if_ipw.c revision 1.23 1 /* $NetBSD: if_ipw.c,v 1.23 2006/04/29 16:43:40 rpaulo Exp $ */
2 /* FreeBSD: src/sys/dev/ipw/if_ipw.c,v 1.15 2005/11/13 17:17:40 damien Exp */
3
4 /*-
5 * Copyright (c) 2004, 2005
6 * Damien Bergamini <damien.bergamini (at) free.fr>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: if_ipw.c,v 1.23 2006/04/29 16:43:40 rpaulo Exp $");
33
34 /*-
35 * Intel(R) PRO/Wireless 2100 MiniPCI driver
36 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
37 */
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 #include <sys/mbuf.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/systm.h>
48 #include <sys/malloc.h>
49 #include <sys/conf.h>
50
51 #include <machine/bus.h>
52 #include <machine/endian.h>
53 #include <machine/intr.h>
54
55 #include <dev/pci/pcireg.h>
56 #include <dev/pci/pcivar.h>
57 #include <dev/pci/pcidevs.h>
58
59 #if NBPFILTER > 0
60 #include <net/bpf.h>
61 #endif
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_ether.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_radiotap.h>
71
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip.h>
76
77 #include <dev/firmload.h>
78
79 #include <dev/pci/if_ipwreg.h>
80 #include <dev/pci/if_ipwvar.h>
81
82 #ifdef IPW_DEBUG
83 #define DPRINTF(x) if (ipw_debug > 0) printf x
84 #define DPRINTFN(n, x) if (ipw_debug >= (n)) printf x
85 int ipw_debug = 0;
86 #else
87 #define DPRINTF(x)
88 #define DPRINTFN(n, x)
89 #endif
90
91 static int ipw_dma_alloc(struct ipw_softc *);
92 static void ipw_release(struct ipw_softc *);
93 static int ipw_match(struct device *, struct cfdata *, void *);
94 static void ipw_attach(struct device *, struct device *, void *);
95 static int ipw_detach(struct device *, int);
96
97 static void ipw_shutdown(void *);
98 static int ipw_suspend(struct ipw_softc *);
99 static int ipw_resume(struct ipw_softc *);
100 static void ipw_powerhook(int, void *);
101
102 static int ipw_media_change(struct ifnet *);
103 static void ipw_media_status(struct ifnet *, struct ifmediareq *);
104 static int ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
105 static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t);
106 static void ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
107 static void ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
108 static void ipw_data_intr(struct ipw_softc *, struct ipw_status *,
109 struct ipw_soft_bd *, struct ipw_soft_buf *);
110 static void ipw_rx_intr(struct ipw_softc *);
111 static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
112 static void ipw_tx_intr(struct ipw_softc *);
113 static int ipw_intr(void *);
114 static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
115 static int ipw_tx_start(struct ifnet *, struct mbuf *,
116 struct ieee80211_node *);
117 static void ipw_start(struct ifnet *);
118 static void ipw_watchdog(struct ifnet *);
119 static int ipw_ioctl(struct ifnet *, u_long, caddr_t);
120 static int ipw_get_table1(struct ipw_softc *, uint32_t *);
121 static int ipw_get_radio(struct ipw_softc *, int *);
122 static void ipw_stop_master(struct ipw_softc *);
123 static int ipw_reset(struct ipw_softc *);
124 static int ipw_load_ucode(struct ipw_softc *, u_char *, int);
125 static int ipw_load_firmware(struct ipw_softc *, u_char *, int);
126 static int ipw_cache_firmware(struct ipw_softc *);
127 static void ipw_free_firmware(struct ipw_softc *);
128 static int ipw_config(struct ipw_softc *);
129 static int ipw_init(struct ifnet *);
130 static void ipw_stop(struct ifnet *, int);
131 static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t);
132 static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
133 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, uint32_t *);
134 static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
135 bus_size_t);
136 static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
137 bus_size_t);
138
139 /*
140 * Supported rates for 802.11b mode (in 500Kbps unit).
141 */
142 static const struct ieee80211_rateset ipw_rateset_11b =
143 { 4, { 2, 4, 11, 22 } };
144
145 static inline uint8_t
146 MEM_READ_1(struct ipw_softc *sc, uint32_t addr)
147 {
148 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
149 return CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA);
150 }
151
152 static inline uint32_t
153 MEM_READ_4(struct ipw_softc *sc, uint32_t addr)
154 {
155 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
156 return CSR_READ_4(sc, IPW_CSR_INDIRECT_DATA);
157 }
158
159 CFATTACH_DECL(ipw, sizeof (struct ipw_softc), ipw_match, ipw_attach,
160 ipw_detach, NULL);
161
162 static int
163 ipw_match(struct device *parent, struct cfdata *match, void *aux)
164 {
165 struct pci_attach_args *pa = aux;
166
167 if (PCI_VENDOR (pa->pa_id) == PCI_VENDOR_INTEL &&
168 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2100)
169 return 1;
170
171 return 0;
172 }
173
174 /* Base Address Register */
175 #define IPW_PCI_BAR0 0x10
176
177 static void
178 ipw_attach(struct device *parent, struct device *self, void *aux)
179 {
180 struct ipw_softc *sc = (struct ipw_softc *)self;
181 struct ieee80211com *ic = &sc->sc_ic;
182 struct ifnet *ifp = &sc->sc_if;
183 struct pci_attach_args *pa = aux;
184 const char *intrstr;
185 char devinfo[256];
186 bus_space_tag_t memt;
187 bus_space_handle_t memh;
188 bus_addr_t base;
189 pci_intr_handle_t ih;
190 uint32_t data;
191 uint16_t val;
192 int i, revision, error;
193
194 sc->sc_pct = pa->pa_pc;
195 sc->sc_pcitag = pa->pa_tag;
196
197 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
198 revision = PCI_REVISION(pa->pa_class);
199 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
200
201 /* enable bus-mastering */
202 data = pci_conf_read(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG);
203 data |= PCI_COMMAND_MASTER_ENABLE;
204 pci_conf_write(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG, data);
205
206 /* clear device specific PCI configuration register 0x41 */
207 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
208 data &= ~0x0000ff00;
209 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
210
211 /* map the register window */
212 error = pci_mapreg_map(pa, IPW_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
213 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz);
214 if (error != 0) {
215 aprint_error("%s: could not map memory space\n",
216 sc->sc_dev.dv_xname);
217 return;
218 }
219
220 sc->sc_st = memt;
221 sc->sc_sh = memh;
222 sc->sc_dmat = pa->pa_dmat;
223 strlcpy(sc->sc_fwname, "ipw2100-1.2.fw", sizeof(sc->sc_fwname));
224
225 /* disable interrupts */
226 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
227
228 if (pci_intr_map(pa, &ih) != 0) {
229 aprint_error("%s: could not map interrupt\n",
230 sc->sc_dev.dv_xname);
231 return;
232 }
233
234 intrstr = pci_intr_string(sc->sc_pct, ih);
235 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, ipw_intr, sc);
236 if (sc->sc_ih == NULL) {
237 aprint_error("%s: could not establish interrupt",
238 sc->sc_dev.dv_xname);
239 if (intrstr != NULL)
240 aprint_error(" at %s", intrstr);
241 aprint_error("\n");
242 return;
243 }
244 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
245
246 if (ipw_reset(sc) != 0) {
247 aprint_error("%s: could not reset adapter\n",
248 sc->sc_dev.dv_xname);
249 goto fail;
250 }
251
252 if (ipw_dma_alloc(sc) != 0) {
253 aprint_error("%s: could not allocate DMA resources\n",
254 sc->sc_dev.dv_xname);
255 goto fail;
256 }
257
258 ifp->if_softc = sc;
259 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
260 ifp->if_init = ipw_init;
261 ifp->if_stop = ipw_stop;
262 ifp->if_ioctl = ipw_ioctl;
263 ifp->if_start = ipw_start;
264 ifp->if_watchdog = ipw_watchdog;
265 IFQ_SET_READY(&ifp->if_snd);
266 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
267
268 ic->ic_ifp = ifp;
269 ic->ic_phytype = IEEE80211_T_DS;
270 ic->ic_opmode = IEEE80211_M_STA;
271 ic->ic_state = IEEE80211_S_INIT;
272
273 /* set device capabilities */
274 ic->ic_caps = IEEE80211_C_SHPREAMBLE | IEEE80211_C_TXPMGT |
275 IEEE80211_C_IBSS | IEEE80211_C_MONITOR;
276
277 /* read MAC address from EEPROM */
278 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
279 ic->ic_myaddr[0] = val >> 8;
280 ic->ic_myaddr[1] = val & 0xff;
281 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
282 ic->ic_myaddr[2] = val >> 8;
283 ic->ic_myaddr[3] = val & 0xff;
284 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
285 ic->ic_myaddr[4] = val >> 8;
286 ic->ic_myaddr[5] = val & 0xff;
287
288 /* set supported .11b rates */
289 ic->ic_sup_rates[IEEE80211_MODE_11B] = ipw_rateset_11b;
290
291 /* set supported .11b channels (read from EEPROM) */
292 if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0)
293 val = 0x7ff; /* default to channels 1-11 */
294 val <<= 1;
295 for (i = 1; i < 16; i++) {
296 if (val & (1 << i)) {
297 ic->ic_channels[i].ic_freq =
298 ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
299 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
300 }
301 }
302
303 /* check support for radio transmitter switch in EEPROM */
304 if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
305 sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
306
307 aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
308 ether_sprintf(ic->ic_myaddr));
309
310 if_attach(ifp);
311 ieee80211_ifattach(ic);
312
313 /* override state transition machine */
314 sc->sc_newstate = ic->ic_newstate;
315 ic->ic_newstate = ipw_newstate;
316
317 ieee80211_media_init(ic, ipw_media_change, ipw_media_status);
318
319 #if NBPFILTER > 0
320 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
321 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
322
323 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
324 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
325 sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
326
327 sc->sc_txtap_len = sizeof sc->sc_txtapu;
328 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
329 sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
330 #endif
331
332 /*
333 * Add a few sysctl knobs.
334 * XXX: Not yet
335 */
336 sc->dwelltime = 100;
337
338 /*
339 * Make sure the interface is shutdown during reboot.
340 */
341 sc->sc_sdhook = shutdownhook_establish(ipw_shutdown, sc);
342 if (sc->sc_sdhook == NULL)
343 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
344 sc->sc_dev.dv_xname);
345 sc->sc_powerhook = powerhook_establish(ipw_powerhook, sc);
346 if (sc->sc_powerhook == NULL)
347 printf("%s: WARNING: unable to establish power hook\n",
348 sc->sc_dev.dv_xname);
349
350 ieee80211_announce(ic);
351
352 return;
353
354 fail: ipw_detach(self, 0);
355 }
356
357 static int
358 ipw_detach(struct device* self, int flags)
359 {
360 struct ipw_softc *sc = (struct ipw_softc *)self;
361 struct ifnet *ifp = &sc->sc_if;
362
363 if (ifp->if_softc) {
364 ipw_stop(ifp, 1);
365 ipw_free_firmware(sc);
366
367 #if NBPFILTER > 0
368 bpfdetach(ifp);
369 #endif
370 ieee80211_ifdetach(&sc->sc_ic);
371 if_detach(ifp);
372
373 ipw_release(sc);
374 }
375
376 if (sc->sc_ih != NULL) {
377 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
378 sc->sc_ih = NULL;
379 }
380
381 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
382
383 return 0;
384 }
385
386 static int
387 ipw_dma_alloc(struct ipw_softc *sc)
388 {
389 struct ipw_soft_bd *sbd;
390 struct ipw_soft_hdr *shdr;
391 struct ipw_soft_buf *sbuf;
392 int error, i, nsegs;
393
394 /*
395 * Allocate and map tx ring.
396 */
397 error = bus_dmamap_create(sc->sc_dmat, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0,
398 BUS_DMA_NOWAIT, &sc->tbd_map);
399 if (error != 0) {
400 aprint_error("%s: could not create tbd dma map\n",
401 sc->sc_dev.dv_xname);
402 goto fail;
403 }
404
405 error = bus_dmamem_alloc(sc->sc_dmat, IPW_TBD_SZ, PAGE_SIZE, 0,
406 &sc->tbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
407 if (error != 0) {
408 aprint_error("%s: could not allocate tbd dma memory\n",
409 sc->sc_dev.dv_xname);
410 goto fail;
411 }
412
413 error = bus_dmamem_map(sc->sc_dmat, &sc->tbd_seg, nsegs, IPW_TBD_SZ,
414 (caddr_t *)&sc->tbd_list, BUS_DMA_NOWAIT);
415 if (error != 0) {
416 aprint_error("%s: could not map tbd dma memory\n",
417 sc->sc_dev.dv_xname);
418 goto fail;
419 }
420
421 error = bus_dmamap_load(sc->sc_dmat, sc->tbd_map, sc->tbd_list,
422 IPW_TBD_SZ, NULL, BUS_DMA_NOWAIT);
423 if (error != 0) {
424 aprint_error("%s: could not load tbd dma memory\n",
425 sc->sc_dev.dv_xname);
426 goto fail;
427 }
428
429 (void)memset(sc->tbd_list, 0, IPW_TBD_SZ);
430
431 /*
432 * Allocate and map rx ring.
433 */
434 error = bus_dmamap_create(sc->sc_dmat, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0,
435 BUS_DMA_NOWAIT, &sc->rbd_map);
436 if (error != 0) {
437 aprint_error("%s: could not create rbd dma map\n",
438 sc->sc_dev.dv_xname);
439 goto fail;
440 }
441
442 error = bus_dmamem_alloc(sc->sc_dmat, IPW_RBD_SZ, PAGE_SIZE, 0,
443 &sc->rbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
444 if (error != 0) {
445 aprint_error("%s: could not allocate rbd dma memory\n",
446 sc->sc_dev.dv_xname);
447 goto fail;
448 }
449
450 error = bus_dmamem_map(sc->sc_dmat, &sc->rbd_seg, nsegs, IPW_RBD_SZ,
451 (caddr_t *)&sc->rbd_list, BUS_DMA_NOWAIT);
452 if (error != 0) {
453 aprint_error("%s: could not map rbd dma memory\n",
454 sc->sc_dev.dv_xname);
455 goto fail;
456 }
457
458 error = bus_dmamap_load(sc->sc_dmat, sc->rbd_map, sc->rbd_list,
459 IPW_RBD_SZ, NULL, BUS_DMA_NOWAIT);
460 if (error != 0) {
461 aprint_error("%s: could not load rbd dma memory\n",
462 sc->sc_dev.dv_xname);
463 goto fail;
464 }
465
466 (void)memset(sc->rbd_list, 0, IPW_RBD_SZ);
467
468 /*
469 * Allocate and map status ring.
470 */
471 error = bus_dmamap_create(sc->sc_dmat, IPW_STATUS_SZ, 1, IPW_STATUS_SZ,
472 0, BUS_DMA_NOWAIT, &sc->status_map);
473 if (error != 0) {
474 aprint_error("%s: could not create status dma map\n",
475 sc->sc_dev.dv_xname);
476 goto fail;
477 }
478
479 error = bus_dmamem_alloc(sc->sc_dmat, IPW_STATUS_SZ, PAGE_SIZE, 0,
480 &sc->status_seg, 1, &nsegs, BUS_DMA_NOWAIT);
481 if (error != 0) {
482 aprint_error("%s: could not allocate status dma memory\n",
483 sc->sc_dev.dv_xname);
484 goto fail;
485 }
486
487 error = bus_dmamem_map(sc->sc_dmat, &sc->status_seg, nsegs,
488 IPW_STATUS_SZ, (caddr_t *)&sc->status_list, BUS_DMA_NOWAIT);
489 if (error != 0) {
490 aprint_error("%s: could not map status dma memory\n",
491 sc->sc_dev.dv_xname);
492 goto fail;
493 }
494
495 error = bus_dmamap_load(sc->sc_dmat, sc->status_map, sc->status_list,
496 IPW_STATUS_SZ, NULL, BUS_DMA_NOWAIT);
497 if (error != 0) {
498 aprint_error("%s: could not load status dma memory\n",
499 sc->sc_dev.dv_xname);
500 goto fail;
501 }
502
503 (void)memset(sc->status_list, 0, IPW_STATUS_SZ);
504
505 /*
506 * Allocate command DMA map.
507 */
508 error = bus_dmamap_create(sc->sc_dmat, sizeof (struct ipw_cmd),
509 1, sizeof (struct ipw_cmd), 0, BUS_DMA_NOWAIT, &sc->cmd_map);
510 if (error != 0) {
511 aprint_error("%s: could not create cmd dma map\n",
512 sc->sc_dev.dv_xname);
513 goto fail;
514 }
515
516 error = bus_dmamem_alloc(sc->sc_dmat, sizeof (struct ipw_cmd),
517 PAGE_SIZE, 0, &sc->cmd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
518 if (error != 0) {
519 aprint_error("%s: could not allocate cmd dma memory\n",
520 sc->sc_dev.dv_xname);
521 goto fail;
522 }
523
524 error = bus_dmamem_map(sc->sc_dmat, &sc->cmd_seg, nsegs,
525 sizeof (struct ipw_cmd), (caddr_t *)&sc->cmd, BUS_DMA_NOWAIT);
526 if (error != 0) {
527 aprint_error("%s: could not map cmd dma memory\n",
528 sc->sc_dev.dv_xname);
529 goto fail;
530 }
531
532 error = bus_dmamap_load(sc->sc_dmat, sc->cmd_map, &sc->cmd,
533 sizeof (struct ipw_cmd), NULL, BUS_DMA_NOWAIT);
534 if (error != 0) {
535 aprint_error("%s: could not map cmd dma memory\n",
536 sc->sc_dev.dv_xname);
537 return error;
538 }
539
540 /*
541 * Allocate and map hdr list.
542 */
543
544 error = bus_dmamap_create(sc->sc_dmat,
545 IPW_NDATA * sizeof(struct ipw_hdr), 1,
546 sizeof(struct ipw_hdr), 0, BUS_DMA_NOWAIT,
547 &sc->hdr_map);
548 if (error != 0) {
549 aprint_error("%s: could not create hdr dma map\n",
550 sc->sc_dev.dv_xname);
551 goto fail;
552 }
553
554 error = bus_dmamem_alloc(sc->sc_dmat,
555 IPW_NDATA * sizeof(struct ipw_hdr), PAGE_SIZE, 0, &sc->hdr_seg,
556 1, &nsegs, BUS_DMA_NOWAIT);
557 if (error != 0) {
558 aprint_error("%s: could not allocate hdr memory\n",
559 sc->sc_dev.dv_xname);
560 goto fail;
561 }
562
563 error = bus_dmamem_map(sc->sc_dmat, &sc->hdr_seg, nsegs,
564 IPW_NDATA * sizeof(struct ipw_hdr), (caddr_t *)&sc->hdr_list,
565 BUS_DMA_NOWAIT);
566 if (error != 0) {
567 aprint_error("%s: could not map hdr memory\n",
568 sc->sc_dev.dv_xname);
569 goto fail;
570 }
571
572 error = bus_dmamap_load(sc->sc_dmat, sc->hdr_map, sc->hdr_list,
573 IPW_NDATA * sizeof(struct ipw_hdr), NULL, BUS_DMA_NOWAIT);
574 if (error != 0) {
575 aprint_error("%s: could not load hdr memory\n",
576 sc->sc_dev.dv_xname);
577 goto fail;
578 }
579
580 (void)memset(sc->hdr_list, 0, IPW_HDR_SZ);
581
582 /*
583 * Create DMA hdrs tailq.
584 */
585 TAILQ_INIT(&sc->sc_free_shdr);
586 for (i = 0; i < IPW_NDATA; i++) {
587 shdr = &sc->shdr_list[i];
588 shdr->hdr = sc->hdr_list + i;
589 shdr->offset = sizeof(struct ipw_hdr) * i;
590 shdr->addr = sc->hdr_map->dm_segs[0].ds_addr + shdr->offset;
591 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
592 }
593
594 /*
595 * Allocate tx buffers DMA maps.
596 */
597 TAILQ_INIT(&sc->sc_free_sbuf);
598 for (i = 0; i < IPW_NDATA; i++) {
599 sbuf = &sc->tx_sbuf_list[i];
600
601 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
602 IPW_MAX_NSEG, MCLBYTES, 0, BUS_DMA_NOWAIT, &sbuf->map);
603 if (error != 0) {
604 aprint_error("%s: could not create txbuf dma map\n",
605 sc->sc_dev.dv_xname);
606 goto fail;
607 }
608 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
609 }
610
611 /*
612 * Initialize tx ring.
613 */
614 for (i = 0; i < IPW_NTBD; i++) {
615 sbd = &sc->stbd_list[i];
616 sbd->bd = &sc->tbd_list[i];
617 sbd->type = IPW_SBD_TYPE_NOASSOC;
618 }
619
620 /*
621 * Pre-allocate rx buffers and DMA maps
622 */
623 for (i = 0; i < IPW_NRBD; i++) {
624 sbd = &sc->srbd_list[i];
625 sbuf = &sc->rx_sbuf_list[i];
626 sbd->bd = &sc->rbd_list[i];
627
628 MGETHDR(sbuf->m, M_DONTWAIT, MT_DATA);
629 if (sbuf->m == NULL) {
630 aprint_error("%s: could not allocate rx mbuf\n",
631 sc->sc_dev.dv_xname);
632 error = ENOMEM;
633 goto fail;
634 }
635
636 MCLGET(sbuf->m, M_DONTWAIT);
637 if (!(sbuf->m->m_flags & M_EXT)) {
638 m_freem(sbuf->m);
639 aprint_error("%s: could not allocate rx mbuf cluster\n",
640 sc->sc_dev.dv_xname);
641 error = ENOMEM;
642 goto fail;
643 }
644
645 sbuf->m->m_pkthdr.len = sbuf->m->m_len = sbuf->m->m_ext.ext_size;
646
647 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
648 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sbuf->map);
649 if (error != 0) {
650 aprint_error("%s: could not create rxbuf dma map\n",
651 sc->sc_dev.dv_xname);
652 m_freem(sbuf->m);
653 goto fail;
654 }
655
656 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
657 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
658 if (error != 0) {
659 bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
660 m_freem(sbuf->m);
661 aprint_error("%s: could not map rxbuf dma memory\n",
662 sc->sc_dev.dv_xname);
663 goto fail;
664 }
665
666 sbd->type = IPW_SBD_TYPE_DATA;
667 sbd->priv = sbuf;
668 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
669 sbd->bd->len = htole32(MCLBYTES);
670
671 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
672 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
673
674 }
675
676 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, 0, IPW_RBD_SZ,
677 BUS_DMASYNC_PREREAD);
678
679 return 0;
680
681 fail: ipw_release(sc);
682 return error;
683 }
684
685 static void
686 ipw_release(struct ipw_softc *sc)
687 {
688 struct ipw_soft_buf *sbuf;
689 int i;
690
691 if (sc->tbd_map != NULL) {
692 if (sc->tbd_list != NULL) {
693 bus_dmamap_unload(sc->sc_dmat, sc->tbd_map);
694 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->tbd_list,
695 IPW_TBD_SZ);
696 bus_dmamem_free(sc->sc_dmat, &sc->tbd_seg, 1);
697 }
698 bus_dmamap_destroy(sc->sc_dmat, sc->tbd_map);
699 }
700
701 if (sc->rbd_map != NULL) {
702 if (sc->rbd_list != NULL) {
703 bus_dmamap_unload(sc->sc_dmat, sc->rbd_map);
704 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rbd_list,
705 IPW_RBD_SZ);
706 bus_dmamem_free(sc->sc_dmat, &sc->rbd_seg, 1);
707 }
708 bus_dmamap_destroy(sc->sc_dmat, sc->rbd_map);
709 }
710
711 if (sc->status_map != NULL) {
712 if (sc->status_list != NULL) {
713 bus_dmamap_unload(sc->sc_dmat, sc->status_map);
714 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->status_list,
715 IPW_RBD_SZ);
716 bus_dmamem_free(sc->sc_dmat, &sc->status_seg, 1);
717 }
718 bus_dmamap_destroy(sc->sc_dmat, sc->status_map);
719 }
720
721 for (i = 0; i < IPW_NTBD; i++)
722 ipw_release_sbd(sc, &sc->stbd_list[i]);
723
724 if (sc->cmd_map != NULL)
725 bus_dmamap_destroy(sc->sc_dmat, sc->cmd_map);
726
727 if (sc->hdr_list != NULL) {
728 bus_dmamap_unload(sc->sc_dmat, sc->hdr_map);
729 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->hdr_list,
730 IPW_NDATA * sizeof(struct ipw_hdr));
731 }
732 if (sc->hdr_map != NULL) {
733 bus_dmamem_free(sc->sc_dmat, &sc->hdr_seg, 1);
734 bus_dmamap_destroy(sc->sc_dmat, sc->hdr_map);
735 }
736
737 for (i = 0; i < IPW_NDATA; i++)
738 bus_dmamap_destroy(sc->sc_dmat, sc->tx_sbuf_list[i].map);
739
740 for (i = 0; i < IPW_NRBD; i++) {
741 sbuf = &sc->rx_sbuf_list[i];
742 if (sbuf->map != NULL) {
743 if (sbuf->m != NULL) {
744 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
745 m_freem(sbuf->m);
746 }
747 bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
748 }
749 }
750
751 }
752
753 static void
754 ipw_shutdown(void *arg)
755 {
756 struct ipw_softc *sc = (struct ipw_softc *)arg;
757 struct ifnet *ifp = sc->sc_ic.ic_ifp;
758
759 ipw_stop(ifp, 1);
760 }
761
762
763 static int
764 ipw_suspend(struct ipw_softc *sc)
765 {
766 struct ifnet *ifp = sc->sc_ic.ic_ifp;
767
768 ipw_stop(ifp, 1);
769
770 return 0;
771 }
772
773 static int
774 ipw_resume(struct ipw_softc *sc)
775 {
776 struct ifnet *ifp = sc->sc_ic.ic_ifp;
777 pcireg_t data;
778
779 /* clear device specific PCI configuration register 0x41 */
780 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
781 data &= ~0x0000ff00;
782 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
783
784 if (ifp->if_flags & IFF_UP) {
785 ipw_init(ifp);
786 if (ifp->if_flags & IFF_RUNNING)
787 ipw_start(ifp);
788 }
789
790 return 0;
791 }
792
793 static void
794 ipw_powerhook(int why, void *arg)
795 {
796 struct ipw_softc *sc = arg;
797 int s;
798
799 s = splnet();
800 switch (why) {
801 case PWR_SUSPEND:
802 case PWR_STANDBY:
803 ipw_suspend(sc);
804 break;
805 case PWR_RESUME:
806 ipw_resume(sc);
807 break;
808 case PWR_SOFTSUSPEND:
809 case PWR_SOFTSTANDBY:
810 case PWR_SOFTRESUME:
811 break;
812 }
813 splx(s);
814 }
815
816 static int
817 ipw_media_change(struct ifnet *ifp)
818 {
819 int error;
820
821 error = ieee80211_media_change(ifp);
822 if (error != ENETRESET)
823 return error;
824
825 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
826 ipw_init(ifp);
827
828 return 0;
829 }
830
831 /*
832 * The firmware automatically adapts the transmit speed. We report the current
833 * transmit speed here.
834 */
835 static void
836 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
837 {
838 #define N(a) (sizeof (a) / sizeof (a[0]))
839 struct ipw_softc *sc = ifp->if_softc;
840 struct ieee80211com *ic = &sc->sc_ic;
841 static const struct {
842 uint32_t val;
843 int rate;
844 } rates[] = {
845 { IPW_RATE_DS1, 2 },
846 { IPW_RATE_DS2, 4 },
847 { IPW_RATE_DS5, 11 },
848 { IPW_RATE_DS11, 22 },
849 };
850 uint32_t val;
851 int rate, i;
852
853 imr->ifm_status = IFM_AVALID;
854 imr->ifm_active = IFM_IEEE80211;
855 if (ic->ic_state == IEEE80211_S_RUN)
856 imr->ifm_status |= IFM_ACTIVE;
857
858 /* read current transmission rate from adapter */
859 val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf;
860
861 /* convert ipw rate to 802.11 rate */
862 for (i = 0; i < N(rates) && rates[i].val != val; i++);
863 rate = (i < N(rates)) ? rates[i].rate : 0;
864
865 imr->ifm_active |= IFM_IEEE80211_11B;
866 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
867 switch (ic->ic_opmode) {
868 case IEEE80211_M_STA:
869 break;
870
871 case IEEE80211_M_IBSS:
872 imr->ifm_active |= IFM_IEEE80211_ADHOC;
873 break;
874
875 case IEEE80211_M_MONITOR:
876 imr->ifm_active |= IFM_IEEE80211_MONITOR;
877 break;
878
879 case IEEE80211_M_AHDEMO:
880 case IEEE80211_M_HOSTAP:
881 /* should not get there */
882 break;
883 }
884 #undef N
885 }
886
887 static int
888 ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
889 {
890 struct ifnet *ifp = ic->ic_ifp;
891 struct ipw_softc *sc = ifp->if_softc;
892 struct ieee80211_node *ni;
893 uint8_t macaddr[IEEE80211_ADDR_LEN];
894 uint32_t len;
895
896 switch (nstate) {
897 case IEEE80211_S_RUN:
898 DELAY(200); /* firmware needs a short delay here */
899
900 len = IEEE80211_ADDR_LEN;
901 ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len);
902
903 ni = ieee80211_find_node(&ic->ic_scan, macaddr);
904 if (ni == NULL)
905 break;
906
907 ieee80211_ref_node(ni);
908 ieee80211_sta_join(ic, ni);
909 ieee80211_node_authorize(ni);
910
911 if (ic->ic_opmode == IEEE80211_M_STA)
912 ieee80211_notify_node_join(ic, ni, 1);
913 break;
914
915 case IEEE80211_S_INIT:
916 case IEEE80211_S_SCAN:
917 case IEEE80211_S_AUTH:
918 case IEEE80211_S_ASSOC:
919 break;
920 }
921
922 ic->ic_state = nstate;
923 return 0;
924 }
925
926 /*
927 * Read 16 bits at address 'addr' from the serial EEPROM.
928 */
929 static uint16_t
930 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
931 {
932 uint32_t tmp;
933 uint16_t val;
934 int n;
935
936 /* clock C once before the first command */
937 IPW_EEPROM_CTL(sc, 0);
938 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
939 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
940 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
941
942 /* write start bit (1) */
943 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
944 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
945
946 /* write READ opcode (10) */
947 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
948 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
949 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
950 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
951
952 /* write address A7-A0 */
953 for (n = 7; n >= 0; n--) {
954 IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
955 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
956 IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
957 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
958 }
959
960 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
961
962 /* read data Q15-Q0 */
963 val = 0;
964 for (n = 15; n >= 0; n--) {
965 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
966 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
967 tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
968 val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
969 }
970
971 IPW_EEPROM_CTL(sc, 0);
972
973 /* clear Chip Select and clock C */
974 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
975 IPW_EEPROM_CTL(sc, 0);
976 IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
977
978 return le16toh(val);
979 }
980
981 static void
982 ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
983 {
984 struct ipw_cmd *cmd;
985
986 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof (struct ipw_cmd),
987 BUS_DMASYNC_POSTREAD);
988
989 cmd = mtod(sbuf->m, struct ipw_cmd *);
990
991 DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type),
992 le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
993 le32toh(cmd->status)));
994
995 wakeup(&sc->cmd);
996 }
997
998 static void
999 ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
1000 {
1001 struct ieee80211com *ic = &sc->sc_ic;
1002 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1003 uint32_t state;
1004
1005 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof state,
1006 BUS_DMASYNC_POSTREAD);
1007
1008 state = le32toh(*mtod(sbuf->m, uint32_t *));
1009
1010 DPRINTFN(2, ("entering state %u\n", state));
1011
1012 switch (state) {
1013 case IPW_STATE_ASSOCIATED:
1014 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1015 break;
1016
1017 case IPW_STATE_SCANNING:
1018 /* don't leave run state on background scan */
1019 if (ic->ic_state != IEEE80211_S_RUN)
1020 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1021
1022 ic->ic_flags |= IEEE80211_F_SCAN;
1023 break;
1024
1025 case IPW_STATE_SCAN_COMPLETE:
1026 ieee80211_notify_scan_done(ic);
1027 ic->ic_flags &= ~IEEE80211_F_SCAN;
1028 break;
1029
1030 case IPW_STATE_ASSOCIATION_LOST:
1031 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1032 break;
1033
1034 case IPW_STATE_RADIO_DISABLED:
1035 ic->ic_ifp->if_flags &= ~IFF_UP;
1036 ipw_stop(ifp, 1);
1037 break;
1038 }
1039 }
1040
1041 /*
1042 * XXX: Hack to set the current channel to the value advertised in beacons or
1043 * probe responses. Only used during AP detection.
1044 */
1045 static void
1046 ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m)
1047 {
1048 struct ieee80211_frame *wh;
1049 uint8_t subtype;
1050 uint8_t *frm, *efrm;
1051
1052 wh = mtod(m, struct ieee80211_frame *);
1053
1054 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
1055 return;
1056
1057 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1058
1059 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
1060 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1061 return;
1062
1063 frm = (uint8_t *)(wh + 1);
1064 efrm = mtod(m, uint8_t *) + m->m_len;
1065
1066 frm += 12; /* skip tstamp, bintval and capinfo fields */
1067 while (frm < efrm) {
1068 if (*frm == IEEE80211_ELEMID_DSPARMS)
1069 #if IEEE80211_CHAN_MAX < 255
1070 if (frm[2] <= IEEE80211_CHAN_MAX)
1071 #endif
1072 ic->ic_curchan = &ic->ic_channels[frm[2]];
1073
1074 frm += frm[1] + 2;
1075 }
1076 }
1077
1078 static void
1079 ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
1080 struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
1081 {
1082 struct ieee80211com *ic = &sc->sc_ic;
1083 struct ifnet *ifp = &sc->sc_if;
1084 struct mbuf *mnew, *m;
1085 struct ieee80211_frame *wh;
1086 struct ieee80211_node *ni;
1087 int error;
1088
1089 DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
1090 status->rssi));
1091
1092 if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
1093 le32toh(status->len) > MCLBYTES)
1094 return;
1095
1096 /*
1097 * Try to allocate a new mbuf for this ring element and load it before
1098 * processing the current mbuf. If the ring element cannot be loaded,
1099 * drop the received packet and reuse the old mbuf. In the unlikely
1100 * case that the old mbuf can't be reloaded either, explicitly panic.
1101 */
1102 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1103 if (mnew == NULL) {
1104 aprint_error("%s: could not allocate rx mbuf\n",
1105 sc->sc_dev.dv_xname);
1106 ifp->if_ierrors++;
1107 return;
1108 }
1109
1110 MCLGET(mnew, M_DONTWAIT);
1111 if (!(mnew->m_flags & M_EXT)) {
1112 aprint_error("%s: could not allocate rx mbuf cluster\n",
1113 sc->sc_dev.dv_xname);
1114 m_freem(mnew);
1115 ifp->if_ierrors++;
1116 return;
1117 }
1118
1119 mnew->m_pkthdr.len = mnew->m_len = mnew->m_ext.ext_size;
1120
1121 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, le32toh(status->len),
1122 BUS_DMASYNC_POSTREAD);
1123 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
1124
1125 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, mnew,
1126 BUS_DMA_READ | BUS_DMA_NOWAIT);
1127 if (error != 0) {
1128 aprint_error("%s: could not load rx buf DMA map\n",
1129 sc->sc_dev.dv_xname);
1130 m_freem(mnew);
1131
1132 /* try to reload the old mbuf */
1133 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
1134 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
1135 if (error != 0) {
1136 /* very unlikely that it will fail... */
1137 panic("%s: unable to remap rx buf",
1138 sc->sc_dev.dv_xname);
1139 }
1140 ifp->if_ierrors++;
1141 return;
1142 }
1143
1144 /*
1145 * New mbuf successfully loaded, update Rx ring and continue
1146 * processing.
1147 */
1148 m = sbuf->m;
1149 sbuf->m = mnew;
1150 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
1151
1152 /* finalize mbuf */
1153 m->m_pkthdr.rcvif = ifp;
1154 m->m_pkthdr.len = m->m_len = le32toh(status->len);
1155
1156 #if NBPFILTER > 0
1157 if (sc->sc_drvbpf != NULL) {
1158 struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
1159
1160 tap->wr_flags = 0;
1161 tap->wr_antsignal = status->rssi;
1162 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1163 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1164
1165 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1166 }
1167 #endif
1168
1169 if (ic->ic_state == IEEE80211_S_SCAN)
1170 ipw_fix_channel(ic, m);
1171
1172 wh = mtod(m, struct ieee80211_frame *);
1173 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1174
1175 /* send the frame to the 802.11 layer */
1176 ieee80211_input(ic, m, ni, status->rssi, 0);
1177
1178 /* node is no longer needed */
1179 ieee80211_free_node(ni);
1180
1181 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
1182 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1183 }
1184
1185 static void
1186 ipw_rx_intr(struct ipw_softc *sc)
1187 {
1188 struct ipw_status *status;
1189 struct ipw_soft_bd *sbd;
1190 struct ipw_soft_buf *sbuf;
1191 uint32_t r, i;
1192
1193 if (!(sc->flags & IPW_FLAG_FW_INITED))
1194 return;
1195
1196 r = CSR_READ_4(sc, IPW_CSR_RX_READ);
1197
1198 for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
1199
1200 /* firmware was killed, stop processing received frames */
1201 if (!(sc->flags & IPW_FLAG_FW_INITED))
1202 return;
1203
1204 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
1205 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1206 BUS_DMASYNC_POSTREAD);
1207
1208 bus_dmamap_sync(sc->sc_dmat, sc->status_map,
1209 i * sizeof (struct ipw_status), sizeof (struct ipw_status),
1210 BUS_DMASYNC_POSTREAD);
1211
1212 status = &sc->status_list[i];
1213 sbd = &sc->srbd_list[i];
1214 sbuf = sbd->priv;
1215
1216 switch (le16toh(status->code) & 0xf) {
1217 case IPW_STATUS_CODE_COMMAND:
1218 ipw_command_intr(sc, sbuf);
1219 break;
1220
1221 case IPW_STATUS_CODE_NEWSTATE:
1222 ipw_newstate_intr(sc, sbuf);
1223 break;
1224
1225 case IPW_STATUS_CODE_DATA_802_3:
1226 case IPW_STATUS_CODE_DATA_802_11:
1227 ipw_data_intr(sc, status, sbd, sbuf);
1228 break;
1229
1230 case IPW_STATUS_CODE_NOTIFICATION:
1231 DPRINTFN(2, ("received notification\n"));
1232 break;
1233
1234 default:
1235 aprint_debug("%s: unknown status code %u\n",
1236 sc->sc_dev.dv_xname, le16toh(status->code));
1237 }
1238
1239 sbd->bd->flags = 0;
1240
1241 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
1242 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1243 BUS_DMASYNC_PREREAD);
1244
1245 bus_dmamap_sync(sc->sc_dmat, sc->status_map,
1246 i * sizeof (struct ipw_status), sizeof (struct ipw_status),
1247 BUS_DMASYNC_PREREAD);
1248 }
1249
1250 /* Tell the firmware what we have processed */
1251 sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
1252 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
1253 }
1254
1255 static void
1256 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
1257 {
1258 struct ieee80211com *ic;
1259 struct ipw_soft_hdr *shdr;
1260 struct ipw_soft_buf *sbuf;
1261
1262 switch (sbd->type) {
1263 case IPW_SBD_TYPE_COMMAND:
1264 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map,
1265 0, sizeof(struct ipw_cmd), BUS_DMASYNC_POSTWRITE);
1266 /* bus_dmamap_unload(sc->sc_dmat, sc->cmd_map); */
1267 break;
1268
1269 case IPW_SBD_TYPE_HEADER:
1270 shdr = sbd->priv;
1271 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map,
1272 shdr->offset, sizeof(struct ipw_hdr), BUS_DMASYNC_POSTWRITE);
1273 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
1274 break;
1275
1276 case IPW_SBD_TYPE_DATA:
1277 ic = &sc->sc_ic;
1278 sbuf = sbd->priv;
1279
1280 bus_dmamap_sync(sc->sc_dmat, sbuf->map,
1281 0, MCLBYTES, BUS_DMASYNC_POSTWRITE);
1282 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
1283 m_freem(sbuf->m);
1284 if (sbuf->ni != NULL)
1285 ieee80211_free_node(sbuf->ni);
1286 /* kill watchdog timer */
1287 sc->sc_tx_timer = 0;
1288 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
1289 break;
1290 }
1291 sbd->type = IPW_SBD_TYPE_NOASSOC;
1292 }
1293
1294 static void
1295 ipw_tx_intr(struct ipw_softc *sc)
1296 {
1297 struct ifnet *ifp = &sc->sc_if;
1298 struct ipw_soft_bd *sbd;
1299 uint32_t r, i;
1300
1301 if (!(sc->flags & IPW_FLAG_FW_INITED))
1302 return;
1303
1304 r = CSR_READ_4(sc, IPW_CSR_TX_READ);
1305
1306 for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
1307 sbd = &sc->stbd_list[i];
1308
1309 if (sbd->type == IPW_SBD_TYPE_DATA)
1310 ifp->if_opackets++;
1311
1312 ipw_release_sbd(sc, sbd);
1313 sc->txfree++;
1314 }
1315
1316 /* remember what the firmware has processed */
1317 sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
1318
1319 /* Call start() since some buffer descriptors have been released */
1320 ifp->if_flags &= ~IFF_OACTIVE;
1321 (*ifp->if_start)(ifp);
1322 }
1323
1324 static int
1325 ipw_intr(void *arg)
1326 {
1327 struct ipw_softc *sc = arg;
1328 uint32_t r;
1329
1330 r = CSR_READ_4(sc, IPW_CSR_INTR);
1331 if (r == 0 || r == 0xffffffff)
1332 return 0;
1333
1334 /* Disable interrupts */
1335 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1336
1337 if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
1338 aprint_error("%s: fatal error\n",
1339 sc->sc_dev.dv_xname);
1340 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1341 ipw_stop(&sc->sc_if, 1);
1342 }
1343
1344 if (r & IPW_INTR_FW_INIT_DONE) {
1345 if (!(r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)))
1346 wakeup(sc);
1347 }
1348
1349 if (r & IPW_INTR_RX_TRANSFER)
1350 ipw_rx_intr(sc);
1351
1352 if (r & IPW_INTR_TX_TRANSFER)
1353 ipw_tx_intr(sc);
1354
1355 /* Acknowledge all interrupts */
1356 CSR_WRITE_4(sc, IPW_CSR_INTR, r);
1357
1358 /* Re-enable interrupts */
1359 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1360
1361 return 0;
1362 }
1363
1364 /*
1365 * Send a command to the firmware and wait for the acknowledgement.
1366 */
1367 static int
1368 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
1369 {
1370 struct ipw_soft_bd *sbd;
1371
1372 sbd = &sc->stbd_list[sc->txcur];
1373
1374 sc->cmd.type = htole32(type);
1375 sc->cmd.subtype = 0;
1376 sc->cmd.len = htole32(len);
1377 sc->cmd.seq = 0;
1378
1379 (void)memcpy(sc->cmd.data, data, len);
1380
1381 sbd->type = IPW_SBD_TYPE_COMMAND;
1382 sbd->bd->physaddr = htole32(sc->cmd_map->dm_segs[0].ds_addr);
1383 sbd->bd->len = htole32(sizeof (struct ipw_cmd));
1384 sbd->bd->nfrag = 1;
1385 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
1386 IPW_BD_FLAG_TX_LAST_FRAGMENT;
1387
1388 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map, 0, sizeof (struct ipw_cmd),
1389 BUS_DMASYNC_PREWRITE);
1390
1391 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1392 sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1393 BUS_DMASYNC_PREWRITE);
1394
1395 DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len));
1396
1397 /* kick firmware */
1398 sc->txfree--;
1399 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1400 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1401
1402 /* Wait at most one second for command to complete */
1403 return tsleep(&sc->cmd, 0, "ipwcmd", hz);
1404 }
1405
1406 static int
1407 ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
1408 {
1409 struct ipw_softc *sc = ifp->if_softc;
1410 struct ieee80211com *ic = &sc->sc_ic;
1411 struct ieee80211_frame *wh;
1412 struct ipw_soft_bd *sbd;
1413 struct ipw_soft_hdr *shdr;
1414 struct ipw_soft_buf *sbuf;
1415 struct ieee80211_key *k;
1416 struct mbuf *mnew;
1417 int error, i;
1418
1419 wh = mtod(m0, struct ieee80211_frame *);
1420
1421 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1422 k = ieee80211_crypto_encap(ic, ni, m0);
1423 if (k == NULL) {
1424 m_freem(m0);
1425 return ENOBUFS;
1426 }
1427
1428 /* packet header may have moved, reset our local pointer */
1429 wh = mtod(m0, struct ieee80211_frame *);
1430 }
1431
1432 #if NBPFILTER > 0
1433 if (sc->sc_drvbpf != NULL) {
1434 struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
1435
1436 tap->wt_flags = 0;
1437 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1438 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1439
1440 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1441 }
1442 #endif
1443
1444 shdr = TAILQ_FIRST(&sc->sc_free_shdr);
1445 sbuf = TAILQ_FIRST(&sc->sc_free_sbuf);
1446 KASSERT(shdr != NULL && sbuf != NULL);
1447
1448 shdr->hdr->type = htole32(IPW_HDR_TYPE_SEND);
1449 shdr->hdr->subtype = 0;
1450 shdr->hdr->encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
1451 shdr->hdr->encrypt = 0;
1452 shdr->hdr->keyidx = 0;
1453 shdr->hdr->keysz = 0;
1454 shdr->hdr->fragmentsz = 0;
1455 IEEE80211_ADDR_COPY(shdr->hdr->src_addr, wh->i_addr2);
1456 if (ic->ic_opmode == IEEE80211_M_STA)
1457 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr3);
1458 else
1459 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr1);
1460
1461 /* trim IEEE802.11 header */
1462 m_adj(m0, sizeof (struct ieee80211_frame));
1463
1464 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0, BUS_DMA_NOWAIT);
1465 if (error != 0 && error != EFBIG) {
1466 aprint_error("%s: could not map mbuf (error %d)\n",
1467 sc->sc_dev.dv_xname, error);
1468 m_freem(m0);
1469 return error;
1470 }
1471
1472 if (error != 0) {
1473 /* too many fragments, linearize */
1474
1475 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1476 if (mnew == NULL) {
1477 m_freem(m0);
1478 return ENOMEM;
1479 }
1480
1481 M_COPY_PKTHDR(mnew, m0);
1482
1483 /* If the data won't fit in the header, get a cluster */
1484 if (m0->m_pkthdr.len > MHLEN) {
1485 MCLGET(mnew, M_DONTWAIT);
1486 if (!(mnew->m_flags & M_EXT)) {
1487 m_freem(m0);
1488 m_freem(mnew);
1489 return ENOMEM;
1490 }
1491 }
1492 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t));
1493 m_freem(m0);
1494 mnew->m_len = mnew->m_pkthdr.len;
1495 m0 = mnew;
1496
1497 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0,
1498 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1499 if (error != 0) {
1500 aprint_error("%s: could not map mbuf (error %d)\n",
1501 sc->sc_dev.dv_xname, error);
1502 m_freem(m0);
1503 return error;
1504 }
1505 }
1506
1507 TAILQ_REMOVE(&sc->sc_free_sbuf, sbuf, next);
1508 TAILQ_REMOVE(&sc->sc_free_shdr, shdr, next);
1509
1510 sbd = &sc->stbd_list[sc->txcur];
1511 sbd->type = IPW_SBD_TYPE_HEADER;
1512 sbd->priv = shdr;
1513 sbd->bd->physaddr = htole32(shdr->addr);
1514 sbd->bd->len = htole32(sizeof (struct ipw_hdr));
1515 sbd->bd->nfrag = 1 + sbuf->map->dm_nsegs;
1516 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
1517 IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1518
1519 DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, )\n",
1520 shdr->hdr->type, shdr->hdr->subtype, shdr->hdr->encrypted,
1521 shdr->hdr->encrypt));
1522 DPRINTFN(5, ("%s->", ether_sprintf(shdr->hdr->src_addr)));
1523 DPRINTFN(5, ("%s\n", ether_sprintf(shdr->hdr->dst_addr)));
1524
1525 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1526 sc->txcur * sizeof (struct ipw_bd),
1527 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
1528
1529 sc->txfree--;
1530 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1531
1532 sbuf->m = m0;
1533 sbuf->ni = ni;
1534
1535 for (i = 0; i < sbuf->map->dm_nsegs; i++) {
1536 sbd = &sc->stbd_list[sc->txcur];
1537
1538 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[i].ds_addr);
1539 sbd->bd->len = htole32(sbuf->map->dm_segs[i].ds_len);
1540 sbd->bd->nfrag = 0;
1541 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
1542 if (i == sbuf->map->dm_nsegs - 1) {
1543 sbd->type = IPW_SBD_TYPE_DATA;
1544 sbd->priv = sbuf;
1545 sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
1546 } else {
1547 sbd->type = IPW_SBD_TYPE_NOASSOC;
1548 sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1549 }
1550
1551 DPRINTFN(5, ("sending fragment (%d, %d)\n", i,
1552 (int)sbuf->map->dm_segs[i].ds_len));
1553
1554 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1555 sc->txcur * sizeof (struct ipw_bd),
1556 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
1557
1558 sc->txfree--;
1559 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1560 }
1561
1562 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map, shdr->offset,
1563 sizeof (struct ipw_hdr), BUS_DMASYNC_PREWRITE);
1564
1565 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, MCLBYTES,
1566 BUS_DMASYNC_PREWRITE);
1567
1568 /* Inform firmware about this new packet */
1569 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1570
1571 return 0;
1572 }
1573
1574 static void
1575 ipw_start(struct ifnet *ifp)
1576 {
1577 struct ipw_softc *sc = ifp->if_softc;
1578 struct ieee80211com *ic = &sc->sc_ic;
1579 struct mbuf *m0;
1580 struct ether_header *eh;
1581 struct ieee80211_node *ni;
1582
1583
1584 if (ic->ic_state != IEEE80211_S_RUN)
1585 return;
1586
1587 for (;;) {
1588 IF_DEQUEUE(&ifp->if_snd, m0);
1589 if (m0 == NULL)
1590 break;
1591
1592 if (sc->txfree < 1 + IPW_MAX_NSEG) {
1593 IF_PREPEND(&ifp->if_snd, m0);
1594 ifp->if_flags |= IFF_OACTIVE;
1595 break;
1596 }
1597
1598 if (m0->m_len < sizeof (struct ether_header) &&
1599 (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL)
1600 continue;
1601
1602 eh = mtod(m0, struct ether_header *);
1603 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1604 if (ni == NULL) {
1605 m_freem(m0);
1606 continue;
1607 }
1608
1609 #if NBPFILTER > 0
1610 if (ifp->if_bpf != NULL)
1611 bpf_mtap(ifp->if_bpf, m0);
1612 #endif
1613
1614 m0 = ieee80211_encap(ic, m0, ni);
1615 if (m0 == NULL) {
1616 ieee80211_free_node(ni);
1617 continue;
1618 }
1619
1620 #if NBPFILTER > 0
1621 if (ic->ic_rawbpf != NULL)
1622 bpf_mtap(ic->ic_rawbpf, m0);
1623 #endif
1624
1625 if (ipw_tx_start(ifp, m0, ni) != 0) {
1626 ieee80211_free_node(ni);
1627 ifp->if_oerrors++;
1628 break;
1629 }
1630
1631 /* start watchdog timer */
1632 sc->sc_tx_timer = 5;
1633 ifp->if_timer = 1;
1634 }
1635 }
1636
1637 static void
1638 ipw_watchdog(struct ifnet *ifp)
1639 {
1640 struct ipw_softc *sc = ifp->if_softc;
1641
1642 ifp->if_timer = 0;
1643
1644 if (sc->sc_tx_timer > 0) {
1645 if (--sc->sc_tx_timer == 0) {
1646 aprint_error("%s: device timeout\n",
1647 sc->sc_dev.dv_xname);
1648 ifp->if_oerrors++;
1649 ifp->if_flags &= ~IFF_UP;
1650 ipw_stop(ifp, 1);
1651 return;
1652 }
1653 ifp->if_timer = 1;
1654 }
1655
1656 ieee80211_watchdog(&sc->sc_ic);
1657 }
1658
1659 static int
1660 ipw_get_table1(struct ipw_softc *sc, uint32_t *tbl)
1661 {
1662 uint32_t addr, size, i;
1663
1664 if (!(sc->flags & IPW_FLAG_FW_INITED))
1665 return ENOTTY;
1666
1667 CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
1668
1669 size = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
1670 if (suword(tbl, size) != 0)
1671 return EFAULT;
1672
1673 for (i = 1, ++tbl; i < size; i++, tbl++) {
1674 addr = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
1675 if (suword(tbl, MEM_READ_4(sc, addr)) != 0)
1676 return EFAULT;
1677 }
1678 return 0;
1679 }
1680
1681 static int
1682 ipw_get_radio(struct ipw_softc *sc, int *ret)
1683 {
1684 uint32_t addr;
1685
1686 if (!(sc->flags & IPW_FLAG_FW_INITED))
1687 return ENOTTY;
1688
1689 addr = ipw_read_table1(sc, IPW_INFO_EEPROM_ADDRESS);
1690 if ((MEM_READ_4(sc, addr + 32) >> 24) & 1) {
1691 suword(ret, -1);
1692 return 0;
1693 }
1694
1695 if (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)
1696 suword(ret, 0);
1697 else
1698 suword(ret, 1);
1699
1700 return 0;
1701 }
1702
1703 static int
1704 ipw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1705 {
1706 #define IS_RUNNING(ifp) \
1707 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1708
1709 struct ipw_softc *sc = ifp->if_softc;
1710 struct ieee80211com *ic = &sc->sc_ic;
1711 struct ifreq *ifr = (struct ifreq *)data;
1712 int s, error = 0;
1713
1714 s = splnet();
1715
1716 switch (cmd) {
1717 case SIOCSIFFLAGS:
1718 if (ifp->if_flags & IFF_UP) {
1719 if (!(ifp->if_flags & IFF_RUNNING))
1720 ipw_init(ifp);
1721 } else {
1722 if (ifp->if_flags & IFF_RUNNING)
1723 ipw_stop(ifp, 1);
1724 }
1725 break;
1726
1727 case SIOCADDMULTI:
1728 case SIOCDELMULTI:
1729 error = (cmd == SIOCADDMULTI) ?
1730 ether_addmulti(ifr, &sc->sc_ec) :
1731 ether_delmulti(ifr, &sc->sc_ec);
1732 if (error == ENETRESET) {
1733 /* setup multicast filter, etc */
1734 error = 0;
1735 }
1736 break;
1737
1738 case SIOCGTABLE1:
1739 error = ipw_get_table1(sc, (uint32_t *)ifr->ifr_data);
1740 break;
1741
1742 case SIOCGRADIO:
1743 error = ipw_get_radio(sc, (int *)ifr->ifr_data);
1744 break;
1745
1746 case SIOCSIFMEDIA:
1747 if (ifr->ifr_media & IFM_IEEE80211_ADHOC)
1748 strlcpy(sc->sc_fwname, "ipw2100-1.2-i.fw",
1749 sizeof(sc->sc_fwname));
1750 else if (ifr->ifr_media & IFM_IEEE80211_MONITOR)
1751 strlcpy(sc->sc_fwname, "ipw2100-1.2-p.fw",
1752 sizeof(sc->sc_fwname));
1753 else
1754 strlcpy(sc->sc_fwname, "ipw2100-1.2.fw",
1755 sizeof(sc->sc_fwname));
1756
1757 ipw_free_firmware(sc);
1758 /* FALLTRHOUGH */
1759 default:
1760 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1761 if (error != ENETRESET)
1762 break;
1763
1764 if (error == ENETRESET) {
1765 if (IS_RUNNING(ifp) &&
1766 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1767 ipw_init(ifp);
1768 error = 0;
1769 }
1770
1771 }
1772
1773 splx(s);
1774 return error;
1775 #undef IS_RUNNING
1776 }
1777
1778 static uint32_t
1779 ipw_read_table1(struct ipw_softc *sc, uint32_t off)
1780 {
1781 return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
1782 }
1783
1784 static void
1785 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
1786 {
1787 MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
1788 }
1789
1790 static int
1791 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
1792 {
1793 uint32_t addr, info;
1794 uint16_t count, size;
1795 uint32_t total;
1796
1797 /* addr[4] + count[2] + size[2] */
1798 addr = MEM_READ_4(sc, sc->table2_base + off);
1799 info = MEM_READ_4(sc, sc->table2_base + off + 4);
1800
1801 count = info >> 16;
1802 size = info & 0xffff;
1803 total = count * size;
1804
1805 if (total > *len) {
1806 *len = total;
1807 return EINVAL;
1808 }
1809
1810 *len = total;
1811 ipw_read_mem_1(sc, addr, buf, total);
1812
1813 return 0;
1814 }
1815
1816 static void
1817 ipw_stop_master(struct ipw_softc *sc)
1818 {
1819 int ntries;
1820
1821 /* disable interrupts */
1822 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1823
1824 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
1825 for (ntries = 0; ntries < 50; ntries++) {
1826 if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
1827 break;
1828 DELAY(10);
1829 }
1830 if (ntries == 50)
1831 aprint_error("%s: timeout waiting for master\n",
1832 sc->sc_dev.dv_xname);
1833
1834 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
1835 IPW_RST_PRINCETON_RESET);
1836
1837 sc->flags &= ~IPW_FLAG_FW_INITED;
1838 }
1839
1840 static int
1841 ipw_reset(struct ipw_softc *sc)
1842 {
1843 int ntries;
1844
1845 ipw_stop_master(sc);
1846
1847 /* move adapter to D0 state */
1848 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1849 IPW_CTL_INIT);
1850
1851 /* wait for clock stabilization */
1852 for (ntries = 0; ntries < 1000; ntries++) {
1853 if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
1854 break;
1855 DELAY(200);
1856 }
1857 if (ntries == 1000)
1858 return EIO;
1859
1860 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
1861 IPW_RST_SW_RESET);
1862
1863 DELAY(10);
1864
1865 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1866 IPW_CTL_INIT);
1867
1868 return 0;
1869 }
1870
1871 /*
1872 * Upload the microcode to the device.
1873 */
1874 static int
1875 ipw_load_ucode(struct ipw_softc *sc, u_char *uc, int size)
1876 {
1877 int ntries;
1878
1879 MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
1880 CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1881
1882 MEM_WRITE_2(sc, 0x220000, 0x0703);
1883 MEM_WRITE_2(sc, 0x220000, 0x0707);
1884
1885 MEM_WRITE_1(sc, 0x210014, 0x72);
1886 MEM_WRITE_1(sc, 0x210014, 0x72);
1887
1888 MEM_WRITE_1(sc, 0x210000, 0x40);
1889 MEM_WRITE_1(sc, 0x210000, 0x00);
1890 MEM_WRITE_1(sc, 0x210000, 0x40);
1891
1892 MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
1893
1894 MEM_WRITE_1(sc, 0x210000, 0x00);
1895 MEM_WRITE_1(sc, 0x210000, 0x00);
1896 MEM_WRITE_1(sc, 0x210000, 0x80);
1897
1898 MEM_WRITE_2(sc, 0x220000, 0x0703);
1899 MEM_WRITE_2(sc, 0x220000, 0x0707);
1900
1901 MEM_WRITE_1(sc, 0x210014, 0x72);
1902 MEM_WRITE_1(sc, 0x210014, 0x72);
1903
1904 MEM_WRITE_1(sc, 0x210000, 0x00);
1905 MEM_WRITE_1(sc, 0x210000, 0x80);
1906
1907 for (ntries = 0; ntries < 10; ntries++) {
1908 if (MEM_READ_1(sc, 0x210000) & 1)
1909 break;
1910 DELAY(10);
1911 }
1912 if (ntries == 10) {
1913 aprint_error("%s: timeout waiting for ucode to initialize\n",
1914 sc->sc_dev.dv_xname);
1915 return EIO;
1916 }
1917
1918 MEM_WRITE_4(sc, 0x3000e0, 0);
1919
1920 return 0;
1921 }
1922
1923 /* set of macros to handle unaligned little endian data in firmware image */
1924 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
1925 #define GETLE16(p) ((p)[0] | (p)[1] << 8)
1926 static int
1927 ipw_load_firmware(struct ipw_softc *sc, u_char *fw, int size)
1928 {
1929 u_char *p, *end;
1930 uint32_t dst;
1931 uint16_t len;
1932 int error;
1933
1934 p = fw;
1935 end = fw + size;
1936 while (p < end) {
1937 dst = GETLE32(p); p += 4;
1938 len = GETLE16(p); p += 2;
1939
1940 ipw_write_mem_1(sc, dst, p, len);
1941 p += len;
1942 }
1943
1944 CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
1945 IPW_IO_LED_OFF);
1946
1947 /* enable interrupts */
1948 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1949
1950 /* kick the firmware */
1951 CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1952
1953 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1954 IPW_CTL_ALLOW_STANDBY);
1955
1956 /* wait at most one second for firmware initialization to complete */
1957 if ((error = tsleep(sc, 0, "ipwinit", hz)) != 0) {
1958 aprint_error("%s: timeout waiting for firmware initialization "
1959 "to complete\n", sc->sc_dev.dv_xname);
1960 return error;
1961 }
1962
1963 CSR_WRITE_4(sc, IPW_CSR_IO, CSR_READ_4(sc, IPW_CSR_IO) |
1964 IPW_IO_GPIO1_MASK | IPW_IO_GPIO3_MASK);
1965
1966 return 0;
1967 }
1968
1969 /*
1970 * Store firmware into kernel memory so we can download it when we need to,
1971 * e.g when the adapter wakes up from suspend mode.
1972 */
1973 static int
1974 ipw_cache_firmware(struct ipw_softc *sc)
1975 {
1976 struct ipw_firmware *fw = &sc->fw;
1977 struct ipw_firmware_hdr hdr;
1978 firmware_handle_t fwh;
1979 off_t fwsz, p;
1980 int error;
1981
1982 ipw_free_firmware(sc);
1983
1984 if ((error = firmware_open("if_ipw", sc->sc_fwname, &fwh)) != 0)
1985 goto fail0;
1986
1987 fwsz = firmware_get_size(fwh);
1988
1989 if (fwsz < sizeof(hdr))
1990 goto fail2;
1991
1992 if ((error = firmware_read(fwh, 0, &hdr, sizeof(hdr))) != 0)
1993 goto fail2;
1994
1995 fw->main_size = le32toh(hdr.main_size);
1996 fw->ucode_size = le32toh(hdr.ucode_size);
1997
1998 fw->main = firmware_malloc(fw->main_size);
1999 if (fw->main == NULL) {
2000 error = ENOMEM;
2001 goto fail1;
2002 }
2003
2004 fw->ucode = firmware_malloc(fw->ucode_size);
2005 if (fw->ucode == NULL) {
2006 error = ENOMEM;
2007 goto fail2;
2008 }
2009
2010 p = sizeof(hdr);
2011 if ((error = firmware_read(fwh, p, fw->main, fw->main_size)) != 0)
2012 goto fail3;
2013
2014 if ((error = firmware_read(fwh, p, fw->main, fw->main_size)) != 0)
2015 goto fail3;
2016
2017 p += fw->main_size;
2018 if ((error = firmware_read(fwh, p, fw->ucode, fw->ucode_size)) != 0)
2019 goto fail3;
2020
2021 DPRINTF(("Firmware cached: main %u, ucode %u\n", fw->main_size,
2022 fw->ucode_size));
2023
2024 sc->flags |= IPW_FLAG_FW_CACHED;
2025
2026 return 0;
2027
2028 fail3: firmware_free(fw->ucode, 0);
2029 fail2: firmware_free(fw->main, 0);
2030 fail1: firmware_close(fwh);
2031 fail0:
2032 return error;
2033 }
2034
2035 static void
2036 ipw_free_firmware(struct ipw_softc *sc)
2037 {
2038 if (!(sc->flags & IPW_FLAG_FW_CACHED))
2039 return;
2040
2041 firmware_free(sc->fw.main, 0);
2042 firmware_free(sc->fw.ucode, 0);
2043
2044 sc->flags &= ~IPW_FLAG_FW_CACHED;
2045 }
2046
2047 static int
2048 ipw_config(struct ipw_softc *sc)
2049 {
2050 struct ieee80211com *ic = &sc->sc_ic;
2051 struct ifnet *ifp = &sc->sc_if;
2052 struct ipw_security security;
2053 struct ieee80211_key *k;
2054 struct ipw_wep_key wepkey;
2055 struct ipw_scan_options options;
2056 struct ipw_configuration config;
2057 uint32_t data;
2058 int error, i;
2059
2060 switch (ic->ic_opmode) {
2061 case IEEE80211_M_STA:
2062 case IEEE80211_M_HOSTAP:
2063 data = htole32(IPW_MODE_BSS);
2064 break;
2065
2066 case IEEE80211_M_IBSS:
2067 case IEEE80211_M_AHDEMO:
2068 data = htole32(IPW_MODE_IBSS);
2069 break;
2070
2071 case IEEE80211_M_MONITOR:
2072 data = htole32(IPW_MODE_MONITOR);
2073 break;
2074 }
2075 DPRINTF(("Setting mode to %u\n", le32toh(data)));
2076 error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
2077 if (error != 0)
2078 return error;
2079
2080 if (ic->ic_opmode == IEEE80211_M_IBSS ||
2081 ic->ic_opmode == IEEE80211_M_MONITOR) {
2082 data = htole32(ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
2083 DPRINTF(("Setting channel to %u\n", le32toh(data)));
2084 error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
2085 if (error != 0)
2086 return error;
2087 }
2088
2089 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2090 DPRINTF(("Enabling adapter\n"));
2091 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
2092 }
2093
2094 DPRINTF(("Setting MAC to %s\n", ether_sprintf(ic->ic_myaddr)));
2095 IEEE80211_ADDR_COPY(LLADDR(ifp->if_sadl), ic->ic_myaddr);
2096 error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
2097 IEEE80211_ADDR_LEN);
2098 if (error != 0)
2099 return error;
2100
2101 config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
2102 IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
2103
2104 if (ic->ic_opmode == IEEE80211_M_IBSS)
2105 config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
2106 if (ifp->if_flags & IFF_PROMISC)
2107 config.flags |= htole32(IPW_CFG_PROMISCUOUS);
2108 config.bss_chan = htole32(0x3fff); /* channels 1-14 */
2109 config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
2110 DPRINTF(("Setting adapter configuration 0x%08x\n", config.flags));
2111 error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
2112 if (error != 0)
2113 return error;
2114
2115 data = htole32(0x3); /* 1, 2 */
2116 DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
2117 error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
2118 if (error != 0)
2119 return error;
2120
2121 data = htole32(0xf); /* 1, 2, 5.5, 11 */
2122 DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
2123 error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
2124 if (error != 0)
2125 return error;
2126
2127 data = htole32(IPW_POWER_MODE_CAM);
2128 DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2129 error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
2130 if (error != 0)
2131 return error;
2132
2133 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2134 data = htole32(32); /* default value */
2135 DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
2136 error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
2137 sizeof data);
2138 if (error != 0)
2139 return error;
2140 }
2141
2142 data = htole32(ic->ic_rtsthreshold);
2143 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2144 error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2145 if (error != 0)
2146 return error;
2147
2148 data = htole32(ic->ic_fragthreshold);
2149 DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
2150 error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2151 if (error != 0)
2152 return error;
2153
2154 #ifdef IPW_DEBUG
2155 if (ipw_debug > 0) {
2156 printf("Setting ESSID to ");
2157 ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen);
2158 printf("\n");
2159 }
2160 #endif
2161 error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid,
2162 ic->ic_des_esslen);
2163 if (error != 0)
2164 return error;
2165
2166 /* no mandatory BSSID */
2167 DPRINTF(("Setting mandatory BSSID to null\n"));
2168 error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
2169 if (error != 0)
2170 return error;
2171
2172 if (ic->ic_flags & IEEE80211_F_DESBSSID) {
2173 DPRINTF(("Setting desired BSSID to %s\n",
2174 ether_sprintf(ic->ic_des_bssid)));
2175 error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID,
2176 ic->ic_des_bssid, IEEE80211_ADDR_LEN);
2177 if (error != 0)
2178 return error;
2179 }
2180
2181 (void)memset(&security, 0, sizeof(security));
2182 security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ?
2183 IPW_AUTH_SHARED : IPW_AUTH_OPEN;
2184 security.ciphers = htole32(IPW_CIPHER_NONE);
2185 DPRINTF(("Setting authmode to %u\n", security.authmode));
2186 error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
2187 sizeof security);
2188 if (error != 0)
2189 return error;
2190
2191 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2192 k = ic->ic_crypto.cs_nw_keys;
2193 for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
2194 if (k->wk_keylen == 0)
2195 continue;
2196
2197 wepkey.idx = i;
2198 wepkey.len = k->wk_keylen;
2199 memset(wepkey.key, 0, sizeof(wepkey.key));
2200 memcpy(wepkey.key, k->wk_key, k->wk_keylen);
2201 DPRINTF(("Setting wep key index %u len %u\n",
2202 wepkey.idx, wepkey.len));
2203 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
2204 sizeof wepkey);
2205 if (error != 0)
2206 return error;
2207 }
2208
2209 data = htole32(ic->ic_crypto.cs_def_txkey);
2210 DPRINTF(("Setting tx key index to %u\n", le32toh(data)));
2211 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
2212 sizeof data);
2213 if (error != 0)
2214 return error;
2215 }
2216
2217 data = htole32((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
2218 DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
2219 error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
2220 if (error != 0)
2221 return error;
2222
2223 #if 0
2224 struct ipw_wpa_ie ie;
2225
2226 memset(&ie, 0 sizeof(ie));
2227 ie.len = htole32(sizeof (struct ieee80211_ie_wpa));
2228 DPRINTF(("Setting wpa ie\n"));
2229 error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie);
2230 if (error != 0)
2231 return error;
2232 #endif
2233
2234 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2235 data = htole32(ic->ic_bintval);
2236 DPRINTF(("Setting beacon interval to %u\n", le32toh(data)));
2237 error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
2238 sizeof data);
2239 if (error != 0)
2240 return error;
2241 }
2242
2243 options.flags = 0;
2244 options.channels = htole32(0x3fff); /* scan channels 1-14 */
2245 DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags)));
2246 error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options);
2247 if (error != 0)
2248 return error;
2249
2250 /* finally, enable adapter (start scanning for an access point) */
2251 DPRINTF(("Enabling adapter\n"));
2252 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
2253 }
2254
2255 static int
2256 ipw_init(struct ifnet *ifp)
2257 {
2258 struct ipw_softc *sc = ifp->if_softc;
2259 struct ipw_firmware *fw = &sc->fw;
2260
2261 if (!(sc->flags & IPW_FLAG_FW_CACHED)) {
2262 if (ipw_cache_firmware(sc) != 0) {
2263 aprint_error("%s: could not cache the firmware (%s)\n",
2264 sc->sc_dev.dv_xname, sc->sc_fwname);
2265 goto fail;
2266 }
2267 }
2268
2269 ipw_stop(ifp, 0);
2270
2271 if (ipw_reset(sc) != 0) {
2272 aprint_error("%s: could not reset adapter\n",
2273 sc->sc_dev.dv_xname);
2274 goto fail;
2275 }
2276
2277 if (ipw_load_ucode(sc, fw->ucode, fw->ucode_size) != 0) {
2278 aprint_error("%s: could not load microcode\n",
2279 sc->sc_dev.dv_xname);
2280 goto fail;
2281 }
2282
2283 ipw_stop_master(sc);
2284
2285 /*
2286 * Setup tx, rx and status rings.
2287 */
2288 sc->txold = IPW_NTBD - 1;
2289 sc->txcur = 0;
2290 sc->txfree = IPW_NTBD - 2;
2291 sc->rxcur = IPW_NRBD - 1;
2292
2293 CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_map->dm_segs[0].ds_addr);
2294 CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD);
2295 CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0);
2296 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
2297
2298 CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_map->dm_segs[0].ds_addr);
2299 CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD);
2300 CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0);
2301 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
2302
2303 CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_map->dm_segs[0].ds_addr);
2304
2305 if (ipw_load_firmware(sc, fw->main, fw->main_size) != 0) {
2306 aprint_error("%s: could not load firmware\n",
2307 sc->sc_dev.dv_xname);
2308 goto fail;
2309 }
2310
2311 sc->flags |= IPW_FLAG_FW_INITED;
2312
2313 /* retrieve information tables base addresses */
2314 sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
2315 sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
2316
2317 ipw_write_table1(sc, IPW_INFO_LOCK, 0);
2318
2319 if (ipw_config(sc) != 0) {
2320 aprint_error("%s: device configuration failed\n",
2321 sc->sc_dev.dv_xname);
2322 goto fail;
2323 }
2324
2325 ifp->if_flags &= ~IFF_OACTIVE;
2326 ifp->if_flags |= IFF_RUNNING;
2327
2328 return 0;
2329
2330 fail: ifp->if_flags &= ~IFF_UP;
2331 ipw_stop(ifp, 0);
2332
2333 return EIO;
2334 }
2335
2336 static void
2337 ipw_stop(struct ifnet *ifp, int disable)
2338 {
2339 struct ipw_softc *sc = ifp->if_softc;
2340 struct ieee80211com *ic = &sc->sc_ic;
2341 int i;
2342
2343 ipw_stop_master(sc);
2344
2345 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
2346
2347 /*
2348 * Release tx buffers.
2349 */
2350 for (i = 0; i < IPW_NTBD; i++)
2351 ipw_release_sbd(sc, &sc->stbd_list[i]);
2352
2353 sc->sc_tx_timer = 0;
2354 ifp->if_timer = 0;
2355 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2356
2357 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2358 }
2359
2360 static void
2361 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2362 bus_size_t count)
2363 {
2364 for (; count > 0; offset++, datap++, count--) {
2365 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2366 *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
2367 }
2368 }
2369
2370 static void
2371 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2372 bus_size_t count)
2373 {
2374 for (; count > 0; offset++, datap++, count--) {
2375 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2376 CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
2377 }
2378 }
2379