if_ipw.c revision 1.27 1 /* $NetBSD: if_ipw.c,v 1.27 2006/08/02 13:58:39 rpaulo Exp $ */
2 /* FreeBSD: src/sys/dev/ipw/if_ipw.c,v 1.15 2005/11/13 17:17:40 damien Exp */
3
4 /*-
5 * Copyright (c) 2004, 2005
6 * Damien Bergamini <damien.bergamini (at) free.fr>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: if_ipw.c,v 1.27 2006/08/02 13:58:39 rpaulo Exp $");
33
34 /*-
35 * Intel(R) PRO/Wireless 2100 MiniPCI driver
36 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
37 */
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 #include <sys/mbuf.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/systm.h>
48 #include <sys/malloc.h>
49 #include <sys/conf.h>
50
51 #include <machine/bus.h>
52 #include <machine/endian.h>
53 #include <machine/intr.h>
54
55 #include <dev/pci/pcireg.h>
56 #include <dev/pci/pcivar.h>
57 #include <dev/pci/pcidevs.h>
58
59 #if NBPFILTER > 0
60 #include <net/bpf.h>
61 #endif
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_ether.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_radiotap.h>
71
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip.h>
76
77 #include <dev/firmload.h>
78
79 #include <dev/pci/if_ipwreg.h>
80 #include <dev/pci/if_ipwvar.h>
81
82 #ifdef IPW_DEBUG
83 #define DPRINTF(x) if (ipw_debug > 0) printf x
84 #define DPRINTFN(n, x) if (ipw_debug >= (n)) printf x
85 int ipw_debug = 0;
86 #else
87 #define DPRINTF(x)
88 #define DPRINTFN(n, x)
89 #endif
90
91 static int ipw_dma_alloc(struct ipw_softc *);
92 static void ipw_release(struct ipw_softc *);
93 static int ipw_match(struct device *, struct cfdata *, void *);
94 static void ipw_attach(struct device *, struct device *, void *);
95 static int ipw_detach(struct device *, int);
96
97 static void ipw_shutdown(void *);
98 static int ipw_suspend(struct ipw_softc *);
99 static int ipw_resume(struct ipw_softc *);
100 static void ipw_powerhook(int, void *);
101
102 static int ipw_media_change(struct ifnet *);
103 static void ipw_media_status(struct ifnet *, struct ifmediareq *);
104 static int ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
105 static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t);
106 static void ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
107 static void ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
108 static void ipw_data_intr(struct ipw_softc *, struct ipw_status *,
109 struct ipw_soft_bd *, struct ipw_soft_buf *);
110 static void ipw_rx_intr(struct ipw_softc *);
111 static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
112 static void ipw_tx_intr(struct ipw_softc *);
113 static int ipw_intr(void *);
114 static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
115 static int ipw_tx_start(struct ifnet *, struct mbuf *,
116 struct ieee80211_node *);
117 static void ipw_start(struct ifnet *);
118 static void ipw_watchdog(struct ifnet *);
119 static int ipw_ioctl(struct ifnet *, u_long, caddr_t);
120 static int ipw_get_table1(struct ipw_softc *, uint32_t *);
121 static int ipw_get_radio(struct ipw_softc *, int *);
122 static void ipw_stop_master(struct ipw_softc *);
123 static int ipw_reset(struct ipw_softc *);
124 static int ipw_load_ucode(struct ipw_softc *, u_char *, int);
125 static int ipw_load_firmware(struct ipw_softc *, u_char *, int);
126 static int ipw_cache_firmware(struct ipw_softc *);
127 static void ipw_free_firmware(struct ipw_softc *);
128 static int ipw_config(struct ipw_softc *);
129 static int ipw_init(struct ifnet *);
130 static void ipw_stop(struct ifnet *, int);
131 static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t);
132 static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
133 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, uint32_t *);
134 static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
135 bus_size_t);
136 static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
137 bus_size_t);
138
139 /*
140 * Supported rates for 802.11b mode (in 500Kbps unit).
141 */
142 static const struct ieee80211_rateset ipw_rateset_11b =
143 { 4, { 2, 4, 11, 22 } };
144
145 static inline uint8_t
146 MEM_READ_1(struct ipw_softc *sc, uint32_t addr)
147 {
148 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
149 return CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA);
150 }
151
152 static inline uint32_t
153 MEM_READ_4(struct ipw_softc *sc, uint32_t addr)
154 {
155 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
156 return CSR_READ_4(sc, IPW_CSR_INDIRECT_DATA);
157 }
158
159 CFATTACH_DECL(ipw, sizeof (struct ipw_softc), ipw_match, ipw_attach,
160 ipw_detach, NULL);
161
162 static int
163 ipw_match(struct device *parent, struct cfdata *match, void *aux)
164 {
165 struct pci_attach_args *pa = aux;
166
167 if (PCI_VENDOR (pa->pa_id) == PCI_VENDOR_INTEL &&
168 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2100)
169 return 1;
170
171 return 0;
172 }
173
174 /* Base Address Register */
175 #define IPW_PCI_BAR0 0x10
176
177 static void
178 ipw_attach(struct device *parent, struct device *self, void *aux)
179 {
180 struct ipw_softc *sc = (struct ipw_softc *)self;
181 struct ieee80211com *ic = &sc->sc_ic;
182 struct ifnet *ifp = &sc->sc_if;
183 struct pci_attach_args *pa = aux;
184 const char *intrstr;
185 char devinfo[256];
186 bus_space_tag_t memt;
187 bus_space_handle_t memh;
188 bus_addr_t base;
189 pci_intr_handle_t ih;
190 uint32_t data;
191 uint16_t val;
192 int i, revision, error;
193
194 sc->sc_pct = pa->pa_pc;
195 sc->sc_pcitag = pa->pa_tag;
196
197 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
198 revision = PCI_REVISION(pa->pa_class);
199 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
200
201 /* enable bus-mastering */
202 data = pci_conf_read(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG);
203 data |= PCI_COMMAND_MASTER_ENABLE;
204 pci_conf_write(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG, data);
205
206 /* clear device specific PCI configuration register 0x41 */
207 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
208 data &= ~0x0000ff00;
209 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
210
211 /* map the register window */
212 error = pci_mapreg_map(pa, IPW_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
213 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz);
214 if (error != 0) {
215 aprint_error("%s: could not map memory space\n",
216 sc->sc_dev.dv_xname);
217 return;
218 }
219
220 sc->sc_st = memt;
221 sc->sc_sh = memh;
222 sc->sc_dmat = pa->pa_dmat;
223 strlcpy(sc->sc_fwname, "ipw2100-1.2.fw", sizeof(sc->sc_fwname));
224
225 /* disable interrupts */
226 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
227
228 if (pci_intr_map(pa, &ih) != 0) {
229 aprint_error("%s: could not map interrupt\n",
230 sc->sc_dev.dv_xname);
231 return;
232 }
233
234 intrstr = pci_intr_string(sc->sc_pct, ih);
235 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, ipw_intr, sc);
236 if (sc->sc_ih == NULL) {
237 aprint_error("%s: could not establish interrupt",
238 sc->sc_dev.dv_xname);
239 if (intrstr != NULL)
240 aprint_error(" at %s", intrstr);
241 aprint_error("\n");
242 return;
243 }
244 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
245
246 if (ipw_reset(sc) != 0) {
247 aprint_error("%s: could not reset adapter\n",
248 sc->sc_dev.dv_xname);
249 goto fail;
250 }
251
252 if (ipw_dma_alloc(sc) != 0) {
253 aprint_error("%s: could not allocate DMA resources\n",
254 sc->sc_dev.dv_xname);
255 goto fail;
256 }
257
258 ifp->if_softc = sc;
259 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
260 ifp->if_init = ipw_init;
261 ifp->if_stop = ipw_stop;
262 ifp->if_ioctl = ipw_ioctl;
263 ifp->if_start = ipw_start;
264 ifp->if_watchdog = ipw_watchdog;
265 IFQ_SET_READY(&ifp->if_snd);
266 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
267
268 ic->ic_ifp = ifp;
269 ic->ic_phytype = IEEE80211_T_DS;
270 ic->ic_opmode = IEEE80211_M_STA;
271 ic->ic_state = IEEE80211_S_INIT;
272
273 /* set device capabilities */
274 ic->ic_caps =
275 IEEE80211_C_SHPREAMBLE /* short preamble supported */
276 | IEEE80211_C_TXPMGT /* tx power management */
277 | IEEE80211_C_IBSS /* ibss mode */
278 | IEEE80211_C_MONITOR /* monitor mode */
279 ;
280
281 /* read MAC address from EEPROM */
282 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
283 ic->ic_myaddr[0] = val >> 8;
284 ic->ic_myaddr[1] = val & 0xff;
285 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
286 ic->ic_myaddr[2] = val >> 8;
287 ic->ic_myaddr[3] = val & 0xff;
288 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
289 ic->ic_myaddr[4] = val >> 8;
290 ic->ic_myaddr[5] = val & 0xff;
291
292 /* set supported .11b rates */
293 ic->ic_sup_rates[IEEE80211_MODE_11B] = ipw_rateset_11b;
294
295 /* set supported .11b channels (read from EEPROM) */
296 if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0)
297 val = 0x7ff; /* default to channels 1-11 */
298 val <<= 1;
299 for (i = 1; i < 16; i++) {
300 if (val & (1 << i)) {
301 ic->ic_channels[i].ic_freq =
302 ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
303 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
304 }
305 }
306
307 /* check support for radio transmitter switch in EEPROM */
308 if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
309 sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
310
311 aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
312 ether_sprintf(ic->ic_myaddr));
313
314 if_attach(ifp);
315 ieee80211_ifattach(ic);
316
317 /* override state transition machine */
318 sc->sc_newstate = ic->ic_newstate;
319 ic->ic_newstate = ipw_newstate;
320
321 ieee80211_media_init(ic, ipw_media_change, ipw_media_status);
322
323 #if NBPFILTER > 0
324 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
325 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
326
327 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
328 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
329 sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
330
331 sc->sc_txtap_len = sizeof sc->sc_txtapu;
332 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
333 sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
334 #endif
335
336 /*
337 * Add a few sysctl knobs.
338 * XXX: Not yet
339 */
340 sc->dwelltime = 100;
341
342 /*
343 * Make sure the interface is shutdown during reboot.
344 */
345 sc->sc_sdhook = shutdownhook_establish(ipw_shutdown, sc);
346 if (sc->sc_sdhook == NULL)
347 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
348 sc->sc_dev.dv_xname);
349 sc->sc_powerhook = powerhook_establish(ipw_powerhook, sc);
350 if (sc->sc_powerhook == NULL)
351 printf("%s: WARNING: unable to establish power hook\n",
352 sc->sc_dev.dv_xname);
353
354 ieee80211_announce(ic);
355
356 return;
357
358 fail: ipw_detach(self, 0);
359 }
360
361 static int
362 ipw_detach(struct device* self, int flags)
363 {
364 struct ipw_softc *sc = (struct ipw_softc *)self;
365 struct ifnet *ifp = &sc->sc_if;
366
367 if (ifp->if_softc) {
368 ipw_stop(ifp, 1);
369 ipw_free_firmware(sc);
370
371 #if NBPFILTER > 0
372 bpfdetach(ifp);
373 #endif
374 ieee80211_ifdetach(&sc->sc_ic);
375 if_detach(ifp);
376
377 ipw_release(sc);
378 }
379
380 if (sc->sc_ih != NULL) {
381 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
382 sc->sc_ih = NULL;
383 }
384
385 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
386
387 return 0;
388 }
389
390 static int
391 ipw_dma_alloc(struct ipw_softc *sc)
392 {
393 struct ipw_soft_bd *sbd;
394 struct ipw_soft_hdr *shdr;
395 struct ipw_soft_buf *sbuf;
396 int error, i, nsegs;
397
398 /*
399 * Allocate and map tx ring.
400 */
401 error = bus_dmamap_create(sc->sc_dmat, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0,
402 BUS_DMA_NOWAIT, &sc->tbd_map);
403 if (error != 0) {
404 aprint_error("%s: could not create tbd dma map\n",
405 sc->sc_dev.dv_xname);
406 goto fail;
407 }
408
409 error = bus_dmamem_alloc(sc->sc_dmat, IPW_TBD_SZ, PAGE_SIZE, 0,
410 &sc->tbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
411 if (error != 0) {
412 aprint_error("%s: could not allocate tbd dma memory\n",
413 sc->sc_dev.dv_xname);
414 goto fail;
415 }
416
417 error = bus_dmamem_map(sc->sc_dmat, &sc->tbd_seg, nsegs, IPW_TBD_SZ,
418 (caddr_t *)&sc->tbd_list, BUS_DMA_NOWAIT);
419 if (error != 0) {
420 aprint_error("%s: could not map tbd dma memory\n",
421 sc->sc_dev.dv_xname);
422 goto fail;
423 }
424
425 error = bus_dmamap_load(sc->sc_dmat, sc->tbd_map, sc->tbd_list,
426 IPW_TBD_SZ, NULL, BUS_DMA_NOWAIT);
427 if (error != 0) {
428 aprint_error("%s: could not load tbd dma memory\n",
429 sc->sc_dev.dv_xname);
430 goto fail;
431 }
432
433 (void)memset(sc->tbd_list, 0, IPW_TBD_SZ);
434
435 /*
436 * Allocate and map rx ring.
437 */
438 error = bus_dmamap_create(sc->sc_dmat, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0,
439 BUS_DMA_NOWAIT, &sc->rbd_map);
440 if (error != 0) {
441 aprint_error("%s: could not create rbd dma map\n",
442 sc->sc_dev.dv_xname);
443 goto fail;
444 }
445
446 error = bus_dmamem_alloc(sc->sc_dmat, IPW_RBD_SZ, PAGE_SIZE, 0,
447 &sc->rbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
448 if (error != 0) {
449 aprint_error("%s: could not allocate rbd dma memory\n",
450 sc->sc_dev.dv_xname);
451 goto fail;
452 }
453
454 error = bus_dmamem_map(sc->sc_dmat, &sc->rbd_seg, nsegs, IPW_RBD_SZ,
455 (caddr_t *)&sc->rbd_list, BUS_DMA_NOWAIT);
456 if (error != 0) {
457 aprint_error("%s: could not map rbd dma memory\n",
458 sc->sc_dev.dv_xname);
459 goto fail;
460 }
461
462 error = bus_dmamap_load(sc->sc_dmat, sc->rbd_map, sc->rbd_list,
463 IPW_RBD_SZ, NULL, BUS_DMA_NOWAIT);
464 if (error != 0) {
465 aprint_error("%s: could not load rbd dma memory\n",
466 sc->sc_dev.dv_xname);
467 goto fail;
468 }
469
470 (void)memset(sc->rbd_list, 0, IPW_RBD_SZ);
471
472 /*
473 * Allocate and map status ring.
474 */
475 error = bus_dmamap_create(sc->sc_dmat, IPW_STATUS_SZ, 1, IPW_STATUS_SZ,
476 0, BUS_DMA_NOWAIT, &sc->status_map);
477 if (error != 0) {
478 aprint_error("%s: could not create status dma map\n",
479 sc->sc_dev.dv_xname);
480 goto fail;
481 }
482
483 error = bus_dmamem_alloc(sc->sc_dmat, IPW_STATUS_SZ, PAGE_SIZE, 0,
484 &sc->status_seg, 1, &nsegs, BUS_DMA_NOWAIT);
485 if (error != 0) {
486 aprint_error("%s: could not allocate status dma memory\n",
487 sc->sc_dev.dv_xname);
488 goto fail;
489 }
490
491 error = bus_dmamem_map(sc->sc_dmat, &sc->status_seg, nsegs,
492 IPW_STATUS_SZ, (caddr_t *)&sc->status_list, BUS_DMA_NOWAIT);
493 if (error != 0) {
494 aprint_error("%s: could not map status dma memory\n",
495 sc->sc_dev.dv_xname);
496 goto fail;
497 }
498
499 error = bus_dmamap_load(sc->sc_dmat, sc->status_map, sc->status_list,
500 IPW_STATUS_SZ, NULL, BUS_DMA_NOWAIT);
501 if (error != 0) {
502 aprint_error("%s: could not load status dma memory\n",
503 sc->sc_dev.dv_xname);
504 goto fail;
505 }
506
507 (void)memset(sc->status_list, 0, IPW_STATUS_SZ);
508
509 /*
510 * Allocate command DMA map.
511 */
512 error = bus_dmamap_create(sc->sc_dmat, sizeof (struct ipw_cmd),
513 1, sizeof (struct ipw_cmd), 0, BUS_DMA_NOWAIT, &sc->cmd_map);
514 if (error != 0) {
515 aprint_error("%s: could not create cmd dma map\n",
516 sc->sc_dev.dv_xname);
517 goto fail;
518 }
519
520 error = bus_dmamem_alloc(sc->sc_dmat, sizeof (struct ipw_cmd),
521 PAGE_SIZE, 0, &sc->cmd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
522 if (error != 0) {
523 aprint_error("%s: could not allocate cmd dma memory\n",
524 sc->sc_dev.dv_xname);
525 goto fail;
526 }
527
528 error = bus_dmamem_map(sc->sc_dmat, &sc->cmd_seg, nsegs,
529 sizeof (struct ipw_cmd), (caddr_t *)&sc->cmd, BUS_DMA_NOWAIT);
530 if (error != 0) {
531 aprint_error("%s: could not map cmd dma memory\n",
532 sc->sc_dev.dv_xname);
533 goto fail;
534 }
535
536 error = bus_dmamap_load(sc->sc_dmat, sc->cmd_map, &sc->cmd,
537 sizeof (struct ipw_cmd), NULL, BUS_DMA_NOWAIT);
538 if (error != 0) {
539 aprint_error("%s: could not map cmd dma memory\n",
540 sc->sc_dev.dv_xname);
541 return error;
542 }
543
544 /*
545 * Allocate and map hdr list.
546 */
547
548 error = bus_dmamap_create(sc->sc_dmat,
549 IPW_NDATA * sizeof(struct ipw_hdr), 1,
550 sizeof(struct ipw_hdr), 0, BUS_DMA_NOWAIT,
551 &sc->hdr_map);
552 if (error != 0) {
553 aprint_error("%s: could not create hdr dma map\n",
554 sc->sc_dev.dv_xname);
555 goto fail;
556 }
557
558 error = bus_dmamem_alloc(sc->sc_dmat,
559 IPW_NDATA * sizeof(struct ipw_hdr), PAGE_SIZE, 0, &sc->hdr_seg,
560 1, &nsegs, BUS_DMA_NOWAIT);
561 if (error != 0) {
562 aprint_error("%s: could not allocate hdr memory\n",
563 sc->sc_dev.dv_xname);
564 goto fail;
565 }
566
567 error = bus_dmamem_map(sc->sc_dmat, &sc->hdr_seg, nsegs,
568 IPW_NDATA * sizeof(struct ipw_hdr), (caddr_t *)&sc->hdr_list,
569 BUS_DMA_NOWAIT);
570 if (error != 0) {
571 aprint_error("%s: could not map hdr memory\n",
572 sc->sc_dev.dv_xname);
573 goto fail;
574 }
575
576 error = bus_dmamap_load(sc->sc_dmat, sc->hdr_map, sc->hdr_list,
577 IPW_NDATA * sizeof(struct ipw_hdr), NULL, BUS_DMA_NOWAIT);
578 if (error != 0) {
579 aprint_error("%s: could not load hdr memory\n",
580 sc->sc_dev.dv_xname);
581 goto fail;
582 }
583
584 (void)memset(sc->hdr_list, 0, IPW_HDR_SZ);
585
586 /*
587 * Create DMA hdrs tailq.
588 */
589 TAILQ_INIT(&sc->sc_free_shdr);
590 for (i = 0; i < IPW_NDATA; i++) {
591 shdr = &sc->shdr_list[i];
592 shdr->hdr = sc->hdr_list + i;
593 shdr->offset = sizeof(struct ipw_hdr) * i;
594 shdr->addr = sc->hdr_map->dm_segs[0].ds_addr + shdr->offset;
595 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
596 }
597
598 /*
599 * Allocate tx buffers DMA maps.
600 */
601 TAILQ_INIT(&sc->sc_free_sbuf);
602 for (i = 0; i < IPW_NDATA; i++) {
603 sbuf = &sc->tx_sbuf_list[i];
604
605 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
606 IPW_MAX_NSEG, MCLBYTES, 0, BUS_DMA_NOWAIT, &sbuf->map);
607 if (error != 0) {
608 aprint_error("%s: could not create txbuf dma map\n",
609 sc->sc_dev.dv_xname);
610 goto fail;
611 }
612 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
613 }
614
615 /*
616 * Initialize tx ring.
617 */
618 for (i = 0; i < IPW_NTBD; i++) {
619 sbd = &sc->stbd_list[i];
620 sbd->bd = &sc->tbd_list[i];
621 sbd->type = IPW_SBD_TYPE_NOASSOC;
622 }
623
624 /*
625 * Pre-allocate rx buffers and DMA maps
626 */
627 for (i = 0; i < IPW_NRBD; i++) {
628 sbd = &sc->srbd_list[i];
629 sbuf = &sc->rx_sbuf_list[i];
630 sbd->bd = &sc->rbd_list[i];
631
632 MGETHDR(sbuf->m, M_DONTWAIT, MT_DATA);
633 if (sbuf->m == NULL) {
634 aprint_error("%s: could not allocate rx mbuf\n",
635 sc->sc_dev.dv_xname);
636 error = ENOMEM;
637 goto fail;
638 }
639
640 MCLGET(sbuf->m, M_DONTWAIT);
641 if (!(sbuf->m->m_flags & M_EXT)) {
642 m_freem(sbuf->m);
643 aprint_error("%s: could not allocate rx mbuf cluster\n",
644 sc->sc_dev.dv_xname);
645 error = ENOMEM;
646 goto fail;
647 }
648
649 sbuf->m->m_pkthdr.len = sbuf->m->m_len = sbuf->m->m_ext.ext_size;
650
651 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
652 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sbuf->map);
653 if (error != 0) {
654 aprint_error("%s: could not create rxbuf dma map\n",
655 sc->sc_dev.dv_xname);
656 m_freem(sbuf->m);
657 goto fail;
658 }
659
660 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
661 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
662 if (error != 0) {
663 bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
664 m_freem(sbuf->m);
665 aprint_error("%s: could not map rxbuf dma memory\n",
666 sc->sc_dev.dv_xname);
667 goto fail;
668 }
669
670 sbd->type = IPW_SBD_TYPE_DATA;
671 sbd->priv = sbuf;
672 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
673 sbd->bd->len = htole32(MCLBYTES);
674
675 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
676 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
677
678 }
679
680 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, 0, IPW_RBD_SZ,
681 BUS_DMASYNC_PREREAD);
682
683 return 0;
684
685 fail: ipw_release(sc);
686 return error;
687 }
688
689 static void
690 ipw_release(struct ipw_softc *sc)
691 {
692 struct ipw_soft_buf *sbuf;
693 int i;
694
695 if (sc->tbd_map != NULL) {
696 if (sc->tbd_list != NULL) {
697 bus_dmamap_unload(sc->sc_dmat, sc->tbd_map);
698 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->tbd_list,
699 IPW_TBD_SZ);
700 bus_dmamem_free(sc->sc_dmat, &sc->tbd_seg, 1);
701 }
702 bus_dmamap_destroy(sc->sc_dmat, sc->tbd_map);
703 }
704
705 if (sc->rbd_map != NULL) {
706 if (sc->rbd_list != NULL) {
707 bus_dmamap_unload(sc->sc_dmat, sc->rbd_map);
708 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rbd_list,
709 IPW_RBD_SZ);
710 bus_dmamem_free(sc->sc_dmat, &sc->rbd_seg, 1);
711 }
712 bus_dmamap_destroy(sc->sc_dmat, sc->rbd_map);
713 }
714
715 if (sc->status_map != NULL) {
716 if (sc->status_list != NULL) {
717 bus_dmamap_unload(sc->sc_dmat, sc->status_map);
718 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->status_list,
719 IPW_RBD_SZ);
720 bus_dmamem_free(sc->sc_dmat, &sc->status_seg, 1);
721 }
722 bus_dmamap_destroy(sc->sc_dmat, sc->status_map);
723 }
724
725 for (i = 0; i < IPW_NTBD; i++)
726 ipw_release_sbd(sc, &sc->stbd_list[i]);
727
728 if (sc->cmd_map != NULL)
729 bus_dmamap_destroy(sc->sc_dmat, sc->cmd_map);
730
731 if (sc->hdr_list != NULL) {
732 bus_dmamap_unload(sc->sc_dmat, sc->hdr_map);
733 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->hdr_list,
734 IPW_NDATA * sizeof(struct ipw_hdr));
735 }
736 if (sc->hdr_map != NULL) {
737 bus_dmamem_free(sc->sc_dmat, &sc->hdr_seg, 1);
738 bus_dmamap_destroy(sc->sc_dmat, sc->hdr_map);
739 }
740
741 for (i = 0; i < IPW_NDATA; i++)
742 bus_dmamap_destroy(sc->sc_dmat, sc->tx_sbuf_list[i].map);
743
744 for (i = 0; i < IPW_NRBD; i++) {
745 sbuf = &sc->rx_sbuf_list[i];
746 if (sbuf->map != NULL) {
747 if (sbuf->m != NULL) {
748 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
749 m_freem(sbuf->m);
750 }
751 bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
752 }
753 }
754
755 }
756
757 static void
758 ipw_shutdown(void *arg)
759 {
760 struct ipw_softc *sc = (struct ipw_softc *)arg;
761 struct ifnet *ifp = sc->sc_ic.ic_ifp;
762
763 ipw_stop(ifp, 1);
764 }
765
766
767 static int
768 ipw_suspend(struct ipw_softc *sc)
769 {
770 struct ifnet *ifp = sc->sc_ic.ic_ifp;
771
772 ipw_stop(ifp, 1);
773
774 return 0;
775 }
776
777 static int
778 ipw_resume(struct ipw_softc *sc)
779 {
780 struct ifnet *ifp = sc->sc_ic.ic_ifp;
781 pcireg_t data;
782
783 /* clear device specific PCI configuration register 0x41 */
784 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
785 data &= ~0x0000ff00;
786 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
787
788 if (ifp->if_flags & IFF_UP) {
789 ipw_init(ifp);
790 if (ifp->if_flags & IFF_RUNNING)
791 ipw_start(ifp);
792 }
793
794 return 0;
795 }
796
797 static void
798 ipw_powerhook(int why, void *arg)
799 {
800 struct ipw_softc *sc = arg;
801 int s;
802
803 s = splnet();
804 switch (why) {
805 case PWR_SUSPEND:
806 case PWR_STANDBY:
807 ipw_suspend(sc);
808 break;
809 case PWR_RESUME:
810 ipw_resume(sc);
811 break;
812 case PWR_SOFTSUSPEND:
813 case PWR_SOFTSTANDBY:
814 case PWR_SOFTRESUME:
815 break;
816 }
817 splx(s);
818 }
819
820 static int
821 ipw_media_change(struct ifnet *ifp)
822 {
823 int error;
824
825 error = ieee80211_media_change(ifp);
826 if (error != ENETRESET)
827 return error;
828
829 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
830 ipw_init(ifp);
831
832 return 0;
833 }
834
835 /*
836 * The firmware automatically adapts the transmit speed. We report the current
837 * transmit speed here.
838 */
839 static void
840 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
841 {
842 #define N(a) (sizeof (a) / sizeof (a[0]))
843 struct ipw_softc *sc = ifp->if_softc;
844 struct ieee80211com *ic = &sc->sc_ic;
845 static const struct {
846 uint32_t val;
847 int rate;
848 } rates[] = {
849 { IPW_RATE_DS1, 2 },
850 { IPW_RATE_DS2, 4 },
851 { IPW_RATE_DS5, 11 },
852 { IPW_RATE_DS11, 22 },
853 };
854 uint32_t val;
855 int rate, i;
856
857 imr->ifm_status = IFM_AVALID;
858 imr->ifm_active = IFM_IEEE80211;
859 if (ic->ic_state == IEEE80211_S_RUN)
860 imr->ifm_status |= IFM_ACTIVE;
861
862 /* read current transmission rate from adapter */
863 val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf;
864
865 /* convert ipw rate to 802.11 rate */
866 for (i = 0; i < N(rates) && rates[i].val != val; i++);
867 rate = (i < N(rates)) ? rates[i].rate : 0;
868
869 imr->ifm_active |= IFM_IEEE80211_11B;
870 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
871 switch (ic->ic_opmode) {
872 case IEEE80211_M_STA:
873 break;
874
875 case IEEE80211_M_IBSS:
876 imr->ifm_active |= IFM_IEEE80211_ADHOC;
877 break;
878
879 case IEEE80211_M_MONITOR:
880 imr->ifm_active |= IFM_IEEE80211_MONITOR;
881 break;
882
883 case IEEE80211_M_AHDEMO:
884 case IEEE80211_M_HOSTAP:
885 /* should not get there */
886 break;
887 }
888 #undef N
889 }
890
891 static int
892 ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
893 {
894 struct ifnet *ifp = ic->ic_ifp;
895 struct ipw_softc *sc = ifp->if_softc;
896 struct ieee80211_node *ni;
897 uint8_t macaddr[IEEE80211_ADDR_LEN];
898 uint32_t len;
899
900 switch (nstate) {
901 case IEEE80211_S_RUN:
902 DELAY(200); /* firmware needs a short delay here */
903
904 len = IEEE80211_ADDR_LEN;
905 ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len);
906
907 ni = ieee80211_find_node(&ic->ic_scan, macaddr);
908 if (ni == NULL)
909 break;
910
911 ieee80211_ref_node(ni);
912 ieee80211_sta_join(ic, ni);
913 ieee80211_node_authorize(ni);
914
915 if (ic->ic_opmode == IEEE80211_M_STA)
916 ieee80211_notify_node_join(ic, ni, 1);
917 break;
918
919 case IEEE80211_S_INIT:
920 case IEEE80211_S_SCAN:
921 case IEEE80211_S_AUTH:
922 case IEEE80211_S_ASSOC:
923 break;
924 }
925
926 ic->ic_state = nstate;
927 return 0;
928 }
929
930 /*
931 * Read 16 bits at address 'addr' from the serial EEPROM.
932 */
933 static uint16_t
934 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
935 {
936 uint32_t tmp;
937 uint16_t val;
938 int n;
939
940 /* clock C once before the first command */
941 IPW_EEPROM_CTL(sc, 0);
942 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
943 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
944 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
945
946 /* write start bit (1) */
947 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
948 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
949
950 /* write READ opcode (10) */
951 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
952 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
953 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
954 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
955
956 /* write address A7-A0 */
957 for (n = 7; n >= 0; n--) {
958 IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
959 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
960 IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
961 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
962 }
963
964 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
965
966 /* read data Q15-Q0 */
967 val = 0;
968 for (n = 15; n >= 0; n--) {
969 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
970 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
971 tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
972 val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
973 }
974
975 IPW_EEPROM_CTL(sc, 0);
976
977 /* clear Chip Select and clock C */
978 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
979 IPW_EEPROM_CTL(sc, 0);
980 IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
981
982 return le16toh(val);
983 }
984
985 static void
986 ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
987 {
988 struct ipw_cmd *cmd;
989
990 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof (struct ipw_cmd),
991 BUS_DMASYNC_POSTREAD);
992
993 cmd = mtod(sbuf->m, struct ipw_cmd *);
994
995 DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type),
996 le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
997 le32toh(cmd->status)));
998
999 wakeup(&sc->cmd);
1000 }
1001
1002 static void
1003 ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
1004 {
1005 struct ieee80211com *ic = &sc->sc_ic;
1006 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1007 uint32_t state;
1008
1009 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof state,
1010 BUS_DMASYNC_POSTREAD);
1011
1012 state = le32toh(*mtod(sbuf->m, uint32_t *));
1013
1014 DPRINTFN(2, ("entering state %u\n", state));
1015
1016 switch (state) {
1017 case IPW_STATE_ASSOCIATED:
1018 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1019 break;
1020
1021 case IPW_STATE_SCANNING:
1022 /* don't leave run state on background scan */
1023 if (ic->ic_state != IEEE80211_S_RUN)
1024 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1025
1026 ic->ic_flags |= IEEE80211_F_SCAN;
1027 break;
1028
1029 case IPW_STATE_SCAN_COMPLETE:
1030 ieee80211_notify_scan_done(ic);
1031 ic->ic_flags &= ~IEEE80211_F_SCAN;
1032 break;
1033
1034 case IPW_STATE_ASSOCIATION_LOST:
1035 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1036 break;
1037
1038 case IPW_STATE_RADIO_DISABLED:
1039 ic->ic_ifp->if_flags &= ~IFF_UP;
1040 ipw_stop(ifp, 1);
1041 break;
1042 }
1043 }
1044
1045 /*
1046 * XXX: Hack to set the current channel to the value advertised in beacons or
1047 * probe responses. Only used during AP detection.
1048 */
1049 static void
1050 ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m)
1051 {
1052 struct ieee80211_frame *wh;
1053 uint8_t subtype;
1054 uint8_t *frm, *efrm;
1055
1056 wh = mtod(m, struct ieee80211_frame *);
1057
1058 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
1059 return;
1060
1061 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1062
1063 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
1064 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1065 return;
1066
1067 frm = (uint8_t *)(wh + 1);
1068 efrm = mtod(m, uint8_t *) + m->m_len;
1069
1070 frm += 12; /* skip tstamp, bintval and capinfo fields */
1071 while (frm < efrm) {
1072 if (*frm == IEEE80211_ELEMID_DSPARMS)
1073 #if IEEE80211_CHAN_MAX < 255
1074 if (frm[2] <= IEEE80211_CHAN_MAX)
1075 #endif
1076 ic->ic_curchan = &ic->ic_channels[frm[2]];
1077
1078 frm += frm[1] + 2;
1079 }
1080 }
1081
1082 static void
1083 ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
1084 struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
1085 {
1086 struct ieee80211com *ic = &sc->sc_ic;
1087 struct ifnet *ifp = &sc->sc_if;
1088 struct mbuf *mnew, *m;
1089 struct ieee80211_frame *wh;
1090 struct ieee80211_node *ni;
1091 int error;
1092
1093 DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
1094 status->rssi));
1095
1096 if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
1097 le32toh(status->len) > MCLBYTES)
1098 return;
1099
1100 /*
1101 * Try to allocate a new mbuf for this ring element and load it before
1102 * processing the current mbuf. If the ring element cannot be loaded,
1103 * drop the received packet and reuse the old mbuf. In the unlikely
1104 * case that the old mbuf can't be reloaded either, explicitly panic.
1105 */
1106 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1107 if (mnew == NULL) {
1108 aprint_error("%s: could not allocate rx mbuf\n",
1109 sc->sc_dev.dv_xname);
1110 ifp->if_ierrors++;
1111 return;
1112 }
1113
1114 MCLGET(mnew, M_DONTWAIT);
1115 if (!(mnew->m_flags & M_EXT)) {
1116 aprint_error("%s: could not allocate rx mbuf cluster\n",
1117 sc->sc_dev.dv_xname);
1118 m_freem(mnew);
1119 ifp->if_ierrors++;
1120 return;
1121 }
1122
1123 mnew->m_pkthdr.len = mnew->m_len = mnew->m_ext.ext_size;
1124
1125 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, le32toh(status->len),
1126 BUS_DMASYNC_POSTREAD);
1127 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
1128
1129 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, mnew,
1130 BUS_DMA_READ | BUS_DMA_NOWAIT);
1131 if (error != 0) {
1132 aprint_error("%s: could not load rx buf DMA map\n",
1133 sc->sc_dev.dv_xname);
1134 m_freem(mnew);
1135
1136 /* try to reload the old mbuf */
1137 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
1138 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
1139 if (error != 0) {
1140 /* very unlikely that it will fail... */
1141 panic("%s: unable to remap rx buf",
1142 sc->sc_dev.dv_xname);
1143 }
1144 ifp->if_ierrors++;
1145 return;
1146 }
1147
1148 /*
1149 * New mbuf successfully loaded, update Rx ring and continue
1150 * processing.
1151 */
1152 m = sbuf->m;
1153 sbuf->m = mnew;
1154 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
1155
1156 /* finalize mbuf */
1157 m->m_pkthdr.rcvif = ifp;
1158 m->m_pkthdr.len = m->m_len = le32toh(status->len);
1159
1160 #if NBPFILTER > 0
1161 if (sc->sc_drvbpf != NULL) {
1162 struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
1163
1164 tap->wr_flags = 0;
1165 tap->wr_antsignal = status->rssi;
1166 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1167 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1168
1169 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1170 }
1171 #endif
1172
1173 if (ic->ic_state == IEEE80211_S_SCAN)
1174 ipw_fix_channel(ic, m);
1175
1176 wh = mtod(m, struct ieee80211_frame *);
1177 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1178
1179 /* send the frame to the 802.11 layer */
1180 ieee80211_input(ic, m, ni, status->rssi, 0);
1181
1182 /* node is no longer needed */
1183 ieee80211_free_node(ni);
1184
1185 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
1186 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1187 }
1188
1189 static void
1190 ipw_rx_intr(struct ipw_softc *sc)
1191 {
1192 struct ipw_status *status;
1193 struct ipw_soft_bd *sbd;
1194 struct ipw_soft_buf *sbuf;
1195 uint32_t r, i;
1196
1197 if (!(sc->flags & IPW_FLAG_FW_INITED))
1198 return;
1199
1200 r = CSR_READ_4(sc, IPW_CSR_RX_READ);
1201
1202 for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
1203
1204 /* firmware was killed, stop processing received frames */
1205 if (!(sc->flags & IPW_FLAG_FW_INITED))
1206 return;
1207
1208 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
1209 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1210 BUS_DMASYNC_POSTREAD);
1211
1212 bus_dmamap_sync(sc->sc_dmat, sc->status_map,
1213 i * sizeof (struct ipw_status), sizeof (struct ipw_status),
1214 BUS_DMASYNC_POSTREAD);
1215
1216 status = &sc->status_list[i];
1217 sbd = &sc->srbd_list[i];
1218 sbuf = sbd->priv;
1219
1220 switch (le16toh(status->code) & 0xf) {
1221 case IPW_STATUS_CODE_COMMAND:
1222 ipw_command_intr(sc, sbuf);
1223 break;
1224
1225 case IPW_STATUS_CODE_NEWSTATE:
1226 ipw_newstate_intr(sc, sbuf);
1227 break;
1228
1229 case IPW_STATUS_CODE_DATA_802_3:
1230 case IPW_STATUS_CODE_DATA_802_11:
1231 ipw_data_intr(sc, status, sbd, sbuf);
1232 break;
1233
1234 case IPW_STATUS_CODE_NOTIFICATION:
1235 DPRINTFN(2, ("received notification\n"));
1236 break;
1237
1238 default:
1239 aprint_error("%s: unknown status code %u\n",
1240 sc->sc_dev.dv_xname, le16toh(status->code));
1241 }
1242
1243 sbd->bd->flags = 0;
1244
1245 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
1246 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1247 BUS_DMASYNC_PREREAD);
1248
1249 bus_dmamap_sync(sc->sc_dmat, sc->status_map,
1250 i * sizeof (struct ipw_status), sizeof (struct ipw_status),
1251 BUS_DMASYNC_PREREAD);
1252 }
1253
1254 /* Tell the firmware what we have processed */
1255 sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
1256 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
1257 }
1258
1259 static void
1260 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
1261 {
1262 struct ieee80211com *ic;
1263 struct ipw_soft_hdr *shdr;
1264 struct ipw_soft_buf *sbuf;
1265
1266 switch (sbd->type) {
1267 case IPW_SBD_TYPE_COMMAND:
1268 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map,
1269 0, sizeof(struct ipw_cmd), BUS_DMASYNC_POSTWRITE);
1270 /* bus_dmamap_unload(sc->sc_dmat, sc->cmd_map); */
1271 break;
1272
1273 case IPW_SBD_TYPE_HEADER:
1274 shdr = sbd->priv;
1275 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map,
1276 shdr->offset, sizeof(struct ipw_hdr), BUS_DMASYNC_POSTWRITE);
1277 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
1278 break;
1279
1280 case IPW_SBD_TYPE_DATA:
1281 ic = &sc->sc_ic;
1282 sbuf = sbd->priv;
1283
1284 bus_dmamap_sync(sc->sc_dmat, sbuf->map,
1285 0, MCLBYTES, BUS_DMASYNC_POSTWRITE);
1286 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
1287 m_freem(sbuf->m);
1288 if (sbuf->ni != NULL)
1289 ieee80211_free_node(sbuf->ni);
1290 /* kill watchdog timer */
1291 sc->sc_tx_timer = 0;
1292 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
1293 break;
1294 }
1295 sbd->type = IPW_SBD_TYPE_NOASSOC;
1296 }
1297
1298 static void
1299 ipw_tx_intr(struct ipw_softc *sc)
1300 {
1301 struct ifnet *ifp = &sc->sc_if;
1302 struct ipw_soft_bd *sbd;
1303 uint32_t r, i;
1304
1305 if (!(sc->flags & IPW_FLAG_FW_INITED))
1306 return;
1307
1308 r = CSR_READ_4(sc, IPW_CSR_TX_READ);
1309
1310 for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
1311 sbd = &sc->stbd_list[i];
1312
1313 if (sbd->type == IPW_SBD_TYPE_DATA)
1314 ifp->if_opackets++;
1315
1316 ipw_release_sbd(sc, sbd);
1317 sc->txfree++;
1318 }
1319
1320 /* remember what the firmware has processed */
1321 sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
1322
1323 /* Call start() since some buffer descriptors have been released */
1324 ifp->if_flags &= ~IFF_OACTIVE;
1325 (*ifp->if_start)(ifp);
1326 }
1327
1328 static int
1329 ipw_intr(void *arg)
1330 {
1331 struct ipw_softc *sc = arg;
1332 uint32_t r;
1333
1334 r = CSR_READ_4(sc, IPW_CSR_INTR);
1335 if (r == 0 || r == 0xffffffff)
1336 return 0;
1337
1338 /* Disable interrupts */
1339 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1340
1341 if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
1342 aprint_error("%s: fatal error\n",
1343 sc->sc_dev.dv_xname);
1344 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1345 ipw_stop(&sc->sc_if, 1);
1346 }
1347
1348 if (r & IPW_INTR_FW_INIT_DONE) {
1349 if (!(r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)))
1350 wakeup(sc);
1351 }
1352
1353 if (r & IPW_INTR_RX_TRANSFER)
1354 ipw_rx_intr(sc);
1355
1356 if (r & IPW_INTR_TX_TRANSFER)
1357 ipw_tx_intr(sc);
1358
1359 /* Acknowledge all interrupts */
1360 CSR_WRITE_4(sc, IPW_CSR_INTR, r);
1361
1362 /* Re-enable interrupts */
1363 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1364
1365 return 0;
1366 }
1367
1368 /*
1369 * Send a command to the firmware and wait for the acknowledgement.
1370 */
1371 static int
1372 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
1373 {
1374 struct ipw_soft_bd *sbd;
1375
1376 sbd = &sc->stbd_list[sc->txcur];
1377
1378 sc->cmd.type = htole32(type);
1379 sc->cmd.subtype = 0;
1380 sc->cmd.len = htole32(len);
1381 sc->cmd.seq = 0;
1382
1383 (void)memcpy(sc->cmd.data, data, len);
1384
1385 sbd->type = IPW_SBD_TYPE_COMMAND;
1386 sbd->bd->physaddr = htole32(sc->cmd_map->dm_segs[0].ds_addr);
1387 sbd->bd->len = htole32(sizeof (struct ipw_cmd));
1388 sbd->bd->nfrag = 1;
1389 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
1390 IPW_BD_FLAG_TX_LAST_FRAGMENT;
1391
1392 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map, 0, sizeof (struct ipw_cmd),
1393 BUS_DMASYNC_PREWRITE);
1394
1395 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1396 sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1397 BUS_DMASYNC_PREWRITE);
1398
1399 DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len));
1400
1401 /* kick firmware */
1402 sc->txfree--;
1403 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1404 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1405
1406 /* Wait at most one second for command to complete */
1407 return tsleep(&sc->cmd, 0, "ipwcmd", hz);
1408 }
1409
1410 static int
1411 ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
1412 {
1413 struct ipw_softc *sc = ifp->if_softc;
1414 struct ieee80211com *ic = &sc->sc_ic;
1415 struct ieee80211_frame *wh;
1416 struct ipw_soft_bd *sbd;
1417 struct ipw_soft_hdr *shdr;
1418 struct ipw_soft_buf *sbuf;
1419 struct ieee80211_key *k;
1420 struct mbuf *mnew;
1421 int error, i;
1422
1423 wh = mtod(m0, struct ieee80211_frame *);
1424
1425 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1426 k = ieee80211_crypto_encap(ic, ni, m0);
1427 if (k == NULL) {
1428 m_freem(m0);
1429 return ENOBUFS;
1430 }
1431
1432 /* packet header may have moved, reset our local pointer */
1433 wh = mtod(m0, struct ieee80211_frame *);
1434 }
1435
1436 #if NBPFILTER > 0
1437 if (sc->sc_drvbpf != NULL) {
1438 struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
1439
1440 tap->wt_flags = 0;
1441 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1442 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1443
1444 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1445 }
1446 #endif
1447
1448 shdr = TAILQ_FIRST(&sc->sc_free_shdr);
1449 sbuf = TAILQ_FIRST(&sc->sc_free_sbuf);
1450 KASSERT(shdr != NULL && sbuf != NULL);
1451
1452 shdr->hdr->type = htole32(IPW_HDR_TYPE_SEND);
1453 shdr->hdr->subtype = 0;
1454 shdr->hdr->encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
1455 shdr->hdr->encrypt = 0;
1456 shdr->hdr->keyidx = 0;
1457 shdr->hdr->keysz = 0;
1458 shdr->hdr->fragmentsz = 0;
1459 IEEE80211_ADDR_COPY(shdr->hdr->src_addr, wh->i_addr2);
1460 if (ic->ic_opmode == IEEE80211_M_STA)
1461 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr3);
1462 else
1463 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr1);
1464
1465 /* trim IEEE802.11 header */
1466 m_adj(m0, sizeof (struct ieee80211_frame));
1467
1468 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0, BUS_DMA_NOWAIT);
1469 if (error != 0 && error != EFBIG) {
1470 aprint_error("%s: could not map mbuf (error %d)\n",
1471 sc->sc_dev.dv_xname, error);
1472 m_freem(m0);
1473 return error;
1474 }
1475
1476 if (error != 0) {
1477 /* too many fragments, linearize */
1478
1479 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1480 if (mnew == NULL) {
1481 m_freem(m0);
1482 return ENOMEM;
1483 }
1484
1485 M_COPY_PKTHDR(mnew, m0);
1486
1487 /* If the data won't fit in the header, get a cluster */
1488 if (m0->m_pkthdr.len > MHLEN) {
1489 MCLGET(mnew, M_DONTWAIT);
1490 if (!(mnew->m_flags & M_EXT)) {
1491 m_freem(m0);
1492 m_freem(mnew);
1493 return ENOMEM;
1494 }
1495 }
1496 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t));
1497 m_freem(m0);
1498 mnew->m_len = mnew->m_pkthdr.len;
1499 m0 = mnew;
1500
1501 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0,
1502 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1503 if (error != 0) {
1504 aprint_error("%s: could not map mbuf (error %d)\n",
1505 sc->sc_dev.dv_xname, error);
1506 m_freem(m0);
1507 return error;
1508 }
1509 }
1510
1511 TAILQ_REMOVE(&sc->sc_free_sbuf, sbuf, next);
1512 TAILQ_REMOVE(&sc->sc_free_shdr, shdr, next);
1513
1514 sbd = &sc->stbd_list[sc->txcur];
1515 sbd->type = IPW_SBD_TYPE_HEADER;
1516 sbd->priv = shdr;
1517 sbd->bd->physaddr = htole32(shdr->addr);
1518 sbd->bd->len = htole32(sizeof (struct ipw_hdr));
1519 sbd->bd->nfrag = 1 + sbuf->map->dm_nsegs;
1520 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
1521 IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1522
1523 DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, )\n",
1524 shdr->hdr->type, shdr->hdr->subtype, shdr->hdr->encrypted,
1525 shdr->hdr->encrypt));
1526 DPRINTFN(5, ("%s->", ether_sprintf(shdr->hdr->src_addr)));
1527 DPRINTFN(5, ("%s\n", ether_sprintf(shdr->hdr->dst_addr)));
1528
1529 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1530 sc->txcur * sizeof (struct ipw_bd),
1531 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
1532
1533 sc->txfree--;
1534 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1535
1536 sbuf->m = m0;
1537 sbuf->ni = ni;
1538
1539 for (i = 0; i < sbuf->map->dm_nsegs; i++) {
1540 sbd = &sc->stbd_list[sc->txcur];
1541
1542 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[i].ds_addr);
1543 sbd->bd->len = htole32(sbuf->map->dm_segs[i].ds_len);
1544 sbd->bd->nfrag = 0;
1545 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
1546 if (i == sbuf->map->dm_nsegs - 1) {
1547 sbd->type = IPW_SBD_TYPE_DATA;
1548 sbd->priv = sbuf;
1549 sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
1550 } else {
1551 sbd->type = IPW_SBD_TYPE_NOASSOC;
1552 sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1553 }
1554
1555 DPRINTFN(5, ("sending fragment (%d, %d)\n", i,
1556 (int)sbuf->map->dm_segs[i].ds_len));
1557
1558 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1559 sc->txcur * sizeof (struct ipw_bd),
1560 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
1561
1562 sc->txfree--;
1563 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1564 }
1565
1566 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map, shdr->offset,
1567 sizeof (struct ipw_hdr), BUS_DMASYNC_PREWRITE);
1568
1569 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, MCLBYTES,
1570 BUS_DMASYNC_PREWRITE);
1571
1572 /* Inform firmware about this new packet */
1573 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1574
1575 return 0;
1576 }
1577
1578 static void
1579 ipw_start(struct ifnet *ifp)
1580 {
1581 struct ipw_softc *sc = ifp->if_softc;
1582 struct ieee80211com *ic = &sc->sc_ic;
1583 struct mbuf *m0;
1584 struct ether_header *eh;
1585 struct ieee80211_node *ni;
1586
1587
1588 if (ic->ic_state != IEEE80211_S_RUN)
1589 return;
1590
1591 for (;;) {
1592 IF_DEQUEUE(&ifp->if_snd, m0);
1593 if (m0 == NULL)
1594 break;
1595
1596 if (sc->txfree < 1 + IPW_MAX_NSEG) {
1597 IF_PREPEND(&ifp->if_snd, m0);
1598 ifp->if_flags |= IFF_OACTIVE;
1599 break;
1600 }
1601
1602 if (m0->m_len < sizeof (struct ether_header) &&
1603 (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL)
1604 continue;
1605
1606 eh = mtod(m0, struct ether_header *);
1607 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1608 if (ni == NULL) {
1609 m_freem(m0);
1610 continue;
1611 }
1612
1613 #if NBPFILTER > 0
1614 if (ifp->if_bpf != NULL)
1615 bpf_mtap(ifp->if_bpf, m0);
1616 #endif
1617
1618 m0 = ieee80211_encap(ic, m0, ni);
1619 if (m0 == NULL) {
1620 ieee80211_free_node(ni);
1621 continue;
1622 }
1623
1624 #if NBPFILTER > 0
1625 if (ic->ic_rawbpf != NULL)
1626 bpf_mtap(ic->ic_rawbpf, m0);
1627 #endif
1628
1629 if (ipw_tx_start(ifp, m0, ni) != 0) {
1630 ieee80211_free_node(ni);
1631 ifp->if_oerrors++;
1632 break;
1633 }
1634
1635 /* start watchdog timer */
1636 sc->sc_tx_timer = 5;
1637 ifp->if_timer = 1;
1638 }
1639 }
1640
1641 static void
1642 ipw_watchdog(struct ifnet *ifp)
1643 {
1644 struct ipw_softc *sc = ifp->if_softc;
1645
1646 ifp->if_timer = 0;
1647
1648 if (sc->sc_tx_timer > 0) {
1649 if (--sc->sc_tx_timer == 0) {
1650 aprint_error("%s: device timeout\n",
1651 sc->sc_dev.dv_xname);
1652 ifp->if_oerrors++;
1653 ifp->if_flags &= ~IFF_UP;
1654 ipw_stop(ifp, 1);
1655 return;
1656 }
1657 ifp->if_timer = 1;
1658 }
1659
1660 ieee80211_watchdog(&sc->sc_ic);
1661 }
1662
1663 static int
1664 ipw_get_table1(struct ipw_softc *sc, uint32_t *tbl)
1665 {
1666 uint32_t addr, size, i;
1667
1668 if (!(sc->flags & IPW_FLAG_FW_INITED))
1669 return ENOTTY;
1670
1671 CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
1672
1673 size = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
1674 if (suword(tbl, size) != 0)
1675 return EFAULT;
1676
1677 for (i = 1, ++tbl; i < size; i++, tbl++) {
1678 addr = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
1679 if (suword(tbl, MEM_READ_4(sc, addr)) != 0)
1680 return EFAULT;
1681 }
1682 return 0;
1683 }
1684
1685 static int
1686 ipw_get_radio(struct ipw_softc *sc, int *ret)
1687 {
1688 uint32_t addr;
1689
1690 if (!(sc->flags & IPW_FLAG_FW_INITED))
1691 return ENOTTY;
1692
1693 addr = ipw_read_table1(sc, IPW_INFO_EEPROM_ADDRESS);
1694 if ((MEM_READ_4(sc, addr + 32) >> 24) & 1) {
1695 suword(ret, -1);
1696 return 0;
1697 }
1698
1699 if (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)
1700 suword(ret, 0);
1701 else
1702 suword(ret, 1);
1703
1704 return 0;
1705 }
1706
1707 static int
1708 ipw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1709 {
1710 #define IS_RUNNING(ifp) \
1711 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1712
1713 struct ipw_softc *sc = ifp->if_softc;
1714 struct ieee80211com *ic = &sc->sc_ic;
1715 struct ifreq *ifr = (struct ifreq *)data;
1716 int s, error = 0;
1717
1718 s = splnet();
1719
1720 switch (cmd) {
1721 case SIOCSIFFLAGS:
1722 if (ifp->if_flags & IFF_UP) {
1723 if (!(ifp->if_flags & IFF_RUNNING))
1724 ipw_init(ifp);
1725 } else {
1726 if (ifp->if_flags & IFF_RUNNING)
1727 ipw_stop(ifp, 1);
1728 }
1729 break;
1730
1731 case SIOCADDMULTI:
1732 case SIOCDELMULTI:
1733 error = (cmd == SIOCADDMULTI) ?
1734 ether_addmulti(ifr, &sc->sc_ec) :
1735 ether_delmulti(ifr, &sc->sc_ec);
1736 if (error == ENETRESET) {
1737 /* setup multicast filter, etc */
1738 error = 0;
1739 }
1740 break;
1741
1742 case SIOCGTABLE1:
1743 error = ipw_get_table1(sc, (uint32_t *)ifr->ifr_data);
1744 break;
1745
1746 case SIOCGRADIO:
1747 error = ipw_get_radio(sc, (int *)ifr->ifr_data);
1748 break;
1749
1750 case SIOCSIFMEDIA:
1751 if (ifr->ifr_media & IFM_IEEE80211_ADHOC)
1752 strlcpy(sc->sc_fwname, "ipw2100-1.2-i.fw",
1753 sizeof(sc->sc_fwname));
1754 else if (ifr->ifr_media & IFM_IEEE80211_MONITOR)
1755 strlcpy(sc->sc_fwname, "ipw2100-1.2-p.fw",
1756 sizeof(sc->sc_fwname));
1757 else
1758 strlcpy(sc->sc_fwname, "ipw2100-1.2.fw",
1759 sizeof(sc->sc_fwname));
1760
1761 ipw_free_firmware(sc);
1762 /* FALLTRHOUGH */
1763 default:
1764 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1765 if (error != ENETRESET)
1766 break;
1767
1768 if (error == ENETRESET) {
1769 if (IS_RUNNING(ifp) &&
1770 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1771 ipw_init(ifp);
1772 error = 0;
1773 }
1774
1775 }
1776
1777 splx(s);
1778 return error;
1779 #undef IS_RUNNING
1780 }
1781
1782 static uint32_t
1783 ipw_read_table1(struct ipw_softc *sc, uint32_t off)
1784 {
1785 return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
1786 }
1787
1788 static void
1789 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
1790 {
1791 MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
1792 }
1793
1794 static int
1795 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
1796 {
1797 uint32_t addr, info;
1798 uint16_t count, size;
1799 uint32_t total;
1800
1801 /* addr[4] + count[2] + size[2] */
1802 addr = MEM_READ_4(sc, sc->table2_base + off);
1803 info = MEM_READ_4(sc, sc->table2_base + off + 4);
1804
1805 count = info >> 16;
1806 size = info & 0xffff;
1807 total = count * size;
1808
1809 if (total > *len) {
1810 *len = total;
1811 return EINVAL;
1812 }
1813
1814 *len = total;
1815 ipw_read_mem_1(sc, addr, buf, total);
1816
1817 return 0;
1818 }
1819
1820 static void
1821 ipw_stop_master(struct ipw_softc *sc)
1822 {
1823 int ntries;
1824
1825 /* disable interrupts */
1826 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1827
1828 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
1829 for (ntries = 0; ntries < 50; ntries++) {
1830 if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
1831 break;
1832 DELAY(10);
1833 }
1834 if (ntries == 50)
1835 aprint_error("%s: timeout waiting for master\n",
1836 sc->sc_dev.dv_xname);
1837
1838 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
1839 IPW_RST_PRINCETON_RESET);
1840
1841 sc->flags &= ~IPW_FLAG_FW_INITED;
1842 }
1843
1844 static int
1845 ipw_reset(struct ipw_softc *sc)
1846 {
1847 int ntries;
1848
1849 ipw_stop_master(sc);
1850
1851 /* move adapter to D0 state */
1852 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1853 IPW_CTL_INIT);
1854
1855 /* wait for clock stabilization */
1856 for (ntries = 0; ntries < 1000; ntries++) {
1857 if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
1858 break;
1859 DELAY(200);
1860 }
1861 if (ntries == 1000)
1862 return EIO;
1863
1864 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
1865 IPW_RST_SW_RESET);
1866
1867 DELAY(10);
1868
1869 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1870 IPW_CTL_INIT);
1871
1872 return 0;
1873 }
1874
1875 /*
1876 * Upload the microcode to the device.
1877 */
1878 static int
1879 ipw_load_ucode(struct ipw_softc *sc, u_char *uc, int size)
1880 {
1881 int ntries;
1882
1883 MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
1884 CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1885
1886 MEM_WRITE_2(sc, 0x220000, 0x0703);
1887 MEM_WRITE_2(sc, 0x220000, 0x0707);
1888
1889 MEM_WRITE_1(sc, 0x210014, 0x72);
1890 MEM_WRITE_1(sc, 0x210014, 0x72);
1891
1892 MEM_WRITE_1(sc, 0x210000, 0x40);
1893 MEM_WRITE_1(sc, 0x210000, 0x00);
1894 MEM_WRITE_1(sc, 0x210000, 0x40);
1895
1896 MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
1897
1898 MEM_WRITE_1(sc, 0x210000, 0x00);
1899 MEM_WRITE_1(sc, 0x210000, 0x00);
1900 MEM_WRITE_1(sc, 0x210000, 0x80);
1901
1902 MEM_WRITE_2(sc, 0x220000, 0x0703);
1903 MEM_WRITE_2(sc, 0x220000, 0x0707);
1904
1905 MEM_WRITE_1(sc, 0x210014, 0x72);
1906 MEM_WRITE_1(sc, 0x210014, 0x72);
1907
1908 MEM_WRITE_1(sc, 0x210000, 0x00);
1909 MEM_WRITE_1(sc, 0x210000, 0x80);
1910
1911 for (ntries = 0; ntries < 10; ntries++) {
1912 if (MEM_READ_1(sc, 0x210000) & 1)
1913 break;
1914 DELAY(10);
1915 }
1916 if (ntries == 10) {
1917 aprint_error("%s: timeout waiting for ucode to initialize\n",
1918 sc->sc_dev.dv_xname);
1919 return EIO;
1920 }
1921
1922 MEM_WRITE_4(sc, 0x3000e0, 0);
1923
1924 return 0;
1925 }
1926
1927 /* set of macros to handle unaligned little endian data in firmware image */
1928 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
1929 #define GETLE16(p) ((p)[0] | (p)[1] << 8)
1930 static int
1931 ipw_load_firmware(struct ipw_softc *sc, u_char *fw, int size)
1932 {
1933 u_char *p, *end;
1934 uint32_t dst;
1935 uint16_t len;
1936 int error;
1937
1938 p = fw;
1939 end = fw + size;
1940 while (p < end) {
1941 dst = GETLE32(p); p += 4;
1942 len = GETLE16(p); p += 2;
1943
1944 ipw_write_mem_1(sc, dst, p, len);
1945 p += len;
1946 }
1947
1948 CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
1949 IPW_IO_LED_OFF);
1950
1951 /* enable interrupts */
1952 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1953
1954 /* kick the firmware */
1955 CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1956
1957 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1958 IPW_CTL_ALLOW_STANDBY);
1959
1960 /* wait at most one second for firmware initialization to complete */
1961 if ((error = tsleep(sc, 0, "ipwinit", hz)) != 0) {
1962 aprint_error("%s: timeout waiting for firmware initialization "
1963 "to complete\n", sc->sc_dev.dv_xname);
1964 return error;
1965 }
1966
1967 CSR_WRITE_4(sc, IPW_CSR_IO, CSR_READ_4(sc, IPW_CSR_IO) |
1968 IPW_IO_GPIO1_MASK | IPW_IO_GPIO3_MASK);
1969
1970 return 0;
1971 }
1972
1973 /*
1974 * Store firmware into kernel memory so we can download it when we need to,
1975 * e.g when the adapter wakes up from suspend mode.
1976 */
1977 static int
1978 ipw_cache_firmware(struct ipw_softc *sc)
1979 {
1980 struct ipw_firmware *fw = &sc->fw;
1981 struct ipw_firmware_hdr hdr;
1982 firmware_handle_t fwh;
1983 off_t fwsz, p;
1984 int error;
1985
1986 ipw_free_firmware(sc);
1987
1988 if ((error = firmware_open("if_ipw", sc->sc_fwname, &fwh)) != 0)
1989 goto fail0;
1990
1991 fwsz = firmware_get_size(fwh);
1992
1993 if (fwsz < sizeof(hdr))
1994 goto fail2;
1995
1996 if ((error = firmware_read(fwh, 0, &hdr, sizeof(hdr))) != 0)
1997 goto fail2;
1998
1999 fw->main_size = le32toh(hdr.main_size);
2000 fw->ucode_size = le32toh(hdr.ucode_size);
2001
2002 fw->main = firmware_malloc(fw->main_size);
2003 if (fw->main == NULL) {
2004 error = ENOMEM;
2005 goto fail1;
2006 }
2007
2008 fw->ucode = firmware_malloc(fw->ucode_size);
2009 if (fw->ucode == NULL) {
2010 error = ENOMEM;
2011 goto fail2;
2012 }
2013
2014 p = sizeof(hdr);
2015 if ((error = firmware_read(fwh, p, fw->main, fw->main_size)) != 0)
2016 goto fail3;
2017
2018 p += fw->main_size;
2019 if ((error = firmware_read(fwh, p, fw->ucode, fw->ucode_size)) != 0)
2020 goto fail3;
2021
2022 DPRINTF(("Firmware cached: main %u, ucode %u\n", fw->main_size,
2023 fw->ucode_size));
2024
2025 sc->flags |= IPW_FLAG_FW_CACHED;
2026
2027 return 0;
2028
2029 fail3: firmware_free(fw->ucode, 0);
2030 fail2: firmware_free(fw->main, 0);
2031 fail1: firmware_close(fwh);
2032 fail0:
2033 return error;
2034 }
2035
2036 static void
2037 ipw_free_firmware(struct ipw_softc *sc)
2038 {
2039 if (!(sc->flags & IPW_FLAG_FW_CACHED))
2040 return;
2041
2042 firmware_free(sc->fw.main, 0);
2043 firmware_free(sc->fw.ucode, 0);
2044
2045 sc->flags &= ~IPW_FLAG_FW_CACHED;
2046 }
2047
2048 static int
2049 ipw_config(struct ipw_softc *sc)
2050 {
2051 struct ieee80211com *ic = &sc->sc_ic;
2052 struct ifnet *ifp = &sc->sc_if;
2053 struct ipw_security security;
2054 struct ieee80211_key *k;
2055 struct ipw_wep_key wepkey;
2056 struct ipw_scan_options options;
2057 struct ipw_configuration config;
2058 uint32_t data;
2059 int error, i;
2060
2061 switch (ic->ic_opmode) {
2062 case IEEE80211_M_STA:
2063 case IEEE80211_M_HOSTAP:
2064 data = htole32(IPW_MODE_BSS);
2065 break;
2066
2067 case IEEE80211_M_IBSS:
2068 case IEEE80211_M_AHDEMO:
2069 data = htole32(IPW_MODE_IBSS);
2070 break;
2071
2072 case IEEE80211_M_MONITOR:
2073 data = htole32(IPW_MODE_MONITOR);
2074 break;
2075 }
2076 DPRINTF(("Setting mode to %u\n", le32toh(data)));
2077 error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
2078 if (error != 0)
2079 return error;
2080
2081 if (ic->ic_opmode == IEEE80211_M_IBSS ||
2082 ic->ic_opmode == IEEE80211_M_MONITOR) {
2083 data = htole32(ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
2084 DPRINTF(("Setting channel to %u\n", le32toh(data)));
2085 error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
2086 if (error != 0)
2087 return error;
2088 }
2089
2090 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2091 DPRINTF(("Enabling adapter\n"));
2092 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
2093 }
2094
2095 DPRINTF(("Setting MAC to %s\n", ether_sprintf(ic->ic_myaddr)));
2096 IEEE80211_ADDR_COPY(LLADDR(ifp->if_sadl), ic->ic_myaddr);
2097 error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
2098 IEEE80211_ADDR_LEN);
2099 if (error != 0)
2100 return error;
2101
2102 config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
2103 IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
2104
2105 if (ic->ic_opmode == IEEE80211_M_IBSS)
2106 config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
2107 if (ifp->if_flags & IFF_PROMISC)
2108 config.flags |= htole32(IPW_CFG_PROMISCUOUS);
2109 config.bss_chan = htole32(0x3fff); /* channels 1-14 */
2110 config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
2111 DPRINTF(("Setting adapter configuration 0x%08x\n", config.flags));
2112 error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
2113 if (error != 0)
2114 return error;
2115
2116 data = htole32(0x3); /* 1, 2 */
2117 DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
2118 error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
2119 if (error != 0)
2120 return error;
2121
2122 data = htole32(0xf); /* 1, 2, 5.5, 11 */
2123 DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
2124 error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
2125 if (error != 0)
2126 return error;
2127
2128 data = htole32(IPW_POWER_MODE_CAM);
2129 DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2130 error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
2131 if (error != 0)
2132 return error;
2133
2134 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2135 data = htole32(32); /* default value */
2136 DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
2137 error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
2138 sizeof data);
2139 if (error != 0)
2140 return error;
2141 }
2142
2143 data = htole32(ic->ic_rtsthreshold);
2144 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2145 error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2146 if (error != 0)
2147 return error;
2148
2149 data = htole32(ic->ic_fragthreshold);
2150 DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
2151 error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2152 if (error != 0)
2153 return error;
2154
2155 #ifdef IPW_DEBUG
2156 if (ipw_debug > 0) {
2157 printf("Setting ESSID to ");
2158 ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen);
2159 printf("\n");
2160 }
2161 #endif
2162 error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid,
2163 ic->ic_des_esslen);
2164 if (error != 0)
2165 return error;
2166
2167 /* no mandatory BSSID */
2168 DPRINTF(("Setting mandatory BSSID to null\n"));
2169 error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
2170 if (error != 0)
2171 return error;
2172
2173 if (ic->ic_flags & IEEE80211_F_DESBSSID) {
2174 DPRINTF(("Setting desired BSSID to %s\n",
2175 ether_sprintf(ic->ic_des_bssid)));
2176 error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID,
2177 ic->ic_des_bssid, IEEE80211_ADDR_LEN);
2178 if (error != 0)
2179 return error;
2180 }
2181
2182 (void)memset(&security, 0, sizeof(security));
2183 security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ?
2184 IPW_AUTH_SHARED : IPW_AUTH_OPEN;
2185 security.ciphers = htole32(IPW_CIPHER_NONE);
2186 DPRINTF(("Setting authmode to %u\n", security.authmode));
2187 error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
2188 sizeof security);
2189 if (error != 0)
2190 return error;
2191
2192 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2193 k = ic->ic_crypto.cs_nw_keys;
2194 for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
2195 if (k->wk_keylen == 0)
2196 continue;
2197
2198 wepkey.idx = i;
2199 wepkey.len = k->wk_keylen;
2200 memset(wepkey.key, 0, sizeof(wepkey.key));
2201 memcpy(wepkey.key, k->wk_key, k->wk_keylen);
2202 DPRINTF(("Setting wep key index %u len %u\n",
2203 wepkey.idx, wepkey.len));
2204 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
2205 sizeof wepkey);
2206 if (error != 0)
2207 return error;
2208 }
2209
2210 data = htole32(ic->ic_crypto.cs_def_txkey);
2211 DPRINTF(("Setting tx key index to %u\n", le32toh(data)));
2212 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
2213 sizeof data);
2214 if (error != 0)
2215 return error;
2216 }
2217
2218 data = htole32((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
2219 DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
2220 error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
2221 if (error != 0)
2222 return error;
2223
2224 #if 0
2225 struct ipw_wpa_ie ie;
2226
2227 memset(&ie, 0 sizeof(ie));
2228 ie.len = htole32(sizeof (struct ieee80211_ie_wpa));
2229 DPRINTF(("Setting wpa ie\n"));
2230 error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie);
2231 if (error != 0)
2232 return error;
2233 #endif
2234
2235 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2236 data = htole32(ic->ic_bintval);
2237 DPRINTF(("Setting beacon interval to %u\n", le32toh(data)));
2238 error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
2239 sizeof data);
2240 if (error != 0)
2241 return error;
2242 }
2243
2244 options.flags = 0;
2245 options.channels = htole32(0x3fff); /* scan channels 1-14 */
2246 DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags)));
2247 error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options);
2248 if (error != 0)
2249 return error;
2250
2251 /* finally, enable adapter (start scanning for an access point) */
2252 DPRINTF(("Enabling adapter\n"));
2253 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
2254 }
2255
2256 static int
2257 ipw_init(struct ifnet *ifp)
2258 {
2259 struct ipw_softc *sc = ifp->if_softc;
2260 struct ipw_firmware *fw = &sc->fw;
2261
2262 if (!(sc->flags & IPW_FLAG_FW_CACHED)) {
2263 if (ipw_cache_firmware(sc) != 0) {
2264 aprint_error("%s: could not cache the firmware (%s)\n",
2265 sc->sc_dev.dv_xname, sc->sc_fwname);
2266 goto fail;
2267 }
2268 }
2269
2270 ipw_stop(ifp, 0);
2271
2272 if (ipw_reset(sc) != 0) {
2273 aprint_error("%s: could not reset adapter\n",
2274 sc->sc_dev.dv_xname);
2275 goto fail;
2276 }
2277
2278 if (ipw_load_ucode(sc, fw->ucode, fw->ucode_size) != 0) {
2279 aprint_error("%s: could not load microcode\n",
2280 sc->sc_dev.dv_xname);
2281 goto fail;
2282 }
2283
2284 ipw_stop_master(sc);
2285
2286 /*
2287 * Setup tx, rx and status rings.
2288 */
2289 sc->txold = IPW_NTBD - 1;
2290 sc->txcur = 0;
2291 sc->txfree = IPW_NTBD - 2;
2292 sc->rxcur = IPW_NRBD - 1;
2293
2294 CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_map->dm_segs[0].ds_addr);
2295 CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD);
2296 CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0);
2297 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
2298
2299 CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_map->dm_segs[0].ds_addr);
2300 CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD);
2301 CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0);
2302 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
2303
2304 CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_map->dm_segs[0].ds_addr);
2305
2306 if (ipw_load_firmware(sc, fw->main, fw->main_size) != 0) {
2307 aprint_error("%s: could not load firmware\n",
2308 sc->sc_dev.dv_xname);
2309 goto fail;
2310 }
2311
2312 sc->flags |= IPW_FLAG_FW_INITED;
2313
2314 /* retrieve information tables base addresses */
2315 sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
2316 sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
2317
2318 ipw_write_table1(sc, IPW_INFO_LOCK, 0);
2319
2320 if (ipw_config(sc) != 0) {
2321 aprint_error("%s: device configuration failed\n",
2322 sc->sc_dev.dv_xname);
2323 goto fail;
2324 }
2325
2326 ifp->if_flags &= ~IFF_OACTIVE;
2327 ifp->if_flags |= IFF_RUNNING;
2328
2329 return 0;
2330
2331 fail: ifp->if_flags &= ~IFF_UP;
2332 ipw_stop(ifp, 0);
2333
2334 return EIO;
2335 }
2336
2337 static void
2338 ipw_stop(struct ifnet *ifp, int disable)
2339 {
2340 struct ipw_softc *sc = ifp->if_softc;
2341 struct ieee80211com *ic = &sc->sc_ic;
2342 int i;
2343
2344 ipw_stop_master(sc);
2345
2346 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
2347
2348 /*
2349 * Release tx buffers.
2350 */
2351 for (i = 0; i < IPW_NTBD; i++)
2352 ipw_release_sbd(sc, &sc->stbd_list[i]);
2353
2354 sc->sc_tx_timer = 0;
2355 ifp->if_timer = 0;
2356 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2357
2358 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2359 }
2360
2361 static void
2362 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2363 bus_size_t count)
2364 {
2365 for (; count > 0; offset++, datap++, count--) {
2366 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2367 *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
2368 }
2369 }
2370
2371 static void
2372 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2373 bus_size_t count)
2374 {
2375 for (; count > 0; offset++, datap++, count--) {
2376 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2377 CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
2378 }
2379 }
2380