if_et.c revision 1.2 1 /* $NetBSD: if_et.c,v 1.2 2011/05/18 01:02:43 dyoung Exp $ */
2 /* $OpenBSD: if_et.c,v 1.11 2008/06/08 06:18:07 jsg Exp $ */
3 /*
4 * Copyright (c) 2007 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Sepherosa Ziehau <sepherosa (at) gmail.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: if_et.c,v 1.2 2011/05/18 01:02:43 dyoung Exp $");
41
42 #include "opt_inet.h"
43 #include "vlan.h"
44
45 #include <sys/param.h>
46 #include <sys/endian.h>
47 #include <sys/systm.h>
48 #include <sys/types.h>
49 #include <sys/sockio.h>
50 #include <sys/mbuf.h>
51 #include <sys/queue.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/socket.h>
56
57 #include <sys/bus.h>
58
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 #include <net/if_arp.h>
64
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcidevs.h>
83
84 #include <dev/pci/if_etreg.h>
85
86 /* XXX temporary porting goop */
87 #define KKASSERT(cond) if (!(cond)) panic("KKASSERT: %s in %s", #cond, __func__)
88 #undef KASSERT
89 #define KASSERT(cond, complaint) if (!(cond)) panic complaint
90
91 /* these macros in particular need to die, so gross */
92 #define __LOWEST_SET_BIT(__mask) ((((__mask) - 1) & (__mask)) ^ (__mask))
93 #define __SHIFTOUT(__x, __mask) (((__x) & (__mask)) / __LOWEST_SET_BIT(__mask))
94 #define __SHIFTIN(__x, __mask) ((__x) * __LOWEST_SET_BIT(__mask))
95 /* XXX end porting goop */
96
97 int et_match(device_t, cfdata_t, void *);
98 void et_attach(device_t, device_t, void *);
99 int et_detach(device_t, int flags);
100 int et_shutdown(device_t);
101
102 int et_miibus_readreg(device_t, int, int);
103 void et_miibus_writereg(device_t, int, int, int);
104 void et_miibus_statchg(device_t);
105
106 int et_init(struct ifnet *ifp);
107 int et_ioctl(struct ifnet *, u_long, void *);
108 void et_start(struct ifnet *);
109 void et_watchdog(struct ifnet *);
110
111 int et_intr(void *);
112 void et_enable_intrs(struct et_softc *, uint32_t);
113 void et_disable_intrs(struct et_softc *);
114 void et_rxeof(struct et_softc *);
115 void et_txeof(struct et_softc *);
116 void et_txtick(void *);
117
118 int et_dma_alloc(struct et_softc *);
119 void et_dma_free(struct et_softc *);
120 int et_dma_mem_create(struct et_softc *, bus_size_t,
121 void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
122 void et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
123 int et_dma_mbuf_create(struct et_softc *);
124 void et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
125 void et_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
126
127 int et_init_tx_ring(struct et_softc *);
128 int et_init_rx_ring(struct et_softc *);
129 void et_free_tx_ring(struct et_softc *);
130 void et_free_rx_ring(struct et_softc *);
131 int et_encap(struct et_softc *, struct mbuf **);
132 int et_newbuf(struct et_rxbuf_data *, int, int, int);
133 int et_newbuf_cluster(struct et_rxbuf_data *, int, int);
134 int et_newbuf_hdr(struct et_rxbuf_data *, int, int);
135
136 void et_stop(struct et_softc *);
137 int et_chip_init(struct et_softc *);
138 void et_chip_attach(struct et_softc *);
139 void et_init_mac(struct et_softc *);
140 void et_init_rxmac(struct et_softc *);
141 void et_init_txmac(struct et_softc *);
142 int et_init_rxdma(struct et_softc *);
143 int et_init_txdma(struct et_softc *);
144 int et_start_rxdma(struct et_softc *);
145 int et_start_txdma(struct et_softc *);
146 int et_stop_rxdma(struct et_softc *);
147 int et_stop_txdma(struct et_softc *);
148 int et_enable_txrx(struct et_softc *);
149 void et_reset(struct et_softc *);
150 int et_bus_config(struct et_softc *);
151 void et_get_eaddr(struct et_softc *, uint8_t[]);
152 void et_setmulti(struct et_softc *);
153 void et_tick(void *);
154
155 static int et_rx_intr_npkts = 32;
156 static int et_rx_intr_delay = 20; /* x10 usec */
157 static int et_tx_intr_nsegs = 128;
158 static uint32_t et_timer = 1000 * 1000 * 1000; /* nanosec */
159
160 struct et_bsize {
161 int bufsize;
162 et_newbuf_t newbuf;
163 };
164
165 static const struct et_bsize et_bufsize[ET_RX_NRING] = {
166 { .bufsize = 0, .newbuf = et_newbuf_hdr },
167 { .bufsize = 0, .newbuf = et_newbuf_cluster },
168 };
169
170 const struct et_product {
171 pci_vendor_id_t vendor;
172 pci_product_id_t product;
173 } et_devices[] = {
174 { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310 },
175 { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1301 }
176 };
177
178 CFATTACH_DECL_NEW(et, sizeof(struct et_softc), et_match, et_attach, et_detach,
179 NULL);
180
181 int
182 et_match(device_t dev, cfdata_t match, void *aux)
183 {
184 struct pci_attach_args *pa = aux;
185 const struct et_product *ep;
186 int i;
187
188 for (i = 0; i < sizeof(et_devices) / sizeof(et_devices[0]); i++) {
189 ep = &et_devices[i];
190 if (PCI_VENDOR(pa->pa_id) == ep->vendor &&
191 PCI_PRODUCT(pa->pa_id) == ep->product)
192 return 1;
193 }
194 return 0;
195 }
196
197 void
198 et_attach(device_t parent, device_t self, void *aux)
199 {
200 struct et_softc *sc = device_private(self);
201 struct pci_attach_args *pa = aux;
202 pci_chipset_tag_t pc = pa->pa_pc;
203 pci_intr_handle_t ih;
204 const char *intrstr;
205 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
206 pcireg_t memtype;
207 int error;
208 char devinfo[256];
209
210 aprint_naive(": Ethernet controller\n");
211
212 sc->sc_dev = self;
213 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
214 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
215
216 /*
217 * Initialize tunables
218 */
219 sc->sc_rx_intr_npkts = et_rx_intr_npkts;
220 sc->sc_rx_intr_delay = et_rx_intr_delay;
221 sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
222 sc->sc_timer = et_timer;
223
224 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
225 if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
226 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
227 aprint_error_dev(self, "could not map mem space\n");
228 return;
229 }
230
231 if (pci_intr_map(pa, &ih) != 0) {
232 aprint_error_dev(self, "could not map interrupt\n");
233 goto fail;
234 }
235
236 intrstr = pci_intr_string(pc, ih);
237 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, et_intr, sc);
238 if (sc->sc_irq_handle == NULL) {
239 aprint_error_dev(self, "could not establish interrupt");
240 if (intrstr != NULL)
241 aprint_error(" at %s", intrstr);
242 aprint_error("\n");
243 goto fail;
244 }
245 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
246
247 sc->sc_dmat = pa->pa_dmat;
248 sc->sc_pct = pa->pa_pc;
249 sc->sc_pcitag = pa->pa_tag;
250
251 error = et_bus_config(sc);
252 if (error)
253 goto fail;
254
255 et_get_eaddr(sc, sc->sc_enaddr);
256
257 aprint_normal_dev(self, "Ethernet address %s\n",
258 ether_sprintf(sc->sc_enaddr));
259
260 CSR_WRITE_4(sc, ET_PM,
261 ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
262
263 et_reset(sc);
264
265 et_disable_intrs(sc);
266
267 error = et_dma_alloc(sc);
268 if (error)
269 goto fail;
270
271 ifp->if_softc = sc;
272 ifp->if_mtu = ETHERMTU;
273 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
274 ifp->if_init = et_init;
275 ifp->if_ioctl = et_ioctl;
276 ifp->if_start = et_start;
277 ifp->if_watchdog = et_watchdog;
278 IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
279 IFQ_SET_READY(&ifp->if_snd);
280 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
281
282 et_chip_attach(sc);
283
284 sc->sc_miibus.mii_ifp = ifp;
285 sc->sc_miibus.mii_readreg = et_miibus_readreg;
286 sc->sc_miibus.mii_writereg = et_miibus_writereg;
287 sc->sc_miibus.mii_statchg = et_miibus_statchg;
288
289 sc->sc_ethercom.ec_mii = &sc->sc_miibus;
290 ifmedia_init(&sc->sc_miibus.mii_media, 0, ether_mediachange,
291 ether_mediastatus);
292 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
293 MII_OFFSET_ANY, 0);
294 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
295 aprint_error_dev(self, "no PHY found!\n");
296 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
297 0, NULL);
298 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
299 } else
300 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
301
302 if_attach(ifp);
303 ether_ifattach(ifp, sc->sc_enaddr);
304
305 callout_init(&sc->sc_tick, 0);
306 callout_setfunc(&sc->sc_tick, et_tick, sc);
307 callout_init(&sc->sc_txtick, 0);
308 callout_setfunc(&sc->sc_txtick, et_txtick, sc);
309
310 if (pmf_device_register(self, NULL, NULL))
311 pmf_class_network_register(self, ifp);
312 else
313 aprint_error_dev(self, "couldn't establish power handler\n");
314
315 return;
316
317 fail:
318 et_dma_free(sc);
319 if (sc->sc_irq_handle != NULL) {
320 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
321 sc->sc_irq_handle = NULL;
322 }
323 if (sc->sc_mem_size) {
324 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
325 sc->sc_mem_size = 0;
326 }
327 }
328
329 int
330 et_detach(device_t self, int flags)
331 {
332 struct et_softc *sc = device_private(self);
333 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
334 int s;
335
336 pmf_device_deregister(self);
337 s = splnet();
338 et_stop(sc);
339 splx(s);
340
341 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
342
343 /* Delete all remaining media. */
344 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
345
346 ether_ifdetach(ifp);
347 if_detach(ifp);
348 et_dma_free(sc);
349
350 if (sc->sc_irq_handle != NULL) {
351 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
352 sc->sc_irq_handle = NULL;
353 }
354
355 if (sc->sc_mem_size) {
356 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
357 sc->sc_mem_size = 0;
358 }
359
360 return 0;
361 }
362
363 int
364 et_shutdown(device_t self)
365 {
366 struct et_softc *sc = device_private(self);
367 int s;
368
369 s = splnet();
370 et_stop(sc);
371 splx(s);
372
373 return 0;
374 }
375
376 int
377 et_miibus_readreg(device_t dev, int phy, int reg)
378 {
379 struct et_softc *sc = device_private(dev);
380 uint32_t val;
381 int i, ret;
382
383 /* Stop any pending operations */
384 CSR_WRITE_4(sc, ET_MII_CMD, 0);
385
386 val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
387 __SHIFTIN(reg, ET_MII_ADDR_REG);
388 CSR_WRITE_4(sc, ET_MII_ADDR, val);
389
390 /* Start reading */
391 CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
392
393 #define NRETRY 50
394
395 for (i = 0; i < NRETRY; ++i) {
396 val = CSR_READ_4(sc, ET_MII_IND);
397 if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
398 break;
399 DELAY(50);
400 }
401 if (i == NRETRY) {
402 aprint_error_dev(sc->sc_dev, "read phy %d, reg %d timed out\n",
403 phy, reg);
404 ret = 0;
405 goto back;
406 }
407
408 #undef NRETRY
409
410 val = CSR_READ_4(sc, ET_MII_STAT);
411 ret = __SHIFTOUT(val, ET_MII_STAT_VALUE);
412
413 back:
414 /* Make sure that the current operation is stopped */
415 CSR_WRITE_4(sc, ET_MII_CMD, 0);
416 return ret;
417 }
418
419 void
420 et_miibus_writereg(device_t dev, int phy, int reg, int val0)
421 {
422 struct et_softc *sc = device_private(dev);
423 uint32_t val;
424 int i;
425
426 /* Stop any pending operations */
427 CSR_WRITE_4(sc, ET_MII_CMD, 0);
428
429 val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
430 __SHIFTIN(reg, ET_MII_ADDR_REG);
431 CSR_WRITE_4(sc, ET_MII_ADDR, val);
432
433 /* Start writing */
434 CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val0, ET_MII_CTRL_VALUE));
435
436 #define NRETRY 100
437
438 for (i = 0; i < NRETRY; ++i) {
439 val = CSR_READ_4(sc, ET_MII_IND);
440 if ((val & ET_MII_IND_BUSY) == 0)
441 break;
442 DELAY(50);
443 }
444 if (i == NRETRY) {
445 aprint_error_dev(sc->sc_dev, "write phy %d, reg %d timed out\n",
446 phy, reg);
447 et_miibus_readreg(dev, phy, reg);
448 }
449
450 #undef NRETRY
451
452 /* Make sure that the current operation is stopped */
453 CSR_WRITE_4(sc, ET_MII_CMD, 0);
454 }
455
456 void
457 et_miibus_statchg(device_t dev)
458 {
459 struct et_softc *sc = device_private(dev);
460 struct mii_data *mii = &sc->sc_miibus;
461 uint32_t cfg2, ctrl;
462
463 cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
464 cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
465 ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
466 cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
467 __SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
468
469 ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
470 ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
471
472 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
473 cfg2 |= ET_MAC_CFG2_MODE_GMII;
474 } else {
475 cfg2 |= ET_MAC_CFG2_MODE_MII;
476 ctrl |= ET_MAC_CTRL_MODE_MII;
477 }
478
479 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
480 cfg2 |= ET_MAC_CFG2_FDX;
481 else
482 ctrl |= ET_MAC_CTRL_GHDX;
483
484 CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
485 CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
486 }
487
488 void
489 et_stop(struct et_softc *sc)
490 {
491 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
492
493 callout_stop(&sc->sc_tick);
494 callout_stop(&sc->sc_txtick);
495
496 et_stop_rxdma(sc);
497 et_stop_txdma(sc);
498
499 et_disable_intrs(sc);
500
501 et_free_tx_ring(sc);
502 et_free_rx_ring(sc);
503
504 et_reset(sc);
505
506 sc->sc_tx = 0;
507 sc->sc_tx_intr = 0;
508
509 ifp->if_timer = 0;
510 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
511 }
512
513 int
514 et_bus_config(struct et_softc *sc)
515 {
516 uint32_t val; //, max_plsz;
517 // uint16_t ack_latency, replay_timer;
518
519 /*
520 * Test whether EEPROM is valid
521 * NOTE: Read twice to get the correct value
522 */
523 pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
524 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
525
526 if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
527 aprint_error_dev(sc->sc_dev, "EEPROM status error 0x%02x\n", val);
528 return ENXIO;
529 }
530
531 /* TODO: LED */
532 #if 0
533 /*
534 * Configure ACK latency and replay timer according to
535 * max playload size
536 */
537 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
538 max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
539
540 switch (max_plsz) {
541 case ET_PCIV_DEVICE_CAPS_PLSZ_128:
542 ack_latency = ET_PCIV_ACK_LATENCY_128;
543 replay_timer = ET_PCIV_REPLAY_TIMER_128;
544 break;
545
546 case ET_PCIV_DEVICE_CAPS_PLSZ_256:
547 ack_latency = ET_PCIV_ACK_LATENCY_256;
548 replay_timer = ET_PCIV_REPLAY_TIMER_256;
549 break;
550
551 default:
552 ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
553 ET_PCIR_ACK_LATENCY) >> 16;
554 replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
555 ET_PCIR_REPLAY_TIMER) >> 16;
556 aprint_normal_dev(sc->sc_dev, "ack latency %u, replay timer %u\n",
557 ack_latency, replay_timer);
558 break;
559 }
560 if (ack_latency != 0) {
561 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
562 ET_PCIR_ACK_LATENCY, ack_latency << 16);
563 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
564 ET_PCIR_REPLAY_TIMER, replay_timer << 16);
565 }
566
567 /*
568 * Set L0s and L1 latency timer to 2us
569 */
570 val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
571 pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
572 val << 24);
573
574 /*
575 * Set max read request size to 2048 bytes
576 */
577 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
578 ET_PCIR_DEVICE_CTRL) >> 16;
579 val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
580 val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
581 pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
582 val << 16);
583 #endif
584
585 return 0;
586 }
587
588 void
589 et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
590 {
591 uint32_t r;
592
593 r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
594 eaddr[0] = r & 0xff;
595 eaddr[1] = (r >> 8) & 0xff;
596 eaddr[2] = (r >> 16) & 0xff;
597 eaddr[3] = (r >> 24) & 0xff;
598 r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
599 eaddr[4] = r & 0xff;
600 eaddr[5] = (r >> 8) & 0xff;
601 }
602
603 void
604 et_reset(struct et_softc *sc)
605 {
606 CSR_WRITE_4(sc, ET_MAC_CFG1,
607 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
608 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
609 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
610
611 CSR_WRITE_4(sc, ET_SWRST,
612 ET_SWRST_TXDMA | ET_SWRST_RXDMA |
613 ET_SWRST_TXMAC | ET_SWRST_RXMAC |
614 ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
615
616 CSR_WRITE_4(sc, ET_MAC_CFG1,
617 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
618 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
619 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
620 }
621
622 void
623 et_disable_intrs(struct et_softc *sc)
624 {
625 CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
626 }
627
628 void
629 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
630 {
631 CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
632 }
633
634 int
635 et_dma_alloc(struct et_softc *sc)
636 {
637 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
638 struct et_txstatus_data *txsd = &sc->sc_tx_status;
639 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
640 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
641 int i, error;
642
643 /*
644 * Create TX ring DMA stuffs
645 */
646 error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
647 (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
648 &tx_ring->tr_seg);
649 if (error) {
650 aprint_error_dev(sc->sc_dev, "can't create TX ring DMA stuffs\n");
651 return error;
652 }
653
654 /*
655 * Create TX status DMA stuffs
656 */
657 error = et_dma_mem_create(sc, sizeof(uint32_t),
658 (void **)&txsd->txsd_status,
659 &txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
660 if (error) {
661 aprint_error_dev(sc->sc_dev, "can't create TX status DMA stuffs\n");
662 return error;
663 }
664
665 /*
666 * Create DMA stuffs for RX rings
667 */
668 for (i = 0; i < ET_RX_NRING; ++i) {
669 static const uint32_t rx_ring_posreg[ET_RX_NRING] =
670 { ET_RX_RING0_POS, ET_RX_RING1_POS };
671
672 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
673
674 error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
675 (void **)&rx_ring->rr_desc,
676 &rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
677 if (error) {
678 aprint_error_dev(sc->sc_dev, "can't create DMA stuffs for "
679 "the %d RX ring\n", i);
680 return error;
681 }
682 rx_ring->rr_posreg = rx_ring_posreg[i];
683 }
684
685 /*
686 * Create RX stat ring DMA stuffs
687 */
688 error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
689 (void **)&rxst_ring->rsr_stat,
690 &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
691 if (error) {
692 aprint_error_dev(sc->sc_dev, "can't create RX stat ring DMA stuffs\n");
693 return error;
694 }
695
696 /*
697 * Create RX status DMA stuffs
698 */
699 error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
700 (void **)&rxsd->rxsd_status,
701 &rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
702 if (error) {
703 aprint_error_dev(sc->sc_dev, "can't create RX status DMA stuffs\n");
704 return error;
705 }
706
707 /*
708 * Create mbuf DMA stuffs
709 */
710 error = et_dma_mbuf_create(sc);
711 if (error)
712 return error;
713
714 return 0;
715 }
716
717 void
718 et_dma_free(struct et_softc *sc)
719 {
720 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
721 struct et_txstatus_data *txsd = &sc->sc_tx_status;
722 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
723 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
724 int i, rx_done[ET_RX_NRING];
725
726 /*
727 * Destroy TX ring DMA stuffs
728 */
729 et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
730
731 /*
732 * Destroy TX status DMA stuffs
733 */
734 et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
735
736 /*
737 * Destroy DMA stuffs for RX rings
738 */
739 for (i = 0; i < ET_RX_NRING; ++i) {
740 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
741
742 et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
743 }
744
745 /*
746 * Destroy RX stat ring DMA stuffs
747 */
748 et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
749
750 /*
751 * Destroy RX status DMA stuffs
752 */
753 et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
754
755 /*
756 * Destroy mbuf DMA stuffs
757 */
758 for (i = 0; i < ET_RX_NRING; ++i)
759 rx_done[i] = ET_RX_NDESC;
760 et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
761 }
762
763 int
764 et_dma_mbuf_create(struct et_softc *sc)
765 {
766 struct et_txbuf_data *tbd = &sc->sc_tx_data;
767 int i, error, rx_done[ET_RX_NRING];
768
769 /*
770 * Create spare DMA map for RX mbufs
771 */
772 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
773 BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
774 if (error) {
775 aprint_error_dev(sc->sc_dev, "can't create spare mbuf DMA map\n");
776 return error;
777 }
778
779 /*
780 * Create DMA maps for RX mbufs
781 */
782 bzero(rx_done, sizeof(rx_done));
783 for (i = 0; i < ET_RX_NRING; ++i) {
784 struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
785 int j;
786
787 for (j = 0; j < ET_RX_NDESC; ++j) {
788 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
789 MCLBYTES, 0, BUS_DMA_NOWAIT,
790 &rbd->rbd_buf[j].rb_dmap);
791 if (error) {
792 aprint_error_dev(sc->sc_dev, "can't create %d RX mbuf "
793 "for %d RX ring\n", j, i);
794 rx_done[i] = j;
795 et_dma_mbuf_destroy(sc, 0, rx_done);
796 return error;
797 }
798 }
799 rx_done[i] = ET_RX_NDESC;
800
801 rbd->rbd_softc = sc;
802 rbd->rbd_ring = &sc->sc_rx_ring[i];
803 }
804
805 /*
806 * Create DMA maps for TX mbufs
807 */
808 for (i = 0; i < ET_TX_NDESC; ++i) {
809 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
810 0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
811 if (error) {
812 aprint_error_dev(sc->sc_dev, "can't create %d TX mbuf "
813 "DMA map\n", i);
814 et_dma_mbuf_destroy(sc, i, rx_done);
815 return error;
816 }
817 }
818
819 return 0;
820 }
821
822 void
823 et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
824 {
825 struct et_txbuf_data *tbd = &sc->sc_tx_data;
826 int i;
827
828 /*
829 * Destroy DMA maps for RX mbufs
830 */
831 for (i = 0; i < ET_RX_NRING; ++i) {
832 struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
833 int j;
834
835 for (j = 0; j < rx_done[i]; ++j) {
836 struct et_rxbuf *rb = &rbd->rbd_buf[j];
837
838 KASSERT(rb->rb_mbuf == NULL,
839 ("RX mbuf in %d RX ring is not freed yet\n", i));
840 bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
841 }
842 }
843
844 /*
845 * Destroy DMA maps for TX mbufs
846 */
847 for (i = 0; i < tx_done; ++i) {
848 struct et_txbuf *tb = &tbd->tbd_buf[i];
849
850 KASSERT(tb->tb_mbuf == NULL, ("TX mbuf is not freed yet\n"));
851 bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
852 }
853
854 /*
855 * Destroy spare mbuf DMA map
856 */
857 bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
858 }
859
860 int
861 et_dma_mem_create(struct et_softc *sc, bus_size_t size,
862 void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
863 {
864 int error, nsegs;
865
866 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
867 dmap);
868 if (error) {
869 aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
870 return error;
871 }
872
873 error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
874 1, &nsegs, BUS_DMA_WAITOK);
875 if (error) {
876 aprint_error_dev(sc->sc_dev, "can't allocate DMA mem\n");
877 return error;
878 }
879
880 error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
881 size, (void **)addr, BUS_DMA_NOWAIT);
882 if (error) {
883 aprint_error_dev(sc->sc_dev, "can't map DMA mem\n");
884 return (error);
885 }
886
887 error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
888 BUS_DMA_WAITOK);
889 if (error) {
890 aprint_error_dev(sc->sc_dev, "can't load DMA mem\n");
891 bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
892 return error;
893 }
894
895 memset(*addr, 0, size);
896
897 *paddr = (*dmap)->dm_segs[0].ds_addr;
898
899 return 0;
900 }
901
902 void
903 et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
904 {
905 bus_dmamap_unload(sc->sc_dmat, dmap);
906 bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
907 }
908
909 void
910 et_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
911 {
912 KASSERT(nseg == 1, ("too many segments\n"));
913 *((bus_addr_t *)arg) = seg->ds_addr;
914 }
915
916 void
917 et_chip_attach(struct et_softc *sc)
918 {
919 uint32_t val;
920
921 /*
922 * Perform minimal initialization
923 */
924
925 /* Disable loopback */
926 CSR_WRITE_4(sc, ET_LOOPBACK, 0);
927
928 /* Reset MAC */
929 CSR_WRITE_4(sc, ET_MAC_CFG1,
930 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
931 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
932 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
933
934 /*
935 * Setup half duplex mode
936 */
937 val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
938 __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
939 __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
940 ET_MAC_HDX_EXC_DEFER;
941 CSR_WRITE_4(sc, ET_MAC_HDX, val);
942
943 /* Clear MAC control */
944 CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
945
946 /* Reset MII */
947 CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
948
949 /* Bring MAC out of reset state */
950 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
951
952 /* Enable memory controllers */
953 CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
954 }
955
956 int
957 et_intr(void *xsc)
958 {
959 struct et_softc *sc = xsc;
960 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
961 uint32_t intrs;
962
963 if ((ifp->if_flags & IFF_RUNNING) == 0)
964 return (0);
965
966 intrs = CSR_READ_4(sc, ET_INTR_STATUS);
967 if (intrs == 0 || intrs == 0xffffffff)
968 return (0);
969
970 et_disable_intrs(sc);
971 intrs &= ET_INTRS;
972 if (intrs == 0) /* Not interested */
973 goto back;
974
975 if (intrs & ET_INTR_RXEOF)
976 et_rxeof(sc);
977 if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
978 et_txeof(sc);
979 if (intrs & ET_INTR_TIMER)
980 CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
981 back:
982 et_enable_intrs(sc, ET_INTRS);
983
984 return (1);
985 }
986
987 int
988 et_init(struct ifnet *ifp)
989 {
990 struct et_softc *sc = ifp->if_softc;
991 int error, i, s;
992
993 if (ifp->if_flags & IFF_RUNNING)
994 return 0;
995
996 s = splnet();
997
998 et_stop(sc);
999
1000 for (i = 0; i < ET_RX_NRING; ++i) {
1001 sc->sc_rx_data[i].rbd_bufsize = et_bufsize[i].bufsize;
1002 sc->sc_rx_data[i].rbd_newbuf = et_bufsize[i].newbuf;
1003 }
1004
1005 error = et_init_tx_ring(sc);
1006 if (error)
1007 goto back;
1008
1009 error = et_init_rx_ring(sc);
1010 if (error)
1011 goto back;
1012
1013 error = et_chip_init(sc);
1014 if (error)
1015 goto back;
1016
1017 error = et_enable_txrx(sc);
1018 if (error)
1019 goto back;
1020
1021 error = et_start_rxdma(sc);
1022 if (error)
1023 goto back;
1024
1025 error = et_start_txdma(sc);
1026 if (error)
1027 goto back;
1028
1029 et_enable_intrs(sc, ET_INTRS);
1030
1031 callout_schedule(&sc->sc_tick, hz);
1032
1033 CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1034
1035 ifp->if_flags |= IFF_RUNNING;
1036 ifp->if_flags &= ~IFF_OACTIVE;
1037 back:
1038 if (error)
1039 et_stop(sc);
1040
1041 splx(s);
1042
1043 return (0);
1044 }
1045
1046 int
1047 et_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1048 {
1049 struct et_softc *sc = ifp->if_softc;
1050 struct ifreq *ifr = (struct ifreq *)data;
1051 int s, error = 0;
1052
1053 s = splnet();
1054
1055 switch (cmd) {
1056 case SIOCSIFFLAGS:
1057 if (ifp->if_flags & IFF_UP) {
1058 /*
1059 * If only the PROMISC or ALLMULTI flag changes, then
1060 * don't do a full re-init of the chip, just update
1061 * the Rx filter.
1062 */
1063 if ((ifp->if_flags & IFF_RUNNING) &&
1064 ((ifp->if_flags ^ sc->sc_if_flags) &
1065 (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1066 et_setmulti(sc);
1067 } else {
1068 if (!(ifp->if_flags & IFF_RUNNING))
1069 et_init(ifp);
1070 }
1071 } else {
1072 if (ifp->if_flags & IFF_RUNNING)
1073 et_stop(sc);
1074 }
1075 sc->sc_if_flags = ifp->if_flags;
1076 break;
1077 case SIOCSIFMEDIA:
1078 case SIOCGIFMEDIA:
1079 error = ifmedia_ioctl(ifp, ifr, &sc->sc_miibus.mii_media, cmd);
1080 break;
1081 default:
1082 error = ether_ioctl(ifp, cmd, data);
1083 if (error == ENETRESET) {
1084 if (ifp->if_flags & IFF_RUNNING)
1085 et_setmulti(sc);
1086 error = 0;
1087 }
1088 break;
1089
1090 }
1091
1092 splx(s);
1093
1094 return error;
1095 }
1096
1097 void
1098 et_start(struct ifnet *ifp)
1099 {
1100 struct et_softc *sc = ifp->if_softc;
1101 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1102 int trans;
1103 struct mbuf *m;
1104
1105 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1106 return;
1107
1108 trans = 0;
1109 for (;;) {
1110 IFQ_DEQUEUE(&ifp->if_snd, m);
1111 if (m == NULL)
1112 break;
1113
1114 if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1115 ifp->if_flags |= IFF_OACTIVE;
1116 break;
1117 }
1118
1119 if (et_encap(sc, &m)) {
1120 ifp->if_oerrors++;
1121 ifp->if_flags |= IFF_OACTIVE;
1122 break;
1123 }
1124
1125 trans = 1;
1126
1127 #if NBPFILTER > 0
1128 if (ifp->if_bpf != NULL)
1129 bpf_mtap(ifp->if_bpf, m);
1130 #endif
1131 }
1132
1133 if (trans) {
1134 callout_schedule(&sc->sc_txtick, hz);
1135 ifp->if_timer = 5;
1136 }
1137 }
1138
1139 void
1140 et_watchdog(struct ifnet *ifp)
1141 {
1142 struct et_softc *sc = ifp->if_softc;
1143 aprint_error_dev(sc->sc_dev, "watchdog timed out\n");
1144
1145 ifp->if_flags &= ~IFF_RUNNING;
1146 et_init(ifp);
1147 et_start(ifp);
1148 }
1149
1150 int
1151 et_stop_rxdma(struct et_softc *sc)
1152 {
1153 CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1154 ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1155
1156 DELAY(5);
1157 if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1158 aprint_error_dev(sc->sc_dev, "can't stop RX DMA engine\n");
1159 return ETIMEDOUT;
1160 }
1161 return 0;
1162 }
1163
1164 int
1165 et_stop_txdma(struct et_softc *sc)
1166 {
1167 CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1168 ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1169 return 0;
1170 }
1171
1172 void
1173 et_free_tx_ring(struct et_softc *sc)
1174 {
1175 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1176 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1177 int i;
1178
1179 for (i = 0; i < ET_TX_NDESC; ++i) {
1180 struct et_txbuf *tb = &tbd->tbd_buf[i];
1181
1182 if (tb->tb_mbuf != NULL) {
1183 bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1184 m_freem(tb->tb_mbuf);
1185 tb->tb_mbuf = NULL;
1186 }
1187 }
1188
1189 bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1190 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1191 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1192 }
1193
1194 void
1195 et_free_rx_ring(struct et_softc *sc)
1196 {
1197 int n;
1198
1199 for (n = 0; n < ET_RX_NRING; ++n) {
1200 struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1201 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1202 int i;
1203
1204 for (i = 0; i < ET_RX_NDESC; ++i) {
1205 struct et_rxbuf *rb = &rbd->rbd_buf[i];
1206
1207 if (rb->rb_mbuf != NULL) {
1208 bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
1209 m_freem(rb->rb_mbuf);
1210 rb->rb_mbuf = NULL;
1211 }
1212 }
1213
1214 bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1215 bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
1216 rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1217 }
1218 }
1219
1220 void
1221 et_setmulti(struct et_softc *sc)
1222 {
1223 struct ethercom *ec = &sc->sc_ethercom;
1224 struct ifnet *ifp = &ec->ec_if;
1225 uint32_t hash[4] = { 0, 0, 0, 0 };
1226 uint32_t rxmac_ctrl, pktfilt;
1227 struct ether_multi *enm;
1228 struct ether_multistep step;
1229 uint8_t addr[ETHER_ADDR_LEN];
1230 int i, count;
1231
1232 pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1233 rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1234
1235 pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1236 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1237 rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1238 goto back;
1239 }
1240
1241 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1242
1243 count = 0;
1244 ETHER_FIRST_MULTI(step, ec, enm);
1245 while (enm != NULL) {
1246 uint32_t *hp, h;
1247
1248 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1249 addr[i] &= enm->enm_addrlo[i];
1250 }
1251
1252 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)addr),
1253 ETHER_ADDR_LEN);
1254 h = (h & 0x3f800000) >> 23;
1255
1256 hp = &hash[0];
1257 if (h >= 32 && h < 64) {
1258 h -= 32;
1259 hp = &hash[1];
1260 } else if (h >= 64 && h < 96) {
1261 h -= 64;
1262 hp = &hash[2];
1263 } else if (h >= 96) {
1264 h -= 96;
1265 hp = &hash[3];
1266 }
1267 *hp |= (1 << h);
1268
1269 ++count;
1270 ETHER_NEXT_MULTI(step, enm);
1271 }
1272
1273 for (i = 0; i < 4; ++i)
1274 CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1275
1276 if (count > 0)
1277 pktfilt |= ET_PKTFILT_MCAST;
1278 rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1279 back:
1280 CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1281 CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1282 }
1283
1284 int
1285 et_chip_init(struct et_softc *sc)
1286 {
1287 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1288 uint32_t rxq_end;
1289 int error;
1290
1291 /*
1292 * Split internal memory between TX and RX according to MTU
1293 */
1294 if (ifp->if_mtu < 2048)
1295 rxq_end = 0x2bc;
1296 else if (ifp->if_mtu < 8192)
1297 rxq_end = 0x1ff;
1298 else
1299 rxq_end = 0x1b3;
1300 CSR_WRITE_4(sc, ET_RXQ_START, 0);
1301 CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1302 CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1303 CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1304
1305 /* No loopback */
1306 CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1307
1308 /* Clear MSI configure */
1309 CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1310
1311 /* Disable timer */
1312 CSR_WRITE_4(sc, ET_TIMER, 0);
1313
1314 /* Initialize MAC */
1315 et_init_mac(sc);
1316
1317 /* Enable memory controllers */
1318 CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1319
1320 /* Initialize RX MAC */
1321 et_init_rxmac(sc);
1322
1323 /* Initialize TX MAC */
1324 et_init_txmac(sc);
1325
1326 /* Initialize RX DMA engine */
1327 error = et_init_rxdma(sc);
1328 if (error)
1329 return error;
1330
1331 /* Initialize TX DMA engine */
1332 error = et_init_txdma(sc);
1333 if (error)
1334 return error;
1335
1336 return 0;
1337 }
1338
1339 int
1340 et_init_tx_ring(struct et_softc *sc)
1341 {
1342 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1343 struct et_txstatus_data *txsd = &sc->sc_tx_status;
1344 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1345
1346 bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1347 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1348 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1349
1350 tbd->tbd_start_index = 0;
1351 tbd->tbd_start_wrap = 0;
1352 tbd->tbd_used = 0;
1353
1354 bzero(txsd->txsd_status, sizeof(uint32_t));
1355 bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
1356 txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1357 return 0;
1358 }
1359
1360 int
1361 et_init_rx_ring(struct et_softc *sc)
1362 {
1363 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1364 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1365 int n;
1366
1367 for (n = 0; n < ET_RX_NRING; ++n) {
1368 struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1369 int i, error;
1370
1371 for (i = 0; i < ET_RX_NDESC; ++i) {
1372 error = rbd->rbd_newbuf(rbd, i, 1);
1373 if (error) {
1374 aprint_error_dev(sc->sc_dev, "%d ring %d buf, newbuf failed: "
1375 "%d\n", n, i, error);
1376 return error;
1377 }
1378 }
1379 }
1380
1381 bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1382 bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1383 rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1384
1385 bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1386 bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1387 rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1388
1389 return 0;
1390 }
1391
1392 int
1393 et_init_rxdma(struct et_softc *sc)
1394 {
1395 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1396 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1397 struct et_rxdesc_ring *rx_ring;
1398 int error;
1399
1400 error = et_stop_rxdma(sc);
1401 if (error) {
1402 aprint_error_dev(sc->sc_dev, "can't init RX DMA engine\n");
1403 return error;
1404 }
1405
1406 /*
1407 * Install RX status
1408 */
1409 CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1410 CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1411
1412 /*
1413 * Install RX stat ring
1414 */
1415 CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1416 CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1417 CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1418 CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1419 CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1420
1421 /* Match ET_RXSTAT_POS */
1422 rxst_ring->rsr_index = 0;
1423 rxst_ring->rsr_wrap = 0;
1424
1425 /*
1426 * Install the 2nd RX descriptor ring
1427 */
1428 rx_ring = &sc->sc_rx_ring[1];
1429 CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1430 CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1431 CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1432 CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1433 CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1434
1435 /* Match ET_RX_RING1_POS */
1436 rx_ring->rr_index = 0;
1437 rx_ring->rr_wrap = 1;
1438
1439 /*
1440 * Install the 1st RX descriptor ring
1441 */
1442 rx_ring = &sc->sc_rx_ring[0];
1443 CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1444 CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1445 CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1446 CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1447 CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1448
1449 /* Match ET_RX_RING0_POS */
1450 rx_ring->rr_index = 0;
1451 rx_ring->rr_wrap = 1;
1452
1453 /*
1454 * RX intr moderation
1455 */
1456 CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1457 CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1458
1459 return 0;
1460 }
1461
1462 int
1463 et_init_txdma(struct et_softc *sc)
1464 {
1465 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1466 struct et_txstatus_data *txsd = &sc->sc_tx_status;
1467 int error;
1468
1469 error = et_stop_txdma(sc);
1470 if (error) {
1471 aprint_error_dev(sc->sc_dev, "can't init TX DMA engine\n");
1472 return error;
1473 }
1474
1475 /*
1476 * Install TX descriptor ring
1477 */
1478 CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1479 CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1480 CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1481
1482 /*
1483 * Install TX status
1484 */
1485 CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1486 CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1487
1488 CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1489
1490 /* Match ET_TX_READY_POS */
1491 tx_ring->tr_ready_index = 0;
1492 tx_ring->tr_ready_wrap = 0;
1493
1494 return 0;
1495 }
1496
1497 void
1498 et_init_mac(struct et_softc *sc)
1499 {
1500 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1501 const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1502 uint32_t val;
1503
1504 /* Reset MAC */
1505 CSR_WRITE_4(sc, ET_MAC_CFG1,
1506 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1507 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1508 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1509
1510 /*
1511 * Setup inter packet gap
1512 */
1513 val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1514 __SHIFTIN(88, ET_IPG_NONB2B_2) |
1515 __SHIFTIN(80, ET_IPG_MINIFG) |
1516 __SHIFTIN(96, ET_IPG_B2B);
1517 CSR_WRITE_4(sc, ET_IPG, val);
1518
1519 /*
1520 * Setup half duplex mode
1521 */
1522 val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1523 __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1524 __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1525 ET_MAC_HDX_EXC_DEFER;
1526 CSR_WRITE_4(sc, ET_MAC_HDX, val);
1527
1528 /* Clear MAC control */
1529 CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1530
1531 /* Reset MII */
1532 CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1533
1534 /*
1535 * Set MAC address
1536 */
1537 val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1538 CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1539 val = (eaddr[0] << 16) | (eaddr[1] << 24);
1540 CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1541
1542 /* Set max frame length */
1543 CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1544 ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + ETHER_CRC_LEN);
1545
1546 /* Bring MAC out of reset state */
1547 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1548 }
1549
1550 void
1551 et_init_rxmac(struct et_softc *sc)
1552 {
1553 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1554 const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1555 uint32_t val;
1556 int i;
1557
1558 /* Disable RX MAC and WOL */
1559 CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1560
1561 /*
1562 * Clear all WOL related registers
1563 */
1564 for (i = 0; i < 3; ++i)
1565 CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1566 for (i = 0; i < 20; ++i)
1567 CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1568
1569 /*
1570 * Set WOL source address. XXX is this necessary?
1571 */
1572 val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1573 CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1574 val = (eaddr[0] << 8) | eaddr[1];
1575 CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1576
1577 /* Clear packet filters */
1578 CSR_WRITE_4(sc, ET_PKTFILT, 0);
1579
1580 /* No ucast filtering */
1581 CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1582 CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1583 CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1584
1585 if (ifp->if_mtu > 8192) {
1586 /*
1587 * In order to transmit jumbo packets greater than 8k,
1588 * the FIFO between RX MAC and RX DMA needs to be reduced
1589 * in size to (16k - MTU). In order to implement this, we
1590 * must use "cut through" mode in the RX MAC, which chops
1591 * packets down into segments which are (max_size * 16).
1592 * In this case we selected 256 bytes, since this is the
1593 * size of the PCI-Express TLP's that the 1310 uses.
1594 */
1595 val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1596 ET_RXMAC_MC_SEGSZ_ENABLE;
1597 } else {
1598 val = 0;
1599 }
1600 CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1601
1602 CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1603
1604 /* Initialize RX MAC management register */
1605 CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1606
1607 CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1608
1609 CSR_WRITE_4(sc, ET_RXMAC_MGT,
1610 ET_RXMAC_MGT_PASS_ECRC |
1611 ET_RXMAC_MGT_PASS_ELEN |
1612 ET_RXMAC_MGT_PASS_ETRUNC |
1613 ET_RXMAC_MGT_CHECK_PKT);
1614
1615 /*
1616 * Configure runt filtering (may not work on certain chip generation)
1617 */
1618 val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1619 CSR_WRITE_4(sc, ET_PKTFILT, val);
1620
1621 /* Enable RX MAC but leave WOL disabled */
1622 CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1623 ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1624
1625 /*
1626 * Setup multicast hash and allmulti/promisc mode
1627 */
1628 et_setmulti(sc);
1629 }
1630
1631 void
1632 et_init_txmac(struct et_softc *sc)
1633 {
1634 /* Disable TX MAC and FC(?) */
1635 CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1636
1637 /* No flow control yet */
1638 CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1639
1640 /* Enable TX MAC but leave FC(?) diabled */
1641 CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1642 ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1643 }
1644
1645 int
1646 et_start_rxdma(struct et_softc *sc)
1647 {
1648 uint32_t val = 0;
1649
1650 val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1651 ET_RXDMA_CTRL_RING0_SIZE) |
1652 ET_RXDMA_CTRL_RING0_ENABLE;
1653 val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1654 ET_RXDMA_CTRL_RING1_SIZE) |
1655 ET_RXDMA_CTRL_RING1_ENABLE;
1656
1657 CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1658
1659 DELAY(5);
1660
1661 if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1662 aprint_error_dev(sc->sc_dev, "can't start RX DMA engine\n");
1663 return ETIMEDOUT;
1664 }
1665 return 0;
1666 }
1667
1668 int
1669 et_start_txdma(struct et_softc *sc)
1670 {
1671 CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1672 return 0;
1673 }
1674
1675 int
1676 et_enable_txrx(struct et_softc *sc)
1677 {
1678 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1679 uint32_t val;
1680 int i, rc = 0;
1681
1682 val = CSR_READ_4(sc, ET_MAC_CFG1);
1683 val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1684 val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1685 ET_MAC_CFG1_LOOPBACK);
1686 CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1687
1688 if ((rc = ether_mediachange(ifp)) != 0)
1689 goto out;
1690
1691 #define NRETRY 100
1692
1693 for (i = 0; i < NRETRY; ++i) {
1694 val = CSR_READ_4(sc, ET_MAC_CFG1);
1695 if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1696 (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1697 break;
1698
1699 DELAY(10);
1700 }
1701 if (i == NRETRY) {
1702 aprint_error_dev(sc->sc_dev, "can't enable RX/TX\n");
1703 return ETIMEDOUT;
1704 }
1705
1706 #undef NRETRY
1707 return 0;
1708 out:
1709 return rc;
1710 }
1711
1712 void
1713 et_rxeof(struct et_softc *sc)
1714 {
1715 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1716 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1717 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1718 uint32_t rxs_stat_ring;
1719 int rxst_wrap, rxst_index;
1720
1721 bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1722 rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1723 bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1724 rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1725
1726 rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1727 rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1728 rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1729
1730 while (rxst_index != rxst_ring->rsr_index ||
1731 rxst_wrap != rxst_ring->rsr_wrap) {
1732 struct et_rxbuf_data *rbd;
1733 struct et_rxdesc_ring *rx_ring;
1734 struct et_rxstat *st;
1735 struct et_rxbuf *rb;
1736 struct mbuf *m;
1737 int buflen, buf_idx, ring_idx;
1738 uint32_t rxstat_pos, rxring_pos;
1739
1740 KKASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1741 st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1742
1743 buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1744 buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1745 ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1746
1747 if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1748 rxst_ring->rsr_index = 0;
1749 rxst_ring->rsr_wrap ^= 1;
1750 }
1751 rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1752 ET_RXSTAT_POS_INDEX);
1753 if (rxst_ring->rsr_wrap)
1754 rxstat_pos |= ET_RXSTAT_POS_WRAP;
1755 CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1756
1757 if (ring_idx >= ET_RX_NRING) {
1758 ifp->if_ierrors++;
1759 aprint_error_dev(sc->sc_dev, "invalid ring index %d\n",
1760 ring_idx);
1761 continue;
1762 }
1763 if (buf_idx >= ET_RX_NDESC) {
1764 ifp->if_ierrors++;
1765 aprint_error_dev(sc->sc_dev, "invalid buf index %d\n",
1766 buf_idx);
1767 continue;
1768 }
1769
1770 rbd = &sc->sc_rx_data[ring_idx];
1771 rb = &rbd->rbd_buf[buf_idx];
1772 m = rb->rb_mbuf;
1773 bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
1774 rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1775
1776 if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1777 if (buflen < ETHER_CRC_LEN) {
1778 m_freem(m);
1779 ifp->if_ierrors++;
1780 } else {
1781 m->m_pkthdr.len = m->m_len = buflen -
1782 ETHER_CRC_LEN;
1783 m->m_pkthdr.rcvif = ifp;
1784
1785 #if NBPFILTER > 0
1786 if (ifp->if_bpf != NULL)
1787 bpf_mtap(ifp->if_bpf, m);
1788 #endif
1789
1790 ifp->if_ipackets++;
1791 (*ifp->if_input)(ifp, m);
1792 }
1793 } else {
1794 ifp->if_ierrors++;
1795 }
1796
1797 rx_ring = &sc->sc_rx_ring[ring_idx];
1798
1799 if (buf_idx != rx_ring->rr_index) {
1800 aprint_error_dev(sc->sc_dev, "WARNING!! ring %d, "
1801 "buf_idx %d, rr_idx %d\n",
1802 ring_idx, buf_idx, rx_ring->rr_index);
1803 }
1804
1805 KKASSERT(rx_ring->rr_index < ET_RX_NDESC);
1806 if (++rx_ring->rr_index == ET_RX_NDESC) {
1807 rx_ring->rr_index = 0;
1808 rx_ring->rr_wrap ^= 1;
1809 }
1810 rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1811 if (rx_ring->rr_wrap)
1812 rxring_pos |= ET_RX_RING_POS_WRAP;
1813 CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1814 }
1815 }
1816
1817 int
1818 et_encap(struct et_softc *sc, struct mbuf **m0)
1819 {
1820 struct mbuf *m = *m0;
1821 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1822 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1823 struct et_txdesc *td;
1824 bus_dmamap_t map;
1825 int error, maxsegs, first_idx, last_idx, i;
1826 uint32_t tx_ready_pos, last_td_ctrl2;
1827
1828 maxsegs = ET_TX_NDESC - tbd->tbd_used;
1829 if (maxsegs > ET_NSEG_MAX)
1830 maxsegs = ET_NSEG_MAX;
1831 KASSERT(maxsegs >= ET_NSEG_SPARE,
1832 ("not enough spare TX desc (%d)\n", maxsegs));
1833
1834 KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1835 first_idx = tx_ring->tr_ready_index;
1836 map = tbd->tbd_buf[first_idx].tb_dmap;
1837
1838 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1839 BUS_DMA_NOWAIT);
1840 if (!error && map->dm_nsegs == 0) {
1841 bus_dmamap_unload(sc->sc_dmat, map);
1842 error = EFBIG;
1843 }
1844 if (error && error != EFBIG) {
1845 aprint_error_dev(sc->sc_dev, "can't load TX mbuf");
1846 goto back;
1847 }
1848 if (error) { /* error == EFBIG */
1849 struct mbuf *m_new;
1850
1851 error = 0;
1852
1853 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1854 if (m_new == NULL) {
1855 m_freem(m);
1856 aprint_error_dev(sc->sc_dev, "can't defrag TX mbuf\n");
1857 error = ENOBUFS;
1858 goto back;
1859 }
1860
1861 M_COPY_PKTHDR(m_new, m);
1862 if (m->m_pkthdr.len > MHLEN) {
1863 MCLGET(m_new, M_DONTWAIT);
1864 if (!(m_new->m_flags & M_EXT)) {
1865 m_freem(m);
1866 m_freem(m_new);
1867 error = ENOBUFS;
1868 }
1869 }
1870
1871 if (error) {
1872 aprint_error_dev(sc->sc_dev, "can't defrag TX buffer\n");
1873 goto back;
1874 }
1875
1876 m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
1877 m_freem(m);
1878 m_new->m_len = m_new->m_pkthdr.len;
1879 *m0 = m = m_new;
1880
1881 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1882 BUS_DMA_NOWAIT);
1883 if (error || map->dm_nsegs == 0) {
1884 if (map->dm_nsegs == 0) {
1885 bus_dmamap_unload(sc->sc_dmat, map);
1886 error = EFBIG;
1887 }
1888 aprint_error_dev(sc->sc_dev, "can't load defraged TX mbuf\n");
1889 goto back;
1890 }
1891 }
1892
1893 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1894 BUS_DMASYNC_PREWRITE);
1895
1896 last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1897 sc->sc_tx += map->dm_nsegs;
1898 if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1899 sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1900 last_td_ctrl2 |= ET_TDCTRL2_INTR;
1901 }
1902
1903 last_idx = -1;
1904 for (i = 0; i < map->dm_nsegs; ++i) {
1905 int idx;
1906
1907 idx = (first_idx + i) % ET_TX_NDESC;
1908 td = &tx_ring->tr_desc[idx];
1909 td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
1910 td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
1911 td->td_ctrl1 =
1912 __SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
1913
1914 if (i == map->dm_nsegs - 1) { /* Last frag */
1915 td->td_ctrl2 = last_td_ctrl2;
1916 last_idx = idx;
1917 }
1918
1919 KKASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1920 if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1921 tx_ring->tr_ready_index = 0;
1922 tx_ring->tr_ready_wrap ^= 1;
1923 }
1924 }
1925 td = &tx_ring->tr_desc[first_idx];
1926 td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG; /* First frag */
1927
1928 KKASSERT(last_idx >= 0);
1929 tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1930 tbd->tbd_buf[last_idx].tb_dmap = map;
1931 tbd->tbd_buf[last_idx].tb_mbuf = m;
1932
1933 tbd->tbd_used += map->dm_nsegs;
1934 KKASSERT(tbd->tbd_used <= ET_TX_NDESC);
1935
1936 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1937 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1938
1939
1940 tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1941 ET_TX_READY_POS_INDEX);
1942 if (tx_ring->tr_ready_wrap)
1943 tx_ready_pos |= ET_TX_READY_POS_WRAP;
1944 CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1945
1946 error = 0;
1947 back:
1948 if (error) {
1949 m_freem(m);
1950 *m0 = NULL;
1951 }
1952 return error;
1953 }
1954
1955 void
1956 et_txeof(struct et_softc *sc)
1957 {
1958 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1959 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1960 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1961 uint32_t tx_done;
1962 int end, wrap;
1963
1964 if (tbd->tbd_used == 0)
1965 return;
1966
1967 tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
1968 end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
1969 wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
1970
1971 while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
1972 struct et_txbuf *tb;
1973
1974 KKASSERT(tbd->tbd_start_index < ET_TX_NDESC);
1975 tb = &tbd->tbd_buf[tbd->tbd_start_index];
1976
1977 bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
1978 sizeof(struct et_txdesc));
1979 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1980 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1981
1982 if (tb->tb_mbuf != NULL) {
1983 bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1984 m_freem(tb->tb_mbuf);
1985 tb->tb_mbuf = NULL;
1986 ifp->if_opackets++;
1987 }
1988
1989 if (++tbd->tbd_start_index == ET_TX_NDESC) {
1990 tbd->tbd_start_index = 0;
1991 tbd->tbd_start_wrap ^= 1;
1992 }
1993
1994 KKASSERT(tbd->tbd_used > 0);
1995 tbd->tbd_used--;
1996 }
1997
1998 if (tbd->tbd_used == 0) {
1999 callout_stop(&sc->sc_txtick);
2000 ifp->if_timer = 0;
2001 }
2002 if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
2003 ifp->if_flags &= ~IFF_OACTIVE;
2004
2005 et_start(ifp);
2006 }
2007
2008 void
2009 et_txtick(void *xsc)
2010 {
2011 struct et_softc *sc = xsc;
2012 int s;
2013
2014 s = splnet();
2015 et_txeof(sc);
2016 splx(s);
2017 }
2018
2019 void
2020 et_tick(void *xsc)
2021 {
2022 struct et_softc *sc = xsc;
2023 int s;
2024
2025 s = splnet();
2026 mii_tick(&sc->sc_miibus);
2027 callout_schedule(&sc->sc_tick, hz);
2028 splx(s);
2029 }
2030
2031 int
2032 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2033 {
2034 return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2035 }
2036
2037 int
2038 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2039 {
2040 return et_newbuf(rbd, buf_idx, init, MHLEN);
2041 }
2042
2043 int
2044 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2045 {
2046 struct et_softc *sc = rbd->rbd_softc;
2047 struct et_rxdesc_ring *rx_ring;
2048 struct et_rxdesc *desc;
2049 struct et_rxbuf *rb;
2050 struct mbuf *m;
2051 bus_dmamap_t dmap;
2052 int error, len;
2053
2054 KKASSERT(buf_idx < ET_RX_NDESC);
2055 rb = &rbd->rbd_buf[buf_idx];
2056
2057 if (len0 >= MINCLSIZE) {
2058 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2059 if (m == NULL)
2060 return (ENOBUFS);
2061 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2062 len = MCLBYTES;
2063 } else {
2064 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2065 len = MHLEN;
2066 }
2067
2068 if (m == NULL) {
2069 error = ENOBUFS;
2070
2071 /* XXX for debug */
2072 aprint_error_dev(sc->sc_dev, "M_CLGET failed, size %d\n", len0);
2073 if (init) {
2074 return error;
2075 } else {
2076 goto back;
2077 }
2078 }
2079 m->m_len = m->m_pkthdr.len = len;
2080
2081 /*
2082 * Try load RX mbuf into temporary DMA tag
2083 */
2084 error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
2085 init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2086 if (error) {
2087 if (!error) {
2088 bus_dmamap_unload(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
2089 error = EFBIG;
2090 aprint_error_dev(sc->sc_dev, "too many segments?!\n");
2091 }
2092 m_freem(m);
2093
2094 /* XXX for debug */
2095 aprint_error_dev(sc->sc_dev, "can't load RX mbuf\n");
2096 if (init) {
2097 return error;
2098 } else {
2099 goto back;
2100 }
2101 }
2102
2103 if (!init)
2104 bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
2105 rb->rb_mbuf = m;
2106
2107 /*
2108 * Swap RX buf's DMA map with the loaded temporary one
2109 */
2110 dmap = rb->rb_dmap;
2111 rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2112 rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
2113 sc->sc_mbuf_tmp_dmap = dmap;
2114
2115 error = 0;
2116 back:
2117 rx_ring = rbd->rbd_ring;
2118 desc = &rx_ring->rr_desc[buf_idx];
2119
2120 desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2121 desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2122 desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2123
2124 bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
2125 rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2126 return error;
2127 }
2128