if_et.c revision 1.4.2.2 1 /* $NetBSD: if_et.c,v 1.4.2.2 2013/06/23 06:20:18 tls Exp $ */
2 /* $OpenBSD: if_et.c,v 1.11 2008/06/08 06:18:07 jsg Exp $ */
3 /*
4 * Copyright (c) 2007 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Sepherosa Ziehau <sepherosa (at) gmail.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: if_et.c,v 1.4.2.2 2013/06/23 06:20:18 tls Exp $");
41
42 #include "opt_inet.h"
43 #include "vlan.h"
44
45 #include <sys/param.h>
46 #include <sys/endian.h>
47 #include <sys/systm.h>
48 #include <sys/types.h>
49 #include <sys/sockio.h>
50 #include <sys/mbuf.h>
51 #include <sys/queue.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/socket.h>
56
57 #include <sys/bus.h>
58
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 #include <net/if_arp.h>
64
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72
73 #include <net/bpf.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81
82 #include <dev/pci/if_etreg.h>
83
84 int et_match(device_t, cfdata_t, void *);
85 void et_attach(device_t, device_t, void *);
86 int et_detach(device_t, int flags);
87 int et_shutdown(device_t);
88
89 int et_miibus_readreg(device_t, int, int);
90 void et_miibus_writereg(device_t, int, int, int);
91 void et_miibus_statchg(struct ifnet *);
92
93 int et_init(struct ifnet *ifp);
94 int et_ioctl(struct ifnet *, u_long, void *);
95 void et_start(struct ifnet *);
96 void et_watchdog(struct ifnet *);
97
98 int et_intr(void *);
99 void et_enable_intrs(struct et_softc *, uint32_t);
100 void et_disable_intrs(struct et_softc *);
101 void et_rxeof(struct et_softc *);
102 void et_txeof(struct et_softc *);
103 void et_txtick(void *);
104
105 int et_dma_alloc(struct et_softc *);
106 void et_dma_free(struct et_softc *);
107 int et_dma_mem_create(struct et_softc *, bus_size_t,
108 void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
109 void et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
110 int et_dma_mbuf_create(struct et_softc *);
111 void et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
112
113 int et_init_tx_ring(struct et_softc *);
114 int et_init_rx_ring(struct et_softc *);
115 void et_free_tx_ring(struct et_softc *);
116 void et_free_rx_ring(struct et_softc *);
117 int et_encap(struct et_softc *, struct mbuf **);
118 int et_newbuf(struct et_rxbuf_data *, int, int, int);
119 int et_newbuf_cluster(struct et_rxbuf_data *, int, int);
120 int et_newbuf_hdr(struct et_rxbuf_data *, int, int);
121
122 void et_stop(struct et_softc *);
123 int et_chip_init(struct et_softc *);
124 void et_chip_attach(struct et_softc *);
125 void et_init_mac(struct et_softc *);
126 void et_init_rxmac(struct et_softc *);
127 void et_init_txmac(struct et_softc *);
128 int et_init_rxdma(struct et_softc *);
129 int et_init_txdma(struct et_softc *);
130 int et_start_rxdma(struct et_softc *);
131 int et_start_txdma(struct et_softc *);
132 int et_stop_rxdma(struct et_softc *);
133 int et_stop_txdma(struct et_softc *);
134 int et_enable_txrx(struct et_softc *);
135 void et_reset(struct et_softc *);
136 int et_bus_config(struct et_softc *);
137 void et_get_eaddr(struct et_softc *, uint8_t[]);
138 void et_setmulti(struct et_softc *);
139 void et_tick(void *);
140
141 static int et_rx_intr_npkts = 32;
142 static int et_rx_intr_delay = 20; /* x10 usec */
143 static int et_tx_intr_nsegs = 128;
144 static uint32_t et_timer = 1000 * 1000 * 1000; /* nanosec */
145
146 struct et_bsize {
147 int bufsize;
148 et_newbuf_t newbuf;
149 };
150
151 static const struct et_bsize et_bufsize[ET_RX_NRING] = {
152 { .bufsize = 0, .newbuf = et_newbuf_hdr },
153 { .bufsize = 0, .newbuf = et_newbuf_cluster },
154 };
155
156 const struct et_product {
157 pci_vendor_id_t vendor;
158 pci_product_id_t product;
159 } et_devices[] = {
160 { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310 },
161 { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1301 }
162 };
163
164 CFATTACH_DECL_NEW(et, sizeof(struct et_softc), et_match, et_attach, et_detach,
165 NULL);
166
167 int
168 et_match(device_t dev, cfdata_t match, void *aux)
169 {
170 struct pci_attach_args *pa = aux;
171 const struct et_product *ep;
172 int i;
173
174 for (i = 0; i < __arraycount(et_devices); i++) {
175 ep = &et_devices[i];
176 if (PCI_VENDOR(pa->pa_id) == ep->vendor &&
177 PCI_PRODUCT(pa->pa_id) == ep->product)
178 return 1;
179 }
180 return 0;
181 }
182
183 void
184 et_attach(device_t parent, device_t self, void *aux)
185 {
186 struct et_softc *sc = device_private(self);
187 struct pci_attach_args *pa = aux;
188 pci_chipset_tag_t pc = pa->pa_pc;
189 pci_intr_handle_t ih;
190 const char *intrstr;
191 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
192 pcireg_t memtype;
193 int error;
194
195 pci_aprint_devinfo(pa, "Ethernet controller");
196
197 sc->sc_dev = self;
198
199 /*
200 * Initialize tunables
201 */
202 sc->sc_rx_intr_npkts = et_rx_intr_npkts;
203 sc->sc_rx_intr_delay = et_rx_intr_delay;
204 sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
205 sc->sc_timer = et_timer;
206
207 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
208 if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
209 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
210 aprint_error_dev(self, "could not map mem space\n");
211 return;
212 }
213
214 if (pci_intr_map(pa, &ih) != 0) {
215 aprint_error_dev(self, "could not map interrupt\n");
216 goto fail;
217 }
218
219 intrstr = pci_intr_string(pc, ih);
220 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, et_intr, sc);
221 if (sc->sc_irq_handle == NULL) {
222 aprint_error_dev(self, "could not establish interrupt");
223 if (intrstr != NULL)
224 aprint_error(" at %s", intrstr);
225 aprint_error("\n");
226 goto fail;
227 }
228 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
229
230 sc->sc_dmat = pa->pa_dmat;
231 sc->sc_pct = pa->pa_pc;
232 sc->sc_pcitag = pa->pa_tag;
233
234 error = et_bus_config(sc);
235 if (error)
236 goto fail;
237
238 et_get_eaddr(sc, sc->sc_enaddr);
239
240 aprint_normal_dev(self, "Ethernet address %s\n",
241 ether_sprintf(sc->sc_enaddr));
242
243 CSR_WRITE_4(sc, ET_PM,
244 ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
245
246 et_reset(sc);
247
248 et_disable_intrs(sc);
249
250 error = et_dma_alloc(sc);
251 if (error)
252 goto fail;
253
254 ifp->if_softc = sc;
255 ifp->if_mtu = ETHERMTU;
256 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
257 ifp->if_init = et_init;
258 ifp->if_ioctl = et_ioctl;
259 ifp->if_start = et_start;
260 ifp->if_watchdog = et_watchdog;
261 IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
262 IFQ_SET_READY(&ifp->if_snd);
263 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
264
265 et_chip_attach(sc);
266
267 sc->sc_miibus.mii_ifp = ifp;
268 sc->sc_miibus.mii_readreg = et_miibus_readreg;
269 sc->sc_miibus.mii_writereg = et_miibus_writereg;
270 sc->sc_miibus.mii_statchg = et_miibus_statchg;
271
272 sc->sc_ethercom.ec_mii = &sc->sc_miibus;
273 ifmedia_init(&sc->sc_miibus.mii_media, 0, ether_mediachange,
274 ether_mediastatus);
275 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
276 MII_OFFSET_ANY, 0);
277 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
278 aprint_error_dev(self, "no PHY found!\n");
279 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
280 0, NULL);
281 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
282 } else
283 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
284
285 if_attach(ifp);
286 ether_ifattach(ifp, sc->sc_enaddr);
287
288 callout_init(&sc->sc_tick, 0);
289 callout_setfunc(&sc->sc_tick, et_tick, sc);
290 callout_init(&sc->sc_txtick, 0);
291 callout_setfunc(&sc->sc_txtick, et_txtick, sc);
292
293 if (pmf_device_register(self, NULL, NULL))
294 pmf_class_network_register(self, ifp);
295 else
296 aprint_error_dev(self, "couldn't establish power handler\n");
297
298 return;
299
300 fail:
301 et_dma_free(sc);
302 if (sc->sc_irq_handle != NULL) {
303 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
304 sc->sc_irq_handle = NULL;
305 }
306 if (sc->sc_mem_size) {
307 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
308 sc->sc_mem_size = 0;
309 }
310 }
311
312 int
313 et_detach(device_t self, int flags)
314 {
315 struct et_softc *sc = device_private(self);
316 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
317 int s;
318
319 pmf_device_deregister(self);
320 s = splnet();
321 et_stop(sc);
322 splx(s);
323
324 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
325
326 /* Delete all remaining media. */
327 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
328
329 ether_ifdetach(ifp);
330 if_detach(ifp);
331 et_dma_free(sc);
332
333 if (sc->sc_irq_handle != NULL) {
334 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
335 sc->sc_irq_handle = NULL;
336 }
337
338 if (sc->sc_mem_size) {
339 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
340 sc->sc_mem_size = 0;
341 }
342
343 return 0;
344 }
345
346 int
347 et_shutdown(device_t self)
348 {
349 struct et_softc *sc = device_private(self);
350 int s;
351
352 s = splnet();
353 et_stop(sc);
354 splx(s);
355
356 return 0;
357 }
358
359 int
360 et_miibus_readreg(device_t dev, int phy, int reg)
361 {
362 struct et_softc *sc = device_private(dev);
363 uint32_t val;
364 int i, ret;
365
366 /* Stop any pending operations */
367 CSR_WRITE_4(sc, ET_MII_CMD, 0);
368
369 val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
370 __SHIFTIN(reg, ET_MII_ADDR_REG);
371 CSR_WRITE_4(sc, ET_MII_ADDR, val);
372
373 /* Start reading */
374 CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
375
376 #define NRETRY 50
377
378 for (i = 0; i < NRETRY; ++i) {
379 val = CSR_READ_4(sc, ET_MII_IND);
380 if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
381 break;
382 DELAY(50);
383 }
384 if (i == NRETRY) {
385 aprint_error_dev(sc->sc_dev, "read phy %d, reg %d timed out\n",
386 phy, reg);
387 ret = 0;
388 goto back;
389 }
390
391 #undef NRETRY
392
393 val = CSR_READ_4(sc, ET_MII_STAT);
394 ret = __SHIFTOUT(val, ET_MII_STAT_VALUE);
395
396 back:
397 /* Make sure that the current operation is stopped */
398 CSR_WRITE_4(sc, ET_MII_CMD, 0);
399 return ret;
400 }
401
402 void
403 et_miibus_writereg(device_t dev, int phy, int reg, int val0)
404 {
405 struct et_softc *sc = device_private(dev);
406 uint32_t val;
407 int i;
408
409 /* Stop any pending operations */
410 CSR_WRITE_4(sc, ET_MII_CMD, 0);
411
412 val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
413 __SHIFTIN(reg, ET_MII_ADDR_REG);
414 CSR_WRITE_4(sc, ET_MII_ADDR, val);
415
416 /* Start writing */
417 CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val0, ET_MII_CTRL_VALUE));
418
419 #define NRETRY 100
420
421 for (i = 0; i < NRETRY; ++i) {
422 val = CSR_READ_4(sc, ET_MII_IND);
423 if ((val & ET_MII_IND_BUSY) == 0)
424 break;
425 DELAY(50);
426 }
427 if (i == NRETRY) {
428 aprint_error_dev(sc->sc_dev, "write phy %d, reg %d timed out\n",
429 phy, reg);
430 et_miibus_readreg(dev, phy, reg);
431 }
432
433 #undef NRETRY
434
435 /* Make sure that the current operation is stopped */
436 CSR_WRITE_4(sc, ET_MII_CMD, 0);
437 }
438
439 void
440 et_miibus_statchg(struct ifnet *ifp)
441 {
442 struct et_softc *sc = ifp->if_softc;
443 struct mii_data *mii = &sc->sc_miibus;
444 uint32_t cfg2, ctrl;
445
446 cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
447 cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
448 ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
449 cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
450 __SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
451
452 ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
453 ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
454
455 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
456 cfg2 |= ET_MAC_CFG2_MODE_GMII;
457 } else {
458 cfg2 |= ET_MAC_CFG2_MODE_MII;
459 ctrl |= ET_MAC_CTRL_MODE_MII;
460 }
461
462 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
463 cfg2 |= ET_MAC_CFG2_FDX;
464 else
465 ctrl |= ET_MAC_CTRL_GHDX;
466
467 CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
468 CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
469 }
470
471 void
472 et_stop(struct et_softc *sc)
473 {
474 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
475
476 callout_stop(&sc->sc_tick);
477 callout_stop(&sc->sc_txtick);
478
479 et_stop_rxdma(sc);
480 et_stop_txdma(sc);
481
482 et_disable_intrs(sc);
483
484 et_free_tx_ring(sc);
485 et_free_rx_ring(sc);
486
487 et_reset(sc);
488
489 sc->sc_tx = 0;
490 sc->sc_tx_intr = 0;
491
492 ifp->if_timer = 0;
493 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
494 }
495
496 int
497 et_bus_config(struct et_softc *sc)
498 {
499 uint32_t val; //, max_plsz;
500 // uint16_t ack_latency, replay_timer;
501
502 /*
503 * Test whether EEPROM is valid
504 * NOTE: Read twice to get the correct value
505 */
506 pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
507 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
508
509 if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
510 aprint_error_dev(sc->sc_dev, "EEPROM status error 0x%02x\n", val);
511 return ENXIO;
512 }
513
514 /* TODO: LED */
515 #if 0
516 /*
517 * Configure ACK latency and replay timer according to
518 * max playload size
519 */
520 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
521 max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
522
523 switch (max_plsz) {
524 case ET_PCIV_DEVICE_CAPS_PLSZ_128:
525 ack_latency = ET_PCIV_ACK_LATENCY_128;
526 replay_timer = ET_PCIV_REPLAY_TIMER_128;
527 break;
528
529 case ET_PCIV_DEVICE_CAPS_PLSZ_256:
530 ack_latency = ET_PCIV_ACK_LATENCY_256;
531 replay_timer = ET_PCIV_REPLAY_TIMER_256;
532 break;
533
534 default:
535 ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
536 ET_PCIR_ACK_LATENCY) >> 16;
537 replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
538 ET_PCIR_REPLAY_TIMER) >> 16;
539 aprint_normal_dev(sc->sc_dev, "ack latency %u, replay timer %u\n",
540 ack_latency, replay_timer);
541 break;
542 }
543 if (ack_latency != 0) {
544 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
545 ET_PCIR_ACK_LATENCY, ack_latency << 16);
546 pci_conf_write(sc->sc_pct, sc->sc_pcitag,
547 ET_PCIR_REPLAY_TIMER, replay_timer << 16);
548 }
549
550 /*
551 * Set L0s and L1 latency timer to 2us
552 */
553 val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
554 pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
555 val << 24);
556
557 /*
558 * Set max read request size to 2048 bytes
559 */
560 val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
561 ET_PCIR_DEVICE_CTRL) >> 16;
562 val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
563 val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
564 pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
565 val << 16);
566 #endif
567
568 return 0;
569 }
570
571 void
572 et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
573 {
574 uint32_t r;
575
576 r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
577 eaddr[0] = r & 0xff;
578 eaddr[1] = (r >> 8) & 0xff;
579 eaddr[2] = (r >> 16) & 0xff;
580 eaddr[3] = (r >> 24) & 0xff;
581 r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
582 eaddr[4] = r & 0xff;
583 eaddr[5] = (r >> 8) & 0xff;
584 }
585
586 void
587 et_reset(struct et_softc *sc)
588 {
589 CSR_WRITE_4(sc, ET_MAC_CFG1,
590 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
591 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
592 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
593
594 CSR_WRITE_4(sc, ET_SWRST,
595 ET_SWRST_TXDMA | ET_SWRST_RXDMA |
596 ET_SWRST_TXMAC | ET_SWRST_RXMAC |
597 ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
598
599 CSR_WRITE_4(sc, ET_MAC_CFG1,
600 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
601 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
602 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
603 }
604
605 void
606 et_disable_intrs(struct et_softc *sc)
607 {
608 CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
609 }
610
611 void
612 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
613 {
614 CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
615 }
616
617 int
618 et_dma_alloc(struct et_softc *sc)
619 {
620 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
621 struct et_txstatus_data *txsd = &sc->sc_tx_status;
622 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
623 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
624 int i, error;
625
626 /*
627 * Create TX ring DMA stuffs
628 */
629 error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
630 (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
631 &tx_ring->tr_seg);
632 if (error) {
633 aprint_error_dev(sc->sc_dev, "can't create TX ring DMA stuffs\n");
634 return error;
635 }
636
637 /*
638 * Create TX status DMA stuffs
639 */
640 error = et_dma_mem_create(sc, sizeof(uint32_t),
641 (void **)&txsd->txsd_status,
642 &txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
643 if (error) {
644 aprint_error_dev(sc->sc_dev, "can't create TX status DMA stuffs\n");
645 return error;
646 }
647
648 /*
649 * Create DMA stuffs for RX rings
650 */
651 for (i = 0; i < ET_RX_NRING; ++i) {
652 static const uint32_t rx_ring_posreg[ET_RX_NRING] =
653 { ET_RX_RING0_POS, ET_RX_RING1_POS };
654
655 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
656
657 error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
658 (void **)&rx_ring->rr_desc,
659 &rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
660 if (error) {
661 aprint_error_dev(sc->sc_dev, "can't create DMA stuffs for "
662 "the %d RX ring\n", i);
663 return error;
664 }
665 rx_ring->rr_posreg = rx_ring_posreg[i];
666 }
667
668 /*
669 * Create RX stat ring DMA stuffs
670 */
671 error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
672 (void **)&rxst_ring->rsr_stat,
673 &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
674 if (error) {
675 aprint_error_dev(sc->sc_dev, "can't create RX stat ring DMA stuffs\n");
676 return error;
677 }
678
679 /*
680 * Create RX status DMA stuffs
681 */
682 error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
683 (void **)&rxsd->rxsd_status,
684 &rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
685 if (error) {
686 aprint_error_dev(sc->sc_dev, "can't create RX status DMA stuffs\n");
687 return error;
688 }
689
690 /*
691 * Create mbuf DMA stuffs
692 */
693 error = et_dma_mbuf_create(sc);
694 if (error)
695 return error;
696
697 return 0;
698 }
699
700 void
701 et_dma_free(struct et_softc *sc)
702 {
703 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
704 struct et_txstatus_data *txsd = &sc->sc_tx_status;
705 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
706 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
707 int i, rx_done[ET_RX_NRING];
708
709 /*
710 * Destroy TX ring DMA stuffs
711 */
712 et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
713
714 /*
715 * Destroy TX status DMA stuffs
716 */
717 et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
718
719 /*
720 * Destroy DMA stuffs for RX rings
721 */
722 for (i = 0; i < ET_RX_NRING; ++i) {
723 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
724
725 et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
726 }
727
728 /*
729 * Destroy RX stat ring DMA stuffs
730 */
731 et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
732
733 /*
734 * Destroy RX status DMA stuffs
735 */
736 et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
737
738 /*
739 * Destroy mbuf DMA stuffs
740 */
741 for (i = 0; i < ET_RX_NRING; ++i)
742 rx_done[i] = ET_RX_NDESC;
743 et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
744 }
745
746 int
747 et_dma_mbuf_create(struct et_softc *sc)
748 {
749 struct et_txbuf_data *tbd = &sc->sc_tx_data;
750 int i, error, rx_done[ET_RX_NRING];
751
752 /*
753 * Create spare DMA map for RX mbufs
754 */
755 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
756 BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
757 if (error) {
758 aprint_error_dev(sc->sc_dev, "can't create spare mbuf DMA map\n");
759 return error;
760 }
761
762 /*
763 * Create DMA maps for RX mbufs
764 */
765 bzero(rx_done, sizeof(rx_done));
766 for (i = 0; i < ET_RX_NRING; ++i) {
767 struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
768 int j;
769
770 for (j = 0; j < ET_RX_NDESC; ++j) {
771 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
772 MCLBYTES, 0, BUS_DMA_NOWAIT,
773 &rbd->rbd_buf[j].rb_dmap);
774 if (error) {
775 aprint_error_dev(sc->sc_dev, "can't create %d RX mbuf "
776 "for %d RX ring\n", j, i);
777 rx_done[i] = j;
778 et_dma_mbuf_destroy(sc, 0, rx_done);
779 return error;
780 }
781 }
782 rx_done[i] = ET_RX_NDESC;
783
784 rbd->rbd_softc = sc;
785 rbd->rbd_ring = &sc->sc_rx_ring[i];
786 }
787
788 /*
789 * Create DMA maps for TX mbufs
790 */
791 for (i = 0; i < ET_TX_NDESC; ++i) {
792 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
793 0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
794 if (error) {
795 aprint_error_dev(sc->sc_dev, "can't create %d TX mbuf "
796 "DMA map\n", i);
797 et_dma_mbuf_destroy(sc, i, rx_done);
798 return error;
799 }
800 }
801
802 return 0;
803 }
804
805 void
806 et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
807 {
808 struct et_txbuf_data *tbd = &sc->sc_tx_data;
809 int i;
810
811 /*
812 * Destroy DMA maps for RX mbufs
813 */
814 for (i = 0; i < ET_RX_NRING; ++i) {
815 struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
816 int j;
817
818 for (j = 0; j < rx_done[i]; ++j) {
819 struct et_rxbuf *rb = &rbd->rbd_buf[j];
820
821 KASSERTMSG(rb->rb_mbuf == NULL,
822 "RX mbuf in %d RX ring is not freed yet\n", i);
823 bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
824 }
825 }
826
827 /*
828 * Destroy DMA maps for TX mbufs
829 */
830 for (i = 0; i < tx_done; ++i) {
831 struct et_txbuf *tb = &tbd->tbd_buf[i];
832
833 KASSERTMSG(tb->tb_mbuf == NULL, "TX mbuf is not freed yet\n");
834 bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
835 }
836
837 /*
838 * Destroy spare mbuf DMA map
839 */
840 bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
841 }
842
843 int
844 et_dma_mem_create(struct et_softc *sc, bus_size_t size,
845 void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
846 {
847 int error, nsegs;
848
849 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
850 dmap);
851 if (error) {
852 aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
853 return error;
854 }
855
856 error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
857 1, &nsegs, BUS_DMA_WAITOK);
858 if (error) {
859 aprint_error_dev(sc->sc_dev, "can't allocate DMA mem\n");
860 return error;
861 }
862
863 error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
864 size, (void **)addr, BUS_DMA_NOWAIT);
865 if (error) {
866 aprint_error_dev(sc->sc_dev, "can't map DMA mem\n");
867 return (error);
868 }
869
870 error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
871 BUS_DMA_WAITOK);
872 if (error) {
873 aprint_error_dev(sc->sc_dev, "can't load DMA mem\n");
874 bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
875 return error;
876 }
877
878 memset(*addr, 0, size);
879
880 *paddr = (*dmap)->dm_segs[0].ds_addr;
881
882 return 0;
883 }
884
885 void
886 et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
887 {
888 bus_dmamap_unload(sc->sc_dmat, dmap);
889 bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
890 }
891
892 void
893 et_chip_attach(struct et_softc *sc)
894 {
895 uint32_t val;
896
897 /*
898 * Perform minimal initialization
899 */
900
901 /* Disable loopback */
902 CSR_WRITE_4(sc, ET_LOOPBACK, 0);
903
904 /* Reset MAC */
905 CSR_WRITE_4(sc, ET_MAC_CFG1,
906 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
907 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
908 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
909
910 /*
911 * Setup half duplex mode
912 */
913 val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
914 __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
915 __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
916 ET_MAC_HDX_EXC_DEFER;
917 CSR_WRITE_4(sc, ET_MAC_HDX, val);
918
919 /* Clear MAC control */
920 CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
921
922 /* Reset MII */
923 CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
924
925 /* Bring MAC out of reset state */
926 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
927
928 /* Enable memory controllers */
929 CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
930 }
931
932 int
933 et_intr(void *xsc)
934 {
935 struct et_softc *sc = xsc;
936 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
937 uint32_t intrs;
938
939 if ((ifp->if_flags & IFF_RUNNING) == 0)
940 return (0);
941
942 intrs = CSR_READ_4(sc, ET_INTR_STATUS);
943 if (intrs == 0 || intrs == 0xffffffff)
944 return (0);
945
946 et_disable_intrs(sc);
947 intrs &= ET_INTRS;
948 if (intrs == 0) /* Not interested */
949 goto back;
950
951 if (intrs & ET_INTR_RXEOF)
952 et_rxeof(sc);
953 if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
954 et_txeof(sc);
955 if (intrs & ET_INTR_TIMER)
956 CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
957 back:
958 et_enable_intrs(sc, ET_INTRS);
959
960 return (1);
961 }
962
963 int
964 et_init(struct ifnet *ifp)
965 {
966 struct et_softc *sc = ifp->if_softc;
967 int error, i, s;
968
969 if (ifp->if_flags & IFF_RUNNING)
970 return 0;
971
972 s = splnet();
973
974 et_stop(sc);
975
976 for (i = 0; i < ET_RX_NRING; ++i) {
977 sc->sc_rx_data[i].rbd_bufsize = et_bufsize[i].bufsize;
978 sc->sc_rx_data[i].rbd_newbuf = et_bufsize[i].newbuf;
979 }
980
981 error = et_init_tx_ring(sc);
982 if (error)
983 goto back;
984
985 error = et_init_rx_ring(sc);
986 if (error)
987 goto back;
988
989 error = et_chip_init(sc);
990 if (error)
991 goto back;
992
993 error = et_enable_txrx(sc);
994 if (error)
995 goto back;
996
997 error = et_start_rxdma(sc);
998 if (error)
999 goto back;
1000
1001 error = et_start_txdma(sc);
1002 if (error)
1003 goto back;
1004
1005 et_enable_intrs(sc, ET_INTRS);
1006
1007 callout_schedule(&sc->sc_tick, hz);
1008
1009 CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1010
1011 ifp->if_flags |= IFF_RUNNING;
1012 ifp->if_flags &= ~IFF_OACTIVE;
1013 back:
1014 if (error)
1015 et_stop(sc);
1016
1017 splx(s);
1018
1019 return (0);
1020 }
1021
1022 int
1023 et_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1024 {
1025 struct et_softc *sc = ifp->if_softc;
1026 struct ifreq *ifr = (struct ifreq *)data;
1027 int s, error = 0;
1028
1029 s = splnet();
1030
1031 switch (cmd) {
1032 case SIOCSIFFLAGS:
1033 if (ifp->if_flags & IFF_UP) {
1034 /*
1035 * If only the PROMISC or ALLMULTI flag changes, then
1036 * don't do a full re-init of the chip, just update
1037 * the Rx filter.
1038 */
1039 if ((ifp->if_flags & IFF_RUNNING) &&
1040 ((ifp->if_flags ^ sc->sc_if_flags) &
1041 (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1042 et_setmulti(sc);
1043 } else {
1044 if (!(ifp->if_flags & IFF_RUNNING))
1045 et_init(ifp);
1046 }
1047 } else {
1048 if (ifp->if_flags & IFF_RUNNING)
1049 et_stop(sc);
1050 }
1051 sc->sc_if_flags = ifp->if_flags;
1052 break;
1053 case SIOCSIFMEDIA:
1054 case SIOCGIFMEDIA:
1055 error = ifmedia_ioctl(ifp, ifr, &sc->sc_miibus.mii_media, cmd);
1056 break;
1057 default:
1058 error = ether_ioctl(ifp, cmd, data);
1059 if (error == ENETRESET) {
1060 if (ifp->if_flags & IFF_RUNNING)
1061 et_setmulti(sc);
1062 error = 0;
1063 }
1064 break;
1065
1066 }
1067
1068 splx(s);
1069
1070 return error;
1071 }
1072
1073 void
1074 et_start(struct ifnet *ifp)
1075 {
1076 struct et_softc *sc = ifp->if_softc;
1077 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1078 int trans;
1079 struct mbuf *m;
1080
1081 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1082 return;
1083
1084 trans = 0;
1085 for (;;) {
1086 IFQ_DEQUEUE(&ifp->if_snd, m);
1087 if (m == NULL)
1088 break;
1089
1090 if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1091 ifp->if_flags |= IFF_OACTIVE;
1092 break;
1093 }
1094
1095 if (et_encap(sc, &m)) {
1096 ifp->if_oerrors++;
1097 ifp->if_flags |= IFF_OACTIVE;
1098 break;
1099 }
1100
1101 trans = 1;
1102
1103 bpf_mtap(ifp, m);
1104 }
1105
1106 if (trans) {
1107 callout_schedule(&sc->sc_txtick, hz);
1108 ifp->if_timer = 5;
1109 }
1110 }
1111
1112 void
1113 et_watchdog(struct ifnet *ifp)
1114 {
1115 struct et_softc *sc = ifp->if_softc;
1116 aprint_error_dev(sc->sc_dev, "watchdog timed out\n");
1117
1118 ifp->if_flags &= ~IFF_RUNNING;
1119 et_init(ifp);
1120 et_start(ifp);
1121 }
1122
1123 int
1124 et_stop_rxdma(struct et_softc *sc)
1125 {
1126 CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1127 ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1128
1129 DELAY(5);
1130 if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1131 aprint_error_dev(sc->sc_dev, "can't stop RX DMA engine\n");
1132 return ETIMEDOUT;
1133 }
1134 return 0;
1135 }
1136
1137 int
1138 et_stop_txdma(struct et_softc *sc)
1139 {
1140 CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1141 ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1142 return 0;
1143 }
1144
1145 void
1146 et_free_tx_ring(struct et_softc *sc)
1147 {
1148 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1149 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1150 int i;
1151
1152 for (i = 0; i < ET_TX_NDESC; ++i) {
1153 struct et_txbuf *tb = &tbd->tbd_buf[i];
1154
1155 if (tb->tb_mbuf != NULL) {
1156 bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1157 m_freem(tb->tb_mbuf);
1158 tb->tb_mbuf = NULL;
1159 }
1160 }
1161
1162 bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1163 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1164 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1165 }
1166
1167 void
1168 et_free_rx_ring(struct et_softc *sc)
1169 {
1170 int n;
1171
1172 for (n = 0; n < ET_RX_NRING; ++n) {
1173 struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1174 struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1175 int i;
1176
1177 for (i = 0; i < ET_RX_NDESC; ++i) {
1178 struct et_rxbuf *rb = &rbd->rbd_buf[i];
1179
1180 if (rb->rb_mbuf != NULL) {
1181 bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
1182 m_freem(rb->rb_mbuf);
1183 rb->rb_mbuf = NULL;
1184 }
1185 }
1186
1187 bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1188 bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
1189 rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1190 }
1191 }
1192
1193 void
1194 et_setmulti(struct et_softc *sc)
1195 {
1196 struct ethercom *ec = &sc->sc_ethercom;
1197 struct ifnet *ifp = &ec->ec_if;
1198 uint32_t hash[4] = { 0, 0, 0, 0 };
1199 uint32_t rxmac_ctrl, pktfilt;
1200 struct ether_multi *enm;
1201 struct ether_multistep step;
1202 uint8_t addr[ETHER_ADDR_LEN];
1203 int i, count;
1204
1205 pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1206 rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1207
1208 pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1209 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1210 rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1211 goto back;
1212 }
1213
1214 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1215
1216 count = 0;
1217 ETHER_FIRST_MULTI(step, ec, enm);
1218 while (enm != NULL) {
1219 uint32_t *hp, h;
1220
1221 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1222 addr[i] &= enm->enm_addrlo[i];
1223 }
1224
1225 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)addr),
1226 ETHER_ADDR_LEN);
1227 h = (h & 0x3f800000) >> 23;
1228
1229 hp = &hash[0];
1230 if (h >= 32 && h < 64) {
1231 h -= 32;
1232 hp = &hash[1];
1233 } else if (h >= 64 && h < 96) {
1234 h -= 64;
1235 hp = &hash[2];
1236 } else if (h >= 96) {
1237 h -= 96;
1238 hp = &hash[3];
1239 }
1240 *hp |= (1 << h);
1241
1242 ++count;
1243 ETHER_NEXT_MULTI(step, enm);
1244 }
1245
1246 for (i = 0; i < 4; ++i)
1247 CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1248
1249 if (count > 0)
1250 pktfilt |= ET_PKTFILT_MCAST;
1251 rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1252 back:
1253 CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1254 CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1255 }
1256
1257 int
1258 et_chip_init(struct et_softc *sc)
1259 {
1260 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1261 uint32_t rxq_end;
1262 int error;
1263
1264 /*
1265 * Split internal memory between TX and RX according to MTU
1266 */
1267 if (ifp->if_mtu < 2048)
1268 rxq_end = 0x2bc;
1269 else if (ifp->if_mtu < 8192)
1270 rxq_end = 0x1ff;
1271 else
1272 rxq_end = 0x1b3;
1273 CSR_WRITE_4(sc, ET_RXQ_START, 0);
1274 CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1275 CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1276 CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1277
1278 /* No loopback */
1279 CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1280
1281 /* Clear MSI configure */
1282 CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1283
1284 /* Disable timer */
1285 CSR_WRITE_4(sc, ET_TIMER, 0);
1286
1287 /* Initialize MAC */
1288 et_init_mac(sc);
1289
1290 /* Enable memory controllers */
1291 CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1292
1293 /* Initialize RX MAC */
1294 et_init_rxmac(sc);
1295
1296 /* Initialize TX MAC */
1297 et_init_txmac(sc);
1298
1299 /* Initialize RX DMA engine */
1300 error = et_init_rxdma(sc);
1301 if (error)
1302 return error;
1303
1304 /* Initialize TX DMA engine */
1305 error = et_init_txdma(sc);
1306 if (error)
1307 return error;
1308
1309 return 0;
1310 }
1311
1312 int
1313 et_init_tx_ring(struct et_softc *sc)
1314 {
1315 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1316 struct et_txstatus_data *txsd = &sc->sc_tx_status;
1317 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1318
1319 bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1320 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1321 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1322
1323 tbd->tbd_start_index = 0;
1324 tbd->tbd_start_wrap = 0;
1325 tbd->tbd_used = 0;
1326
1327 bzero(txsd->txsd_status, sizeof(uint32_t));
1328 bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
1329 txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1330 return 0;
1331 }
1332
1333 int
1334 et_init_rx_ring(struct et_softc *sc)
1335 {
1336 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1337 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1338 int n;
1339
1340 for (n = 0; n < ET_RX_NRING; ++n) {
1341 struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1342 int i, error;
1343
1344 for (i = 0; i < ET_RX_NDESC; ++i) {
1345 error = rbd->rbd_newbuf(rbd, i, 1);
1346 if (error) {
1347 aprint_error_dev(sc->sc_dev, "%d ring %d buf, newbuf failed: "
1348 "%d\n", n, i, error);
1349 return error;
1350 }
1351 }
1352 }
1353
1354 bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1355 bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1356 rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1357
1358 bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1359 bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1360 rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1361
1362 return 0;
1363 }
1364
1365 int
1366 et_init_rxdma(struct et_softc *sc)
1367 {
1368 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1369 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1370 struct et_rxdesc_ring *rx_ring;
1371 int error;
1372
1373 error = et_stop_rxdma(sc);
1374 if (error) {
1375 aprint_error_dev(sc->sc_dev, "can't init RX DMA engine\n");
1376 return error;
1377 }
1378
1379 /*
1380 * Install RX status
1381 */
1382 CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1383 CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1384
1385 /*
1386 * Install RX stat ring
1387 */
1388 CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1389 CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1390 CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1391 CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1392 CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1393
1394 /* Match ET_RXSTAT_POS */
1395 rxst_ring->rsr_index = 0;
1396 rxst_ring->rsr_wrap = 0;
1397
1398 /*
1399 * Install the 2nd RX descriptor ring
1400 */
1401 rx_ring = &sc->sc_rx_ring[1];
1402 CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1403 CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1404 CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1405 CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1406 CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1407
1408 /* Match ET_RX_RING1_POS */
1409 rx_ring->rr_index = 0;
1410 rx_ring->rr_wrap = 1;
1411
1412 /*
1413 * Install the 1st RX descriptor ring
1414 */
1415 rx_ring = &sc->sc_rx_ring[0];
1416 CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1417 CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1418 CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1419 CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1420 CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1421
1422 /* Match ET_RX_RING0_POS */
1423 rx_ring->rr_index = 0;
1424 rx_ring->rr_wrap = 1;
1425
1426 /*
1427 * RX intr moderation
1428 */
1429 CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1430 CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1431
1432 return 0;
1433 }
1434
1435 int
1436 et_init_txdma(struct et_softc *sc)
1437 {
1438 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1439 struct et_txstatus_data *txsd = &sc->sc_tx_status;
1440 int error;
1441
1442 error = et_stop_txdma(sc);
1443 if (error) {
1444 aprint_error_dev(sc->sc_dev, "can't init TX DMA engine\n");
1445 return error;
1446 }
1447
1448 /*
1449 * Install TX descriptor ring
1450 */
1451 CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1452 CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1453 CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1454
1455 /*
1456 * Install TX status
1457 */
1458 CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1459 CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1460
1461 CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1462
1463 /* Match ET_TX_READY_POS */
1464 tx_ring->tr_ready_index = 0;
1465 tx_ring->tr_ready_wrap = 0;
1466
1467 return 0;
1468 }
1469
1470 void
1471 et_init_mac(struct et_softc *sc)
1472 {
1473 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1474 const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1475 uint32_t val;
1476
1477 /* Reset MAC */
1478 CSR_WRITE_4(sc, ET_MAC_CFG1,
1479 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1480 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1481 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1482
1483 /*
1484 * Setup inter packet gap
1485 */
1486 val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1487 __SHIFTIN(88, ET_IPG_NONB2B_2) |
1488 __SHIFTIN(80, ET_IPG_MINIFG) |
1489 __SHIFTIN(96, ET_IPG_B2B);
1490 CSR_WRITE_4(sc, ET_IPG, val);
1491
1492 /*
1493 * Setup half duplex mode
1494 */
1495 val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1496 __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1497 __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1498 ET_MAC_HDX_EXC_DEFER;
1499 CSR_WRITE_4(sc, ET_MAC_HDX, val);
1500
1501 /* Clear MAC control */
1502 CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1503
1504 /* Reset MII */
1505 CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1506
1507 /*
1508 * Set MAC address
1509 */
1510 val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1511 CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1512 val = (eaddr[0] << 16) | (eaddr[1] << 24);
1513 CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1514
1515 /* Set max frame length */
1516 CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1517 ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + ETHER_CRC_LEN);
1518
1519 /* Bring MAC out of reset state */
1520 CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1521 }
1522
1523 void
1524 et_init_rxmac(struct et_softc *sc)
1525 {
1526 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1527 const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1528 uint32_t val;
1529 int i;
1530
1531 /* Disable RX MAC and WOL */
1532 CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1533
1534 /*
1535 * Clear all WOL related registers
1536 */
1537 for (i = 0; i < 3; ++i)
1538 CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1539 for (i = 0; i < 20; ++i)
1540 CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1541
1542 /*
1543 * Set WOL source address. XXX is this necessary?
1544 */
1545 val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1546 CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1547 val = (eaddr[0] << 8) | eaddr[1];
1548 CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1549
1550 /* Clear packet filters */
1551 CSR_WRITE_4(sc, ET_PKTFILT, 0);
1552
1553 /* No ucast filtering */
1554 CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1555 CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1556 CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1557
1558 if (ifp->if_mtu > 8192) {
1559 /*
1560 * In order to transmit jumbo packets greater than 8k,
1561 * the FIFO between RX MAC and RX DMA needs to be reduced
1562 * in size to (16k - MTU). In order to implement this, we
1563 * must use "cut through" mode in the RX MAC, which chops
1564 * packets down into segments which are (max_size * 16).
1565 * In this case we selected 256 bytes, since this is the
1566 * size of the PCI-Express TLP's that the 1310 uses.
1567 */
1568 val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1569 ET_RXMAC_MC_SEGSZ_ENABLE;
1570 } else {
1571 val = 0;
1572 }
1573 CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1574
1575 CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1576
1577 /* Initialize RX MAC management register */
1578 CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1579
1580 CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1581
1582 CSR_WRITE_4(sc, ET_RXMAC_MGT,
1583 ET_RXMAC_MGT_PASS_ECRC |
1584 ET_RXMAC_MGT_PASS_ELEN |
1585 ET_RXMAC_MGT_PASS_ETRUNC |
1586 ET_RXMAC_MGT_CHECK_PKT);
1587
1588 /*
1589 * Configure runt filtering (may not work on certain chip generation)
1590 */
1591 val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1592 CSR_WRITE_4(sc, ET_PKTFILT, val);
1593
1594 /* Enable RX MAC but leave WOL disabled */
1595 CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1596 ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1597
1598 /*
1599 * Setup multicast hash and allmulti/promisc mode
1600 */
1601 et_setmulti(sc);
1602 }
1603
1604 void
1605 et_init_txmac(struct et_softc *sc)
1606 {
1607 /* Disable TX MAC and FC(?) */
1608 CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1609
1610 /* No flow control yet */
1611 CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1612
1613 /* Enable TX MAC but leave FC(?) diabled */
1614 CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1615 ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1616 }
1617
1618 int
1619 et_start_rxdma(struct et_softc *sc)
1620 {
1621 uint32_t val = 0;
1622
1623 val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1624 ET_RXDMA_CTRL_RING0_SIZE) |
1625 ET_RXDMA_CTRL_RING0_ENABLE;
1626 val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1627 ET_RXDMA_CTRL_RING1_SIZE) |
1628 ET_RXDMA_CTRL_RING1_ENABLE;
1629
1630 CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1631
1632 DELAY(5);
1633
1634 if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1635 aprint_error_dev(sc->sc_dev, "can't start RX DMA engine\n");
1636 return ETIMEDOUT;
1637 }
1638 return 0;
1639 }
1640
1641 int
1642 et_start_txdma(struct et_softc *sc)
1643 {
1644 CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1645 return 0;
1646 }
1647
1648 int
1649 et_enable_txrx(struct et_softc *sc)
1650 {
1651 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1652 uint32_t val;
1653 int i, rc = 0;
1654
1655 val = CSR_READ_4(sc, ET_MAC_CFG1);
1656 val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
1657 val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
1658 ET_MAC_CFG1_LOOPBACK);
1659 CSR_WRITE_4(sc, ET_MAC_CFG1, val);
1660
1661 if ((rc = ether_mediachange(ifp)) != 0)
1662 goto out;
1663
1664 #define NRETRY 100
1665
1666 for (i = 0; i < NRETRY; ++i) {
1667 val = CSR_READ_4(sc, ET_MAC_CFG1);
1668 if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
1669 (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
1670 break;
1671
1672 DELAY(10);
1673 }
1674 if (i == NRETRY) {
1675 aprint_error_dev(sc->sc_dev, "can't enable RX/TX\n");
1676 return ETIMEDOUT;
1677 }
1678
1679 #undef NRETRY
1680 return 0;
1681 out:
1682 return rc;
1683 }
1684
1685 void
1686 et_rxeof(struct et_softc *sc)
1687 {
1688 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1689 struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1690 struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1691 uint32_t rxs_stat_ring;
1692 int rxst_wrap, rxst_index;
1693
1694 bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1695 rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1696 bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1697 rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1698
1699 rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1700 rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1701 rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1702
1703 while (rxst_index != rxst_ring->rsr_index ||
1704 rxst_wrap != rxst_ring->rsr_wrap) {
1705 struct et_rxbuf_data *rbd;
1706 struct et_rxdesc_ring *rx_ring;
1707 struct et_rxstat *st;
1708 struct et_rxbuf *rb;
1709 struct mbuf *m;
1710 int buflen, buf_idx, ring_idx;
1711 uint32_t rxstat_pos, rxring_pos;
1712
1713 KASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1714 st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1715
1716 buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1717 buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1718 ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1719
1720 if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1721 rxst_ring->rsr_index = 0;
1722 rxst_ring->rsr_wrap ^= 1;
1723 }
1724 rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1725 ET_RXSTAT_POS_INDEX);
1726 if (rxst_ring->rsr_wrap)
1727 rxstat_pos |= ET_RXSTAT_POS_WRAP;
1728 CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1729
1730 if (ring_idx >= ET_RX_NRING) {
1731 ifp->if_ierrors++;
1732 aprint_error_dev(sc->sc_dev, "invalid ring index %d\n",
1733 ring_idx);
1734 continue;
1735 }
1736 if (buf_idx >= ET_RX_NDESC) {
1737 ifp->if_ierrors++;
1738 aprint_error_dev(sc->sc_dev, "invalid buf index %d\n",
1739 buf_idx);
1740 continue;
1741 }
1742
1743 rbd = &sc->sc_rx_data[ring_idx];
1744 rb = &rbd->rbd_buf[buf_idx];
1745 m = rb->rb_mbuf;
1746 bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
1747 rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1748
1749 if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1750 if (buflen < ETHER_CRC_LEN) {
1751 m_freem(m);
1752 ifp->if_ierrors++;
1753 } else {
1754 m->m_pkthdr.len = m->m_len = buflen -
1755 ETHER_CRC_LEN;
1756 m->m_pkthdr.rcvif = ifp;
1757
1758 bpf_mtap(ifp, m);
1759
1760 ifp->if_ipackets++;
1761 (*ifp->if_input)(ifp, m);
1762 }
1763 } else {
1764 ifp->if_ierrors++;
1765 }
1766
1767 rx_ring = &sc->sc_rx_ring[ring_idx];
1768
1769 if (buf_idx != rx_ring->rr_index) {
1770 aprint_error_dev(sc->sc_dev, "WARNING!! ring %d, "
1771 "buf_idx %d, rr_idx %d\n",
1772 ring_idx, buf_idx, rx_ring->rr_index);
1773 }
1774
1775 KASSERT(rx_ring->rr_index < ET_RX_NDESC);
1776 if (++rx_ring->rr_index == ET_RX_NDESC) {
1777 rx_ring->rr_index = 0;
1778 rx_ring->rr_wrap ^= 1;
1779 }
1780 rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1781 if (rx_ring->rr_wrap)
1782 rxring_pos |= ET_RX_RING_POS_WRAP;
1783 CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1784 }
1785 }
1786
1787 int
1788 et_encap(struct et_softc *sc, struct mbuf **m0)
1789 {
1790 struct mbuf *m = *m0;
1791 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1792 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1793 struct et_txdesc *td;
1794 bus_dmamap_t map;
1795 int error, maxsegs, first_idx, last_idx, i;
1796 uint32_t tx_ready_pos, last_td_ctrl2;
1797
1798 maxsegs = ET_TX_NDESC - tbd->tbd_used;
1799 if (maxsegs > ET_NSEG_MAX)
1800 maxsegs = ET_NSEG_MAX;
1801 KASSERTMSG(maxsegs >= ET_NSEG_SPARE,
1802 "not enough spare TX desc (%d)\n", maxsegs);
1803
1804 KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1805 first_idx = tx_ring->tr_ready_index;
1806 map = tbd->tbd_buf[first_idx].tb_dmap;
1807
1808 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1809 BUS_DMA_NOWAIT);
1810 if (!error && map->dm_nsegs == 0) {
1811 bus_dmamap_unload(sc->sc_dmat, map);
1812 error = EFBIG;
1813 }
1814 if (error && error != EFBIG) {
1815 aprint_error_dev(sc->sc_dev, "can't load TX mbuf");
1816 goto back;
1817 }
1818 if (error) { /* error == EFBIG */
1819 struct mbuf *m_new;
1820
1821 error = 0;
1822
1823 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1824 if (m_new == NULL) {
1825 m_freem(m);
1826 aprint_error_dev(sc->sc_dev, "can't defrag TX mbuf\n");
1827 error = ENOBUFS;
1828 goto back;
1829 }
1830
1831 M_COPY_PKTHDR(m_new, m);
1832 if (m->m_pkthdr.len > MHLEN) {
1833 MCLGET(m_new, M_DONTWAIT);
1834 if (!(m_new->m_flags & M_EXT)) {
1835 m_freem(m);
1836 m_freem(m_new);
1837 error = ENOBUFS;
1838 }
1839 }
1840
1841 if (error) {
1842 aprint_error_dev(sc->sc_dev, "can't defrag TX buffer\n");
1843 goto back;
1844 }
1845
1846 m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
1847 m_freem(m);
1848 m_new->m_len = m_new->m_pkthdr.len;
1849 *m0 = m = m_new;
1850
1851 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1852 BUS_DMA_NOWAIT);
1853 if (error || map->dm_nsegs == 0) {
1854 if (map->dm_nsegs == 0) {
1855 bus_dmamap_unload(sc->sc_dmat, map);
1856 error = EFBIG;
1857 }
1858 aprint_error_dev(sc->sc_dev, "can't load defraged TX mbuf\n");
1859 goto back;
1860 }
1861 }
1862
1863 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1864 BUS_DMASYNC_PREWRITE);
1865
1866 last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1867 sc->sc_tx += map->dm_nsegs;
1868 if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1869 sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1870 last_td_ctrl2 |= ET_TDCTRL2_INTR;
1871 }
1872
1873 last_idx = -1;
1874 for (i = 0; i < map->dm_nsegs; ++i) {
1875 int idx;
1876
1877 idx = (first_idx + i) % ET_TX_NDESC;
1878 td = &tx_ring->tr_desc[idx];
1879 td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
1880 td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
1881 td->td_ctrl1 =
1882 __SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
1883
1884 if (i == map->dm_nsegs - 1) { /* Last frag */
1885 td->td_ctrl2 = last_td_ctrl2;
1886 last_idx = idx;
1887 }
1888
1889 KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1890 if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1891 tx_ring->tr_ready_index = 0;
1892 tx_ring->tr_ready_wrap ^= 1;
1893 }
1894 }
1895 td = &tx_ring->tr_desc[first_idx];
1896 td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG; /* First frag */
1897
1898 KASSERT(last_idx >= 0);
1899 tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1900 tbd->tbd_buf[last_idx].tb_dmap = map;
1901 tbd->tbd_buf[last_idx].tb_mbuf = m;
1902
1903 tbd->tbd_used += map->dm_nsegs;
1904 KASSERT(tbd->tbd_used <= ET_TX_NDESC);
1905
1906 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1907 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1908
1909
1910 tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1911 ET_TX_READY_POS_INDEX);
1912 if (tx_ring->tr_ready_wrap)
1913 tx_ready_pos |= ET_TX_READY_POS_WRAP;
1914 CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1915
1916 error = 0;
1917 back:
1918 if (error) {
1919 m_freem(m);
1920 *m0 = NULL;
1921 }
1922 return error;
1923 }
1924
1925 void
1926 et_txeof(struct et_softc *sc)
1927 {
1928 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1929 struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1930 struct et_txbuf_data *tbd = &sc->sc_tx_data;
1931 uint32_t tx_done;
1932 int end, wrap;
1933
1934 if (tbd->tbd_used == 0)
1935 return;
1936
1937 tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
1938 end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
1939 wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
1940
1941 while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
1942 struct et_txbuf *tb;
1943
1944 KASSERT(tbd->tbd_start_index < ET_TX_NDESC);
1945 tb = &tbd->tbd_buf[tbd->tbd_start_index];
1946
1947 bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
1948 sizeof(struct et_txdesc));
1949 bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1950 tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1951
1952 if (tb->tb_mbuf != NULL) {
1953 bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1954 m_freem(tb->tb_mbuf);
1955 tb->tb_mbuf = NULL;
1956 ifp->if_opackets++;
1957 }
1958
1959 if (++tbd->tbd_start_index == ET_TX_NDESC) {
1960 tbd->tbd_start_index = 0;
1961 tbd->tbd_start_wrap ^= 1;
1962 }
1963
1964 KASSERT(tbd->tbd_used > 0);
1965 tbd->tbd_used--;
1966 }
1967
1968 if (tbd->tbd_used == 0) {
1969 callout_stop(&sc->sc_txtick);
1970 ifp->if_timer = 0;
1971 }
1972 if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
1973 ifp->if_flags &= ~IFF_OACTIVE;
1974
1975 et_start(ifp);
1976 }
1977
1978 void
1979 et_txtick(void *xsc)
1980 {
1981 struct et_softc *sc = xsc;
1982 int s;
1983
1984 s = splnet();
1985 et_txeof(sc);
1986 splx(s);
1987 }
1988
1989 void
1990 et_tick(void *xsc)
1991 {
1992 struct et_softc *sc = xsc;
1993 int s;
1994
1995 s = splnet();
1996 mii_tick(&sc->sc_miibus);
1997 callout_schedule(&sc->sc_tick, hz);
1998 splx(s);
1999 }
2000
2001 int
2002 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2003 {
2004 return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2005 }
2006
2007 int
2008 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2009 {
2010 return et_newbuf(rbd, buf_idx, init, MHLEN);
2011 }
2012
2013 int
2014 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2015 {
2016 struct et_softc *sc = rbd->rbd_softc;
2017 struct et_rxdesc_ring *rx_ring;
2018 struct et_rxdesc *desc;
2019 struct et_rxbuf *rb;
2020 struct mbuf *m;
2021 bus_dmamap_t dmap;
2022 int error, len;
2023
2024 KASSERT(buf_idx < ET_RX_NDESC);
2025 rb = &rbd->rbd_buf[buf_idx];
2026
2027 if (len0 >= MINCLSIZE) {
2028 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2029 if (m == NULL)
2030 return (ENOBUFS);
2031 MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2032 len = MCLBYTES;
2033 } else {
2034 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2035 len = MHLEN;
2036 }
2037
2038 if (m == NULL) {
2039 error = ENOBUFS;
2040
2041 /* XXX for debug */
2042 aprint_error_dev(sc->sc_dev, "M_CLGET failed, size %d\n", len0);
2043 if (init) {
2044 return error;
2045 } else {
2046 goto back;
2047 }
2048 }
2049 m->m_len = m->m_pkthdr.len = len;
2050
2051 /*
2052 * Try load RX mbuf into temporary DMA tag
2053 */
2054 error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
2055 init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2056 if (error) {
2057 if (!error) {
2058 bus_dmamap_unload(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
2059 error = EFBIG;
2060 aprint_error_dev(sc->sc_dev, "too many segments?!\n");
2061 }
2062 m_freem(m);
2063
2064 /* XXX for debug */
2065 aprint_error_dev(sc->sc_dev, "can't load RX mbuf\n");
2066 if (init) {
2067 return error;
2068 } else {
2069 goto back;
2070 }
2071 }
2072
2073 if (!init)
2074 bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
2075 rb->rb_mbuf = m;
2076
2077 /*
2078 * Swap RX buf's DMA map with the loaded temporary one
2079 */
2080 dmap = rb->rb_dmap;
2081 rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2082 rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
2083 sc->sc_mbuf_tmp_dmap = dmap;
2084
2085 error = 0;
2086 back:
2087 rx_ring = rbd->rbd_ring;
2088 desc = &rx_ring->rr_desc[buf_idx];
2089
2090 desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2091 desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2092 desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2093
2094 bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
2095 rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2096 return error;
2097 }
2098