_pc,
2152 adapter->sc_ihs[irq_slot]);
2153 adapter->sc_ihs[irq_slot] = NULL;
2154 }
2155 }
2156
2157 static void
2158 ena_free_io_irq(struct ena_adapter *adapter)
2159 {
2160 const int irq_off = ENA_IO_IRQ_FIRST_IDX;
2161
2162 for (int i = 0; i < adapter->num_queues; i++) {
2163 int irq_slot = i + irq_off;
2164
2165 if (adapter->sc_ihs[irq_slot]) {
2166 pci_intr_disestablish(adapter->sc_pa.pa_pc,
2167 adapter->sc_ihs[irq_slot]);
2168 adapter->sc_ihs[irq_slot] = NULL;
2169 }
2170 }
2171 }
2172
2173 static void
2174 ena_free_irqs(struct ena_adapter* adapter)
2175 {
2176
2177 ena_free_io_irq(adapter);
2178 ena_free_mgmnt_irq(adapter);
2179 ena_disable_msix(adapter);
2180 }
2181
2182 static void
2183 ena_disable_msix(struct ena_adapter *adapter)
2184 {
2185 pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
2186 adapter->sc_nintrs);
2187 }
2188
2189 static void
2190 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
2191 {
2192 struct ena_com_io_cq* io_cq;
2193 struct ena_eth_io_intr_reg intr_reg;
2194 uint16_t ena_qid;
2195 int i;
2196
2197 /* Unmask interrupts for all queues */
2198 for (i = 0; i < adapter->num_queues; i++) {
2199 ena_qid = ENA_IO_TXQ_IDX(i);
2200 io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
2201 ena_com_update_intr_reg(&intr_reg, 0, 0, true);
2202 ena_com_unmask_intr(io_cq, &intr_reg);
2203 }
2204 }
2205
2206 /* Configure the Rx forwarding */
2207 static int
2208 ena_rss_configure(struct ena_adapter *adapter)
2209 {
2210 struct ena_com_dev *ena_dev = adapter->ena_dev;
2211 int rc;
2212
2213 /* Set indirect table */
2214 rc = ena_com_indirect_table_set(ena_dev);
2215 if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2216 return (rc);
2217
2218 /* Configure hash function (if supported) */
2219 rc = ena_com_set_hash_function(ena_dev);
2220 if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2221 return (rc);
2222
2223 /* Configure hash inputs (if supported) */
2224 rc = ena_com_set_hash_ctrl(ena_dev);
2225 if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
2226 return (rc);
2227
2228 return (0);
2229 }
2230
2231 static int
2232 ena_up_complete(struct ena_adapter *adapter)
2233 {
2234 int rc;
2235
2236 if (likely(adapter->rss_support)) {
2237 rc = ena_rss_configure(adapter);
2238 if (rc != 0)
2239 return (rc);
2240 }
2241
2242 rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
2243 if (unlikely(rc != 0))
2244 return (rc);
2245
2246 ena_refill_all_rx_bufs(adapter);
2247 ena_reset_counters((struct evcnt *)&adapter->hw_stats,
2248 sizeof(adapter->hw_stats),
2249 offsetof(struct ena_hw_stats, rx_packets));
2250
2251 return (0);
2252 }
2253
2254 static int
2255 ena_up(struct ena_adapter *adapter)
2256 {
2257 int rc = 0;
2258
2259 KASSERT(ENA_CORE_MTX_OWNED(adapter));
2260
2261 #if 0
2262 if (unlikely(device_is_attached(adapter->pdev) == 0)) {
2263 device_printf(adapter->pdev, "device is not attached!\n");
2264 return (ENXIO);
2265 }
2266 #endif
2267
2268 if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter))) {
2269 device_printf(adapter->pdev, "device is not running!\n");
2270 return (ENXIO);
2271 }
2272
2273 if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
2274 device_printf(adapter->pdev, "device is going UP\n");
2275
2276 /* setup interrupts for IO queues */
2277 rc = ena_request_io_irq(adapter);
2278 if (unlikely(rc != 0)) {
2279 ena_trace(ENA_ALERT, "err_req_irq");
2280 goto err_req_irq;
2281 }
2282
2283 /* allocate transmit descriptors */
2284 rc = ena_setup_all_tx_resources(adapter);
2285 if (unlikely(rc != 0)) {
2286 ena_trace(ENA_ALERT, "err_setup_tx");
2287 goto err_setup_tx;
2288 }
2289
2290 /* allocate receive descriptors */
2291 rc = ena_setup_all_rx_resources(adapter);
2292 if (unlikely(rc != 0)) {
2293 ena_trace(ENA_ALERT, "err_setup_rx");
2294 goto err_setup_rx;
2295 }
2296
2297 /* create IO queues for Rx & Tx */
2298 rc = ena_create_io_queues(adapter);
2299 if (unlikely(rc != 0)) {
2300 ena_trace(ENA_ALERT,
2301 "create IO queues failed");
2302 goto err_io_que;
2303 }
2304
2305 if (unlikely(ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
2306 if_link_state_change(adapter->ifp, LINK_STATE_UP);
2307
2308 rc = ena_up_complete(adapter);
2309 if (unlikely(rc != 0))
2310 goto err_up_complete;
2311
2312 counter_u64_add(adapter->dev_stats.interface_up, 1);
2313
2314 ena_update_hwassist(adapter);
2315
2316 if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
2317 IFF_OACTIVE);
2318 ena_set_stopping_flag(adapter, false);
2319
2320 callout_schedule(&adapter->timer_service, hz);
2321
2322 ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEV_UP, adapter);
2323
2324 ena_unmask_all_io_irqs(adapter);
2325 }
2326
2327 return (0);
2328
2329 err_up_complete:
2330 ena_destroy_all_io_queues(adapter);
2331 err_io_que:
2332 ena_free_all_rx_resources(adapter);
2333 err_setup_rx:
2334 ena_free_all_tx_resources(adapter);
2335 err_setup_tx:
2336 ena_free_io_irq(adapter);
2337 err_req_irq:
2338 return (rc);
2339 }
2340
2341 #if 0
2342 static uint64_t
2343 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
2344 {
2345 struct ena_adapter *adapter;
2346 struct ena_hw_stats *stats;
2347
2348 adapter = if_getsoftc(ifp);
2349 stats = &adapter->hw_stats;
2350
2351 switch (cnt) {
2352 case IFCOUNTER_IPACKETS:
2353 return (counter_u64_fetch(stats->rx_packets));
2354 case IFCOUNTER_OPACKETS:
2355 return (counter_u64_fetch(stats->tx_packets));
2356 case IFCOUNTER_IBYTES:
2357 return (counter_u64_fetch(stats->rx_bytes));
2358 case IFCOUNTER_OBYTES:
2359 return (counter_u64_fetch(stats->tx_bytes));
2360 case IFCOUNTER_IQDROPS:
2361 return (counter_u64_fetch(stats->rx_drops));
2362 default:
2363 return (if_get_counter_default(ifp, cnt));
2364 }
2365 }
2366 #endif
2367
2368 static int
2369 ena_media_change(struct ifnet *ifp)
2370 {
2371 /* Media Change is not supported by firmware */
2372 return (0);
2373 }
2374
2375 static void
2376 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2377 {
2378 struct ena_adapter *adapter = if_getsoftc(ifp);
2379 ena_trace(ENA_DBG, "enter");
2380
2381 KASSERT(ENA_CORE_MTX_OWNED(adapter));
2382
2383 ifmr->ifm_status = IFM_AVALID;
2384 ifmr->ifm_active = IFM_ETHER;
2385
2386 if (!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)) {
2387 ena_trace(ENA_INFO, "Link is down");
2388 return;
2389 }
2390
2391 ifmr->ifm_status |= IFM_ACTIVE;
2392 }
2393
2394 static int
2395 ena_init(struct ifnet *ifp)
2396 {
2397 struct ena_adapter *adapter = if_getsoftc(ifp);
2398
2399 if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
2400 ENA_CORE_MTX_LOCK(adapter);
2401 ena_up(adapter);
2402 ENA_CORE_MTX_UNLOCK(adapter);
2403 }
2404
2405 return 0;
2406 }
2407
2408 static void
2409 ena_stop(struct ifnet *ifp, int disable){
2410 struct ena_adapter *adapter;
2411
2412 adapter = ifp->if_softc;
2413
2414 if (ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
2415 ENA_CORE_MTX_LOCK(adapter);
2416 ena_down(adapter);
2417 ENA_CORE_MTX_UNLOCK(adapter);
2418 }
2419 }
2420
2421
2422 static int
2423 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
2424 {
2425 struct ena_adapter *adapter;
2426 struct ifreq *ifr;
2427 int rc;
2428
2429 adapter = ifp->if_softc;
2430 ifr = (struct ifreq *)data;
2431
2432 /*
2433 * Acquiring lock to prevent from running up and down routines parallel.
2434 */
2435 rc = 0;
2436 switch (command) {
2437 case SIOCSIFMTU:
2438 if (ifp->if_mtu == ifr->ifr_mtu)
2439 break;
2440 ENA_CORE_MTX_LOCK(adapter);
2441 ena_down(adapter);
2442
2443 ena_change_mtu(ifp, ifr->ifr_mtu);
2444
2445 rc = ena_up(adapter);
2446 ENA_CORE_MTX_UNLOCK(adapter);
2447 break;
2448
2449 case SIOCADDMULTI:
2450 case SIOCDELMULTI:
2451 break;
2452
2453 case SIOCSIFCAP:
2454 {
2455 struct ifcapreq *ifcr = data;
2456 int reinit = 0;
2457
2458 if (ifcr->ifcr_capenable != ifp->if_capenable) {
2459 ifp->if_capenable = ifcr->ifcr_capenable;
2460 reinit = 1;
2461 }
2462
2463 if ((reinit != 0) &&
2464 ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
2465 ENA_CORE_MTX_LOCK(adapter);
2466 ena_down(adapter);
2467 rc = ena_up(adapter);
2468 ENA_CORE_MTX_UNLOCK(adapter);
2469 }
2470 }
2471
2472 break;
2473 default:
2474 rc = ether_ioctl(ifp, command, data);
2475 break;
2476 }
2477
2478 return (rc);
2479 }
2480
2481 static int
2482 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
2483 {
2484 int caps = 0;
2485
2486 if ((feat->offload.tx &
2487 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2488 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
2489 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
2490 caps |= IFCAP_CSUM_IPv4_Tx;
2491
2492 if ((feat->offload.tx &
2493 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
2494 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
2495 caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
2496
2497 if ((feat->offload.tx &
2498 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
2499 caps |= IFCAP_TSOv4;
2500
2501 if ((feat->offload.tx &
2502 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
2503 caps |= IFCAP_TSOv6;
2504
2505 if ((feat->offload.rx_supported &
2506 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
2507 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
2508 caps |= IFCAP_CSUM_IPv4_Rx;
2509
2510 if ((feat->offload.rx_supported &
2511 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
2512 caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
2513
2514 #ifdef LRO
2515 caps |= IFCAP_LRO;
2516 #endif
2517
2518 return (caps);
2519 }
2520
2521 static void
2522 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
2523 {
2524
2525 host_info->supported_network_features[0] =
2526 (uint32_t)if_getcapabilities(ifp);
2527 }
2528
2529 static void
2530 ena_update_hwassist(struct ena_adapter *adapter)
2531 {
2532 struct ifnet *ifp = adapter->ifp;
2533 uint32_t feat = adapter->tx_offload_cap;
2534 int cap = if_getcapenable(ifp);
2535 int flags = 0;
2536
2537 if_clearhwassist(ifp);
2538
2539 if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2540 != 0) {
2541 if ((feat &
2542 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
2543 flags |= M_CSUM_IPv4;
2544 if ((feat &
2545 (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
2546 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
2547 flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
2548 }
2549
2550 if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
2551 flags |= M_CSUM_TCPv6;
2552
2553 if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
2554 flags |= M_CSUM_UDPv6;
2555
2556 if ((cap & IFCAP_TSOv4) != 0)
2557 flags |= M_CSUM_TSOv4;
2558
2559 if ((cap & IFCAP_TSOv6) != 0)
2560 flags |= M_CSUM_TSOv6;
2561
2562 if_sethwassistbits(ifp, flags, 0);
2563 }
2564
2565 static int
2566 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
2567 struct ena_com_dev_get_features_ctx *feat)
2568 {
2569 struct ifnet *ifp;
2570 int caps = 0;
2571
2572 ifp = adapter->ifp = &adapter->sc_ec.ec_if;
2573 if (unlikely(ifp == NULL)) {
2574 ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
2575 return (ENXIO);
2576 }
2577 if_initialize(ifp);
2578 if_initname(ifp, "ena", device_unit(pdev));
2579 if_setdev(ifp, pdev);
2580 if_setsoftc(ifp, adapter);
2581
2582 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2583 if_setinitfn(ifp, ena_init);
2584 ifp->if_stop = ena_stop;
2585 if_settransmitfn(ifp, ena_mq_start);
2586 #if 0
2587 if_setqflushfn(ifp, ena_qflush);
2588 #endif
2589 if_setioctlfn(ifp, ena_ioctl);
2590 #if 0
2591 if_setgetcounterfn(ifp, ena_get_counter);
2592 #endif
2593
2594 if_setsendqlen(ifp, adapter->tx_ring_size);
2595 if_setsendqready(ifp);
2596 if_setmtu(ifp, ETHERMTU);
2597 if_setbaudrate(ifp, 0);
2598 /* Zeroize capabilities... */
2599 if_setcapabilities(ifp, 0);
2600 if_setcapenable(ifp, 0);
2601 /* check hardware support */
2602 caps = ena_get_dev_offloads(feat);
2603 /* ... and set them */
2604 if_setcapabilitiesbit(ifp, caps, 0);
2605 adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2606
2607 #if 0
2608 /* TSO parameters */
2609 /* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
2610 ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
2611 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
2612 ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
2613 ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
2614 #endif
2615
2616 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2617 if_setcapenable(ifp, if_getcapabilities(ifp));
2618
2619 /*
2620 * Specify the media types supported by this adapter and register
2621 * callbacks to update media and link information
2622 */
2623 adapter->sc_ec.ec_ifmedia = &adapter->media;
2624 ifmedia_init_with_lock(&adapter->media, IFM_IMASK,
2625 ena_media_change, ena_media_status, &adapter->global_mtx);
2626 ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2627 ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2628
2629 ifp->if_percpuq = if_percpuq_create(ifp);
2630 if_deferred_start_init(ifp, NULL);
2631 ether_ifattach(ifp, adapter->mac_addr);
2632 if_register(ifp);
2633
2634 return (0);
2635 }
2636
2637 static void
2638 ena_set_stopping_flag(struct ena_adapter *adapter, bool value)
2639 {
2640 struct ena_ring *ring;
2641 int i;
2642
2643 for (i = 0; i < adapter->num_queues; i++) {
2644 /* TX */
2645 ring = adapter->que[i].tx_ring;
2646 ENA_RING_MTX_LOCK(ring);
2647 ring->stopping = value;
2648 ENA_RING_MTX_UNLOCK(ring);
2649
2650 /* RX */
2651 ring = adapter->que[i].rx_ring;
2652 ENA_RING_MTX_LOCK(ring);
2653 ring->stopping = value;
2654 ENA_RING_MTX_UNLOCK(ring);
2655 }
2656 }
2657
2658 static void
2659 ena_down(struct ena_adapter *adapter)
2660 {
2661 int rc, i;
2662
2663 KASSERT(ENA_CORE_MTX_OWNED(adapter));
2664
2665 if (ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
2666 device_printf(adapter->pdev, "device is going DOWN\n");
2667 ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEV_UP, adapter);
2668 if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
2669 IFF_RUNNING);
2670
2671 ena_set_stopping_flag(adapter, true);
2672
2673 callout_halt(&adapter->timer_service, NULL);
2674 for (i = 0; i < adapter->num_queues; i++) {
2675 struct ena_ring *rx_ring = adapter->que[i].rx_ring;
2676 workqueue_wait(rx_ring->cleanup_tq,
2677 &rx_ring->cleanup_task);
2678 }
2679
2680 if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter)) {
2681 rc = ena_com_dev_reset(adapter->ena_dev,
2682 adapter->reset_reason);
2683 if (unlikely(rc != 0))
2684 device_printf(adapter->pdev,
2685 "Device reset failed\n");
2686 }
2687
2688 ena_destroy_all_io_queues(adapter);
2689
2690 ena_free_all_tx_bufs(adapter);
2691 ena_free_all_rx_bufs(adapter);
2692 ena_free_all_tx_resources(adapter);
2693 ena_free_all_rx_resources(adapter);
2694
2695 ena_free_io_irq(adapter);
2696
2697 counter_u64_add(adapter->dev_stats.interface_down, 1);
2698 }
2699 }
2700
2701 static void
2702 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
2703 {
2704 struct ena_com_tx_meta *ena_meta;
2705 struct ether_vlan_header *eh;
2706 u32 mss;
2707 bool offload;
2708 uint16_t etype;
2709 int ehdrlen;
2710 struct ip *ip;
2711 int iphlen;
2712 struct tcphdr *th;
2713
2714 offload = false;
2715 ena_meta = &ena_tx_ctx->ena_meta;
2716
2717 #if 0
2718 u32 mss = mbuf->m_pkthdr.tso_segsz;
2719
2720 if (mss != 0)
2721 offload = true;
2722 #else
2723 mss = mbuf->m_pkthdr.len; /* XXX don't have tso_segsz */
2724 #endif
2725
2726 if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
2727 offload = true;
2728
2729 if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
2730 offload = true;
2731
2732 if (!offload) {
2733 ena_tx_ctx->meta_valid = 0;
2734 return;
2735 }
2736
2737 /* Determine where frame payload starts. */
2738 eh = mtod(mbuf, struct ether_vlan_header *);
2739 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2740 etype = ntohs(eh->evl_proto);
2741 ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2742 } else {
2743 etype = htons(eh->evl_encap_proto);
2744 ehdrlen = ETHER_HDR_LEN;
2745 }
2746
2747 ip = (struct ip *)(mbuf->m_data + ehdrlen);
2748 iphlen = ip->ip_hl << 2;
2749 th = (struct tcphdr *)((vaddr_t)ip + iphlen);
2750
2751 if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
2752 ena_tx_ctx->l3_csum_enable = 1;
2753 }
2754 if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
2755 ena_tx_ctx->tso_enable = 1;
2756 ena_meta->l4_hdr_len = (th->th_off);
2757 }
2758
2759 switch (etype) {
2760 case ETHERTYPE_IP:
2761 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2762 if ((ip->ip_off & htons(IP_DF)) != 0)
2763 ena_tx_ctx->df = 1;
2764 break;
2765 case ETHERTYPE_IPV6:
2766 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2767
2768 default:
2769 break;
2770 }
2771
2772 if (ip->ip_p == IPPROTO_TCP) {
2773 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2774 if ((mbuf->m_pkthdr.csum_flags &
2775 (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
2776 ena_tx_ctx->l4_csum_enable = 1;
2777 else
2778 ena_tx_ctx->l4_csum_enable = 0;
2779 } else if (ip->ip_p == IPPROTO_UDP) {
2780 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2781 if ((mbuf->m_pkthdr.csum_flags &
2782 (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2783 ena_tx_ctx->l4_csum_enable = 1;
2784 else
2785 ena_tx_ctx->l4_csum_enable = 0;
2786 } else {
2787 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
2788 ena_tx_ctx->l4_csum_enable = 0;
2789 }
2790
2791 ena_meta->mss = mss;
2792 ena_meta->l3_hdr_len = iphlen;
2793 ena_meta->l3_hdr_offset = ehdrlen;
2794 ena_tx_ctx->meta_valid = 1;
2795 }
2796
2797 static int
2798 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2799 {
2800 struct ena_adapter *adapter;
2801 struct mbuf *collapsed_mbuf;
2802 int num_frags;
2803
2804 adapter = tx_ring->adapter;
2805 num_frags = ena_mbuf_count(*mbuf);
2806
2807 /* One segment must be reserved for configuration descriptor. */
2808 if (num_frags < adapter->max_tx_sgl_size)
2809 return (0);
2810 counter_u64_add(tx_ring->tx_stats.collapse, 1);
2811
2812 collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
2813 adapter->max_tx_sgl_size - 1);
2814 if (unlikely(collapsed_mbuf == NULL)) {
2815 counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
2816 return (ENOMEM);
2817 }
2818
2819 /* If mbuf was collapsed successfully, original mbuf is released. */
2820 *mbuf = collapsed_mbuf;
2821
2822 return (0);
2823 }
2824
2825 static int
2826 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
2827 {
2828 struct ena_adapter *adapter;
2829 struct ena_tx_buffer *tx_info;
2830 struct ena_com_tx_ctx ena_tx_ctx;
2831 struct ena_com_dev *ena_dev;
2832 struct ena_com_buf *ena_buf;
2833 struct ena_com_io_sq* io_sq;
2834 void *push_hdr;
2835 uint16_t next_to_use;
2836 uint16_t req_id;
2837 uint16_t ena_qid;
2838 uint32_t header_len;
2839 int i, rc;
2840 int nb_hw_desc;
2841
2842 KASSERT(ENA_RING_MTX_OWNED(tx_ring));
2843
2844 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2845 adapter = tx_ring->que->adapter;
2846 ena_dev = adapter->ena_dev;
2847 io_sq = &ena_dev->io_sq_queues[ena_qid];
2848
2849 rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
2850 if (unlikely(rc != 0)) {
2851 ena_trace(ENA_WARNING,
2852 "Failed to collapse mbuf! err: %d", rc);
2853 return (rc);
2854 }
2855
2856 next_to_use = tx_ring->next_to_use;
2857 req_id = tx_ring->free_tx_ids[next_to_use];
2858 tx_info = &tx_ring->tx_buffer_info[req_id];
2859
2860 tx_info->mbuf = *mbuf;
2861 tx_info->num_of_bufs = 0;
2862
2863 ena_buf = tx_info->bufs;
2864
2865 ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
2866
2867 /*
2868 * header_len is just a hint for the device. Because FreeBSD is not
2869 * giving us information about packet header length and it is not
2870 * guaranteed that all packet headers will be in the 1st mbuf, setting
2871 * header_len to 0 is making the device ignore this value and resolve
2872 * header on it's own.
2873 */
2874 header_len = 0;
2875 push_hdr = NULL;
2876
2877 rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
2878 *mbuf, BUS_DMA_NOWAIT);
2879
2880 if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
2881 ena_trace(ENA_WARNING,
2882 "dmamap load failed! err: %d nsegs: %d", rc,
2883 tx_info->map->dm_nsegs);
2884 counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
2885 tx_info->mbuf = NULL;
2886 if (rc == ENOMEM)
2887 return (ENA_COM_NO_MEM);
2888 else
2889 return (ENA_COM_INVAL);
2890 }
2891
2892 for (i = 0; i < tx_info->map->dm_nsegs; i++) {
2893 ena_buf->len = tx_info->map->dm_segs[i].ds_len;
2894 ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
2895 ena_buf++;
2896 }
2897 tx_info->num_of_bufs = tx_info->map->dm_nsegs;
2898
2899 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2900 ena_tx_ctx.ena_bufs = tx_info->bufs;
2901 ena_tx_ctx.push_header = push_hdr;
2902 ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2903 ena_tx_ctx.req_id = req_id;
2904 ena_tx_ctx.header_len = header_len;
2905
2906 /* Set flags and meta data */
2907 ena_tx_csum(&ena_tx_ctx, *mbuf);
2908 /* Prepare the packet's descriptors and send them to device */
2909 rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
2910 if (unlikely(rc != 0)) {
2911 device_printf(adapter->pdev, "failed to prepare tx bufs\n");
2912 counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
2913 goto dma_error;
2914 }
2915
2916 counter_enter();
2917 counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
2918 counter_u64_add_protected(tx_ring->tx_stats.bytes,
2919 (*mbuf)->m_pkthdr.len);
2920
2921 counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
2922 counter_u64_add_protected(adapter->hw_stats.tx_bytes,
2923 (*mbuf)->m_pkthdr.len);
2924 counter_exit();
2925
2926 tx_info->tx_descs = nb_hw_desc;
2927 getbinuptime(&tx_info->timestamp);
2928 tx_info->print_once = true;
2929
2930 tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
2931 tx_ring->ring_size);
2932
2933 bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
2934 tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2935
2936 return (0);
2937
2938 dma_error:
2939 tx_info->mbuf = NULL;
2940 bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
2941
2942 return (rc);
2943 }
2944
2945 static void
2946 ena_start_xmit(struct ena_ring *tx_ring)
2947 {
2948 struct mbuf *mbuf;
2949 struct ena_adapter *adapter = tx_ring->adapter;
2950 struct ena_com_io_sq* io_sq;
2951 int ena_qid;
2952 int acum_pkts = 0;
2953 int ret = 0;
2954 net_stat_ref_t nsr;
2955
2956 KASSERT(ENA_RING_MTX_OWNED(tx_ring));
2957
2958 /* ena_down() is waiting for completing */
2959 if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
2960 return;
2961
2962 if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
2963 return;
2964
2965 ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
2966 io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
2967
2968 nsr = IF_STAT_GETREF(adapter->ifp);
2969
2970 for (;;) {
2971 if (unlikely(!ena_com_sq_have_enough_space(io_sq, adapter->max_tx_sgl_size)))
2972 break;
2973
2974 if ((mbuf = pcq_get(tx_ring->br)) == NULL)
2975 break;
2976
2977 ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
2978 " header csum flags %#jx",
2979 mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
2980
2981 if (likely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) == 0)) {
2982 if_statinc_ref(nsr, if_opackets);
2983 if_statadd_ref(nsr, if_obytes, mbuf->m_pkthdr.len);
2984 if (ISSET(mbuf->m_flags, M_MCAST))
2985 if_statinc_ref(nsr, if_omcasts);
2986 } else {
2987 if_statinc_ref(nsr, if_oerrors);
2988 m_freem(mbuf);
2989 break;
2990 }
2991
2992 /* ena_down is waiting for completing */
2993 if (unlikely((if_getdrvflags(adapter->ifp) &
2994 IFF_RUNNING) == 0)) {
2995 IF_STAT_PUTREF(adapter->ifp);
2996 return;
2997 }
2998
2999 acum_pkts++;
3000
3001 /*
3002 * If there's a BPF listener, bounce a copy of this frame
3003 * to him.
3004 */
3005 bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
3006
3007 if (unlikely(acum_pkts == DB_THRESHOLD)) {
3008 acum_pkts = 0;
3009 wmb();
3010 /* Trigger the dma engine */
3011 ena_com_write_sq_doorbell(io_sq);
3012 counter_u64_add(tx_ring->tx_stats.doorbells, 1);
3013 }
3014
3015 }
3016
3017 IF_STAT_PUTREF(adapter->ifp);
3018
3019 if (likely(acum_pkts != 0)) {
3020 wmb();
3021 /* Trigger the dma engine */
3022 ena_com_write_sq_doorbell(io_sq);
3023 counter_u64_add(tx_ring->tx_stats.doorbells, 1);
3024 }
3025
3026 if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
3027 ena_tx_cleanup(tx_ring);
3028 }
3029
3030 static void
3031 ena_deferred_mq_start(struct work *wk, void *arg)
3032 {
3033 struct ena_ring *tx_ring = (struct ena_ring *)arg;
3034 struct ifnet *ifp = tx_ring->adapter->ifp;
3035
3036 atomic_swap_uint(&tx_ring->task_pending, 0);
3037
3038 while (pcq_peek(tx_ring->br) != NULL &&
3039 (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
3040 ENA_RING_MTX_LOCK(tx_ring);
3041 if (tx_ring->stopping) {
3042 ENA_RING_MTX_UNLOCK(tx_ring);
3043 return;
3044 }
3045 ena_start_xmit(tx_ring);
3046 ENA_RING_MTX_UNLOCK(tx_ring);
3047 }
3048 }
3049
3050 static int
3051 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
3052 {
3053 struct ena_adapter *adapter = ifp->if_softc;
3054 struct ena_ring *tx_ring;
3055 struct mbuf *is_drbr_empty;
3056 bool ret;
3057 uint32_t i;
3058
3059 if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
3060 return (ENODEV);
3061
3062 /* Which queue to use */
3063 /*
3064 * If everything is setup correctly, it should be the
3065 * same bucket that the current CPU we're on is.
3066 * It should improve performance.
3067 */
3068 #if 0
3069 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
3070 #ifdef RSS
3071 if (rss_hash2bucket(m->m_pkthdr.flowid,
3072 M_HASHTYPE_GET(m), &i) == 0) {
3073 i = i % adapter->num_queues;
3074
3075 } else
3076 #endif
3077 {
3078 i = m->m_pkthdr.flowid % adapter->num_queues;
3079 }
3080 } else {
3081 #endif
3082 i = cpu_index(curcpu()) % adapter->num_queues;
3083 #if 0
3084 }
3085 #endif
3086 tx_ring = &adapter->tx_ring[i];
3087
3088 /* Check if drbr is empty before putting packet */
3089 is_drbr_empty = pcq_peek(tx_ring->br);
3090 ret = pcq_put(tx_ring->br, m);
3091 if (unlikely(ret == false)) {
3092 m_freem(m);
3093 counter_u64_add(tx_ring->tx_stats.pcq_drops, 1);
3094 if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
3095 workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
3096 curcpu());
3097 return (ENOBUFS);
3098 }
3099
3100 if ((is_drbr_empty != NULL) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
3101 if (!tx_ring->stopping)
3102 ena_start_xmit(tx_ring);
3103 ENA_RING_MTX_UNLOCK(tx_ring);
3104 } else {
3105 if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
3106 workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
3107 curcpu());
3108 }
3109
3110 return (0);
3111 }
3112
3113 #if 0
3114 static void
3115 ena_qflush(struct ifnet *ifp)
3116 {
3117 struct ena_adapter *adapter = ifp->if_softc;
3118 struct ena_ring *tx_ring = adapter->tx_ring;
3119 int i;
3120
3121 for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
3122 if (!drbr_empty(ifp, tx_ring->br)) {
3123 ENA_RING_MTX_LOCK(tx_ring);
3124 drbr_flush(ifp, tx_ring->br);
3125 ENA_RING_MTX_UNLOCK(tx_ring);
3126 }
3127
3128 if_qflush(ifp);
3129 }
3130 #endif
3131
3132 static int
3133 ena_calc_io_queue_num(struct pci_attach_args *pa,
3134 struct ena_adapter *adapter,
3135 struct ena_com_dev_get_features_ctx *get_feat_ctx)
3136 {
3137 int io_sq_num, io_cq_num, io_queue_num;
3138
3139 io_sq_num = get_feat_ctx->max_queues.max_sq_num;
3140 io_cq_num = get_feat_ctx->max_queues.max_cq_num;
3141
3142 io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
3143 io_queue_num = min_t(int, io_queue_num, io_sq_num);
3144 io_queue_num = min_t(int, io_queue_num, io_cq_num);
3145 /* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */
3146 io_queue_num = min_t(int, io_queue_num,
3147 pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
3148 #ifdef RSS
3149 io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets());
3150 #endif
3151
3152 return (io_queue_num);
3153 }
3154
3155 static int
3156 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
3157 uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
3158 {
3159 uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
3160 uint32_t v;
3161 uint32_t q;
3162
3163 queue_size = min_t(uint32_t, queue_size,
3164 feat->max_queues.max_cq_depth);
3165 queue_size = min_t(uint32_t, queue_size,
3166 feat->max_queues.max_sq_depth);
3167
3168 /* round down to the nearest power of 2 */
3169 v = queue_size;
3170 while (v != 0) {
3171 if (powerof2(queue_size) != 0)
3172 break;
3173 v /= 2;
3174 q = rounddown2(queue_size, v);
3175 if (q != 0) {
3176 queue_size = q;
3177 break;
3178 }
3179 }
3180
3181 if (unlikely(queue_size == 0)) {
3182 device_printf(adapter->pdev, "Invalid queue size\n");
3183 return (ENA_COM_FAULT);
3184 }
3185
3186 *max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3187 feat->max_queues.max_packet_tx_descs);
3188 *max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
3189 feat->max_queues.max_packet_rx_descs);
3190
3191 return (queue_size);
3192 }
3193
3194 #if 0
3195 static int
3196 ena_rss_init_default(struct ena_adapter *adapter)
3197 {
3198 struct ena_com_dev *ena_dev = adapter->ena_dev;
3199 device_t dev = adapter->pdev;
3200 int qid, rc, i;
3201
3202 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3203 if (unlikely(rc != 0)) {
3204 device_printf(dev, "Cannot init indirect table\n");
3205 return (rc);
3206 }
3207
3208 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3209 #ifdef RSS
3210 qid = rss_get_indirection_to_bucket(i);
3211 qid = qid % adapter->num_queues;
3212 #else
3213 qid = i % adapter->num_queues;
3214 #endif
3215 rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3216 ENA_IO_RXQ_IDX(qid));
3217 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3218 device_printf(dev, "Cannot fill indirect table\n");
3219 goto err_rss_destroy;
3220 }
3221 }
3222
3223 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
3224 ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
3225 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3226 device_printf(dev, "Cannot fill hash function\n");
3227 goto err_rss_destroy;
3228 }
3229
3230 rc = ena_com_set_default_hash_ctrl(ena_dev);
3231 if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
3232 device_printf(dev, "Cannot fill hash control\n");
3233 goto err_rss_destroy;
3234 }
3235
3236 return (0);
3237
3238 err_rss_destroy:
3239 ena_com_rss_destroy(ena_dev);
3240 return (rc);
3241 }
3242
3243 static void
3244 ena_rss_init_default_deferred(void *arg)
3245 {
3246 struct ena_adapter *adapter;
3247 devclass_t dc;
3248 int max;
3249 int rc;
3250
3251 dc = devclass_find("ena");
3252 if (unlikely(dc == NULL)) {
3253 ena_trace(ENA_ALERT, "No devclass ena\n");
3254 return;
3255 }
3256
3257 max = devclass_get_maxunit(dc);
3258 while (max-- >= 0) {
3259 adapter = devclass_get_softc(dc, max);
3260 if (adapter != NULL) {
3261 rc = ena_rss_init_default(adapter);
3262 adapter->rss_support = true;
3263 if (unlikely(rc != 0)) {
3264 device_printf(adapter->pdev,
3265 "WARNING: RSS was not properly initialized,"
3266 " it will affect bandwidth\n");
3267 adapter->rss_support = false;
3268 }
3269 }
3270 }
3271 }
3272 SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL);
3273 #endif
3274
3275 static void
3276 ena_config_host_info(struct ena_com_dev *ena_dev)
3277 {
3278 struct ena_admin_host_info *host_info;
3279 int rc;
3280
3281 /* Allocate only the host info */
3282 rc = ena_com_allocate_host_info(ena_dev);
3283 if (unlikely(rc != 0)) {
3284 ena_trace(ENA_ALERT, "Cannot allocate host info\n");
3285 return;
3286 }
3287
3288 host_info = ena_dev->host_attr.host_info;
3289
3290 host_info->os_type = ENA_ADMIN_OS_FREEBSD;
3291 host_info->kernel_ver = osreldate;
3292
3293 snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
3294 "%d", osreldate);
3295 host_info->os_dist = 0;
3296 strncpy(host_info->os_dist_str, osrelease,
3297 sizeof(host_info->os_dist_str) - 1);
3298
3299 host_info->driver_version =
3300 (DRV_MODULE_VER_MAJOR) |
3301 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3302 (DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
3303
3304 rc = ena_com_set_host_attributes(ena_dev);
3305 if (unlikely(rc != 0)) {
3306 if (rc == EOPNOTSUPP)
3307 ena_trace(ENA_WARNING, "Cannot set host attributes\n");
3308 else
3309 ena_trace(ENA_ALERT, "Cannot set host attributes\n");
3310
3311 goto err;
3312 }
3313
3314 return;
3315
3316 err:
3317 ena_com_delete_host_info(ena_dev);
3318 }
3319
3320 static int
3321 ena_device_init(struct ena_adapter *adapter, device_t pdev,
3322 struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
3323 {
3324 struct ena_com_dev* ena_dev = adapter->ena_dev;
3325 bool readless_supported;
3326 uint32_t aenq_groups;
3327 int dma_width;
3328 int rc;
3329
3330 rc = ena_com_mmio_reg_read_request_init(ena_dev);
3331 if (unlikely(rc != 0)) {
3332 device_printf(pdev, "failed to init mmio read less\n");
3333 return (rc);
3334 }
3335
3336 /*
3337 * The PCIe configuration space revision id indicate if mmio reg
3338 * read is disabled
3339 */
3340 const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
3341 readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
3342 ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3343
3344 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3345 if (unlikely(rc != 0)) {
3346 device_printf(pdev, "Can not reset device\n");
3347 goto err_mmio_read_less;
3348 }
3349
3350 rc = ena_com_validate_version(ena_dev);
3351 if (unlikely(rc != 0)) {
3352 device_printf(pdev, "device version is too low\n");
3353 goto err_mmio_read_less;
3354 }
3355
3356 dma_width = ena_com_get_dma_width(ena_dev);
3357 if (unlikely(dma_width < 0)) {
3358 device_printf(pdev, "Invalid dma width value %d", dma_width);
3359 rc = dma_width;
3360 goto err_mmio_read_less;
3361 }
3362 adapter->dma_width = dma_width;
3363
3364 /* ENA admin level init */
3365 rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
3366 if (unlikely(rc != 0)) {
3367 device_printf(pdev,
3368 "Can not initialize ena admin queue with device\n");
3369 goto err_mmio_read_less;
3370 }
3371
3372 /*
3373 * To enable the msix interrupts the driver needs to know the number
3374 * of queues. So the driver uses polling mode to retrieve this
3375 * information
3376 */
3377 ena_com_set_admin_polling_mode(ena_dev, true);
3378
3379 ena_config_host_info(ena_dev);
3380
3381 /* Get Device Attributes */
3382 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3383 if (unlikely(rc != 0)) {
3384 device_printf(pdev,
3385 "Cannot get attribute for ena device rc: %d\n", rc);
3386 goto err_admin_init;
3387 }
3388
3389 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
3390
3391 aenq_groups &= get_feat_ctx->aenq.supported_groups;
3392 rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3393 if (unlikely(rc != 0)) {
3394 device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
3395 goto err_admin_init;
3396 }
3397
3398 *wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3399
3400 return (0);
3401
3402 err_admin_init:
3403 ena_com_delete_host_info(ena_dev);
3404 ena_com_admin_destroy(ena_dev);
3405 err_mmio_read_less:
3406 ena_com_mmio_reg_read_request_destroy(ena_dev);
3407
3408 return (rc);
3409 }
3410
3411 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
3412 int io_vectors)
3413 {
3414 struct ena_com_dev *ena_dev = adapter->ena_dev;
3415 int rc;
3416
3417 rc = ena_enable_msix(adapter);
3418 if (unlikely(rc != 0)) {
3419 device_printf(adapter->pdev, "Error with MSI-X enablement\n");
3420 return (rc);
3421 }
3422
3423 rc = ena_request_mgmnt_irq(adapter);
3424 if (unlikely(rc != 0)) {
3425 device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
3426 goto err_disable_msix;
3427 }
3428
3429 ena_com_set_admin_polling_mode(ena_dev, false);
3430
3431 ena_com_admin_aenq_enable(ena_dev);
3432
3433 return (0);
3434
3435 err_disable_msix:
3436 ena_disable_msix(adapter);
3437
3438 return (rc);
3439 }
3440
3441 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
3442 static void ena_keep_alive_wd(void *adapter_data,
3443 struct ena_admin_aenq_entry *aenq_e)
3444 {
3445 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
3446 struct ena_admin_aenq_keep_alive_desc *desc;
3447 uint64_t rx_drops, old;
3448
3449 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3450
3451 rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3452 old = adapter->hw_stats.rx_drops.ev_count;
3453 if (rx_drops > old) {
3454 counter_u64_add(adapter->hw_stats.rx_drops, rx_drops - old);
3455 if_statadd(adapter->ifp, if_iqdrops, rx_drops - old);
3456 }
3457
3458 atomic_store_release(&adapter->keep_alive_timestamp, getsbinuptime());
3459 }
3460
3461 /* Check for keep alive expiration */
3462 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3463 {
3464 sbintime_t timestamp, time;
3465
3466 if (adapter->wd_active == 0)
3467 return;
3468
3469 if (likely(adapter->keep_alive_timeout == 0))
3470 return;
3471
3472 timestamp = atomic_load_acquire(&adapter->keep_alive_timestamp);
3473
3474 time = getsbinuptime() - timestamp;
3475 if (unlikely(time > adapter->keep_alive_timeout)) {
3476 device_printf(adapter->pdev,
3477 "Keep alive watchdog timeout.\n");
3478 counter_u64_add(adapter->dev_stats.wd_expired, 1);
3479 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3480 ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
3481 }
3482 }
3483
3484 /* Check if admin queue is enabled */
3485 static void check_for_admin_com_state(struct ena_adapter *adapter)
3486 {
3487 if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
3488 false)) {
3489 device_printf(adapter->pdev,
3490 "ENA admin queue is not in running state!\n");
3491 counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
3492 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3493 ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
3494 }
3495 }
3496
3497 static int
3498 check_missing_comp_in_queue(struct ena_adapter *adapter,
3499 struct ena_ring *tx_ring)
3500 {
3501 struct bintime curtime, time;
3502 struct ena_tx_buffer *tx_buf;
3503 uint32_t missed_tx = 0;
3504 int i;
3505
3506 getbinuptime(&curtime);
3507
3508 for (i = 0; i < tx_ring->ring_size; i++) {
3509 tx_buf = &tx_ring->tx_buffer_info[i];
3510
3511 if (bintime_isset(&tx_buf->timestamp) == 0)
3512 continue;
3513
3514 time = curtime;
3515 bintime_sub(&time, &tx_buf->timestamp);
3516
3517 /* Check again if packet is still waiting */
3518 if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
3519
3520 if (!tx_buf->print_once)
3521 ena_trace(ENA_WARNING, "Found a Tx that wasn't "
3522 "completed on time, qid %d, index %d.\n",
3523 tx_ring->qid, i);
3524
3525 tx_buf->print_once = true;
3526 missed_tx++;
3527 counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
3528
3529 if (unlikely(missed_tx >
3530 adapter->missing_tx_threshold)) {
3531 device_printf(adapter->pdev,
3532 "The number of lost tx completion "
3533 "is above the threshold (%d > %d). "
3534 "Reset the device\n",
3535 missed_tx, adapter->missing_tx_threshold);
3536 adapter->reset_reason =
3537 ENA_REGS_RESET_MISS_TX_CMPL;
3538 ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET,
3539 adapter);
3540 return (EIO);
3541 }
3542 }
3543 }
3544
3545 return (0);
3546 }
3547
3548 /*
3549 * Check for TX which were not completed on time.
3550 * Timeout is defined by "missing_tx_timeout".
3551 * Reset will be performed if number of incompleted
3552 * transactions exceeds "missing_tx_threshold".
3553 */
3554 static void
3555 check_for_missing_tx_completions(struct ena_adapter *adapter)
3556 {
3557 struct ena_ring *tx_ring;
3558 int i, budget, rc;
3559
3560 /* Make sure the driver doesn't turn the device in other process */
3561 rmb();
3562
3563 if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter))
3564 return;
3565
3566 if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))
3567 return;
3568
3569 if (adapter->missing_tx_timeout == 0)
3570 return;
3571
3572 budget = adapter->missing_tx_max_queues;
3573
3574 for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
3575 tx_ring = &adapter->tx_ring[i];
3576
3577 rc = check_missing_comp_in_queue(adapter, tx_ring);
3578 if (unlikely(rc != 0))
3579 return;
3580
3581 budget--;
3582 if (budget == 0) {
3583 i++;
3584 break;
3585 }
3586 }
3587
3588 adapter->next_monitored_tx_qid = i % adapter->num_queues;
3589 }
3590
3591 /* trigger deferred rx cleanup after 2 consecutive detections */
3592 #define EMPTY_RX_REFILL 2
3593 /* For the rare case where the device runs out of Rx descriptors and the
3594 * msix handler failed to refill new Rx descriptors (due to a lack of memory
3595 * for example).
3596 * This case will lead to a deadlock:
3597 * The device won't send interrupts since all the new Rx packets will be dropped
3598 * The msix handler won't allocate new Rx descriptors so the device won't be
3599 * able to send new packets.
3600 *
3601 * When such a situation is detected - execute rx cleanup task in another thread
3602 */
3603 static void
3604 check_for_empty_rx_ring(struct ena_adapter *adapter)
3605 {
3606 struct ena_ring *rx_ring;
3607 int i, refill_required;
3608
3609 if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter))
3610 return;
3611
3612 if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))
3613 return;
3614
3615 for (i = 0; i < adapter->num_queues; i++) {
3616 rx_ring = &adapter->rx_ring[i];
3617
3618 refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
3619 if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3620 rx_ring->empty_rx_queue++;
3621
3622 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
3623 counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
3624 1);
3625
3626 device_printf(adapter->pdev,
3627 "trigger refill for ring %d\n", i);
3628
3629 ENA_RING_MTX_LOCK(rx_ring);
3630 if (rx_ring->stopping) {
3631 ENA_RING_MTX_UNLOCK(rx_ring);
3632 return;
3633 }
3634 if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
3635 workqueue_enqueue(rx_ring->cleanup_tq,
3636 &rx_ring->cleanup_task, curcpu());
3637 ENA_RING_MTX_UNLOCK(rx_ring);
3638 rx_ring->empty_rx_queue = 0;
3639 }
3640 } else {
3641 rx_ring->empty_rx_queue = 0;
3642 }
3643 }
3644 }
3645
3646 static void
3647 ena_timer_service(void *data)
3648 {
3649 struct ena_adapter *adapter = (struct ena_adapter *)data;
3650 struct ena_admin_host_info *host_info =
3651 adapter->ena_dev->host_attr.host_info;
3652
3653 check_for_missing_keep_alive(adapter);
3654
3655 check_for_admin_com_state(adapter);
3656
3657 check_for_missing_tx_completions(adapter);
3658
3659 check_for_empty_rx_ring(adapter);
3660
3661 if (host_info != NULL)
3662 ena_update_host_info(host_info, adapter->ifp);
3663
3664 if (unlikely(ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))) {
3665 device_printf(adapter->pdev, "Trigger reset is on\n");
3666 workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
3667 curcpu());
3668 return;
3669 }
3670
3671 /*
3672 * Schedule another timeout one second from now.
3673 */
3674 if (likely(ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)))
3675 callout_schedule(&adapter->timer_service, hz);
3676 }
3677
3678 static void
3679 ena_reset_task(struct work *wk, void *arg)
3680 {
3681 struct ena_com_dev_get_features_ctx get_feat_ctx;
3682 struct ena_adapter *adapter = (struct ena_adapter *)arg;
3683 struct ena_com_dev *ena_dev = adapter->ena_dev;
3684 bool dev_up;
3685 int rc;
3686
3687 if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))) {
3688 device_printf(adapter->pdev,
3689 "device reset scheduled but trigger_reset is off\n");
3690 return;
3691 }
3692
3693 ENA_CORE_MTX_LOCK(adapter);
3694
3695 callout_halt(&adapter->timer_service, NULL);
3696
3697 dev_up = ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter);
3698
3699 ena_com_set_admin_running_state(ena_dev, false);
3700 ena_down(adapter);
3701 ena_free_mgmnt_irq(adapter);
3702 ena_disable_msix(adapter);
3703 ena_com_abort_admin_commands(ena_dev);
3704 ena_com_wait_for_abort_completion(ena_dev);
3705 ena_com_admin_destroy(ena_dev);
3706 ena_com_mmio_reg_read_request_destroy(ena_dev);
3707
3708 adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3709 ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
3710
3711 /* Finished destroy part. Restart the device */
3712 rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
3713 &adapter->wd_active);
3714 if (unlikely(rc != 0)) {
3715 device_printf(adapter->pdev,
3716 "ENA device init failed! (err: %d)\n", rc);
3717 goto err_dev_free;
3718 }
3719
3720 /* XXX dealloc and realloc MSI-X, probably a waste */
3721 rc = ena_enable_msix_and_set_admin_interrupts(adapter,
3722 adapter->num_queues);
3723 if (unlikely(rc != 0)) {
3724 device_printf(adapter->pdev, "Enable MSI-X failed\n");
3725 goto err_com_free;
3726 }
3727
3728 /* If the interface was up before the reset bring it up */
3729 if (dev_up) {
3730 rc = ena_up(adapter);
3731 if (unlikely(rc != 0)) {
3732 device_printf(adapter->pdev,
3733 "Failed to create I/O queues\n");
3734 goto err_msix_free;
3735 }
3736 }
3737
3738 ENA_CORE_MTX_UNLOCK(adapter);
3739
3740 return;
3741
3742 err_msix_free:
3743 ena_free_mgmnt_irq(adapter);
3744 ena_disable_msix(adapter);
3745 err_com_free:
3746 ena_com_admin_destroy(ena_dev);
3747 err_dev_free:
3748 device_printf(adapter->pdev, "ENA reset failed!\n");
3749 ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEVICE_RUNNING, adapter);
3750 ENA_CORE_MTX_UNLOCK(adapter);
3751 }
3752
3753 /**
3754 * ena_attach - Device Initialization Routine
3755 * @pdev: device information struct
3756 *
3757 * Returns 0 on success, otherwise on failure.
3758 *
3759 * ena_attach initializes an adapter identified by a device structure.
3760 * The OS initialization, configuring of the adapter private structure,
3761 * and a hardware reset occur.
3762 **/
3763 static void
3764 ena_attach(device_t parent, device_t self, void *aux)
3765 {
3766 struct pci_attach_args *pa = aux;
3767 struct ena_com_dev_get_features_ctx get_feat_ctx;
3768 static int version_printed;
3769 struct ena_adapter *adapter = device_private(self);
3770 struct ena_com_dev *ena_dev = NULL;
3771 uint16_t tx_sgl_size = 0;
3772 uint16_t rx_sgl_size = 0;
3773 pcireg_t reg;
3774 int io_queue_num;
3775 int queue_size;
3776 int rc;
3777
3778 adapter->pdev = self;
3779 adapter->ifp = &adapter->sc_ec.ec_if;
3780 adapter->sc_pa = *pa; /* used after attach for adapter reset too */
3781
3782 if (pci_dma64_available(pa))
3783 adapter->sc_dmat = pa->pa_dmat64;
3784 else
3785 adapter->sc_dmat = pa->pa_dmat;
3786
3787 pci_aprint_devinfo(pa, NULL);
3788
3789 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
3790 if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
3791 reg |= PCI_COMMAND_MASTER_ENABLE;
3792 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
3793 }
3794
3795 mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
3796
3797 /* Set up the timer service */
3798 adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
3799 adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
3800 adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
3801 adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
3802
3803 if (version_printed++ == 0)
3804 device_printf(parent, "%s\n", ena_version);
3805
3806 rc = ena_allocate_pci_resources(pa, adapter);
3807 if (unlikely(rc != 0)) {
3808 device_printf(parent, "PCI resource allocation failed!\n");
3809 ena_free_pci_resources(adapter);
3810 return;
3811 }
3812
3813 /* Allocate memory for ena_dev structure */
3814 ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
3815 M_WAITOK | M_ZERO);
3816
3817 adapter->ena_dev = ena_dev;
3818 ena_dev->dmadev = self;
3819 ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
3820 M_WAITOK | M_ZERO);
3821
3822 /* Store register resources */
3823 ((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
3824 ((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
3825
3826 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3827
3828 /* Device initialization */
3829 rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
3830 if (unlikely(rc != 0)) {
3831 device_printf(self, "ENA device init failed! (err: %d)\n", rc);
3832 rc = ENXIO;
3833 goto err_bus_free;
3834 }
3835
3836 adapter->keep_alive_timestamp = getsbinuptime();
3837
3838 adapter->tx_offload_cap = get_feat_ctx.offload.tx;
3839
3840 /* Set for sure that interface is not up */
3841 ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEV_UP, adapter);
3842
3843 memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
3844 ETHER_ADDR_LEN);
3845
3846 /* calculate IO queue number to create */
3847 io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
3848
3849 ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
3850 io_queue_num);
3851 adapter->num_queues = io_queue_num;
3852
3853 adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
3854
3855 /* calculatre ring sizes */
3856 queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
3857 &rx_sgl_size, &get_feat_ctx);
3858 if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
3859 rc = ENA_COM_FAULT;
3860 goto err_com_free;
3861 }
3862
3863 adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3864
3865 adapter->tx_ring_size = queue_size;
3866 adapter->rx_ring_size = queue_size;
3867
3868 adapter->max_tx_sgl_size = tx_sgl_size;
3869 adapter->max_rx_sgl_size = rx_sgl_size;
3870
3871 #if 0
3872 /* set up dma tags for rx and tx buffers */
3873 rc = ena_setup_tx_dma_tag(adapter);
3874 if (unlikely(rc != 0)) {
3875 device_printf(self, "Failed to create TX DMA tag\n");
3876 goto err_com_free;
3877 }
3878
3879 rc = ena_setup_rx_dma_tag(adapter);
3880 if (unlikely(rc != 0)) {
3881 device_printf(self, "Failed to create RX DMA tag\n");
3882 goto err_tx_tag_free;
3883 }
3884 #endif
3885
3886 /* initialize rings basic information */
3887 device_printf(self, "initialize %d io queues\n", io_queue_num);
3888 ena_init_io_rings(adapter);
3889
3890 /* setup network interface */
3891 rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
3892 if (unlikely(rc != 0)) {
3893 device_printf(self, "Error with network interface setup\n");
3894 goto err_io_free;
3895 }
3896
3897 rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
3898 if (unlikely(rc != 0)) {
3899 device_printf(self,
3900 "Failed to enable and set the admin interrupts\n");
3901 goto err_ifp_free;
3902 }
3903
3904 callout_init(&adapter->timer_service, CALLOUT_FLAGS);
3905 callout_setfunc(&adapter->timer_service, ena_timer_service, adapter);
3906
3907 /* Initialize reset task queue */
3908 rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
3909 ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS);
3910 if (unlikely(rc != 0)) {
3911 ena_trace(ENA_ALERT,
3912 "Unable to create workqueue for reset task\n");
3913 goto err_ifp_free;
3914 }
3915
3916 /* Initialize statistics */
3917 ena_alloc_counters_dev(adapter, &adapter->dev_stats, io_queue_num);
3918 ena_alloc_counters_hwstats(adapter, &adapter->hw_stats, io_queue_num);
3919 #if 0
3920 ena_sysctl_add_nodes(adapter);
3921 #endif
3922
3923 /* Tell the stack that the interface is not active */
3924 if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
3925 ena_set_stopping_flag(adapter, false);
3926
3927 ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEVICE_RUNNING, adapter);
3928 return;
3929
3930 err_ifp_free:
3931 if_detach(adapter->ifp);
3932 err_io_free:
3933 ena_free_all_io_rings_resources(adapter);
3934 #if 0
3935 ena_free_rx_dma_tag(adapter);
3936 err_tx_tag_free:
3937 ena_free_tx_dma_tag(adapter);
3938 #endif
3939 err_com_free:
3940 ena_com_admin_destroy(ena_dev);
3941 ena_com_delete_host_info(ena_dev);
3942 ena_com_mmio_reg_read_request_destroy(ena_dev);
3943 err_bus_free:
3944 free(ena_dev->bus, M_DEVBUF);
3945 free(ena_dev, M_DEVBUF);
3946 ena_free_pci_resources(adapter);
3947 }
3948
3949 /**
3950 * ena_detach - Device Removal Routine
3951 * @pdev: device information struct
3952 *
3953 * ena_detach is called by the device subsystem to alert the driver
3954 * that it should release a PCI device.
3955 **/
3956 static int
3957 ena_detach(device_t pdev, int flags)
3958 {
3959 struct ena_adapter *adapter = device_private(pdev);
3960 struct ena_com_dev *ena_dev = adapter->ena_dev;
3961 #if 0
3962 int rc;
3963 #endif
3964
3965 /* Make sure VLANS are not using driver */
3966 if (VLAN_ATTACHED(&adapter->sc_ec)) {
3967 device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
3968 return (EBUSY);
3969 }
3970
3971 ENA_CORE_MTX_LOCK(adapter);
3972 ena_down(adapter);
3973 ENA_CORE_MTX_UNLOCK(adapter);
3974
3975 /* Free reset task and callout */
3976 callout_halt(&adapter->timer_service, NULL);
3977 callout_destroy(&adapter->timer_service);
3978 workqueue_wait(adapter->reset_tq, &adapter->reset_task);
3979 workqueue_destroy(adapter->reset_tq);
3980 adapter->reset_tq = NULL;
3981
3982 if (adapter->ifp != NULL) {
3983 ether_ifdetach(adapter->ifp);
3984 if_detach(adapter->ifp);
3985 }
3986 ifmedia_fini(&adapter->media);
3987
3988 ena_free_all_io_rings_resources(adapter);
3989
3990 ena_free_counters((struct evcnt *)&adapter->hw_stats,
3991 sizeof(struct ena_hw_stats),
3992 offsetof(struct ena_hw_stats, rx_packets));
3993 ena_free_counters((struct evcnt *)&adapter->dev_stats,
3994 sizeof(struct ena_stats_dev),
3995 offsetof(struct ena_stats_dev, wd_expired));
3996
3997 if (likely(adapter->rss_support))
3998 ena_com_rss_destroy(ena_dev);
3999
4000 #if 0
4001 rc = ena_free_rx_dma_tag(adapter);
4002 if (unlikely(rc != 0))
4003 device_printf(adapter->pdev,
4004 "Unmapped RX DMA tag associations\n");
4005
4006 rc = ena_free_tx_dma_tag(adapter);
4007 if (unlikely(rc != 0))
4008 device_printf(adapter->pdev,
4009 "Unmapped TX DMA tag associations\n");
4010 #endif
4011
4012 /* Reset the device only if the device is running. */
4013 if (ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter))
4014 ena_com_dev_reset(ena_dev, adapter->reset_reason);
4015
4016 ena_com_delete_host_info(ena_dev);
4017
4018 ena_free_irqs(adapter);
4019
4020 ena_com_abort_admin_commands(ena_dev);
4021
4022 ena_com_wait_for_abort_completion(ena_dev);
4023
4024 ena_com_admin_destroy(ena_dev);
4025
4026 ena_com_mmio_reg_read_request_destroy(ena_dev);
4027
4028 ena_free_pci_resources(adapter);
4029
4030 mutex_destroy(&adapter->global_mtx);
4031
4032 if (ena_dev->bus != NULL)
4033 free(ena_dev->bus, M_DEVBUF);
4034
4035 if (ena_dev != NULL)
4036 free(ena_dev, M_DEVBUF);
4037
4038 return 0;
4039 }
4040
4041 /******************************************************************************
4042 ******************************** AENQ Handlers *******************************
4043 *****************************************************************************/
4044 /**
4045 * ena_update_on_link_change:
4046 * Notify the network interface about the change in link status
4047 **/
4048 static void
4049 ena_update_on_link_change(void *adapter_data,
4050 struct ena_admin_aenq_entry *aenq_e)
4051 {
4052 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4053 struct ena_admin_aenq_link_change_desc *aenq_desc;
4054 int status;
4055 struct ifnet *ifp;
4056
4057 aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
4058 ifp = adapter->ifp;
4059 status = aenq_desc->flags &
4060 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
4061
4062 if (status != 0) {
4063 device_printf(adapter->pdev, "link is UP\n");
4064 ENA_FLAG_SET_ATOMIC(ENA_FLAG_LINK_UP, adapter);
4065 if_link_state_change(ifp, LINK_STATE_UP);
4066 } else {
4067 device_printf(adapter->pdev, "link is DOWN\n");
4068 ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_LINK_UP, adapter);
4069 if_link_state_change(ifp, LINK_STATE_DOWN);
4070 }
4071 }
4072
4073 /**
4074 * This handler will called for unknown event group or unimplemented handlers
4075 **/
4076 static void
4077 unimplemented_aenq_handler(void *data,
4078 struct ena_admin_aenq_entry *aenq_e)
4079 {
4080 return;
4081 }
4082
4083 static struct ena_aenq_handlers aenq_handlers = {
4084 .handlers = {
4085 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4086 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
4087 },
4088 .unimplemented_handler = unimplemented_aenq_handler
4089 };
4090
4091 #ifdef __FreeBSD__
4092 /*********************************************************************
4093 * FreeBSD Device Interface Entry Points
4094 *********************************************************************/
4095
4096 static device_method_t ena_methods[] = {
4097 /* Device interface */
4098 DEVMETHOD(device_probe, ena_probe),
4099 DEVMETHOD(device_attach, ena_attach),
4100 DEVMETHOD(device_detach, ena_detach),
4101 DEVMETHOD_END
4102 };
4103
4104 static driver_t ena_driver = {
4105 "ena", ena_methods, sizeof(struct ena_adapter),
4106 };
4107
4108 devclass_t ena_devclass;
4109 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
4110 MODULE_DEPEND(ena, pci, 1, 1, 1);
4111 MODULE_DEPEND(ena, ether, 1, 1, 1);
4112
4113 /*********************************************************************/
4114 #endif /* __FreeBSD__ */
4115
4116 #ifdef __NetBSD__
4117 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
4118 ena_detach, NULL);
4119 #endif /* __NetBSD */
4120