if_et.c revision 1.27 1 /* $NetBSD: if_et.c,v 1.27 2019/10/12 06:00:52 msaitoh Exp $ */
2 /* $OpenBSD: if_et.c,v 1.12 2008/07/11 09:29:02 kevlo $ */
3 /*
4 * Copyright (c) 2007 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Sepherosa Ziehau <sepherosa (at) gmail.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: if_et.c,v 1.27 2019/10/12 06:00:52 msaitoh Exp $");
41
42 #include "opt_inet.h"
43 #include "vlan.h"
44
45 #include <sys/param.h>
46 #include <sys/endian.h>
47 #include <sys/systm.h>
48 #include <sys/types.h>
49 #include <sys/sockio.h>
50 #include <sys/mbuf.h>
51 #include <sys/queue.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/socket.h>
56
57 #include <sys/bus.h>
58
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 #include <net/if_arp.h>
64
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72
73 #include <net/bpf.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81
82 #include <dev/pci/if_etreg.h>
83
84 int et_match(device_t, cfdata_t, void *);
85 void et_attach(device_t, device_t, void *);
86 int et_detach(device_t, int);
87 int et_shutdown(device_t);
88
89 int et_miibus_readreg(device_t, int, int, uint16_t *);
90 int et_miibus_writereg(device_t, int, int, uint16_t);
91 void et_miibus_statchg(struct ifnet *);
92
93 int et_init(struct ifnet *);
94 int et_ioctl(struct ifnet *, u_long, void *);
95 void et_start(struct ifnet *);
96 void et_watchdog(struct ifnet *);
97 static int et_ifmedia_upd(struct ifnet *);
98 static void et_ifmedia_sts(struct ifnet *, struct ifmediareq *);
99
100 int et_intr(void *);
101 void et_enable_intrs(struct et_softc *, uint32_t);
102 void et_disable_intrs(struct et_softc *);
103 void et_rxeof(struct et_softc *);
104 void et_txeof(struct et_softc *);
105 void et_txtick(void *);
106
107 int et_dma_alloc(struct et_softc *);
108 void et_dma_free(struct et_softc *);
109 int et_dma_mem_create(struct et_softc *, bus_size_t,
110 void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
111 void et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
112 int et_dma_mbuf_create(struct et_softc *);
113 void et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
114
115 int et_init_tx_ring(struct et_softc *);
116 int et_init_rx_ring(struct et_softc *);
117 void et_free_tx_ring(struct et_softc *);
118 void et_free_rx_ring(struct et_softc *);
119 int et_encap(struct et_softc *, struct mbuf **);
120 int et_newbuf(struct et_rxbuf_data *, int, int, int);
121 int et_newbuf_cluster(struct et_rxbuf_data *, int, int);
122 int et_newbuf_hdr(struct et_rxbuf_data *, int, int);
123
124 void et_stop(struct et_softc *);
125 int et_chip_init(struct et_softc *);
126 void et_chip_attach(struct et_softc *);
127 void et_init_mac(struct et_softc *);
128 void et_init_rxmac(struct et_softc *);
129 void et_init_txmac(struct et_softc *);
130 int et_init_rxdma(struct et_softc *);
131 int et_init_txdma(struct et_softc *);
132 int et_start_rxdma(struct et_softc *);
133 int et_start_txdma(struct et_softc *);
134 int et_stop_rxdma(struct et_softc *);
135 int et_stop_txdma(struct et_softc *);
136 void et_reset(struct et_softc *);
137 int et_bus_config(struct et_softc *);
138 void et_get_eaddr(struct et_softc *, uint8_t[]);
139 void et_setmulti(struct et_softc *);
140 void et_tick(void *);
141
142 static int et_rx_intr_npkts = 32;
143 static int et_rx_intr_delay = 20; /* x10 usec */
144 static int et_tx_intr_nsegs = 128;
145 static uint32_t et_timer = 1000 * 1000 * 1000; /* nanosec */
146
147 struct et_bsize {
148 int bufsize;
149 et_newbuf_t newbuf;
150 };
151
152 static const struct et_bsize et_bufsize[ET_RX_NRING] = {
153 { .bufsize = 0, .newbuf = et_newbuf_hdr },
154 { .bufsize = 0, .newbuf = et_newbuf_cluster },
155 };
156
157 const struct et_product {
158 pci_vendor_id_t vendor;
159 pci_product_id_t product;
160 } et_devices[] = {
161 { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310 },
162 { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1301 }
163 };
164
165 CFATTACH_DECL_NEW(et, sizeof(struct et_softc), et_match, et_attach, et_detach,
166 NULL);
167
168 int
169 et_match(device_t dev, cfdata_t match, void *aux)
170 {
171 struct pci_attach_args *pa = aux;
172 const struct et_product *ep;
173 int i;
174
175 for (i = 0; i < __arraycount(et_devices); i++) {
176 ep = &et_devices[i];
177 if (PCI_VENDOR(pa->pa_id) == ep->vendor &&
178 PCI_PRODUCT(pa->pa_id) == ep->product)
179 return 1;
180 }
181 return 0;
182 }
183
184 void
185 et_attach(device_t parent, device_t self, void *aux)
186 {
187 struct et_softc *sc = device_private(self);
188 struct pci_attach_args *pa = aux;
189 pci_chipset_tag_t pc = pa->pa_pc;
190 pci_intr_handle_t ih;
191 const char *intrstr;
192 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
193 struct mii_data * const mii = &sc->sc_miibus;
194 uint32_t pmcfg;
195 pcireg_t memtype;
196 int error;
197 char intrbuf[PCI_INTRSTR_LEN];
198
199 pci_aprint_devinfo(pa, "Ethernet controller");
200
201 sc->sc_dev = self;
202
203 /*
204 * Initialize tunables
205 */
206 sc->sc_rx_intr_npkts = et_rx_intr_npkts;
207 sc->sc_rx_intr_delay = et_rx_intr_delay;
208 sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
209 sc->sc_timer = et_timer;
210
211 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
212 if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
213 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
214 aprint_error_dev(self, "could not map mem space\n");
215 return;
216 }
217
218 if (pci_intr_map(pa, &ih) != 0) {
219 aprint_error_dev(self, "could not map interrupt\n");
220 goto fail;
221 }
222
223 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
224 sc->sc_irq_handle = pci_intr_establish_xname(pc, ih, IPL_NET, et_intr,
225 sc, device_xname(self));
226 if (sc->sc_irq_handle == NULL) {
227 aprint_error_dev(self, "could not establish interrupt");
228 if (intrstr != NULL)
229 aprint_error(" at %s", intrstr);
230 aprint_error("\n");
231 goto fail;
232 }
233 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
234
235 sc->sc_dmat = pa->pa_dmat;
236 sc->sc_pct = pa->pa_pc;
237 sc->sc_pcitag = pa->pa_tag;
238
239 if (pa->pa_id == PCI_PRODUCT_LUCENT_ET1301)
240 sc->sc_flags |= ET_FLAG_FASTETHER;
241
242 error = et_bus_config(sc);
243 if (error)
244 goto fail;
245
246 et_get_eaddr(sc, sc->sc_enaddr);
247
248 aprint_normal_dev(self, "Ethernet address %s\n",
249 ether_sprintf(sc->sc_enaddr));
250
251 /* Take PHY out of COMA and enable clocks. */
252 pmcfg = ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE;
253 if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0)
254 pmcfg |= EM_PM_GIGEPHY_ENB;
255 CSR_WRITE_4(sc, ET_PM, pmcfg);
256
257 et_reset(sc);
258
259 et_disable_intrs(sc);
260
261 error = et_dma_alloc(sc);
262 if (error)
263 goto fail;
264
265 ifp->if_softc = sc;
266 ifp->if_mtu = ETHERMTU;
267 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
268 ifp->if_init = et_init;
269 ifp->if_ioctl = et_ioctl;
270 ifp->if_start = et_start;
271 ifp->if_watchdog = et_watchdog;
272 IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
273 IFQ_SET_READY(&ifp->if_snd);
274 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
275
276 et_chip_attach(sc);
277
278 mii->mii_ifp = ifp;
279 mii->mii_readreg = et_miibus_readreg;
280 mii->mii_writereg = et_miibus_writereg;
281 mii->mii_statchg = et_miibus_statchg;
282
283 sc->sc_ethercom.ec_mii = mii;
284 ifmedia_init(&mii->mii_media, 0, et_ifmedia_upd, et_ifmedia_sts);
285 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
286 if (LIST_FIRST(&mii->mii_phys) == NULL) {
287 aprint_error_dev(self, "no PHY found!\n");
288 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
289 0, NULL);
290 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
291 } else
292 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
293
294 if_attach(ifp);
295 if_deferred_start_init(ifp, NULL);
296 ether_ifattach(ifp, sc->sc_enaddr);
297
298 callout_init(&sc->sc_tick, 0);
299 callout_setfunc(&sc->sc_tick, et_tick, sc);
300 callout_init(&sc->sc_txtick, 0);
301 callout_setfunc(&sc->sc_txtick, et_txtick, sc);
302
303 if (pmf_device_register(self, NULL, NULL))
304 pmf_class_network_register(self, ifp);
305 else
306 aprint_error_dev(self, "couldn't establish power handler\n");
307
308 return;
309
310 fail:
311 et_dma_free(sc);
312 if (sc->sc_irq_handle != NULL) {
313 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
314 sc->sc_irq_handle = NULL;
315 }
316 if (sc->sc_mem_size) {
317 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
318 sc->sc_mem_size = 0;
319 }
320 }
321
322 int
323 et_detach(device_t self, int flags)
324 {
325 struct et_softc *sc = device_private(self);
326 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
327 int s;
328
329 pmf_device_deregister(self);
330 s = splnet();
331 et_stop(sc);
332 splx(s);
333
334 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
335
336 /* Delete all remaining media. */
337 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
338
339 ether_ifdetach(ifp);
340 if_detach(ifp);
341 et_dma_free(sc);
342
343 if (sc->sc_irq_handle != NULL) {
344 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
345 sc->sc_irq_handle = NULL;
346 }
347
348 if (sc->sc_mem_size) {
349 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
350 sc->sc_mem_size = 0;
351 }
352
353 return 0;
354 }
355
356 int
357 et_shutdown(device_t self)
358 {
359 struct et_softc *sc = device_private(self);
360 int s;
361
362 s = splnet();
363 et_stop(sc);
364 splx(s);
365
366 return 0;
367 }
368
369 int
370 et_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
371 {
372 struct et_softc *sc = device_private(dev);
373 uint32_t data;
374 int i, ret;
375
376 /* Stop any pending operations */
377 CSR_WRITE_4(sc, ET_MII_CMD, 0);
378
379 data = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
380 __SHIFTIN(reg, ET_MII_ADDR_REG);
381 CSR_WRITE_4(sc, ET_MII_ADDR, data);
382
383 /* Start reading */
384 CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
385
386 #define NRETRY 50
387
388 for (i = 0; i < NRETRY; ++i) {
389 data = CSR_READ_4(sc, ET_MII_IND);
390 if ((data & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
391 break;
392 DELAY(50);
393 }
394 if (i == NRETRY) {
395 aprint_error_dev(sc->sc_dev, "read phy %d, reg %d timed out\n",
396 phy, reg);
397 ret = ETIMEDOUT;
398 goto back;
399 }
400
401 #undef NRETRY
402
403 data = CSR_READ_4(sc, ET_MII_STAT);
404 *val = __SHIFTOUT(data, ET_MII_STAT_VALUE);
405 ret = 0;
406
407 back:
408 /* Make sure that the current operation is stopped */
409 CSR_WRITE_4(sc, ET_MII_CMD, 0);
410 return ret;
411 }
412
413 int
414 et_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
415 {
416 struct et_softc *sc = device_private(dev);
417 uint32_t data;
418 uint16_t tmp;
419 int rv = 0;
420 int i;
421
422 /* Stop any pending operations */
423 CSR_WRITE_4(sc, ET_MII_CMD, 0);
424
425 data = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
426 __SHIFTIN(reg, ET_MII_ADDR_REG);
427 CSR_WRITE_4(sc, ET_MII_ADDR, data);
428
429 /* Start writing */
430 CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val, ET_MII_CTRL_VALUE));
431
432 #define NRETRY 100
433
434 for (i = 0; i < NRETRY; ++i) {
435 data = CSR_READ_4(sc, ET_MII_IND);
436 if ((data & ET_MII_IND_BUSY) == 0)
437 break;
438 DELAY(50);
439 }
440 if (i == NRETRY) {
441 aprint_error_dev(sc->sc_dev, "write phy %d, reg %d timed out\n",
442 phy, reg);
443 et_miibus_readreg(dev, phy, reg, &tmp);
444 rv = ETIMEDOUT;
445 }
446
447 #undef NRETRY
448
449 /* Make sure that the current operation is stopped */
450 CSR_WRITE_4(sc, ET_MII_CMD, 0);
451
452 return rv;
453 }
454
455 void
456 et_miibus_statchg(struct ifnet *ifp)
457 {
458 struct et_softc *sc = ifp->if_softc;
459 struct mii_data *mii = &sc->sc_miibus;
460 uint32_t cfg1, cfg2, ctrl;
461 int i;
462
463 sc->sc_flags &= ~ET_FLAG_LINK;
464 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
465 (IFM_ACTIVE | IFM_AVALID)) {
466 switch (IFM_SUBTYPE(mii->mii_media_active)) {
467 case IFM_10_T:
468 case IFM_100_TX:
469 sc->sc_flags |= ET_FLAG_LINK;
470 break;
471 case IFM_1000_T:
472 if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0)
473 sc->sc_flags |= ET_FLAG_LINK;
474 break;
475 }
476 }
477
478 /* XXX Stop TX/RX MAC? */
479 if ((sc->sc_flags & ET_FLAG_LINK) == 0)
480 return;
481
482 /* Program MACs with resolved speed/duplex/flow-control. */
483 ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
484 ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
485 cfg1 = CSR_READ_4(sc, ET_MAC_CFG1);
486 cfg1 &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
487 ET_MAC_CFG1_LOOPBACK);
488 cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
489 cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
490 ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
491 cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
492 __SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
493
494
495 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
496 cfg2 |= ET_MAC_CFG2_MODE_GMII;
497 else {
498 cfg2 |= ET_MAC_CFG2_MODE_MII;
499 ctrl |= ET_MAC_CTRL_MODE_MII;
500 }
501
502 if (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) {
503 cfg2 |= ET_MAC_CFG2_FDX;
504 /*
505 * Controller lacks automatic TX pause frame
506 * generation so it should be handled by driver.
507 * Even though driver can send pause frame with
508 * arbitrary pause time, controller does not
509 * provide a way that tells how many free RX
510 * buffers are available in controller. This
511 * limitation makes it hard to generate XON frame
512 * in time on driver side so don't enable TX flow
513 * control.
514 */
515 #ifdef notyet
516 if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE)
517 cfg1 |= ET_MAC_CFG1_TXFLOW;
518 #endif
519 if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE)
520 cfg1 |= ET_MAC_CFG1_RXFLOW;
521 } else
522 ctrl |= ET_MAC_CTRL_GHDX;
523
524 CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
525 CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
526 cfg1 |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
527 CSR_WRITE_4(sc, ET_MAC_CFG1, cfg1);
528
529 #define NRETRY 100
530
531 for (i = 0; i < NRETRY; ++i) {
532 cfg1 = CSR_READ_4(sc, ET_MAC_CFG1);
533 if ((cfg1 & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
534 (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
535 break;
536
537 DELAY(10);
538 }
539 /* Note: Timeout always happens when cable is not plugged in. */
540
541 sc->sc_flags |= ET_FLAG_TXRX_ENABLED;
542
543 #undef NRETRY
544 }
545
546 static int
547 et_ifmedia_upd(struct ifnet *ifp)
548 {
549 struct et_softc *sc;
550 struct mii_data *mii;
551 struct mii_softc *miisc;
552
553 sc = ifp->if_softc;
554 mii = &sc->sc_miibus;
555 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
556 PHY_RESET(miisc);
557 return (mii_mediachg(mii));
558 }
559
560 static void
561 et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
562 {
563 struct et_softc *sc;
564 struct mii_data *mii;
565
566 sc = ifp->if_softc;
567 mii = &sc->sc_miibus;
568 mii_pollstat(mii);
569 ifmr->ifm_active = mii->mii_media_active;
570 ifmr->ifm_status = mii->mii_media_status;
571 }
572
573 void
574 et_stop(struct et_softc *sc)
575 {
576 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
577
578 callout_stop(&sc->sc_tick);
579 callout_stop(&sc->sc_txtick);
580
581 et_stop_rxdma(sc);
582 et_stop_txdma(sc);
583
584 et_disable_intrs(sc);
585
586 et_free_tx_ring(sc);
587 et_free_rx_ring(sc);
588
589 et_reset(sc);
590
591 sc->sc_tx = 0;
592 sc->sc_tx_intr = 0;
593 sc->sc_flags &= ~ET_FLAG_TXRX_ENABLED;
594
595 ifp->if_timer = 0;
596 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
597 }
598
599 int
600 et_bus_config(struct et_softc *sc)
601 {
602 uint32_t val; //, max_plsz;
603 // uint16_t ack_latency, replay_timer;
604
605 /*
606 * Test whether EEPROM is valid
607 * NOTE: Read twice to get the correct value
608 */
609 pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
610 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
611
612 if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
613 aprint_error_dev(sc->sc_dev, "EEPROM status error 0x%02x\n", val);
614 return ENXIO;
615 }
616
617 /* TODO: LED */
618 #if 0
619 /*
620 * Configure ACK latency and replay timer according to
621 * max playload size
622 */
623 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
624 max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
625
626 switch (max_plsz) {
627 case ET_PCIV_DEVICE_CAPS_PLSZ_128:
628 ack_latency = ET_PCIV_ACK_LATENCY_128;
629 replay_timer = ET_PCIV_REPLAY_TIMER_128;
630 break;
631
632 case ET_PCIV_DEVICE_CAPS_PLSZ_256:
633 ack_latency = ET_PCIV_ACK_LATENCY_256;
634 replay_timer = ET_PCIV_REPLAY_TIMER_256;
635 break;
636
637 default:
638 ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
639 ET_PCIR_ACK_LATENCY) >> 16;
640 replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
641 ET_PCIR_REPLAY_TIMER) >> 16;
642 aprint_normal_dev(sc->sc_dev, "ack latency %u, replay timer %u\n",
643 ack_latency, replay_timer);
644 break;
645 }
646 if (ack_latency != 0) {
647 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
648 ET_PCIR_ACK_LATENCY, ack_latency << 16);
649 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
650 ET_PCIR_REPLAY_TIMER, replay_timer << 16);
651 }
652
653 /*
654 * Set L0s and L1 latency timer to 2us
655 */
656 val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
657 pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
658 val << 24);
659
660 /*
661 * Set max read request size to 2048 bytes
662 */
663 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
664 ET_PCIR_DEVICE_CTRL) >> 16;
665 val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
666 val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
667 pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
668 val << 16);
669 #endif
670
671 return 0;
672 }
673
674 void
675 et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
676 {
677 uint32_t r;
678
679 r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
680 eaddr[0] = r & 0xff;
681 eaddr[1] = (r >> 8) & 0xff;
682 eaddr[2] = (r >> 16) & 0xff;
683 eaddr[3] = (r >> 24) & 0xff;
684 r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
685 eaddr[4] = r & 0xff;
686 eaddr[5] = (r >> 8) & 0xff;
687 }
688
689 void
690 et_reset(struct et_softc *sc)
691 {
692
693 CSR_WRITE_4(sc, ET_MAC_CFG1,
694 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
695 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
696 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
697
698 CSR_WRITE_4(sc, ET_SWRST,
699 ET_SWRST_TXDMA | ET_SWRST_RXDMA |
700 ET_SWRST_TXMAC | ET_SWRST_RXMAC |
701 ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
702
703 CSR_WRITE_4(sc, ET_MAC_CFG1,
704 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
705 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
706 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
707 }
708
709 void
710 et_disable_intrs(struct et_softc *sc)
711 {
712 CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
713 }
714
715 void
716 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
717 {
718 CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
719 }
720
721 int
722 et_dma_alloc(struct et_softc *sc)
723 {
724 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
725 struct et_txstatus_data *txsd = &sc->sc_tx_status;
726 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
727 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
728 int i, error;
729
730 /*
731 * Create TX ring DMA stuffs
732 */
733 error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
734 (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
735 &tx_ring->tr_seg);
736 if (error) {
737 aprint_error_dev(sc->sc_dev, "can't create TX ring DMA stuffs\n");
738 return error;
739 }
740
741 /*
742 * Create TX status DMA stuffs
743 */
744 error = et_dma_mem_create(sc, sizeof(uint32_t),
745 (void **)&txsd->txsd_status,
746 &txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
747 if (error) {
748 aprint_error_dev(sc->sc_dev, "can't create TX status DMA stuffs\n");
749 return error;
750 }
751
752 /*
753 * Create DMA stuffs for RX rings
754 */
755 for (i = 0; i < ET_RX_NRING; ++i) {
756 static const uint32_t rx_ring_posreg[ET_RX_NRING] =
757 { ET_RX_RING0_POS, ET_RX_RING1_POS };
758
759 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
760
761 error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
762 (void **)&rx_ring->rr_desc,
763 &rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
764 if (error) {
765 aprint_error_dev(sc->sc_dev, "can't create DMA stuffs for "
766 "the %d RX ring\n", i);
767 return error;
768 }
769 rx_ring->rr_posreg = rx_ring_posreg[i];
770 }
771
772 /*
773 * Create RX stat ring DMA stuffs
774 */
775 error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
776 (void **)&rxst_ring->rsr_stat,
777 &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
778 if (error) {
779 aprint_error_dev(sc->sc_dev, "can't create RX stat ring DMA stuffs\n");
780 return error;
781 }
782
783 /*
784 * Create RX status DMA stuffs
785 */
786 error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
787 (void **)&rxsd->rxsd_status,
788 &rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
789 if (error) {
790 aprint_error_dev(sc->sc_dev, "can't create RX status DMA stuffs\n");
791 return error;
792 }
793
794 /*
795 * Create mbuf DMA stuffs
796 */
797 error = et_dma_mbuf_create(sc);
798 if (error)
799 return error;
800
801 return 0;
802 }
803
804 void
805 et_dma_free(struct et_softc *sc)
806 {
807 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
808 struct et_txstatus_data *txsd = &sc->sc_tx_status;
809 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
810 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
811 int i, rx_done[ET_RX_NRING];
812
813 /*
814 * Destroy TX ring DMA stuffs
815 */
816 et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
817
818 /*
819 * Destroy TX status DMA stuffs
820 */
821 et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
822
823 /*
824 * Destroy DMA stuffs for RX rings
825 */
826 for (i = 0; i < ET_RX_NRING; ++i) {
827 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
828
829 et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
830 }
831
832 /*
833 * Destroy RX stat ring DMA stuffs
834 */
835 et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
836
837 /*
838 * Destroy RX status DMA stuffs
839 */
840 et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
841
842 /*
843 * Destroy mbuf DMA stuffs
844 */
845 for (i = 0; i < ET_RX_NRING; ++i)
846 rx_done[i] = ET_RX_NDESC;
847 et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
848 }
849
850 int
851 et_dma_mbuf_create(struct et_softc *sc)
852 {
853 struct et_txbuf_data *tbd = &sc->sc_tx_data;
854 int i, error, rx_done[ET_RX_NRING];
855
856 /*
857 * Create spare DMA map for RX mbufs
858 */
859 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
860 BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
861 if (error) {
862 aprint_error_dev(sc->sc_dev, "can't create spare mbuf DMA map\n");
863 return error;
864 }
865
866 /*
867 * Create DMA maps for RX mbufs
868 */
869 bzero(rx_done, sizeof(rx_done));
870 for (i = 0; i < ET_RX_NRING; ++i) {
871 struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
872 int j;
873
874 for (j = 0; j < ET_RX_NDESC; ++j) {
875 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
876 MCLBYTES, 0, BUS_DMA_NOWAIT,
877 &rbd->rbd_buf[j].rb_dmap);
878 if (error) {
879 aprint_error_dev(sc->sc_dev, "can't create %d RX mbuf "
880 "for %d RX ring\n", j, i);
881 rx_done[i] = j;
882 et_dma_mbuf_destroy(sc, 0, rx_done);
883 return error;
884 }
885 }
886 rx_done[i] = ET_RX_NDESC;
887
888 rbd->rbd_softc = sc;
889 rbd->rbd_ring = &sc->sc_rx_ring[i];
890 }
891
892 /*
893 * Create DMA maps for TX mbufs
894 */
895 for (i = 0; i < ET_TX_NDESC; ++i) {
896 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
897 0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
898 if (error) {
899 aprint_error_dev(sc->sc_dev, "can't create %d TX mbuf "
900 "DMA map\n", i);
901 et_dma_mbuf_destroy(sc, i, rx_done);
902 return error;
903 }
904 }
905
906 return 0;
907 }
908
909 void
910 et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
911 {
912 struct et_txbuf_data *tbd = &sc->sc_tx_data;
913 int i;
914
915 /*
916 * Destroy DMA maps for RX mbufs
917 */
918 for (i = 0; i < ET_RX_NRING; ++i) {
919 struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
920 int j;
921
922 for (j = 0; j < rx_done[i]; ++j) {
923 struct et_rxbuf *rb = &rbd->rbd_buf[j];
924
925 KASSERTMSG(rb->rb_mbuf == NULL,
926 "RX mbuf in %d RX ring is not freed yet\n", i);
927 bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
928 }
929 }
930
931 /*
932 * Destroy DMA maps for TX mbufs
933 */
934 for (i = 0; i < tx_done; ++i) {
935 struct et_txbuf *tb = &tbd->tbd_buf[i];
936
937 KASSERTMSG(tb->tb_mbuf == NULL, "TX mbuf is not freed yet\n");
938 bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
939 }
940
941 /*
942 * Destroy spare mbuf DMA map
943 */
944 bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
945 }
946
947 int
948 et_dma_mem_create(struct et_softc *sc, bus_size_t size,
949 void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
950 {
951 int error, nsegs;
952
953 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
954 dmap);
955 if (error) {
956 aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
957 return error;
958 }
959
960 error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
961 1, &nsegs, BUS_DMA_WAITOK);
962 if (error) {
963 aprint_error_dev(sc->sc_dev, "can't allocate DMA mem\n");
964 return error;
965 }
966
967 error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
968 size, (void **)addr, BUS_DMA_NOWAIT);
969 if (error) {
970 aprint_error_dev(sc->sc_dev, "can't map DMA mem\n");
971 return (error);
972 }
973
974 error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
975 BUS_DMA_WAITOK);
976 if (error) {
977 aprint_error_dev(sc->sc_dev, "can't load DMA mem\n");
978 bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
979 return error;
980 }
981
982 memset(*addr, 0, size);
983
984 *paddr = (*dmap)->dm_segs[0].ds_addr;
985
986 return 0;
987 }
988
989 void
990 et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
991 {
992 bus_dmamap_unload(sc->sc_dmat, dmap);
993 bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
994 }
995
996 void
997 et_chip_attach(struct et_softc *sc)
998 {
999 uint32_t val;
1000
1001 /*
1002 * Perform minimal initialization
1003 */
1004
1005 /* Disable loopback */
1006 CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1007
1008 /* Reset MAC */
1009 CSR_WRITE_4(sc, ET_MAC_CFG1,
1010 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1011 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1012 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1013
1014 /*
1015 * Setup half duplex mode
1016 */
1017 val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1018 __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1019 __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1020 ET_MAC_HDX_EXC_DEFER;
1021 CSR_WRITE_4(sc, ET_MAC_HDX, val);
1022
1023 /* Clear MAC control */
1024 CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1025
1026 /* Reset MII */
1027 CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1028
1029 /* Bring MAC out of reset state */
1030 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1031
1032 /* Enable memory controllers */
1033 CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1034 }
1035
1036 int
1037 et_intr(void *xsc)
1038 {
1039 struct et_softc *sc = xsc;
1040 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1041 uint32_t intrs;
1042
1043 if ((ifp->if_flags & IFF_RUNNING) == 0)
1044 return (0);
1045
1046 intrs = CSR_READ_4(sc, ET_INTR_STATUS);
1047 if (intrs == 0 || intrs == 0xffffffff)
1048 return (0);
1049
1050 et_disable_intrs(sc);
1051 intrs &= ET_INTRS;
1052 if (intrs == 0) /* Not interested */
1053 goto back;
1054
1055 if (intrs & ET_INTR_RXEOF)
1056 et_rxeof(sc);
1057 if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
1058 et_txeof(sc);
1059 if (intrs & ET_INTR_TIMER)
1060 CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1061 back:
1062 et_enable_intrs(sc, ET_INTRS);
1063
1064 return (1);
1065 }
1066
1067 int
1068 et_init(struct ifnet *ifp)
1069 {
1070 struct et_softc *sc = ifp->if_softc;
1071 int error, i, s;
1072
1073 if (ifp->if_flags & IFF_RUNNING)
1074 return 0;
1075
1076 s = splnet();
1077
1078 et_stop(sc);
1079 et_reset(sc);
1080
1081 for (i = 0; i < ET_RX_NRING; ++i) {
1082 sc->sc_rx_data[i].rbd_bufsize = et_bufsize[i].bufsize;
1083 sc->sc_rx_data[i].rbd_newbuf = et_bufsize[i].newbuf;
1084 }
1085
1086 error = et_init_tx_ring(sc);
1087 if (error)
1088 goto back;
1089
1090 error = et_init_rx_ring(sc);
1091 if (error)
1092 goto back;
1093
1094 error = et_chip_init(sc);
1095 if (error)
1096 goto back;
1097
1098 error = et_start_rxdma(sc);
1099 if (error)
1100 goto back;
1101
1102 error = et_start_txdma(sc);
1103 if (error)
1104 goto back;
1105
1106 /* Enable interrupts. */
1107 et_enable_intrs(sc, ET_INTRS);
1108
1109 callout_schedule(&sc->sc_tick, hz);
1110
1111 CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1112
1113 ifp->if_flags |= IFF_RUNNING;
1114 ifp->if_flags &= ~IFF_OACTIVE;
1115
1116 sc->sc_flags &= ~ET_FLAG_LINK;
1117 et_ifmedia_upd(ifp);
1118 back:
1119 if (error)
1120 et_stop(sc);
1121
1122 splx(s);
1123
1124 return (0);
1125 }
1126
1127 int
1128 et_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1129 {
1130 struct et_softc *sc = ifp->if_softc;
1131 int s, error = 0;
1132
1133 s = splnet();
1134
1135 switch (cmd) {
1136 case SIOCSIFFLAGS:
1137 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1138 break;
1139 if (ifp->if_flags & IFF_UP) {
1140 /*
1141 * If only the PROMISC or ALLMULTI flag changes, then
1142 * don't do a full re-init of the chip, just update
1143 * the Rx filter.
1144 */
1145 if ((ifp->if_flags & IFF_RUNNING) &&
1146 ((ifp->if_flags ^ sc->sc_if_flags) &
1147 (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1148 et_setmulti(sc);
1149 } else {
1150 if (!(ifp->if_flags & IFF_RUNNING))
1151 et_init(ifp);
1152 }
1153 } else {
1154 if (ifp->if_flags & IFF_RUNNING)
1155 et_stop(sc);
1156 }
1157 sc->sc_if_flags = ifp->if_flags;
1158 break;
1159 default:
1160 error = ether_ioctl(ifp, cmd, data);
1161 if (error == ENETRESET) {
1162 if (ifp->if_flags & IFF_RUNNING)
1163 et_setmulti(sc);
1164 error = 0;
1165 }
1166 break;
1167 }
1168
1169 splx(s);
1170
1171 return error;
1172 }
1173
1174 void
1175 et_start(struct ifnet *ifp)
1176 {
1177 struct et_softc *sc = ifp->if_softc;
1178 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1179 int trans;
1180 struct mbuf *m;
1181
1182 if (((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) ||
1183 ((sc->sc_flags & (ET_FLAG_LINK | ET_FLAG_TXRX_ENABLED)) !=
1184 (ET_FLAG_LINK | ET_FLAG_TXRX_ENABLED)))
1185 return;
1186
1187 trans = 0;
1188 for (;;) {
1189 IFQ_DEQUEUE(&ifp->if_snd, m);
1190 if (m == NULL)
1191 break;
1192
1193 if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1194 ifp->if_flags |= IFF_OACTIVE;
1195 break;
1196 }
1197
1198 if (et_encap(sc, &m)) {
1199 ifp->if_oerrors++;
1200 ifp->if_flags |= IFF_OACTIVE;
1201 break;
1202 }
1203
1204 trans = 1;
1205
1206 bpf_mtap(ifp, m, BPF_D_OUT);
1207 }
1208
1209 if (trans) {
1210 callout_schedule(&sc->sc_txtick, hz);
1211 ifp->if_timer = 5;
1212 }
1213 }
1214
1215 void
1216 et_watchdog(struct ifnet *ifp)
1217 {
1218 struct et_softc *sc = ifp->if_softc;
1219 aprint_error_dev(sc->sc_dev, "watchdog timed out\n");
1220
1221 ifp->if_flags &= ~IFF_RUNNING;
1222 et_init(ifp);
1223 et_start(ifp);
1224 }
1225
1226 int
1227 et_stop_rxdma(struct et_softc *sc)
1228 {
1229
1230 CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1231 ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1232
1233 DELAY(5);
1234 if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1235 aprint_error_dev(sc->sc_dev, "can't stop RX DMA engine\n");
1236 return ETIMEDOUT;
1237 }
1238 return 0;
1239 }
1240
1241 int
1242 et_stop_txdma(struct et_softc *sc)
1243 {
1244
1245 CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1246 ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1247 return 0;
1248 }
1249
1250 void
1251 et_free_tx_ring(struct et_softc *sc)
1252 {
1253 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1254 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1255 int i;
1256
1257 for (i = 0; i < ET_TX_NDESC; ++i) {
1258 struct et_txbuf *tb = &tbd->tbd_buf[i];
1259
1260 if (tb->tb_mbuf != NULL) {
1261 bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1262 m_freem(tb->tb_mbuf);
1263 tb->tb_mbuf = NULL;
1264 }
1265 }
1266
1267 bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1268 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1269 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1270 }
1271
1272 void
1273 et_free_rx_ring(struct et_softc *sc)
1274 {
1275 int n;
1276
1277 for (n = 0; n < ET_RX_NRING; ++n) {
1278 struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1279 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1280 int i;
1281
1282 for (i = 0; i < ET_RX_NDESC; ++i) {
1283 struct et_rxbuf *rb = &rbd->rbd_buf[i];
1284
1285 if (rb->rb_mbuf != NULL) {
1286 bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
1287 m_freem(rb->rb_mbuf);
1288 rb->rb_mbuf = NULL;
1289 }
1290 }
1291
1292 bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1293 bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
1294 rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1295 }
1296 }
1297
1298 void
1299 et_setmulti(struct et_softc *sc)
1300 {
1301 struct ethercom *ec = &sc->sc_ethercom;
1302 struct ifnet *ifp = &ec->ec_if;
1303 uint32_t hash[4] = { 0, 0, 0, 0 };
1304 uint32_t rxmac_ctrl, pktfilt;
1305 struct ether_multi *enm;
1306 struct ether_multistep step;
1307 int i, count;
1308
1309 pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1310 rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1311
1312 pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1313 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1314 rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1315 goto back;
1316 }
1317
1318 count = 0;
1319 ETHER_LOCK(ec);
1320 ETHER_FIRST_MULTI(step, ec, enm);
1321 while (enm != NULL) {
1322 uint32_t *hp, h;
1323
1324 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1325 h = (h & 0x3f800000) >> 23;
1326
1327 hp = &hash[0];
1328 if (h >= 32 && h < 64) {
1329 h -= 32;
1330 hp = &hash[1];
1331 } else if (h >= 64 && h < 96) {
1332 h -= 64;
1333 hp = &hash[2];
1334 } else if (h >= 96) {
1335 h -= 96;
1336 hp = &hash[3];
1337 }
1338 *hp |= (1 << h);
1339
1340 ++count;
1341 ETHER_NEXT_MULTI(step, enm);
1342 }
1343 ETHER_UNLOCK(ec);
1344
1345 for (i = 0; i < 4; ++i)
1346 CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1347
1348 if (count > 0)
1349 pktfilt |= ET_PKTFILT_MCAST;
1350 rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1351 back:
1352 CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1353 CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1354 }
1355
1356 int
1357 et_chip_init(struct et_softc *sc)
1358 {
1359 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1360 uint32_t rxq_end;
1361 int error;
1362
1363 /*
1364 * Split internal memory between TX and RX according to MTU
1365 */
1366 if (ifp->if_mtu < 2048)
1367 rxq_end = 0x2bc;
1368 else if (ifp->if_mtu < 8192)
1369 rxq_end = 0x1ff;
1370 else
1371 rxq_end = 0x1b3;
1372 CSR_WRITE_4(sc, ET_RXQ_START, 0);
1373 CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1374 CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1375 CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1376
1377 /* No loopback */
1378 CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1379
1380 /* Clear MSI configure */
1381 CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1382
1383 /* Disable timer */
1384 CSR_WRITE_4(sc, ET_TIMER, 0);
1385
1386 /* Initialize MAC */
1387 et_init_mac(sc);
1388
1389 /* Enable memory controllers */
1390 CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1391
1392 /* Initialize RX MAC */
1393 et_init_rxmac(sc);
1394
1395 /* Initialize TX MAC */
1396 et_init_txmac(sc);
1397
1398 /* Initialize RX DMA engine */
1399 error = et_init_rxdma(sc);
1400 if (error)
1401 return error;
1402
1403 /* Initialize TX DMA engine */
1404 error = et_init_txdma(sc);
1405 if (error)
1406 return error;
1407
1408 return 0;
1409 }
1410
1411 int
1412 et_init_tx_ring(struct et_softc *sc)
1413 {
1414 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1415 struct et_txstatus_data *txsd = &sc->sc_tx_status;
1416 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1417
1418 bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1419 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1420 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1421
1422 tbd->tbd_start_index = 0;
1423 tbd->tbd_start_wrap = 0;
1424 tbd->tbd_used = 0;
1425
1426 bzero(txsd->txsd_status, sizeof(uint32_t));
1427 bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
1428 txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1429 return 0;
1430 }
1431
1432 int
1433 et_init_rx_ring(struct et_softc *sc)
1434 {
1435 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1436 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1437 int n;
1438
1439 for (n = 0; n < ET_RX_NRING; ++n) {
1440 struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1441 int i, error;
1442
1443 for (i = 0; i < ET_RX_NDESC; ++i) {
1444 error = rbd->rbd_newbuf(rbd, i, 1);
1445 if (error) {
1446 aprint_error_dev(sc->sc_dev, "%d ring %d buf, newbuf failed: "
1447 "%d\n", n, i, error);
1448 return error;
1449 }
1450 }
1451 }
1452
1453 bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1454 bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1455 rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1456
1457 bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1458 bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1459 rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1460
1461 return 0;
1462 }
1463
1464 int
1465 et_init_rxdma(struct et_softc *sc)
1466 {
1467 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1468 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1469 struct et_rxdesc_ring *rx_ring;
1470 int error;
1471
1472 error = et_stop_rxdma(sc);
1473 if (error) {
1474 aprint_error_dev(sc->sc_dev, "can't init RX DMA engine\n");
1475 return error;
1476 }
1477
1478 /*
1479 * Install RX status
1480 */
1481 CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1482 CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1483
1484 /*
1485 * Install RX stat ring
1486 */
1487 CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1488 CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1489 CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1490 CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1491 CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1492
1493 /* Match ET_RXSTAT_POS */
1494 rxst_ring->rsr_index = 0;
1495 rxst_ring->rsr_wrap = 0;
1496
1497 /*
1498 * Install the 2nd RX descriptor ring
1499 */
1500 rx_ring = &sc->sc_rx_ring[1];
1501 CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1502 CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1503 CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1504 CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1505 CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1506
1507 /* Match ET_RX_RING1_POS */
1508 rx_ring->rr_index = 0;
1509 rx_ring->rr_wrap = 1;
1510
1511 /*
1512 * Install the 1st RX descriptor ring
1513 */
1514 rx_ring = &sc->sc_rx_ring[0];
1515 CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1516 CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1517 CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1518 CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1519 CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1520
1521 /* Match ET_RX_RING0_POS */
1522 rx_ring->rr_index = 0;
1523 rx_ring->rr_wrap = 1;
1524
1525 /*
1526 * RX intr moderation
1527 */
1528 CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1529 CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1530
1531 return 0;
1532 }
1533
1534 int
1535 et_init_txdma(struct et_softc *sc)
1536 {
1537 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1538 struct et_txstatus_data *txsd = &sc->sc_tx_status;
1539 int error;
1540
1541 error = et_stop_txdma(sc);
1542 if (error) {
1543 aprint_error_dev(sc->sc_dev, "can't init TX DMA engine\n");
1544 return error;
1545 }
1546
1547 /*
1548 * Install TX descriptor ring
1549 */
1550 CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1551 CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1552 CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1553
1554 /*
1555 * Install TX status
1556 */
1557 CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1558 CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1559
1560 CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1561
1562 /* Match ET_TX_READY_POS */
1563 tx_ring->tr_ready_index = 0;
1564 tx_ring->tr_ready_wrap = 0;
1565
1566 return 0;
1567 }
1568
1569 void
1570 et_init_mac(struct et_softc *sc)
1571 {
1572 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1573 const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1574 uint32_t val;
1575
1576 /* Reset MAC */
1577 CSR_WRITE_4(sc, ET_MAC_CFG1,
1578 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1579 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1580 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1581
1582 /*
1583 * Setup inter packet gap
1584 */
1585 val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1586 __SHIFTIN(88, ET_IPG_NONB2B_2) |
1587 __SHIFTIN(80, ET_IPG_MINIFG) |
1588 __SHIFTIN(96, ET_IPG_B2B);
1589 CSR_WRITE_4(sc, ET_IPG, val);
1590
1591 /*
1592 * Setup half duplex mode
1593 */
1594 val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1595 __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1596 __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1597 ET_MAC_HDX_EXC_DEFER;
1598 CSR_WRITE_4(sc, ET_MAC_HDX, val);
1599
1600 /* Clear MAC control */
1601 CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1602
1603 /* Reset MII */
1604 CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1605
1606 /*
1607 * Set MAC address
1608 */
1609 val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1610 CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1611 val = (eaddr[0] << 16) | (eaddr[1] << 24);
1612 CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1613
1614 /* Set max frame length */
1615 CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1616 ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + ETHER_CRC_LEN);
1617
1618 /* Bring MAC out of reset state */
1619 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1620 }
1621
1622 void
1623 et_init_rxmac(struct et_softc *sc)
1624 {
1625 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1626 const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1627 uint32_t val;
1628 int i;
1629
1630 /* Disable RX MAC and WOL */
1631 CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1632
1633 /*
1634 * Clear all WOL related registers
1635 */
1636 for (i = 0; i < 3; ++i)
1637 CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1638 for (i = 0; i < 20; ++i)
1639 CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1640
1641 /*
1642 * Set WOL source address. XXX is this necessary?
1643 */
1644 val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1645 CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1646 val = (eaddr[0] << 8) | eaddr[1];
1647 CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1648
1649 /* Clear packet filters */
1650 CSR_WRITE_4(sc, ET_PKTFILT, 0);
1651
1652 /* No ucast filtering */
1653 CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1654 CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1655 CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1656
1657 if (ifp->if_mtu > 8192) {
1658 /*
1659 * In order to transmit jumbo packets greater than 8k,
1660 * the FIFO between RX MAC and RX DMA needs to be reduced
1661 * in size to (16k - MTU). In order to implement this, we
1662 * must use "cut through" mode in the RX MAC, which chops
1663 * packets down into segments which are (max_size * 16).
1664 * In this case we selected 256 bytes, since this is the
1665 * size of the PCI-Express TLP's that the 1310 uses.
1666 */
1667 val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1668 ET_RXMAC_MC_SEGSZ_ENABLE;
1669 } else {
1670 val = 0;
1671 }
1672 CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1673
1674 CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1675
1676 /* Initialize RX MAC management register */
1677 CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1678
1679 CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1680
1681 CSR_WRITE_4(sc, ET_RXMAC_MGT,
1682 ET_RXMAC_MGT_PASS_ECRC |
1683 ET_RXMAC_MGT_PASS_ELEN |
1684 ET_RXMAC_MGT_PASS_ETRUNC |
1685 ET_RXMAC_MGT_CHECK_PKT);
1686
1687 /*
1688 * Configure runt filtering (may not work on certain chip generation)
1689 */
1690 val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1691 CSR_WRITE_4(sc, ET_PKTFILT, val);
1692
1693 /* Enable RX MAC but leave WOL disabled */
1694 CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1695 ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1696
1697 /*
1698 * Setup multicast hash and allmulti/promisc mode
1699 */
1700 et_setmulti(sc);
1701 }
1702
1703 void
1704 et_init_txmac(struct et_softc *sc)
1705 {
1706
1707 /* Disable TX MAC and FC(?) */
1708 CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1709
1710 /* No flow control yet */
1711 CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1712
1713 /* Enable TX MAC but leave FC(?) diabled */
1714 CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1715 ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1716 }
1717
1718 int
1719 et_start_rxdma(struct et_softc *sc)
1720 {
1721 uint32_t val = 0;
1722
1723 val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1724 ET_RXDMA_CTRL_RING0_SIZE) |
1725 ET_RXDMA_CTRL_RING0_ENABLE;
1726 val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1727 ET_RXDMA_CTRL_RING1_SIZE) |
1728 ET_RXDMA_CTRL_RING1_ENABLE;
1729
1730 CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1731
1732 DELAY(5);
1733
1734 if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1735 aprint_error_dev(sc->sc_dev, "can't start RX DMA engine\n");
1736 return ETIMEDOUT;
1737 }
1738 return 0;
1739 }
1740
1741 int
1742 et_start_txdma(struct et_softc *sc)
1743 {
1744
1745 CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1746 return 0;
1747 }
1748
1749 void
1750 et_rxeof(struct et_softc *sc)
1751 {
1752 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1753 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1754 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1755 uint32_t rxs_stat_ring;
1756 int rxst_wrap, rxst_index;
1757
1758 if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
1759 return;
1760
1761 bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1762 rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1763 bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1764 rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1765
1766 rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1767 rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1768 rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1769
1770 while (rxst_index != rxst_ring->rsr_index ||
1771 rxst_wrap != rxst_ring->rsr_wrap) {
1772 struct et_rxbuf_data *rbd;
1773 struct et_rxdesc_ring *rx_ring;
1774 struct et_rxstat *st;
1775 struct et_rxbuf *rb;
1776 struct mbuf *m;
1777 int buflen, buf_idx, ring_idx;
1778 uint32_t rxstat_pos, rxring_pos;
1779
1780 KASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1781 st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1782
1783 buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1784 buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1785 ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1786
1787 if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1788 rxst_ring->rsr_index = 0;
1789 rxst_ring->rsr_wrap ^= 1;
1790 }
1791 rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1792 ET_RXSTAT_POS_INDEX);
1793 if (rxst_ring->rsr_wrap)
1794 rxstat_pos |= ET_RXSTAT_POS_WRAP;
1795 CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1796
1797 if (ring_idx >= ET_RX_NRING) {
1798 ifp->if_ierrors++;
1799 aprint_error_dev(sc->sc_dev, "invalid ring index %d\n",
1800 ring_idx);
1801 continue;
1802 }
1803 if (buf_idx >= ET_RX_NDESC) {
1804 ifp->if_ierrors++;
1805 aprint_error_dev(sc->sc_dev, "invalid buf index %d\n",
1806 buf_idx);
1807 continue;
1808 }
1809
1810 rbd = &sc->sc_rx_data[ring_idx];
1811 rb = &rbd->rbd_buf[buf_idx];
1812 m = rb->rb_mbuf;
1813 bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
1814 rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1815
1816 if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1817 if (buflen < ETHER_CRC_LEN) {
1818 m_freem(m);
1819 ifp->if_ierrors++;
1820 } else {
1821 m->m_pkthdr.len = m->m_len = buflen -
1822 ETHER_CRC_LEN;
1823 m_set_rcvif(m, ifp);
1824
1825 if_percpuq_enqueue(ifp->if_percpuq, m);
1826 }
1827 } else {
1828 ifp->if_ierrors++;
1829 }
1830
1831 rx_ring = &sc->sc_rx_ring[ring_idx];
1832
1833 if (buf_idx != rx_ring->rr_index) {
1834 aprint_error_dev(sc->sc_dev, "WARNING!! ring %d, "
1835 "buf_idx %d, rr_idx %d\n",
1836 ring_idx, buf_idx, rx_ring->rr_index);
1837 }
1838
1839 KASSERT(rx_ring->rr_index < ET_RX_NDESC);
1840 if (++rx_ring->rr_index == ET_RX_NDESC) {
1841 rx_ring->rr_index = 0;
1842 rx_ring->rr_wrap ^= 1;
1843 }
1844 rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1845 if (rx_ring->rr_wrap)
1846 rxring_pos |= ET_RX_RING_POS_WRAP;
1847 CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1848 }
1849 }
1850
1851 int
1852 et_encap(struct et_softc *sc, struct mbuf **m0)
1853 {
1854 struct mbuf *m = *m0;
1855 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1856 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1857 struct et_txdesc *td;
1858 bus_dmamap_t map;
1859 int error, maxsegs, first_idx, last_idx, i;
1860 uint32_t tx_ready_pos, last_td_ctrl2;
1861
1862 maxsegs = ET_TX_NDESC - tbd->tbd_used;
1863 if (maxsegs > ET_NSEG_MAX)
1864 maxsegs = ET_NSEG_MAX;
1865 KASSERTMSG(maxsegs >= ET_NSEG_SPARE,
1866 "not enough spare TX desc (%d)\n", maxsegs);
1867
1868 KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1869 first_idx = tx_ring->tr_ready_index;
1870 map = tbd->tbd_buf[first_idx].tb_dmap;
1871
1872 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1873 BUS_DMA_NOWAIT);
1874 if (!error && map->dm_nsegs == 0) {
1875 bus_dmamap_unload(sc->sc_dmat, map);
1876 error = EFBIG;
1877 }
1878 if (error && error != EFBIG) {
1879 aprint_error_dev(sc->sc_dev, "can't load TX mbuf");
1880 goto back;
1881 }
1882 if (error) { /* error == EFBIG */
1883 struct mbuf *m_new;
1884
1885 error = 0;
1886
1887 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1888 if (m_new == NULL) {
1889 aprint_error_dev(sc->sc_dev, "can't defrag TX mbuf\n");
1890 error = ENOBUFS;
1891 goto back;
1892 }
1893
1894 m_copy_pkthdr(m_new, m);
1895 if (m->m_pkthdr.len > MHLEN) {
1896 MCLGET(m_new, M_DONTWAIT);
1897 if (!(m_new->m_flags & M_EXT)) {
1898 m_freem(m_new);
1899 error = ENOBUFS;
1900 }
1901 }
1902
1903 if (error) {
1904 aprint_error_dev(sc->sc_dev, "can't defrag TX buffer\n");
1905 goto back;
1906 }
1907
1908 m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
1909 m_freem(m);
1910 m_new->m_len = m_new->m_pkthdr.len;
1911 *m0 = m = m_new;
1912
1913 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1914 BUS_DMA_NOWAIT);
1915 if (error || map->dm_nsegs == 0) {
1916 if (map->dm_nsegs == 0) {
1917 bus_dmamap_unload(sc->sc_dmat, map);
1918 error = EFBIG;
1919 }
1920 aprint_error_dev(sc->sc_dev, "can't load defraged TX mbuf\n");
1921 goto back;
1922 }
1923 }
1924
1925 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1926 BUS_DMASYNC_PREWRITE);
1927
1928 last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1929 sc->sc_tx += map->dm_nsegs;
1930 if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1931 sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1932 last_td_ctrl2 |= ET_TDCTRL2_INTR;
1933 }
1934
1935 last_idx = -1;
1936 for (i = 0; i < map->dm_nsegs; ++i) {
1937 int idx;
1938
1939 idx = (first_idx + i) % ET_TX_NDESC;
1940 td = &tx_ring->tr_desc[idx];
1941 td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
1942 td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
1943 td->td_ctrl1 =
1944 __SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
1945
1946 if (i == map->dm_nsegs - 1) { /* Last frag */
1947 td->td_ctrl2 = last_td_ctrl2;
1948 last_idx = idx;
1949 }
1950
1951 KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1952 if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1953 tx_ring->tr_ready_index = 0;
1954 tx_ring->tr_ready_wrap ^= 1;
1955 }
1956 }
1957 td = &tx_ring->tr_desc[first_idx];
1958 td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG; /* First frag */
1959
1960 KASSERT(last_idx >= 0);
1961 tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1962 tbd->tbd_buf[last_idx].tb_dmap = map;
1963 tbd->tbd_buf[last_idx].tb_mbuf = m;
1964
1965 tbd->tbd_used += map->dm_nsegs;
1966 KASSERT(tbd->tbd_used <= ET_TX_NDESC);
1967
1968 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1969 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1970
1971 tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1972 ET_TX_READY_POS_INDEX);
1973 if (tx_ring->tr_ready_wrap)
1974 tx_ready_pos |= ET_TX_READY_POS_WRAP;
1975 CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1976
1977 error = 0;
1978 back:
1979 if (error) {
1980 m_freem(m);
1981 *m0 = NULL;
1982 }
1983 return error;
1984 }
1985
1986 void
1987 et_txeof(struct et_softc *sc)
1988 {
1989 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1990 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1991 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1992 uint32_t tx_done;
1993 int end, wrap;
1994
1995 if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
1996 return;
1997
1998 if (tbd->tbd_used == 0)
1999 return;
2000
2001 tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
2002 end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
2003 wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
2004
2005 while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
2006 struct et_txbuf *tb;
2007
2008 KASSERT(tbd->tbd_start_index < ET_TX_NDESC);
2009 tb = &tbd->tbd_buf[tbd->tbd_start_index];
2010
2011 bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
2012 sizeof(struct et_txdesc));
2013 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
2014 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2015
2016 if (tb->tb_mbuf != NULL) {
2017 bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
2018 m_freem(tb->tb_mbuf);
2019 tb->tb_mbuf = NULL;
2020 ifp->if_opackets++;
2021 }
2022
2023 if (++tbd->tbd_start_index == ET_TX_NDESC) {
2024 tbd->tbd_start_index = 0;
2025 tbd->tbd_start_wrap ^= 1;
2026 }
2027
2028 KASSERT(tbd->tbd_used > 0);
2029 tbd->tbd_used--;
2030 }
2031
2032 if (tbd->tbd_used == 0) {
2033 callout_stop(&sc->sc_txtick);
2034 ifp->if_timer = 0;
2035 }
2036 if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
2037 ifp->if_flags &= ~IFF_OACTIVE;
2038
2039 if_schedule_deferred_start(ifp);
2040 }
2041
2042 void
2043 et_txtick(void *xsc)
2044 {
2045 struct et_softc *sc = xsc;
2046 int s;
2047
2048 s = splnet();
2049 et_txeof(sc);
2050 splx(s);
2051 }
2052
2053 void
2054 et_tick(void *xsc)
2055 {
2056 struct et_softc *sc = xsc;
2057 int s;
2058
2059 s = splnet();
2060 mii_tick(&sc->sc_miibus);
2061 callout_schedule(&sc->sc_tick, hz);
2062 splx(s);
2063 }
2064
2065 int
2066 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2067 {
2068 return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2069 }
2070
2071 int
2072 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2073 {
2074 return et_newbuf(rbd, buf_idx, init, MHLEN);
2075 }
2076
2077 int
2078 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2079 {
2080 struct et_softc *sc = rbd->rbd_softc;
2081 struct et_rxdesc_ring *rx_ring;
2082 struct et_rxdesc *desc;
2083 struct et_rxbuf *rb;
2084 struct mbuf *m;
2085 bus_dmamap_t dmap;
2086 int error, len;
2087
2088 KASSERT(buf_idx < ET_RX_NDESC);
2089 rb = &rbd->rbd_buf[buf_idx];
2090
2091 if (len0 >= MINCLSIZE) {
2092 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2093 if (m == NULL)
2094 return (ENOBUFS);
2095 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2096 if ((m->m_flags & M_EXT) == 0) {
2097 m_freem(m);
2098 return (ENOBUFS);
2099 }
2100 len = MCLBYTES;
2101 } else {
2102 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2103 len = MHLEN;
2104 }
2105
2106 if (m == NULL) {
2107 error = ENOBUFS;
2108
2109 /* XXX for debug */
2110 aprint_error_dev(sc->sc_dev, "M_CLGET failed, size %d\n", len0);
2111 if (init) {
2112 return error;
2113 } else {
2114 goto back;
2115 }
2116 }
2117 m->m_len = m->m_pkthdr.len = len;
2118
2119 /*
2120 * Try load RX mbuf into temporary DMA tag
2121 */
2122 error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
2123 init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2124 if (error) {
2125 m_freem(m);
2126
2127 /* XXX for debug */
2128 aprint_error_dev(sc->sc_dev, "can't load RX mbuf\n");
2129 if (init) {
2130 return error;
2131 } else {
2132 goto back;
2133 }
2134 }
2135
2136 if (!init)
2137 bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
2138 rb->rb_mbuf = m;
2139
2140 /*
2141 * Swap RX buf's DMA map with the loaded temporary one
2142 */
2143 dmap = rb->rb_dmap;
2144 rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2145 rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
2146 sc->sc_mbuf_tmp_dmap = dmap;
2147
2148 error = 0;
2149 back:
2150 rx_ring = rbd->rbd_ring;
2151 desc = &rx_ring->rr_desc[buf_idx];
2152
2153 desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2154 desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2155 desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2156
2157 bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
2158 rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2159 return error;
2160 }
2161