Home | History | Annotate | Line # | Download | only in pci
if_ena.c revision 1.37
      1 /*-
      2  * BSD LICENSE
      3  *
      4  * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  *
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 #ifdef _KERNEL_OPT
     32 #include "opt_net_mpsafe.h"
     33 #endif
     34 
     35 #include <sys/cdefs.h>
     36 #if 0
     37 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $");
     38 #endif
     39 __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.37 2023/11/05 18:18:56 jdolecek Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/bus.h>
     44 #include <sys/endian.h>
     45 #include <sys/kernel.h>
     46 #include <sys/kmem.h>
     47 #include <sys/kthread.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/module.h>
     50 #include <sys/socket.h>
     51 #include <sys/sockio.h>
     52 #include <sys/sysctl.h>
     53 #include <sys/time.h>
     54 #include <sys/workqueue.h>
     55 #include <sys/callout.h>
     56 #include <sys/interrupt.h>
     57 #include <sys/cpu.h>
     58 
     59 #include <net/if_ether.h>
     60 #include <net/if_vlanvar.h>
     61 
     62 #include <dev/pci/if_enavar.h>
     63 
     64 /*********************************************************
     65  *  Function prototypes
     66  *********************************************************/
     67 /* cfattach interface functions */
     68 static int	ena_probe(device_t, cfdata_t, void *);
     69 static void	ena_attach(device_t, device_t, void *);
     70 static int	ena_detach(device_t, int);
     71 
     72 /* ifnet interface functions */
     73 static int	ena_init(struct ifnet *);
     74 static void	ena_stop(struct ifnet *, int);
     75 static int	ena_ioctl(struct ifnet *, u_long, void *);
     76 static int	ena_media_change(struct ifnet *);
     77 static void	ena_media_status(struct ifnet *, struct ifmediareq *);
     78 static int	ena_mq_start(struct ifnet *, struct mbuf *);
     79 
     80 /* attach or detach */
     81 static int	ena_calc_io_queue_num(struct pci_attach_args *,
     82 		    struct ena_adapter *,
     83 		    struct ena_com_dev_get_features_ctx *);
     84 static int	ena_calc_queue_size(struct ena_adapter *, uint16_t *,
     85 		    uint16_t *, struct ena_com_dev_get_features_ctx *);
     86 
     87 static int	ena_allocate_pci_resources(struct pci_attach_args *,
     88 		    struct ena_adapter *);
     89 static void	ena_free_pci_resources(struct ena_adapter *);
     90 static void	ena_free_irqs(struct ena_adapter*);
     91 
     92 static void	ena_init_io_rings_common(struct ena_adapter *,
     93                                             struct ena_ring *, uint16_t);
     94 static void	ena_init_io_rings(struct ena_adapter *);
     95 static void	ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
     96 static void	ena_free_all_io_rings_resources(struct ena_adapter *);
     97 
     98 static int	ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
     99 static int	ena_setup_ifnet(device_t, struct ena_adapter *,
    100 		    struct ena_com_dev_get_features_ctx *);
    101 static void	ena_rss_init_default(device_t);
    102 
    103 static inline void	ena_alloc_counters_rx(struct ena_adapter *,
    104 			    struct ena_stats_rx *, int);
    105 static inline void	ena_alloc_counters_tx(struct ena_adapter *,
    106 			    struct ena_stats_tx *, int);
    107 static inline void	ena_alloc_counters_dev(struct ena_adapter *,
    108 			    struct ena_stats_dev *, int);
    109 static inline void	ena_alloc_counters_hwstats(struct ena_adapter *,
    110 			    struct ena_hw_stats *, int);
    111 static inline void	ena_free_counters(struct evcnt *, int, int);
    112 
    113 /* attach or detach or ena_reset_task() */
    114 static void	ena_reset_task(struct work *, void *);
    115 
    116 static void	ena_free_mgmnt_irq(struct ena_adapter *);
    117 static void	ena_disable_msix(struct ena_adapter *);
    118 static void	ena_config_host_info(struct ena_com_dev *);
    119 static int	ena_device_init(struct ena_adapter *, device_t,
    120 		    struct ena_com_dev_get_features_ctx *, int *);
    121 static int	ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *,
    122 		    int);
    123 static int	ena_enable_msix(struct ena_adapter *);
    124 static int	ena_request_mgmnt_irq(struct ena_adapter *);
    125 
    126 /* I/F up or down */
    127 static int	ena_up_complete(struct ena_adapter *);
    128 static int	ena_up(struct ena_adapter *);
    129 static void	ena_down(struct ena_adapter *);
    130 static void	ena_set_stopping_flag(struct ena_adapter *, bool);
    131 
    132 static int	ena_setup_rx_resources(struct ena_adapter *, unsigned int);
    133 static int	ena_setup_all_rx_resources(struct ena_adapter *);
    134 static void	ena_free_rx_resources(struct ena_adapter *, unsigned int);
    135 static void	ena_free_all_rx_resources(struct ena_adapter *);
    136 static void	ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
    137 		    struct ena_rx_buffer *);
    138 static void	ena_free_rx_bufs(struct ena_adapter *, unsigned int);
    139 static void	ena_free_all_rx_bufs(struct ena_adapter *);
    140 
    141 static int	ena_setup_tx_resources(struct ena_adapter *, int);
    142 static int	ena_setup_all_tx_resources(struct ena_adapter *);
    143 static void	ena_free_tx_resources(struct ena_adapter *, int);
    144 static void	ena_free_all_tx_resources(struct ena_adapter *);
    145 static void	ena_free_tx_bufs(struct ena_adapter *, unsigned int);
    146 static void	ena_free_all_tx_bufs(struct ena_adapter *);
    147 
    148 static int	ena_request_io_irq(struct ena_adapter *);
    149 static void	ena_free_io_irq(struct ena_adapter *);
    150 static int	ena_create_io_queues(struct ena_adapter *);
    151 static void	ena_destroy_all_tx_queues(struct ena_adapter *);
    152 static void	ena_destroy_all_rx_queues(struct ena_adapter *);
    153 static void	ena_destroy_all_io_queues(struct ena_adapter *);
    154 
    155 static void	ena_update_hwassist(struct ena_adapter *);
    156 static int	ena_rss_configure(struct ena_adapter *);
    157 static void	ena_unmask_all_io_irqs(struct ena_adapter *);
    158 static inline void	ena_reset_counters(struct evcnt *, int, int);
    159 
    160 /* other hardware interrupt, workqueue, softint context */
    161 static int	ena_intr_msix_mgmnt(void *);
    162 static void	ena_update_on_link_change(void *,
    163 		    struct ena_admin_aenq_entry *);
    164 static void	ena_keep_alive_wd(void *,
    165 		    struct ena_admin_aenq_entry *);
    166 static void	unimplemented_aenq_handler(void *,
    167 		    struct ena_admin_aenq_entry *);
    168 
    169 static int	ena_handle_msix(void *);
    170 static void	ena_cleanup(struct work *, void *);
    171 static inline int	validate_rx_req_id(struct ena_ring *, uint16_t);
    172 static inline int	ena_alloc_rx_mbuf(struct ena_adapter *,
    173 			    struct ena_ring *, struct ena_rx_buffer *);
    174 static int	ena_refill_rx_bufs(struct ena_ring *, uint32_t);
    175 static void	ena_refill_all_rx_bufs(struct ena_adapter *);
    176 static int	ena_rx_cleanup(struct ena_ring *);
    177 static struct mbuf*	ena_rx_mbuf(struct ena_ring *,
    178 			    struct ena_com_rx_buf_info *,
    179 			    struct ena_com_rx_ctx *, uint16_t *);
    180 static inline void	ena_rx_checksum(struct ena_ring *,
    181 			    struct ena_com_rx_ctx *, struct mbuf *);
    182 
    183 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
    184 		    struct mbuf **mbuf);
    185 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
    186 static void	ena_start_xmit(struct ena_ring *);
    187 static void	ena_deferred_mq_start(struct work *, void *);
    188 static int	ena_tx_cleanup(struct ena_ring *);
    189 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
    190 static inline int	validate_tx_req_id(struct ena_ring *, uint16_t);
    191 
    192 /* other */
    193 static int	ena_change_mtu(struct ifnet *, int);
    194 
    195 static void	ena_timer_service(void *);
    196 static void	check_for_missing_keep_alive(struct ena_adapter *);
    197 static void	check_for_admin_com_state(struct ena_adapter *);
    198 static int	check_missing_comp_in_queue(struct ena_adapter *, struct ena_ring*);
    199 static void	check_for_missing_tx_completions(struct ena_adapter *);
    200 static void	check_for_empty_rx_ring(struct ena_adapter *);
    201 static void	ena_update_host_info(struct ena_admin_host_info *,
    202 		    struct ifnet *);
    203 
    204 #if 0
    205 static int	ena_setup_tx_dma_tag(struct ena_adapter *);
    206 static int	ena_free_tx_dma_tag(struct ena_adapter *);
    207 static int	ena_setup_rx_dma_tag(struct ena_adapter *);
    208 static int	ena_free_rx_dma_tag(struct ena_adapter *);
    209 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
    210     struct mbuf *);
    211 static uint64_t	ena_get_counter(struct ifnet *, ift_counter);
    212 static void	ena_qflush(struct ifnet *);
    213 #endif
    214 
    215 static const char ena_version[] =
    216     DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
    217 
    218 #if 0
    219 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters");
    220 #endif
    221 
    222 /*
    223  * Tuneable number of buffers in the buf-ring (drbr)
    224  */
    225 static int ena_buf_ring_size = 4096;
    226 #if 0
    227 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN,
    228     &ena_buf_ring_size, 0, "Size of the bufring");
    229 #endif
    230 
    231 /*
    232  * Logging level for changing verbosity of the output
    233  */
    234 int ena_log_level = ENA_ALERT | ENA_WARNING;
    235 #if 0
    236 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN,
    237     &ena_log_level, 0, "Logging level indicating verbosity of the logs");
    238 #endif
    239 
    240 static const ena_vendor_info_t ena_vendor_info_array[] = {
    241     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
    242     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0},
    243     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
    244     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0},
    245     /* Last entry */
    246     { 0, 0, 0 }
    247 };
    248 
    249 /*
    250  * Contains pointers to event handlers, e.g. link state change.
    251  */
    252 static struct ena_aenq_handlers aenq_handlers;
    253 
    254 int
    255 ena_dma_alloc(device_t dmadev, bus_size_t size,
    256     ena_mem_handle_t *dma , int mapflags)
    257 {
    258 	struct ena_adapter *adapter = device_private(dmadev);
    259 	bus_size_t maxsize;
    260 	int error;
    261 
    262 	maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
    263 
    264 #if 0
    265 	/* XXX what is this needed for ? */
    266 	dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
    267 	if (unlikely(dma_space_addr == 0))
    268 		dma_space_addr = BUS_SPACE_MAXADDR;
    269 #endif
    270 
    271 	dma->tag = adapter->sc_dmat;
    272 
    273         if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0,
    274             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) {
    275 		ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n",
    276 		    (uintmax_t)maxsize, error);
    277                 goto fail_create;
    278 	}
    279 
    280 	error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &dma->seg, 1, &dma->nseg,
    281 	    BUS_DMA_ALLOCNOW);
    282 	if (error) {
    283 		ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n",
    284 		    (uintmax_t)maxsize, error);
    285 		goto fail_alloc;
    286 	}
    287 
    288 	error = bus_dmamem_map(dma->tag, &dma->seg, dma->nseg, maxsize,
    289 	    &dma->vaddr, BUS_DMA_COHERENT);
    290 	if (error) {
    291 		ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n",
    292 		    (uintmax_t)maxsize, error);
    293 		goto fail_map;
    294 	}
    295 	memset(dma->vaddr, 0, maxsize);
    296 
    297 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
    298 	    maxsize, NULL, mapflags);
    299 	if (error) {
    300 		ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error);
    301 		goto fail_load;
    302 	}
    303 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    304 
    305 	return (0);
    306 
    307 fail_load:
    308 	bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize);
    309 fail_map:
    310 	bus_dmamem_free(dma->tag, &dma->seg, dma->nseg);
    311 fail_alloc:
    312 	bus_dmamap_destroy(adapter->sc_dmat, dma->map);
    313 fail_create:
    314 	return (error);
    315 }
    316 
    317 static int
    318 ena_allocate_pci_resources(struct pci_attach_args *pa,
    319     struct ena_adapter *adapter)
    320 {
    321 	pcireg_t memtype, reg;
    322 	int flags, error;
    323 	int msixoff;
    324 
    325 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR);
    326 	if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM) {
    327 		aprint_error_dev(adapter->pdev, "invalid type (type=0x%x)\n",
    328 		    memtype);
    329 		return ENXIO;
    330 	}
    331 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    332 	if (((reg & PCI_COMMAND_MASTER_ENABLE) == 0) ||
    333 	    ((reg & PCI_COMMAND_MEM_ENABLE) == 0)) {
    334 		/*
    335 		 * Enable address decoding for memory range in case BIOS or
    336 		 * UEFI didn't set it.
    337 		 */
    338 		reg |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
    339         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    340 		    reg);
    341 	}
    342 
    343 	adapter->sc_btag = pa->pa_memt;
    344 	error = pci_mapreg_info(pa->pa_pc, pa->pa_tag, ENA_REG_BAR,
    345 	    memtype, &adapter->sc_memaddr, &adapter->sc_mapsize, &flags);
    346 	if (error) {
    347 		aprint_error_dev(adapter->pdev, "can't get map info\n");
    348 		return ENXIO;
    349 	}
    350 
    351 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff,
    352 	    NULL)) {
    353 		pcireg_t msixtbl;
    354 		bus_size_t table_offset;
    355 		int bir;
    356 
    357 		msixtbl = pci_conf_read(pa->pa_pc, pa->pa_tag,
    358 		    msixoff + PCI_MSIX_TBLOFFSET);
    359 		table_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK;
    360 		bir = msixtbl & PCI_MSIX_TBLBIR_MASK;
    361 		if (bir == PCI_MAPREG_NUM(ENA_REG_BAR))
    362 			adapter->sc_mapsize = table_offset;
    363 	}
    364 
    365 	error = bus_space_map(adapter->sc_btag, adapter->sc_memaddr,
    366 	    adapter->sc_mapsize, flags, &adapter->sc_bhandle);
    367 	if (error != 0) {
    368 		aprint_error_dev(adapter->pdev,
    369 		    "can't map mem space (error=%d)\n", error);
    370 		return ENXIO;
    371 	}
    372 
    373 	return (0);
    374 }
    375 
    376 static void
    377 ena_free_pci_resources(struct ena_adapter *adapter)
    378 {
    379 	if (adapter->sc_mapsize != 0) {
    380 		bus_space_unmap(adapter->sc_btag, adapter->sc_bhandle,
    381 		    adapter->sc_mapsize);
    382 	}
    383 }
    384 
    385 static int
    386 ena_probe(device_t parent, cfdata_t match, void *aux)
    387 {
    388 	struct pci_attach_args *pa = aux;
    389 	const ena_vendor_info_t *ent;
    390 
    391 	for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) {
    392 		ent = &ena_vendor_info_array[i];
    393 
    394 		if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) &&
    395 		    (PCI_PRODUCT(pa->pa_id) == ent->device_id)) {
    396 			return 1;
    397 		}
    398 	}
    399 
    400 	return 0;
    401 }
    402 
    403 static int
    404 ena_change_mtu(struct ifnet *ifp, int new_mtu)
    405 {
    406 	struct ena_adapter *adapter = if_getsoftc(ifp);
    407 	int rc;
    408 
    409 	if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
    410 		device_printf(adapter->pdev, "Invalid MTU setting. "
    411 		    "new_mtu: %d max mtu: %d min mtu: %d\n",
    412 		    new_mtu, adapter->max_mtu, ENA_MIN_MTU);
    413 		return (EINVAL);
    414 	}
    415 
    416 	rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
    417 	if (likely(rc == 0)) {
    418 		ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu);
    419 		if_setmtu(ifp, new_mtu);
    420 	} else {
    421 		device_printf(adapter->pdev, "Failed to set MTU to %d\n",
    422 		    new_mtu);
    423 	}
    424 
    425 	return (rc);
    426 }
    427 
    428 #define EVCNT_INIT(st, f) \
    429 	do {								\
    430 		evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL,	\
    431 		    st->name, #f);					\
    432 	} while (0)
    433 
    434 static inline void
    435 ena_alloc_counters_rx(struct ena_adapter *adapter, struct ena_stats_rx *st, int queue)
    436 {
    437 	snprintf(st->name, sizeof(st->name), "%s rxq%d",
    438 	    device_xname(adapter->pdev), queue);
    439 
    440 	EVCNT_INIT(st, cnt);
    441 	EVCNT_INIT(st, bytes);
    442 	EVCNT_INIT(st, refil_partial);
    443 	EVCNT_INIT(st, bad_csum);
    444 	EVCNT_INIT(st, mbuf_alloc_fail);
    445 	EVCNT_INIT(st, dma_mapping_err);
    446 	EVCNT_INIT(st, bad_desc_num);
    447 	EVCNT_INIT(st, bad_req_id);
    448 	EVCNT_INIT(st, empty_rx_ring);
    449 
    450 	/* Make sure all code is updated when new fields added */
    451 	CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring)
    452 	    + sizeof(st->empty_rx_ring) == sizeof(*st));
    453 }
    454 
    455 static inline void
    456 ena_alloc_counters_tx(struct ena_adapter *adapter, struct ena_stats_tx *st, int queue)
    457 {
    458 	snprintf(st->name, sizeof(st->name), "%s txq%d",
    459 	    device_xname(adapter->pdev), queue);
    460 
    461 	EVCNT_INIT(st, cnt);
    462 	EVCNT_INIT(st, bytes);
    463 	EVCNT_INIT(st, prepare_ctx_err);
    464 	EVCNT_INIT(st, dma_mapping_err);
    465 	EVCNT_INIT(st, doorbells);
    466 	EVCNT_INIT(st, missing_tx_comp);
    467 	EVCNT_INIT(st, bad_req_id);
    468 	EVCNT_INIT(st, collapse);
    469 	EVCNT_INIT(st, collapse_err);
    470 	EVCNT_INIT(st, pcq_drops);
    471 
    472 	/* Make sure all code is updated when new fields added */
    473 	CTASSERT(offsetof(struct ena_stats_tx, pcq_drops)
    474 	    + sizeof(st->pcq_drops) == sizeof(*st));
    475 }
    476 
    477 static inline void
    478 ena_alloc_counters_dev(struct ena_adapter *adapter, struct ena_stats_dev *st, int queue)
    479 {
    480 	snprintf(st->name, sizeof(st->name), "%s dev ioq%d",
    481 	    device_xname(adapter->pdev), queue);
    482 
    483 	EVCNT_INIT(st, wd_expired);
    484 	EVCNT_INIT(st, interface_up);
    485 	EVCNT_INIT(st, interface_down);
    486 	EVCNT_INIT(st, admin_q_pause);
    487 
    488 	/* Make sure all code is updated when new fields added */
    489 	CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause)
    490 	    + sizeof(st->admin_q_pause) == sizeof(*st));
    491 }
    492 
    493 static inline void
    494 ena_alloc_counters_hwstats(struct ena_adapter *adapter, struct ena_hw_stats *st, int queue)
    495 {
    496 	snprintf(st->name, sizeof(st->name), "%s hw ioq%d",
    497 	    device_xname(adapter->pdev), queue);
    498 
    499 	EVCNT_INIT(st, rx_packets);
    500 	EVCNT_INIT(st, tx_packets);
    501 	EVCNT_INIT(st, rx_bytes);
    502 	EVCNT_INIT(st, tx_bytes);
    503 	EVCNT_INIT(st, rx_drops);
    504 
    505 	/* Make sure all code is updated when new fields added */
    506 	CTASSERT(offsetof(struct ena_hw_stats, rx_drops)
    507 	    + sizeof(st->rx_drops) == sizeof(*st));
    508 }
    509 static inline void
    510 ena_free_counters(struct evcnt *begin, int size, int offset)
    511 {
    512 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
    513 	begin = (struct evcnt *)((char *)begin + offset);
    514 
    515 	for (; begin < end; ++begin)
    516 		counter_u64_free(*begin);
    517 }
    518 
    519 static inline void
    520 ena_reset_counters(struct evcnt *begin, int size, int offset)
    521 {
    522 	struct evcnt *end = (struct evcnt *)((char *)begin + size);
    523 	begin = (struct evcnt *)((char *)begin + offset);
    524 
    525 	for (; begin < end; ++begin)
    526 		counter_u64_zero(*begin);
    527 }
    528 
    529 static void
    530 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
    531     uint16_t qid)
    532 {
    533 
    534 	ring->qid = qid;
    535 	ring->adapter = adapter;
    536 	ring->ena_dev = adapter->ena_dev;
    537 }
    538 
    539 static void
    540 ena_init_io_rings(struct ena_adapter *adapter)
    541 {
    542 	struct ena_com_dev *ena_dev;
    543 	struct ena_ring *txr, *rxr;
    544 	struct ena_que *que;
    545 	int i;
    546 
    547 	ena_dev = adapter->ena_dev;
    548 
    549 	for (i = 0; i < adapter->num_queues; i++) {
    550 		txr = &adapter->tx_ring[i];
    551 		rxr = &adapter->rx_ring[i];
    552 
    553 		/* TX/RX common ring state */
    554 		ena_init_io_rings_common(adapter, txr, i);
    555 		ena_init_io_rings_common(adapter, rxr, i);
    556 
    557 		/* TX specific ring state */
    558 		txr->ring_size = adapter->tx_ring_size;
    559 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
    560 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
    561 		txr->smoothed_interval =
    562 		    ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
    563 
    564 		/* Allocate a buf ring */
    565 		txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF,
    566 		    M_WAITOK, &txr->ring_mtx);
    567 
    568 		/* Alloc TX statistics. */
    569 		ena_alloc_counters_tx(adapter, &txr->tx_stats, i);
    570 
    571 		/* RX specific ring state */
    572 		rxr->ring_size = adapter->rx_ring_size;
    573 		rxr->smoothed_interval =
    574 		    ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
    575 
    576 		/* Alloc RX statistics. */
    577 		ena_alloc_counters_rx(adapter, &rxr->rx_stats, i);
    578 
    579 		/* Initialize locks */
    580 		snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
    581 		    device_xname(adapter->pdev), i);
    582 		snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
    583 		    device_xname(adapter->pdev), i);
    584 
    585 		mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
    586 		mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET);
    587 
    588 		que = &adapter->que[i];
    589 		que->adapter = adapter;
    590 		que->id = i;
    591 		que->tx_ring = txr;
    592 		que->rx_ring = rxr;
    593 
    594 		txr->que = que;
    595 		rxr->que = que;
    596 
    597 		rxr->empty_rx_queue = 0;
    598 	}
    599 }
    600 
    601 static void
    602 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
    603 {
    604 	struct ena_ring *txr = &adapter->tx_ring[qid];
    605 	struct ena_ring *rxr = &adapter->rx_ring[qid];
    606 
    607 	ena_free_counters((struct evcnt *)&txr->tx_stats,
    608 	    sizeof(txr->tx_stats), offsetof(struct ena_stats_tx, cnt));
    609 	ena_free_counters((struct evcnt *)&rxr->rx_stats,
    610 	    sizeof(rxr->rx_stats), offsetof(struct ena_stats_rx, cnt));
    611 
    612 	mutex_destroy(&txr->ring_mtx);
    613 	mutex_destroy(&rxr->ring_mtx);
    614 }
    615 
    616 static void
    617 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
    618 {
    619 	int i;
    620 
    621 	for (i = 0; i < adapter->num_queues; i++)
    622 		ena_free_io_ring_resources(adapter, i);
    623 
    624 }
    625 
    626 #if 0
    627 static int
    628 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
    629 {
    630 	int ret;
    631 
    632 	/* Create DMA tag for Tx buffers */
    633 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
    634 	    1, 0,				  /* alignment, bounds 	     */
    635 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
    636 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
    637 	    NULL, NULL,				  /* filter, filterarg 	     */
    638 	    ENA_TSO_MAXSIZE,			  /* maxsize 		     */
    639 	    adapter->max_tx_sgl_size - 1,	  /* nsegments 		     */
    640 	    ENA_TSO_MAXSIZE,			  /* maxsegsize 	     */
    641 	    0,					  /* flags 		     */
    642 	    NULL,				  /* lockfunc 		     */
    643 	    NULL,				  /* lockfuncarg 	     */
    644 	    &adapter->tx_buf_tag);
    645 
    646 	return (ret);
    647 }
    648 #endif
    649 
    650 #if 0
    651 static int
    652 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
    653 {
    654 	int ret;
    655 
    656 	/* Create DMA tag for Rx buffers*/
    657 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent   */
    658 	    1, 0,				  /* alignment, bounds 	     */
    659 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
    660 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
    661 	    NULL, NULL,				  /* filter, filterarg 	     */
    662 	    MJUM16BYTES,			  /* maxsize 		     */
    663 	    adapter->max_rx_sgl_size,		  /* nsegments 		     */
    664 	    MJUM16BYTES,			  /* maxsegsize 	     */
    665 	    0,					  /* flags 		     */
    666 	    NULL,				  /* lockfunc 		     */
    667 	    NULL,				  /* lockarg 		     */
    668 	    &adapter->rx_buf_tag);
    669 
    670 	return (ret);
    671 }
    672 #endif
    673 
    674 /**
    675  * ena_setup_tx_resources - allocate Tx resources (Descriptors)
    676  * @adapter: network interface device structure
    677  * @qid: queue index
    678  *
    679  * Returns 0 on success, otherwise on failure.
    680  **/
    681 static int
    682 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
    683 {
    684 	struct ena_que *que = &adapter->que[qid];
    685 	struct ena_ring *tx_ring = que->tx_ring;
    686 	int size, i, err;
    687 
    688 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
    689 	tx_ring->tx_buffer_info = kmem_zalloc(size, KM_SLEEP);
    690 
    691 	size = sizeof(uint16_t) * tx_ring->ring_size;
    692 	tx_ring->free_tx_ids = kmem_zalloc(size, KM_SLEEP);
    693 
    694 	/* Req id stack for TX OOO completions */
    695 	for (i = 0; i < tx_ring->ring_size; i++)
    696 		tx_ring->free_tx_ids[i] = i;
    697 
    698 	/* Reset TX statistics. */
    699 	ena_reset_counters((struct evcnt *)&tx_ring->tx_stats,
    700 	    sizeof(tx_ring->tx_stats),
    701 	    offsetof(struct ena_stats_tx, cnt));
    702 
    703 	tx_ring->next_to_use = 0;
    704 	tx_ring->next_to_clean = 0;
    705 
    706 	tx_ring->br = pcq_create(ENA_DEFAULT_RING_SIZE, KM_SLEEP);
    707 
    708 	/* ... and create the buffer DMA maps */
    709 	for (i = 0; i < tx_ring->ring_size; i++) {
    710 		err = bus_dmamap_create(adapter->sc_dmat,
    711 		    ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1,
    712 		    ENA_TSO_MAXSIZE, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
    713 		    &tx_ring->tx_buffer_info[i].map);
    714 		if (unlikely(err != 0)) {
    715 			ena_trace(ENA_ALERT,
    716 			     "Unable to create Tx DMA map for buffer %d\n", i);
    717 			goto err_buf_info_unmap;
    718 		}
    719 	}
    720 
    721 	/* Allocate workqueues */
    722 	int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq",
    723 	    ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
    724 	if (unlikely(rc != 0)) {
    725 		ena_trace(ENA_ALERT,
    726 		    "Unable to create workqueue for enqueue task\n");
    727 		i = tx_ring->ring_size;
    728 		goto err_buf_info_unmap;
    729 	}
    730 	return (0);
    731 
    732 err_buf_info_unmap:
    733 	while (i--) {
    734 		bus_dmamap_destroy(adapter->sc_dmat,
    735 		    tx_ring->tx_buffer_info[i].map);
    736 	}
    737 	size = sizeof(uint16_t) * tx_ring->ring_size;
    738 	kmem_free(tx_ring->free_tx_ids, size);
    739 	tx_ring->free_tx_ids = NULL;
    740 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
    741 	kmem_free(tx_ring->tx_buffer_info, size);
    742 	tx_ring->tx_buffer_info = NULL;
    743 
    744 	return (ENOMEM);
    745 }
    746 
    747 /**
    748  * ena_free_tx_resources - Free Tx Resources per Queue
    749  * @adapter: network interface device structure
    750  * @qid: queue index
    751  *
    752  * Free all transmit software resources
    753  **/
    754 static void
    755 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
    756 {
    757 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
    758 	struct mbuf *m;
    759 
    760 	workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
    761 	workqueue_destroy(tx_ring->enqueue_tq);
    762 	tx_ring->enqueue_tq = NULL;
    763 
    764 	/* Flush buffer ring, */
    765 	while ((m = pcq_get(tx_ring->br)) != NULL)
    766 		m_freem(m);
    767 	pcq_destroy(tx_ring->br);
    768 	tx_ring->br = NULL;
    769 
    770 	/* Free buffer DMA maps, */
    771 	for (int i = 0; i < tx_ring->ring_size; i++) {
    772 		bus_dmamap_unload(adapter->sc_dmat,
    773 		    tx_ring->tx_buffer_info[i].map);
    774 		bus_dmamap_destroy(adapter->sc_dmat,
    775 		    tx_ring->tx_buffer_info[i].map);
    776 		m_freem(tx_ring->tx_buffer_info[i].mbuf);
    777 		tx_ring->tx_buffer_info[i].mbuf = NULL;
    778 	}
    779 
    780 	/* And free allocated memory. */
    781 	kmem_free(tx_ring->tx_buffer_info,
    782 	    sizeof(struct ena_tx_buffer) * tx_ring->ring_size);
    783 	tx_ring->tx_buffer_info = NULL;
    784 
    785 	kmem_free(tx_ring->free_tx_ids, sizeof(uint16_t) * tx_ring->ring_size);
    786 	tx_ring->free_tx_ids = NULL;
    787 }
    788 
    789 /**
    790  * ena_setup_all_tx_resources - allocate all queues Tx resources
    791  * @adapter: network interface device structure
    792  *
    793  * Returns 0 on success, otherwise on failure.
    794  **/
    795 static int
    796 ena_setup_all_tx_resources(struct ena_adapter *adapter)
    797 {
    798 	int i, rc;
    799 
    800 	for (i = 0; i < adapter->num_queues; i++) {
    801 		rc = ena_setup_tx_resources(adapter, i);
    802 		if (rc != 0) {
    803 			device_printf(adapter->pdev,
    804 			    "Allocation for Tx Queue %u failed\n", i);
    805 			goto err_setup_tx;
    806 		}
    807 	}
    808 
    809 	return (0);
    810 
    811 err_setup_tx:
    812 	/* Rewind the index freeing the rings as we go */
    813 	while (i--)
    814 		ena_free_tx_resources(adapter, i);
    815 	return (rc);
    816 }
    817 
    818 /**
    819  * ena_free_all_tx_resources - Free Tx Resources for All Queues
    820  * @adapter: network interface device structure
    821  *
    822  * Free all transmit software resources
    823  **/
    824 static void
    825 ena_free_all_tx_resources(struct ena_adapter *adapter)
    826 {
    827 	int i;
    828 
    829 	for (i = 0; i < adapter->num_queues; i++)
    830 		ena_free_tx_resources(adapter, i);
    831 }
    832 
    833 static inline int
    834 validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
    835 {
    836 	if (likely(req_id < rx_ring->ring_size))
    837 		return (0);
    838 
    839 	device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n",
    840 	    req_id);
    841 	counter_u64_add(rx_ring->rx_stats.bad_req_id, 1);
    842 
    843 	/* Trigger device reset */
    844 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
    845 	ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, rx_ring->adapter);
    846 
    847 	return (EFAULT);
    848 }
    849 
    850 /**
    851  * ena_setup_rx_resources - allocate Rx resources (Descriptors)
    852  * @adapter: network interface device structure
    853  * @qid: queue index
    854  *
    855  * Returns 0 on success, otherwise on failure.
    856  **/
    857 static int
    858 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
    859 {
    860 	struct ena_que *que = &adapter->que[qid];
    861 	struct ena_ring *rx_ring = que->rx_ring;
    862 	int size, err, i;
    863 
    864 	size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
    865 
    866 	/*
    867 	 * Alloc extra element so in rx path
    868 	 * we can always prefetch rx_info + 1
    869 	 */
    870 	size += sizeof(struct ena_rx_buffer);
    871 
    872 	rx_ring->rx_buffer_info = kmem_zalloc(size, KM_SLEEP);
    873 
    874 	size = sizeof(uint16_t) * rx_ring->ring_size;
    875 	rx_ring->free_rx_ids = kmem_zalloc(size, KM_SLEEP);
    876 
    877 	for (i = 0; i < rx_ring->ring_size; i++)
    878 		rx_ring->free_rx_ids[i] = i;
    879 
    880 	/* Reset RX statistics. */
    881 	ena_reset_counters((struct evcnt *)&rx_ring->rx_stats,
    882 	    sizeof(rx_ring->rx_stats),
    883 	    offsetof(struct ena_stats_rx, cnt));
    884 
    885 	rx_ring->next_to_clean = 0;
    886 	rx_ring->next_to_use = 0;
    887 
    888 	/* ... and create the buffer DMA maps */
    889 	for (i = 0; i < rx_ring->ring_size; i++) {
    890 		err = bus_dmamap_create(adapter->sc_dmat,
    891 		    MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES,
    892 		    0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
    893 		    &(rx_ring->rx_buffer_info[i].map));
    894 		if (err != 0) {
    895 			ena_trace(ENA_ALERT,
    896 			    "Unable to create Rx DMA map for buffer %d\n", i);
    897 			goto err_buf_info_unmap;
    898 		}
    899 	}
    900 
    901 #ifdef LRO
    902 	/* Create LRO for the ring */
    903 	if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
    904 		int err = tcp_lro_init(&rx_ring->lro);
    905 		if (err != 0) {
    906 			device_printf(adapter->pdev,
    907 			    "LRO[%d] Initialization failed!\n", qid);
    908 		} else {
    909 			ena_trace(ENA_INFO,
    910 			    "RX Soft LRO[%d] Initialized\n", qid);
    911 			rx_ring->lro.ifp = adapter->ifp;
    912 		}
    913 	}
    914 #endif
    915 
    916 	/* Allocate workqueues */
    917 	int rc = workqueue_create(&rx_ring->cleanup_tq, "ena_rx_comp",
    918 	    ena_cleanup, que, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
    919 	if (unlikely(rc != 0)) {
    920 		ena_trace(ENA_ALERT,
    921 		    "Unable to create workqueue for RX completion task\n");
    922 		goto err_buf_info_unmap;
    923 	}
    924 
    925 	return (0);
    926 
    927 err_buf_info_unmap:
    928 	while (i--) {
    929 		bus_dmamap_destroy(adapter->sc_dmat,
    930 		    rx_ring->rx_buffer_info[i].map);
    931 	}
    932 
    933 	size = sizeof(uint16_t) * rx_ring->ring_size;
    934 	kmem_free(rx_ring->free_rx_ids, size);
    935 	rx_ring->free_rx_ids = NULL;
    936 	size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
    937 	kmem_free(rx_ring->rx_buffer_info, size);
    938 	rx_ring->rx_buffer_info = NULL;
    939 	return (ENOMEM);
    940 }
    941 
    942 /**
    943  * ena_free_rx_resources - Free Rx Resources
    944  * @adapter: network interface device structure
    945  * @qid: queue index
    946  *
    947  * Free all receive software resources
    948  **/
    949 static void
    950 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
    951 {
    952 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
    953 
    954 	workqueue_wait(rx_ring->cleanup_tq, &rx_ring->cleanup_task);
    955 	workqueue_destroy(rx_ring->cleanup_tq);
    956 	rx_ring->cleanup_tq = NULL;
    957 
    958 	/* Free buffer DMA maps, */
    959 	for (int i = 0; i < rx_ring->ring_size; i++) {
    960 		bus_dmamap_unload(adapter->sc_dmat,
    961 		    rx_ring->rx_buffer_info[i].map);
    962 		bus_dmamap_destroy(adapter->sc_dmat,
    963 		    rx_ring->rx_buffer_info[i].map);
    964 		m_freem(rx_ring->rx_buffer_info[i].mbuf);
    965 		rx_ring->rx_buffer_info[i].mbuf = NULL;
    966 	}
    967 
    968 #ifdef LRO
    969 	/* free LRO resources, */
    970 	tcp_lro_free(&rx_ring->lro);
    971 #endif
    972 
    973 	/* free allocated memory */
    974 	kmem_free(rx_ring->rx_buffer_info,
    975 	    sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1));
    976 	rx_ring->rx_buffer_info = NULL;
    977 
    978 	kmem_free(rx_ring->free_rx_ids, sizeof(uint16_t) * rx_ring->ring_size);
    979 	rx_ring->free_rx_ids = NULL;
    980 }
    981 
    982 /**
    983  * ena_setup_all_rx_resources - allocate all queues Rx resources
    984  * @adapter: network interface device structure
    985  *
    986  * Returns 0 on success, otherwise on failure.
    987  **/
    988 static int
    989 ena_setup_all_rx_resources(struct ena_adapter *adapter)
    990 {
    991 	int i, rc = 0;
    992 
    993 	for (i = 0; i < adapter->num_queues; i++) {
    994 		rc = ena_setup_rx_resources(adapter, i);
    995 		if (rc != 0) {
    996 			device_printf(adapter->pdev,
    997 			    "Allocation for Rx Queue %u failed\n", i);
    998 			goto err_setup_rx;
    999 		}
   1000 	}
   1001 	return (0);
   1002 
   1003 err_setup_rx:
   1004 	/* rewind the index freeing the rings as we go */
   1005 	while (i--)
   1006 		ena_free_rx_resources(adapter, i);
   1007 	return (rc);
   1008 }
   1009 
   1010 /**
   1011  * ena_free_all_rx_resources - Free Rx resources for all queues
   1012  * @adapter: network interface device structure
   1013  *
   1014  * Free all receive software resources
   1015  **/
   1016 static void
   1017 ena_free_all_rx_resources(struct ena_adapter *adapter)
   1018 {
   1019 	int i;
   1020 
   1021 	for (i = 0; i < adapter->num_queues; i++)
   1022 		ena_free_rx_resources(adapter, i);
   1023 }
   1024 
   1025 static inline int
   1026 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
   1027     struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
   1028 {
   1029 	struct ena_com_buf *ena_buf;
   1030 	int error;
   1031 	int mlen;
   1032 
   1033 	/* if previous allocated frag is not used */
   1034 	if (unlikely(rx_info->mbuf != NULL))
   1035 		return (0);
   1036 
   1037 	rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
   1038 	if (unlikely(rx_info->mbuf == NULL)) {
   1039 		counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
   1040 		return (ENOMEM);
   1041 	}
   1042 	mlen = MCLBYTES;
   1043 
   1044 	/* Set mbuf length*/
   1045 	rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
   1046 
   1047 	/* Map packets for DMA */
   1048 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
   1049 	    "Using tag %p for buffers' DMA mapping, mbuf %p len: %d",
   1050 	    adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len);
   1051 	error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map,
   1052 	    rx_info->mbuf, BUS_DMA_NOWAIT);
   1053 	if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) {
   1054 		ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, "
   1055 		    "nsegs: %d\n", error, rx_info->map->dm_nsegs);
   1056 		counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
   1057 		goto exit;
   1058 
   1059 	}
   1060 
   1061 	bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0,
   1062 	    rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD);
   1063 
   1064 	ena_buf = &rx_info->ena_buf;
   1065 	ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr;
   1066 	ena_buf->len = mlen;
   1067 
   1068 	ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH,
   1069 	    "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
   1070 	    rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
   1071 
   1072 	return (0);
   1073 
   1074 exit:
   1075 	m_freem(rx_info->mbuf);
   1076 	rx_info->mbuf = NULL;
   1077 	return (EFAULT);
   1078 }
   1079 
   1080 static void
   1081 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
   1082     struct ena_rx_buffer *rx_info)
   1083 {
   1084 
   1085 	if (rx_info->mbuf == NULL) {
   1086 		ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n");
   1087 		return;
   1088 	}
   1089 
   1090 	bus_dmamap_unload(adapter->sc_dmat, rx_info->map);
   1091 	m_freem(rx_info->mbuf);
   1092 	rx_info->mbuf = NULL;
   1093 }
   1094 
   1095 /**
   1096  * ena_refill_rx_bufs - Refills ring with descriptors
   1097  * @rx_ring: the ring which we want to feed with free descriptors
   1098  * @num: number of descriptors to refill
   1099  * Refills the ring with newly allocated DMA-mapped mbufs for receiving
   1100  **/
   1101 static int
   1102 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
   1103 {
   1104 	struct ena_adapter *adapter = rx_ring->adapter;
   1105 	uint16_t next_to_use, req_id;
   1106 	uint32_t i;
   1107 	int rc;
   1108 
   1109 	ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d",
   1110 	    rx_ring->qid);
   1111 
   1112 	next_to_use = rx_ring->next_to_use;
   1113 
   1114 	for (i = 0; i < num; i++) {
   1115 		struct ena_rx_buffer *rx_info;
   1116 
   1117 		ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC,
   1118 		    "RX buffer - next to use: %d", next_to_use);
   1119 
   1120 		req_id = rx_ring->free_rx_ids[next_to_use];
   1121 		rc = validate_rx_req_id(rx_ring, req_id);
   1122 		if (unlikely(rc != 0))
   1123 			break;
   1124 
   1125 		rx_info = &rx_ring->rx_buffer_info[req_id];
   1126 
   1127 		rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
   1128 		if (unlikely(rc != 0)) {
   1129 			ena_trace(ENA_WARNING,
   1130 			    "failed to alloc buffer for rx queue %d\n",
   1131 			    rx_ring->qid);
   1132 			break;
   1133 		}
   1134 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
   1135 		    &rx_info->ena_buf, req_id);
   1136 		if (unlikely(rc != 0)) {
   1137 			ena_trace(ENA_WARNING,
   1138 			    "failed to add buffer for rx queue %d\n",
   1139 			    rx_ring->qid);
   1140 			break;
   1141 		}
   1142 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
   1143 		    rx_ring->ring_size);
   1144 	}
   1145 
   1146 	if (unlikely(i < num)) {
   1147 		counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
   1148 		ena_trace(ENA_WARNING,
   1149 		     "refilled rx qid %d with only %d mbufs (from %d)\n",
   1150 		     rx_ring->qid, i, num);
   1151 	}
   1152 
   1153 	if (likely(i != 0)) {
   1154 		wmb();
   1155 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
   1156 	}
   1157 	rx_ring->next_to_use = next_to_use;
   1158 	return (i);
   1159 }
   1160 
   1161 static void
   1162 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
   1163 {
   1164 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
   1165 	unsigned int i;
   1166 
   1167 	for (i = 0; i < rx_ring->ring_size; i++) {
   1168 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
   1169 
   1170 		if (rx_info->mbuf != NULL)
   1171 			ena_free_rx_mbuf(adapter, rx_ring, rx_info);
   1172 	}
   1173 }
   1174 
   1175 /**
   1176  * ena_refill_all_rx_bufs - allocate all queues Rx buffers
   1177  * @adapter: network interface device structure
   1178  *
   1179  */
   1180 static void
   1181 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
   1182 {
   1183 	struct ena_ring *rx_ring;
   1184 	int i, rc, bufs_num;
   1185 
   1186 	for (i = 0; i < adapter->num_queues; i++) {
   1187 		rx_ring = &adapter->rx_ring[i];
   1188 		bufs_num = rx_ring->ring_size - 1;
   1189 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
   1190 
   1191 		if (unlikely(rc != bufs_num))
   1192 			ena_trace(ENA_WARNING, "refilling Queue %d failed. "
   1193 			    "Allocated %d buffers from: %d\n", i, rc, bufs_num);
   1194 	}
   1195 }
   1196 
   1197 static void
   1198 ena_free_all_rx_bufs(struct ena_adapter *adapter)
   1199 {
   1200 	int i;
   1201 
   1202 	for (i = 0; i < adapter->num_queues; i++)
   1203 		ena_free_rx_bufs(adapter, i);
   1204 }
   1205 
   1206 /**
   1207  * ena_free_tx_bufs - Free Tx Buffers per Queue
   1208  * @adapter: network interface device structure
   1209  * @qid: queue index
   1210  **/
   1211 static void
   1212 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
   1213 {
   1214 	bool print_once = true;
   1215 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
   1216 
   1217 	for (int i = 0; i < tx_ring->ring_size; i++) {
   1218 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
   1219 
   1220 		if (tx_info->mbuf == NULL)
   1221 			continue;
   1222 
   1223 		if (print_once) {
   1224 			device_printf(adapter->pdev,
   1225 			    "free uncompleted tx mbuf qid %d idx 0x%x",
   1226 			    qid, i);
   1227 			print_once = false;
   1228 		} else {
   1229 			ena_trace(ENA_DBG,
   1230 			    "free uncompleted tx mbuf qid %d idx 0x%x",
   1231 			     qid, i);
   1232 		}
   1233 
   1234 		bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   1235 		m_free(tx_info->mbuf);
   1236 		tx_info->mbuf = NULL;
   1237 	}
   1238 }
   1239 
   1240 static void
   1241 ena_free_all_tx_bufs(struct ena_adapter *adapter)
   1242 {
   1243 
   1244 	for (int i = 0; i < adapter->num_queues; i++)
   1245 		ena_free_tx_bufs(adapter, i);
   1246 }
   1247 
   1248 static void
   1249 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
   1250 {
   1251 	uint16_t ena_qid;
   1252 	int i;
   1253 
   1254 	for (i = 0; i < adapter->num_queues; i++) {
   1255 		ena_qid = ENA_IO_TXQ_IDX(i);
   1256 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
   1257 	}
   1258 }
   1259 
   1260 static void
   1261 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
   1262 {
   1263 	uint16_t ena_qid;
   1264 	int i;
   1265 
   1266 	for (i = 0; i < adapter->num_queues; i++) {
   1267 		ena_qid = ENA_IO_RXQ_IDX(i);
   1268 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
   1269 	}
   1270 }
   1271 
   1272 static void
   1273 ena_destroy_all_io_queues(struct ena_adapter *adapter)
   1274 {
   1275 	ena_destroy_all_tx_queues(adapter);
   1276 	ena_destroy_all_rx_queues(adapter);
   1277 }
   1278 
   1279 static inline int
   1280 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
   1281 {
   1282 	struct ena_adapter *adapter = tx_ring->adapter;
   1283 	struct ena_tx_buffer *tx_info = NULL;
   1284 	KASSERT(ENA_RING_MTX_OWNED(tx_ring));
   1285 
   1286 	if (likely(req_id < tx_ring->ring_size)) {
   1287 		tx_info = &tx_ring->tx_buffer_info[req_id];
   1288 		if (tx_info->mbuf != NULL)
   1289 			return (0);
   1290 	}
   1291 
   1292 	if (tx_info->mbuf == NULL)
   1293 		device_printf(adapter->pdev,
   1294 		    "tx_info doesn't have valid mbuf\n");
   1295 	else
   1296 		device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
   1297 
   1298 	counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
   1299 
   1300 	return (EFAULT);
   1301 }
   1302 
   1303 static int
   1304 ena_create_io_queues(struct ena_adapter *adapter)
   1305 {
   1306 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   1307 	struct ena_com_create_io_ctx ctx;
   1308 	struct ena_ring *ring;
   1309 	uint16_t ena_qid;
   1310 	uint32_t msix_vector;
   1311 	int rc, i;
   1312 
   1313 	/* Create TX queues */
   1314 	for (i = 0; i < adapter->num_queues; i++) {
   1315 		msix_vector = ENA_IO_IRQ_IDX(i);
   1316 		ena_qid = ENA_IO_TXQ_IDX(i);
   1317 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
   1318 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
   1319 		ctx.queue_size = adapter->tx_ring_size;
   1320 		ctx.msix_vector = msix_vector;
   1321 		ctx.qid = ena_qid;
   1322 		rc = ena_com_create_io_queue(ena_dev, &ctx);
   1323 		if (rc != 0) {
   1324 			device_printf(adapter->pdev,
   1325 			    "Failed to create io TX queue #%d rc: %d\n", i, rc);
   1326 			goto err_tx;
   1327 		}
   1328 		ring = &adapter->tx_ring[i];
   1329 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
   1330 		    &ring->ena_com_io_sq,
   1331 		    &ring->ena_com_io_cq);
   1332 		if (rc != 0) {
   1333 			device_printf(adapter->pdev,
   1334 			    "Failed to get TX queue handlers. TX queue num"
   1335 			    " %d rc: %d\n", i, rc);
   1336 			ena_com_destroy_io_queue(ena_dev, ena_qid);
   1337 			goto err_tx;
   1338 		}
   1339 	}
   1340 
   1341 	/* Create RX queues */
   1342 	for (i = 0; i < adapter->num_queues; i++) {
   1343 		msix_vector = ENA_IO_IRQ_IDX(i);
   1344 		ena_qid = ENA_IO_RXQ_IDX(i);
   1345 		ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
   1346 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
   1347 		ctx.queue_size = adapter->rx_ring_size;
   1348 		ctx.msix_vector = msix_vector;
   1349 		ctx.qid = ena_qid;
   1350 		rc = ena_com_create_io_queue(ena_dev, &ctx);
   1351 		if (unlikely(rc != 0)) {
   1352 			device_printf(adapter->pdev,
   1353 			    "Failed to create io RX queue[%d] rc: %d\n", i, rc);
   1354 			goto err_rx;
   1355 		}
   1356 
   1357 		ring = &adapter->rx_ring[i];
   1358 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
   1359 		    &ring->ena_com_io_sq,
   1360 		    &ring->ena_com_io_cq);
   1361 		if (unlikely(rc != 0)) {
   1362 			device_printf(adapter->pdev,
   1363 			    "Failed to get RX queue handlers. RX queue num"
   1364 			    " %d rc: %d\n", i, rc);
   1365 			ena_com_destroy_io_queue(ena_dev, ena_qid);
   1366 			goto err_rx;
   1367 		}
   1368 	}
   1369 
   1370 	return (0);
   1371 
   1372 err_rx:
   1373 	while (i--)
   1374 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
   1375 	i = adapter->num_queues;
   1376 err_tx:
   1377 	while (i--)
   1378 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
   1379 
   1380 	return (ENXIO);
   1381 }
   1382 
   1383 /**
   1384  * ena_tx_cleanup - clear sent packets and corresponding descriptors
   1385  * @tx_ring: ring for which we want to clean packets
   1386  *
   1387  * Once packets are sent, we ask the device in a loop for no longer used
   1388  * descriptors. We find the related mbuf chain in a map (index in an array)
   1389  * and free it, then update ring state.
   1390  * This is performed in "endless" loop, updating ring pointers every
   1391  * TX_COMMIT. The first check of free descriptor is performed before the actual
   1392  * loop, then repeated at the loop end.
   1393  **/
   1394 static int
   1395 ena_tx_cleanup(struct ena_ring *tx_ring)
   1396 {
   1397 	struct ena_adapter *adapter;
   1398 	struct ena_com_io_cq* io_cq;
   1399 	uint16_t next_to_clean;
   1400 	uint16_t req_id;
   1401 	uint16_t ena_qid;
   1402 	unsigned int total_done = 0;
   1403 	int rc;
   1404 	int commit = TX_COMMIT;
   1405 	int budget = TX_BUDGET;
   1406 	int work_done;
   1407 
   1408 	KASSERT(ENA_RING_MTX_OWNED(tx_ring));
   1409 
   1410 	adapter = tx_ring->que->adapter;
   1411 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   1412 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1413 	next_to_clean = tx_ring->next_to_clean;
   1414 
   1415 	do {
   1416 		struct ena_tx_buffer *tx_info;
   1417 		struct mbuf *mbuf;
   1418 
   1419 		rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
   1420 		if (unlikely(rc != 0))
   1421 			break;
   1422 
   1423 		rc = validate_tx_req_id(tx_ring, req_id);
   1424 		if (unlikely(rc != 0))
   1425 			break;
   1426 
   1427 		tx_info = &tx_ring->tx_buffer_info[req_id];
   1428 
   1429 		mbuf = tx_info->mbuf;
   1430 
   1431 		tx_info->mbuf = NULL;
   1432 		bintime_clear(&tx_info->timestamp);
   1433 
   1434 		if (likely(tx_info->num_of_bufs != 0)) {
   1435 			/* Map is no longer required */
   1436 			bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   1437 		}
   1438 
   1439 		ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed",
   1440 		    tx_ring->qid, mbuf);
   1441 
   1442 		m_freem(mbuf);
   1443 
   1444 		total_done += tx_info->tx_descs;
   1445 
   1446 		tx_ring->free_tx_ids[next_to_clean] = req_id;
   1447 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
   1448 		    tx_ring->ring_size);
   1449 
   1450 		if (unlikely(--commit == 0)) {
   1451 			commit = TX_COMMIT;
   1452 			/* update ring state every TX_COMMIT descriptor */
   1453 			tx_ring->next_to_clean = next_to_clean;
   1454 			ena_com_comp_ack(
   1455 			    &adapter->ena_dev->io_sq_queues[ena_qid],
   1456 			    total_done);
   1457 			ena_com_update_dev_comp_head(io_cq);
   1458 			total_done = 0;
   1459 		}
   1460 	} while (likely(--budget));
   1461 
   1462 	work_done = TX_BUDGET - budget;
   1463 
   1464 	ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d",
   1465 	tx_ring->qid, work_done);
   1466 
   1467 	/* If there is still something to commit update ring state */
   1468 	if (likely(commit != TX_COMMIT)) {
   1469 		tx_ring->next_to_clean = next_to_clean;
   1470 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
   1471 		    total_done);
   1472 		ena_com_update_dev_comp_head(io_cq);
   1473 	}
   1474 
   1475 	if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   1476 		workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL);
   1477 
   1478 	return (work_done);
   1479 }
   1480 
   1481 #if 0
   1482 static void
   1483 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
   1484     struct mbuf *mbuf)
   1485 {
   1486 	struct ena_adapter *adapter = rx_ring->adapter;
   1487 
   1488 	if (likely(adapter->rss_support)) {
   1489 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
   1490 
   1491 		if (ena_rx_ctx->frag &&
   1492 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
   1493 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
   1494 			return;
   1495 		}
   1496 
   1497 		switch (ena_rx_ctx->l3_proto) {
   1498 		case ENA_ETH_IO_L3_PROTO_IPV4:
   1499 			switch (ena_rx_ctx->l4_proto) {
   1500 			case ENA_ETH_IO_L4_PROTO_TCP:
   1501 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
   1502 				break;
   1503 			case ENA_ETH_IO_L4_PROTO_UDP:
   1504 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
   1505 				break;
   1506 			default:
   1507 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
   1508 			}
   1509 			break;
   1510 		case ENA_ETH_IO_L3_PROTO_IPV6:
   1511 			switch (ena_rx_ctx->l4_proto) {
   1512 			case ENA_ETH_IO_L4_PROTO_TCP:
   1513 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
   1514 				break;
   1515 			case ENA_ETH_IO_L4_PROTO_UDP:
   1516 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
   1517 				break;
   1518 			default:
   1519 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
   1520 			}
   1521 			break;
   1522 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
   1523 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
   1524 			break;
   1525 		default:
   1526 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
   1527 		}
   1528 	} else {
   1529 		mbuf->m_pkthdr.flowid = rx_ring->qid;
   1530 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
   1531 	}
   1532 }
   1533 #endif
   1534 
   1535 /**
   1536  * ena_rx_mbuf - assemble mbuf from descriptors
   1537  * @rx_ring: ring for which we want to clean packets
   1538  * @ena_bufs: buffer info
   1539  * @ena_rx_ctx: metadata for this packet(s)
   1540  * @next_to_clean: ring pointer, will be updated only upon success
   1541  *
   1542  **/
   1543 static struct mbuf*
   1544 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
   1545     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
   1546 {
   1547 	struct mbuf *mbuf;
   1548 	struct ena_rx_buffer *rx_info;
   1549 	struct ena_adapter *adapter;
   1550 	unsigned int descs = ena_rx_ctx->descs;
   1551 	uint16_t ntc, len, req_id, buf = 0;
   1552 
   1553 	ntc = *next_to_clean;
   1554 	adapter = rx_ring->adapter;
   1555 
   1556 	len = ena_bufs[buf].len;
   1557 	req_id = ena_bufs[buf].req_id;
   1558 	rx_info = &rx_ring->rx_buffer_info[req_id];
   1559 	if (unlikely(rx_info->mbuf == NULL)) {
   1560 		device_printf(adapter->pdev, "NULL mbuf in rx_info");
   1561 		return (NULL);
   1562 	}
   1563 
   1564 	ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx",
   1565 	    rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
   1566 
   1567 	mbuf = rx_info->mbuf;
   1568 	KASSERT(mbuf->m_flags & M_PKTHDR);
   1569 	mbuf->m_pkthdr.len = len;
   1570 	mbuf->m_len = len;
   1571 	m_set_rcvif(mbuf, rx_ring->que->adapter->ifp);
   1572 
   1573 	/* Fill mbuf with hash key and it's interpretation for optimization */
   1574 #if 0
   1575 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
   1576 #endif
   1577 
   1578 	ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf %p, flags=0x%x, len: %d",
   1579 	    mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
   1580 
   1581 	/* DMA address is not needed anymore, unmap it */
   1582 	bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
   1583 
   1584 	rx_info->mbuf = NULL;
   1585 	rx_ring->free_rx_ids[ntc] = req_id;
   1586 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
   1587 
   1588 	/*
   1589 	 * While we have more than 1 descriptors for one rcvd packet, append
   1590 	 * other mbufs to the main one
   1591 	 */
   1592 	while (--descs) {
   1593 		++buf;
   1594 		len = ena_bufs[buf].len;
   1595 		req_id = ena_bufs[buf].req_id;
   1596 		rx_info = &rx_ring->rx_buffer_info[req_id];
   1597 
   1598 		if (unlikely(rx_info->mbuf == NULL)) {
   1599 			device_printf(adapter->pdev, "NULL mbuf in rx_info");
   1600 			/*
   1601 			 * If one of the required mbufs was not allocated yet,
   1602 			 * we can break there.
   1603 			 * All earlier used descriptors will be reallocated
   1604 			 * later and not used mbufs can be reused.
   1605 			 * The next_to_clean pointer will not be updated in case
   1606 			 * of an error, so caller should advance it manually
   1607 			 * in error handling routine to keep it up to date
   1608 			 * with hw ring.
   1609 			 */
   1610 			m_freem(mbuf);
   1611 			return (NULL);
   1612 		}
   1613 
   1614 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
   1615 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
   1616 			ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p",
   1617 			    mbuf);
   1618 		}
   1619 
   1620 		ena_trace(ENA_DBG | ENA_RXPTH,
   1621 		    "rx mbuf updated. len %d", mbuf->m_pkthdr.len);
   1622 
   1623 		/* Free already appended mbuf, it won't be useful anymore */
   1624 		bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map);
   1625 		m_freem(rx_info->mbuf);
   1626 		rx_info->mbuf = NULL;
   1627 
   1628 		rx_ring->free_rx_ids[ntc] = req_id;
   1629 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
   1630 	}
   1631 
   1632 	*next_to_clean = ntc;
   1633 
   1634 	return (mbuf);
   1635 }
   1636 
   1637 /**
   1638  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
   1639  **/
   1640 static inline void
   1641 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
   1642     struct mbuf *mbuf)
   1643 {
   1644 
   1645 	/* IPv4 */
   1646 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
   1647 		mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1648 		if (ena_rx_ctx->l3_csum_err) {
   1649 			/* ipv4 checksum error */
   1650 			mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1651 			counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1652 			ena_trace(ENA_DBG, "RX IPv4 header checksum error");
   1653 			return;
   1654 		}
   1655 
   1656 		/*  TCP/UDP */
   1657 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
   1658 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
   1659 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4;
   1660 			if (ena_rx_ctx->l4_csum_err) {
   1661 				/* TCP/UDP checksum error */
   1662 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1663 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1664 				ena_trace(ENA_DBG, "RX L4 checksum error");
   1665 			}
   1666 		}
   1667 	}
   1668 	/* IPv6 */
   1669 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
   1670 		/*  TCP/UDP */
   1671 		if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
   1672 		    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
   1673 			mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6;
   1674 			if (ena_rx_ctx->l4_csum_err) {
   1675 				/* TCP/UDP checksum error */
   1676 				mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1677 				counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
   1678 				ena_trace(ENA_DBG, "RX L4 checksum error");
   1679 			}
   1680 		}
   1681 	}
   1682 }
   1683 
   1684 /**
   1685  * ena_rx_cleanup - handle rx irq
   1686  * @arg: ring for which irq is being handled
   1687  **/
   1688 static int
   1689 ena_rx_cleanup(struct ena_ring *rx_ring)
   1690 {
   1691 	struct ena_adapter *adapter;
   1692 	struct mbuf *mbuf;
   1693 	struct ena_com_rx_ctx ena_rx_ctx;
   1694 	struct ena_com_io_cq* io_cq;
   1695 	struct ena_com_io_sq* io_sq;
   1696 	struct ifnet *ifp;
   1697 	uint16_t ena_qid;
   1698 	uint16_t next_to_clean;
   1699 	uint32_t refill_required;
   1700 	uint32_t refill_threshold;
   1701 	uint32_t do_if_input = 0;
   1702 	unsigned int qid;
   1703 	int rc, i;
   1704 	int budget = RX_BUDGET;
   1705 
   1706 	adapter = rx_ring->que->adapter;
   1707 	ifp = adapter->ifp;
   1708 	qid = rx_ring->que->id;
   1709 	ena_qid = ENA_IO_RXQ_IDX(qid);
   1710 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1711 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
   1712 	next_to_clean = rx_ring->next_to_clean;
   1713 
   1714 	ena_trace(ENA_DBG, "rx: qid %d", qid);
   1715 
   1716 	do {
   1717 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
   1718 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
   1719 		ena_rx_ctx.descs = 0;
   1720 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
   1721 
   1722 		if (unlikely(rc != 0))
   1723 			goto error;
   1724 
   1725 		if (unlikely(ena_rx_ctx.descs == 0))
   1726 			break;
   1727 
   1728 		ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
   1729 		    "descs #: %d l3 proto %d l4 proto %d hash: %x",
   1730 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
   1731 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
   1732 
   1733 		/* Receive mbuf from the ring */
   1734 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
   1735 		    &ena_rx_ctx, &next_to_clean);
   1736 
   1737 		/* Exit if we failed to retrieve a buffer */
   1738 		if (unlikely(mbuf == NULL)) {
   1739 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
   1740 				rx_ring->free_rx_ids[next_to_clean] =
   1741 				    rx_ring->ena_bufs[i].req_id;
   1742 				next_to_clean =
   1743 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
   1744 				    rx_ring->ring_size);
   1745 
   1746 			}
   1747 			if_statinc(ifp, if_ierrors);
   1748 			break;
   1749 		}
   1750 
   1751 		if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) ||
   1752 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) ||
   1753 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) ||
   1754 		    ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) ||
   1755 		    ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) {
   1756 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
   1757 		}
   1758 
   1759 		counter_enter();
   1760 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
   1761 		    mbuf->m_pkthdr.len);
   1762 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
   1763 		    mbuf->m_pkthdr.len);
   1764 		counter_exit();
   1765 		/*
   1766 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
   1767 		 * should be computed by hardware.
   1768 		 */
   1769 		do_if_input = 1;
   1770 #ifdef LRO
   1771 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
   1772 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
   1773 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
   1774 			/*
   1775 			 * Send to the stack if:
   1776 			 *  - LRO not enabled, or
   1777 			 *  - no LRO resources, or
   1778 			 *  - lro enqueue fails
   1779 			 */
   1780 			if ((rx_ring->lro.lro_cnt != 0) &&
   1781 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
   1782 					do_if_input = 0;
   1783 		}
   1784 #endif
   1785 		if (do_if_input != 0) {
   1786 			ena_trace(ENA_DBG | ENA_RXPTH,
   1787 			    "calling if_input() with mbuf %p", mbuf);
   1788 			if_percpuq_enqueue(ifp->if_percpuq, mbuf);
   1789 		}
   1790 
   1791 		counter_enter();
   1792 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
   1793 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
   1794 		counter_exit();
   1795 	} while (--budget);
   1796 
   1797 	rx_ring->next_to_clean = next_to_clean;
   1798 
   1799 	refill_required = ena_com_free_desc(io_sq);
   1800 	refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER;
   1801 
   1802 	if (refill_required > refill_threshold) {
   1803 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
   1804 		ena_refill_rx_bufs(rx_ring, refill_required);
   1805 	}
   1806 
   1807 #ifdef LRO
   1808 	tcp_lro_flush_all(&rx_ring->lro);
   1809 #endif
   1810 
   1811 	return (RX_BUDGET - budget);
   1812 
   1813 error:
   1814 	counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
   1815 	return (RX_BUDGET - budget);
   1816 }
   1817 
   1818 /*********************************************************************
   1819  *
   1820  *  MSIX & Interrupt Service routine
   1821  *
   1822  **********************************************************************/
   1823 
   1824 /**
   1825  * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
   1826  * @arg: interrupt number
   1827  **/
   1828 static int
   1829 ena_intr_msix_mgmnt(void *arg)
   1830 {
   1831 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
   1832 
   1833 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
   1834 	if (likely(ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter)))
   1835 		ena_com_aenq_intr_handler(adapter->ena_dev, arg);
   1836 
   1837 	return 1;
   1838 }
   1839 
   1840 /**
   1841  * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
   1842  * @arg: interrupt number
   1843  **/
   1844 static int
   1845 ena_handle_msix(void *arg)
   1846 {
   1847 	struct ena_que *queue = arg;
   1848 	struct ena_ring *rx_ring = queue->rx_ring;
   1849 
   1850 	ENA_RING_MTX_LOCK(rx_ring);
   1851 	if (unlikely(rx_ring->stopping)) {
   1852 		ENA_RING_MTX_UNLOCK(rx_ring);
   1853 		return 0;
   1854 	}
   1855 
   1856 	if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
   1857 		workqueue_enqueue(rx_ring->cleanup_tq, &rx_ring->cleanup_task,
   1858 		    curcpu());
   1859 
   1860 	ENA_RING_MTX_UNLOCK(rx_ring);
   1861 	return 1;
   1862 }
   1863 
   1864 static void
   1865 ena_cleanup(struct work *wk, void *arg)
   1866 {
   1867 	struct ena_que	*que = arg;
   1868 	struct ena_adapter *adapter = que->adapter;
   1869 	struct ifnet *ifp = adapter->ifp;
   1870 	struct ena_ring *tx_ring = que->tx_ring;
   1871 	struct ena_ring *rx_ring = que->rx_ring;
   1872 	struct ena_com_io_cq* io_cq;
   1873 	struct ena_eth_io_intr_reg intr_reg;
   1874 	int qid, ena_qid;
   1875 	int txc, rxc, i;
   1876 
   1877 	atomic_swap_uint(&rx_ring->task_pending, 0);
   1878 
   1879 	if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
   1880 		return;
   1881 
   1882 	ena_trace(ENA_DBG, "MSI-X TX/RX routine");
   1883 
   1884 	qid = que->id;
   1885 	ena_qid = ENA_IO_TXQ_IDX(qid);
   1886 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   1887 
   1888 	for (i = 0; i < CLEAN_BUDGET; ++i) {
   1889 		/*
   1890 		 * If lock cannot be acquired, then deferred cleanup task was
   1891 		 * being executed and rx ring is being cleaned up in
   1892 		 * another thread.
   1893 		 */
   1894 		ENA_RING_MTX_LOCK(rx_ring);
   1895 		if (rx_ring->stopping) {
   1896 			ENA_RING_MTX_UNLOCK(rx_ring);
   1897 			return;
   1898 		}
   1899 		ENA_RING_MTX_UNLOCK(rx_ring);
   1900 		rxc = ena_rx_cleanup(rx_ring);
   1901 
   1902 		/* Protection from calling ena_tx_cleanup from ena_start_xmit */
   1903 		ENA_RING_MTX_LOCK(tx_ring);
   1904 		if (tx_ring->stopping) {
   1905 			ENA_RING_MTX_UNLOCK(tx_ring);
   1906 			return;
   1907 		}
   1908 		txc = ena_tx_cleanup(tx_ring);
   1909 		ENA_RING_MTX_UNLOCK(tx_ring);
   1910 
   1911 		if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0))
   1912 			return;
   1913 
   1914 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
   1915 		       break;
   1916 	}
   1917 
   1918 	/* Signal that work is done and unmask interrupt */
   1919 	ena_com_update_intr_reg(&intr_reg,
   1920 	    RX_IRQ_INTERVAL,
   1921 	    TX_IRQ_INTERVAL,
   1922 	    true);
   1923 	ena_com_unmask_intr(io_cq, &intr_reg);
   1924 }
   1925 
   1926 static int
   1927 ena_enable_msix(struct ena_adapter *adapter)
   1928 {
   1929 	int msix_req;
   1930 	int counts[PCI_INTR_TYPE_SIZE];
   1931 	int max_type;
   1932 
   1933 	/* Reserved the max msix vectors we might need */
   1934 	msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues);
   1935 
   1936 	counts[PCI_INTR_TYPE_INTX] = 0;
   1937 	counts[PCI_INTR_TYPE_MSI] = 0;
   1938 	counts[PCI_INTR_TYPE_MSIX] = msix_req;
   1939 	max_type = PCI_INTR_TYPE_MSIX;
   1940 
   1941 	if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts,
   1942 	    max_type) != 0) {
   1943 		aprint_error_dev(adapter->pdev,
   1944 		    "failed to allocate interrupt\n");
   1945 		return ENOSPC;
   1946 	}
   1947 
   1948 	adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX];
   1949 
   1950 	if (counts[PCI_INTR_TYPE_MSIX] != msix_req) {
   1951 		device_printf(adapter->pdev,
   1952 		    "Enable only %d MSI-x (out of %d), reduce "
   1953 		    "the number of queues\n", adapter->sc_nintrs, msix_req);
   1954 		adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC;
   1955 	}
   1956 
   1957 	return 0;
   1958 }
   1959 
   1960 #if 0
   1961 static void
   1962 ena_setup_io_intr(struct ena_adapter *adapter)
   1963 {
   1964 	static int last_bind_cpu = -1;
   1965 	int irq_idx;
   1966 
   1967 	for (int i = 0; i < adapter->num_queues; i++) {
   1968 		irq_idx = ENA_IO_IRQ_IDX(i);
   1969 
   1970 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
   1971 		    "%s-TxRx-%d", device_xname(adapter->pdev), i);
   1972 		adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
   1973 		adapter->irq_tbl[irq_idx].data = &adapter->que[i];
   1974 		adapter->irq_tbl[irq_idx].vector =
   1975 		    adapter->msix_entries[irq_idx].vector;
   1976 		ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n",
   1977 		    adapter->msix_entries[irq_idx].vector);
   1978 #ifdef	RSS
   1979 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
   1980 		    rss_getcpu(i % rss_getnumbuckets());
   1981 #else
   1982 		/*
   1983 		 * We still want to bind rings to the corresponding cpu
   1984 		 * using something similar to the RSS round-robin technique.
   1985 		 */
   1986 		if (unlikely(last_bind_cpu < 0))
   1987 			last_bind_cpu = CPU_FIRST();
   1988 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
   1989 		    last_bind_cpu;
   1990 		last_bind_cpu = CPU_NEXT(last_bind_cpu);
   1991 #endif
   1992 	}
   1993 }
   1994 #endif
   1995 
   1996 static int
   1997 ena_request_mgmnt_irq(struct ena_adapter *adapter)
   1998 {
   1999 	const char *intrstr;
   2000 	char intrbuf[PCI_INTRSTR_LEN];
   2001 	char intr_xname[INTRDEVNAMEBUF];
   2002 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
   2003 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
   2004 
   2005 	KASSERT(adapter->sc_intrs != NULL);
   2006 	KASSERT(adapter->sc_ihs[irq_slot] == NULL);
   2007 
   2008 	pci_intr_setattr(pc, &adapter->sc_intrs[irq_slot],
   2009 	    PCI_INTR_MPSAFE, true);
   2010 
   2011 	snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt",
   2012 	    device_xname(adapter->pdev));
   2013 	intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
   2014 	    intrbuf, sizeof(intrbuf));
   2015 
   2016 	adapter->sc_ihs[irq_slot] = pci_intr_establish_xname(
   2017 	    pc, adapter->sc_intrs[irq_slot],
   2018 	    IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname);
   2019 
   2020 	if (adapter->sc_ihs[irq_slot] == NULL) {
   2021 		device_printf(adapter->pdev, "failed to register "
   2022 		    "interrupt handler for MGMNT irq %s\n",
   2023 		    intrstr);
   2024 		return ENOMEM;
   2025 	}
   2026 
   2027 	aprint_normal_dev(adapter->pdev,
   2028 	    "for MGMNT interrupting at %s\n", intrstr);
   2029 
   2030 	return 0;
   2031 }
   2032 
   2033 static int
   2034 ena_request_io_irq(struct ena_adapter *adapter)
   2035 {
   2036 	const char *intrstr;
   2037 	char intrbuf[PCI_INTRSTR_LEN];
   2038 	char intr_xname[INTRDEVNAMEBUF];
   2039 	pci_chipset_tag_t pc = adapter->sc_pa.pa_pc;
   2040 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
   2041 	void *vih;
   2042 	kcpuset_t *affinity;
   2043 	int i;
   2044 
   2045 	KASSERT(adapter->sc_intrs != NULL);
   2046 
   2047 	kcpuset_create(&affinity, false);
   2048 
   2049 	for (i = 0; i < adapter->num_queues; i++) {
   2050 		int irq_slot = i + irq_off;
   2051 		int affinity_to = (irq_slot) % ncpu;
   2052 
   2053 		KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL);
   2054 		KASSERT(adapter->sc_ihs[irq_slot] == NULL);
   2055 
   2056 		pci_intr_setattr(pc, &adapter->sc_intrs[irq_slot],
   2057 		    PCI_INTR_MPSAFE, true);
   2058 
   2059 		snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d",
   2060 		    device_xname(adapter->pdev), i);
   2061 		intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot],
   2062 		    intrbuf, sizeof(intrbuf));
   2063 
   2064 		vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc,
   2065 		    adapter->sc_intrs[irq_slot], IPL_NET,
   2066 		    ena_handle_msix, &adapter->que[i], intr_xname);
   2067 
   2068 		if (vih == NULL) {
   2069 			device_printf(adapter->pdev, "failed to register "
   2070 			    "interrupt handler for IO queue %d irq %s\n",
   2071 			    i, intrstr);
   2072 			goto err;
   2073 		}
   2074 
   2075 		kcpuset_zero(affinity);
   2076 		/* Round-robin affinity */
   2077 		kcpuset_set(affinity, affinity_to);
   2078 		int error = interrupt_distribute(vih, affinity, NULL);
   2079 		if (error == 0) {
   2080 			aprint_normal_dev(adapter->pdev,
   2081 			    "for IO queue %d interrupting at %s"
   2082 			    " affinity to %u\n", i, intrstr, affinity_to);
   2083 		} else {
   2084 			aprint_normal_dev(adapter->pdev,
   2085 			    "for IO queue %d interrupting at %s\n", i, intrstr);
   2086 		}
   2087 
   2088 		adapter->sc_ihs[irq_slot] = vih;
   2089 
   2090 #ifdef	RSS
   2091 		ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n",
   2092 		    i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
   2093 #else
   2094 		ena_trace(ENA_INFO, "queue %d - cpu %d\n",
   2095 		    i - ENA_IO_IRQ_FIRST_IDX, affinity_to);
   2096 #endif
   2097 	}
   2098 
   2099 	kcpuset_destroy(affinity);
   2100 	return 0;
   2101 
   2102 err:
   2103 	kcpuset_destroy(affinity);
   2104 
   2105 	for (i--; i >= 0; i--) {
   2106 		int irq_slot __diagused = i + irq_off;
   2107 		KASSERT(adapter->sc_ihs[irq_slot] != NULL);
   2108 		pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[irq_slot]);
   2109 		adapter->sc_ihs[irq_slot] = NULL;
   2110 	}
   2111 
   2112 	return ENOSPC;
   2113 }
   2114 
   2115 static void
   2116 ena_free_mgmnt_irq(struct ena_adapter *adapter)
   2117 {
   2118 	const int irq_slot = ENA_MGMNT_IRQ_IDX;
   2119 
   2120 	if (adapter->sc_ihs[irq_slot]) {
   2121 		pci_intr_disestablish(adapter->sc_pa.pa_pc,
   2122 		    adapter->sc_ihs[irq_slot]);
   2123 		adapter->sc_ihs[irq_slot] = NULL;
   2124 	}
   2125 }
   2126 
   2127 static void
   2128 ena_free_io_irq(struct ena_adapter *adapter)
   2129 {
   2130 	const int irq_off = ENA_IO_IRQ_FIRST_IDX;
   2131 
   2132 	for (int i = 0; i < adapter->num_queues; i++) {
   2133 		int irq_slot = i + irq_off;
   2134 
   2135 		if (adapter->sc_ihs[irq_slot]) {
   2136 			pci_intr_disestablish(adapter->sc_pa.pa_pc,
   2137 			    adapter->sc_ihs[irq_slot]);
   2138 			adapter->sc_ihs[irq_slot] = NULL;
   2139 		}
   2140 	}
   2141 }
   2142 
   2143 static void
   2144 ena_free_irqs(struct ena_adapter* adapter)
   2145 {
   2146 
   2147 	ena_free_io_irq(adapter);
   2148 	ena_free_mgmnt_irq(adapter);
   2149 	ena_disable_msix(adapter);
   2150 }
   2151 
   2152 static void
   2153 ena_disable_msix(struct ena_adapter *adapter)
   2154 {
   2155 	pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs,
   2156 	    adapter->sc_nintrs);
   2157 }
   2158 
   2159 static void
   2160 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
   2161 {
   2162 	struct ena_com_io_cq* io_cq;
   2163 	struct ena_eth_io_intr_reg intr_reg;
   2164 	uint16_t ena_qid;
   2165 	int i;
   2166 
   2167 	/* Unmask interrupts for all queues */
   2168 	for (i = 0; i < adapter->num_queues; i++) {
   2169 		ena_qid = ENA_IO_TXQ_IDX(i);
   2170 		io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   2171 		ena_com_update_intr_reg(&intr_reg, 0, 0, true);
   2172 		ena_com_unmask_intr(io_cq, &intr_reg);
   2173 	}
   2174 }
   2175 
   2176 /* Configure the Rx forwarding */
   2177 static int
   2178 ena_rss_configure(struct ena_adapter *adapter)
   2179 {
   2180 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   2181 	int rc;
   2182 
   2183 	/* Set indirect table */
   2184 	rc = ena_com_indirect_table_set(ena_dev);
   2185 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2186 		return (rc);
   2187 
   2188 	/* Configure hash function (if supported) */
   2189 	rc = ena_com_set_hash_function(ena_dev);
   2190 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2191 		return (rc);
   2192 
   2193 	/* Configure hash inputs (if supported) */
   2194 	rc = ena_com_set_hash_ctrl(ena_dev);
   2195 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP)))
   2196 		return (rc);
   2197 
   2198 	return (0);
   2199 }
   2200 
   2201 static int
   2202 ena_up_complete(struct ena_adapter *adapter)
   2203 {
   2204 	int rc;
   2205 
   2206 	if (likely(adapter->rss_support)) {
   2207 		rc = ena_rss_configure(adapter);
   2208 		if (rc != 0)
   2209 			return (rc);
   2210 	}
   2211 
   2212 	rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
   2213 	if (unlikely(rc != 0))
   2214 		return (rc);
   2215 
   2216 	ena_refill_all_rx_bufs(adapter);
   2217 	ena_reset_counters((struct evcnt *)&adapter->hw_stats,
   2218 	    sizeof(adapter->hw_stats),
   2219 	    offsetof(struct ena_hw_stats, rx_packets));
   2220 
   2221 	return (0);
   2222 }
   2223 
   2224 static int
   2225 ena_up(struct ena_adapter *adapter)
   2226 {
   2227 	int rc = 0;
   2228 
   2229 	KASSERT(ENA_CORE_MTX_OWNED(adapter));
   2230 
   2231 #if 0
   2232 	if (unlikely(device_is_attached(adapter->pdev) == 0)) {
   2233 		device_printf(adapter->pdev, "device is not attached!\n");
   2234 		return (ENXIO);
   2235 	}
   2236 #endif
   2237 
   2238 	if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter))) {
   2239 		device_printf(adapter->pdev, "device is not running!\n");
   2240 		return (ENXIO);
   2241 	}
   2242 
   2243 	if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
   2244 		device_printf(adapter->pdev, "device is going UP\n");
   2245 
   2246 		/* setup interrupts for IO queues */
   2247 		rc = ena_request_io_irq(adapter);
   2248 		if (unlikely(rc != 0)) {
   2249 			ena_trace(ENA_ALERT, "err_req_irq");
   2250 			goto err_req_irq;
   2251 		}
   2252 
   2253 		/* allocate transmit descriptors */
   2254 		rc = ena_setup_all_tx_resources(adapter);
   2255 		if (unlikely(rc != 0)) {
   2256 			ena_trace(ENA_ALERT, "err_setup_tx");
   2257 			goto err_setup_tx;
   2258 		}
   2259 
   2260 		/* allocate receive descriptors */
   2261 		rc = ena_setup_all_rx_resources(adapter);
   2262 		if (unlikely(rc != 0)) {
   2263 			ena_trace(ENA_ALERT, "err_setup_rx");
   2264 			goto err_setup_rx;
   2265 		}
   2266 
   2267 		/* create IO queues for Rx & Tx */
   2268 		rc = ena_create_io_queues(adapter);
   2269 		if (unlikely(rc != 0)) {
   2270 			ena_trace(ENA_ALERT,
   2271 			    "create IO queues failed");
   2272 			goto err_io_que;
   2273 		}
   2274 
   2275 		if (unlikely(ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
   2276 			if_link_state_change(adapter->ifp, LINK_STATE_UP);
   2277 
   2278 		rc = ena_up_complete(adapter);
   2279 		if (unlikely(rc != 0))
   2280 			goto err_up_complete;
   2281 
   2282 		counter_u64_add(adapter->dev_stats.interface_up, 1);
   2283 
   2284 		ena_update_hwassist(adapter);
   2285 
   2286 		if_setdrvflagbits(adapter->ifp, IFF_RUNNING,
   2287 		    IFF_OACTIVE);
   2288 		ena_set_stopping_flag(adapter, false);
   2289 
   2290 		callout_schedule(&adapter->timer_service, hz);
   2291 
   2292 		ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEV_UP, adapter);
   2293 
   2294 		ena_unmask_all_io_irqs(adapter);
   2295 	}
   2296 
   2297 	return (0);
   2298 
   2299 err_up_complete:
   2300 	ena_destroy_all_io_queues(adapter);
   2301 err_io_que:
   2302 	ena_free_all_rx_resources(adapter);
   2303 err_setup_rx:
   2304 	ena_free_all_tx_resources(adapter);
   2305 err_setup_tx:
   2306 	ena_free_io_irq(adapter);
   2307 err_req_irq:
   2308 	return (rc);
   2309 }
   2310 
   2311 #if 0
   2312 static uint64_t
   2313 ena_get_counter(struct ifnet *ifp, ift_counter cnt)
   2314 {
   2315 	struct ena_adapter *adapter;
   2316 	struct ena_hw_stats *stats;
   2317 
   2318 	adapter = if_getsoftc(ifp);
   2319 	stats = &adapter->hw_stats;
   2320 
   2321 	switch (cnt) {
   2322 	case IFCOUNTER_IPACKETS:
   2323 		return (counter_u64_fetch(stats->rx_packets));
   2324 	case IFCOUNTER_OPACKETS:
   2325 		return (counter_u64_fetch(stats->tx_packets));
   2326 	case IFCOUNTER_IBYTES:
   2327 		return (counter_u64_fetch(stats->rx_bytes));
   2328 	case IFCOUNTER_OBYTES:
   2329 		return (counter_u64_fetch(stats->tx_bytes));
   2330 	case IFCOUNTER_IQDROPS:
   2331 		return (counter_u64_fetch(stats->rx_drops));
   2332 	default:
   2333 		return (if_get_counter_default(ifp, cnt));
   2334 	}
   2335 }
   2336 #endif
   2337 
   2338 static int
   2339 ena_media_change(struct ifnet *ifp)
   2340 {
   2341 	/* Media Change is not supported by firmware */
   2342 	return (0);
   2343 }
   2344 
   2345 static void
   2346 ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
   2347 {
   2348 	struct ena_adapter *adapter = if_getsoftc(ifp);
   2349 	ena_trace(ENA_DBG, "enter");
   2350 
   2351 	KASSERT(ENA_CORE_MTX_OWNED(adapter));
   2352 
   2353 	ifmr->ifm_status = IFM_AVALID;
   2354 	ifmr->ifm_active = IFM_ETHER;
   2355 
   2356 	if (!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)) {
   2357 		ena_trace(ENA_INFO, "Link is down");
   2358 		return;
   2359 	}
   2360 
   2361 	ifmr->ifm_status |= IFM_ACTIVE;
   2362 }
   2363 
   2364 static int
   2365 ena_init(struct ifnet *ifp)
   2366 {
   2367 	struct ena_adapter *adapter = if_getsoftc(ifp);
   2368 
   2369 	if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
   2370 		ENA_CORE_MTX_LOCK(adapter);
   2371 		ena_up(adapter);
   2372 		ENA_CORE_MTX_UNLOCK(adapter);
   2373 	}
   2374 
   2375 	return 0;
   2376 }
   2377 
   2378 static void
   2379 ena_stop(struct ifnet *ifp, int disable){
   2380 	struct ena_adapter *adapter;
   2381 
   2382 	adapter = ifp->if_softc;
   2383 
   2384 	if (ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
   2385 		ENA_CORE_MTX_LOCK(adapter);
   2386 		ena_down(adapter);
   2387 		ENA_CORE_MTX_UNLOCK(adapter);
   2388 	}
   2389 }
   2390 
   2391 
   2392 static int
   2393 ena_ioctl(struct ifnet *ifp, u_long command, void *data)
   2394 {
   2395 	struct ena_adapter *adapter;
   2396 	struct ifreq *ifr;
   2397 	int rc;
   2398 
   2399 	adapter = ifp->if_softc;
   2400 	ifr = (struct ifreq *)data;
   2401 
   2402 	/*
   2403 	 * Acquiring lock to prevent from running up and down routines parallel.
   2404 	 */
   2405 	rc = 0;
   2406 	switch (command) {
   2407 	case SIOCSIFMTU:
   2408 		if (ifp->if_mtu == ifr->ifr_mtu)
   2409 			break;
   2410 		ENA_CORE_MTX_LOCK(adapter);
   2411 		ena_down(adapter);
   2412 
   2413 		ena_change_mtu(ifp, ifr->ifr_mtu);
   2414 
   2415 		rc = ena_up(adapter);
   2416 		ENA_CORE_MTX_UNLOCK(adapter);
   2417 		break;
   2418 
   2419 	case SIOCADDMULTI:
   2420 	case SIOCDELMULTI:
   2421 		break;
   2422 
   2423 	case SIOCSIFCAP:
   2424 		{
   2425 			struct ifcapreq *ifcr = data;
   2426 			int reinit = 0;
   2427 
   2428 			if (ifcr->ifcr_capenable != ifp->if_capenable) {
   2429 				ifp->if_capenable = ifcr->ifcr_capenable;
   2430 				reinit = 1;
   2431 			}
   2432 
   2433 			if ((reinit != 0) &&
   2434 			    ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) {
   2435 				ENA_CORE_MTX_LOCK(adapter);
   2436 				ena_down(adapter);
   2437 				rc = ena_up(adapter);
   2438 				ENA_CORE_MTX_UNLOCK(adapter);
   2439 			}
   2440 		}
   2441 
   2442 		break;
   2443 	default:
   2444 		rc = ether_ioctl(ifp, command, data);
   2445 		break;
   2446 	}
   2447 
   2448 	return (rc);
   2449 }
   2450 
   2451 static int
   2452 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
   2453 {
   2454 	int caps = 0;
   2455 
   2456 	if ((feat->offload.tx &
   2457 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
   2458 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
   2459 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
   2460 		caps |= IFCAP_CSUM_IPv4_Tx;
   2461 
   2462 	if ((feat->offload.tx &
   2463 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
   2464 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
   2465 		caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
   2466 
   2467 	if ((feat->offload.tx &
   2468 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
   2469 		caps |= IFCAP_TSOv4;
   2470 
   2471 	if ((feat->offload.tx &
   2472 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
   2473 		caps |= IFCAP_TSOv6;
   2474 
   2475 	if ((feat->offload.rx_supported &
   2476 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
   2477 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
   2478 		caps |= IFCAP_CSUM_IPv4_Rx;
   2479 
   2480 	if ((feat->offload.rx_supported &
   2481 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
   2482 		caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
   2483 
   2484 #ifdef LRO
   2485 	caps |= IFCAP_LRO;
   2486 #endif
   2487 
   2488 	return (caps);
   2489 }
   2490 
   2491 static void
   2492 ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp)
   2493 {
   2494 
   2495 	host_info->supported_network_features[0] =
   2496 	    (uint32_t)if_getcapabilities(ifp);
   2497 }
   2498 
   2499 static void
   2500 ena_update_hwassist(struct ena_adapter *adapter)
   2501 {
   2502 	struct ifnet *ifp = adapter->ifp;
   2503 	uint32_t feat = adapter->tx_offload_cap;
   2504 	int cap = if_getcapenable(ifp);
   2505 	int flags = 0;
   2506 
   2507 	if_clearhwassist(ifp);
   2508 
   2509 	if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2510 	    != 0) {
   2511 		if ((feat &
   2512 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
   2513 			flags |= M_CSUM_IPv4;
   2514 		if ((feat &
   2515 		    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
   2516 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
   2517 			flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
   2518 	}
   2519 
   2520 	if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0)
   2521 		flags |= M_CSUM_TCPv6;
   2522 
   2523 	if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0)
   2524 		flags |= M_CSUM_UDPv6;
   2525 
   2526 	if ((cap & IFCAP_TSOv4) != 0)
   2527 		flags |= M_CSUM_TSOv4;
   2528 
   2529 	if ((cap & IFCAP_TSOv6) != 0)
   2530 		flags |= M_CSUM_TSOv6;
   2531 
   2532 	if_sethwassistbits(ifp, flags, 0);
   2533 }
   2534 
   2535 static int
   2536 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
   2537     struct ena_com_dev_get_features_ctx *feat)
   2538 {
   2539 	struct ifnet *ifp;
   2540 	int caps = 0;
   2541 
   2542 	ifp = adapter->ifp = &adapter->sc_ec.ec_if;
   2543 	if (unlikely(ifp == NULL)) {
   2544 		ena_trace(ENA_ALERT, "can not allocate ifnet structure\n");
   2545 		return (ENXIO);
   2546 	}
   2547 	if_initialize(ifp);
   2548 	if_initname(ifp, "ena", device_unit(pdev));
   2549 	if_setdev(ifp, pdev);
   2550 	if_setsoftc(ifp, adapter);
   2551 
   2552 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
   2553 	ifp->if_extflags = IFEF_MPSAFE;
   2554 	if_setinitfn(ifp, ena_init);
   2555 	ifp->if_stop = ena_stop;
   2556 	if_settransmitfn(ifp, ena_mq_start);
   2557 #if 0
   2558 	if_setqflushfn(ifp, ena_qflush);
   2559 #endif
   2560 	if_setioctlfn(ifp, ena_ioctl);
   2561 #if 0
   2562 	if_setgetcounterfn(ifp, ena_get_counter);
   2563 #endif
   2564 
   2565 	if_setsendqlen(ifp, adapter->tx_ring_size);
   2566 	if_setsendqready(ifp);
   2567 	if_setmtu(ifp, ETHERMTU);
   2568 	if_setbaudrate(ifp, 0);
   2569 	/* Zeroize capabilities... */
   2570 	if_setcapabilities(ifp, 0);
   2571 	if_setcapenable(ifp, 0);
   2572 	/* check hardware support */
   2573 	caps = ena_get_dev_offloads(feat);
   2574 	/* ... and set them */
   2575 	if_setcapabilitiesbit(ifp, caps, 0);
   2576 	adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2577 
   2578 #if 0
   2579 	/* TSO parameters */
   2580 	/* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */
   2581 	ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
   2582 	    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
   2583 	ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
   2584 	ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
   2585 #endif
   2586 
   2587 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
   2588 	if_setcapenable(ifp, if_getcapabilities(ifp));
   2589 
   2590 	/*
   2591 	 * Specify the media types supported by this adapter and register
   2592 	 * callbacks to update media and link information
   2593 	 */
   2594 	adapter->sc_ec.ec_ifmedia = &adapter->media;
   2595 	ifmedia_init_with_lock(&adapter->media, IFM_IMASK,
   2596 	    ena_media_change, ena_media_status, &adapter->global_mtx);
   2597 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
   2598 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
   2599 
   2600 	ifp->if_percpuq = if_percpuq_create(ifp);
   2601 	if_deferred_start_init(ifp, NULL);
   2602 	ether_ifattach(ifp, adapter->mac_addr);
   2603 	if_register(ifp);
   2604 
   2605 	return (0);
   2606 }
   2607 
   2608 static void
   2609 ena_set_stopping_flag(struct ena_adapter *adapter, bool value)
   2610 {
   2611 	struct ena_ring *ring;
   2612 	int i;
   2613 
   2614 	for (i = 0; i < adapter->num_queues; i++) {
   2615 		/* TX */
   2616 		ring = adapter->que[i].tx_ring;
   2617 		ENA_RING_MTX_LOCK(ring);
   2618 		ring->stopping = value;
   2619 		ENA_RING_MTX_UNLOCK(ring);
   2620 
   2621 		/* RX */
   2622 		ring = adapter->que[i].rx_ring;
   2623 		ENA_RING_MTX_LOCK(ring);
   2624 		ring->stopping = value;
   2625 		ENA_RING_MTX_UNLOCK(ring);
   2626 	}
   2627 }
   2628 
   2629 static void
   2630 ena_down(struct ena_adapter *adapter)
   2631 {
   2632 	int rc, i;
   2633 
   2634 	KASSERT(ENA_CORE_MTX_OWNED(adapter));
   2635 
   2636 	if (ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
   2637 		device_printf(adapter->pdev, "device is going DOWN\n");
   2638 		ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEV_UP, adapter);
   2639 		if_setdrvflagbits(adapter->ifp, IFF_OACTIVE,
   2640 		    IFF_RUNNING);
   2641 
   2642 		ena_set_stopping_flag(adapter, true);
   2643 
   2644 		callout_halt(&adapter->timer_service, NULL);
   2645 		for (i = 0; i < adapter->num_queues; i++) {
   2646 			struct ena_ring *rx_ring = adapter->que[i].rx_ring;
   2647 			workqueue_wait(rx_ring->cleanup_tq,
   2648 			    &rx_ring->cleanup_task);
   2649 		}
   2650 
   2651 		if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter)) {
   2652 			rc = ena_com_dev_reset(adapter->ena_dev,
   2653 			    adapter->reset_reason);
   2654 			if (unlikely(rc != 0))
   2655 				device_printf(adapter->pdev,
   2656 				    "Device reset failed\n");
   2657 		}
   2658 
   2659 		ena_destroy_all_io_queues(adapter);
   2660 
   2661 		ena_free_all_tx_bufs(adapter);
   2662 		ena_free_all_rx_bufs(adapter);
   2663 		ena_free_all_tx_resources(adapter);
   2664 		ena_free_all_rx_resources(adapter);
   2665 
   2666 		ena_free_io_irq(adapter);
   2667 
   2668 		counter_u64_add(adapter->dev_stats.interface_down, 1);
   2669 	}
   2670 }
   2671 
   2672 static void
   2673 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
   2674 {
   2675 	struct ena_com_tx_meta *ena_meta;
   2676 	struct ether_vlan_header *eh;
   2677 	u32 mss;
   2678 	bool offload;
   2679 	uint16_t etype;
   2680 	int ehdrlen;
   2681 	struct ip *ip;
   2682 	int iphlen;
   2683 	struct tcphdr *th;
   2684 
   2685 	offload = false;
   2686 	ena_meta = &ena_tx_ctx->ena_meta;
   2687 
   2688 #if 0
   2689 	u32 mss = mbuf->m_pkthdr.tso_segsz;
   2690 
   2691 	if (mss != 0)
   2692 		offload = true;
   2693 #else
   2694 	mss = mbuf->m_pkthdr.len;	/* XXX don't have tso_segsz */
   2695 #endif
   2696 
   2697 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0)
   2698 		offload = true;
   2699 
   2700 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
   2701 		offload = true;
   2702 
   2703 	if (!offload) {
   2704 		ena_tx_ctx->meta_valid = 0;
   2705 		return;
   2706 	}
   2707 
   2708 	/* Determine where frame payload starts. */
   2709 	eh = mtod(mbuf, struct ether_vlan_header *);
   2710 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
   2711 		etype = ntohs(eh->evl_proto);
   2712 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   2713 	} else {
   2714 		etype = htons(eh->evl_encap_proto);
   2715 		ehdrlen = ETHER_HDR_LEN;
   2716 	}
   2717 
   2718 	ip = (struct ip *)(mbuf->m_data + ehdrlen);
   2719 	iphlen = ip->ip_hl << 2;
   2720 	th = (struct tcphdr *)((vaddr_t)ip + iphlen);
   2721 
   2722 	if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
   2723 		ena_tx_ctx->l3_csum_enable = 1;
   2724 	}
   2725 	if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
   2726 		ena_tx_ctx->tso_enable = 1;
   2727 		ena_meta->l4_hdr_len = (th->th_off);
   2728 	}
   2729 
   2730 	switch (etype) {
   2731 	case ETHERTYPE_IP:
   2732 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
   2733 		if ((ip->ip_off & htons(IP_DF)) != 0)
   2734 			ena_tx_ctx->df = 1;
   2735 		break;
   2736 	case ETHERTYPE_IPV6:
   2737 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
   2738 
   2739 	default:
   2740 		break;
   2741 	}
   2742 
   2743 	if (ip->ip_p == IPPROTO_TCP) {
   2744 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
   2745 		if ((mbuf->m_pkthdr.csum_flags &
   2746 		    (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0)
   2747 			ena_tx_ctx->l4_csum_enable = 1;
   2748 		else
   2749 			ena_tx_ctx->l4_csum_enable = 0;
   2750 	} else if (ip->ip_p == IPPROTO_UDP) {
   2751 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
   2752 		if ((mbuf->m_pkthdr.csum_flags &
   2753 		    (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
   2754 			ena_tx_ctx->l4_csum_enable = 1;
   2755 		else
   2756 			ena_tx_ctx->l4_csum_enable = 0;
   2757 	} else {
   2758 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
   2759 		ena_tx_ctx->l4_csum_enable = 0;
   2760 	}
   2761 
   2762 	ena_meta->mss = mss;
   2763 	ena_meta->l3_hdr_len = iphlen;
   2764 	ena_meta->l3_hdr_offset = ehdrlen;
   2765 	ena_tx_ctx->meta_valid = 1;
   2766 }
   2767 
   2768 static int
   2769 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
   2770 {
   2771 	struct ena_adapter *adapter;
   2772 	struct mbuf *collapsed_mbuf;
   2773 	int num_frags;
   2774 
   2775 	adapter = tx_ring->adapter;
   2776 	num_frags = ena_mbuf_count(*mbuf);
   2777 
   2778 	/* One segment must be reserved for configuration descriptor. */
   2779 	if (num_frags < adapter->max_tx_sgl_size)
   2780 		return (0);
   2781 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
   2782 
   2783 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
   2784 	    adapter->max_tx_sgl_size - 1);
   2785 	if (unlikely(collapsed_mbuf == NULL)) {
   2786 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
   2787 		return (ENOMEM);
   2788 	}
   2789 
   2790 	/* If mbuf was collapsed successfully, original mbuf is released. */
   2791 	*mbuf = collapsed_mbuf;
   2792 
   2793 	return (0);
   2794 }
   2795 
   2796 static int
   2797 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
   2798 {
   2799 	struct ena_adapter *adapter;
   2800 	struct ena_tx_buffer *tx_info;
   2801 	struct ena_com_tx_ctx ena_tx_ctx;
   2802 	struct ena_com_dev *ena_dev;
   2803 	struct ena_com_buf *ena_buf;
   2804 	struct ena_com_io_sq* io_sq;
   2805 	void *push_hdr;
   2806 	uint16_t next_to_use;
   2807 	uint16_t req_id;
   2808 	uint16_t ena_qid;
   2809 	uint32_t header_len;
   2810 	int i, rc;
   2811 	int nb_hw_desc;
   2812 
   2813 	KASSERT(ENA_RING_MTX_OWNED(tx_ring));
   2814 
   2815 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   2816 	adapter = tx_ring->que->adapter;
   2817 	ena_dev = adapter->ena_dev;
   2818 	io_sq = &ena_dev->io_sq_queues[ena_qid];
   2819 
   2820 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
   2821 	if (unlikely(rc != 0)) {
   2822 		ena_trace(ENA_WARNING,
   2823 		    "Failed to collapse mbuf! err: %d", rc);
   2824 		return (rc);
   2825 	}
   2826 
   2827 	next_to_use = tx_ring->next_to_use;
   2828 	req_id = tx_ring->free_tx_ids[next_to_use];
   2829 	tx_info = &tx_ring->tx_buffer_info[req_id];
   2830 
   2831 	tx_info->mbuf = *mbuf;
   2832 	tx_info->num_of_bufs = 0;
   2833 
   2834 	ena_buf = tx_info->bufs;
   2835 
   2836 	ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len);
   2837 
   2838 	/*
   2839 	 * header_len is just a hint for the device. Because FreeBSD is not
   2840 	 * giving us information about packet header length and it is not
   2841 	 * guaranteed that all packet headers will be in the 1st mbuf, setting
   2842 	 * header_len to 0 is making the device ignore this value and resolve
   2843 	 * header on it's own.
   2844 	 */
   2845 	header_len = 0;
   2846 	push_hdr = NULL;
   2847 
   2848 	rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map,
   2849 	    *mbuf, BUS_DMA_NOWAIT);
   2850 
   2851 	if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) {
   2852 		ena_trace(ENA_WARNING,
   2853 		    "dmamap load failed! err: %d nsegs: %d", rc,
   2854 		    tx_info->map->dm_nsegs);
   2855 		counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
   2856 		tx_info->mbuf = NULL;
   2857 		if (rc == ENOMEM)
   2858 			return (ENA_COM_NO_MEM);
   2859 		else
   2860 			return (ENA_COM_INVAL);
   2861 	}
   2862 
   2863 	for (i = 0; i < tx_info->map->dm_nsegs; i++) {
   2864 		ena_buf->len = tx_info->map->dm_segs[i].ds_len;
   2865 		ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr;
   2866 		ena_buf++;
   2867 	}
   2868 	tx_info->num_of_bufs = tx_info->map->dm_nsegs;
   2869 
   2870 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
   2871 	ena_tx_ctx.ena_bufs = tx_info->bufs;
   2872 	ena_tx_ctx.push_header = push_hdr;
   2873 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
   2874 	ena_tx_ctx.req_id = req_id;
   2875 	ena_tx_ctx.header_len = header_len;
   2876 
   2877 	/* Set flags and meta data */
   2878 	ena_tx_csum(&ena_tx_ctx, *mbuf);
   2879 	/* Prepare the packet's descriptors and send them to device */
   2880 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
   2881 	if (unlikely(rc != 0)) {
   2882 		device_printf(adapter->pdev, "failed to prepare tx bufs\n");
   2883 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
   2884 		goto dma_error;
   2885 	}
   2886 
   2887 	counter_enter();
   2888 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
   2889 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
   2890 	    (*mbuf)->m_pkthdr.len);
   2891 
   2892 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
   2893 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
   2894 	    (*mbuf)->m_pkthdr.len);
   2895 	counter_exit();
   2896 
   2897 	tx_info->tx_descs = nb_hw_desc;
   2898 	getbinuptime(&tx_info->timestamp);
   2899 	tx_info->print_once = true;
   2900 
   2901 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
   2902 	    tx_ring->ring_size);
   2903 
   2904 	bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0,
   2905 	    tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2906 
   2907 	return (0);
   2908 
   2909 dma_error:
   2910 	tx_info->mbuf = NULL;
   2911 	bus_dmamap_unload(adapter->sc_dmat, tx_info->map);
   2912 
   2913 	return (rc);
   2914 }
   2915 
   2916 static void
   2917 ena_start_xmit(struct ena_ring *tx_ring)
   2918 {
   2919 	struct mbuf *mbuf;
   2920 	struct ena_adapter *adapter = tx_ring->adapter;
   2921 	struct ena_com_io_sq* io_sq;
   2922 	int ena_qid;
   2923 	int acum_pkts = 0;
   2924 	int ret = 0;
   2925 	net_stat_ref_t nsr;
   2926 
   2927 	KASSERT(ENA_RING_MTX_OWNED(tx_ring));
   2928 
   2929 	/* ena_down() is waiting for completing */
   2930 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
   2931 		return;
   2932 
   2933 	if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
   2934 		return;
   2935 
   2936 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
   2937 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
   2938 
   2939 	nsr = IF_STAT_GETREF(adapter->ifp);
   2940 
   2941 	for (;;) {
   2942 		if (unlikely(!ena_com_sq_have_enough_space(io_sq, adapter->max_tx_sgl_size)))
   2943 			break;
   2944 
   2945 		if ((mbuf = pcq_get(tx_ring->br)) == NULL)
   2946 			break;
   2947 
   2948 		ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
   2949 		    " header csum flags %#jx",
   2950 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
   2951 
   2952 		if (likely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) == 0)) {
   2953 			if_statinc_ref(nsr, if_opackets);
   2954 			if_statadd_ref(nsr, if_obytes, mbuf->m_pkthdr.len);
   2955 			if (ISSET(mbuf->m_flags, M_MCAST))
   2956 				if_statinc_ref(nsr, if_omcasts);
   2957 		} else {
   2958 			if_statinc_ref(nsr, if_oerrors);
   2959 			m_freem(mbuf);
   2960 			break;
   2961 		}
   2962 
   2963 		/* ena_down is waiting for completing */
   2964 		if (unlikely((if_getdrvflags(adapter->ifp) &
   2965 		    IFF_RUNNING) == 0)) {
   2966 			IF_STAT_PUTREF(adapter->ifp);
   2967 			return;
   2968 		}
   2969 
   2970 		acum_pkts++;
   2971 
   2972 		/*
   2973 		 * If there's a BPF listener, bounce a copy of this frame
   2974 		 * to him.
   2975 		 */
   2976 		bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT);
   2977 
   2978 		if (unlikely(acum_pkts == DB_THRESHOLD)) {
   2979 			acum_pkts = 0;
   2980 			wmb();
   2981 			/* Trigger the dma engine */
   2982 			ena_com_write_sq_doorbell(io_sq);
   2983 			counter_u64_add(tx_ring->tx_stats.doorbells, 1);
   2984 		}
   2985 
   2986 	}
   2987 
   2988 	IF_STAT_PUTREF(adapter->ifp);
   2989 
   2990 	if (likely(acum_pkts != 0)) {
   2991 		wmb();
   2992 		/* Trigger the dma engine */
   2993 		ena_com_write_sq_doorbell(io_sq);
   2994 		counter_u64_add(tx_ring->tx_stats.doorbells, 1);
   2995 	}
   2996 
   2997 	if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))
   2998 		ena_tx_cleanup(tx_ring);
   2999 }
   3000 
   3001 static void
   3002 ena_deferred_mq_start(struct work *wk, void *arg)
   3003 {
   3004 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
   3005 	struct ifnet *ifp = tx_ring->adapter->ifp;
   3006 
   3007 	atomic_swap_uint(&tx_ring->task_pending, 0);
   3008 
   3009 	while (pcq_peek(tx_ring->br) != NULL &&
   3010 	    (if_getdrvflags(ifp) & IFF_RUNNING) != 0) {
   3011 		ENA_RING_MTX_LOCK(tx_ring);
   3012 		if (tx_ring->stopping) {
   3013 			ENA_RING_MTX_UNLOCK(tx_ring);
   3014 			return;
   3015 		}
   3016 		ena_start_xmit(tx_ring);
   3017 		ENA_RING_MTX_UNLOCK(tx_ring);
   3018 	}
   3019 }
   3020 
   3021 static int
   3022 ena_mq_start(struct ifnet *ifp, struct mbuf *m)
   3023 {
   3024 	struct ena_adapter *adapter = ifp->if_softc;
   3025 	struct ena_ring *tx_ring;
   3026 	struct mbuf *is_drbr_empty;
   3027 	bool ret;
   3028 	uint32_t i;
   3029 
   3030 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0))
   3031 		return (ENODEV);
   3032 
   3033 	/* Which queue to use */
   3034 	/*
   3035 	 * If everything is setup correctly, it should be the
   3036 	 * same bucket that the current CPU we're on is.
   3037 	 * It should improve performance.
   3038 	 */
   3039 	i = cpu_index(curcpu()) % adapter->num_queues;
   3040 
   3041 	tx_ring = &adapter->tx_ring[i];
   3042 
   3043 	/* Check if drbr is empty before putting packet */
   3044 	is_drbr_empty = pcq_peek(tx_ring->br);
   3045 	ret = pcq_put(tx_ring->br, m);
   3046 	if (unlikely(ret == false)) {
   3047 		m_freem(m);
   3048 		counter_u64_add(tx_ring->tx_stats.pcq_drops, 1);
   3049 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   3050 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
   3051 			    curcpu());
   3052 		return (ENOBUFS);
   3053 	}
   3054 
   3055 	if ((is_drbr_empty != NULL) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
   3056 		if (!tx_ring->stopping)
   3057 			ena_start_xmit(tx_ring);
   3058 		ENA_RING_MTX_UNLOCK(tx_ring);
   3059 	} else {
   3060 		if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0)
   3061 			workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
   3062 			    curcpu());
   3063 	}
   3064 
   3065 	return (0);
   3066 }
   3067 
   3068 #if 0
   3069 static void
   3070 ena_qflush(struct ifnet *ifp)
   3071 {
   3072 	struct ena_adapter *adapter = ifp->if_softc;
   3073 	struct ena_ring *tx_ring = adapter->tx_ring;
   3074 	int i;
   3075 
   3076 	for(i = 0; i < adapter->num_queues; ++i, ++tx_ring)
   3077 		if (!drbr_empty(ifp, tx_ring->br)) {
   3078 			ENA_RING_MTX_LOCK(tx_ring);
   3079 			drbr_flush(ifp, tx_ring->br);
   3080 			ENA_RING_MTX_UNLOCK(tx_ring);
   3081 		}
   3082 
   3083 	if_qflush(ifp);
   3084 }
   3085 #endif
   3086 
   3087 static int
   3088 ena_calc_io_queue_num(struct pci_attach_args *pa,
   3089     struct ena_adapter *adapter,
   3090     struct ena_com_dev_get_features_ctx *get_feat_ctx)
   3091 {
   3092 	int io_sq_num, io_cq_num, io_queue_num;
   3093 
   3094 	io_sq_num = get_feat_ctx->max_queues.max_sq_num;
   3095 	io_cq_num = get_feat_ctx->max_queues.max_cq_num;
   3096 
   3097 	io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
   3098 	io_queue_num = min_t(int, io_queue_num, io_sq_num);
   3099 	io_queue_num = min_t(int, io_queue_num, io_cq_num);
   3100 	/* 1 IRQ for mgmnt and 1 IRQ for each TX/RX pair */
   3101 	io_queue_num = min_t(int, io_queue_num,
   3102 	    pci_msix_count(pa->pa_pc, pa->pa_tag) - 1);
   3103 
   3104 	return (io_queue_num);
   3105 }
   3106 
   3107 static int
   3108 ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size,
   3109     uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat)
   3110 {
   3111 	uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
   3112 	uint32_t v;
   3113 	uint32_t q;
   3114 
   3115 	queue_size = min_t(uint32_t, queue_size,
   3116 	    feat->max_queues.max_cq_depth);
   3117 	queue_size = min_t(uint32_t, queue_size,
   3118 	    feat->max_queues.max_sq_depth);
   3119 
   3120 	/* round down to the nearest power of 2 */
   3121 	v = queue_size;
   3122 	while (v != 0) {
   3123 		if (powerof2(queue_size) != 0)
   3124 			break;
   3125 		v /= 2;
   3126 		q = rounddown2(queue_size, v);
   3127 		if (q != 0) {
   3128 			queue_size = q;
   3129 			break;
   3130 		}
   3131 	}
   3132 
   3133 	if (unlikely(queue_size == 0)) {
   3134 		device_printf(adapter->pdev, "Invalid queue size\n");
   3135 		return (ENA_COM_FAULT);
   3136 	}
   3137 
   3138 	*max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
   3139 	    feat->max_queues.max_packet_tx_descs);
   3140 	*max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
   3141 	    feat->max_queues.max_packet_rx_descs);
   3142 
   3143 	return (queue_size);
   3144 }
   3145 
   3146 static void
   3147 ena_rss_init_default(device_t self)
   3148 {
   3149 	struct ena_adapter *adapter = device_private(self);
   3150 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3151 	device_t dev = adapter->pdev;
   3152 	int qid, rc, i;
   3153 
   3154 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
   3155 	if (unlikely(rc != 0)) {
   3156 		device_printf(dev, "Cannot init indirect table\n");
   3157 		return;
   3158 	}
   3159 
   3160 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
   3161 		qid = i % adapter->num_queues;
   3162 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
   3163 		    ENA_IO_RXQ_IDX(qid));
   3164 		if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3165 			device_printf(dev, "Cannot fill indirect table\n");
   3166 			goto err_rss_destroy;
   3167 		}
   3168 	}
   3169 
   3170 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
   3171 	    ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
   3172 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3173 		device_printf(dev, "Cannot fill hash function\n");
   3174 		goto err_rss_destroy;
   3175 	}
   3176 
   3177 	rc = ena_com_set_default_hash_ctrl(ena_dev);
   3178 	if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) {
   3179 		device_printf(dev, "Cannot fill hash control\n");
   3180 		goto err_rss_destroy;
   3181 	}
   3182 
   3183 	adapter->rss_support = true;
   3184 	return;
   3185 
   3186 err_rss_destroy:
   3187 	ena_com_rss_destroy(ena_dev);
   3188 	adapter->rss_support = false;
   3189 	return;
   3190 }
   3191 
   3192 static void
   3193 ena_config_host_info(struct ena_com_dev *ena_dev)
   3194 {
   3195 	struct ena_admin_host_info *host_info;
   3196 	int rc;
   3197 
   3198 	/* Allocate only the host info */
   3199 	rc = ena_com_allocate_host_info(ena_dev);
   3200 	if (unlikely(rc != 0)) {
   3201 		ena_trace(ENA_ALERT, "Cannot allocate host info\n");
   3202 		return;
   3203 	}
   3204 
   3205 	host_info = ena_dev->host_attr.host_info;
   3206 
   3207 	host_info->os_type = ENA_ADMIN_OS_FREEBSD;
   3208 	host_info->kernel_ver = osreldate;
   3209 
   3210 	snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str),
   3211 	    "%d", osreldate);
   3212 	host_info->os_dist = 0;
   3213 	strncpy(host_info->os_dist_str, osrelease,
   3214 	    sizeof(host_info->os_dist_str) - 1);
   3215 
   3216 	host_info->driver_version =
   3217 		(DRV_MODULE_VER_MAJOR) |
   3218 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
   3219 		(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
   3220 
   3221 	rc = ena_com_set_host_attributes(ena_dev);
   3222 	if (unlikely(rc != 0)) {
   3223 		if (rc == EOPNOTSUPP)
   3224 			ena_trace(ENA_WARNING, "Cannot set host attributes\n");
   3225 		else
   3226 			ena_trace(ENA_ALERT, "Cannot set host attributes\n");
   3227 
   3228 		goto err;
   3229 	}
   3230 
   3231 	return;
   3232 
   3233 err:
   3234 	ena_com_delete_host_info(ena_dev);
   3235 }
   3236 
   3237 static int
   3238 ena_device_init(struct ena_adapter *adapter, device_t pdev,
   3239     struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
   3240 {
   3241 	struct ena_com_dev* ena_dev = adapter->ena_dev;
   3242 	bool readless_supported;
   3243 	uint32_t aenq_groups;
   3244 	int dma_width;
   3245 	int rc;
   3246 
   3247 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
   3248 	if (unlikely(rc != 0)) {
   3249 		device_printf(pdev, "failed to init mmio read less\n");
   3250 		return (rc);
   3251 	}
   3252 
   3253 	/*
   3254 	 * The PCIe configuration space revision id indicate if mmio reg
   3255 	 * read is disabled
   3256 	 */
   3257 	const int rev = PCI_REVISION(adapter->sc_pa.pa_class);
   3258 	readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0);
   3259 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
   3260 
   3261 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
   3262 	if (unlikely(rc != 0)) {
   3263 		device_printf(pdev, "Can not reset device\n");
   3264 		goto err_mmio_read_less;
   3265 	}
   3266 
   3267 	rc = ena_com_validate_version(ena_dev);
   3268 	if (unlikely(rc != 0)) {
   3269 		device_printf(pdev, "device version is too low\n");
   3270 		goto err_mmio_read_less;
   3271 	}
   3272 
   3273 	dma_width = ena_com_get_dma_width(ena_dev);
   3274 	if (unlikely(dma_width < 0)) {
   3275 		device_printf(pdev, "Invalid dma width value %d", dma_width);
   3276 		rc = dma_width;
   3277 		goto err_mmio_read_less;
   3278 	}
   3279 	adapter->dma_width = dma_width;
   3280 
   3281 	/* ENA admin level init */
   3282 	rc = ena_com_admin_init(ena_dev, &aenq_handlers, true);
   3283 	if (unlikely(rc != 0)) {
   3284 		device_printf(pdev,
   3285 		    "Can not initialize ena admin queue with device\n");
   3286 		goto err_mmio_read_less;
   3287 	}
   3288 
   3289 	/*
   3290 	 * To enable the msix interrupts the driver needs to know the number
   3291 	 * of queues. So the driver uses polling mode to retrieve this
   3292 	 * information
   3293 	 */
   3294 	ena_com_set_admin_polling_mode(ena_dev, true);
   3295 
   3296 	ena_config_host_info(ena_dev);
   3297 
   3298 	/* Get Device Attributes */
   3299 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
   3300 	if (unlikely(rc != 0)) {
   3301 		device_printf(pdev,
   3302 		    "Cannot get attribute for ena device rc: %d\n", rc);
   3303 		goto err_admin_init;
   3304 	}
   3305 
   3306 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE);
   3307 
   3308 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
   3309 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
   3310 	if (unlikely(rc != 0)) {
   3311 		device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc);
   3312 		goto err_admin_init;
   3313 	}
   3314 
   3315 	*wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
   3316 
   3317 	return (0);
   3318 
   3319 err_admin_init:
   3320 	ena_com_delete_host_info(ena_dev);
   3321 	ena_com_admin_destroy(ena_dev);
   3322 err_mmio_read_less:
   3323 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3324 
   3325 	return (rc);
   3326 }
   3327 
   3328 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
   3329     int io_vectors)
   3330 {
   3331 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3332 	int rc;
   3333 
   3334 	rc = ena_enable_msix(adapter);
   3335 	if (unlikely(rc != 0)) {
   3336 		device_printf(adapter->pdev, "Error with MSI-X enablement\n");
   3337 		return (rc);
   3338 	}
   3339 
   3340 	rc = ena_request_mgmnt_irq(adapter);
   3341 	if (unlikely(rc != 0)) {
   3342 		device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n");
   3343 		goto err_disable_msix;
   3344 	}
   3345 
   3346 	ena_com_set_admin_polling_mode(ena_dev, false);
   3347 
   3348 	ena_com_admin_aenq_enable(ena_dev);
   3349 
   3350 	return (0);
   3351 
   3352 err_disable_msix:
   3353 	ena_disable_msix(adapter);
   3354 
   3355 	return (rc);
   3356 }
   3357 
   3358 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
   3359 static void ena_keep_alive_wd(void *adapter_data,
   3360     struct ena_admin_aenq_entry *aenq_e)
   3361 {
   3362 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
   3363 	struct ena_admin_aenq_keep_alive_desc *desc;
   3364 	uint64_t rx_drops, old;
   3365 
   3366 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
   3367 
   3368 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
   3369 	old = adapter->hw_stats.rx_drops.ev_count;
   3370 	if (rx_drops > old) {
   3371 		counter_u64_add(adapter->hw_stats.rx_drops, rx_drops - old);
   3372 		if_statadd(adapter->ifp, if_iqdrops, rx_drops - old);
   3373 	}
   3374 
   3375 	atomic_store_release(&adapter->keep_alive_timestamp, getsbinuptime());
   3376 }
   3377 
   3378 /* Check for keep alive expiration */
   3379 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
   3380 {
   3381 	sbintime_t timestamp, time;
   3382 
   3383 	if (adapter->wd_active == 0)
   3384 		return;
   3385 
   3386 	if (likely(adapter->keep_alive_timeout == 0))
   3387 		return;
   3388 
   3389 	timestamp = atomic_load_acquire(&adapter->keep_alive_timestamp);
   3390 
   3391 	time = getsbinuptime() - timestamp;
   3392 	if (unlikely(time > adapter->keep_alive_timeout)) {
   3393 		device_printf(adapter->pdev,
   3394 		    "Keep alive watchdog timeout.\n");
   3395 		counter_u64_add(adapter->dev_stats.wd_expired, 1);
   3396 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
   3397 		ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
   3398 	}
   3399 }
   3400 
   3401 /* Check if admin queue is enabled */
   3402 static void check_for_admin_com_state(struct ena_adapter *adapter)
   3403 {
   3404 	if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
   3405 	    false)) {
   3406 		device_printf(adapter->pdev,
   3407 		    "ENA admin queue is not in running state!\n");
   3408 		counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
   3409 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
   3410 		ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
   3411 	}
   3412 }
   3413 
   3414 static int
   3415 check_missing_comp_in_queue(struct ena_adapter *adapter,
   3416     struct ena_ring *tx_ring)
   3417 {
   3418 	struct bintime curtime, time;
   3419 	struct ena_tx_buffer *tx_buf;
   3420 	uint32_t missed_tx = 0;
   3421 	int i;
   3422 
   3423 	getbinuptime(&curtime);
   3424 
   3425 	for (i = 0; i < tx_ring->ring_size; i++) {
   3426 		tx_buf = &tx_ring->tx_buffer_info[i];
   3427 
   3428 		if (bintime_isset(&tx_buf->timestamp) == 0)
   3429 			continue;
   3430 
   3431 		time = curtime;
   3432 		bintime_sub(&time, &tx_buf->timestamp);
   3433 
   3434 		/* Check again if packet is still waiting */
   3435 		if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) {
   3436 
   3437 			if (!tx_buf->print_once)
   3438 				ena_trace(ENA_WARNING, "Found a Tx that wasn't "
   3439 				    "completed on time, qid %d, index %d.\n",
   3440 				    tx_ring->qid, i);
   3441 
   3442 			tx_buf->print_once = true;
   3443 			missed_tx++;
   3444 			counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1);
   3445 
   3446 			if (unlikely(missed_tx >
   3447 			    adapter->missing_tx_threshold)) {
   3448 				device_printf(adapter->pdev,
   3449 				    "The number of lost tx completion "
   3450 				    "is above the threshold (%d > %d). "
   3451 				    "Reset the device\n",
   3452 				    missed_tx, adapter->missing_tx_threshold);
   3453 				adapter->reset_reason =
   3454 				    ENA_REGS_RESET_MISS_TX_CMPL;
   3455 				ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET,
   3456 				    adapter);
   3457 				return (EIO);
   3458 			}
   3459 		}
   3460 	}
   3461 
   3462 	return (0);
   3463 }
   3464 
   3465 /*
   3466  * Check for TX which were not completed on time.
   3467  * Timeout is defined by "missing_tx_timeout".
   3468  * Reset will be performed if number of incompleted
   3469  * transactions exceeds "missing_tx_threshold".
   3470  */
   3471 static void
   3472 check_for_missing_tx_completions(struct ena_adapter *adapter)
   3473 {
   3474 	struct ena_ring *tx_ring;
   3475 	int i, budget, rc;
   3476 
   3477 	/* Make sure the driver doesn't turn the device in other process */
   3478 	rmb();
   3479 
   3480 	if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter))
   3481 		return;
   3482 
   3483 	if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))
   3484 		return;
   3485 
   3486 	if (adapter->missing_tx_timeout == 0)
   3487 		return;
   3488 
   3489 	budget = adapter->missing_tx_max_queues;
   3490 
   3491 	for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) {
   3492 		tx_ring = &adapter->tx_ring[i];
   3493 
   3494 		rc = check_missing_comp_in_queue(adapter, tx_ring);
   3495 		if (unlikely(rc != 0))
   3496 			return;
   3497 
   3498 		budget--;
   3499 		if (budget == 0) {
   3500 			i++;
   3501 			break;
   3502 		}
   3503 	}
   3504 
   3505 	adapter->next_monitored_tx_qid = i % adapter->num_queues;
   3506 }
   3507 
   3508 /* trigger deferred rx cleanup after 2 consecutive detections */
   3509 #define EMPTY_RX_REFILL 2
   3510 /* For the rare case where the device runs out of Rx descriptors and the
   3511  * msix handler failed to refill new Rx descriptors (due to a lack of memory
   3512  * for example).
   3513  * This case will lead to a deadlock:
   3514  * The device won't send interrupts since all the new Rx packets will be dropped
   3515  * The msix handler won't allocate new Rx descriptors so the device won't be
   3516  * able to send new packets.
   3517  *
   3518  * When such a situation is detected - execute rx cleanup task in another thread
   3519  */
   3520 static void
   3521 check_for_empty_rx_ring(struct ena_adapter *adapter)
   3522 {
   3523 	struct ena_ring *rx_ring;
   3524 	int i, refill_required;
   3525 
   3526 	if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter))
   3527 		return;
   3528 
   3529 	if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))
   3530 		return;
   3531 
   3532 	for (i = 0; i < adapter->num_queues; i++) {
   3533 		rx_ring = &adapter->rx_ring[i];
   3534 
   3535 		refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
   3536 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
   3537 			rx_ring->empty_rx_queue++;
   3538 
   3539 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL)	{
   3540 				counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
   3541 				    1);
   3542 
   3543 				device_printf(adapter->pdev,
   3544 				    "trigger refill for ring %d\n", i);
   3545 
   3546 				ENA_RING_MTX_LOCK(rx_ring);
   3547 				if (rx_ring->stopping) {
   3548 					ENA_RING_MTX_UNLOCK(rx_ring);
   3549 					return;
   3550 				}
   3551 				if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0)
   3552 					workqueue_enqueue(rx_ring->cleanup_tq,
   3553 					    &rx_ring->cleanup_task, curcpu());
   3554 				ENA_RING_MTX_UNLOCK(rx_ring);
   3555 				rx_ring->empty_rx_queue = 0;
   3556 			}
   3557 		} else {
   3558 			rx_ring->empty_rx_queue = 0;
   3559 		}
   3560 	}
   3561 }
   3562 
   3563 static void
   3564 ena_timer_service(void *data)
   3565 {
   3566 	struct ena_adapter *adapter = (struct ena_adapter *)data;
   3567 	struct ena_admin_host_info *host_info =
   3568 	    adapter->ena_dev->host_attr.host_info;
   3569 
   3570 	check_for_missing_keep_alive(adapter);
   3571 
   3572 	check_for_admin_com_state(adapter);
   3573 
   3574 	check_for_missing_tx_completions(adapter);
   3575 
   3576 	check_for_empty_rx_ring(adapter);
   3577 
   3578 	if (host_info != NULL)
   3579 		ena_update_host_info(host_info, adapter->ifp);
   3580 
   3581 	if (unlikely(ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))) {
   3582 		device_printf(adapter->pdev, "Trigger reset is on\n");
   3583 		workqueue_enqueue(adapter->reset_tq, &adapter->reset_task,
   3584 		    curcpu());
   3585 		return;
   3586 	}
   3587 
   3588 	/*
   3589 	 * Schedule another timeout one second from now.
   3590 	 */
   3591 	if (likely(ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)))
   3592 		callout_schedule(&adapter->timer_service, hz);
   3593 }
   3594 
   3595 static void
   3596 ena_reset_task(struct work *wk, void *arg)
   3597 {
   3598 	struct ena_com_dev_get_features_ctx get_feat_ctx;
   3599 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
   3600 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3601 	bool dev_up;
   3602 	int rc;
   3603 
   3604 	if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))) {
   3605 		device_printf(adapter->pdev,
   3606 		    "device reset scheduled but trigger_reset is off\n");
   3607 		return;
   3608 	}
   3609 
   3610 	ENA_CORE_MTX_LOCK(adapter);
   3611 
   3612 	callout_halt(&adapter->timer_service, NULL);
   3613 
   3614 	dev_up = ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter);
   3615 
   3616 	ena_com_set_admin_running_state(ena_dev, false);
   3617 	ena_down(adapter);
   3618 	ena_free_mgmnt_irq(adapter);
   3619 	ena_disable_msix(adapter);
   3620 	ena_com_abort_admin_commands(ena_dev);
   3621 	ena_com_wait_for_abort_completion(ena_dev);
   3622 	ena_com_admin_destroy(ena_dev);
   3623 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3624 
   3625 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
   3626 	ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
   3627 
   3628 	/* Finished destroy part. Restart the device */
   3629 	rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx,
   3630 	    &adapter->wd_active);
   3631 	if (unlikely(rc != 0)) {
   3632 		device_printf(adapter->pdev,
   3633 		    "ENA device init failed! (err: %d)\n", rc);
   3634 		goto err_dev_free;
   3635 	}
   3636 
   3637 	/* XXX dealloc and realloc MSI-X, probably a waste */
   3638 	rc = ena_enable_msix_and_set_admin_interrupts(adapter,
   3639 	    adapter->num_queues);
   3640 	if (unlikely(rc != 0)) {
   3641 		device_printf(adapter->pdev, "Enable MSI-X failed\n");
   3642 		goto err_com_free;
   3643 	}
   3644 
   3645 	/* If the interface was up before the reset bring it up */
   3646 	if (dev_up) {
   3647 		rc = ena_up(adapter);
   3648 		if (unlikely(rc != 0)) {
   3649 			device_printf(adapter->pdev,
   3650 			    "Failed to create I/O queues\n");
   3651 			goto err_msix_free;
   3652 		}
   3653 	}
   3654 
   3655 	ENA_CORE_MTX_UNLOCK(adapter);
   3656 
   3657 	return;
   3658 
   3659 err_msix_free:
   3660 	ena_free_mgmnt_irq(adapter);
   3661 	ena_disable_msix(adapter);
   3662 err_com_free:
   3663 	ena_com_admin_destroy(ena_dev);
   3664 err_dev_free:
   3665 	device_printf(adapter->pdev, "ENA reset failed!\n");
   3666 	ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEVICE_RUNNING, adapter);
   3667 	ENA_CORE_MTX_UNLOCK(adapter);
   3668 }
   3669 
   3670 /**
   3671  * ena_attach - Device Initialization Routine
   3672  * @pdev: device information struct
   3673  *
   3674  * Returns 0 on success, otherwise on failure.
   3675  *
   3676  * ena_attach initializes an adapter identified by a device structure.
   3677  * The OS initialization, configuring of the adapter private structure,
   3678  * and a hardware reset occur.
   3679  **/
   3680 static void
   3681 ena_attach(device_t parent, device_t self, void *aux)
   3682 {
   3683 	struct pci_attach_args *pa = aux;
   3684 	struct ena_com_dev_get_features_ctx get_feat_ctx;
   3685 	static int version_printed;
   3686 	struct ena_adapter *adapter = device_private(self);
   3687 	struct ena_com_dev *ena_dev = NULL;
   3688 	uint16_t tx_sgl_size = 0;
   3689 	uint16_t rx_sgl_size = 0;
   3690 	pcireg_t reg;
   3691 	int io_queue_num;
   3692 	int queue_size;
   3693 	int rc;
   3694 
   3695 	adapter->pdev = self;
   3696 	adapter->ifp = &adapter->sc_ec.ec_if;
   3697 	adapter->sc_pa = *pa;	/* used after attach for adapter reset too */
   3698 
   3699 	if (pci_dma64_available(pa))
   3700 		adapter->sc_dmat = pa->pa_dmat64;
   3701 	else
   3702 		adapter->sc_dmat = pa->pa_dmat;
   3703 
   3704 	pci_aprint_devinfo(pa, NULL);
   3705 
   3706 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   3707 	if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) {
   3708 		reg |= PCI_COMMAND_MASTER_ENABLE;
   3709         	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg);
   3710 	}
   3711 
   3712 	mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
   3713 
   3714 	/* Set up the timer service */
   3715 	adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
   3716 	adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
   3717 	adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
   3718 	adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
   3719 
   3720 	if (version_printed++ == 0)
   3721 		device_printf(parent, "%s\n", ena_version);
   3722 
   3723 	rc = ena_allocate_pci_resources(pa, adapter);
   3724 	if (unlikely(rc != 0)) {
   3725 		device_printf(parent, "PCI resource allocation failed!\n");
   3726 		ena_free_pci_resources(adapter);
   3727 		return;
   3728 	}
   3729 
   3730 	/* Allocate memory for ena_dev structure */
   3731 	ena_dev = kmem_zalloc(sizeof(struct ena_com_dev), KM_SLEEP);
   3732 
   3733 	adapter->ena_dev = ena_dev;
   3734 	ena_dev->dmadev = self;
   3735 	ena_dev->bus = kmem_zalloc(sizeof(struct ena_bus), KM_SLEEP);
   3736 
   3737 	/* Store register resources */
   3738 	((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag;
   3739 	((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle;
   3740 
   3741 	ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
   3742 
   3743 	/* Device initialization */
   3744 	rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active);
   3745 	if (unlikely(rc != 0)) {
   3746 		device_printf(self, "ENA device init failed! (err: %d)\n", rc);
   3747 		rc = ENXIO;
   3748 		goto err_bus_free;
   3749 	}
   3750 
   3751 	adapter->keep_alive_timestamp = getsbinuptime();
   3752 
   3753 	adapter->tx_offload_cap = get_feat_ctx.offload.tx;
   3754 
   3755 	/* Set for sure that interface is not up */
   3756 	ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEV_UP, adapter);
   3757 
   3758 	memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
   3759 	    ETHER_ADDR_LEN);
   3760 
   3761 	/* calculate IO queue number to create */
   3762 	io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx);
   3763 
   3764 	ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n",
   3765 	    io_queue_num);
   3766 	adapter->num_queues = io_queue_num;
   3767 
   3768 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
   3769 
   3770 	/* calculatre ring sizes */
   3771 	queue_size = ena_calc_queue_size(adapter,&tx_sgl_size,
   3772 	    &rx_sgl_size, &get_feat_ctx);
   3773 	if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) {
   3774 		rc = ENA_COM_FAULT;
   3775 		goto err_com_free;
   3776 	}
   3777 
   3778 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
   3779 
   3780 	adapter->tx_ring_size = queue_size;
   3781 	adapter->rx_ring_size = queue_size;
   3782 
   3783 	adapter->max_tx_sgl_size = tx_sgl_size;
   3784 	adapter->max_rx_sgl_size = rx_sgl_size;
   3785 
   3786 #if 0
   3787 	/* set up dma tags for rx and tx buffers */
   3788 	rc = ena_setup_tx_dma_tag(adapter);
   3789 	if (unlikely(rc != 0)) {
   3790 		device_printf(self, "Failed to create TX DMA tag\n");
   3791 		goto err_com_free;
   3792 	}
   3793 
   3794 	rc = ena_setup_rx_dma_tag(adapter);
   3795 	if (unlikely(rc != 0)) {
   3796 		device_printf(self, "Failed to create RX DMA tag\n");
   3797 		goto err_tx_tag_free;
   3798 	}
   3799 #endif
   3800 
   3801 	/* initialize rings basic information */
   3802 	device_printf(self, "initialize %d io queues\n", io_queue_num);
   3803 	ena_init_io_rings(adapter);
   3804 
   3805 	/* setup network interface */
   3806 	rc = ena_setup_ifnet(self, adapter, &get_feat_ctx);
   3807 	if (unlikely(rc != 0)) {
   3808 		device_printf(self, "Error with network interface setup\n");
   3809 		goto err_io_free;
   3810 	}
   3811 
   3812 	rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
   3813 	if (unlikely(rc != 0)) {
   3814 		device_printf(self,
   3815 		    "Failed to enable and set the admin interrupts\n");
   3816 		goto err_ifp_free;
   3817 	}
   3818 
   3819 	callout_init(&adapter->timer_service, CALLOUT_MPSAFE);
   3820 	callout_setfunc(&adapter->timer_service, ena_timer_service, adapter);
   3821 
   3822 	/* Initialize reset task queue */
   3823 	rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq",
   3824 	    ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_MPSAFE);
   3825 	if (unlikely(rc != 0)) {
   3826 		ena_trace(ENA_ALERT,
   3827 		    "Unable to create workqueue for reset task\n");
   3828 		goto err_ifp_free;
   3829 	}
   3830 
   3831 	/* Initialize statistics */
   3832 	ena_alloc_counters_dev(adapter, &adapter->dev_stats, io_queue_num);
   3833 	ena_alloc_counters_hwstats(adapter, &adapter->hw_stats, io_queue_num);
   3834 #if 0
   3835 	ena_sysctl_add_nodes(adapter);
   3836 #endif
   3837 
   3838 	config_interrupts(self, ena_rss_init_default);
   3839 
   3840 	/* Tell the stack that the interface is not active */
   3841 	if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING);
   3842 	ena_set_stopping_flag(adapter, false);
   3843 
   3844 	ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEVICE_RUNNING, adapter);
   3845 	return;
   3846 
   3847 err_ifp_free:
   3848 	if_detach(adapter->ifp);
   3849 err_io_free:
   3850 	ena_free_all_io_rings_resources(adapter);
   3851 #if 0
   3852 	ena_free_rx_dma_tag(adapter);
   3853 err_tx_tag_free:
   3854 	ena_free_tx_dma_tag(adapter);
   3855 #endif
   3856 err_com_free:
   3857 	ena_com_admin_destroy(ena_dev);
   3858 	ena_com_delete_host_info(ena_dev);
   3859 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3860 err_bus_free:
   3861 	kmem_free(ena_dev->bus, sizeof(struct ena_bus));
   3862 	kmem_free(ena_dev, sizeof(struct ena_com_dev));
   3863 	ena_free_pci_resources(adapter);
   3864 }
   3865 
   3866 /**
   3867  * ena_detach - Device Removal Routine
   3868  * @pdev: device information struct
   3869  *
   3870  * ena_detach is called by the device subsystem to alert the driver
   3871  * that it should release a PCI device.
   3872  **/
   3873 static int
   3874 ena_detach(device_t pdev, int flags)
   3875 {
   3876 	struct ena_adapter *adapter = device_private(pdev);
   3877 	struct ena_com_dev *ena_dev = adapter->ena_dev;
   3878 #if 0
   3879 	int rc;
   3880 #endif
   3881 
   3882 	/* Make sure VLANS are not using driver */
   3883 	if (VLAN_ATTACHED(&adapter->sc_ec)) {
   3884 		device_printf(adapter->pdev ,"VLAN is in use, detach first\n");
   3885 		return (EBUSY);
   3886 	}
   3887 
   3888 	ENA_CORE_MTX_LOCK(adapter);
   3889 	ena_down(adapter);
   3890 	ENA_CORE_MTX_UNLOCK(adapter);
   3891 
   3892 	/* Free reset task and callout */
   3893 	callout_halt(&adapter->timer_service, NULL);
   3894 	callout_destroy(&adapter->timer_service);
   3895 	workqueue_wait(adapter->reset_tq, &adapter->reset_task);
   3896 	workqueue_destroy(adapter->reset_tq);
   3897 	adapter->reset_tq = NULL;
   3898 
   3899 	if (adapter->ifp != NULL) {
   3900 		ether_ifdetach(adapter->ifp);
   3901 		if_detach(adapter->ifp);
   3902 	}
   3903 	ifmedia_fini(&adapter->media);
   3904 
   3905 	ena_free_all_io_rings_resources(adapter);
   3906 
   3907 	ena_free_counters((struct evcnt *)&adapter->hw_stats,
   3908 	    sizeof(struct ena_hw_stats),
   3909 	    offsetof(struct ena_hw_stats, rx_packets));
   3910 	ena_free_counters((struct evcnt *)&adapter->dev_stats,
   3911 	    sizeof(struct ena_stats_dev),
   3912             offsetof(struct ena_stats_dev, wd_expired));
   3913 
   3914 	if (likely(adapter->rss_support))
   3915 		ena_com_rss_destroy(ena_dev);
   3916 
   3917 #if 0
   3918 	rc = ena_free_rx_dma_tag(adapter);
   3919 	if (unlikely(rc != 0))
   3920 		device_printf(adapter->pdev,
   3921 		    "Unmapped RX DMA tag associations\n");
   3922 
   3923 	rc = ena_free_tx_dma_tag(adapter);
   3924 	if (unlikely(rc != 0))
   3925 		device_printf(adapter->pdev,
   3926 		    "Unmapped TX DMA tag associations\n");
   3927 #endif
   3928 
   3929 	/* Reset the device only if the device is running. */
   3930 	if (ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter))
   3931 		ena_com_dev_reset(ena_dev, adapter->reset_reason);
   3932 
   3933 	ena_com_delete_host_info(ena_dev);
   3934 
   3935 	ena_free_irqs(adapter);
   3936 
   3937 	ena_com_abort_admin_commands(ena_dev);
   3938 
   3939 	ena_com_wait_for_abort_completion(ena_dev);
   3940 
   3941 	ena_com_admin_destroy(ena_dev);
   3942 
   3943 	ena_com_mmio_reg_read_request_destroy(ena_dev);
   3944 
   3945 	ena_free_pci_resources(adapter);
   3946 
   3947 	mutex_destroy(&adapter->global_mtx);
   3948 
   3949 	if (ena_dev->bus != NULL)
   3950 		kmem_free(ena_dev->bus, sizeof(struct ena_bus));
   3951 
   3952 	if (ena_dev != NULL)
   3953 		kmem_free(ena_dev, sizeof(struct ena_com_dev));
   3954 
   3955 	return 0;
   3956 }
   3957 
   3958 /******************************************************************************
   3959  ******************************** AENQ Handlers *******************************
   3960  *****************************************************************************/
   3961 /**
   3962  * ena_update_on_link_change:
   3963  * Notify the network interface about the change in link status
   3964  **/
   3965 static void
   3966 ena_update_on_link_change(void *adapter_data,
   3967     struct ena_admin_aenq_entry *aenq_e)
   3968 {
   3969 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
   3970 	struct ena_admin_aenq_link_change_desc *aenq_desc;
   3971 	int status;
   3972 	struct ifnet *ifp;
   3973 
   3974 	aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
   3975 	ifp = adapter->ifp;
   3976 	status = aenq_desc->flags &
   3977 	    ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
   3978 
   3979 	if (status != 0) {
   3980 		device_printf(adapter->pdev, "link is UP\n");
   3981 		ENA_FLAG_SET_ATOMIC(ENA_FLAG_LINK_UP, adapter);
   3982 		if_link_state_change(ifp, LINK_STATE_UP);
   3983 	} else {
   3984 		device_printf(adapter->pdev, "link is DOWN\n");
   3985 		ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_LINK_UP, adapter);
   3986 		if_link_state_change(ifp, LINK_STATE_DOWN);
   3987 	}
   3988 }
   3989 
   3990 /**
   3991  * This handler will called for unknown event group or unimplemented handlers
   3992  **/
   3993 static void
   3994 unimplemented_aenq_handler(void *data,
   3995     struct ena_admin_aenq_entry *aenq_e)
   3996 {
   3997 	return;
   3998 }
   3999 
   4000 static struct ena_aenq_handlers aenq_handlers = {
   4001     .handlers = {
   4002 	    [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
   4003 	    [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
   4004     },
   4005     .unimplemented_handler = unimplemented_aenq_handler
   4006 };
   4007 
   4008 #ifdef __FreeBSD__
   4009 /*********************************************************************
   4010  *  FreeBSD Device Interface Entry Points
   4011  *********************************************************************/
   4012 
   4013 static device_method_t ena_methods[] = {
   4014     /* Device interface */
   4015     DEVMETHOD(device_probe, ena_probe),
   4016     DEVMETHOD(device_attach, ena_attach),
   4017     DEVMETHOD(device_detach, ena_detach),
   4018     DEVMETHOD_END
   4019 };
   4020 
   4021 static driver_t ena_driver = {
   4022     "ena", ena_methods, sizeof(struct ena_adapter),
   4023 };
   4024 
   4025 devclass_t ena_devclass;
   4026 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
   4027 MODULE_DEPEND(ena, pci, 1, 1, 1);
   4028 MODULE_DEPEND(ena, ether, 1, 1, 1);
   4029 
   4030 /*********************************************************************/
   4031 #endif /* __FreeBSD__ */
   4032 
   4033 #ifdef __NetBSD__
   4034 CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach,
   4035 	ena_detach, NULL);
   4036 #endif /* __NetBSD */
   4037