if_et.c revision 1.24 1 /* $NetBSD: if_et.c,v 1.24 2019/05/28 07:41:49 msaitoh Exp $ */
2 /* $OpenBSD: if_et.c,v 1.11 2008/06/08 06:18:07 jsg Exp $ */
3 /*
4 * Copyright (c) 2007 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Sepherosa Ziehau <sepherosa (at) gmail.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: if_et.c,v 1.24 2019/05/28 07:41:49 msaitoh Exp $");
41
42 #include "opt_inet.h"
43 #include "vlan.h"
44
45 #include <sys/param.h>
46 #include <sys/endian.h>
47 #include <sys/systm.h>
48 #include <sys/types.h>
49 #include <sys/sockio.h>
50 #include <sys/mbuf.h>
51 #include <sys/queue.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/socket.h>
56
57 #include <sys/bus.h>
58
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 #include <net/if_arp.h>
64
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72
73 #include <net/bpf.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81
82 #include <dev/pci/if_etreg.h>
83
84 int et_match(device_t, cfdata_t, void *);
85 void et_attach(device_t, device_t, void *);
86 int et_detach(device_t, int flags);
87 int et_shutdown(device_t);
88
89 int et_miibus_readreg(device_t, int, int, uint16_t *);
90 int et_miibus_writereg(device_t, int, int, uint16_t);
91 void et_miibus_statchg(struct ifnet *);
92
93 int et_init(struct ifnet *ifp);
94 int et_ioctl(struct ifnet *, u_long, void *);
95 void et_start(struct ifnet *);
96 void et_watchdog(struct ifnet *);
97
98 int et_intr(void *);
99 void et_enable_intrs(struct et_softc *, uint32_t);
100 void et_disable_intrs(struct et_softc *);
101 void et_rxeof(struct et_softc *);
102 void et_txeof(struct et_softc *);
103 void et_txtick(void *);
104
105 int et_dma_alloc(struct et_softc *);
106 void et_dma_free(struct et_softc *);
107 int et_dma_mem_create(struct et_softc *, bus_size_t,
108 void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
109 void et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
110 int et_dma_mbuf_create(struct et_softc *);
111 void et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
112
113 int et_init_tx_ring(struct et_softc *);
114 int et_init_rx_ring(struct et_softc *);
115 void et_free_tx_ring(struct et_softc *);
116 void et_free_rx_ring(struct et_softc *);
117 int et_encap(struct et_softc *, struct mbuf **);
118 int et_newbuf(struct et_rxbuf_data *, int, int, int);
119 int et_newbuf_cluster(struct et_rxbuf_data *, int, int);
120 int et_newbuf_hdr(struct et_rxbuf_data *, int, int);
121
122 void et_stop(struct et_softc *);
123 int et_chip_init(struct et_softc *);
124 void et_chip_attach(struct et_softc *);
125 void et_init_mac(struct et_softc *);
126 void et_init_rxmac(struct et_softc *);
127 void et_init_txmac(struct et_softc *);
128 int et_init_rxdma(struct et_softc *);
129 int et_init_txdma(struct et_softc *);
130 int et_start_rxdma(struct et_softc *);
131 int et_start_txdma(struct et_softc *);
132 int et_stop_rxdma(struct et_softc *);
133 int et_stop_txdma(struct et_softc *);
134 int et_enable_txrx(struct et_softc *);
135 void et_reset(struct et_softc *);
136 int et_bus_config(struct et_softc *);
137 void et_get_eaddr(struct et_softc *, uint8_t[]);
138 void et_setmulti(struct et_softc *);
139 void et_tick(void *);
140
141 static int et_rx_intr_npkts = 32;
142 static int et_rx_intr_delay = 20; /* x10 usec */
143 static int et_tx_intr_nsegs = 128;
144 static uint32_t et_timer = 1000 * 1000 * 1000; /* nanosec */
145
146 struct et_bsize {
147 int bufsize;
148 et_newbuf_t newbuf;
149 };
150
151 static const struct et_bsize et_bufsize[ET_RX_NRING] = {
152 { .bufsize = 0, .newbuf = et_newbuf_hdr },
153 { .bufsize = 0, .newbuf = et_newbuf_cluster },
154 };
155
156 const struct et_product {
157 pci_vendor_id_t vendor;
158 pci_product_id_t product;
159 } et_devices[] = {
160 { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310 },
161 { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1301 }
162 };
163
164 CFATTACH_DECL_NEW(et, sizeof(struct et_softc), et_match, et_attach, et_detach,
165 NULL);
166
167 int
168 et_match(device_t dev, cfdata_t match, void *aux)
169 {
170 struct pci_attach_args *pa = aux;
171 const struct et_product *ep;
172 int i;
173
174 for (i = 0; i < __arraycount(et_devices); i++) {
175 ep = &et_devices[i];
176 if (PCI_VENDOR(pa->pa_id) == ep->vendor &&
177 PCI_PRODUCT(pa->pa_id) == ep->product)
178 return 1;
179 }
180 return 0;
181 }
182
183 void
184 et_attach(device_t parent, device_t self, void *aux)
185 {
186 struct et_softc *sc = device_private(self);
187 struct pci_attach_args *pa = aux;
188 pci_chipset_tag_t pc = pa->pa_pc;
189 pci_intr_handle_t ih;
190 const char *intrstr;
191 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
192 struct mii_data * const mii = &sc->sc_miibus;
193 pcireg_t memtype;
194 int error;
195 char intrbuf[PCI_INTRSTR_LEN];
196
197 pci_aprint_devinfo(pa, "Ethernet controller");
198
199 sc->sc_dev = self;
200
201 /*
202 * Initialize tunables
203 */
204 sc->sc_rx_intr_npkts = et_rx_intr_npkts;
205 sc->sc_rx_intr_delay = et_rx_intr_delay;
206 sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
207 sc->sc_timer = et_timer;
208
209 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
210 if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
211 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
212 aprint_error_dev(self, "could not map mem space\n");
213 return;
214 }
215
216 if (pci_intr_map(pa, &ih) != 0) {
217 aprint_error_dev(self, "could not map interrupt\n");
218 goto fail;
219 }
220
221 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
222 sc->sc_irq_handle = pci_intr_establish_xname(pc, ih, IPL_NET, et_intr,
223 sc, device_xname(self));
224 if (sc->sc_irq_handle == NULL) {
225 aprint_error_dev(self, "could not establish interrupt");
226 if (intrstr != NULL)
227 aprint_error(" at %s", intrstr);
228 aprint_error("\n");
229 goto fail;
230 }
231 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
232
233 sc->sc_dmat = pa->pa_dmat;
234 sc->sc_pct = pa->pa_pc;
235 sc->sc_pcitag = pa->pa_tag;
236
237 error = et_bus_config(sc);
238 if (error)
239 goto fail;
240
241 et_get_eaddr(sc, sc->sc_enaddr);
242
243 aprint_normal_dev(self, "Ethernet address %s\n",
244 ether_sprintf(sc->sc_enaddr));
245
246 CSR_WRITE_4(sc, ET_PM,
247 ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
248
249 et_reset(sc);
250
251 et_disable_intrs(sc);
252
253 error = et_dma_alloc(sc);
254 if (error)
255 goto fail;
256
257 ifp->if_softc = sc;
258 ifp->if_mtu = ETHERMTU;
259 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
260 ifp->if_init = et_init;
261 ifp->if_ioctl = et_ioctl;
262 ifp->if_start = et_start;
263 ifp->if_watchdog = et_watchdog;
264 IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
265 IFQ_SET_READY(&ifp->if_snd);
266 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
267
268 et_chip_attach(sc);
269
270 mii->mii_ifp = ifp;
271 mii->mii_readreg = et_miibus_readreg;
272 mii->mii_writereg = et_miibus_writereg;
273 mii->mii_statchg = et_miibus_statchg;
274
275 sc->sc_ethercom.ec_mii = mii;
276 ifmedia_init(&mii->mii_media, 0, ether_mediachange,
277 ether_mediastatus);
278 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
279 if (LIST_FIRST(&mii->mii_phys) == NULL) {
280 aprint_error_dev(self, "no PHY found!\n");
281 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
282 0, NULL);
283 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
284 } else
285 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
286
287 if_attach(ifp);
288 if_deferred_start_init(ifp, NULL);
289 ether_ifattach(ifp, sc->sc_enaddr);
290
291 callout_init(&sc->sc_tick, 0);
292 callout_setfunc(&sc->sc_tick, et_tick, sc);
293 callout_init(&sc->sc_txtick, 0);
294 callout_setfunc(&sc->sc_txtick, et_txtick, sc);
295
296 if (pmf_device_register(self, NULL, NULL))
297 pmf_class_network_register(self, ifp);
298 else
299 aprint_error_dev(self, "couldn't establish power handler\n");
300
301 return;
302
303 fail:
304 et_dma_free(sc);
305 if (sc->sc_irq_handle != NULL) {
306 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
307 sc->sc_irq_handle = NULL;
308 }
309 if (sc->sc_mem_size) {
310 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
311 sc->sc_mem_size = 0;
312 }
313 }
314
315 int
316 et_detach(device_t self, int flags)
317 {
318 struct et_softc *sc = device_private(self);
319 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
320 int s;
321
322 pmf_device_deregister(self);
323 s = splnet();
324 et_stop(sc);
325 splx(s);
326
327 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
328
329 /* Delete all remaining media. */
330 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
331
332 ether_ifdetach(ifp);
333 if_detach(ifp);
334 et_dma_free(sc);
335
336 if (sc->sc_irq_handle != NULL) {
337 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
338 sc->sc_irq_handle = NULL;
339 }
340
341 if (sc->sc_mem_size) {
342 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
343 sc->sc_mem_size = 0;
344 }
345
346 return 0;
347 }
348
349 int
350 et_shutdown(device_t self)
351 {
352 struct et_softc *sc = device_private(self);
353 int s;
354
355 s = splnet();
356 et_stop(sc);
357 splx(s);
358
359 return 0;
360 }
361
362 int
363 et_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
364 {
365 struct et_softc *sc = device_private(dev);
366 uint32_t data;
367 int i, ret;
368
369 /* Stop any pending operations */
370 CSR_WRITE_4(sc, ET_MII_CMD, 0);
371
372 data = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
373 __SHIFTIN(reg, ET_MII_ADDR_REG);
374 CSR_WRITE_4(sc, ET_MII_ADDR, data);
375
376 /* Start reading */
377 CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
378
379 #define NRETRY 50
380
381 for (i = 0; i < NRETRY; ++i) {
382 data = CSR_READ_4(sc, ET_MII_IND);
383 if ((data & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
384 break;
385 DELAY(50);
386 }
387 if (i == NRETRY) {
388 aprint_error_dev(sc->sc_dev, "read phy %d, reg %d timed out\n",
389 phy, reg);
390 ret = ETIMEDOUT;
391 goto back;
392 }
393
394 #undef NRETRY
395
396 data = CSR_READ_4(sc, ET_MII_STAT);
397 *val = __SHIFTOUT(data, ET_MII_STAT_VALUE);
398 ret = 0;
399
400 back:
401 /* Make sure that the current operation is stopped */
402 CSR_WRITE_4(sc, ET_MII_CMD, 0);
403 return ret;
404 }
405
406 int
407 et_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
408 {
409 struct et_softc *sc = device_private(dev);
410 uint32_t data;
411 uint16_t tmp;
412 int rv = 0;
413 int i;
414
415 /* Stop any pending operations */
416 CSR_WRITE_4(sc, ET_MII_CMD, 0);
417
418 data = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
419 __SHIFTIN(reg, ET_MII_ADDR_REG);
420 CSR_WRITE_4(sc, ET_MII_ADDR, data);
421
422 /* Start writing */
423 CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val, ET_MII_CTRL_VALUE));
424
425 #define NRETRY 100
426
427 for (i = 0; i < NRETRY; ++i) {
428 data = CSR_READ_4(sc, ET_MII_IND);
429 if ((data & ET_MII_IND_BUSY) == 0)
430 break;
431 DELAY(50);
432 }
433 if (i == NRETRY) {
434 aprint_error_dev(sc->sc_dev, "write phy %d, reg %d timed out\n",
435 phy, reg);
436 et_miibus_readreg(dev, phy, reg, &tmp);
437 rv = ETIMEDOUT;
438 }
439
440 #undef NRETRY
441
442 /* Make sure that the current operation is stopped */
443 CSR_WRITE_4(sc, ET_MII_CMD, 0);
444
445 return rv;
446 }
447
448 void
449 et_miibus_statchg(struct ifnet *ifp)
450 {
451 struct et_softc *sc = ifp->if_softc;
452 struct mii_data *mii = &sc->sc_miibus;
453 uint32_t cfg2, ctrl;
454
455 cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
456 cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
457 ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
458 cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
459 __SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
460
461 ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
462 ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
463
464 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
465 cfg2 |= ET_MAC_CFG2_MODE_GMII;
466 } else {
467 cfg2 |= ET_MAC_CFG2_MODE_MII;
468 ctrl |= ET_MAC_CTRL_MODE_MII;
469 }
470
471 if ((mii->mii_media_active & IFM_FDX) != 0)
472 cfg2 |= ET_MAC_CFG2_FDX;
473 else
474 ctrl |= ET_MAC_CTRL_GHDX;
475
476 CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
477 CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
478 }
479
480 void
481 et_stop(struct et_softc *sc)
482 {
483 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
484
485 callout_stop(&sc->sc_tick);
486 callout_stop(&sc->sc_txtick);
487
488 et_stop_rxdma(sc);
489 et_stop_txdma(sc);
490
491 et_disable_intrs(sc);
492
493 et_free_tx_ring(sc);
494 et_free_rx_ring(sc);
495
496 et_reset(sc);
497
498 sc->sc_tx = 0;
499 sc->sc_tx_intr = 0;
500
501 ifp->if_timer = 0;
502 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
503 }
504
505 int
506 et_bus_config(struct et_softc *sc)
507 {
508 uint32_t val; //, max_plsz;
509 // uint16_t ack_latency, replay_timer;
510
511 /*
512 * Test whether EEPROM is valid
513 * NOTE: Read twice to get the correct value
514 */
515 pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
516 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
517
518 if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
519 aprint_error_dev(sc->sc_dev, "EEPROM status error 0x%02x\n", val);
520 return ENXIO;
521 }
522
523 /* TODO: LED */
524 #if 0
525 /*
526 * Configure ACK latency and replay timer according to
527 * max playload size
528 */
529 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
530 max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
531
532 switch (max_plsz) {
533 case ET_PCIV_DEVICE_CAPS_PLSZ_128:
534 ack_latency = ET_PCIV_ACK_LATENCY_128;
535 replay_timer = ET_PCIV_REPLAY_TIMER_128;
536 break;
537
538 case ET_PCIV_DEVICE_CAPS_PLSZ_256:
539 ack_latency = ET_PCIV_ACK_LATENCY_256;
540 replay_timer = ET_PCIV_REPLAY_TIMER_256;
541 break;
542
543 default:
544 ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
545 ET_PCIR_ACK_LATENCY) >> 16;
546 replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
547 ET_PCIR_REPLAY_TIMER) >> 16;
548 aprint_normal_dev(sc->sc_dev, "ack latency %u, replay timer %u\n",
549 ack_latency, replay_timer);
550 break;
551 }
552 if (ack_latency != 0) {
553 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
554 ET_PCIR_ACK_LATENCY, ack_latency << 16);
555 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
556 ET_PCIR_REPLAY_TIMER, replay_timer << 16);
557 }
558
559 /*
560 * Set L0s and L1 latency timer to 2us
561 */
562 val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
563 pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
564 val << 24);
565
566 /*
567 * Set max read request size to 2048 bytes
568 */
569 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
570 ET_PCIR_DEVICE_CTRL) >> 16;
571 val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
572 val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
573 pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
574 val << 16);
575 #endif
576
577 return 0;
578 }
579
580 void
581 et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
582 {
583 uint32_t r;
584
585 r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
586 eaddr[0] = r & 0xff;
587 eaddr[1] = (r >> 8) & 0xff;
588 eaddr[2] = (r >> 16) & 0xff;
589 eaddr[3] = (r >> 24) & 0xff;
590 r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
591 eaddr[4] = r & 0xff;
592 eaddr[5] = (r >> 8) & 0xff;
593 }
594
595 void
596 et_reset(struct et_softc *sc)
597 {
598 CSR_WRITE_4(sc, ET_MAC_CFG1,
599 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
600 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
601 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
602
603 CSR_WRITE_4(sc, ET_SWRST,
604 ET_SWRST_TXDMA | ET_SWRST_RXDMA |
605 ET_SWRST_TXMAC | ET_SWRST_RXMAC |
606 ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
607
608 CSR_WRITE_4(sc, ET_MAC_CFG1,
609 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
610 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
611 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
612 }
613
614 void
615 et_disable_intrs(struct et_softc *sc)
616 {
617 CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
618 }
619
620 void
621 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
622 {
623 CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
624 }
625
626 int
627 et_dma_alloc(struct et_softc *sc)
628 {
629 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
630 struct et_txstatus_data *txsd = &sc->sc_tx_status;
631 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
632 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
633 int i, error;
634
635 /*
636 * Create TX ring DMA stuffs
637 */
638 error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
639 (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
640 &tx_ring->tr_seg);
641 if (error) {
642 aprint_error_dev(sc->sc_dev, "can't create TX ring DMA stuffs\n");
643 return error;
644 }
645
646 /*
647 * Create TX status DMA stuffs
648 */
649 error = et_dma_mem_create(sc, sizeof(uint32_t),
650 (void **)&txsd->txsd_status,
651 &txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
652 if (error) {
653 aprint_error_dev(sc->sc_dev, "can't create TX status DMA stuffs\n");
654 return error;
655 }
656
657 /*
658 * Create DMA stuffs for RX rings
659 */
660 for (i = 0; i < ET_RX_NRING; ++i) {
661 static const uint32_t rx_ring_posreg[ET_RX_NRING] =
662 { ET_RX_RING0_POS, ET_RX_RING1_POS };
663
664 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
665
666 error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
667 (void **)&rx_ring->rr_desc,
668 &rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
669 if (error) {
670 aprint_error_dev(sc->sc_dev, "can't create DMA stuffs for "
671 "the %d RX ring\n", i);
672 return error;
673 }
674 rx_ring->rr_posreg = rx_ring_posreg[i];
675 }
676
677 /*
678 * Create RX stat ring DMA stuffs
679 */
680 error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
681 (void **)&rxst_ring->rsr_stat,
682 &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
683 if (error) {
684 aprint_error_dev(sc->sc_dev, "can't create RX stat ring DMA stuffs\n");
685 return error;
686 }
687
688 /*
689 * Create RX status DMA stuffs
690 */
691 error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
692 (void **)&rxsd->rxsd_status,
693 &rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
694 if (error) {
695 aprint_error_dev(sc->sc_dev, "can't create RX status DMA stuffs\n");
696 return error;
697 }
698
699 /*
700 * Create mbuf DMA stuffs
701 */
702 error = et_dma_mbuf_create(sc);
703 if (error)
704 return error;
705
706 return 0;
707 }
708
709 void
710 et_dma_free(struct et_softc *sc)
711 {
712 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
713 struct et_txstatus_data *txsd = &sc->sc_tx_status;
714 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
715 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
716 int i, rx_done[ET_RX_NRING];
717
718 /*
719 * Destroy TX ring DMA stuffs
720 */
721 et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
722
723 /*
724 * Destroy TX status DMA stuffs
725 */
726 et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
727
728 /*
729 * Destroy DMA stuffs for RX rings
730 */
731 for (i = 0; i < ET_RX_NRING; ++i) {
732 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
733
734 et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
735 }
736
737 /*
738 * Destroy RX stat ring DMA stuffs
739 */
740 et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
741
742 /*
743 * Destroy RX status DMA stuffs
744 */
745 et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
746
747 /*
748 * Destroy mbuf DMA stuffs
749 */
750 for (i = 0; i < ET_RX_NRING; ++i)
751 rx_done[i] = ET_RX_NDESC;
752 et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
753 }
754
755 int
756 et_dma_mbuf_create(struct et_softc *sc)
757 {
758 struct et_txbuf_data *tbd = &sc->sc_tx_data;
759 int i, error, rx_done[ET_RX_NRING];
760
761 /*
762 * Create spare DMA map for RX mbufs
763 */
764 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
765 BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
766 if (error) {
767 aprint_error_dev(sc->sc_dev, "can't create spare mbuf DMA map\n");
768 return error;
769 }
770
771 /*
772 * Create DMA maps for RX mbufs
773 */
774 bzero(rx_done, sizeof(rx_done));
775 for (i = 0; i < ET_RX_NRING; ++i) {
776 struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
777 int j;
778
779 for (j = 0; j < ET_RX_NDESC; ++j) {
780 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
781 MCLBYTES, 0, BUS_DMA_NOWAIT,
782 &rbd->rbd_buf[j].rb_dmap);
783 if (error) {
784 aprint_error_dev(sc->sc_dev, "can't create %d RX mbuf "
785 "for %d RX ring\n", j, i);
786 rx_done[i] = j;
787 et_dma_mbuf_destroy(sc, 0, rx_done);
788 return error;
789 }
790 }
791 rx_done[i] = ET_RX_NDESC;
792
793 rbd->rbd_softc = sc;
794 rbd->rbd_ring = &sc->sc_rx_ring[i];
795 }
796
797 /*
798 * Create DMA maps for TX mbufs
799 */
800 for (i = 0; i < ET_TX_NDESC; ++i) {
801 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
802 0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
803 if (error) {
804 aprint_error_dev(sc->sc_dev, "can't create %d TX mbuf "
805 "DMA map\n", i);
806 et_dma_mbuf_destroy(sc, i, rx_done);
807 return error;
808 }
809 }
810
811 return 0;
812 }
813
814 void
815 et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
816 {
817 struct et_txbuf_data *tbd = &sc->sc_tx_data;
818 int i;
819
820 /*
821 * Destroy DMA maps for RX mbufs
822 */
823 for (i = 0; i < ET_RX_NRING; ++i) {
824 struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
825 int j;
826
827 for (j = 0; j < rx_done[i]; ++j) {
828 struct et_rxbuf *rb = &rbd->rbd_buf[j];
829
830 KASSERTMSG(rb->rb_mbuf == NULL,
831 "RX mbuf in %d RX ring is not freed yet\n", i);
832 bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
833 }
834 }
835
836 /*
837 * Destroy DMA maps for TX mbufs
838 */
839 for (i = 0; i < tx_done; ++i) {
840 struct et_txbuf *tb = &tbd->tbd_buf[i];
841
842 KASSERTMSG(tb->tb_mbuf == NULL, "TX mbuf is not freed yet\n");
843 bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
844 }
845
846 /*
847 * Destroy spare mbuf DMA map
848 */
849 bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
850 }
851
852 int
853 et_dma_mem_create(struct et_softc *sc, bus_size_t size,
854 void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
855 {
856 int error, nsegs;
857
858 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
859 dmap);
860 if (error) {
861 aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
862 return error;
863 }
864
865 error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
866 1, &nsegs, BUS_DMA_WAITOK);
867 if (error) {
868 aprint_error_dev(sc->sc_dev, "can't allocate DMA mem\n");
869 return error;
870 }
871
872 error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
873 size, (void **)addr, BUS_DMA_NOWAIT);
874 if (error) {
875 aprint_error_dev(sc->sc_dev, "can't map DMA mem\n");
876 return (error);
877 }
878
879 error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
880 BUS_DMA_WAITOK);
881 if (error) {
882 aprint_error_dev(sc->sc_dev, "can't load DMA mem\n");
883 bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
884 return error;
885 }
886
887 memset(*addr, 0, size);
888
889 *paddr = (*dmap)->dm_segs[0].ds_addr;
890
891 return 0;
892 }
893
894 void
895 et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
896 {
897 bus_dmamap_unload(sc->sc_dmat, dmap);
898 bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
899 }
900
901 void
902 et_chip_attach(struct et_softc *sc)
903 {
904 uint32_t val;
905
906 /*
907 * Perform minimal initialization
908 */
909
910 /* Disable loopback */
911 CSR_WRITE_4(sc, ET_LOOPBACK, 0);
912
913 /* Reset MAC */
914 CSR_WRITE_4(sc, ET_MAC_CFG1,
915 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
916 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
917 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
918
919 /*
920 * Setup half duplex mode
921 */
922 val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
923 __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
924 __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
925 ET_MAC_HDX_EXC_DEFER;
926 CSR_WRITE_4(sc, ET_MAC_HDX, val);
927
928 /* Clear MAC control */
929 CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
930
931 /* Reset MII */
932 CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
933
934 /* Bring MAC out of reset state */
935 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
936
937 /* Enable memory controllers */
938 CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
939 }
940
941 int
942 et_intr(void *xsc)
943 {
944 struct et_softc *sc = xsc;
945 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
946 uint32_t intrs;
947
948 if ((ifp->if_flags & IFF_RUNNING) == 0)
949 return (0);
950
951 intrs = CSR_READ_4(sc, ET_INTR_STATUS);
952 if (intrs == 0 || intrs == 0xffffffff)
953 return (0);
954
955 et_disable_intrs(sc);
956 intrs &= ET_INTRS;
957 if (intrs == 0) /* Not interested */
958 goto back;
959
960 if (intrs & ET_INTR_RXEOF)
961 et_rxeof(sc);
962 if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
963 et_txeof(sc);
964 if (intrs & ET_INTR_TIMER)
965 CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
966 back:
967 et_enable_intrs(sc, ET_INTRS);
968
969 return (1);
970 }
971
972 int
973 et_init(struct ifnet *ifp)
974 {
975 struct et_softc *sc = ifp->if_softc;
976 int error, i, s;
977
978 if (ifp->if_flags & IFF_RUNNING)
979 return 0;
980
981 s = splnet();
982
983 et_stop(sc);
984
985 for (i = 0; i < ET_RX_NRING; ++i) {
986 sc->sc_rx_data[i].rbd_bufsize = et_bufsize[i].bufsize;
987 sc->sc_rx_data[i].rbd_newbuf = et_bufsize[i].newbuf;
988 }
989
990 error = et_init_tx_ring(sc);
991 if (error)
992 goto back;
993
994 error = et_init_rx_ring(sc);
995 if (error)
996 goto back;
997
998 error = et_chip_init(sc);
999 if (error)
1000 goto back;
1001
1002 error = et_enable_txrx(sc);
1003 if (error)
1004 goto back;
1005
1006 error = et_start_rxdma(sc);
1007 if (error)
1008 goto back;
1009
1010 error = et_start_txdma(sc);
1011 if (error)
1012 goto back;
1013
1014 et_enable_intrs(sc, ET_INTRS);
1015
1016 callout_schedule(&sc->sc_tick, hz);
1017
1018 CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1019
1020 ifp->if_flags |= IFF_RUNNING;
1021 ifp->if_flags &= ~IFF_OACTIVE;
1022 back:
1023 if (error)
1024 et_stop(sc);
1025
1026 splx(s);
1027
1028 return (0);
1029 }
1030
1031 int
1032 et_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1033 {
1034 struct et_softc *sc = ifp->if_softc;
1035 int s, error = 0;
1036
1037 s = splnet();
1038
1039 switch (cmd) {
1040 case SIOCSIFFLAGS:
1041 if (ifp->if_flags & IFF_UP) {
1042 /*
1043 * If only the PROMISC or ALLMULTI flag changes, then
1044 * don't do a full re-init of the chip, just update
1045 * the Rx filter.
1046 */
1047 if ((ifp->if_flags & IFF_RUNNING) &&
1048 ((ifp->if_flags ^ sc->sc_if_flags) &
1049 (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1050 et_setmulti(sc);
1051 } else {
1052 if (!(ifp->if_flags & IFF_RUNNING))
1053 et_init(ifp);
1054 }
1055 } else {
1056 if (ifp->if_flags & IFF_RUNNING)
1057 et_stop(sc);
1058 }
1059 sc->sc_if_flags = ifp->if_flags;
1060 break;
1061 default:
1062 error = ether_ioctl(ifp, cmd, data);
1063 if (error == ENETRESET) {
1064 if (ifp->if_flags & IFF_RUNNING)
1065 et_setmulti(sc);
1066 error = 0;
1067 }
1068 break;
1069
1070 }
1071
1072 splx(s);
1073
1074 return error;
1075 }
1076
1077 void
1078 et_start(struct ifnet *ifp)
1079 {
1080 struct et_softc *sc = ifp->if_softc;
1081 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1082 int trans;
1083 struct mbuf *m;
1084
1085 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1086 return;
1087
1088 trans = 0;
1089 for (;;) {
1090 IFQ_DEQUEUE(&ifp->if_snd, m);
1091 if (m == NULL)
1092 break;
1093
1094 if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1095 ifp->if_flags |= IFF_OACTIVE;
1096 break;
1097 }
1098
1099 if (et_encap(sc, &m)) {
1100 ifp->if_oerrors++;
1101 ifp->if_flags |= IFF_OACTIVE;
1102 break;
1103 }
1104
1105 trans = 1;
1106
1107 bpf_mtap(ifp, m, BPF_D_OUT);
1108 }
1109
1110 if (trans) {
1111 callout_schedule(&sc->sc_txtick, hz);
1112 ifp->if_timer = 5;
1113 }
1114 }
1115
1116 void
1117 et_watchdog(struct ifnet *ifp)
1118 {
1119 struct et_softc *sc = ifp->if_softc;
1120 aprint_error_dev(sc->sc_dev, "watchdog timed out\n");
1121
1122 ifp->if_flags &= ~IFF_RUNNING;
1123 et_init(ifp);
1124 et_start(ifp);
1125 }
1126
1127 int
1128 et_stop_rxdma(struct et_softc *sc)
1129 {
1130 CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1131 ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1132
1133 DELAY(5);
1134 if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1135 aprint_error_dev(sc->sc_dev, "can't stop RX DMA engine\n");
1136 return ETIMEDOUT;
1137 }
1138 return 0;
1139 }
1140
1141 int
1142 et_stop_txdma(struct et_softc *sc)
1143 {
1144 CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1145 ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1146 return 0;
1147 }
1148
1149 void
1150 et_free_tx_ring(struct et_softc *sc)
1151 {
1152 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1153 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1154 int i;
1155
1156 for (i = 0; i < ET_TX_NDESC; ++i) {
1157 struct et_txbuf *tb = &tbd->tbd_buf[i];
1158
1159 if (tb->tb_mbuf != NULL) {
1160 bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1161 m_freem(tb->tb_mbuf);
1162 tb->tb_mbuf = NULL;
1163 }
1164 }
1165
1166 bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1167 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1168 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1169 }
1170
1171 void
1172 et_free_rx_ring(struct et_softc *sc)
1173 {
1174 int n;
1175
1176 for (n = 0; n < ET_RX_NRING; ++n) {
1177 struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1178 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1179 int i;
1180
1181 for (i = 0; i < ET_RX_NDESC; ++i) {
1182 struct et_rxbuf *rb = &rbd->rbd_buf[i];
1183
1184 if (rb->rb_mbuf != NULL) {
1185 bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
1186 m_freem(rb->rb_mbuf);
1187 rb->rb_mbuf = NULL;
1188 }
1189 }
1190
1191 bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1192 bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
1193 rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1194 }
1195 }
1196
1197 void
1198 et_setmulti(struct et_softc *sc)
1199 {
1200 struct ethercom *ec = &sc->sc_ethercom;
1201 struct ifnet *ifp = &ec->ec_if;
1202 uint32_t hash[4] = { 0, 0, 0, 0 };
1203 uint32_t rxmac_ctrl, pktfilt;
1204 struct ether_multi *enm;
1205 struct ether_multistep step;
1206 uint8_t addr[ETHER_ADDR_LEN];
1207 int i, count;
1208
1209 pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1210 rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1211
1212 pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1213 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1214 rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1215 goto back;
1216 }
1217
1218 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1219
1220 count = 0;
1221 ETHER_LOCK(ec);
1222 ETHER_FIRST_MULTI(step, ec, enm);
1223 while (enm != NULL) {
1224 uint32_t *hp, h;
1225
1226 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1227 addr[i] &= enm->enm_addrlo[i];
1228 }
1229
1230 h = ether_crc32_be(addr, ETHER_ADDR_LEN);
1231 h = (h & 0x3f800000) >> 23;
1232
1233 hp = &hash[0];
1234 if (h >= 32 && h < 64) {
1235 h -= 32;
1236 hp = &hash[1];
1237 } else if (h >= 64 && h < 96) {
1238 h -= 64;
1239 hp = &hash[2];
1240 } else if (h >= 96) {
1241 h -= 96;
1242 hp = &hash[3];
1243 }
1244 *hp |= (1 << h);
1245
1246 ++count;
1247 ETHER_NEXT_MULTI(step, enm);
1248 }
1249 ETHER_UNLOCK(ec);
1250
1251 for (i = 0; i < 4; ++i)
1252 CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1253
1254 if (count > 0)
1255 pktfilt |= ET_PKTFILT_MCAST;
1256 rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1257 back:
1258 CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1259 CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1260 }
1261
1262 int
1263 et_chip_init(struct et_softc *sc)
1264 {
1265 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1266 uint32_t rxq_end;
1267 int error;
1268
1269 /*
1270 * Split internal memory between TX and RX according to MTU
1271 */
1272 if (ifp->if_mtu < 2048)
1273 rxq_end = 0x2bc;
1274 else if (ifp->if_mtu < 8192)
1275 rxq_end = 0x1ff;
1276 else
1277 rxq_end = 0x1b3;
1278 CSR_WRITE_4(sc, ET_RXQ_START, 0);
1279 CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1280 CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1281 CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1282
1283 /* No loopback */
1284 CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1285
1286 /* Clear MSI configure */
1287 CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1288
1289 /* Disable timer */
1290 CSR_WRITE_4(sc, ET_TIMER, 0);
1291
1292 /* Initialize MAC */
1293 et_init_mac(sc);
1294
1295 /* Enable memory controllers */
1296 CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1297
1298 /* Initialize RX MAC */
1299 et_init_rxmac(sc);
1300
1301 /* Initialize TX MAC */
1302 et_init_txmac(sc);
1303
1304 /* Initialize RX DMA engine */
1305 error = et_init_rxdma(sc);
1306 if (error)
1307 return error;
1308
1309 /* Initialize TX DMA engine */
1310 error = et_init_txdma(sc);
1311 if (error)
1312 return error;
1313
1314 return 0;
1315 }
1316
1317 int
1318 et_init_tx_ring(struct et_softc *sc)
1319 {
1320 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1321 struct et_txstatus_data *txsd = &sc->sc_tx_status;
1322 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1323
1324 bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1325 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1326 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1327
1328 tbd->tbd_start_index = 0;
1329 tbd->tbd_start_wrap = 0;
1330 tbd->tbd_used = 0;
1331
1332 bzero(txsd->txsd_status, sizeof(uint32_t));
1333 bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
1334 txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1335 return 0;
1336 }
1337
1338 int
1339 et_init_rx_ring(struct et_softc *sc)
1340 {
1341 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1342 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1343 int n;
1344
1345 for (n = 0; n < ET_RX_NRING; ++n) {
1346 struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1347 int i, error;
1348
1349 for (i = 0; i < ET_RX_NDESC; ++i) {
1350 error = rbd->rbd_newbuf(rbd, i, 1);
1351 if (error) {
1352 aprint_error_dev(sc->sc_dev, "%d ring %d buf, newbuf failed: "
1353 "%d\n", n, i, error);
1354 return error;
1355 }
1356 }
1357 }
1358
1359 bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1360 bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1361 rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1362
1363 bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1364 bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1365 rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1366
1367 return 0;
1368 }
1369
1370 int
1371 et_init_rxdma(struct et_softc *sc)
1372 {
1373 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1374 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1375 struct et_rxdesc_ring *rx_ring;
1376 int error;
1377
1378 error = et_stop_rxdma(sc);
1379 if (error) {
1380 aprint_error_dev(sc->sc_dev, "can't init RX DMA engine\n");
1381 return error;
1382 }
1383
1384 /*
1385 * Install RX status
1386 */
1387 CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1388 CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1389
1390 /*
1391 * Install RX stat ring
1392 */
1393 CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1394 CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1395 CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1396 CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1397 CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1398
1399 /* Match ET_RXSTAT_POS */
1400 rxst_ring->rsr_index = 0;
1401 rxst_ring->rsr_wrap = 0;
1402
1403 /*
1404 * Install the 2nd RX descriptor ring
1405 */
1406 rx_ring = &sc->sc_rx_ring[1];
1407 CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1408 CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1409 CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1410 CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1411 CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1412
1413 /* Match ET_RX_RING1_POS */
1414 rx_ring->rr_index = 0;
1415 rx_ring->rr_wrap = 1;
1416
1417 /*
1418 * Install the 1st RX descriptor ring
1419 */
1420 rx_ring = &sc->sc_rx_ring[0];
1421 CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1422 CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1423 CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1424 CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1425 CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1426
1427 /* Match ET_RX_RING0_POS */
1428 rx_ring->rr_index = 0;
1429 rx_ring->rr_wrap = 1;
1430
1431 /*
1432 * RX intr moderation
1433 */
1434 CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1435 CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1436
1437 return 0;
1438 }
1439
1440 int
1441 et_init_txdma(struct et_softc *sc)
1442 {
1443 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1444 struct et_txstatus_data *txsd = &sc->sc_tx_status;
1445 int error;
1446
1447 error = et_stop_txdma(sc);
1448 if (error) {
1449 aprint_error_dev(sc->sc_dev, "can't init TX DMA engine\n");
1450 return error;
1451 }
1452
1453 /*
1454 * Install TX descriptor ring
1455 */
1456 CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1457 CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1458 CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1459
1460 /*
1461 * Install TX status
1462 */
1463 CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1464 CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1465
1466 CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1467
1468 /* Match ET_TX_READY_POS */
1469 tx_ring->tr_ready_index = 0;
1470 tx_ring->tr_ready_wrap = 0;
1471
1472 return 0;
1473 }
1474
1475 void
1476 et_init_mac(struct et_softc *sc)
1477 {
1478 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1479 const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1480 uint32_t val;
1481
1482 /* Reset MAC */
1483 CSR_WRITE_4(sc, ET_MAC_CFG1,
1484 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1485 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1486 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1487
1488 /*
1489 * Setup inter packet gap
1490 */
1491 val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1492 __SHIFTIN(88, ET_IPG_NONB2B_2) |
1493 __SHIFTIN(80, ET_IPG_MINIFG) |
1494 __SHIFTIN(96, ET_IPG_B2B);
1495 CSR_WRITE_4(sc, ET_IPG, val);
1496
1497 /*
1498 * Setup half duplex mode
1499 */
1500 val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1501 __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1502 __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1503 ET_MAC_HDX_EXC_DEFER;
1504 CSR_WRITE_4(sc, ET_MAC_HDX, val);
1505
1506 /* Clear MAC control */
1507 CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1508
1509 /* Reset MII */
1510 CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1511
1512 /*
1513 * Set MAC address
1514 */
1515 val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1516 CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1517 val = (eaddr[0] << 16) | (eaddr[1] << 24);
1518 CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1519
1520 /* Set max frame length */
1521 CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1522 ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + ETHER_CRC_LEN);
1523
1524 /* Bring MAC out of reset state */
1525 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1526 }
1527
1528 void
1529 et_init_rxmac(struct et_softc *sc)
1530 {
1531 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1532 const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1533 uint32_t val;
1534 int i;
1535
1536 /* Disable RX MAC and WOL */
1537 CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1538
1539 /*
1540 * Clear all WOL related registers
1541 */
1542 for (i = 0; i < 3; ++i)
1543 CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1544 for (i = 0; i < 20; ++i)
1545 CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1546
1547 /*
1548 * Set WOL source address. XXX is this necessary?
1549 */
1550 val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1551 CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1552 val = (eaddr[0] << 8) | eaddr[1];
1553 CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1554
1555 /* Clear packet filters */
1556 CSR_WRITE_4(sc, ET_PKTFILT, 0);
1557
1558 /* No ucast filtering */
1559 CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1560 CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1561 CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1562
1563 if (ifp->if_mtu > 8192) {
1564 /*
1565 * In order to transmit jumbo packets greater than 8k,
1566 * the FIFO between RX MAC and RX DMA needs to be reduced
1567 * in size to (16k - MTU). In order to implement this, we
1568 * must use "cut through" mode in the RX MAC, which chops
1569 * packets down into segments which are (max_size * 16).
1570 * In this case we selected 256 bytes, since this is the
1571 * size of the PCI-Express TLP's that the 1310 uses.
1572 */
1573 val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1574 ET_RXMAC_MC_SEGSZ_ENABLE;
1575 } else {
1576 val = 0;
1577 }
1578 CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1579
1580 CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1581
1582 /* Initialize RX MAC management register */
1583 CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1584
1585 CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1586
1587 CSR_WRITE_4(sc, ET_RXMAC_MGT,
1588 ET_RXMAC_MGT_PASS_ECRC |
1589 ET_RXMAC_MGT_PASS_ELEN |
1590 ET_RXMAC_MGT_PASS_ETRUNC |
1591 ET_RXMAC_MGT_CHECK_PKT);
1592
1593 /*
1594 * Configure runt filtering (may not work on certain chip generation)
1595 */
1596 val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1597 CSR_WRITE_4(sc, ET_PKTFILT, val);
1598
1599 /* Enable RX MAC but leave WOL disabled */
1600 CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1601 ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1602
1603 /*
1604 * Setup multicast hash and allmulti/promisc mode
1605 */
1606 et_setmulti(sc);
1607 }
1608
1609 void
1610 et_init_txmac(struct et_softc *sc)
1611 {
1612 /* Disable TX MAC and FC(?) */
1613 CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1614
1615 /* No flow control yet */
1616 CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1617
1618 /* Enable TX MAC but leave FC(?) diabled */
1619 CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1620 ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1621 }
1622
1623 int
1624 et_start_rxdma(struct et_softc *sc)
1625 {
1626 uint32_t val = 0;
1627
1628 val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1629 ET_RXDMA_CTRL_RING0_SIZE) |
1630 ET_RXDMA_CTRL_RING0_ENABLE;
1631 val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1632 ET_RXDMA_CTRL_RING1_SIZE) |
1633 ET_RXDMA_CTRL_RING1_ENABLE;
1634
1635 CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1636
1637 DELAY(5);
1638
1639 if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1640 aprint_error_dev(sc->sc_dev, "can't start RX DMA engine\n");
1641 return ETIMEDOUT;
1642 }
1643 return 0;
1644 }
1645
1646 int
1647 et_start_txdma(struct et_softc *sc)
1648 {
1649 CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1650 return 0;
1651 }
1652
1653 int
1654 et_enable_txrx(struct et_softc *sc)
1655 {
1656 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1657 uint32_t val;
1658 int i, rc = 0;
1659
1660 val = CSR_READ_4(sc, ET_MAC_CFG1);
1661 val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1662 val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1663 ET_MAC_CFG1_LOOPBACK);
1664 CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1665
1666 if ((rc = ether_mediachange(ifp)) != 0)
1667 goto out;
1668
1669 #define NRETRY 100
1670
1671 for (i = 0; i < NRETRY; ++i) {
1672 val = CSR_READ_4(sc, ET_MAC_CFG1);
1673 if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1674 (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1675 break;
1676
1677 DELAY(10);
1678 }
1679 if (i == NRETRY) {
1680 aprint_error_dev(sc->sc_dev, "can't enable RX/TX\n");
1681 return ETIMEDOUT;
1682 }
1683
1684 #undef NRETRY
1685 return 0;
1686 out:
1687 return rc;
1688 }
1689
1690 void
1691 et_rxeof(struct et_softc *sc)
1692 {
1693 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1694 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1695 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1696 uint32_t rxs_stat_ring;
1697 int rxst_wrap, rxst_index;
1698
1699 bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1700 rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1701 bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1702 rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1703
1704 rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1705 rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1706 rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1707
1708 while (rxst_index != rxst_ring->rsr_index ||
1709 rxst_wrap != rxst_ring->rsr_wrap) {
1710 struct et_rxbuf_data *rbd;
1711 struct et_rxdesc_ring *rx_ring;
1712 struct et_rxstat *st;
1713 struct et_rxbuf *rb;
1714 struct mbuf *m;
1715 int buflen, buf_idx, ring_idx;
1716 uint32_t rxstat_pos, rxring_pos;
1717
1718 KASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1719 st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1720
1721 buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1722 buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1723 ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1724
1725 if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1726 rxst_ring->rsr_index = 0;
1727 rxst_ring->rsr_wrap ^= 1;
1728 }
1729 rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1730 ET_RXSTAT_POS_INDEX);
1731 if (rxst_ring->rsr_wrap)
1732 rxstat_pos |= ET_RXSTAT_POS_WRAP;
1733 CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1734
1735 if (ring_idx >= ET_RX_NRING) {
1736 ifp->if_ierrors++;
1737 aprint_error_dev(sc->sc_dev, "invalid ring index %d\n",
1738 ring_idx);
1739 continue;
1740 }
1741 if (buf_idx >= ET_RX_NDESC) {
1742 ifp->if_ierrors++;
1743 aprint_error_dev(sc->sc_dev, "invalid buf index %d\n",
1744 buf_idx);
1745 continue;
1746 }
1747
1748 rbd = &sc->sc_rx_data[ring_idx];
1749 rb = &rbd->rbd_buf[buf_idx];
1750 m = rb->rb_mbuf;
1751 bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
1752 rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1753
1754 if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1755 if (buflen < ETHER_CRC_LEN) {
1756 m_freem(m);
1757 ifp->if_ierrors++;
1758 } else {
1759 m->m_pkthdr.len = m->m_len = buflen -
1760 ETHER_CRC_LEN;
1761 m_set_rcvif(m, ifp);
1762
1763 if_percpuq_enqueue(ifp->if_percpuq, m);
1764 }
1765 } else {
1766 ifp->if_ierrors++;
1767 }
1768
1769 rx_ring = &sc->sc_rx_ring[ring_idx];
1770
1771 if (buf_idx != rx_ring->rr_index) {
1772 aprint_error_dev(sc->sc_dev, "WARNING!! ring %d, "
1773 "buf_idx %d, rr_idx %d\n",
1774 ring_idx, buf_idx, rx_ring->rr_index);
1775 }
1776
1777 KASSERT(rx_ring->rr_index < ET_RX_NDESC);
1778 if (++rx_ring->rr_index == ET_RX_NDESC) {
1779 rx_ring->rr_index = 0;
1780 rx_ring->rr_wrap ^= 1;
1781 }
1782 rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1783 if (rx_ring->rr_wrap)
1784 rxring_pos |= ET_RX_RING_POS_WRAP;
1785 CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1786 }
1787 }
1788
1789 int
1790 et_encap(struct et_softc *sc, struct mbuf **m0)
1791 {
1792 struct mbuf *m = *m0;
1793 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1794 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1795 struct et_txdesc *td;
1796 bus_dmamap_t map;
1797 int error, maxsegs, first_idx, last_idx, i;
1798 uint32_t tx_ready_pos, last_td_ctrl2;
1799
1800 maxsegs = ET_TX_NDESC - tbd->tbd_used;
1801 if (maxsegs > ET_NSEG_MAX)
1802 maxsegs = ET_NSEG_MAX;
1803 KASSERTMSG(maxsegs >= ET_NSEG_SPARE,
1804 "not enough spare TX desc (%d)\n", maxsegs);
1805
1806 KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1807 first_idx = tx_ring->tr_ready_index;
1808 map = tbd->tbd_buf[first_idx].tb_dmap;
1809
1810 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1811 BUS_DMA_NOWAIT);
1812 if (!error && map->dm_nsegs == 0) {
1813 bus_dmamap_unload(sc->sc_dmat, map);
1814 error = EFBIG;
1815 }
1816 if (error && error != EFBIG) {
1817 aprint_error_dev(sc->sc_dev, "can't load TX mbuf");
1818 goto back;
1819 }
1820 if (error) { /* error == EFBIG */
1821 struct mbuf *m_new;
1822
1823 error = 0;
1824
1825 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1826 if (m_new == NULL) {
1827 aprint_error_dev(sc->sc_dev, "can't defrag TX mbuf\n");
1828 error = ENOBUFS;
1829 goto back;
1830 }
1831
1832 m_copy_pkthdr(m_new, m);
1833 if (m->m_pkthdr.len > MHLEN) {
1834 MCLGET(m_new, M_DONTWAIT);
1835 if (!(m_new->m_flags & M_EXT)) {
1836 m_freem(m_new);
1837 error = ENOBUFS;
1838 }
1839 }
1840
1841 if (error) {
1842 aprint_error_dev(sc->sc_dev, "can't defrag TX buffer\n");
1843 goto back;
1844 }
1845
1846 m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
1847 m_freem(m);
1848 m_new->m_len = m_new->m_pkthdr.len;
1849 *m0 = m = m_new;
1850
1851 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1852 BUS_DMA_NOWAIT);
1853 if (error || map->dm_nsegs == 0) {
1854 if (map->dm_nsegs == 0) {
1855 bus_dmamap_unload(sc->sc_dmat, map);
1856 error = EFBIG;
1857 }
1858 aprint_error_dev(sc->sc_dev, "can't load defraged TX mbuf\n");
1859 goto back;
1860 }
1861 }
1862
1863 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1864 BUS_DMASYNC_PREWRITE);
1865
1866 last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1867 sc->sc_tx += map->dm_nsegs;
1868 if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1869 sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1870 last_td_ctrl2 |= ET_TDCTRL2_INTR;
1871 }
1872
1873 last_idx = -1;
1874 for (i = 0; i < map->dm_nsegs; ++i) {
1875 int idx;
1876
1877 idx = (first_idx + i) % ET_TX_NDESC;
1878 td = &tx_ring->tr_desc[idx];
1879 td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
1880 td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
1881 td->td_ctrl1 =
1882 __SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
1883
1884 if (i == map->dm_nsegs - 1) { /* Last frag */
1885 td->td_ctrl2 = last_td_ctrl2;
1886 last_idx = idx;
1887 }
1888
1889 KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1890 if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1891 tx_ring->tr_ready_index = 0;
1892 tx_ring->tr_ready_wrap ^= 1;
1893 }
1894 }
1895 td = &tx_ring->tr_desc[first_idx];
1896 td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG; /* First frag */
1897
1898 KASSERT(last_idx >= 0);
1899 tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1900 tbd->tbd_buf[last_idx].tb_dmap = map;
1901 tbd->tbd_buf[last_idx].tb_mbuf = m;
1902
1903 tbd->tbd_used += map->dm_nsegs;
1904 KASSERT(tbd->tbd_used <= ET_TX_NDESC);
1905
1906 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1907 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1908
1909 tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1910 ET_TX_READY_POS_INDEX);
1911 if (tx_ring->tr_ready_wrap)
1912 tx_ready_pos |= ET_TX_READY_POS_WRAP;
1913 CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1914
1915 error = 0;
1916 back:
1917 if (error) {
1918 m_freem(m);
1919 *m0 = NULL;
1920 }
1921 return error;
1922 }
1923
1924 void
1925 et_txeof(struct et_softc *sc)
1926 {
1927 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1928 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1929 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1930 uint32_t tx_done;
1931 int end, wrap;
1932
1933 if (tbd->tbd_used == 0)
1934 return;
1935
1936 tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
1937 end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
1938 wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
1939
1940 while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
1941 struct et_txbuf *tb;
1942
1943 KASSERT(tbd->tbd_start_index < ET_TX_NDESC);
1944 tb = &tbd->tbd_buf[tbd->tbd_start_index];
1945
1946 bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
1947 sizeof(struct et_txdesc));
1948 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1949 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1950
1951 if (tb->tb_mbuf != NULL) {
1952 bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1953 m_freem(tb->tb_mbuf);
1954 tb->tb_mbuf = NULL;
1955 ifp->if_opackets++;
1956 }
1957
1958 if (++tbd->tbd_start_index == ET_TX_NDESC) {
1959 tbd->tbd_start_index = 0;
1960 tbd->tbd_start_wrap ^= 1;
1961 }
1962
1963 KASSERT(tbd->tbd_used > 0);
1964 tbd->tbd_used--;
1965 }
1966
1967 if (tbd->tbd_used == 0) {
1968 callout_stop(&sc->sc_txtick);
1969 ifp->if_timer = 0;
1970 }
1971 if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
1972 ifp->if_flags &= ~IFF_OACTIVE;
1973
1974 if_schedule_deferred_start(ifp);
1975 }
1976
1977 void
1978 et_txtick(void *xsc)
1979 {
1980 struct et_softc *sc = xsc;
1981 int s;
1982
1983 s = splnet();
1984 et_txeof(sc);
1985 splx(s);
1986 }
1987
1988 void
1989 et_tick(void *xsc)
1990 {
1991 struct et_softc *sc = xsc;
1992 int s;
1993
1994 s = splnet();
1995 mii_tick(&sc->sc_miibus);
1996 callout_schedule(&sc->sc_tick, hz);
1997 splx(s);
1998 }
1999
2000 int
2001 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2002 {
2003 return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2004 }
2005
2006 int
2007 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2008 {
2009 return et_newbuf(rbd, buf_idx, init, MHLEN);
2010 }
2011
2012 int
2013 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2014 {
2015 struct et_softc *sc = rbd->rbd_softc;
2016 struct et_rxdesc_ring *rx_ring;
2017 struct et_rxdesc *desc;
2018 struct et_rxbuf *rb;
2019 struct mbuf *m;
2020 bus_dmamap_t dmap;
2021 int error, len;
2022
2023 KASSERT(buf_idx < ET_RX_NDESC);
2024 rb = &rbd->rbd_buf[buf_idx];
2025
2026 if (len0 >= MINCLSIZE) {
2027 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2028 if (m == NULL)
2029 return (ENOBUFS);
2030 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2031 if ((m->m_flags & M_EXT) == 0) {
2032 m_freem(m);
2033 return (ENOBUFS);
2034 }
2035 len = MCLBYTES;
2036 } else {
2037 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2038 len = MHLEN;
2039 }
2040
2041 if (m == NULL) {
2042 error = ENOBUFS;
2043
2044 /* XXX for debug */
2045 aprint_error_dev(sc->sc_dev, "M_CLGET failed, size %d\n", len0);
2046 if (init) {
2047 return error;
2048 } else {
2049 goto back;
2050 }
2051 }
2052 m->m_len = m->m_pkthdr.len = len;
2053
2054 /*
2055 * Try load RX mbuf into temporary DMA tag
2056 */
2057 error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
2058 init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2059 if (error) {
2060 m_freem(m);
2061
2062 /* XXX for debug */
2063 aprint_error_dev(sc->sc_dev, "can't load RX mbuf\n");
2064 if (init) {
2065 return error;
2066 } else {
2067 goto back;
2068 }
2069 }
2070
2071 if (!init)
2072 bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
2073 rb->rb_mbuf = m;
2074
2075 /*
2076 * Swap RX buf's DMA map with the loaded temporary one
2077 */
2078 dmap = rb->rb_dmap;
2079 rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2080 rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
2081 sc->sc_mbuf_tmp_dmap = dmap;
2082
2083 error = 0;
2084 back:
2085 rx_ring = rbd->rbd_ring;
2086 desc = &rx_ring->rr_desc[buf_idx];
2087
2088 desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2089 desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2090 desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2091
2092 bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
2093 rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2094 return error;
2095 }
2096