if_et.c revision 1.32 1 /* $NetBSD: if_et.c,v 1.32 2020/03/01 15:15:49 thorpej Exp $ */
2 /* $OpenBSD: if_et.c,v 1.12 2008/07/11 09:29:02 kevlo $ */
3 /*
4 * Copyright (c) 2007 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Sepherosa Ziehau <sepherosa (at) gmail.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: if_et.c,v 1.32 2020/03/01 15:15:49 thorpej Exp $");
41
42 #include "opt_inet.h"
43 #include "vlan.h"
44
45 #include <sys/param.h>
46 #include <sys/endian.h>
47 #include <sys/systm.h>
48 #include <sys/types.h>
49 #include <sys/sockio.h>
50 #include <sys/mbuf.h>
51 #include <sys/queue.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/socket.h>
56
57 #include <sys/bus.h>
58
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 #include <net/if_arp.h>
64
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72
73 #include <net/bpf.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81
82 #include <dev/pci/if_etreg.h>
83
84 static int et_match(device_t, cfdata_t, void *);
85 static void et_attach(device_t, device_t, void *);
86 static int et_detach(device_t, int);
87
88 static int et_miibus_readreg(device_t, int, int, uint16_t *);
89 static int et_miibus_writereg(device_t, int, int, uint16_t);
90 static void et_miibus_statchg(struct ifnet *);
91
92 static int et_init(struct ifnet *);
93 static int et_ioctl(struct ifnet *, u_long, void *);
94 static void et_start(struct ifnet *);
95 static void et_watchdog(struct ifnet *);
96 static void et_ifmedia_sts(struct ifnet *, struct ifmediareq *);
97
98 static int et_intr(void *);
99 static void et_enable_intrs(struct et_softc *, uint32_t);
100 static void et_disable_intrs(struct et_softc *);
101 static void et_rxeof(struct et_softc *);
102 static void et_txeof(struct et_softc *);
103 static void et_txtick(void *);
104
105 static int et_dma_alloc(struct et_softc *);
106 static void et_dma_free(struct et_softc *);
107 static int et_dma_mem_create(struct et_softc *, bus_size_t,
108 void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
109 static void et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
110 static int et_dma_mbuf_create(struct et_softc *);
111 static void et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
112
113 static int et_init_tx_ring(struct et_softc *);
114 static int et_init_rx_ring(struct et_softc *);
115 static void et_free_tx_ring(struct et_softc *);
116 static void et_free_rx_ring(struct et_softc *);
117 static int et_encap(struct et_softc *, struct mbuf **);
118 static int et_newbuf(struct et_rxbuf_data *, int, int, int);
119 static int et_newbuf_cluster(struct et_rxbuf_data *, int, int);
120 static int et_newbuf_hdr(struct et_rxbuf_data *, int, int);
121
122 static void et_stop(struct et_softc *);
123 static int et_chip_init(struct et_softc *);
124 static void et_chip_attach(struct et_softc *);
125 static void et_init_mac(struct et_softc *);
126 static void et_init_rxmac(struct et_softc *);
127 static void et_init_txmac(struct et_softc *);
128 static int et_init_rxdma(struct et_softc *);
129 static int et_init_txdma(struct et_softc *);
130 static int et_start_rxdma(struct et_softc *);
131 static int et_start_txdma(struct et_softc *);
132 static int et_stop_rxdma(struct et_softc *);
133 static int et_stop_txdma(struct et_softc *);
134 static void et_reset(struct et_softc *);
135 static int et_bus_config(struct et_softc *);
136 static void et_get_eaddr(struct et_softc *, uint8_t[]);
137 static void et_setmulti(struct et_softc *);
138 static void et_tick(void *);
139
140 static int et_rx_intr_npkts = 32;
141 static int et_rx_intr_delay = 20; /* x10 usec */
142 static int et_tx_intr_nsegs = 128;
143 static uint32_t et_timer = 1000 * 1000 * 1000; /* nanosec */
144
145 struct et_bsize {
146 int bufsize;
147 et_newbuf_t newbuf;
148 };
149
150 static const struct et_bsize et_bufsize[ET_RX_NRING] = {
151 { .bufsize = 0, .newbuf = et_newbuf_hdr },
152 { .bufsize = 0, .newbuf = et_newbuf_cluster },
153 };
154
155 static const struct et_product {
156 pci_vendor_id_t vendor;
157 pci_product_id_t product;
158 } et_devices[] = {
159 { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310 },
160 { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1301 }
161 };
162
163 CFATTACH_DECL_NEW(et, sizeof(struct et_softc), et_match, et_attach, et_detach,
164 NULL);
165
166 static int
167 et_match(device_t dev, cfdata_t match, void *aux)
168 {
169 struct pci_attach_args *pa = aux;
170 const struct et_product *ep;
171 int i;
172
173 for (i = 0; i < __arraycount(et_devices); i++) {
174 ep = &et_devices[i];
175 if (PCI_VENDOR(pa->pa_id) == ep->vendor &&
176 PCI_PRODUCT(pa->pa_id) == ep->product)
177 return 1;
178 }
179 return 0;
180 }
181
182 static void
183 et_attach(device_t parent, device_t self, void *aux)
184 {
185 struct et_softc *sc = device_private(self);
186 struct pci_attach_args *pa = aux;
187 pci_chipset_tag_t pc = pa->pa_pc;
188 pci_intr_handle_t ih;
189 const char *intrstr;
190 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
191 struct mii_data * const mii = &sc->sc_miibus;
192 uint32_t pmcfg;
193 pcireg_t memtype;
194 int error;
195 char intrbuf[PCI_INTRSTR_LEN];
196
197 pci_aprint_devinfo(pa, "Ethernet controller");
198
199 sc->sc_dev = self;
200
201 /*
202 * Initialize tunables
203 */
204 sc->sc_rx_intr_npkts = et_rx_intr_npkts;
205 sc->sc_rx_intr_delay = et_rx_intr_delay;
206 sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
207 sc->sc_timer = et_timer;
208
209 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
210 if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
211 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
212 aprint_error_dev(self, "could not map mem space\n");
213 return;
214 }
215
216 if (pci_intr_map(pa, &ih) != 0) {
217 aprint_error_dev(self, "could not map interrupt\n");
218 goto fail;
219 }
220
221 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
222 sc->sc_irq_handle = pci_intr_establish_xname(pc, ih, IPL_NET, et_intr,
223 sc, device_xname(self));
224 if (sc->sc_irq_handle == NULL) {
225 aprint_error_dev(self, "could not establish interrupt");
226 if (intrstr != NULL)
227 aprint_error(" at %s", intrstr);
228 aprint_error("\n");
229 goto fail;
230 }
231 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
232
233 sc->sc_pct = pa->pa_pc;
234 sc->sc_pcitag = pa->pa_tag;
235
236 if (pci_dma64_available(pa))
237 sc->sc_dmat = pa->pa_dmat64;
238 else
239 sc->sc_dmat = pa->pa_dmat;
240
241 if (pa->pa_id == PCI_PRODUCT_LUCENT_ET1301)
242 sc->sc_flags |= ET_FLAG_FASTETHER;
243
244 error = et_bus_config(sc);
245 if (error)
246 goto fail;
247
248 et_get_eaddr(sc, sc->sc_enaddr);
249
250 aprint_normal_dev(self, "Ethernet address %s\n",
251 ether_sprintf(sc->sc_enaddr));
252
253 /* Take PHY out of COMA and enable clocks. */
254 pmcfg = ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE;
255 if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0)
256 pmcfg |= EM_PM_GIGEPHY_ENB;
257 CSR_WRITE_4(sc, ET_PM, pmcfg);
258
259 et_reset(sc);
260
261 et_disable_intrs(sc);
262
263 error = et_dma_alloc(sc);
264 if (error)
265 goto fail;
266
267 ifp->if_softc = sc;
268 ifp->if_mtu = ETHERMTU;
269 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
270 ifp->if_init = et_init;
271 ifp->if_ioctl = et_ioctl;
272 ifp->if_start = et_start;
273 ifp->if_watchdog = et_watchdog;
274 IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
275 IFQ_SET_READY(&ifp->if_snd);
276 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
277
278 et_chip_attach(sc);
279
280 mii->mii_ifp = ifp;
281 mii->mii_readreg = et_miibus_readreg;
282 mii->mii_writereg = et_miibus_writereg;
283 mii->mii_statchg = et_miibus_statchg;
284
285 sc->sc_ethercom.ec_mii = mii;
286 ifmedia_init(&mii->mii_media, 0, ether_mediachange,
287 et_ifmedia_sts);
288 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
289 if (LIST_FIRST(&mii->mii_phys) == NULL) {
290 aprint_error_dev(self, "no PHY found!\n");
291 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
292 0, NULL);
293 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
294 } else
295 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
296
297 if_attach(ifp);
298 if_deferred_start_init(ifp, NULL);
299 ether_ifattach(ifp, sc->sc_enaddr);
300
301 callout_init(&sc->sc_tick, 0);
302 callout_setfunc(&sc->sc_tick, et_tick, sc);
303 callout_init(&sc->sc_txtick, 0);
304 callout_setfunc(&sc->sc_txtick, et_txtick, sc);
305
306 if (pmf_device_register(self, NULL, NULL))
307 pmf_class_network_register(self, ifp);
308 else
309 aprint_error_dev(self, "couldn't establish power handler\n");
310
311 return;
312
313 fail:
314 et_dma_free(sc);
315 if (sc->sc_irq_handle != NULL) {
316 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
317 sc->sc_irq_handle = NULL;
318 }
319 if (sc->sc_mem_size) {
320 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
321 sc->sc_mem_size = 0;
322 }
323 }
324
325 static int
326 et_detach(device_t self, int flags)
327 {
328 struct et_softc *sc = device_private(self);
329 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
330 int s;
331
332 pmf_device_deregister(self);
333 s = splnet();
334 et_stop(sc);
335 splx(s);
336
337 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
338
339 ether_ifdetach(ifp);
340 if_detach(ifp);
341 et_dma_free(sc);
342
343 /* Delete all remaining media. */
344 ifmedia_fini(&sc->sc_miibus.mii_media);
345
346 if (sc->sc_irq_handle != NULL) {
347 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
348 sc->sc_irq_handle = NULL;
349 }
350
351 if (sc->sc_mem_size) {
352 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
353 sc->sc_mem_size = 0;
354 }
355
356 return 0;
357 }
358
359 #if 0 /* XXX XXX XXX UNUSED */
360 static int
361 et_shutdown(device_t self)
362 {
363 struct et_softc *sc = device_private(self);
364 int s;
365
366 s = splnet();
367 et_stop(sc);
368 splx(s);
369
370 return 0;
371 }
372 #endif
373
374 static int
375 et_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
376 {
377 struct et_softc *sc = device_private(dev);
378 uint32_t data;
379 int i, ret;
380
381 /* Stop any pending operations */
382 CSR_WRITE_4(sc, ET_MII_CMD, 0);
383
384 data = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
385 __SHIFTIN(reg, ET_MII_ADDR_REG);
386 CSR_WRITE_4(sc, ET_MII_ADDR, data);
387
388 /* Start reading */
389 CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
390
391 #define NRETRY 50
392
393 for (i = 0; i < NRETRY; ++i) {
394 data = CSR_READ_4(sc, ET_MII_IND);
395 if ((data & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
396 break;
397 DELAY(50);
398 }
399 if (i == NRETRY) {
400 aprint_error_dev(sc->sc_dev, "read phy %d, reg %d timed out\n",
401 phy, reg);
402 ret = ETIMEDOUT;
403 goto back;
404 }
405
406 #undef NRETRY
407
408 data = CSR_READ_4(sc, ET_MII_STAT);
409 *val = __SHIFTOUT(data, ET_MII_STAT_VALUE);
410 ret = 0;
411
412 back:
413 /* Make sure that the current operation is stopped */
414 CSR_WRITE_4(sc, ET_MII_CMD, 0);
415 return ret;
416 }
417
418 static int
419 et_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
420 {
421 struct et_softc *sc = device_private(dev);
422 uint32_t data;
423 uint16_t tmp;
424 int rv = 0;
425 int i;
426
427 /* Stop any pending operations */
428 CSR_WRITE_4(sc, ET_MII_CMD, 0);
429
430 data = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
431 __SHIFTIN(reg, ET_MII_ADDR_REG);
432 CSR_WRITE_4(sc, ET_MII_ADDR, data);
433
434 /* Start writing */
435 CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val, ET_MII_CTRL_VALUE));
436
437 #define NRETRY 100
438
439 for (i = 0; i < NRETRY; ++i) {
440 data = CSR_READ_4(sc, ET_MII_IND);
441 if ((data & ET_MII_IND_BUSY) == 0)
442 break;
443 DELAY(50);
444 }
445 if (i == NRETRY) {
446 aprint_error_dev(sc->sc_dev, "write phy %d, reg %d timed out\n",
447 phy, reg);
448 et_miibus_readreg(dev, phy, reg, &tmp);
449 rv = ETIMEDOUT;
450 }
451
452 #undef NRETRY
453
454 /* Make sure that the current operation is stopped */
455 CSR_WRITE_4(sc, ET_MII_CMD, 0);
456
457 return rv;
458 }
459
460 static void
461 et_miibus_statchg(struct ifnet *ifp)
462 {
463 struct et_softc *sc = ifp->if_softc;
464 struct mii_data *mii = &sc->sc_miibus;
465 uint32_t cfg1, cfg2, ctrl;
466 int i;
467
468 sc->sc_flags &= ~ET_FLAG_LINK;
469 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
470 (IFM_ACTIVE | IFM_AVALID)) {
471 switch (IFM_SUBTYPE(mii->mii_media_active)) {
472 case IFM_10_T:
473 case IFM_100_TX:
474 sc->sc_flags |= ET_FLAG_LINK;
475 break;
476 case IFM_1000_T:
477 if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0)
478 sc->sc_flags |= ET_FLAG_LINK;
479 break;
480 }
481 }
482
483 /* XXX Stop TX/RX MAC? */
484 if ((sc->sc_flags & ET_FLAG_LINK) == 0)
485 return;
486
487 /* Program MACs with resolved speed/duplex/flow-control. */
488 ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
489 ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
490 cfg1 = CSR_READ_4(sc, ET_MAC_CFG1);
491 cfg1 &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
492 ET_MAC_CFG1_LOOPBACK);
493 cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
494 cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
495 ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
496 cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
497 __SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
498
499
500 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
501 cfg2 |= ET_MAC_CFG2_MODE_GMII;
502 else {
503 cfg2 |= ET_MAC_CFG2_MODE_MII;
504 ctrl |= ET_MAC_CTRL_MODE_MII;
505 }
506
507 if (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) {
508 cfg2 |= ET_MAC_CFG2_FDX;
509 /*
510 * Controller lacks automatic TX pause frame
511 * generation so it should be handled by driver.
512 * Even though driver can send pause frame with
513 * arbitrary pause time, controller does not
514 * provide a way that tells how many free RX
515 * buffers are available in controller. This
516 * limitation makes it hard to generate XON frame
517 * in time on driver side so don't enable TX flow
518 * control.
519 */
520 #ifdef notyet
521 if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE)
522 cfg1 |= ET_MAC_CFG1_TXFLOW;
523 #endif
524 if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE)
525 cfg1 |= ET_MAC_CFG1_RXFLOW;
526 } else
527 ctrl |= ET_MAC_CTRL_GHDX;
528
529 CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
530 CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
531 cfg1 |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
532 CSR_WRITE_4(sc, ET_MAC_CFG1, cfg1);
533
534 #define NRETRY 100
535
536 for (i = 0; i < NRETRY; ++i) {
537 cfg1 = CSR_READ_4(sc, ET_MAC_CFG1);
538 if ((cfg1 & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
539 (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
540 break;
541
542 DELAY(10);
543 }
544 /* Note: Timeout always happens when cable is not plugged in. */
545
546 sc->sc_flags |= ET_FLAG_TXRX_ENABLED;
547
548 #undef NRETRY
549 }
550
551 static void
552 et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
553 {
554 struct et_softc *sc;
555 struct mii_data *mii;
556
557 sc = ifp->if_softc;
558 mii = &sc->sc_miibus;
559 mii_pollstat(mii);
560 ifmr->ifm_active = mii->mii_media_active;
561 ifmr->ifm_status = mii->mii_media_status;
562 }
563
564 static void
565 et_stop(struct et_softc *sc)
566 {
567 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
568
569 callout_stop(&sc->sc_tick);
570 callout_stop(&sc->sc_txtick);
571
572 et_stop_rxdma(sc);
573 et_stop_txdma(sc);
574
575 et_disable_intrs(sc);
576
577 et_free_tx_ring(sc);
578 et_free_rx_ring(sc);
579
580 et_reset(sc);
581
582 sc->sc_tx = 0;
583 sc->sc_tx_intr = 0;
584 sc->sc_flags &= ~ET_FLAG_TXRX_ENABLED;
585
586 ifp->if_timer = 0;
587 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
588 }
589
590 static int
591 et_bus_config(struct et_softc *sc)
592 {
593 uint32_t val; //, max_plsz;
594 // uint16_t ack_latency, replay_timer;
595
596 /*
597 * Test whether EEPROM is valid
598 * NOTE: Read twice to get the correct value
599 */
600 pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
601 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
602
603 if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
604 aprint_error_dev(sc->sc_dev, "EEPROM status error 0x%02x\n", val);
605 return ENXIO;
606 }
607
608 /* TODO: LED */
609 #if 0
610 /*
611 * Configure ACK latency and replay timer according to
612 * max playload size
613 */
614 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
615 max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
616
617 switch (max_plsz) {
618 case ET_PCIV_DEVICE_CAPS_PLSZ_128:
619 ack_latency = ET_PCIV_ACK_LATENCY_128;
620 replay_timer = ET_PCIV_REPLAY_TIMER_128;
621 break;
622
623 case ET_PCIV_DEVICE_CAPS_PLSZ_256:
624 ack_latency = ET_PCIV_ACK_LATENCY_256;
625 replay_timer = ET_PCIV_REPLAY_TIMER_256;
626 break;
627
628 default:
629 ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
630 ET_PCIR_ACK_LATENCY) >> 16;
631 replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
632 ET_PCIR_REPLAY_TIMER) >> 16;
633 aprint_normal_dev(sc->sc_dev, "ack latency %u, replay timer %u\n",
634 ack_latency, replay_timer);
635 break;
636 }
637 if (ack_latency != 0) {
638 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
639 ET_PCIR_ACK_LATENCY, ack_latency << 16);
640 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
641 ET_PCIR_REPLAY_TIMER, replay_timer << 16);
642 }
643
644 /*
645 * Set L0s and L1 latency timer to 2us
646 */
647 val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
648 pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
649 val << 24);
650
651 /*
652 * Set max read request size to 2048 bytes
653 */
654 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
655 ET_PCIR_DEVICE_CTRL) >> 16;
656 val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
657 val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
658 pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
659 val << 16);
660 #endif
661
662 return 0;
663 }
664
665 static void
666 et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
667 {
668 uint32_t r;
669
670 r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
671 eaddr[0] = r & 0xff;
672 eaddr[1] = (r >> 8) & 0xff;
673 eaddr[2] = (r >> 16) & 0xff;
674 eaddr[3] = (r >> 24) & 0xff;
675 r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
676 eaddr[4] = r & 0xff;
677 eaddr[5] = (r >> 8) & 0xff;
678 }
679
680 static void
681 et_reset(struct et_softc *sc)
682 {
683
684 CSR_WRITE_4(sc, ET_MAC_CFG1,
685 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
686 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
687 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
688
689 CSR_WRITE_4(sc, ET_SWRST,
690 ET_SWRST_TXDMA | ET_SWRST_RXDMA |
691 ET_SWRST_TXMAC | ET_SWRST_RXMAC |
692 ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
693
694 CSR_WRITE_4(sc, ET_MAC_CFG1,
695 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
696 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
697 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
698 }
699
700 static void
701 et_disable_intrs(struct et_softc *sc)
702 {
703 CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
704 }
705
706 static void
707 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
708 {
709 CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
710 }
711
712 static int
713 et_dma_alloc(struct et_softc *sc)
714 {
715 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
716 struct et_txstatus_data *txsd = &sc->sc_tx_status;
717 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
718 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
719 int i, error;
720
721 /*
722 * Create TX ring DMA stuffs
723 */
724 error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
725 (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
726 &tx_ring->tr_seg);
727 if (error) {
728 aprint_error_dev(sc->sc_dev, "can't create TX ring DMA stuffs\n");
729 return error;
730 }
731
732 /*
733 * Create TX status DMA stuffs
734 */
735 error = et_dma_mem_create(sc, sizeof(uint32_t),
736 (void **)&txsd->txsd_status,
737 &txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
738 if (error) {
739 aprint_error_dev(sc->sc_dev, "can't create TX status DMA stuffs\n");
740 return error;
741 }
742
743 /*
744 * Create DMA stuffs for RX rings
745 */
746 for (i = 0; i < ET_RX_NRING; ++i) {
747 static const uint32_t rx_ring_posreg[ET_RX_NRING] =
748 { ET_RX_RING0_POS, ET_RX_RING1_POS };
749
750 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
751
752 error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
753 (void **)&rx_ring->rr_desc,
754 &rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
755 if (error) {
756 aprint_error_dev(sc->sc_dev, "can't create DMA stuffs for "
757 "the %d RX ring\n", i);
758 return error;
759 }
760 rx_ring->rr_posreg = rx_ring_posreg[i];
761 }
762
763 /*
764 * Create RX stat ring DMA stuffs
765 */
766 error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
767 (void **)&rxst_ring->rsr_stat,
768 &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
769 if (error) {
770 aprint_error_dev(sc->sc_dev, "can't create RX stat ring DMA stuffs\n");
771 return error;
772 }
773
774 /*
775 * Create RX status DMA stuffs
776 */
777 error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
778 (void **)&rxsd->rxsd_status,
779 &rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
780 if (error) {
781 aprint_error_dev(sc->sc_dev, "can't create RX status DMA stuffs\n");
782 return error;
783 }
784
785 /*
786 * Create mbuf DMA stuffs
787 */
788 error = et_dma_mbuf_create(sc);
789 if (error)
790 return error;
791
792 return 0;
793 }
794
795 static void
796 et_dma_free(struct et_softc *sc)
797 {
798 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
799 struct et_txstatus_data *txsd = &sc->sc_tx_status;
800 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
801 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
802 int i, rx_done[ET_RX_NRING];
803
804 /*
805 * Destroy TX ring DMA stuffs
806 */
807 et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
808
809 /*
810 * Destroy TX status DMA stuffs
811 */
812 et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
813
814 /*
815 * Destroy DMA stuffs for RX rings
816 */
817 for (i = 0; i < ET_RX_NRING; ++i) {
818 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
819
820 et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
821 }
822
823 /*
824 * Destroy RX stat ring DMA stuffs
825 */
826 et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
827
828 /*
829 * Destroy RX status DMA stuffs
830 */
831 et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
832
833 /*
834 * Destroy mbuf DMA stuffs
835 */
836 for (i = 0; i < ET_RX_NRING; ++i)
837 rx_done[i] = ET_RX_NDESC;
838 et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
839 }
840
841 static int
842 et_dma_mbuf_create(struct et_softc *sc)
843 {
844 struct et_txbuf_data *tbd = &sc->sc_tx_data;
845 int i, error, rx_done[ET_RX_NRING];
846
847 /*
848 * Create spare DMA map for RX mbufs
849 */
850 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
851 BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
852 if (error) {
853 aprint_error_dev(sc->sc_dev, "can't create spare mbuf DMA map\n");
854 return error;
855 }
856
857 /*
858 * Create DMA maps for RX mbufs
859 */
860 bzero(rx_done, sizeof(rx_done));
861 for (i = 0; i < ET_RX_NRING; ++i) {
862 struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
863 int j;
864
865 for (j = 0; j < ET_RX_NDESC; ++j) {
866 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
867 MCLBYTES, 0, BUS_DMA_NOWAIT,
868 &rbd->rbd_buf[j].rb_dmap);
869 if (error) {
870 aprint_error_dev(sc->sc_dev, "can't create %d RX mbuf "
871 "for %d RX ring\n", j, i);
872 rx_done[i] = j;
873 et_dma_mbuf_destroy(sc, 0, rx_done);
874 return error;
875 }
876 }
877 rx_done[i] = ET_RX_NDESC;
878
879 rbd->rbd_softc = sc;
880 rbd->rbd_ring = &sc->sc_rx_ring[i];
881 }
882
883 /*
884 * Create DMA maps for TX mbufs
885 */
886 for (i = 0; i < ET_TX_NDESC; ++i) {
887 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
888 0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
889 if (error) {
890 aprint_error_dev(sc->sc_dev, "can't create %d TX mbuf "
891 "DMA map\n", i);
892 et_dma_mbuf_destroy(sc, i, rx_done);
893 return error;
894 }
895 }
896
897 return 0;
898 }
899
900 static void
901 et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
902 {
903 struct et_txbuf_data *tbd = &sc->sc_tx_data;
904 int i;
905
906 /*
907 * Destroy DMA maps for RX mbufs
908 */
909 for (i = 0; i < ET_RX_NRING; ++i) {
910 struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
911 int j;
912
913 for (j = 0; j < rx_done[i]; ++j) {
914 struct et_rxbuf *rb = &rbd->rbd_buf[j];
915
916 KASSERTMSG(rb->rb_mbuf == NULL,
917 "RX mbuf in %d RX ring is not freed yet\n", i);
918 bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
919 }
920 }
921
922 /*
923 * Destroy DMA maps for TX mbufs
924 */
925 for (i = 0; i < tx_done; ++i) {
926 struct et_txbuf *tb = &tbd->tbd_buf[i];
927
928 KASSERTMSG(tb->tb_mbuf == NULL, "TX mbuf is not freed yet\n");
929 bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
930 }
931
932 /*
933 * Destroy spare mbuf DMA map
934 */
935 bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
936 }
937
938 static int
939 et_dma_mem_create(struct et_softc *sc, bus_size_t size,
940 void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
941 {
942 int error, nsegs;
943
944 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
945 dmap);
946 if (error) {
947 aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
948 return error;
949 }
950
951 error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
952 1, &nsegs, BUS_DMA_WAITOK);
953 if (error) {
954 aprint_error_dev(sc->sc_dev, "can't allocate DMA mem\n");
955 return error;
956 }
957
958 error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
959 size, (void **)addr, BUS_DMA_NOWAIT);
960 if (error) {
961 aprint_error_dev(sc->sc_dev, "can't map DMA mem\n");
962 return (error);
963 }
964
965 error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
966 BUS_DMA_WAITOK);
967 if (error) {
968 aprint_error_dev(sc->sc_dev, "can't load DMA mem\n");
969 bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
970 return error;
971 }
972
973 memset(*addr, 0, size);
974
975 *paddr = (*dmap)->dm_segs[0].ds_addr;
976
977 return 0;
978 }
979
980 static void
981 et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
982 {
983 bus_dmamap_unload(sc->sc_dmat, dmap);
984 bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
985 }
986
987 static void
988 et_chip_attach(struct et_softc *sc)
989 {
990 uint32_t val;
991
992 /*
993 * Perform minimal initialization
994 */
995
996 /* Disable loopback */
997 CSR_WRITE_4(sc, ET_LOOPBACK, 0);
998
999 /* Reset MAC */
1000 CSR_WRITE_4(sc, ET_MAC_CFG1,
1001 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1002 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1003 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1004
1005 /*
1006 * Setup half duplex mode
1007 */
1008 val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1009 __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1010 __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1011 ET_MAC_HDX_EXC_DEFER;
1012 CSR_WRITE_4(sc, ET_MAC_HDX, val);
1013
1014 /* Clear MAC control */
1015 CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1016
1017 /* Reset MII */
1018 CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1019
1020 /* Bring MAC out of reset state */
1021 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1022
1023 /* Enable memory controllers */
1024 CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1025 }
1026
1027 static int
1028 et_intr(void *xsc)
1029 {
1030 struct et_softc *sc = xsc;
1031 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1032 uint32_t intrs;
1033
1034 if ((ifp->if_flags & IFF_RUNNING) == 0)
1035 return (0);
1036
1037 intrs = CSR_READ_4(sc, ET_INTR_STATUS);
1038 if (intrs == 0 || intrs == 0xffffffff)
1039 return (0);
1040
1041 et_disable_intrs(sc);
1042 intrs &= ET_INTRS;
1043 if (intrs == 0) /* Not interested */
1044 goto back;
1045
1046 if (intrs & ET_INTR_RXEOF)
1047 et_rxeof(sc);
1048 if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
1049 et_txeof(sc);
1050 if (intrs & ET_INTR_TIMER)
1051 CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1052 back:
1053 et_enable_intrs(sc, ET_INTRS);
1054
1055 return (1);
1056 }
1057
1058 static int
1059 et_init(struct ifnet *ifp)
1060 {
1061 struct et_softc *sc = ifp->if_softc;
1062 int error, i, s;
1063
1064 if (ifp->if_flags & IFF_RUNNING)
1065 return 0;
1066
1067 s = splnet();
1068
1069 et_stop(sc);
1070 et_reset(sc);
1071
1072 for (i = 0; i < ET_RX_NRING; ++i) {
1073 sc->sc_rx_data[i].rbd_bufsize = et_bufsize[i].bufsize;
1074 sc->sc_rx_data[i].rbd_newbuf = et_bufsize[i].newbuf;
1075 }
1076
1077 error = et_init_tx_ring(sc);
1078 if (error)
1079 goto back;
1080
1081 error = et_init_rx_ring(sc);
1082 if (error)
1083 goto back;
1084
1085 error = et_chip_init(sc);
1086 if (error)
1087 goto back;
1088
1089 error = et_start_rxdma(sc);
1090 if (error)
1091 goto back;
1092
1093 error = et_start_txdma(sc);
1094 if (error)
1095 goto back;
1096
1097 /* Enable interrupts. */
1098 et_enable_intrs(sc, ET_INTRS);
1099
1100 callout_schedule(&sc->sc_tick, hz);
1101
1102 CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1103
1104 ifp->if_flags |= IFF_RUNNING;
1105 ifp->if_flags &= ~IFF_OACTIVE;
1106
1107 sc->sc_flags &= ~ET_FLAG_LINK;
1108 ether_mediachange(ifp);
1109 back:
1110 if (error)
1111 et_stop(sc);
1112
1113 splx(s);
1114
1115 return (0);
1116 }
1117
1118 static int
1119 et_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1120 {
1121 struct et_softc *sc = ifp->if_softc;
1122 int s, error = 0;
1123
1124 s = splnet();
1125
1126 switch (cmd) {
1127 case SIOCSIFFLAGS:
1128 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1129 break;
1130 if (ifp->if_flags & IFF_UP) {
1131 /*
1132 * If only the PROMISC or ALLMULTI flag changes, then
1133 * don't do a full re-init of the chip, just update
1134 * the Rx filter.
1135 */
1136 if ((ifp->if_flags & IFF_RUNNING) &&
1137 ((ifp->if_flags ^ sc->sc_if_flags) &
1138 (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1139 et_setmulti(sc);
1140 } else {
1141 if (!(ifp->if_flags & IFF_RUNNING))
1142 et_init(ifp);
1143 }
1144 } else {
1145 if (ifp->if_flags & IFF_RUNNING)
1146 et_stop(sc);
1147 }
1148 sc->sc_if_flags = ifp->if_flags;
1149 break;
1150 default:
1151 error = ether_ioctl(ifp, cmd, data);
1152 if (error == ENETRESET) {
1153 if (ifp->if_flags & IFF_RUNNING)
1154 et_setmulti(sc);
1155 error = 0;
1156 }
1157 break;
1158 }
1159
1160 splx(s);
1161
1162 return error;
1163 }
1164
1165 static void
1166 et_start(struct ifnet *ifp)
1167 {
1168 struct et_softc *sc = ifp->if_softc;
1169 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1170 int trans;
1171 struct mbuf *m;
1172
1173 if (((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) ||
1174 ((sc->sc_flags & (ET_FLAG_LINK | ET_FLAG_TXRX_ENABLED)) !=
1175 (ET_FLAG_LINK | ET_FLAG_TXRX_ENABLED)))
1176 return;
1177
1178 trans = 0;
1179 for (;;) {
1180 IFQ_DEQUEUE(&ifp->if_snd, m);
1181 if (m == NULL)
1182 break;
1183
1184 if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1185 ifp->if_flags |= IFF_OACTIVE;
1186 break;
1187 }
1188
1189 if (et_encap(sc, &m)) {
1190 if_statinc(ifp, if_oerrors);
1191 ifp->if_flags |= IFF_OACTIVE;
1192 break;
1193 }
1194
1195 trans = 1;
1196
1197 bpf_mtap(ifp, m, BPF_D_OUT);
1198 }
1199
1200 if (trans) {
1201 callout_schedule(&sc->sc_txtick, hz);
1202 ifp->if_timer = 5;
1203 }
1204 }
1205
1206 static void
1207 et_watchdog(struct ifnet *ifp)
1208 {
1209 struct et_softc *sc = ifp->if_softc;
1210 aprint_error_dev(sc->sc_dev, "watchdog timed out\n");
1211
1212 ifp->if_flags &= ~IFF_RUNNING;
1213 et_init(ifp);
1214 et_start(ifp);
1215 }
1216
1217 static int
1218 et_stop_rxdma(struct et_softc *sc)
1219 {
1220
1221 CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1222 ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1223
1224 DELAY(5);
1225 if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1226 aprint_error_dev(sc->sc_dev, "can't stop RX DMA engine\n");
1227 return ETIMEDOUT;
1228 }
1229 return 0;
1230 }
1231
1232 static int
1233 et_stop_txdma(struct et_softc *sc)
1234 {
1235
1236 CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1237 ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1238 return 0;
1239 }
1240
1241 static void
1242 et_free_tx_ring(struct et_softc *sc)
1243 {
1244 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1245 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1246 int i;
1247
1248 for (i = 0; i < ET_TX_NDESC; ++i) {
1249 struct et_txbuf *tb = &tbd->tbd_buf[i];
1250
1251 if (tb->tb_mbuf != NULL) {
1252 bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1253 m_freem(tb->tb_mbuf);
1254 tb->tb_mbuf = NULL;
1255 }
1256 }
1257
1258 bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1259 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1260 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1261 }
1262
1263 static void
1264 et_free_rx_ring(struct et_softc *sc)
1265 {
1266 int n;
1267
1268 for (n = 0; n < ET_RX_NRING; ++n) {
1269 struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1270 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1271 int i;
1272
1273 for (i = 0; i < ET_RX_NDESC; ++i) {
1274 struct et_rxbuf *rb = &rbd->rbd_buf[i];
1275
1276 if (rb->rb_mbuf != NULL) {
1277 bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
1278 m_freem(rb->rb_mbuf);
1279 rb->rb_mbuf = NULL;
1280 }
1281 }
1282
1283 bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1284 bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
1285 rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1286 }
1287 }
1288
1289 static void
1290 et_setmulti(struct et_softc *sc)
1291 {
1292 struct ethercom *ec = &sc->sc_ethercom;
1293 struct ifnet *ifp = &ec->ec_if;
1294 uint32_t hash[4] = { 0, 0, 0, 0 };
1295 uint32_t rxmac_ctrl, pktfilt;
1296 struct ether_multi *enm;
1297 struct ether_multistep step;
1298 int i, count;
1299
1300 pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1301 rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1302
1303 pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1304 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1305 rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1306 goto back;
1307 }
1308
1309 count = 0;
1310 ETHER_LOCK(ec);
1311 ETHER_FIRST_MULTI(step, ec, enm);
1312 while (enm != NULL) {
1313 uint32_t *hp, h;
1314
1315 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1316 h = (h & 0x3f800000) >> 23;
1317
1318 hp = &hash[0];
1319 if (h >= 32 && h < 64) {
1320 h -= 32;
1321 hp = &hash[1];
1322 } else if (h >= 64 && h < 96) {
1323 h -= 64;
1324 hp = &hash[2];
1325 } else if (h >= 96) {
1326 h -= 96;
1327 hp = &hash[3];
1328 }
1329 *hp |= (1 << h);
1330
1331 ++count;
1332 ETHER_NEXT_MULTI(step, enm);
1333 }
1334 ETHER_UNLOCK(ec);
1335
1336 for (i = 0; i < 4; ++i)
1337 CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1338
1339 if (count > 0)
1340 pktfilt |= ET_PKTFILT_MCAST;
1341 rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1342 back:
1343 CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1344 CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1345 }
1346
1347 static int
1348 et_chip_init(struct et_softc *sc)
1349 {
1350 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1351 uint32_t rxq_end;
1352 int error;
1353
1354 /*
1355 * Split internal memory between TX and RX according to MTU
1356 */
1357 if (ifp->if_mtu < 2048)
1358 rxq_end = 0x2bc;
1359 else if (ifp->if_mtu < 8192)
1360 rxq_end = 0x1ff;
1361 else
1362 rxq_end = 0x1b3;
1363 CSR_WRITE_4(sc, ET_RXQ_START, 0);
1364 CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1365 CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1366 CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1367
1368 /* No loopback */
1369 CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1370
1371 /* Clear MSI configure */
1372 CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1373
1374 /* Disable timer */
1375 CSR_WRITE_4(sc, ET_TIMER, 0);
1376
1377 /* Initialize MAC */
1378 et_init_mac(sc);
1379
1380 /* Enable memory controllers */
1381 CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1382
1383 /* Initialize RX MAC */
1384 et_init_rxmac(sc);
1385
1386 /* Initialize TX MAC */
1387 et_init_txmac(sc);
1388
1389 /* Initialize RX DMA engine */
1390 error = et_init_rxdma(sc);
1391 if (error)
1392 return error;
1393
1394 /* Initialize TX DMA engine */
1395 error = et_init_txdma(sc);
1396 if (error)
1397 return error;
1398
1399 return 0;
1400 }
1401
1402 static int
1403 et_init_tx_ring(struct et_softc *sc)
1404 {
1405 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1406 struct et_txstatus_data *txsd = &sc->sc_tx_status;
1407 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1408
1409 bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1410 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1411 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1412
1413 tbd->tbd_start_index = 0;
1414 tbd->tbd_start_wrap = 0;
1415 tbd->tbd_used = 0;
1416
1417 bzero(txsd->txsd_status, sizeof(uint32_t));
1418 bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
1419 txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1420 return 0;
1421 }
1422
1423 static int
1424 et_init_rx_ring(struct et_softc *sc)
1425 {
1426 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1427 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1428 int n;
1429
1430 for (n = 0; n < ET_RX_NRING; ++n) {
1431 struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1432 int i, error;
1433
1434 for (i = 0; i < ET_RX_NDESC; ++i) {
1435 error = rbd->rbd_newbuf(rbd, i, 1);
1436 if (error) {
1437 aprint_error_dev(sc->sc_dev, "%d ring %d buf, newbuf failed: "
1438 "%d\n", n, i, error);
1439 return error;
1440 }
1441 }
1442 }
1443
1444 bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1445 bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1446 rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1447
1448 bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1449 bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1450 rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1451
1452 return 0;
1453 }
1454
1455 static int
1456 et_init_rxdma(struct et_softc *sc)
1457 {
1458 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1459 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1460 struct et_rxdesc_ring *rx_ring;
1461 int error;
1462
1463 error = et_stop_rxdma(sc);
1464 if (error) {
1465 aprint_error_dev(sc->sc_dev, "can't init RX DMA engine\n");
1466 return error;
1467 }
1468
1469 /*
1470 * Install RX status
1471 */
1472 CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1473 CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1474
1475 /*
1476 * Install RX stat ring
1477 */
1478 CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1479 CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1480 CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1481 CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1482 CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1483
1484 /* Match ET_RXSTAT_POS */
1485 rxst_ring->rsr_index = 0;
1486 rxst_ring->rsr_wrap = 0;
1487
1488 /*
1489 * Install the 2nd RX descriptor ring
1490 */
1491 rx_ring = &sc->sc_rx_ring[1];
1492 CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1493 CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1494 CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1495 CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1496 CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1497
1498 /* Match ET_RX_RING1_POS */
1499 rx_ring->rr_index = 0;
1500 rx_ring->rr_wrap = 1;
1501
1502 /*
1503 * Install the 1st RX descriptor ring
1504 */
1505 rx_ring = &sc->sc_rx_ring[0];
1506 CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1507 CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1508 CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1509 CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1510 CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1511
1512 /* Match ET_RX_RING0_POS */
1513 rx_ring->rr_index = 0;
1514 rx_ring->rr_wrap = 1;
1515
1516 /*
1517 * RX intr moderation
1518 */
1519 CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1520 CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1521
1522 return 0;
1523 }
1524
1525 static int
1526 et_init_txdma(struct et_softc *sc)
1527 {
1528 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1529 struct et_txstatus_data *txsd = &sc->sc_tx_status;
1530 int error;
1531
1532 error = et_stop_txdma(sc);
1533 if (error) {
1534 aprint_error_dev(sc->sc_dev, "can't init TX DMA engine\n");
1535 return error;
1536 }
1537
1538 /*
1539 * Install TX descriptor ring
1540 */
1541 CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1542 CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1543 CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1544
1545 /*
1546 * Install TX status
1547 */
1548 CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1549 CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1550
1551 CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1552
1553 /* Match ET_TX_READY_POS */
1554 tx_ring->tr_ready_index = 0;
1555 tx_ring->tr_ready_wrap = 0;
1556
1557 return 0;
1558 }
1559
1560 static void
1561 et_init_mac(struct et_softc *sc)
1562 {
1563 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1564 const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1565 uint32_t val;
1566
1567 /* Reset MAC */
1568 CSR_WRITE_4(sc, ET_MAC_CFG1,
1569 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1570 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1571 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1572
1573 /*
1574 * Setup inter packet gap
1575 */
1576 val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1577 __SHIFTIN(88, ET_IPG_NONB2B_2) |
1578 __SHIFTIN(80, ET_IPG_MINIFG) |
1579 __SHIFTIN(96, ET_IPG_B2B);
1580 CSR_WRITE_4(sc, ET_IPG, val);
1581
1582 /*
1583 * Setup half duplex mode
1584 */
1585 val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1586 __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1587 __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1588 ET_MAC_HDX_EXC_DEFER;
1589 CSR_WRITE_4(sc, ET_MAC_HDX, val);
1590
1591 /* Clear MAC control */
1592 CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1593
1594 /* Reset MII */
1595 CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1596
1597 /*
1598 * Set MAC address
1599 */
1600 val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1601 CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1602 val = (eaddr[0] << 16) | (eaddr[1] << 24);
1603 CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1604
1605 /* Set max frame length */
1606 CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1607 ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + ETHER_CRC_LEN);
1608
1609 /* Bring MAC out of reset state */
1610 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1611 }
1612
1613 static void
1614 et_init_rxmac(struct et_softc *sc)
1615 {
1616 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1617 const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1618 uint32_t val;
1619 int i;
1620
1621 /* Disable RX MAC and WOL */
1622 CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1623
1624 /*
1625 * Clear all WOL related registers
1626 */
1627 for (i = 0; i < 3; ++i)
1628 CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1629 for (i = 0; i < 20; ++i)
1630 CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1631
1632 /*
1633 * Set WOL source address. XXX is this necessary?
1634 */
1635 val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1636 CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1637 val = (eaddr[0] << 8) | eaddr[1];
1638 CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1639
1640 /* Clear packet filters */
1641 CSR_WRITE_4(sc, ET_PKTFILT, 0);
1642
1643 /* No ucast filtering */
1644 CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1645 CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1646 CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1647
1648 if (ifp->if_mtu > 8192) {
1649 /*
1650 * In order to transmit jumbo packets greater than 8k,
1651 * the FIFO between RX MAC and RX DMA needs to be reduced
1652 * in size to (16k - MTU). In order to implement this, we
1653 * must use "cut through" mode in the RX MAC, which chops
1654 * packets down into segments which are (max_size * 16).
1655 * In this case we selected 256 bytes, since this is the
1656 * size of the PCI-Express TLP's that the 1310 uses.
1657 */
1658 val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1659 ET_RXMAC_MC_SEGSZ_ENABLE;
1660 } else {
1661 val = 0;
1662 }
1663 CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1664
1665 CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1666
1667 /* Initialize RX MAC management register */
1668 CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1669
1670 CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1671
1672 CSR_WRITE_4(sc, ET_RXMAC_MGT,
1673 ET_RXMAC_MGT_PASS_ECRC |
1674 ET_RXMAC_MGT_PASS_ELEN |
1675 ET_RXMAC_MGT_PASS_ETRUNC |
1676 ET_RXMAC_MGT_CHECK_PKT);
1677
1678 /*
1679 * Configure runt filtering (may not work on certain chip generation)
1680 */
1681 val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1682 CSR_WRITE_4(sc, ET_PKTFILT, val);
1683
1684 /* Enable RX MAC but leave WOL disabled */
1685 CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1686 ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1687
1688 /*
1689 * Setup multicast hash and allmulti/promisc mode
1690 */
1691 et_setmulti(sc);
1692 }
1693
1694 static void
1695 et_init_txmac(struct et_softc *sc)
1696 {
1697
1698 /* Disable TX MAC and FC(?) */
1699 CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1700
1701 /* No flow control yet */
1702 CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1703
1704 /* Enable TX MAC but leave FC(?) diabled */
1705 CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1706 ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1707 }
1708
1709 static int
1710 et_start_rxdma(struct et_softc *sc)
1711 {
1712 uint32_t val = 0;
1713
1714 val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1715 ET_RXDMA_CTRL_RING0_SIZE) |
1716 ET_RXDMA_CTRL_RING0_ENABLE;
1717 val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1718 ET_RXDMA_CTRL_RING1_SIZE) |
1719 ET_RXDMA_CTRL_RING1_ENABLE;
1720
1721 CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1722
1723 DELAY(5);
1724
1725 if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1726 aprint_error_dev(sc->sc_dev, "can't start RX DMA engine\n");
1727 return ETIMEDOUT;
1728 }
1729 return 0;
1730 }
1731
1732 static int
1733 et_start_txdma(struct et_softc *sc)
1734 {
1735
1736 CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1737 return 0;
1738 }
1739
1740 static void
1741 et_rxeof(struct et_softc *sc)
1742 {
1743 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1744 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1745 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1746 uint32_t rxs_stat_ring;
1747 int rxst_wrap, rxst_index;
1748
1749 if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
1750 return;
1751
1752 bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1753 rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1754 bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1755 rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1756
1757 rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1758 rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1759 rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1760
1761 while (rxst_index != rxst_ring->rsr_index ||
1762 rxst_wrap != rxst_ring->rsr_wrap) {
1763 struct et_rxbuf_data *rbd;
1764 struct et_rxdesc_ring *rx_ring;
1765 struct et_rxstat *st;
1766 struct et_rxbuf *rb;
1767 struct mbuf *m;
1768 int buflen, buf_idx, ring_idx;
1769 uint32_t rxstat_pos, rxring_pos;
1770
1771 KASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1772 st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1773
1774 buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1775 buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1776 ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1777
1778 if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1779 rxst_ring->rsr_index = 0;
1780 rxst_ring->rsr_wrap ^= 1;
1781 }
1782 rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1783 ET_RXSTAT_POS_INDEX);
1784 if (rxst_ring->rsr_wrap)
1785 rxstat_pos |= ET_RXSTAT_POS_WRAP;
1786 CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1787
1788 if (ring_idx >= ET_RX_NRING) {
1789 if_statinc(ifp, if_ierrors);
1790 aprint_error_dev(sc->sc_dev, "invalid ring index %d\n",
1791 ring_idx);
1792 continue;
1793 }
1794 if (buf_idx >= ET_RX_NDESC) {
1795 if_statinc(ifp, if_ierrors);
1796 aprint_error_dev(sc->sc_dev, "invalid buf index %d\n",
1797 buf_idx);
1798 continue;
1799 }
1800
1801 rbd = &sc->sc_rx_data[ring_idx];
1802 rb = &rbd->rbd_buf[buf_idx];
1803 m = rb->rb_mbuf;
1804 bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
1805 rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1806
1807 if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1808 if (buflen < ETHER_CRC_LEN) {
1809 m_freem(m);
1810 if_statinc(ifp, if_ierrors);
1811 } else {
1812 m->m_pkthdr.len = m->m_len = buflen -
1813 ETHER_CRC_LEN;
1814 m_set_rcvif(m, ifp);
1815
1816 if_percpuq_enqueue(ifp->if_percpuq, m);
1817 }
1818 } else {
1819 if_statinc(ifp, if_ierrors);
1820 }
1821
1822 rx_ring = &sc->sc_rx_ring[ring_idx];
1823
1824 if (buf_idx != rx_ring->rr_index) {
1825 aprint_error_dev(sc->sc_dev, "WARNING!! ring %d, "
1826 "buf_idx %d, rr_idx %d\n",
1827 ring_idx, buf_idx, rx_ring->rr_index);
1828 }
1829
1830 KASSERT(rx_ring->rr_index < ET_RX_NDESC);
1831 if (++rx_ring->rr_index == ET_RX_NDESC) {
1832 rx_ring->rr_index = 0;
1833 rx_ring->rr_wrap ^= 1;
1834 }
1835 rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1836 if (rx_ring->rr_wrap)
1837 rxring_pos |= ET_RX_RING_POS_WRAP;
1838 CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1839 }
1840 }
1841
1842 static int
1843 et_encap(struct et_softc *sc, struct mbuf **m0)
1844 {
1845 struct mbuf *m = *m0;
1846 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1847 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1848 struct et_txdesc *td;
1849 bus_dmamap_t map;
1850 int error, maxsegs, first_idx, last_idx, i;
1851 uint32_t tx_ready_pos, last_td_ctrl2;
1852
1853 maxsegs = ET_TX_NDESC - tbd->tbd_used;
1854 if (maxsegs > ET_NSEG_MAX)
1855 maxsegs = ET_NSEG_MAX;
1856 KASSERTMSG(maxsegs >= ET_NSEG_SPARE,
1857 "not enough spare TX desc (%d)\n", maxsegs);
1858
1859 KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1860 first_idx = tx_ring->tr_ready_index;
1861 map = tbd->tbd_buf[first_idx].tb_dmap;
1862
1863 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1864 BUS_DMA_NOWAIT);
1865 if (!error && map->dm_nsegs == 0) {
1866 bus_dmamap_unload(sc->sc_dmat, map);
1867 error = EFBIG;
1868 }
1869 if (error && error != EFBIG) {
1870 aprint_error_dev(sc->sc_dev, "can't load TX mbuf");
1871 goto back;
1872 }
1873 if (error) { /* error == EFBIG */
1874 struct mbuf *m_new;
1875
1876 error = 0;
1877
1878 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1879 if (m_new == NULL) {
1880 aprint_error_dev(sc->sc_dev, "can't defrag TX mbuf\n");
1881 error = ENOBUFS;
1882 goto back;
1883 }
1884
1885 m_copy_pkthdr(m_new, m);
1886 if (m->m_pkthdr.len > MHLEN) {
1887 MCLGET(m_new, M_DONTWAIT);
1888 if (!(m_new->m_flags & M_EXT)) {
1889 m_freem(m_new);
1890 error = ENOBUFS;
1891 }
1892 }
1893
1894 if (error) {
1895 aprint_error_dev(sc->sc_dev, "can't defrag TX buffer\n");
1896 goto back;
1897 }
1898
1899 m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
1900 m_freem(m);
1901 m_new->m_len = m_new->m_pkthdr.len;
1902 *m0 = m = m_new;
1903
1904 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1905 BUS_DMA_NOWAIT);
1906 if (error || map->dm_nsegs == 0) {
1907 if (map->dm_nsegs == 0) {
1908 bus_dmamap_unload(sc->sc_dmat, map);
1909 error = EFBIG;
1910 }
1911 aprint_error_dev(sc->sc_dev, "can't load defraged TX mbuf\n");
1912 goto back;
1913 }
1914 }
1915
1916 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1917 BUS_DMASYNC_PREWRITE);
1918
1919 last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1920 sc->sc_tx += map->dm_nsegs;
1921 if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1922 sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1923 last_td_ctrl2 |= ET_TDCTRL2_INTR;
1924 }
1925
1926 last_idx = -1;
1927 for (i = 0; i < map->dm_nsegs; ++i) {
1928 int idx;
1929
1930 idx = (first_idx + i) % ET_TX_NDESC;
1931 td = &tx_ring->tr_desc[idx];
1932 td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
1933 td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
1934 td->td_ctrl1 =
1935 __SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
1936
1937 if (i == map->dm_nsegs - 1) { /* Last frag */
1938 td->td_ctrl2 = last_td_ctrl2;
1939 last_idx = idx;
1940 }
1941
1942 KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1943 if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1944 tx_ring->tr_ready_index = 0;
1945 tx_ring->tr_ready_wrap ^= 1;
1946 }
1947 }
1948 td = &tx_ring->tr_desc[first_idx];
1949 td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG; /* First frag */
1950
1951 KASSERT(last_idx >= 0);
1952 tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1953 tbd->tbd_buf[last_idx].tb_dmap = map;
1954 tbd->tbd_buf[last_idx].tb_mbuf = m;
1955
1956 tbd->tbd_used += map->dm_nsegs;
1957 KASSERT(tbd->tbd_used <= ET_TX_NDESC);
1958
1959 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1960 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1961
1962 tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1963 ET_TX_READY_POS_INDEX);
1964 if (tx_ring->tr_ready_wrap)
1965 tx_ready_pos |= ET_TX_READY_POS_WRAP;
1966 CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1967
1968 error = 0;
1969 back:
1970 if (error) {
1971 m_freem(m);
1972 *m0 = NULL;
1973 }
1974 return error;
1975 }
1976
1977 static void
1978 et_txeof(struct et_softc *sc)
1979 {
1980 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1981 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1982 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1983 uint32_t tx_done;
1984 int end, wrap;
1985
1986 if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
1987 return;
1988
1989 if (tbd->tbd_used == 0)
1990 return;
1991
1992 tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
1993 end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
1994 wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
1995
1996 while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
1997 struct et_txbuf *tb;
1998
1999 KASSERT(tbd->tbd_start_index < ET_TX_NDESC);
2000 tb = &tbd->tbd_buf[tbd->tbd_start_index];
2001
2002 bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
2003 sizeof(struct et_txdesc));
2004 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
2005 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2006
2007 if (tb->tb_mbuf != NULL) {
2008 bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
2009 m_freem(tb->tb_mbuf);
2010 tb->tb_mbuf = NULL;
2011 if_statinc(ifp, if_opackets);
2012 }
2013
2014 if (++tbd->tbd_start_index == ET_TX_NDESC) {
2015 tbd->tbd_start_index = 0;
2016 tbd->tbd_start_wrap ^= 1;
2017 }
2018
2019 KASSERT(tbd->tbd_used > 0);
2020 tbd->tbd_used--;
2021 }
2022
2023 if (tbd->tbd_used == 0) {
2024 callout_stop(&sc->sc_txtick);
2025 ifp->if_timer = 0;
2026 }
2027 if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
2028 ifp->if_flags &= ~IFF_OACTIVE;
2029
2030 if_schedule_deferred_start(ifp);
2031 }
2032
2033 static void
2034 et_txtick(void *xsc)
2035 {
2036 struct et_softc *sc = xsc;
2037 int s;
2038
2039 s = splnet();
2040 et_txeof(sc);
2041 splx(s);
2042 }
2043
2044 static void
2045 et_tick(void *xsc)
2046 {
2047 struct et_softc *sc = xsc;
2048 int s;
2049
2050 s = splnet();
2051 mii_tick(&sc->sc_miibus);
2052 callout_schedule(&sc->sc_tick, hz);
2053 splx(s);
2054 }
2055
2056 static int
2057 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2058 {
2059 return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2060 }
2061
2062 static int
2063 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2064 {
2065 return et_newbuf(rbd, buf_idx, init, MHLEN);
2066 }
2067
2068 static int
2069 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2070 {
2071 struct et_softc *sc = rbd->rbd_softc;
2072 struct et_rxdesc_ring *rx_ring;
2073 struct et_rxdesc *desc;
2074 struct et_rxbuf *rb;
2075 struct mbuf *m;
2076 bus_dmamap_t dmap;
2077 int error, len;
2078
2079 KASSERT(buf_idx < ET_RX_NDESC);
2080 rb = &rbd->rbd_buf[buf_idx];
2081
2082 if (len0 >= MINCLSIZE) {
2083 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2084 if (m == NULL)
2085 return (ENOBUFS);
2086 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2087 if ((m->m_flags & M_EXT) == 0) {
2088 m_freem(m);
2089 return (ENOBUFS);
2090 }
2091 len = MCLBYTES;
2092 } else {
2093 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2094 len = MHLEN;
2095 }
2096
2097 if (m == NULL) {
2098 error = ENOBUFS;
2099
2100 /* XXX for debug */
2101 aprint_error_dev(sc->sc_dev, "M_CLGET failed, size %d\n", len0);
2102 if (init) {
2103 return error;
2104 } else {
2105 goto back;
2106 }
2107 }
2108 m->m_len = m->m_pkthdr.len = len;
2109
2110 /*
2111 * Try load RX mbuf into temporary DMA tag
2112 */
2113 error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
2114 init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2115 if (error) {
2116 m_freem(m);
2117
2118 /* XXX for debug */
2119 aprint_error_dev(sc->sc_dev, "can't load RX mbuf\n");
2120 if (init) {
2121 return error;
2122 } else {
2123 goto back;
2124 }
2125 }
2126
2127 if (!init)
2128 bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
2129 rb->rb_mbuf = m;
2130
2131 /*
2132 * Swap RX buf's DMA map with the loaded temporary one
2133 */
2134 dmap = rb->rb_dmap;
2135 rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2136 rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
2137 sc->sc_mbuf_tmp_dmap = dmap;
2138
2139 error = 0;
2140 back:
2141 rx_ring = rbd->rbd_ring;
2142 desc = &rx_ring->rr_desc[buf_idx];
2143
2144 desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2145 desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2146 desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2147
2148 bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
2149 rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2150 return error;
2151 }
2152