if_ipw.c revision 1.28 1 /* $NetBSD: if_ipw.c,v 1.28 2006/09/24 03:53:09 jmcneill Exp $ */
2 /* FreeBSD: src/sys/dev/ipw/if_ipw.c,v 1.15 2005/11/13 17:17:40 damien Exp */
3
4 /*-
5 * Copyright (c) 2004, 2005
6 * Damien Bergamini <damien.bergamini (at) free.fr>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: if_ipw.c,v 1.28 2006/09/24 03:53:09 jmcneill Exp $");
33
34 /*-
35 * Intel(R) PRO/Wireless 2100 MiniPCI driver
36 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
37 */
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 #include <sys/mbuf.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/systm.h>
48 #include <sys/malloc.h>
49 #include <sys/conf.h>
50
51 #include <machine/bus.h>
52 #include <machine/endian.h>
53 #include <machine/intr.h>
54
55 #include <dev/pci/pcireg.h>
56 #include <dev/pci/pcivar.h>
57 #include <dev/pci/pcidevs.h>
58
59 #if NBPFILTER > 0
60 #include <net/bpf.h>
61 #endif
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_ether.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_radiotap.h>
71
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip.h>
76
77 #include <dev/firmload.h>
78
79 #include <dev/pci/if_ipwreg.h>
80 #include <dev/pci/if_ipwvar.h>
81
82 #ifdef IPW_DEBUG
83 #define DPRINTF(x) if (ipw_debug > 0) printf x
84 #define DPRINTFN(n, x) if (ipw_debug >= (n)) printf x
85 int ipw_debug = 0;
86 #else
87 #define DPRINTF(x)
88 #define DPRINTFN(n, x)
89 #endif
90
91 static int ipw_dma_alloc(struct ipw_softc *);
92 static void ipw_release(struct ipw_softc *);
93 static int ipw_match(struct device *, struct cfdata *, void *);
94 static void ipw_attach(struct device *, struct device *, void *);
95 static int ipw_detach(struct device *, int);
96
97 static void ipw_shutdown(void *);
98 static int ipw_suspend(struct ipw_softc *);
99 static int ipw_resume(struct ipw_softc *);
100 static void ipw_powerhook(int, void *);
101
102 static int ipw_media_change(struct ifnet *);
103 static void ipw_media_status(struct ifnet *, struct ifmediareq *);
104 static int ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
105 static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t);
106 static void ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
107 static void ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
108 static void ipw_data_intr(struct ipw_softc *, struct ipw_status *,
109 struct ipw_soft_bd *, struct ipw_soft_buf *);
110 static void ipw_rx_intr(struct ipw_softc *);
111 static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
112 static void ipw_tx_intr(struct ipw_softc *);
113 static int ipw_intr(void *);
114 static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
115 static int ipw_tx_start(struct ifnet *, struct mbuf *,
116 struct ieee80211_node *);
117 static void ipw_start(struct ifnet *);
118 static void ipw_watchdog(struct ifnet *);
119 static int ipw_ioctl(struct ifnet *, u_long, caddr_t);
120 static int ipw_get_table1(struct ipw_softc *, uint32_t *);
121 static int ipw_get_radio(struct ipw_softc *, int *);
122 static void ipw_stop_master(struct ipw_softc *);
123 static int ipw_reset(struct ipw_softc *);
124 static int ipw_load_ucode(struct ipw_softc *, u_char *, int);
125 static int ipw_load_firmware(struct ipw_softc *, u_char *, int);
126 static int ipw_cache_firmware(struct ipw_softc *);
127 static void ipw_free_firmware(struct ipw_softc *);
128 static int ipw_config(struct ipw_softc *);
129 static int ipw_init(struct ifnet *);
130 static void ipw_stop(struct ifnet *, int);
131 static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t);
132 static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
133 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, uint32_t *);
134 static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
135 bus_size_t);
136 static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
137 bus_size_t);
138
139 /*
140 * Supported rates for 802.11b mode (in 500Kbps unit).
141 */
142 static const struct ieee80211_rateset ipw_rateset_11b =
143 { 4, { 2, 4, 11, 22 } };
144
145 static inline uint8_t
146 MEM_READ_1(struct ipw_softc *sc, uint32_t addr)
147 {
148 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
149 return CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA);
150 }
151
152 static inline uint32_t
153 MEM_READ_4(struct ipw_softc *sc, uint32_t addr)
154 {
155 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
156 return CSR_READ_4(sc, IPW_CSR_INDIRECT_DATA);
157 }
158
159 CFATTACH_DECL(ipw, sizeof (struct ipw_softc), ipw_match, ipw_attach,
160 ipw_detach, NULL);
161
162 static int
163 ipw_match(struct device *parent, struct cfdata *match, void *aux)
164 {
165 struct pci_attach_args *pa = aux;
166
167 if (PCI_VENDOR (pa->pa_id) == PCI_VENDOR_INTEL &&
168 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2100)
169 return 1;
170
171 return 0;
172 }
173
174 /* Base Address Register */
175 #define IPW_PCI_BAR0 0x10
176
177 static void
178 ipw_attach(struct device *parent, struct device *self, void *aux)
179 {
180 struct ipw_softc *sc = (struct ipw_softc *)self;
181 struct ieee80211com *ic = &sc->sc_ic;
182 struct ifnet *ifp = &sc->sc_if;
183 struct pci_attach_args *pa = aux;
184 const char *intrstr;
185 char devinfo[256];
186 bus_space_tag_t memt;
187 bus_space_handle_t memh;
188 bus_addr_t base;
189 pci_intr_handle_t ih;
190 uint32_t data;
191 uint16_t val;
192 int i, revision, error;
193
194 sc->sc_pct = pa->pa_pc;
195 sc->sc_pcitag = pa->pa_tag;
196
197 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
198 revision = PCI_REVISION(pa->pa_class);
199 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
200
201 /* enable bus-mastering */
202 data = pci_conf_read(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG);
203 data |= PCI_COMMAND_MASTER_ENABLE;
204 pci_conf_write(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG, data);
205
206 /* clear device specific PCI configuration register 0x41 */
207 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
208 data &= ~0x0000ff00;
209 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
210
211 /* map the register window */
212 error = pci_mapreg_map(pa, IPW_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
213 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz);
214 if (error != 0) {
215 aprint_error("%s: could not map memory space\n",
216 sc->sc_dev.dv_xname);
217 return;
218 }
219
220 sc->sc_st = memt;
221 sc->sc_sh = memh;
222 sc->sc_dmat = pa->pa_dmat;
223 strlcpy(sc->sc_fwname, "ipw2100-1.2.fw", sizeof(sc->sc_fwname));
224
225 /* disable interrupts */
226 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
227
228 if (pci_intr_map(pa, &ih) != 0) {
229 aprint_error("%s: could not map interrupt\n",
230 sc->sc_dev.dv_xname);
231 return;
232 }
233
234 intrstr = pci_intr_string(sc->sc_pct, ih);
235 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, ipw_intr, sc);
236 if (sc->sc_ih == NULL) {
237 aprint_error("%s: could not establish interrupt",
238 sc->sc_dev.dv_xname);
239 if (intrstr != NULL)
240 aprint_error(" at %s", intrstr);
241 aprint_error("\n");
242 return;
243 }
244 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
245
246 if (ipw_reset(sc) != 0) {
247 aprint_error("%s: could not reset adapter\n",
248 sc->sc_dev.dv_xname);
249 goto fail;
250 }
251
252 if (ipw_dma_alloc(sc) != 0) {
253 aprint_error("%s: could not allocate DMA resources\n",
254 sc->sc_dev.dv_xname);
255 goto fail;
256 }
257
258 ifp->if_softc = sc;
259 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
260 ifp->if_init = ipw_init;
261 ifp->if_stop = ipw_stop;
262 ifp->if_ioctl = ipw_ioctl;
263 ifp->if_start = ipw_start;
264 ifp->if_watchdog = ipw_watchdog;
265 IFQ_SET_READY(&ifp->if_snd);
266 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
267
268 ic->ic_ifp = ifp;
269 ic->ic_phytype = IEEE80211_T_DS;
270 ic->ic_opmode = IEEE80211_M_STA;
271 ic->ic_state = IEEE80211_S_INIT;
272
273 /* set device capabilities */
274 ic->ic_caps =
275 IEEE80211_C_SHPREAMBLE /* short preamble supported */
276 | IEEE80211_C_TXPMGT /* tx power management */
277 | IEEE80211_C_IBSS /* ibss mode */
278 | IEEE80211_C_MONITOR /* monitor mode */
279 ;
280
281 /* read MAC address from EEPROM */
282 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
283 ic->ic_myaddr[0] = val >> 8;
284 ic->ic_myaddr[1] = val & 0xff;
285 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
286 ic->ic_myaddr[2] = val >> 8;
287 ic->ic_myaddr[3] = val & 0xff;
288 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
289 ic->ic_myaddr[4] = val >> 8;
290 ic->ic_myaddr[5] = val & 0xff;
291
292 /* set supported .11b rates */
293 ic->ic_sup_rates[IEEE80211_MODE_11B] = ipw_rateset_11b;
294
295 /* set supported .11b channels (read from EEPROM) */
296 if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0)
297 val = 0x7ff; /* default to channels 1-11 */
298 val <<= 1;
299 for (i = 1; i < 16; i++) {
300 if (val & (1 << i)) {
301 ic->ic_channels[i].ic_freq =
302 ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
303 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
304 }
305 }
306
307 /* check support for radio transmitter switch in EEPROM */
308 if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
309 sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
310
311 aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
312 ether_sprintf(ic->ic_myaddr));
313
314 if_attach(ifp);
315 ieee80211_ifattach(ic);
316
317 /* override state transition machine */
318 sc->sc_newstate = ic->ic_newstate;
319 ic->ic_newstate = ipw_newstate;
320
321 ieee80211_media_init(ic, ipw_media_change, ipw_media_status);
322
323 #if NBPFILTER > 0
324 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
325 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
326
327 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
328 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
329 sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
330
331 sc->sc_txtap_len = sizeof sc->sc_txtapu;
332 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
333 sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
334 #endif
335
336 /*
337 * Add a few sysctl knobs.
338 * XXX: Not yet
339 */
340 sc->dwelltime = 100;
341
342 /*
343 * Make sure the interface is shutdown during reboot.
344 */
345 sc->sc_sdhook = shutdownhook_establish(ipw_shutdown, sc);
346 if (sc->sc_sdhook == NULL)
347 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
348 sc->sc_dev.dv_xname);
349 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
350 ipw_powerhook, sc);
351 if (sc->sc_powerhook == NULL)
352 printf("%s: WARNING: unable to establish power hook\n",
353 sc->sc_dev.dv_xname);
354
355 ieee80211_announce(ic);
356
357 return;
358
359 fail: ipw_detach(self, 0);
360 }
361
362 static int
363 ipw_detach(struct device* self, int flags)
364 {
365 struct ipw_softc *sc = (struct ipw_softc *)self;
366 struct ifnet *ifp = &sc->sc_if;
367
368 if (ifp->if_softc) {
369 ipw_stop(ifp, 1);
370 ipw_free_firmware(sc);
371
372 #if NBPFILTER > 0
373 bpfdetach(ifp);
374 #endif
375 ieee80211_ifdetach(&sc->sc_ic);
376 if_detach(ifp);
377
378 ipw_release(sc);
379 }
380
381 if (sc->sc_ih != NULL) {
382 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
383 sc->sc_ih = NULL;
384 }
385
386 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
387
388 return 0;
389 }
390
391 static int
392 ipw_dma_alloc(struct ipw_softc *sc)
393 {
394 struct ipw_soft_bd *sbd;
395 struct ipw_soft_hdr *shdr;
396 struct ipw_soft_buf *sbuf;
397 int error, i, nsegs;
398
399 /*
400 * Allocate and map tx ring.
401 */
402 error = bus_dmamap_create(sc->sc_dmat, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0,
403 BUS_DMA_NOWAIT, &sc->tbd_map);
404 if (error != 0) {
405 aprint_error("%s: could not create tbd dma map\n",
406 sc->sc_dev.dv_xname);
407 goto fail;
408 }
409
410 error = bus_dmamem_alloc(sc->sc_dmat, IPW_TBD_SZ, PAGE_SIZE, 0,
411 &sc->tbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
412 if (error != 0) {
413 aprint_error("%s: could not allocate tbd dma memory\n",
414 sc->sc_dev.dv_xname);
415 goto fail;
416 }
417
418 error = bus_dmamem_map(sc->sc_dmat, &sc->tbd_seg, nsegs, IPW_TBD_SZ,
419 (caddr_t *)&sc->tbd_list, BUS_DMA_NOWAIT);
420 if (error != 0) {
421 aprint_error("%s: could not map tbd dma memory\n",
422 sc->sc_dev.dv_xname);
423 goto fail;
424 }
425
426 error = bus_dmamap_load(sc->sc_dmat, sc->tbd_map, sc->tbd_list,
427 IPW_TBD_SZ, NULL, BUS_DMA_NOWAIT);
428 if (error != 0) {
429 aprint_error("%s: could not load tbd dma memory\n",
430 sc->sc_dev.dv_xname);
431 goto fail;
432 }
433
434 (void)memset(sc->tbd_list, 0, IPW_TBD_SZ);
435
436 /*
437 * Allocate and map rx ring.
438 */
439 error = bus_dmamap_create(sc->sc_dmat, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0,
440 BUS_DMA_NOWAIT, &sc->rbd_map);
441 if (error != 0) {
442 aprint_error("%s: could not create rbd dma map\n",
443 sc->sc_dev.dv_xname);
444 goto fail;
445 }
446
447 error = bus_dmamem_alloc(sc->sc_dmat, IPW_RBD_SZ, PAGE_SIZE, 0,
448 &sc->rbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
449 if (error != 0) {
450 aprint_error("%s: could not allocate rbd dma memory\n",
451 sc->sc_dev.dv_xname);
452 goto fail;
453 }
454
455 error = bus_dmamem_map(sc->sc_dmat, &sc->rbd_seg, nsegs, IPW_RBD_SZ,
456 (caddr_t *)&sc->rbd_list, BUS_DMA_NOWAIT);
457 if (error != 0) {
458 aprint_error("%s: could not map rbd dma memory\n",
459 sc->sc_dev.dv_xname);
460 goto fail;
461 }
462
463 error = bus_dmamap_load(sc->sc_dmat, sc->rbd_map, sc->rbd_list,
464 IPW_RBD_SZ, NULL, BUS_DMA_NOWAIT);
465 if (error != 0) {
466 aprint_error("%s: could not load rbd dma memory\n",
467 sc->sc_dev.dv_xname);
468 goto fail;
469 }
470
471 (void)memset(sc->rbd_list, 0, IPW_RBD_SZ);
472
473 /*
474 * Allocate and map status ring.
475 */
476 error = bus_dmamap_create(sc->sc_dmat, IPW_STATUS_SZ, 1, IPW_STATUS_SZ,
477 0, BUS_DMA_NOWAIT, &sc->status_map);
478 if (error != 0) {
479 aprint_error("%s: could not create status dma map\n",
480 sc->sc_dev.dv_xname);
481 goto fail;
482 }
483
484 error = bus_dmamem_alloc(sc->sc_dmat, IPW_STATUS_SZ, PAGE_SIZE, 0,
485 &sc->status_seg, 1, &nsegs, BUS_DMA_NOWAIT);
486 if (error != 0) {
487 aprint_error("%s: could not allocate status dma memory\n",
488 sc->sc_dev.dv_xname);
489 goto fail;
490 }
491
492 error = bus_dmamem_map(sc->sc_dmat, &sc->status_seg, nsegs,
493 IPW_STATUS_SZ, (caddr_t *)&sc->status_list, BUS_DMA_NOWAIT);
494 if (error != 0) {
495 aprint_error("%s: could not map status dma memory\n",
496 sc->sc_dev.dv_xname);
497 goto fail;
498 }
499
500 error = bus_dmamap_load(sc->sc_dmat, sc->status_map, sc->status_list,
501 IPW_STATUS_SZ, NULL, BUS_DMA_NOWAIT);
502 if (error != 0) {
503 aprint_error("%s: could not load status dma memory\n",
504 sc->sc_dev.dv_xname);
505 goto fail;
506 }
507
508 (void)memset(sc->status_list, 0, IPW_STATUS_SZ);
509
510 /*
511 * Allocate command DMA map.
512 */
513 error = bus_dmamap_create(sc->sc_dmat, sizeof (struct ipw_cmd),
514 1, sizeof (struct ipw_cmd), 0, BUS_DMA_NOWAIT, &sc->cmd_map);
515 if (error != 0) {
516 aprint_error("%s: could not create cmd dma map\n",
517 sc->sc_dev.dv_xname);
518 goto fail;
519 }
520
521 error = bus_dmamem_alloc(sc->sc_dmat, sizeof (struct ipw_cmd),
522 PAGE_SIZE, 0, &sc->cmd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
523 if (error != 0) {
524 aprint_error("%s: could not allocate cmd dma memory\n",
525 sc->sc_dev.dv_xname);
526 goto fail;
527 }
528
529 error = bus_dmamem_map(sc->sc_dmat, &sc->cmd_seg, nsegs,
530 sizeof (struct ipw_cmd), (caddr_t *)&sc->cmd, BUS_DMA_NOWAIT);
531 if (error != 0) {
532 aprint_error("%s: could not map cmd dma memory\n",
533 sc->sc_dev.dv_xname);
534 goto fail;
535 }
536
537 error = bus_dmamap_load(sc->sc_dmat, sc->cmd_map, &sc->cmd,
538 sizeof (struct ipw_cmd), NULL, BUS_DMA_NOWAIT);
539 if (error != 0) {
540 aprint_error("%s: could not map cmd dma memory\n",
541 sc->sc_dev.dv_xname);
542 return error;
543 }
544
545 /*
546 * Allocate and map hdr list.
547 */
548
549 error = bus_dmamap_create(sc->sc_dmat,
550 IPW_NDATA * sizeof(struct ipw_hdr), 1,
551 sizeof(struct ipw_hdr), 0, BUS_DMA_NOWAIT,
552 &sc->hdr_map);
553 if (error != 0) {
554 aprint_error("%s: could not create hdr dma map\n",
555 sc->sc_dev.dv_xname);
556 goto fail;
557 }
558
559 error = bus_dmamem_alloc(sc->sc_dmat,
560 IPW_NDATA * sizeof(struct ipw_hdr), PAGE_SIZE, 0, &sc->hdr_seg,
561 1, &nsegs, BUS_DMA_NOWAIT);
562 if (error != 0) {
563 aprint_error("%s: could not allocate hdr memory\n",
564 sc->sc_dev.dv_xname);
565 goto fail;
566 }
567
568 error = bus_dmamem_map(sc->sc_dmat, &sc->hdr_seg, nsegs,
569 IPW_NDATA * sizeof(struct ipw_hdr), (caddr_t *)&sc->hdr_list,
570 BUS_DMA_NOWAIT);
571 if (error != 0) {
572 aprint_error("%s: could not map hdr memory\n",
573 sc->sc_dev.dv_xname);
574 goto fail;
575 }
576
577 error = bus_dmamap_load(sc->sc_dmat, sc->hdr_map, sc->hdr_list,
578 IPW_NDATA * sizeof(struct ipw_hdr), NULL, BUS_DMA_NOWAIT);
579 if (error != 0) {
580 aprint_error("%s: could not load hdr memory\n",
581 sc->sc_dev.dv_xname);
582 goto fail;
583 }
584
585 (void)memset(sc->hdr_list, 0, IPW_HDR_SZ);
586
587 /*
588 * Create DMA hdrs tailq.
589 */
590 TAILQ_INIT(&sc->sc_free_shdr);
591 for (i = 0; i < IPW_NDATA; i++) {
592 shdr = &sc->shdr_list[i];
593 shdr->hdr = sc->hdr_list + i;
594 shdr->offset = sizeof(struct ipw_hdr) * i;
595 shdr->addr = sc->hdr_map->dm_segs[0].ds_addr + shdr->offset;
596 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
597 }
598
599 /*
600 * Allocate tx buffers DMA maps.
601 */
602 TAILQ_INIT(&sc->sc_free_sbuf);
603 for (i = 0; i < IPW_NDATA; i++) {
604 sbuf = &sc->tx_sbuf_list[i];
605
606 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
607 IPW_MAX_NSEG, MCLBYTES, 0, BUS_DMA_NOWAIT, &sbuf->map);
608 if (error != 0) {
609 aprint_error("%s: could not create txbuf dma map\n",
610 sc->sc_dev.dv_xname);
611 goto fail;
612 }
613 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
614 }
615
616 /*
617 * Initialize tx ring.
618 */
619 for (i = 0; i < IPW_NTBD; i++) {
620 sbd = &sc->stbd_list[i];
621 sbd->bd = &sc->tbd_list[i];
622 sbd->type = IPW_SBD_TYPE_NOASSOC;
623 }
624
625 /*
626 * Pre-allocate rx buffers and DMA maps
627 */
628 for (i = 0; i < IPW_NRBD; i++) {
629 sbd = &sc->srbd_list[i];
630 sbuf = &sc->rx_sbuf_list[i];
631 sbd->bd = &sc->rbd_list[i];
632
633 MGETHDR(sbuf->m, M_DONTWAIT, MT_DATA);
634 if (sbuf->m == NULL) {
635 aprint_error("%s: could not allocate rx mbuf\n",
636 sc->sc_dev.dv_xname);
637 error = ENOMEM;
638 goto fail;
639 }
640
641 MCLGET(sbuf->m, M_DONTWAIT);
642 if (!(sbuf->m->m_flags & M_EXT)) {
643 m_freem(sbuf->m);
644 aprint_error("%s: could not allocate rx mbuf cluster\n",
645 sc->sc_dev.dv_xname);
646 error = ENOMEM;
647 goto fail;
648 }
649
650 sbuf->m->m_pkthdr.len = sbuf->m->m_len = sbuf->m->m_ext.ext_size;
651
652 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
653 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sbuf->map);
654 if (error != 0) {
655 aprint_error("%s: could not create rxbuf dma map\n",
656 sc->sc_dev.dv_xname);
657 m_freem(sbuf->m);
658 goto fail;
659 }
660
661 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
662 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
663 if (error != 0) {
664 bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
665 m_freem(sbuf->m);
666 aprint_error("%s: could not map rxbuf dma memory\n",
667 sc->sc_dev.dv_xname);
668 goto fail;
669 }
670
671 sbd->type = IPW_SBD_TYPE_DATA;
672 sbd->priv = sbuf;
673 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
674 sbd->bd->len = htole32(MCLBYTES);
675
676 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
677 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
678
679 }
680
681 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, 0, IPW_RBD_SZ,
682 BUS_DMASYNC_PREREAD);
683
684 return 0;
685
686 fail: ipw_release(sc);
687 return error;
688 }
689
690 static void
691 ipw_release(struct ipw_softc *sc)
692 {
693 struct ipw_soft_buf *sbuf;
694 int i;
695
696 if (sc->tbd_map != NULL) {
697 if (sc->tbd_list != NULL) {
698 bus_dmamap_unload(sc->sc_dmat, sc->tbd_map);
699 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->tbd_list,
700 IPW_TBD_SZ);
701 bus_dmamem_free(sc->sc_dmat, &sc->tbd_seg, 1);
702 }
703 bus_dmamap_destroy(sc->sc_dmat, sc->tbd_map);
704 }
705
706 if (sc->rbd_map != NULL) {
707 if (sc->rbd_list != NULL) {
708 bus_dmamap_unload(sc->sc_dmat, sc->rbd_map);
709 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rbd_list,
710 IPW_RBD_SZ);
711 bus_dmamem_free(sc->sc_dmat, &sc->rbd_seg, 1);
712 }
713 bus_dmamap_destroy(sc->sc_dmat, sc->rbd_map);
714 }
715
716 if (sc->status_map != NULL) {
717 if (sc->status_list != NULL) {
718 bus_dmamap_unload(sc->sc_dmat, sc->status_map);
719 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->status_list,
720 IPW_RBD_SZ);
721 bus_dmamem_free(sc->sc_dmat, &sc->status_seg, 1);
722 }
723 bus_dmamap_destroy(sc->sc_dmat, sc->status_map);
724 }
725
726 for (i = 0; i < IPW_NTBD; i++)
727 ipw_release_sbd(sc, &sc->stbd_list[i]);
728
729 if (sc->cmd_map != NULL)
730 bus_dmamap_destroy(sc->sc_dmat, sc->cmd_map);
731
732 if (sc->hdr_list != NULL) {
733 bus_dmamap_unload(sc->sc_dmat, sc->hdr_map);
734 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->hdr_list,
735 IPW_NDATA * sizeof(struct ipw_hdr));
736 }
737 if (sc->hdr_map != NULL) {
738 bus_dmamem_free(sc->sc_dmat, &sc->hdr_seg, 1);
739 bus_dmamap_destroy(sc->sc_dmat, sc->hdr_map);
740 }
741
742 for (i = 0; i < IPW_NDATA; i++)
743 bus_dmamap_destroy(sc->sc_dmat, sc->tx_sbuf_list[i].map);
744
745 for (i = 0; i < IPW_NRBD; i++) {
746 sbuf = &sc->rx_sbuf_list[i];
747 if (sbuf->map != NULL) {
748 if (sbuf->m != NULL) {
749 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
750 m_freem(sbuf->m);
751 }
752 bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
753 }
754 }
755
756 }
757
758 static void
759 ipw_shutdown(void *arg)
760 {
761 struct ipw_softc *sc = (struct ipw_softc *)arg;
762 struct ifnet *ifp = sc->sc_ic.ic_ifp;
763
764 ipw_stop(ifp, 1);
765 }
766
767
768 static int
769 ipw_suspend(struct ipw_softc *sc)
770 {
771 struct ifnet *ifp = sc->sc_ic.ic_ifp;
772
773 ipw_stop(ifp, 1);
774
775 return 0;
776 }
777
778 static int
779 ipw_resume(struct ipw_softc *sc)
780 {
781 struct ifnet *ifp = sc->sc_ic.ic_ifp;
782 pcireg_t data;
783
784 /* clear device specific PCI configuration register 0x41 */
785 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
786 data &= ~0x0000ff00;
787 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
788
789 if (ifp->if_flags & IFF_UP) {
790 ipw_init(ifp);
791 if (ifp->if_flags & IFF_RUNNING)
792 ipw_start(ifp);
793 }
794
795 return 0;
796 }
797
798 static void
799 ipw_powerhook(int why, void *arg)
800 {
801 struct ipw_softc *sc = arg;
802 int s;
803
804 s = splnet();
805 switch (why) {
806 case PWR_SUSPEND:
807 case PWR_STANDBY:
808 ipw_suspend(sc);
809 break;
810 case PWR_RESUME:
811 ipw_resume(sc);
812 break;
813 case PWR_SOFTSUSPEND:
814 case PWR_SOFTSTANDBY:
815 case PWR_SOFTRESUME:
816 break;
817 }
818 splx(s);
819 }
820
821 static int
822 ipw_media_change(struct ifnet *ifp)
823 {
824 int error;
825
826 error = ieee80211_media_change(ifp);
827 if (error != ENETRESET)
828 return error;
829
830 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
831 ipw_init(ifp);
832
833 return 0;
834 }
835
836 /*
837 * The firmware automatically adapts the transmit speed. We report the current
838 * transmit speed here.
839 */
840 static void
841 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
842 {
843 #define N(a) (sizeof (a) / sizeof (a[0]))
844 struct ipw_softc *sc = ifp->if_softc;
845 struct ieee80211com *ic = &sc->sc_ic;
846 static const struct {
847 uint32_t val;
848 int rate;
849 } rates[] = {
850 { IPW_RATE_DS1, 2 },
851 { IPW_RATE_DS2, 4 },
852 { IPW_RATE_DS5, 11 },
853 { IPW_RATE_DS11, 22 },
854 };
855 uint32_t val;
856 int rate, i;
857
858 imr->ifm_status = IFM_AVALID;
859 imr->ifm_active = IFM_IEEE80211;
860 if (ic->ic_state == IEEE80211_S_RUN)
861 imr->ifm_status |= IFM_ACTIVE;
862
863 /* read current transmission rate from adapter */
864 val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf;
865
866 /* convert ipw rate to 802.11 rate */
867 for (i = 0; i < N(rates) && rates[i].val != val; i++);
868 rate = (i < N(rates)) ? rates[i].rate : 0;
869
870 imr->ifm_active |= IFM_IEEE80211_11B;
871 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
872 switch (ic->ic_opmode) {
873 case IEEE80211_M_STA:
874 break;
875
876 case IEEE80211_M_IBSS:
877 imr->ifm_active |= IFM_IEEE80211_ADHOC;
878 break;
879
880 case IEEE80211_M_MONITOR:
881 imr->ifm_active |= IFM_IEEE80211_MONITOR;
882 break;
883
884 case IEEE80211_M_AHDEMO:
885 case IEEE80211_M_HOSTAP:
886 /* should not get there */
887 break;
888 }
889 #undef N
890 }
891
892 static int
893 ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
894 {
895 struct ifnet *ifp = ic->ic_ifp;
896 struct ipw_softc *sc = ifp->if_softc;
897 struct ieee80211_node *ni;
898 uint8_t macaddr[IEEE80211_ADDR_LEN];
899 uint32_t len;
900
901 switch (nstate) {
902 case IEEE80211_S_RUN:
903 DELAY(200); /* firmware needs a short delay here */
904
905 len = IEEE80211_ADDR_LEN;
906 ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len);
907
908 ni = ieee80211_find_node(&ic->ic_scan, macaddr);
909 if (ni == NULL)
910 break;
911
912 ieee80211_ref_node(ni);
913 ieee80211_sta_join(ic, ni);
914 ieee80211_node_authorize(ni);
915
916 if (ic->ic_opmode == IEEE80211_M_STA)
917 ieee80211_notify_node_join(ic, ni, 1);
918 break;
919
920 case IEEE80211_S_INIT:
921 case IEEE80211_S_SCAN:
922 case IEEE80211_S_AUTH:
923 case IEEE80211_S_ASSOC:
924 break;
925 }
926
927 ic->ic_state = nstate;
928 return 0;
929 }
930
931 /*
932 * Read 16 bits at address 'addr' from the serial EEPROM.
933 */
934 static uint16_t
935 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
936 {
937 uint32_t tmp;
938 uint16_t val;
939 int n;
940
941 /* clock C once before the first command */
942 IPW_EEPROM_CTL(sc, 0);
943 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
944 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
945 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
946
947 /* write start bit (1) */
948 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
949 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
950
951 /* write READ opcode (10) */
952 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
953 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
954 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
955 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
956
957 /* write address A7-A0 */
958 for (n = 7; n >= 0; n--) {
959 IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
960 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
961 IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
962 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
963 }
964
965 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
966
967 /* read data Q15-Q0 */
968 val = 0;
969 for (n = 15; n >= 0; n--) {
970 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
971 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
972 tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
973 val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
974 }
975
976 IPW_EEPROM_CTL(sc, 0);
977
978 /* clear Chip Select and clock C */
979 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
980 IPW_EEPROM_CTL(sc, 0);
981 IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
982
983 return le16toh(val);
984 }
985
986 static void
987 ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
988 {
989 struct ipw_cmd *cmd;
990
991 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof (struct ipw_cmd),
992 BUS_DMASYNC_POSTREAD);
993
994 cmd = mtod(sbuf->m, struct ipw_cmd *);
995
996 DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type),
997 le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
998 le32toh(cmd->status)));
999
1000 wakeup(&sc->cmd);
1001 }
1002
1003 static void
1004 ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
1005 {
1006 struct ieee80211com *ic = &sc->sc_ic;
1007 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1008 uint32_t state;
1009
1010 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof state,
1011 BUS_DMASYNC_POSTREAD);
1012
1013 state = le32toh(*mtod(sbuf->m, uint32_t *));
1014
1015 DPRINTFN(2, ("entering state %u\n", state));
1016
1017 switch (state) {
1018 case IPW_STATE_ASSOCIATED:
1019 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1020 break;
1021
1022 case IPW_STATE_SCANNING:
1023 /* don't leave run state on background scan */
1024 if (ic->ic_state != IEEE80211_S_RUN)
1025 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1026
1027 ic->ic_flags |= IEEE80211_F_SCAN;
1028 break;
1029
1030 case IPW_STATE_SCAN_COMPLETE:
1031 ieee80211_notify_scan_done(ic);
1032 ic->ic_flags &= ~IEEE80211_F_SCAN;
1033 break;
1034
1035 case IPW_STATE_ASSOCIATION_LOST:
1036 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1037 break;
1038
1039 case IPW_STATE_RADIO_DISABLED:
1040 ic->ic_ifp->if_flags &= ~IFF_UP;
1041 ipw_stop(ifp, 1);
1042 break;
1043 }
1044 }
1045
1046 /*
1047 * XXX: Hack to set the current channel to the value advertised in beacons or
1048 * probe responses. Only used during AP detection.
1049 */
1050 static void
1051 ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m)
1052 {
1053 struct ieee80211_frame *wh;
1054 uint8_t subtype;
1055 uint8_t *frm, *efrm;
1056
1057 wh = mtod(m, struct ieee80211_frame *);
1058
1059 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
1060 return;
1061
1062 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1063
1064 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
1065 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1066 return;
1067
1068 frm = (uint8_t *)(wh + 1);
1069 efrm = mtod(m, uint8_t *) + m->m_len;
1070
1071 frm += 12; /* skip tstamp, bintval and capinfo fields */
1072 while (frm < efrm) {
1073 if (*frm == IEEE80211_ELEMID_DSPARMS)
1074 #if IEEE80211_CHAN_MAX < 255
1075 if (frm[2] <= IEEE80211_CHAN_MAX)
1076 #endif
1077 ic->ic_curchan = &ic->ic_channels[frm[2]];
1078
1079 frm += frm[1] + 2;
1080 }
1081 }
1082
1083 static void
1084 ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
1085 struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
1086 {
1087 struct ieee80211com *ic = &sc->sc_ic;
1088 struct ifnet *ifp = &sc->sc_if;
1089 struct mbuf *mnew, *m;
1090 struct ieee80211_frame *wh;
1091 struct ieee80211_node *ni;
1092 int error;
1093
1094 DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
1095 status->rssi));
1096
1097 if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
1098 le32toh(status->len) > MCLBYTES)
1099 return;
1100
1101 /*
1102 * Try to allocate a new mbuf for this ring element and load it before
1103 * processing the current mbuf. If the ring element cannot be loaded,
1104 * drop the received packet and reuse the old mbuf. In the unlikely
1105 * case that the old mbuf can't be reloaded either, explicitly panic.
1106 */
1107 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1108 if (mnew == NULL) {
1109 aprint_error("%s: could not allocate rx mbuf\n",
1110 sc->sc_dev.dv_xname);
1111 ifp->if_ierrors++;
1112 return;
1113 }
1114
1115 MCLGET(mnew, M_DONTWAIT);
1116 if (!(mnew->m_flags & M_EXT)) {
1117 aprint_error("%s: could not allocate rx mbuf cluster\n",
1118 sc->sc_dev.dv_xname);
1119 m_freem(mnew);
1120 ifp->if_ierrors++;
1121 return;
1122 }
1123
1124 mnew->m_pkthdr.len = mnew->m_len = mnew->m_ext.ext_size;
1125
1126 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, le32toh(status->len),
1127 BUS_DMASYNC_POSTREAD);
1128 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
1129
1130 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, mnew,
1131 BUS_DMA_READ | BUS_DMA_NOWAIT);
1132 if (error != 0) {
1133 aprint_error("%s: could not load rx buf DMA map\n",
1134 sc->sc_dev.dv_xname);
1135 m_freem(mnew);
1136
1137 /* try to reload the old mbuf */
1138 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
1139 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
1140 if (error != 0) {
1141 /* very unlikely that it will fail... */
1142 panic("%s: unable to remap rx buf",
1143 sc->sc_dev.dv_xname);
1144 }
1145 ifp->if_ierrors++;
1146 return;
1147 }
1148
1149 /*
1150 * New mbuf successfully loaded, update Rx ring and continue
1151 * processing.
1152 */
1153 m = sbuf->m;
1154 sbuf->m = mnew;
1155 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
1156
1157 /* finalize mbuf */
1158 m->m_pkthdr.rcvif = ifp;
1159 m->m_pkthdr.len = m->m_len = le32toh(status->len);
1160
1161 #if NBPFILTER > 0
1162 if (sc->sc_drvbpf != NULL) {
1163 struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
1164
1165 tap->wr_flags = 0;
1166 tap->wr_antsignal = status->rssi;
1167 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1168 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1169
1170 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1171 }
1172 #endif
1173
1174 if (ic->ic_state == IEEE80211_S_SCAN)
1175 ipw_fix_channel(ic, m);
1176
1177 wh = mtod(m, struct ieee80211_frame *);
1178 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1179
1180 /* send the frame to the 802.11 layer */
1181 ieee80211_input(ic, m, ni, status->rssi, 0);
1182
1183 /* node is no longer needed */
1184 ieee80211_free_node(ni);
1185
1186 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
1187 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1188 }
1189
1190 static void
1191 ipw_rx_intr(struct ipw_softc *sc)
1192 {
1193 struct ipw_status *status;
1194 struct ipw_soft_bd *sbd;
1195 struct ipw_soft_buf *sbuf;
1196 uint32_t r, i;
1197
1198 if (!(sc->flags & IPW_FLAG_FW_INITED))
1199 return;
1200
1201 r = CSR_READ_4(sc, IPW_CSR_RX_READ);
1202
1203 for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
1204
1205 /* firmware was killed, stop processing received frames */
1206 if (!(sc->flags & IPW_FLAG_FW_INITED))
1207 return;
1208
1209 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
1210 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1211 BUS_DMASYNC_POSTREAD);
1212
1213 bus_dmamap_sync(sc->sc_dmat, sc->status_map,
1214 i * sizeof (struct ipw_status), sizeof (struct ipw_status),
1215 BUS_DMASYNC_POSTREAD);
1216
1217 status = &sc->status_list[i];
1218 sbd = &sc->srbd_list[i];
1219 sbuf = sbd->priv;
1220
1221 switch (le16toh(status->code) & 0xf) {
1222 case IPW_STATUS_CODE_COMMAND:
1223 ipw_command_intr(sc, sbuf);
1224 break;
1225
1226 case IPW_STATUS_CODE_NEWSTATE:
1227 ipw_newstate_intr(sc, sbuf);
1228 break;
1229
1230 case IPW_STATUS_CODE_DATA_802_3:
1231 case IPW_STATUS_CODE_DATA_802_11:
1232 ipw_data_intr(sc, status, sbd, sbuf);
1233 break;
1234
1235 case IPW_STATUS_CODE_NOTIFICATION:
1236 DPRINTFN(2, ("received notification\n"));
1237 break;
1238
1239 default:
1240 aprint_error("%s: unknown status code %u\n",
1241 sc->sc_dev.dv_xname, le16toh(status->code));
1242 }
1243
1244 sbd->bd->flags = 0;
1245
1246 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
1247 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1248 BUS_DMASYNC_PREREAD);
1249
1250 bus_dmamap_sync(sc->sc_dmat, sc->status_map,
1251 i * sizeof (struct ipw_status), sizeof (struct ipw_status),
1252 BUS_DMASYNC_PREREAD);
1253 }
1254
1255 /* Tell the firmware what we have processed */
1256 sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
1257 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
1258 }
1259
1260 static void
1261 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
1262 {
1263 struct ieee80211com *ic;
1264 struct ipw_soft_hdr *shdr;
1265 struct ipw_soft_buf *sbuf;
1266
1267 switch (sbd->type) {
1268 case IPW_SBD_TYPE_COMMAND:
1269 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map,
1270 0, sizeof(struct ipw_cmd), BUS_DMASYNC_POSTWRITE);
1271 /* bus_dmamap_unload(sc->sc_dmat, sc->cmd_map); */
1272 break;
1273
1274 case IPW_SBD_TYPE_HEADER:
1275 shdr = sbd->priv;
1276 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map,
1277 shdr->offset, sizeof(struct ipw_hdr), BUS_DMASYNC_POSTWRITE);
1278 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
1279 break;
1280
1281 case IPW_SBD_TYPE_DATA:
1282 ic = &sc->sc_ic;
1283 sbuf = sbd->priv;
1284
1285 bus_dmamap_sync(sc->sc_dmat, sbuf->map,
1286 0, MCLBYTES, BUS_DMASYNC_POSTWRITE);
1287 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
1288 m_freem(sbuf->m);
1289 if (sbuf->ni != NULL)
1290 ieee80211_free_node(sbuf->ni);
1291 /* kill watchdog timer */
1292 sc->sc_tx_timer = 0;
1293 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
1294 break;
1295 }
1296 sbd->type = IPW_SBD_TYPE_NOASSOC;
1297 }
1298
1299 static void
1300 ipw_tx_intr(struct ipw_softc *sc)
1301 {
1302 struct ifnet *ifp = &sc->sc_if;
1303 struct ipw_soft_bd *sbd;
1304 uint32_t r, i;
1305
1306 if (!(sc->flags & IPW_FLAG_FW_INITED))
1307 return;
1308
1309 r = CSR_READ_4(sc, IPW_CSR_TX_READ);
1310
1311 for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
1312 sbd = &sc->stbd_list[i];
1313
1314 if (sbd->type == IPW_SBD_TYPE_DATA)
1315 ifp->if_opackets++;
1316
1317 ipw_release_sbd(sc, sbd);
1318 sc->txfree++;
1319 }
1320
1321 /* remember what the firmware has processed */
1322 sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
1323
1324 /* Call start() since some buffer descriptors have been released */
1325 ifp->if_flags &= ~IFF_OACTIVE;
1326 (*ifp->if_start)(ifp);
1327 }
1328
1329 static int
1330 ipw_intr(void *arg)
1331 {
1332 struct ipw_softc *sc = arg;
1333 uint32_t r;
1334
1335 r = CSR_READ_4(sc, IPW_CSR_INTR);
1336 if (r == 0 || r == 0xffffffff)
1337 return 0;
1338
1339 /* Disable interrupts */
1340 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1341
1342 if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
1343 aprint_error("%s: fatal error\n",
1344 sc->sc_dev.dv_xname);
1345 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1346 ipw_stop(&sc->sc_if, 1);
1347 }
1348
1349 if (r & IPW_INTR_FW_INIT_DONE) {
1350 if (!(r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)))
1351 wakeup(sc);
1352 }
1353
1354 if (r & IPW_INTR_RX_TRANSFER)
1355 ipw_rx_intr(sc);
1356
1357 if (r & IPW_INTR_TX_TRANSFER)
1358 ipw_tx_intr(sc);
1359
1360 /* Acknowledge all interrupts */
1361 CSR_WRITE_4(sc, IPW_CSR_INTR, r);
1362
1363 /* Re-enable interrupts */
1364 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1365
1366 return 0;
1367 }
1368
1369 /*
1370 * Send a command to the firmware and wait for the acknowledgement.
1371 */
1372 static int
1373 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
1374 {
1375 struct ipw_soft_bd *sbd;
1376
1377 sbd = &sc->stbd_list[sc->txcur];
1378
1379 sc->cmd.type = htole32(type);
1380 sc->cmd.subtype = 0;
1381 sc->cmd.len = htole32(len);
1382 sc->cmd.seq = 0;
1383
1384 (void)memcpy(sc->cmd.data, data, len);
1385
1386 sbd->type = IPW_SBD_TYPE_COMMAND;
1387 sbd->bd->physaddr = htole32(sc->cmd_map->dm_segs[0].ds_addr);
1388 sbd->bd->len = htole32(sizeof (struct ipw_cmd));
1389 sbd->bd->nfrag = 1;
1390 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
1391 IPW_BD_FLAG_TX_LAST_FRAGMENT;
1392
1393 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map, 0, sizeof (struct ipw_cmd),
1394 BUS_DMASYNC_PREWRITE);
1395
1396 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1397 sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1398 BUS_DMASYNC_PREWRITE);
1399
1400 DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len));
1401
1402 /* kick firmware */
1403 sc->txfree--;
1404 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1405 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1406
1407 /* Wait at most one second for command to complete */
1408 return tsleep(&sc->cmd, 0, "ipwcmd", hz);
1409 }
1410
1411 static int
1412 ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
1413 {
1414 struct ipw_softc *sc = ifp->if_softc;
1415 struct ieee80211com *ic = &sc->sc_ic;
1416 struct ieee80211_frame *wh;
1417 struct ipw_soft_bd *sbd;
1418 struct ipw_soft_hdr *shdr;
1419 struct ipw_soft_buf *sbuf;
1420 struct ieee80211_key *k;
1421 struct mbuf *mnew;
1422 int error, i;
1423
1424 wh = mtod(m0, struct ieee80211_frame *);
1425
1426 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1427 k = ieee80211_crypto_encap(ic, ni, m0);
1428 if (k == NULL) {
1429 m_freem(m0);
1430 return ENOBUFS;
1431 }
1432
1433 /* packet header may have moved, reset our local pointer */
1434 wh = mtod(m0, struct ieee80211_frame *);
1435 }
1436
1437 #if NBPFILTER > 0
1438 if (sc->sc_drvbpf != NULL) {
1439 struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
1440
1441 tap->wt_flags = 0;
1442 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1443 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1444
1445 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1446 }
1447 #endif
1448
1449 shdr = TAILQ_FIRST(&sc->sc_free_shdr);
1450 sbuf = TAILQ_FIRST(&sc->sc_free_sbuf);
1451 KASSERT(shdr != NULL && sbuf != NULL);
1452
1453 shdr->hdr->type = htole32(IPW_HDR_TYPE_SEND);
1454 shdr->hdr->subtype = 0;
1455 shdr->hdr->encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
1456 shdr->hdr->encrypt = 0;
1457 shdr->hdr->keyidx = 0;
1458 shdr->hdr->keysz = 0;
1459 shdr->hdr->fragmentsz = 0;
1460 IEEE80211_ADDR_COPY(shdr->hdr->src_addr, wh->i_addr2);
1461 if (ic->ic_opmode == IEEE80211_M_STA)
1462 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr3);
1463 else
1464 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr1);
1465
1466 /* trim IEEE802.11 header */
1467 m_adj(m0, sizeof (struct ieee80211_frame));
1468
1469 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0, BUS_DMA_NOWAIT);
1470 if (error != 0 && error != EFBIG) {
1471 aprint_error("%s: could not map mbuf (error %d)\n",
1472 sc->sc_dev.dv_xname, error);
1473 m_freem(m0);
1474 return error;
1475 }
1476
1477 if (error != 0) {
1478 /* too many fragments, linearize */
1479
1480 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1481 if (mnew == NULL) {
1482 m_freem(m0);
1483 return ENOMEM;
1484 }
1485
1486 M_COPY_PKTHDR(mnew, m0);
1487
1488 /* If the data won't fit in the header, get a cluster */
1489 if (m0->m_pkthdr.len > MHLEN) {
1490 MCLGET(mnew, M_DONTWAIT);
1491 if (!(mnew->m_flags & M_EXT)) {
1492 m_freem(m0);
1493 m_freem(mnew);
1494 return ENOMEM;
1495 }
1496 }
1497 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t));
1498 m_freem(m0);
1499 mnew->m_len = mnew->m_pkthdr.len;
1500 m0 = mnew;
1501
1502 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0,
1503 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1504 if (error != 0) {
1505 aprint_error("%s: could not map mbuf (error %d)\n",
1506 sc->sc_dev.dv_xname, error);
1507 m_freem(m0);
1508 return error;
1509 }
1510 }
1511
1512 TAILQ_REMOVE(&sc->sc_free_sbuf, sbuf, next);
1513 TAILQ_REMOVE(&sc->sc_free_shdr, shdr, next);
1514
1515 sbd = &sc->stbd_list[sc->txcur];
1516 sbd->type = IPW_SBD_TYPE_HEADER;
1517 sbd->priv = shdr;
1518 sbd->bd->physaddr = htole32(shdr->addr);
1519 sbd->bd->len = htole32(sizeof (struct ipw_hdr));
1520 sbd->bd->nfrag = 1 + sbuf->map->dm_nsegs;
1521 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
1522 IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1523
1524 DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, )\n",
1525 shdr->hdr->type, shdr->hdr->subtype, shdr->hdr->encrypted,
1526 shdr->hdr->encrypt));
1527 DPRINTFN(5, ("%s->", ether_sprintf(shdr->hdr->src_addr)));
1528 DPRINTFN(5, ("%s\n", ether_sprintf(shdr->hdr->dst_addr)));
1529
1530 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1531 sc->txcur * sizeof (struct ipw_bd),
1532 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
1533
1534 sc->txfree--;
1535 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1536
1537 sbuf->m = m0;
1538 sbuf->ni = ni;
1539
1540 for (i = 0; i < sbuf->map->dm_nsegs; i++) {
1541 sbd = &sc->stbd_list[sc->txcur];
1542
1543 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[i].ds_addr);
1544 sbd->bd->len = htole32(sbuf->map->dm_segs[i].ds_len);
1545 sbd->bd->nfrag = 0;
1546 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
1547 if (i == sbuf->map->dm_nsegs - 1) {
1548 sbd->type = IPW_SBD_TYPE_DATA;
1549 sbd->priv = sbuf;
1550 sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
1551 } else {
1552 sbd->type = IPW_SBD_TYPE_NOASSOC;
1553 sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1554 }
1555
1556 DPRINTFN(5, ("sending fragment (%d, %d)\n", i,
1557 (int)sbuf->map->dm_segs[i].ds_len));
1558
1559 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1560 sc->txcur * sizeof (struct ipw_bd),
1561 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
1562
1563 sc->txfree--;
1564 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1565 }
1566
1567 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map, shdr->offset,
1568 sizeof (struct ipw_hdr), BUS_DMASYNC_PREWRITE);
1569
1570 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, MCLBYTES,
1571 BUS_DMASYNC_PREWRITE);
1572
1573 /* Inform firmware about this new packet */
1574 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1575
1576 return 0;
1577 }
1578
1579 static void
1580 ipw_start(struct ifnet *ifp)
1581 {
1582 struct ipw_softc *sc = ifp->if_softc;
1583 struct ieee80211com *ic = &sc->sc_ic;
1584 struct mbuf *m0;
1585 struct ether_header *eh;
1586 struct ieee80211_node *ni;
1587
1588
1589 if (ic->ic_state != IEEE80211_S_RUN)
1590 return;
1591
1592 for (;;) {
1593 IF_DEQUEUE(&ifp->if_snd, m0);
1594 if (m0 == NULL)
1595 break;
1596
1597 if (sc->txfree < 1 + IPW_MAX_NSEG) {
1598 IF_PREPEND(&ifp->if_snd, m0);
1599 ifp->if_flags |= IFF_OACTIVE;
1600 break;
1601 }
1602
1603 if (m0->m_len < sizeof (struct ether_header) &&
1604 (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL)
1605 continue;
1606
1607 eh = mtod(m0, struct ether_header *);
1608 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1609 if (ni == NULL) {
1610 m_freem(m0);
1611 continue;
1612 }
1613
1614 #if NBPFILTER > 0
1615 if (ifp->if_bpf != NULL)
1616 bpf_mtap(ifp->if_bpf, m0);
1617 #endif
1618
1619 m0 = ieee80211_encap(ic, m0, ni);
1620 if (m0 == NULL) {
1621 ieee80211_free_node(ni);
1622 continue;
1623 }
1624
1625 #if NBPFILTER > 0
1626 if (ic->ic_rawbpf != NULL)
1627 bpf_mtap(ic->ic_rawbpf, m0);
1628 #endif
1629
1630 if (ipw_tx_start(ifp, m0, ni) != 0) {
1631 ieee80211_free_node(ni);
1632 ifp->if_oerrors++;
1633 break;
1634 }
1635
1636 /* start watchdog timer */
1637 sc->sc_tx_timer = 5;
1638 ifp->if_timer = 1;
1639 }
1640 }
1641
1642 static void
1643 ipw_watchdog(struct ifnet *ifp)
1644 {
1645 struct ipw_softc *sc = ifp->if_softc;
1646
1647 ifp->if_timer = 0;
1648
1649 if (sc->sc_tx_timer > 0) {
1650 if (--sc->sc_tx_timer == 0) {
1651 aprint_error("%s: device timeout\n",
1652 sc->sc_dev.dv_xname);
1653 ifp->if_oerrors++;
1654 ifp->if_flags &= ~IFF_UP;
1655 ipw_stop(ifp, 1);
1656 return;
1657 }
1658 ifp->if_timer = 1;
1659 }
1660
1661 ieee80211_watchdog(&sc->sc_ic);
1662 }
1663
1664 static int
1665 ipw_get_table1(struct ipw_softc *sc, uint32_t *tbl)
1666 {
1667 uint32_t addr, size, i;
1668
1669 if (!(sc->flags & IPW_FLAG_FW_INITED))
1670 return ENOTTY;
1671
1672 CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
1673
1674 size = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
1675 if (suword(tbl, size) != 0)
1676 return EFAULT;
1677
1678 for (i = 1, ++tbl; i < size; i++, tbl++) {
1679 addr = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
1680 if (suword(tbl, MEM_READ_4(sc, addr)) != 0)
1681 return EFAULT;
1682 }
1683 return 0;
1684 }
1685
1686 static int
1687 ipw_get_radio(struct ipw_softc *sc, int *ret)
1688 {
1689 uint32_t addr;
1690
1691 if (!(sc->flags & IPW_FLAG_FW_INITED))
1692 return ENOTTY;
1693
1694 addr = ipw_read_table1(sc, IPW_INFO_EEPROM_ADDRESS);
1695 if ((MEM_READ_4(sc, addr + 32) >> 24) & 1) {
1696 suword(ret, -1);
1697 return 0;
1698 }
1699
1700 if (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)
1701 suword(ret, 0);
1702 else
1703 suword(ret, 1);
1704
1705 return 0;
1706 }
1707
1708 static int
1709 ipw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1710 {
1711 #define IS_RUNNING(ifp) \
1712 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1713
1714 struct ipw_softc *sc = ifp->if_softc;
1715 struct ieee80211com *ic = &sc->sc_ic;
1716 struct ifreq *ifr = (struct ifreq *)data;
1717 int s, error = 0;
1718
1719 s = splnet();
1720
1721 switch (cmd) {
1722 case SIOCSIFFLAGS:
1723 if (ifp->if_flags & IFF_UP) {
1724 if (!(ifp->if_flags & IFF_RUNNING))
1725 ipw_init(ifp);
1726 } else {
1727 if (ifp->if_flags & IFF_RUNNING)
1728 ipw_stop(ifp, 1);
1729 }
1730 break;
1731
1732 case SIOCADDMULTI:
1733 case SIOCDELMULTI:
1734 error = (cmd == SIOCADDMULTI) ?
1735 ether_addmulti(ifr, &sc->sc_ec) :
1736 ether_delmulti(ifr, &sc->sc_ec);
1737 if (error == ENETRESET) {
1738 /* setup multicast filter, etc */
1739 error = 0;
1740 }
1741 break;
1742
1743 case SIOCGTABLE1:
1744 error = ipw_get_table1(sc, (uint32_t *)ifr->ifr_data);
1745 break;
1746
1747 case SIOCGRADIO:
1748 error = ipw_get_radio(sc, (int *)ifr->ifr_data);
1749 break;
1750
1751 case SIOCSIFMEDIA:
1752 if (ifr->ifr_media & IFM_IEEE80211_ADHOC)
1753 strlcpy(sc->sc_fwname, "ipw2100-1.2-i.fw",
1754 sizeof(sc->sc_fwname));
1755 else if (ifr->ifr_media & IFM_IEEE80211_MONITOR)
1756 strlcpy(sc->sc_fwname, "ipw2100-1.2-p.fw",
1757 sizeof(sc->sc_fwname));
1758 else
1759 strlcpy(sc->sc_fwname, "ipw2100-1.2.fw",
1760 sizeof(sc->sc_fwname));
1761
1762 ipw_free_firmware(sc);
1763 /* FALLTRHOUGH */
1764 default:
1765 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1766 if (error != ENETRESET)
1767 break;
1768
1769 if (error == ENETRESET) {
1770 if (IS_RUNNING(ifp) &&
1771 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1772 ipw_init(ifp);
1773 error = 0;
1774 }
1775
1776 }
1777
1778 splx(s);
1779 return error;
1780 #undef IS_RUNNING
1781 }
1782
1783 static uint32_t
1784 ipw_read_table1(struct ipw_softc *sc, uint32_t off)
1785 {
1786 return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
1787 }
1788
1789 static void
1790 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
1791 {
1792 MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
1793 }
1794
1795 static int
1796 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
1797 {
1798 uint32_t addr, info;
1799 uint16_t count, size;
1800 uint32_t total;
1801
1802 /* addr[4] + count[2] + size[2] */
1803 addr = MEM_READ_4(sc, sc->table2_base + off);
1804 info = MEM_READ_4(sc, sc->table2_base + off + 4);
1805
1806 count = info >> 16;
1807 size = info & 0xffff;
1808 total = count * size;
1809
1810 if (total > *len) {
1811 *len = total;
1812 return EINVAL;
1813 }
1814
1815 *len = total;
1816 ipw_read_mem_1(sc, addr, buf, total);
1817
1818 return 0;
1819 }
1820
1821 static void
1822 ipw_stop_master(struct ipw_softc *sc)
1823 {
1824 int ntries;
1825
1826 /* disable interrupts */
1827 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1828
1829 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
1830 for (ntries = 0; ntries < 50; ntries++) {
1831 if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
1832 break;
1833 DELAY(10);
1834 }
1835 if (ntries == 50)
1836 aprint_error("%s: timeout waiting for master\n",
1837 sc->sc_dev.dv_xname);
1838
1839 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
1840 IPW_RST_PRINCETON_RESET);
1841
1842 sc->flags &= ~IPW_FLAG_FW_INITED;
1843 }
1844
1845 static int
1846 ipw_reset(struct ipw_softc *sc)
1847 {
1848 int ntries;
1849
1850 ipw_stop_master(sc);
1851
1852 /* move adapter to D0 state */
1853 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1854 IPW_CTL_INIT);
1855
1856 /* wait for clock stabilization */
1857 for (ntries = 0; ntries < 1000; ntries++) {
1858 if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
1859 break;
1860 DELAY(200);
1861 }
1862 if (ntries == 1000)
1863 return EIO;
1864
1865 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
1866 IPW_RST_SW_RESET);
1867
1868 DELAY(10);
1869
1870 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1871 IPW_CTL_INIT);
1872
1873 return 0;
1874 }
1875
1876 /*
1877 * Upload the microcode to the device.
1878 */
1879 static int
1880 ipw_load_ucode(struct ipw_softc *sc, u_char *uc, int size)
1881 {
1882 int ntries;
1883
1884 MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
1885 CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1886
1887 MEM_WRITE_2(sc, 0x220000, 0x0703);
1888 MEM_WRITE_2(sc, 0x220000, 0x0707);
1889
1890 MEM_WRITE_1(sc, 0x210014, 0x72);
1891 MEM_WRITE_1(sc, 0x210014, 0x72);
1892
1893 MEM_WRITE_1(sc, 0x210000, 0x40);
1894 MEM_WRITE_1(sc, 0x210000, 0x00);
1895 MEM_WRITE_1(sc, 0x210000, 0x40);
1896
1897 MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
1898
1899 MEM_WRITE_1(sc, 0x210000, 0x00);
1900 MEM_WRITE_1(sc, 0x210000, 0x00);
1901 MEM_WRITE_1(sc, 0x210000, 0x80);
1902
1903 MEM_WRITE_2(sc, 0x220000, 0x0703);
1904 MEM_WRITE_2(sc, 0x220000, 0x0707);
1905
1906 MEM_WRITE_1(sc, 0x210014, 0x72);
1907 MEM_WRITE_1(sc, 0x210014, 0x72);
1908
1909 MEM_WRITE_1(sc, 0x210000, 0x00);
1910 MEM_WRITE_1(sc, 0x210000, 0x80);
1911
1912 for (ntries = 0; ntries < 10; ntries++) {
1913 if (MEM_READ_1(sc, 0x210000) & 1)
1914 break;
1915 DELAY(10);
1916 }
1917 if (ntries == 10) {
1918 aprint_error("%s: timeout waiting for ucode to initialize\n",
1919 sc->sc_dev.dv_xname);
1920 return EIO;
1921 }
1922
1923 MEM_WRITE_4(sc, 0x3000e0, 0);
1924
1925 return 0;
1926 }
1927
1928 /* set of macros to handle unaligned little endian data in firmware image */
1929 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
1930 #define GETLE16(p) ((p)[0] | (p)[1] << 8)
1931 static int
1932 ipw_load_firmware(struct ipw_softc *sc, u_char *fw, int size)
1933 {
1934 u_char *p, *end;
1935 uint32_t dst;
1936 uint16_t len;
1937 int error;
1938
1939 p = fw;
1940 end = fw + size;
1941 while (p < end) {
1942 dst = GETLE32(p); p += 4;
1943 len = GETLE16(p); p += 2;
1944
1945 ipw_write_mem_1(sc, dst, p, len);
1946 p += len;
1947 }
1948
1949 CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
1950 IPW_IO_LED_OFF);
1951
1952 /* enable interrupts */
1953 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1954
1955 /* kick the firmware */
1956 CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1957
1958 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1959 IPW_CTL_ALLOW_STANDBY);
1960
1961 /* wait at most one second for firmware initialization to complete */
1962 if ((error = tsleep(sc, 0, "ipwinit", hz)) != 0) {
1963 aprint_error("%s: timeout waiting for firmware initialization "
1964 "to complete\n", sc->sc_dev.dv_xname);
1965 return error;
1966 }
1967
1968 CSR_WRITE_4(sc, IPW_CSR_IO, CSR_READ_4(sc, IPW_CSR_IO) |
1969 IPW_IO_GPIO1_MASK | IPW_IO_GPIO3_MASK);
1970
1971 return 0;
1972 }
1973
1974 /*
1975 * Store firmware into kernel memory so we can download it when we need to,
1976 * e.g when the adapter wakes up from suspend mode.
1977 */
1978 static int
1979 ipw_cache_firmware(struct ipw_softc *sc)
1980 {
1981 struct ipw_firmware *fw = &sc->fw;
1982 struct ipw_firmware_hdr hdr;
1983 firmware_handle_t fwh;
1984 off_t fwsz, p;
1985 int error;
1986
1987 ipw_free_firmware(sc);
1988
1989 if ((error = firmware_open("if_ipw", sc->sc_fwname, &fwh)) != 0)
1990 goto fail0;
1991
1992 fwsz = firmware_get_size(fwh);
1993
1994 if (fwsz < sizeof(hdr))
1995 goto fail2;
1996
1997 if ((error = firmware_read(fwh, 0, &hdr, sizeof(hdr))) != 0)
1998 goto fail2;
1999
2000 fw->main_size = le32toh(hdr.main_size);
2001 fw->ucode_size = le32toh(hdr.ucode_size);
2002
2003 fw->main = firmware_malloc(fw->main_size);
2004 if (fw->main == NULL) {
2005 error = ENOMEM;
2006 goto fail1;
2007 }
2008
2009 fw->ucode = firmware_malloc(fw->ucode_size);
2010 if (fw->ucode == NULL) {
2011 error = ENOMEM;
2012 goto fail2;
2013 }
2014
2015 p = sizeof(hdr);
2016 if ((error = firmware_read(fwh, p, fw->main, fw->main_size)) != 0)
2017 goto fail3;
2018
2019 p += fw->main_size;
2020 if ((error = firmware_read(fwh, p, fw->ucode, fw->ucode_size)) != 0)
2021 goto fail3;
2022
2023 DPRINTF(("Firmware cached: main %u, ucode %u\n", fw->main_size,
2024 fw->ucode_size));
2025
2026 sc->flags |= IPW_FLAG_FW_CACHED;
2027
2028 return 0;
2029
2030 fail3: firmware_free(fw->ucode, 0);
2031 fail2: firmware_free(fw->main, 0);
2032 fail1: firmware_close(fwh);
2033 fail0:
2034 return error;
2035 }
2036
2037 static void
2038 ipw_free_firmware(struct ipw_softc *sc)
2039 {
2040 if (!(sc->flags & IPW_FLAG_FW_CACHED))
2041 return;
2042
2043 firmware_free(sc->fw.main, 0);
2044 firmware_free(sc->fw.ucode, 0);
2045
2046 sc->flags &= ~IPW_FLAG_FW_CACHED;
2047 }
2048
2049 static int
2050 ipw_config(struct ipw_softc *sc)
2051 {
2052 struct ieee80211com *ic = &sc->sc_ic;
2053 struct ifnet *ifp = &sc->sc_if;
2054 struct ipw_security security;
2055 struct ieee80211_key *k;
2056 struct ipw_wep_key wepkey;
2057 struct ipw_scan_options options;
2058 struct ipw_configuration config;
2059 uint32_t data;
2060 int error, i;
2061
2062 switch (ic->ic_opmode) {
2063 case IEEE80211_M_STA:
2064 case IEEE80211_M_HOSTAP:
2065 data = htole32(IPW_MODE_BSS);
2066 break;
2067
2068 case IEEE80211_M_IBSS:
2069 case IEEE80211_M_AHDEMO:
2070 data = htole32(IPW_MODE_IBSS);
2071 break;
2072
2073 case IEEE80211_M_MONITOR:
2074 data = htole32(IPW_MODE_MONITOR);
2075 break;
2076 }
2077 DPRINTF(("Setting mode to %u\n", le32toh(data)));
2078 error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
2079 if (error != 0)
2080 return error;
2081
2082 if (ic->ic_opmode == IEEE80211_M_IBSS ||
2083 ic->ic_opmode == IEEE80211_M_MONITOR) {
2084 data = htole32(ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
2085 DPRINTF(("Setting channel to %u\n", le32toh(data)));
2086 error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
2087 if (error != 0)
2088 return error;
2089 }
2090
2091 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2092 DPRINTF(("Enabling adapter\n"));
2093 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
2094 }
2095
2096 DPRINTF(("Setting MAC to %s\n", ether_sprintf(ic->ic_myaddr)));
2097 IEEE80211_ADDR_COPY(LLADDR(ifp->if_sadl), ic->ic_myaddr);
2098 error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
2099 IEEE80211_ADDR_LEN);
2100 if (error != 0)
2101 return error;
2102
2103 config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
2104 IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
2105
2106 if (ic->ic_opmode == IEEE80211_M_IBSS)
2107 config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
2108 if (ifp->if_flags & IFF_PROMISC)
2109 config.flags |= htole32(IPW_CFG_PROMISCUOUS);
2110 config.bss_chan = htole32(0x3fff); /* channels 1-14 */
2111 config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
2112 DPRINTF(("Setting adapter configuration 0x%08x\n", config.flags));
2113 error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
2114 if (error != 0)
2115 return error;
2116
2117 data = htole32(0x3); /* 1, 2 */
2118 DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
2119 error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
2120 if (error != 0)
2121 return error;
2122
2123 data = htole32(0xf); /* 1, 2, 5.5, 11 */
2124 DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
2125 error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
2126 if (error != 0)
2127 return error;
2128
2129 data = htole32(IPW_POWER_MODE_CAM);
2130 DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2131 error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
2132 if (error != 0)
2133 return error;
2134
2135 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2136 data = htole32(32); /* default value */
2137 DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
2138 error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
2139 sizeof data);
2140 if (error != 0)
2141 return error;
2142 }
2143
2144 data = htole32(ic->ic_rtsthreshold);
2145 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2146 error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2147 if (error != 0)
2148 return error;
2149
2150 data = htole32(ic->ic_fragthreshold);
2151 DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
2152 error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2153 if (error != 0)
2154 return error;
2155
2156 #ifdef IPW_DEBUG
2157 if (ipw_debug > 0) {
2158 printf("Setting ESSID to ");
2159 ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen);
2160 printf("\n");
2161 }
2162 #endif
2163 error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid,
2164 ic->ic_des_esslen);
2165 if (error != 0)
2166 return error;
2167
2168 /* no mandatory BSSID */
2169 DPRINTF(("Setting mandatory BSSID to null\n"));
2170 error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
2171 if (error != 0)
2172 return error;
2173
2174 if (ic->ic_flags & IEEE80211_F_DESBSSID) {
2175 DPRINTF(("Setting desired BSSID to %s\n",
2176 ether_sprintf(ic->ic_des_bssid)));
2177 error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID,
2178 ic->ic_des_bssid, IEEE80211_ADDR_LEN);
2179 if (error != 0)
2180 return error;
2181 }
2182
2183 (void)memset(&security, 0, sizeof(security));
2184 security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ?
2185 IPW_AUTH_SHARED : IPW_AUTH_OPEN;
2186 security.ciphers = htole32(IPW_CIPHER_NONE);
2187 DPRINTF(("Setting authmode to %u\n", security.authmode));
2188 error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
2189 sizeof security);
2190 if (error != 0)
2191 return error;
2192
2193 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2194 k = ic->ic_crypto.cs_nw_keys;
2195 for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
2196 if (k->wk_keylen == 0)
2197 continue;
2198
2199 wepkey.idx = i;
2200 wepkey.len = k->wk_keylen;
2201 memset(wepkey.key, 0, sizeof(wepkey.key));
2202 memcpy(wepkey.key, k->wk_key, k->wk_keylen);
2203 DPRINTF(("Setting wep key index %u len %u\n",
2204 wepkey.idx, wepkey.len));
2205 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
2206 sizeof wepkey);
2207 if (error != 0)
2208 return error;
2209 }
2210
2211 data = htole32(ic->ic_crypto.cs_def_txkey);
2212 DPRINTF(("Setting tx key index to %u\n", le32toh(data)));
2213 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
2214 sizeof data);
2215 if (error != 0)
2216 return error;
2217 }
2218
2219 data = htole32((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
2220 DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
2221 error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
2222 if (error != 0)
2223 return error;
2224
2225 #if 0
2226 struct ipw_wpa_ie ie;
2227
2228 memset(&ie, 0 sizeof(ie));
2229 ie.len = htole32(sizeof (struct ieee80211_ie_wpa));
2230 DPRINTF(("Setting wpa ie\n"));
2231 error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie);
2232 if (error != 0)
2233 return error;
2234 #endif
2235
2236 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2237 data = htole32(ic->ic_bintval);
2238 DPRINTF(("Setting beacon interval to %u\n", le32toh(data)));
2239 error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
2240 sizeof data);
2241 if (error != 0)
2242 return error;
2243 }
2244
2245 options.flags = 0;
2246 options.channels = htole32(0x3fff); /* scan channels 1-14 */
2247 DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags)));
2248 error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options);
2249 if (error != 0)
2250 return error;
2251
2252 /* finally, enable adapter (start scanning for an access point) */
2253 DPRINTF(("Enabling adapter\n"));
2254 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
2255 }
2256
2257 static int
2258 ipw_init(struct ifnet *ifp)
2259 {
2260 struct ipw_softc *sc = ifp->if_softc;
2261 struct ipw_firmware *fw = &sc->fw;
2262
2263 if (!(sc->flags & IPW_FLAG_FW_CACHED)) {
2264 if (ipw_cache_firmware(sc) != 0) {
2265 aprint_error("%s: could not cache the firmware (%s)\n",
2266 sc->sc_dev.dv_xname, sc->sc_fwname);
2267 goto fail;
2268 }
2269 }
2270
2271 ipw_stop(ifp, 0);
2272
2273 if (ipw_reset(sc) != 0) {
2274 aprint_error("%s: could not reset adapter\n",
2275 sc->sc_dev.dv_xname);
2276 goto fail;
2277 }
2278
2279 if (ipw_load_ucode(sc, fw->ucode, fw->ucode_size) != 0) {
2280 aprint_error("%s: could not load microcode\n",
2281 sc->sc_dev.dv_xname);
2282 goto fail;
2283 }
2284
2285 ipw_stop_master(sc);
2286
2287 /*
2288 * Setup tx, rx and status rings.
2289 */
2290 sc->txold = IPW_NTBD - 1;
2291 sc->txcur = 0;
2292 sc->txfree = IPW_NTBD - 2;
2293 sc->rxcur = IPW_NRBD - 1;
2294
2295 CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_map->dm_segs[0].ds_addr);
2296 CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD);
2297 CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0);
2298 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
2299
2300 CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_map->dm_segs[0].ds_addr);
2301 CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD);
2302 CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0);
2303 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
2304
2305 CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_map->dm_segs[0].ds_addr);
2306
2307 if (ipw_load_firmware(sc, fw->main, fw->main_size) != 0) {
2308 aprint_error("%s: could not load firmware\n",
2309 sc->sc_dev.dv_xname);
2310 goto fail;
2311 }
2312
2313 sc->flags |= IPW_FLAG_FW_INITED;
2314
2315 /* retrieve information tables base addresses */
2316 sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
2317 sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
2318
2319 ipw_write_table1(sc, IPW_INFO_LOCK, 0);
2320
2321 if (ipw_config(sc) != 0) {
2322 aprint_error("%s: device configuration failed\n",
2323 sc->sc_dev.dv_xname);
2324 goto fail;
2325 }
2326
2327 ifp->if_flags &= ~IFF_OACTIVE;
2328 ifp->if_flags |= IFF_RUNNING;
2329
2330 return 0;
2331
2332 fail: ifp->if_flags &= ~IFF_UP;
2333 ipw_stop(ifp, 0);
2334
2335 return EIO;
2336 }
2337
2338 static void
2339 ipw_stop(struct ifnet *ifp, int disable)
2340 {
2341 struct ipw_softc *sc = ifp->if_softc;
2342 struct ieee80211com *ic = &sc->sc_ic;
2343 int i;
2344
2345 ipw_stop_master(sc);
2346
2347 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
2348
2349 /*
2350 * Release tx buffers.
2351 */
2352 for (i = 0; i < IPW_NTBD; i++)
2353 ipw_release_sbd(sc, &sc->stbd_list[i]);
2354
2355 sc->sc_tx_timer = 0;
2356 ifp->if_timer = 0;
2357 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2358
2359 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2360 }
2361
2362 static void
2363 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2364 bus_size_t count)
2365 {
2366 for (; count > 0; offset++, datap++, count--) {
2367 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2368 *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
2369 }
2370 }
2371
2372 static void
2373 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2374 bus_size_t count)
2375 {
2376 for (; count > 0; offset++, datap++, count--) {
2377 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2378 CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
2379 }
2380 }
2381