if_et.c revision 1.16.2.1 1 /* $NetBSD: if_et.c,v 1.16.2.1 2018/07/28 04:37:46 pgoyette Exp $ */
2 /* $OpenBSD: if_et.c,v 1.11 2008/06/08 06:18:07 jsg Exp $ */
3 /*
4 * Copyright (c) 2007 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Sepherosa Ziehau <sepherosa (at) gmail.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: if_et.c,v 1.16.2.1 2018/07/28 04:37:46 pgoyette Exp $");
41
42 #include "opt_inet.h"
43 #include "vlan.h"
44
45 #include <sys/param.h>
46 #include <sys/endian.h>
47 #include <sys/systm.h>
48 #include <sys/types.h>
49 #include <sys/sockio.h>
50 #include <sys/mbuf.h>
51 #include <sys/queue.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/socket.h>
56
57 #include <sys/bus.h>
58
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 #include <net/if_arp.h>
64
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72
73 #include <net/bpf.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81
82 #include <dev/pci/if_etreg.h>
83
84 int et_match(device_t, cfdata_t, void *);
85 void et_attach(device_t, device_t, void *);
86 int et_detach(device_t, int flags);
87 int et_shutdown(device_t);
88
89 int et_miibus_readreg(device_t, int, int);
90 void et_miibus_writereg(device_t, int, int, int);
91 void et_miibus_statchg(struct ifnet *);
92
93 int et_init(struct ifnet *ifp);
94 int et_ioctl(struct ifnet *, u_long, void *);
95 void et_start(struct ifnet *);
96 void et_watchdog(struct ifnet *);
97
98 int et_intr(void *);
99 void et_enable_intrs(struct et_softc *, uint32_t);
100 void et_disable_intrs(struct et_softc *);
101 void et_rxeof(struct et_softc *);
102 void et_txeof(struct et_softc *);
103 void et_txtick(void *);
104
105 int et_dma_alloc(struct et_softc *);
106 void et_dma_free(struct et_softc *);
107 int et_dma_mem_create(struct et_softc *, bus_size_t,
108 void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
109 void et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
110 int et_dma_mbuf_create(struct et_softc *);
111 void et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
112
113 int et_init_tx_ring(struct et_softc *);
114 int et_init_rx_ring(struct et_softc *);
115 void et_free_tx_ring(struct et_softc *);
116 void et_free_rx_ring(struct et_softc *);
117 int et_encap(struct et_softc *, struct mbuf **);
118 int et_newbuf(struct et_rxbuf_data *, int, int, int);
119 int et_newbuf_cluster(struct et_rxbuf_data *, int, int);
120 int et_newbuf_hdr(struct et_rxbuf_data *, int, int);
121
122 void et_stop(struct et_softc *);
123 int et_chip_init(struct et_softc *);
124 void et_chip_attach(struct et_softc *);
125 void et_init_mac(struct et_softc *);
126 void et_init_rxmac(struct et_softc *);
127 void et_init_txmac(struct et_softc *);
128 int et_init_rxdma(struct et_softc *);
129 int et_init_txdma(struct et_softc *);
130 int et_start_rxdma(struct et_softc *);
131 int et_start_txdma(struct et_softc *);
132 int et_stop_rxdma(struct et_softc *);
133 int et_stop_txdma(struct et_softc *);
134 int et_enable_txrx(struct et_softc *);
135 void et_reset(struct et_softc *);
136 int et_bus_config(struct et_softc *);
137 void et_get_eaddr(struct et_softc *, uint8_t[]);
138 void et_setmulti(struct et_softc *);
139 void et_tick(void *);
140
141 static int et_rx_intr_npkts = 32;
142 static int et_rx_intr_delay = 20; /* x10 usec */
143 static int et_tx_intr_nsegs = 128;
144 static uint32_t et_timer = 1000 * 1000 * 1000; /* nanosec */
145
146 struct et_bsize {
147 int bufsize;
148 et_newbuf_t newbuf;
149 };
150
151 static const struct et_bsize et_bufsize[ET_RX_NRING] = {
152 { .bufsize = 0, .newbuf = et_newbuf_hdr },
153 { .bufsize = 0, .newbuf = et_newbuf_cluster },
154 };
155
156 const struct et_product {
157 pci_vendor_id_t vendor;
158 pci_product_id_t product;
159 } et_devices[] = {
160 { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310 },
161 { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1301 }
162 };
163
164 CFATTACH_DECL_NEW(et, sizeof(struct et_softc), et_match, et_attach, et_detach,
165 NULL);
166
167 int
168 et_match(device_t dev, cfdata_t match, void *aux)
169 {
170 struct pci_attach_args *pa = aux;
171 const struct et_product *ep;
172 int i;
173
174 for (i = 0; i < __arraycount(et_devices); i++) {
175 ep = &et_devices[i];
176 if (PCI_VENDOR(pa->pa_id) == ep->vendor &&
177 PCI_PRODUCT(pa->pa_id) == ep->product)
178 return 1;
179 }
180 return 0;
181 }
182
183 void
184 et_attach(device_t parent, device_t self, void *aux)
185 {
186 struct et_softc *sc = device_private(self);
187 struct pci_attach_args *pa = aux;
188 pci_chipset_tag_t pc = pa->pa_pc;
189 pci_intr_handle_t ih;
190 const char *intrstr;
191 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
192 pcireg_t memtype;
193 int error;
194 char intrbuf[PCI_INTRSTR_LEN];
195
196 pci_aprint_devinfo(pa, "Ethernet controller");
197
198 sc->sc_dev = self;
199
200 /*
201 * Initialize tunables
202 */
203 sc->sc_rx_intr_npkts = et_rx_intr_npkts;
204 sc->sc_rx_intr_delay = et_rx_intr_delay;
205 sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
206 sc->sc_timer = et_timer;
207
208 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
209 if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
210 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
211 aprint_error_dev(self, "could not map mem space\n");
212 return;
213 }
214
215 if (pci_intr_map(pa, &ih) != 0) {
216 aprint_error_dev(self, "could not map interrupt\n");
217 goto fail;
218 }
219
220 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
221 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, et_intr, sc);
222 if (sc->sc_irq_handle == NULL) {
223 aprint_error_dev(self, "could not establish interrupt");
224 if (intrstr != NULL)
225 aprint_error(" at %s", intrstr);
226 aprint_error("\n");
227 goto fail;
228 }
229 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
230
231 sc->sc_dmat = pa->pa_dmat;
232 sc->sc_pct = pa->pa_pc;
233 sc->sc_pcitag = pa->pa_tag;
234
235 error = et_bus_config(sc);
236 if (error)
237 goto fail;
238
239 et_get_eaddr(sc, sc->sc_enaddr);
240
241 aprint_normal_dev(self, "Ethernet address %s\n",
242 ether_sprintf(sc->sc_enaddr));
243
244 CSR_WRITE_4(sc, ET_PM,
245 ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
246
247 et_reset(sc);
248
249 et_disable_intrs(sc);
250
251 error = et_dma_alloc(sc);
252 if (error)
253 goto fail;
254
255 ifp->if_softc = sc;
256 ifp->if_mtu = ETHERMTU;
257 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
258 ifp->if_init = et_init;
259 ifp->if_ioctl = et_ioctl;
260 ifp->if_start = et_start;
261 ifp->if_watchdog = et_watchdog;
262 IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
263 IFQ_SET_READY(&ifp->if_snd);
264 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
265
266 et_chip_attach(sc);
267
268 sc->sc_miibus.mii_ifp = ifp;
269 sc->sc_miibus.mii_readreg = et_miibus_readreg;
270 sc->sc_miibus.mii_writereg = et_miibus_writereg;
271 sc->sc_miibus.mii_statchg = et_miibus_statchg;
272
273 sc->sc_ethercom.ec_mii = &sc->sc_miibus;
274 ifmedia_init(&sc->sc_miibus.mii_media, 0, ether_mediachange,
275 ether_mediastatus);
276 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
277 MII_OFFSET_ANY, 0);
278 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
279 aprint_error_dev(self, "no PHY found!\n");
280 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
281 0, NULL);
282 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
283 } else
284 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
285
286 if_attach(ifp);
287 if_deferred_start_init(ifp, NULL);
288 ether_ifattach(ifp, sc->sc_enaddr);
289
290 callout_init(&sc->sc_tick, 0);
291 callout_setfunc(&sc->sc_tick, et_tick, sc);
292 callout_init(&sc->sc_txtick, 0);
293 callout_setfunc(&sc->sc_txtick, et_txtick, sc);
294
295 if (pmf_device_register(self, NULL, NULL))
296 pmf_class_network_register(self, ifp);
297 else
298 aprint_error_dev(self, "couldn't establish power handler\n");
299
300 return;
301
302 fail:
303 et_dma_free(sc);
304 if (sc->sc_irq_handle != NULL) {
305 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
306 sc->sc_irq_handle = NULL;
307 }
308 if (sc->sc_mem_size) {
309 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
310 sc->sc_mem_size = 0;
311 }
312 }
313
314 int
315 et_detach(device_t self, int flags)
316 {
317 struct et_softc *sc = device_private(self);
318 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
319 int s;
320
321 pmf_device_deregister(self);
322 s = splnet();
323 et_stop(sc);
324 splx(s);
325
326 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
327
328 /* Delete all remaining media. */
329 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
330
331 ether_ifdetach(ifp);
332 if_detach(ifp);
333 et_dma_free(sc);
334
335 if (sc->sc_irq_handle != NULL) {
336 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
337 sc->sc_irq_handle = NULL;
338 }
339
340 if (sc->sc_mem_size) {
341 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
342 sc->sc_mem_size = 0;
343 }
344
345 return 0;
346 }
347
348 int
349 et_shutdown(device_t self)
350 {
351 struct et_softc *sc = device_private(self);
352 int s;
353
354 s = splnet();
355 et_stop(sc);
356 splx(s);
357
358 return 0;
359 }
360
361 int
362 et_miibus_readreg(device_t dev, int phy, int reg)
363 {
364 struct et_softc *sc = device_private(dev);
365 uint32_t val;
366 int i, ret;
367
368 /* Stop any pending operations */
369 CSR_WRITE_4(sc, ET_MII_CMD, 0);
370
371 val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
372 __SHIFTIN(reg, ET_MII_ADDR_REG);
373 CSR_WRITE_4(sc, ET_MII_ADDR, val);
374
375 /* Start reading */
376 CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
377
378 #define NRETRY 50
379
380 for (i = 0; i < NRETRY; ++i) {
381 val = CSR_READ_4(sc, ET_MII_IND);
382 if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
383 break;
384 DELAY(50);
385 }
386 if (i == NRETRY) {
387 aprint_error_dev(sc->sc_dev, "read phy %d, reg %d timed out\n",
388 phy, reg);
389 ret = 0;
390 goto back;
391 }
392
393 #undef NRETRY
394
395 val = CSR_READ_4(sc, ET_MII_STAT);
396 ret = __SHIFTOUT(val, ET_MII_STAT_VALUE);
397
398 back:
399 /* Make sure that the current operation is stopped */
400 CSR_WRITE_4(sc, ET_MII_CMD, 0);
401 return ret;
402 }
403
404 void
405 et_miibus_writereg(device_t dev, int phy, int reg, int val0)
406 {
407 struct et_softc *sc = device_private(dev);
408 uint32_t val;
409 int i;
410
411 /* Stop any pending operations */
412 CSR_WRITE_4(sc, ET_MII_CMD, 0);
413
414 val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
415 __SHIFTIN(reg, ET_MII_ADDR_REG);
416 CSR_WRITE_4(sc, ET_MII_ADDR, val);
417
418 /* Start writing */
419 CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val0, ET_MII_CTRL_VALUE));
420
421 #define NRETRY 100
422
423 for (i = 0; i < NRETRY; ++i) {
424 val = CSR_READ_4(sc, ET_MII_IND);
425 if ((val & ET_MII_IND_BUSY) == 0)
426 break;
427 DELAY(50);
428 }
429 if (i == NRETRY) {
430 aprint_error_dev(sc->sc_dev, "write phy %d, reg %d timed out\n",
431 phy, reg);
432 et_miibus_readreg(dev, phy, reg);
433 }
434
435 #undef NRETRY
436
437 /* Make sure that the current operation is stopped */
438 CSR_WRITE_4(sc, ET_MII_CMD, 0);
439 }
440
441 void
442 et_miibus_statchg(struct ifnet *ifp)
443 {
444 struct et_softc *sc = ifp->if_softc;
445 struct mii_data *mii = &sc->sc_miibus;
446 uint32_t cfg2, ctrl;
447
448 cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
449 cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
450 ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
451 cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
452 __SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
453
454 ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
455 ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
456
457 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
458 cfg2 |= ET_MAC_CFG2_MODE_GMII;
459 } else {
460 cfg2 |= ET_MAC_CFG2_MODE_MII;
461 ctrl |= ET_MAC_CTRL_MODE_MII;
462 }
463
464 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
465 cfg2 |= ET_MAC_CFG2_FDX;
466 else
467 ctrl |= ET_MAC_CTRL_GHDX;
468
469 CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
470 CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
471 }
472
473 void
474 et_stop(struct et_softc *sc)
475 {
476 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
477
478 callout_stop(&sc->sc_tick);
479 callout_stop(&sc->sc_txtick);
480
481 et_stop_rxdma(sc);
482 et_stop_txdma(sc);
483
484 et_disable_intrs(sc);
485
486 et_free_tx_ring(sc);
487 et_free_rx_ring(sc);
488
489 et_reset(sc);
490
491 sc->sc_tx = 0;
492 sc->sc_tx_intr = 0;
493
494 ifp->if_timer = 0;
495 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
496 }
497
498 int
499 et_bus_config(struct et_softc *sc)
500 {
501 uint32_t val; //, max_plsz;
502 // uint16_t ack_latency, replay_timer;
503
504 /*
505 * Test whether EEPROM is valid
506 * NOTE: Read twice to get the correct value
507 */
508 pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
509 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
510
511 if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
512 aprint_error_dev(sc->sc_dev, "EEPROM status error 0x%02x\n", val);
513 return ENXIO;
514 }
515
516 /* TODO: LED */
517 #if 0
518 /*
519 * Configure ACK latency and replay timer according to
520 * max playload size
521 */
522 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
523 max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
524
525 switch (max_plsz) {
526 case ET_PCIV_DEVICE_CAPS_PLSZ_128:
527 ack_latency = ET_PCIV_ACK_LATENCY_128;
528 replay_timer = ET_PCIV_REPLAY_TIMER_128;
529 break;
530
531 case ET_PCIV_DEVICE_CAPS_PLSZ_256:
532 ack_latency = ET_PCIV_ACK_LATENCY_256;
533 replay_timer = ET_PCIV_REPLAY_TIMER_256;
534 break;
535
536 default:
537 ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
538 ET_PCIR_ACK_LATENCY) >> 16;
539 replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
540 ET_PCIR_REPLAY_TIMER) >> 16;
541 aprint_normal_dev(sc->sc_dev, "ack latency %u, replay timer %u\n",
542 ack_latency, replay_timer);
543 break;
544 }
545 if (ack_latency != 0) {
546 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
547 ET_PCIR_ACK_LATENCY, ack_latency << 16);
548 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
549 ET_PCIR_REPLAY_TIMER, replay_timer << 16);
550 }
551
552 /*
553 * Set L0s and L1 latency timer to 2us
554 */
555 val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
556 pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
557 val << 24);
558
559 /*
560 * Set max read request size to 2048 bytes
561 */
562 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
563 ET_PCIR_DEVICE_CTRL) >> 16;
564 val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
565 val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
566 pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
567 val << 16);
568 #endif
569
570 return 0;
571 }
572
573 void
574 et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
575 {
576 uint32_t r;
577
578 r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
579 eaddr[0] = r & 0xff;
580 eaddr[1] = (r >> 8) & 0xff;
581 eaddr[2] = (r >> 16) & 0xff;
582 eaddr[3] = (r >> 24) & 0xff;
583 r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
584 eaddr[4] = r & 0xff;
585 eaddr[5] = (r >> 8) & 0xff;
586 }
587
588 void
589 et_reset(struct et_softc *sc)
590 {
591 CSR_WRITE_4(sc, ET_MAC_CFG1,
592 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
593 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
594 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
595
596 CSR_WRITE_4(sc, ET_SWRST,
597 ET_SWRST_TXDMA | ET_SWRST_RXDMA |
598 ET_SWRST_TXMAC | ET_SWRST_RXMAC |
599 ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
600
601 CSR_WRITE_4(sc, ET_MAC_CFG1,
602 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
603 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
604 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
605 }
606
607 void
608 et_disable_intrs(struct et_softc *sc)
609 {
610 CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
611 }
612
613 void
614 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
615 {
616 CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
617 }
618
619 int
620 et_dma_alloc(struct et_softc *sc)
621 {
622 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
623 struct et_txstatus_data *txsd = &sc->sc_tx_status;
624 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
625 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
626 int i, error;
627
628 /*
629 * Create TX ring DMA stuffs
630 */
631 error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
632 (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
633 &tx_ring->tr_seg);
634 if (error) {
635 aprint_error_dev(sc->sc_dev, "can't create TX ring DMA stuffs\n");
636 return error;
637 }
638
639 /*
640 * Create TX status DMA stuffs
641 */
642 error = et_dma_mem_create(sc, sizeof(uint32_t),
643 (void **)&txsd->txsd_status,
644 &txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
645 if (error) {
646 aprint_error_dev(sc->sc_dev, "can't create TX status DMA stuffs\n");
647 return error;
648 }
649
650 /*
651 * Create DMA stuffs for RX rings
652 */
653 for (i = 0; i < ET_RX_NRING; ++i) {
654 static const uint32_t rx_ring_posreg[ET_RX_NRING] =
655 { ET_RX_RING0_POS, ET_RX_RING1_POS };
656
657 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
658
659 error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
660 (void **)&rx_ring->rr_desc,
661 &rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
662 if (error) {
663 aprint_error_dev(sc->sc_dev, "can't create DMA stuffs for "
664 "the %d RX ring\n", i);
665 return error;
666 }
667 rx_ring->rr_posreg = rx_ring_posreg[i];
668 }
669
670 /*
671 * Create RX stat ring DMA stuffs
672 */
673 error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
674 (void **)&rxst_ring->rsr_stat,
675 &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
676 if (error) {
677 aprint_error_dev(sc->sc_dev, "can't create RX stat ring DMA stuffs\n");
678 return error;
679 }
680
681 /*
682 * Create RX status DMA stuffs
683 */
684 error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
685 (void **)&rxsd->rxsd_status,
686 &rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
687 if (error) {
688 aprint_error_dev(sc->sc_dev, "can't create RX status DMA stuffs\n");
689 return error;
690 }
691
692 /*
693 * Create mbuf DMA stuffs
694 */
695 error = et_dma_mbuf_create(sc);
696 if (error)
697 return error;
698
699 return 0;
700 }
701
702 void
703 et_dma_free(struct et_softc *sc)
704 {
705 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
706 struct et_txstatus_data *txsd = &sc->sc_tx_status;
707 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
708 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
709 int i, rx_done[ET_RX_NRING];
710
711 /*
712 * Destroy TX ring DMA stuffs
713 */
714 et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
715
716 /*
717 * Destroy TX status DMA stuffs
718 */
719 et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
720
721 /*
722 * Destroy DMA stuffs for RX rings
723 */
724 for (i = 0; i < ET_RX_NRING; ++i) {
725 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
726
727 et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
728 }
729
730 /*
731 * Destroy RX stat ring DMA stuffs
732 */
733 et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
734
735 /*
736 * Destroy RX status DMA stuffs
737 */
738 et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
739
740 /*
741 * Destroy mbuf DMA stuffs
742 */
743 for (i = 0; i < ET_RX_NRING; ++i)
744 rx_done[i] = ET_RX_NDESC;
745 et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
746 }
747
748 int
749 et_dma_mbuf_create(struct et_softc *sc)
750 {
751 struct et_txbuf_data *tbd = &sc->sc_tx_data;
752 int i, error, rx_done[ET_RX_NRING];
753
754 /*
755 * Create spare DMA map for RX mbufs
756 */
757 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
758 BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
759 if (error) {
760 aprint_error_dev(sc->sc_dev, "can't create spare mbuf DMA map\n");
761 return error;
762 }
763
764 /*
765 * Create DMA maps for RX mbufs
766 */
767 bzero(rx_done, sizeof(rx_done));
768 for (i = 0; i < ET_RX_NRING; ++i) {
769 struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
770 int j;
771
772 for (j = 0; j < ET_RX_NDESC; ++j) {
773 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
774 MCLBYTES, 0, BUS_DMA_NOWAIT,
775 &rbd->rbd_buf[j].rb_dmap);
776 if (error) {
777 aprint_error_dev(sc->sc_dev, "can't create %d RX mbuf "
778 "for %d RX ring\n", j, i);
779 rx_done[i] = j;
780 et_dma_mbuf_destroy(sc, 0, rx_done);
781 return error;
782 }
783 }
784 rx_done[i] = ET_RX_NDESC;
785
786 rbd->rbd_softc = sc;
787 rbd->rbd_ring = &sc->sc_rx_ring[i];
788 }
789
790 /*
791 * Create DMA maps for TX mbufs
792 */
793 for (i = 0; i < ET_TX_NDESC; ++i) {
794 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
795 0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
796 if (error) {
797 aprint_error_dev(sc->sc_dev, "can't create %d TX mbuf "
798 "DMA map\n", i);
799 et_dma_mbuf_destroy(sc, i, rx_done);
800 return error;
801 }
802 }
803
804 return 0;
805 }
806
807 void
808 et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
809 {
810 struct et_txbuf_data *tbd = &sc->sc_tx_data;
811 int i;
812
813 /*
814 * Destroy DMA maps for RX mbufs
815 */
816 for (i = 0; i < ET_RX_NRING; ++i) {
817 struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
818 int j;
819
820 for (j = 0; j < rx_done[i]; ++j) {
821 struct et_rxbuf *rb = &rbd->rbd_buf[j];
822
823 KASSERTMSG(rb->rb_mbuf == NULL,
824 "RX mbuf in %d RX ring is not freed yet\n", i);
825 bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
826 }
827 }
828
829 /*
830 * Destroy DMA maps for TX mbufs
831 */
832 for (i = 0; i < tx_done; ++i) {
833 struct et_txbuf *tb = &tbd->tbd_buf[i];
834
835 KASSERTMSG(tb->tb_mbuf == NULL, "TX mbuf is not freed yet\n");
836 bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
837 }
838
839 /*
840 * Destroy spare mbuf DMA map
841 */
842 bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
843 }
844
845 int
846 et_dma_mem_create(struct et_softc *sc, bus_size_t size,
847 void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
848 {
849 int error, nsegs;
850
851 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
852 dmap);
853 if (error) {
854 aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
855 return error;
856 }
857
858 error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
859 1, &nsegs, BUS_DMA_WAITOK);
860 if (error) {
861 aprint_error_dev(sc->sc_dev, "can't allocate DMA mem\n");
862 return error;
863 }
864
865 error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
866 size, (void **)addr, BUS_DMA_NOWAIT);
867 if (error) {
868 aprint_error_dev(sc->sc_dev, "can't map DMA mem\n");
869 return (error);
870 }
871
872 error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
873 BUS_DMA_WAITOK);
874 if (error) {
875 aprint_error_dev(sc->sc_dev, "can't load DMA mem\n");
876 bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
877 return error;
878 }
879
880 memset(*addr, 0, size);
881
882 *paddr = (*dmap)->dm_segs[0].ds_addr;
883
884 return 0;
885 }
886
887 void
888 et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
889 {
890 bus_dmamap_unload(sc->sc_dmat, dmap);
891 bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
892 }
893
894 void
895 et_chip_attach(struct et_softc *sc)
896 {
897 uint32_t val;
898
899 /*
900 * Perform minimal initialization
901 */
902
903 /* Disable loopback */
904 CSR_WRITE_4(sc, ET_LOOPBACK, 0);
905
906 /* Reset MAC */
907 CSR_WRITE_4(sc, ET_MAC_CFG1,
908 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
909 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
910 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
911
912 /*
913 * Setup half duplex mode
914 */
915 val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
916 __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
917 __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
918 ET_MAC_HDX_EXC_DEFER;
919 CSR_WRITE_4(sc, ET_MAC_HDX, val);
920
921 /* Clear MAC control */
922 CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
923
924 /* Reset MII */
925 CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
926
927 /* Bring MAC out of reset state */
928 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
929
930 /* Enable memory controllers */
931 CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
932 }
933
934 int
935 et_intr(void *xsc)
936 {
937 struct et_softc *sc = xsc;
938 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
939 uint32_t intrs;
940
941 if ((ifp->if_flags & IFF_RUNNING) == 0)
942 return (0);
943
944 intrs = CSR_READ_4(sc, ET_INTR_STATUS);
945 if (intrs == 0 || intrs == 0xffffffff)
946 return (0);
947
948 et_disable_intrs(sc);
949 intrs &= ET_INTRS;
950 if (intrs == 0) /* Not interested */
951 goto back;
952
953 if (intrs & ET_INTR_RXEOF)
954 et_rxeof(sc);
955 if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
956 et_txeof(sc);
957 if (intrs & ET_INTR_TIMER)
958 CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
959 back:
960 et_enable_intrs(sc, ET_INTRS);
961
962 return (1);
963 }
964
965 int
966 et_init(struct ifnet *ifp)
967 {
968 struct et_softc *sc = ifp->if_softc;
969 int error, i, s;
970
971 if (ifp->if_flags & IFF_RUNNING)
972 return 0;
973
974 s = splnet();
975
976 et_stop(sc);
977
978 for (i = 0; i < ET_RX_NRING; ++i) {
979 sc->sc_rx_data[i].rbd_bufsize = et_bufsize[i].bufsize;
980 sc->sc_rx_data[i].rbd_newbuf = et_bufsize[i].newbuf;
981 }
982
983 error = et_init_tx_ring(sc);
984 if (error)
985 goto back;
986
987 error = et_init_rx_ring(sc);
988 if (error)
989 goto back;
990
991 error = et_chip_init(sc);
992 if (error)
993 goto back;
994
995 error = et_enable_txrx(sc);
996 if (error)
997 goto back;
998
999 error = et_start_rxdma(sc);
1000 if (error)
1001 goto back;
1002
1003 error = et_start_txdma(sc);
1004 if (error)
1005 goto back;
1006
1007 et_enable_intrs(sc, ET_INTRS);
1008
1009 callout_schedule(&sc->sc_tick, hz);
1010
1011 CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1012
1013 ifp->if_flags |= IFF_RUNNING;
1014 ifp->if_flags &= ~IFF_OACTIVE;
1015 back:
1016 if (error)
1017 et_stop(sc);
1018
1019 splx(s);
1020
1021 return (0);
1022 }
1023
1024 int
1025 et_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1026 {
1027 struct et_softc *sc = ifp->if_softc;
1028 struct ifreq *ifr = (struct ifreq *)data;
1029 int s, error = 0;
1030
1031 s = splnet();
1032
1033 switch (cmd) {
1034 case SIOCSIFFLAGS:
1035 if (ifp->if_flags & IFF_UP) {
1036 /*
1037 * If only the PROMISC or ALLMULTI flag changes, then
1038 * don't do a full re-init of the chip, just update
1039 * the Rx filter.
1040 */
1041 if ((ifp->if_flags & IFF_RUNNING) &&
1042 ((ifp->if_flags ^ sc->sc_if_flags) &
1043 (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1044 et_setmulti(sc);
1045 } else {
1046 if (!(ifp->if_flags & IFF_RUNNING))
1047 et_init(ifp);
1048 }
1049 } else {
1050 if (ifp->if_flags & IFF_RUNNING)
1051 et_stop(sc);
1052 }
1053 sc->sc_if_flags = ifp->if_flags;
1054 break;
1055 case SIOCSIFMEDIA:
1056 case SIOCGIFMEDIA:
1057 error = ifmedia_ioctl(ifp, ifr, &sc->sc_miibus.mii_media, cmd);
1058 break;
1059 default:
1060 error = ether_ioctl(ifp, cmd, data);
1061 if (error == ENETRESET) {
1062 if (ifp->if_flags & IFF_RUNNING)
1063 et_setmulti(sc);
1064 error = 0;
1065 }
1066 break;
1067
1068 }
1069
1070 splx(s);
1071
1072 return error;
1073 }
1074
1075 void
1076 et_start(struct ifnet *ifp)
1077 {
1078 struct et_softc *sc = ifp->if_softc;
1079 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1080 int trans;
1081 struct mbuf *m;
1082
1083 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1084 return;
1085
1086 trans = 0;
1087 for (;;) {
1088 IFQ_DEQUEUE(&ifp->if_snd, m);
1089 if (m == NULL)
1090 break;
1091
1092 if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1093 ifp->if_flags |= IFF_OACTIVE;
1094 break;
1095 }
1096
1097 if (et_encap(sc, &m)) {
1098 ifp->if_oerrors++;
1099 ifp->if_flags |= IFF_OACTIVE;
1100 break;
1101 }
1102
1103 trans = 1;
1104
1105 bpf_mtap(ifp, m, BPF_D_OUT);
1106 }
1107
1108 if (trans) {
1109 callout_schedule(&sc->sc_txtick, hz);
1110 ifp->if_timer = 5;
1111 }
1112 }
1113
1114 void
1115 et_watchdog(struct ifnet *ifp)
1116 {
1117 struct et_softc *sc = ifp->if_softc;
1118 aprint_error_dev(sc->sc_dev, "watchdog timed out\n");
1119
1120 ifp->if_flags &= ~IFF_RUNNING;
1121 et_init(ifp);
1122 et_start(ifp);
1123 }
1124
1125 int
1126 et_stop_rxdma(struct et_softc *sc)
1127 {
1128 CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1129 ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1130
1131 DELAY(5);
1132 if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1133 aprint_error_dev(sc->sc_dev, "can't stop RX DMA engine\n");
1134 return ETIMEDOUT;
1135 }
1136 return 0;
1137 }
1138
1139 int
1140 et_stop_txdma(struct et_softc *sc)
1141 {
1142 CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1143 ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1144 return 0;
1145 }
1146
1147 void
1148 et_free_tx_ring(struct et_softc *sc)
1149 {
1150 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1151 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1152 int i;
1153
1154 for (i = 0; i < ET_TX_NDESC; ++i) {
1155 struct et_txbuf *tb = &tbd->tbd_buf[i];
1156
1157 if (tb->tb_mbuf != NULL) {
1158 bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1159 m_freem(tb->tb_mbuf);
1160 tb->tb_mbuf = NULL;
1161 }
1162 }
1163
1164 bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1165 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1166 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1167 }
1168
1169 void
1170 et_free_rx_ring(struct et_softc *sc)
1171 {
1172 int n;
1173
1174 for (n = 0; n < ET_RX_NRING; ++n) {
1175 struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1176 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1177 int i;
1178
1179 for (i = 0; i < ET_RX_NDESC; ++i) {
1180 struct et_rxbuf *rb = &rbd->rbd_buf[i];
1181
1182 if (rb->rb_mbuf != NULL) {
1183 bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
1184 m_freem(rb->rb_mbuf);
1185 rb->rb_mbuf = NULL;
1186 }
1187 }
1188
1189 bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1190 bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
1191 rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1192 }
1193 }
1194
1195 void
1196 et_setmulti(struct et_softc *sc)
1197 {
1198 struct ethercom *ec = &sc->sc_ethercom;
1199 struct ifnet *ifp = &ec->ec_if;
1200 uint32_t hash[4] = { 0, 0, 0, 0 };
1201 uint32_t rxmac_ctrl, pktfilt;
1202 struct ether_multi *enm;
1203 struct ether_multistep step;
1204 uint8_t addr[ETHER_ADDR_LEN];
1205 int i, count;
1206
1207 pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1208 rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1209
1210 pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1211 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1212 rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1213 goto back;
1214 }
1215
1216 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1217
1218 count = 0;
1219 ETHER_FIRST_MULTI(step, ec, enm);
1220 while (enm != NULL) {
1221 uint32_t *hp, h;
1222
1223 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1224 addr[i] &= enm->enm_addrlo[i];
1225 }
1226
1227 h = ether_crc32_be(addr, ETHER_ADDR_LEN);
1228 h = (h & 0x3f800000) >> 23;
1229
1230 hp = &hash[0];
1231 if (h >= 32 && h < 64) {
1232 h -= 32;
1233 hp = &hash[1];
1234 } else if (h >= 64 && h < 96) {
1235 h -= 64;
1236 hp = &hash[2];
1237 } else if (h >= 96) {
1238 h -= 96;
1239 hp = &hash[3];
1240 }
1241 *hp |= (1 << h);
1242
1243 ++count;
1244 ETHER_NEXT_MULTI(step, enm);
1245 }
1246
1247 for (i = 0; i < 4; ++i)
1248 CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1249
1250 if (count > 0)
1251 pktfilt |= ET_PKTFILT_MCAST;
1252 rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1253 back:
1254 CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1255 CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1256 }
1257
1258 int
1259 et_chip_init(struct et_softc *sc)
1260 {
1261 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1262 uint32_t rxq_end;
1263 int error;
1264
1265 /*
1266 * Split internal memory between TX and RX according to MTU
1267 */
1268 if (ifp->if_mtu < 2048)
1269 rxq_end = 0x2bc;
1270 else if (ifp->if_mtu < 8192)
1271 rxq_end = 0x1ff;
1272 else
1273 rxq_end = 0x1b3;
1274 CSR_WRITE_4(sc, ET_RXQ_START, 0);
1275 CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1276 CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1277 CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1278
1279 /* No loopback */
1280 CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1281
1282 /* Clear MSI configure */
1283 CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1284
1285 /* Disable timer */
1286 CSR_WRITE_4(sc, ET_TIMER, 0);
1287
1288 /* Initialize MAC */
1289 et_init_mac(sc);
1290
1291 /* Enable memory controllers */
1292 CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1293
1294 /* Initialize RX MAC */
1295 et_init_rxmac(sc);
1296
1297 /* Initialize TX MAC */
1298 et_init_txmac(sc);
1299
1300 /* Initialize RX DMA engine */
1301 error = et_init_rxdma(sc);
1302 if (error)
1303 return error;
1304
1305 /* Initialize TX DMA engine */
1306 error = et_init_txdma(sc);
1307 if (error)
1308 return error;
1309
1310 return 0;
1311 }
1312
1313 int
1314 et_init_tx_ring(struct et_softc *sc)
1315 {
1316 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1317 struct et_txstatus_data *txsd = &sc->sc_tx_status;
1318 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1319
1320 bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1321 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1322 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1323
1324 tbd->tbd_start_index = 0;
1325 tbd->tbd_start_wrap = 0;
1326 tbd->tbd_used = 0;
1327
1328 bzero(txsd->txsd_status, sizeof(uint32_t));
1329 bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
1330 txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1331 return 0;
1332 }
1333
1334 int
1335 et_init_rx_ring(struct et_softc *sc)
1336 {
1337 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1338 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1339 int n;
1340
1341 for (n = 0; n < ET_RX_NRING; ++n) {
1342 struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1343 int i, error;
1344
1345 for (i = 0; i < ET_RX_NDESC; ++i) {
1346 error = rbd->rbd_newbuf(rbd, i, 1);
1347 if (error) {
1348 aprint_error_dev(sc->sc_dev, "%d ring %d buf, newbuf failed: "
1349 "%d\n", n, i, error);
1350 return error;
1351 }
1352 }
1353 }
1354
1355 bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1356 bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1357 rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1358
1359 bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1360 bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1361 rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1362
1363 return 0;
1364 }
1365
1366 int
1367 et_init_rxdma(struct et_softc *sc)
1368 {
1369 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1370 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1371 struct et_rxdesc_ring *rx_ring;
1372 int error;
1373
1374 error = et_stop_rxdma(sc);
1375 if (error) {
1376 aprint_error_dev(sc->sc_dev, "can't init RX DMA engine\n");
1377 return error;
1378 }
1379
1380 /*
1381 * Install RX status
1382 */
1383 CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1384 CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1385
1386 /*
1387 * Install RX stat ring
1388 */
1389 CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1390 CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1391 CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1392 CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1393 CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1394
1395 /* Match ET_RXSTAT_POS */
1396 rxst_ring->rsr_index = 0;
1397 rxst_ring->rsr_wrap = 0;
1398
1399 /*
1400 * Install the 2nd RX descriptor ring
1401 */
1402 rx_ring = &sc->sc_rx_ring[1];
1403 CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1404 CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1405 CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1406 CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1407 CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1408
1409 /* Match ET_RX_RING1_POS */
1410 rx_ring->rr_index = 0;
1411 rx_ring->rr_wrap = 1;
1412
1413 /*
1414 * Install the 1st RX descriptor ring
1415 */
1416 rx_ring = &sc->sc_rx_ring[0];
1417 CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1418 CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1419 CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1420 CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1421 CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1422
1423 /* Match ET_RX_RING0_POS */
1424 rx_ring->rr_index = 0;
1425 rx_ring->rr_wrap = 1;
1426
1427 /*
1428 * RX intr moderation
1429 */
1430 CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1431 CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1432
1433 return 0;
1434 }
1435
1436 int
1437 et_init_txdma(struct et_softc *sc)
1438 {
1439 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1440 struct et_txstatus_data *txsd = &sc->sc_tx_status;
1441 int error;
1442
1443 error = et_stop_txdma(sc);
1444 if (error) {
1445 aprint_error_dev(sc->sc_dev, "can't init TX DMA engine\n");
1446 return error;
1447 }
1448
1449 /*
1450 * Install TX descriptor ring
1451 */
1452 CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1453 CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1454 CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1455
1456 /*
1457 * Install TX status
1458 */
1459 CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1460 CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1461
1462 CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1463
1464 /* Match ET_TX_READY_POS */
1465 tx_ring->tr_ready_index = 0;
1466 tx_ring->tr_ready_wrap = 0;
1467
1468 return 0;
1469 }
1470
1471 void
1472 et_init_mac(struct et_softc *sc)
1473 {
1474 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1475 const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1476 uint32_t val;
1477
1478 /* Reset MAC */
1479 CSR_WRITE_4(sc, ET_MAC_CFG1,
1480 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1481 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1482 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1483
1484 /*
1485 * Setup inter packet gap
1486 */
1487 val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1488 __SHIFTIN(88, ET_IPG_NONB2B_2) |
1489 __SHIFTIN(80, ET_IPG_MINIFG) |
1490 __SHIFTIN(96, ET_IPG_B2B);
1491 CSR_WRITE_4(sc, ET_IPG, val);
1492
1493 /*
1494 * Setup half duplex mode
1495 */
1496 val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1497 __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1498 __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1499 ET_MAC_HDX_EXC_DEFER;
1500 CSR_WRITE_4(sc, ET_MAC_HDX, val);
1501
1502 /* Clear MAC control */
1503 CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1504
1505 /* Reset MII */
1506 CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1507
1508 /*
1509 * Set MAC address
1510 */
1511 val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1512 CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1513 val = (eaddr[0] << 16) | (eaddr[1] << 24);
1514 CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1515
1516 /* Set max frame length */
1517 CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1518 ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + ETHER_CRC_LEN);
1519
1520 /* Bring MAC out of reset state */
1521 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1522 }
1523
1524 void
1525 et_init_rxmac(struct et_softc *sc)
1526 {
1527 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1528 const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1529 uint32_t val;
1530 int i;
1531
1532 /* Disable RX MAC and WOL */
1533 CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1534
1535 /*
1536 * Clear all WOL related registers
1537 */
1538 for (i = 0; i < 3; ++i)
1539 CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1540 for (i = 0; i < 20; ++i)
1541 CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1542
1543 /*
1544 * Set WOL source address. XXX is this necessary?
1545 */
1546 val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1547 CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1548 val = (eaddr[0] << 8) | eaddr[1];
1549 CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1550
1551 /* Clear packet filters */
1552 CSR_WRITE_4(sc, ET_PKTFILT, 0);
1553
1554 /* No ucast filtering */
1555 CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1556 CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1557 CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1558
1559 if (ifp->if_mtu > 8192) {
1560 /*
1561 * In order to transmit jumbo packets greater than 8k,
1562 * the FIFO between RX MAC and RX DMA needs to be reduced
1563 * in size to (16k - MTU). In order to implement this, we
1564 * must use "cut through" mode in the RX MAC, which chops
1565 * packets down into segments which are (max_size * 16).
1566 * In this case we selected 256 bytes, since this is the
1567 * size of the PCI-Express TLP's that the 1310 uses.
1568 */
1569 val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1570 ET_RXMAC_MC_SEGSZ_ENABLE;
1571 } else {
1572 val = 0;
1573 }
1574 CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1575
1576 CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1577
1578 /* Initialize RX MAC management register */
1579 CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1580
1581 CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1582
1583 CSR_WRITE_4(sc, ET_RXMAC_MGT,
1584 ET_RXMAC_MGT_PASS_ECRC |
1585 ET_RXMAC_MGT_PASS_ELEN |
1586 ET_RXMAC_MGT_PASS_ETRUNC |
1587 ET_RXMAC_MGT_CHECK_PKT);
1588
1589 /*
1590 * Configure runt filtering (may not work on certain chip generation)
1591 */
1592 val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1593 CSR_WRITE_4(sc, ET_PKTFILT, val);
1594
1595 /* Enable RX MAC but leave WOL disabled */
1596 CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1597 ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1598
1599 /*
1600 * Setup multicast hash and allmulti/promisc mode
1601 */
1602 et_setmulti(sc);
1603 }
1604
1605 void
1606 et_init_txmac(struct et_softc *sc)
1607 {
1608 /* Disable TX MAC and FC(?) */
1609 CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1610
1611 /* No flow control yet */
1612 CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1613
1614 /* Enable TX MAC but leave FC(?) diabled */
1615 CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1616 ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1617 }
1618
1619 int
1620 et_start_rxdma(struct et_softc *sc)
1621 {
1622 uint32_t val = 0;
1623
1624 val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1625 ET_RXDMA_CTRL_RING0_SIZE) |
1626 ET_RXDMA_CTRL_RING0_ENABLE;
1627 val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1628 ET_RXDMA_CTRL_RING1_SIZE) |
1629 ET_RXDMA_CTRL_RING1_ENABLE;
1630
1631 CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1632
1633 DELAY(5);
1634
1635 if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1636 aprint_error_dev(sc->sc_dev, "can't start RX DMA engine\n");
1637 return ETIMEDOUT;
1638 }
1639 return 0;
1640 }
1641
1642 int
1643 et_start_txdma(struct et_softc *sc)
1644 {
1645 CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1646 return 0;
1647 }
1648
1649 int
1650 et_enable_txrx(struct et_softc *sc)
1651 {
1652 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1653 uint32_t val;
1654 int i, rc = 0;
1655
1656 val = CSR_READ_4(sc, ET_MAC_CFG1);
1657 val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1658 val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1659 ET_MAC_CFG1_LOOPBACK);
1660 CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1661
1662 if ((rc = ether_mediachange(ifp)) != 0)
1663 goto out;
1664
1665 #define NRETRY 100
1666
1667 for (i = 0; i < NRETRY; ++i) {
1668 val = CSR_READ_4(sc, ET_MAC_CFG1);
1669 if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1670 (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1671 break;
1672
1673 DELAY(10);
1674 }
1675 if (i == NRETRY) {
1676 aprint_error_dev(sc->sc_dev, "can't enable RX/TX\n");
1677 return ETIMEDOUT;
1678 }
1679
1680 #undef NRETRY
1681 return 0;
1682 out:
1683 return rc;
1684 }
1685
1686 void
1687 et_rxeof(struct et_softc *sc)
1688 {
1689 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1690 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1691 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1692 uint32_t rxs_stat_ring;
1693 int rxst_wrap, rxst_index;
1694
1695 bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1696 rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1697 bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1698 rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1699
1700 rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1701 rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1702 rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1703
1704 while (rxst_index != rxst_ring->rsr_index ||
1705 rxst_wrap != rxst_ring->rsr_wrap) {
1706 struct et_rxbuf_data *rbd;
1707 struct et_rxdesc_ring *rx_ring;
1708 struct et_rxstat *st;
1709 struct et_rxbuf *rb;
1710 struct mbuf *m;
1711 int buflen, buf_idx, ring_idx;
1712 uint32_t rxstat_pos, rxring_pos;
1713
1714 KASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1715 st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1716
1717 buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1718 buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1719 ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1720
1721 if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1722 rxst_ring->rsr_index = 0;
1723 rxst_ring->rsr_wrap ^= 1;
1724 }
1725 rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1726 ET_RXSTAT_POS_INDEX);
1727 if (rxst_ring->rsr_wrap)
1728 rxstat_pos |= ET_RXSTAT_POS_WRAP;
1729 CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1730
1731 if (ring_idx >= ET_RX_NRING) {
1732 ifp->if_ierrors++;
1733 aprint_error_dev(sc->sc_dev, "invalid ring index %d\n",
1734 ring_idx);
1735 continue;
1736 }
1737 if (buf_idx >= ET_RX_NDESC) {
1738 ifp->if_ierrors++;
1739 aprint_error_dev(sc->sc_dev, "invalid buf index %d\n",
1740 buf_idx);
1741 continue;
1742 }
1743
1744 rbd = &sc->sc_rx_data[ring_idx];
1745 rb = &rbd->rbd_buf[buf_idx];
1746 m = rb->rb_mbuf;
1747 bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
1748 rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1749
1750 if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1751 if (buflen < ETHER_CRC_LEN) {
1752 m_freem(m);
1753 ifp->if_ierrors++;
1754 } else {
1755 m->m_pkthdr.len = m->m_len = buflen -
1756 ETHER_CRC_LEN;
1757 m_set_rcvif(m, ifp);
1758
1759 if_percpuq_enqueue(ifp->if_percpuq, m);
1760 }
1761 } else {
1762 ifp->if_ierrors++;
1763 }
1764
1765 rx_ring = &sc->sc_rx_ring[ring_idx];
1766
1767 if (buf_idx != rx_ring->rr_index) {
1768 aprint_error_dev(sc->sc_dev, "WARNING!! ring %d, "
1769 "buf_idx %d, rr_idx %d\n",
1770 ring_idx, buf_idx, rx_ring->rr_index);
1771 }
1772
1773 KASSERT(rx_ring->rr_index < ET_RX_NDESC);
1774 if (++rx_ring->rr_index == ET_RX_NDESC) {
1775 rx_ring->rr_index = 0;
1776 rx_ring->rr_wrap ^= 1;
1777 }
1778 rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1779 if (rx_ring->rr_wrap)
1780 rxring_pos |= ET_RX_RING_POS_WRAP;
1781 CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1782 }
1783 }
1784
1785 int
1786 et_encap(struct et_softc *sc, struct mbuf **m0)
1787 {
1788 struct mbuf *m = *m0;
1789 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1790 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1791 struct et_txdesc *td;
1792 bus_dmamap_t map;
1793 int error, maxsegs, first_idx, last_idx, i;
1794 uint32_t tx_ready_pos, last_td_ctrl2;
1795
1796 maxsegs = ET_TX_NDESC - tbd->tbd_used;
1797 if (maxsegs > ET_NSEG_MAX)
1798 maxsegs = ET_NSEG_MAX;
1799 KASSERTMSG(maxsegs >= ET_NSEG_SPARE,
1800 "not enough spare TX desc (%d)\n", maxsegs);
1801
1802 KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1803 first_idx = tx_ring->tr_ready_index;
1804 map = tbd->tbd_buf[first_idx].tb_dmap;
1805
1806 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1807 BUS_DMA_NOWAIT);
1808 if (!error && map->dm_nsegs == 0) {
1809 bus_dmamap_unload(sc->sc_dmat, map);
1810 error = EFBIG;
1811 }
1812 if (error && error != EFBIG) {
1813 aprint_error_dev(sc->sc_dev, "can't load TX mbuf");
1814 goto back;
1815 }
1816 if (error) { /* error == EFBIG */
1817 struct mbuf *m_new;
1818
1819 error = 0;
1820
1821 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1822 if (m_new == NULL) {
1823 aprint_error_dev(sc->sc_dev, "can't defrag TX mbuf\n");
1824 error = ENOBUFS;
1825 goto back;
1826 }
1827
1828 M_COPY_PKTHDR(m_new, m);
1829 if (m->m_pkthdr.len > MHLEN) {
1830 MCLGET(m_new, M_DONTWAIT);
1831 if (!(m_new->m_flags & M_EXT)) {
1832 m_freem(m_new);
1833 error = ENOBUFS;
1834 }
1835 }
1836
1837 if (error) {
1838 aprint_error_dev(sc->sc_dev, "can't defrag TX buffer\n");
1839 goto back;
1840 }
1841
1842 m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
1843 m_freem(m);
1844 m_new->m_len = m_new->m_pkthdr.len;
1845 *m0 = m = m_new;
1846
1847 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1848 BUS_DMA_NOWAIT);
1849 if (error || map->dm_nsegs == 0) {
1850 if (map->dm_nsegs == 0) {
1851 bus_dmamap_unload(sc->sc_dmat, map);
1852 error = EFBIG;
1853 }
1854 aprint_error_dev(sc->sc_dev, "can't load defraged TX mbuf\n");
1855 goto back;
1856 }
1857 }
1858
1859 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1860 BUS_DMASYNC_PREWRITE);
1861
1862 last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1863 sc->sc_tx += map->dm_nsegs;
1864 if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1865 sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1866 last_td_ctrl2 |= ET_TDCTRL2_INTR;
1867 }
1868
1869 last_idx = -1;
1870 for (i = 0; i < map->dm_nsegs; ++i) {
1871 int idx;
1872
1873 idx = (first_idx + i) % ET_TX_NDESC;
1874 td = &tx_ring->tr_desc[idx];
1875 td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
1876 td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
1877 td->td_ctrl1 =
1878 __SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
1879
1880 if (i == map->dm_nsegs - 1) { /* Last frag */
1881 td->td_ctrl2 = last_td_ctrl2;
1882 last_idx = idx;
1883 }
1884
1885 KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1886 if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1887 tx_ring->tr_ready_index = 0;
1888 tx_ring->tr_ready_wrap ^= 1;
1889 }
1890 }
1891 td = &tx_ring->tr_desc[first_idx];
1892 td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG; /* First frag */
1893
1894 KASSERT(last_idx >= 0);
1895 tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1896 tbd->tbd_buf[last_idx].tb_dmap = map;
1897 tbd->tbd_buf[last_idx].tb_mbuf = m;
1898
1899 tbd->tbd_used += map->dm_nsegs;
1900 KASSERT(tbd->tbd_used <= ET_TX_NDESC);
1901
1902 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1903 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1904
1905
1906 tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1907 ET_TX_READY_POS_INDEX);
1908 if (tx_ring->tr_ready_wrap)
1909 tx_ready_pos |= ET_TX_READY_POS_WRAP;
1910 CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1911
1912 error = 0;
1913 back:
1914 if (error) {
1915 m_freem(m);
1916 *m0 = NULL;
1917 }
1918 return error;
1919 }
1920
1921 void
1922 et_txeof(struct et_softc *sc)
1923 {
1924 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1925 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1926 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1927 uint32_t tx_done;
1928 int end, wrap;
1929
1930 if (tbd->tbd_used == 0)
1931 return;
1932
1933 tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
1934 end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
1935 wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
1936
1937 while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
1938 struct et_txbuf *tb;
1939
1940 KASSERT(tbd->tbd_start_index < ET_TX_NDESC);
1941 tb = &tbd->tbd_buf[tbd->tbd_start_index];
1942
1943 bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
1944 sizeof(struct et_txdesc));
1945 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1946 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1947
1948 if (tb->tb_mbuf != NULL) {
1949 bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1950 m_freem(tb->tb_mbuf);
1951 tb->tb_mbuf = NULL;
1952 ifp->if_opackets++;
1953 }
1954
1955 if (++tbd->tbd_start_index == ET_TX_NDESC) {
1956 tbd->tbd_start_index = 0;
1957 tbd->tbd_start_wrap ^= 1;
1958 }
1959
1960 KASSERT(tbd->tbd_used > 0);
1961 tbd->tbd_used--;
1962 }
1963
1964 if (tbd->tbd_used == 0) {
1965 callout_stop(&sc->sc_txtick);
1966 ifp->if_timer = 0;
1967 }
1968 if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
1969 ifp->if_flags &= ~IFF_OACTIVE;
1970
1971 if_schedule_deferred_start(ifp);
1972 }
1973
1974 void
1975 et_txtick(void *xsc)
1976 {
1977 struct et_softc *sc = xsc;
1978 int s;
1979
1980 s = splnet();
1981 et_txeof(sc);
1982 splx(s);
1983 }
1984
1985 void
1986 et_tick(void *xsc)
1987 {
1988 struct et_softc *sc = xsc;
1989 int s;
1990
1991 s = splnet();
1992 mii_tick(&sc->sc_miibus);
1993 callout_schedule(&sc->sc_tick, hz);
1994 splx(s);
1995 }
1996
1997 int
1998 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
1999 {
2000 return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2001 }
2002
2003 int
2004 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2005 {
2006 return et_newbuf(rbd, buf_idx, init, MHLEN);
2007 }
2008
2009 int
2010 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2011 {
2012 struct et_softc *sc = rbd->rbd_softc;
2013 struct et_rxdesc_ring *rx_ring;
2014 struct et_rxdesc *desc;
2015 struct et_rxbuf *rb;
2016 struct mbuf *m;
2017 bus_dmamap_t dmap;
2018 int error, len;
2019
2020 KASSERT(buf_idx < ET_RX_NDESC);
2021 rb = &rbd->rbd_buf[buf_idx];
2022
2023 if (len0 >= MINCLSIZE) {
2024 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2025 if (m == NULL)
2026 return (ENOBUFS);
2027 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2028 if ((m->m_flags & M_EXT) == 0) {
2029 m_freem(m);
2030 return (ENOBUFS);
2031 }
2032 len = MCLBYTES;
2033 } else {
2034 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2035 len = MHLEN;
2036 }
2037
2038 if (m == NULL) {
2039 error = ENOBUFS;
2040
2041 /* XXX for debug */
2042 aprint_error_dev(sc->sc_dev, "M_CLGET failed, size %d\n", len0);
2043 if (init) {
2044 return error;
2045 } else {
2046 goto back;
2047 }
2048 }
2049 m->m_len = m->m_pkthdr.len = len;
2050
2051 /*
2052 * Try load RX mbuf into temporary DMA tag
2053 */
2054 error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
2055 init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2056 if (error) {
2057 m_freem(m);
2058
2059 /* XXX for debug */
2060 aprint_error_dev(sc->sc_dev, "can't load RX mbuf\n");
2061 if (init) {
2062 return error;
2063 } else {
2064 goto back;
2065 }
2066 }
2067
2068 if (!init)
2069 bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
2070 rb->rb_mbuf = m;
2071
2072 /*
2073 * Swap RX buf's DMA map with the loaded temporary one
2074 */
2075 dmap = rb->rb_dmap;
2076 rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2077 rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
2078 sc->sc_mbuf_tmp_dmap = dmap;
2079
2080 error = 0;
2081 back:
2082 rx_ring = rbd->rbd_ring;
2083 desc = &rx_ring->rr_desc[buf_idx];
2084
2085 desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2086 desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2087 desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2088
2089 bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
2090 rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2091 return error;
2092 }
2093