if_ipw.c revision 1.32.16.3 1 /* if_ipw.c,v 1.32.16.2 2008/01/09 01:53:45 matt Exp */
2 /* FreeBSD: src/sys/dev/ipw/if_ipw.c,v 1.15 2005/11/13 17:17:40 damien Exp */
3
4 /*-
5 * Copyright (c) 2004, 2005
6 * Damien Bergamini <damien.bergamini (at) free.fr>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "if_ipw.c,v 1.32.16.2 2008/01/09 01:53:45 matt Exp");
33
34 /*-
35 * Intel(R) PRO/Wireless 2100 MiniPCI driver
36 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
37 */
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 #include <sys/mbuf.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/systm.h>
48 #include <sys/malloc.h>
49 #include <sys/conf.h>
50
51 #include <sys/bus.h>
52 #include <machine/endian.h>
53 #include <sys/intr.h>
54
55 #include <dev/pci/pcireg.h>
56 #include <dev/pci/pcivar.h>
57 #include <dev/pci/pcidevs.h>
58
59 #if NBPFILTER > 0
60 #include <net/bpf.h>
61 #endif
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_ether.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_radiotap.h>
71
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip.h>
76
77 #include <dev/firmload.h>
78
79 #include <dev/pci/if_ipwreg.h>
80 #include <dev/pci/if_ipwvar.h>
81
82 #ifdef IPW_DEBUG
83 #define DPRINTF(x) if (ipw_debug > 0) printf x
84 #define DPRINTFN(n, x) if (ipw_debug >= (n)) printf x
85 int ipw_debug = 0;
86 #else
87 #define DPRINTF(x)
88 #define DPRINTFN(n, x)
89 #endif
90
91 static int ipw_dma_alloc(struct ipw_softc *);
92 static void ipw_release(struct ipw_softc *);
93 static int ipw_match(struct device *, struct cfdata *, void *);
94 static void ipw_attach(struct device *, struct device *, void *);
95 static int ipw_detach(struct device *, int);
96
97 static int ipw_media_change(struct ifnet *);
98 static void ipw_media_status(struct ifnet *, struct ifmediareq *);
99 static int ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
100 static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t);
101 static void ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
102 static void ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
103 static void ipw_data_intr(struct ipw_softc *, struct ipw_status *,
104 struct ipw_soft_bd *, struct ipw_soft_buf *);
105 static void ipw_rx_intr(struct ipw_softc *);
106 static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
107 static void ipw_tx_intr(struct ipw_softc *);
108 static int ipw_intr(void *);
109 static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
110 static int ipw_tx_start(struct ifnet *, struct mbuf *,
111 struct ieee80211_node *);
112 static void ipw_start(struct ifnet *);
113 static void ipw_watchdog(struct ifnet *);
114 static int ipw_ioctl(struct ifnet *, u_long, void *);
115 static int ipw_get_table1(struct ipw_softc *, uint32_t *);
116 static int ipw_get_radio(struct ipw_softc *, int *);
117 static void ipw_stop_master(struct ipw_softc *);
118 static int ipw_reset(struct ipw_softc *);
119 static int ipw_load_ucode(struct ipw_softc *, u_char *, int);
120 static int ipw_load_firmware(struct ipw_softc *, u_char *, int);
121 static int ipw_cache_firmware(struct ipw_softc *);
122 static void ipw_free_firmware(struct ipw_softc *);
123 static int ipw_config(struct ipw_softc *);
124 static int ipw_init(struct ifnet *);
125 static void ipw_stop(struct ifnet *, int);
126 static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t);
127 static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
128 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, uint32_t *);
129 static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
130 bus_size_t);
131 static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
132 bus_size_t);
133
134 /*
135 * Supported rates for 802.11b mode (in 500Kbps unit).
136 */
137 static const struct ieee80211_rateset ipw_rateset_11b =
138 { 4, { 2, 4, 11, 22 } };
139
140 static inline uint8_t
141 MEM_READ_1(struct ipw_softc *sc, uint32_t addr)
142 {
143 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
144 return CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA);
145 }
146
147 static inline uint32_t
148 MEM_READ_4(struct ipw_softc *sc, uint32_t addr)
149 {
150 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
151 return CSR_READ_4(sc, IPW_CSR_INDIRECT_DATA);
152 }
153
154 CFATTACH_DECL(ipw, sizeof (struct ipw_softc), ipw_match, ipw_attach,
155 ipw_detach, NULL);
156
157 static int
158 ipw_match(struct device *parent, struct cfdata *match,
159 void *aux)
160 {
161 struct pci_attach_args *pa = aux;
162
163 if (PCI_VENDOR (pa->pa_id) == PCI_VENDOR_INTEL &&
164 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2100)
165 return 1;
166
167 return 0;
168 }
169
170 /* Base Address Register */
171 #define IPW_PCI_BAR0 0x10
172
173 static void
174 ipw_attach(struct device *parent, struct device *self, void *aux)
175 {
176 struct ipw_softc *sc = (struct ipw_softc *)self;
177 struct ieee80211com *ic = &sc->sc_ic;
178 struct ifnet *ifp = &sc->sc_if;
179 struct pci_attach_args *pa = aux;
180 const char *intrstr;
181 char devinfo[256];
182 bus_space_tag_t memt;
183 bus_space_handle_t memh;
184 bus_addr_t base;
185 pci_intr_handle_t ih;
186 uint32_t data;
187 uint16_t val;
188 int i, revision, error;
189
190 sc->sc_pct = pa->pa_pc;
191 sc->sc_pcitag = pa->pa_tag;
192
193 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
194 revision = PCI_REVISION(pa->pa_class);
195 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
196
197 /* enable bus-mastering */
198 data = pci_conf_read(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG);
199 data |= PCI_COMMAND_MASTER_ENABLE;
200 pci_conf_write(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG, data);
201
202 /* map the register window */
203 error = pci_mapreg_map(pa, IPW_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
204 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz);
205 if (error != 0) {
206 aprint_error("%s: could not map memory space\n",
207 sc->sc_dev.dv_xname);
208 return;
209 }
210
211 sc->sc_st = memt;
212 sc->sc_sh = memh;
213 sc->sc_dmat = pa->pa_dmat;
214 strlcpy(sc->sc_fwname, "ipw2100-1.2.fw", sizeof(sc->sc_fwname));
215
216 /* disable interrupts */
217 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
218
219 if (pci_intr_map(pa, &ih) != 0) {
220 aprint_error("%s: could not map interrupt\n",
221 sc->sc_dev.dv_xname);
222 return;
223 }
224
225 intrstr = pci_intr_string(sc->sc_pct, ih);
226 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, ipw_intr, sc);
227 if (sc->sc_ih == NULL) {
228 aprint_error("%s: could not establish interrupt",
229 sc->sc_dev.dv_xname);
230 if (intrstr != NULL)
231 aprint_error(" at %s", intrstr);
232 aprint_error("\n");
233 return;
234 }
235 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
236
237 if (ipw_reset(sc) != 0) {
238 aprint_error("%s: could not reset adapter\n",
239 sc->sc_dev.dv_xname);
240 goto fail;
241 }
242
243 if (ipw_dma_alloc(sc) != 0) {
244 aprint_error("%s: could not allocate DMA resources\n",
245 sc->sc_dev.dv_xname);
246 goto fail;
247 }
248
249 ifp->if_softc = sc;
250 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
251 ifp->if_init = ipw_init;
252 ifp->if_stop = ipw_stop;
253 ifp->if_ioctl = ipw_ioctl;
254 ifp->if_start = ipw_start;
255 ifp->if_watchdog = ipw_watchdog;
256 IFQ_SET_READY(&ifp->if_snd);
257 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
258
259 ic->ic_ifp = ifp;
260 ic->ic_phytype = IEEE80211_T_DS;
261 ic->ic_opmode = IEEE80211_M_STA;
262 ic->ic_state = IEEE80211_S_INIT;
263
264 /* set device capabilities */
265 ic->ic_caps =
266 IEEE80211_C_SHPREAMBLE /* short preamble supported */
267 | IEEE80211_C_TXPMGT /* tx power management */
268 | IEEE80211_C_IBSS /* ibss mode */
269 | IEEE80211_C_MONITOR /* monitor mode */
270 ;
271
272 /* read MAC address from EEPROM */
273 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
274 ic->ic_myaddr[0] = val >> 8;
275 ic->ic_myaddr[1] = val & 0xff;
276 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
277 ic->ic_myaddr[2] = val >> 8;
278 ic->ic_myaddr[3] = val & 0xff;
279 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
280 ic->ic_myaddr[4] = val >> 8;
281 ic->ic_myaddr[5] = val & 0xff;
282
283 /* set supported .11b rates */
284 ic->ic_sup_rates[IEEE80211_MODE_11B] = ipw_rateset_11b;
285
286 /* set supported .11b channels (read from EEPROM) */
287 if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0)
288 val = 0x7ff; /* default to channels 1-11 */
289 val <<= 1;
290 for (i = 1; i < 16; i++) {
291 if (val & (1 << i)) {
292 ic->ic_channels[i].ic_freq =
293 ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
294 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
295 }
296 }
297
298 /* check support for radio transmitter switch in EEPROM */
299 if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
300 sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
301
302 aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
303 ether_sprintf(ic->ic_myaddr));
304
305 if_attach(ifp);
306 ieee80211_ifattach(ic);
307
308 /* override state transition machine */
309 sc->sc_newstate = ic->ic_newstate;
310 ic->ic_newstate = ipw_newstate;
311
312 ieee80211_media_init(ic, ipw_media_change, ipw_media_status);
313
314 #if NBPFILTER > 0
315 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
316 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
317
318 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
319 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
320 sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
321
322 sc->sc_txtap_len = sizeof sc->sc_txtapu;
323 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
324 sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
325 #endif
326
327 /*
328 * Add a few sysctl knobs.
329 * XXX: Not yet
330 */
331 sc->dwelltime = 100;
332
333 if (!pmf_device_register(self, NULL, NULL))
334 aprint_error_dev(self, "couldn't establish power handler\n");
335 else
336 pmf_class_network_register(self, ifp);
337
338 ieee80211_announce(ic);
339
340 return;
341
342 fail: ipw_detach(self, 0);
343 }
344
345 static int
346 ipw_detach(struct device* self, int flags)
347 {
348 struct ipw_softc *sc = (struct ipw_softc *)self;
349 struct ifnet *ifp = &sc->sc_if;
350
351 if (ifp->if_softc) {
352 ipw_stop(ifp, 1);
353 ipw_free_firmware(sc);
354
355 #if NBPFILTER > 0
356 bpfdetach(ifp);
357 #endif
358 ieee80211_ifdetach(&sc->sc_ic);
359 if_detach(ifp);
360
361 ipw_release(sc);
362 }
363
364 if (sc->sc_ih != NULL) {
365 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
366 sc->sc_ih = NULL;
367 }
368
369 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
370
371 return 0;
372 }
373
374 static int
375 ipw_dma_alloc(struct ipw_softc *sc)
376 {
377 struct ipw_soft_bd *sbd;
378 struct ipw_soft_hdr *shdr;
379 struct ipw_soft_buf *sbuf;
380 int error, i, nsegs;
381
382 /*
383 * Allocate and map tx ring.
384 */
385 error = bus_dmamap_create(sc->sc_dmat, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0,
386 BUS_DMA_NOWAIT, &sc->tbd_map);
387 if (error != 0) {
388 aprint_error("%s: could not create tbd dma map\n",
389 sc->sc_dev.dv_xname);
390 goto fail;
391 }
392
393 error = bus_dmamem_alloc(sc->sc_dmat, IPW_TBD_SZ, PAGE_SIZE, 0,
394 &sc->tbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
395 if (error != 0) {
396 aprint_error("%s: could not allocate tbd dma memory\n",
397 sc->sc_dev.dv_xname);
398 goto fail;
399 }
400
401 error = bus_dmamem_map(sc->sc_dmat, &sc->tbd_seg, nsegs, IPW_TBD_SZ,
402 (void **)&sc->tbd_list, BUS_DMA_NOWAIT);
403 if (error != 0) {
404 aprint_error("%s: could not map tbd dma memory\n",
405 sc->sc_dev.dv_xname);
406 goto fail;
407 }
408
409 error = bus_dmamap_load(sc->sc_dmat, sc->tbd_map, sc->tbd_list,
410 IPW_TBD_SZ, NULL, BUS_DMA_NOWAIT);
411 if (error != 0) {
412 aprint_error("%s: could not load tbd dma memory\n",
413 sc->sc_dev.dv_xname);
414 goto fail;
415 }
416
417 (void)memset(sc->tbd_list, 0, IPW_TBD_SZ);
418
419 /*
420 * Allocate and map rx ring.
421 */
422 error = bus_dmamap_create(sc->sc_dmat, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0,
423 BUS_DMA_NOWAIT, &sc->rbd_map);
424 if (error != 0) {
425 aprint_error("%s: could not create rbd dma map\n",
426 sc->sc_dev.dv_xname);
427 goto fail;
428 }
429
430 error = bus_dmamem_alloc(sc->sc_dmat, IPW_RBD_SZ, PAGE_SIZE, 0,
431 &sc->rbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
432 if (error != 0) {
433 aprint_error("%s: could not allocate rbd dma memory\n",
434 sc->sc_dev.dv_xname);
435 goto fail;
436 }
437
438 error = bus_dmamem_map(sc->sc_dmat, &sc->rbd_seg, nsegs, IPW_RBD_SZ,
439 (void **)&sc->rbd_list, BUS_DMA_NOWAIT);
440 if (error != 0) {
441 aprint_error("%s: could not map rbd dma memory\n",
442 sc->sc_dev.dv_xname);
443 goto fail;
444 }
445
446 error = bus_dmamap_load(sc->sc_dmat, sc->rbd_map, sc->rbd_list,
447 IPW_RBD_SZ, NULL, BUS_DMA_NOWAIT);
448 if (error != 0) {
449 aprint_error("%s: could not load rbd dma memory\n",
450 sc->sc_dev.dv_xname);
451 goto fail;
452 }
453
454 (void)memset(sc->rbd_list, 0, IPW_RBD_SZ);
455
456 /*
457 * Allocate and map status ring.
458 */
459 error = bus_dmamap_create(sc->sc_dmat, IPW_STATUS_SZ, 1, IPW_STATUS_SZ,
460 0, BUS_DMA_NOWAIT, &sc->status_map);
461 if (error != 0) {
462 aprint_error("%s: could not create status dma map\n",
463 sc->sc_dev.dv_xname);
464 goto fail;
465 }
466
467 error = bus_dmamem_alloc(sc->sc_dmat, IPW_STATUS_SZ, PAGE_SIZE, 0,
468 &sc->status_seg, 1, &nsegs, BUS_DMA_NOWAIT);
469 if (error != 0) {
470 aprint_error("%s: could not allocate status dma memory\n",
471 sc->sc_dev.dv_xname);
472 goto fail;
473 }
474
475 error = bus_dmamem_map(sc->sc_dmat, &sc->status_seg, nsegs,
476 IPW_STATUS_SZ, (void **)&sc->status_list, BUS_DMA_NOWAIT);
477 if (error != 0) {
478 aprint_error("%s: could not map status dma memory\n",
479 sc->sc_dev.dv_xname);
480 goto fail;
481 }
482
483 error = bus_dmamap_load(sc->sc_dmat, sc->status_map, sc->status_list,
484 IPW_STATUS_SZ, NULL, BUS_DMA_NOWAIT);
485 if (error != 0) {
486 aprint_error("%s: could not load status dma memory\n",
487 sc->sc_dev.dv_xname);
488 goto fail;
489 }
490
491 (void)memset(sc->status_list, 0, IPW_STATUS_SZ);
492
493 /*
494 * Allocate command DMA map.
495 */
496 error = bus_dmamap_create(sc->sc_dmat, sizeof (struct ipw_cmd),
497 1, sizeof (struct ipw_cmd), 0, BUS_DMA_NOWAIT, &sc->cmd_map);
498 if (error != 0) {
499 aprint_error("%s: could not create cmd dma map\n",
500 sc->sc_dev.dv_xname);
501 goto fail;
502 }
503
504 error = bus_dmamem_alloc(sc->sc_dmat, sizeof (struct ipw_cmd),
505 PAGE_SIZE, 0, &sc->cmd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
506 if (error != 0) {
507 aprint_error("%s: could not allocate cmd dma memory\n",
508 sc->sc_dev.dv_xname);
509 goto fail;
510 }
511
512 error = bus_dmamem_map(sc->sc_dmat, &sc->cmd_seg, nsegs,
513 sizeof (struct ipw_cmd), (void **)&sc->cmd, BUS_DMA_NOWAIT);
514 if (error != 0) {
515 aprint_error("%s: could not map cmd dma memory\n",
516 sc->sc_dev.dv_xname);
517 goto fail;
518 }
519
520 error = bus_dmamap_load(sc->sc_dmat, sc->cmd_map, &sc->cmd,
521 sizeof (struct ipw_cmd), NULL, BUS_DMA_NOWAIT);
522 if (error != 0) {
523 aprint_error("%s: could not map cmd dma memory\n",
524 sc->sc_dev.dv_xname);
525 return error;
526 }
527
528 /*
529 * Allocate and map hdr list.
530 */
531
532 error = bus_dmamap_create(sc->sc_dmat,
533 IPW_NDATA * sizeof(struct ipw_hdr), 1,
534 sizeof(struct ipw_hdr), 0, BUS_DMA_NOWAIT,
535 &sc->hdr_map);
536 if (error != 0) {
537 aprint_error("%s: could not create hdr dma map\n",
538 sc->sc_dev.dv_xname);
539 goto fail;
540 }
541
542 error = bus_dmamem_alloc(sc->sc_dmat,
543 IPW_NDATA * sizeof(struct ipw_hdr), PAGE_SIZE, 0, &sc->hdr_seg,
544 1, &nsegs, BUS_DMA_NOWAIT);
545 if (error != 0) {
546 aprint_error("%s: could not allocate hdr memory\n",
547 sc->sc_dev.dv_xname);
548 goto fail;
549 }
550
551 error = bus_dmamem_map(sc->sc_dmat, &sc->hdr_seg, nsegs,
552 IPW_NDATA * sizeof(struct ipw_hdr), (void **)&sc->hdr_list,
553 BUS_DMA_NOWAIT);
554 if (error != 0) {
555 aprint_error("%s: could not map hdr memory\n",
556 sc->sc_dev.dv_xname);
557 goto fail;
558 }
559
560 error = bus_dmamap_load(sc->sc_dmat, sc->hdr_map, sc->hdr_list,
561 IPW_NDATA * sizeof(struct ipw_hdr), NULL, BUS_DMA_NOWAIT);
562 if (error != 0) {
563 aprint_error("%s: could not load hdr memory\n",
564 sc->sc_dev.dv_xname);
565 goto fail;
566 }
567
568 (void)memset(sc->hdr_list, 0, IPW_HDR_SZ);
569
570 /*
571 * Create DMA hdrs tailq.
572 */
573 TAILQ_INIT(&sc->sc_free_shdr);
574 for (i = 0; i < IPW_NDATA; i++) {
575 shdr = &sc->shdr_list[i];
576 shdr->hdr = sc->hdr_list + i;
577 shdr->offset = sizeof(struct ipw_hdr) * i;
578 shdr->addr = sc->hdr_map->dm_segs[0].ds_addr + shdr->offset;
579 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
580 }
581
582 /*
583 * Allocate tx buffers DMA maps.
584 */
585 TAILQ_INIT(&sc->sc_free_sbuf);
586 for (i = 0; i < IPW_NDATA; i++) {
587 sbuf = &sc->tx_sbuf_list[i];
588
589 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
590 IPW_MAX_NSEG, MCLBYTES, 0, BUS_DMA_NOWAIT, &sbuf->map);
591 if (error != 0) {
592 aprint_error("%s: could not create txbuf dma map\n",
593 sc->sc_dev.dv_xname);
594 goto fail;
595 }
596 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
597 }
598
599 /*
600 * Initialize tx ring.
601 */
602 for (i = 0; i < IPW_NTBD; i++) {
603 sbd = &sc->stbd_list[i];
604 sbd->bd = &sc->tbd_list[i];
605 sbd->type = IPW_SBD_TYPE_NOASSOC;
606 }
607
608 /*
609 * Pre-allocate rx buffers and DMA maps
610 */
611 for (i = 0; i < IPW_NRBD; i++) {
612 sbd = &sc->srbd_list[i];
613 sbuf = &sc->rx_sbuf_list[i];
614 sbd->bd = &sc->rbd_list[i];
615
616 MGETHDR(sbuf->m, M_DONTWAIT, MT_DATA);
617 if (sbuf->m == NULL) {
618 aprint_error("%s: could not allocate rx mbuf\n",
619 sc->sc_dev.dv_xname);
620 error = ENOMEM;
621 goto fail;
622 }
623
624 MCLGET(sbuf->m, M_DONTWAIT);
625 if (!(sbuf->m->m_flags & M_EXT)) {
626 m_freem(sbuf->m);
627 aprint_error("%s: could not allocate rx mbuf cluster\n",
628 sc->sc_dev.dv_xname);
629 error = ENOMEM;
630 goto fail;
631 }
632
633 sbuf->m->m_pkthdr.len = sbuf->m->m_len = sbuf->m->m_ext.ext_size;
634
635 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
636 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sbuf->map);
637 if (error != 0) {
638 aprint_error("%s: could not create rxbuf dma map\n",
639 sc->sc_dev.dv_xname);
640 m_freem(sbuf->m);
641 goto fail;
642 }
643
644 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
645 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
646 if (error != 0) {
647 bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
648 m_freem(sbuf->m);
649 aprint_error("%s: could not map rxbuf dma memory\n",
650 sc->sc_dev.dv_xname);
651 goto fail;
652 }
653
654 sbd->type = IPW_SBD_TYPE_DATA;
655 sbd->priv = sbuf;
656 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
657 sbd->bd->len = htole32(MCLBYTES);
658
659 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
660 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
661
662 }
663
664 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, 0, IPW_RBD_SZ,
665 BUS_DMASYNC_PREREAD);
666
667 return 0;
668
669 fail: ipw_release(sc);
670 return error;
671 }
672
673 static void
674 ipw_release(struct ipw_softc *sc)
675 {
676 struct ipw_soft_buf *sbuf;
677 int i;
678
679 if (sc->tbd_map != NULL) {
680 if (sc->tbd_list != NULL) {
681 bus_dmamap_unload(sc->sc_dmat, sc->tbd_map);
682 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->tbd_list,
683 IPW_TBD_SZ);
684 bus_dmamem_free(sc->sc_dmat, &sc->tbd_seg, 1);
685 }
686 bus_dmamap_destroy(sc->sc_dmat, sc->tbd_map);
687 }
688
689 if (sc->rbd_map != NULL) {
690 if (sc->rbd_list != NULL) {
691 bus_dmamap_unload(sc->sc_dmat, sc->rbd_map);
692 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rbd_list,
693 IPW_RBD_SZ);
694 bus_dmamem_free(sc->sc_dmat, &sc->rbd_seg, 1);
695 }
696 bus_dmamap_destroy(sc->sc_dmat, sc->rbd_map);
697 }
698
699 if (sc->status_map != NULL) {
700 if (sc->status_list != NULL) {
701 bus_dmamap_unload(sc->sc_dmat, sc->status_map);
702 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->status_list,
703 IPW_RBD_SZ);
704 bus_dmamem_free(sc->sc_dmat, &sc->status_seg, 1);
705 }
706 bus_dmamap_destroy(sc->sc_dmat, sc->status_map);
707 }
708
709 for (i = 0; i < IPW_NTBD; i++)
710 ipw_release_sbd(sc, &sc->stbd_list[i]);
711
712 if (sc->cmd_map != NULL)
713 bus_dmamap_destroy(sc->sc_dmat, sc->cmd_map);
714
715 if (sc->hdr_list != NULL) {
716 bus_dmamap_unload(sc->sc_dmat, sc->hdr_map);
717 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->hdr_list,
718 IPW_NDATA * sizeof(struct ipw_hdr));
719 }
720 if (sc->hdr_map != NULL) {
721 bus_dmamem_free(sc->sc_dmat, &sc->hdr_seg, 1);
722 bus_dmamap_destroy(sc->sc_dmat, sc->hdr_map);
723 }
724
725 for (i = 0; i < IPW_NDATA; i++)
726 bus_dmamap_destroy(sc->sc_dmat, sc->tx_sbuf_list[i].map);
727
728 for (i = 0; i < IPW_NRBD; i++) {
729 sbuf = &sc->rx_sbuf_list[i];
730 if (sbuf->map != NULL) {
731 if (sbuf->m != NULL) {
732 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
733 m_freem(sbuf->m);
734 }
735 bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
736 }
737 }
738
739 }
740
741 static int
742 ipw_media_change(struct ifnet *ifp)
743 {
744 int error;
745
746 error = ieee80211_media_change(ifp);
747 if (error != ENETRESET)
748 return error;
749
750 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
751 ipw_init(ifp);
752
753 return 0;
754 }
755
756 /*
757 * The firmware automatically adapts the transmit speed. We report the current
758 * transmit speed here.
759 */
760 static void
761 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
762 {
763 #define N(a) (sizeof (a) / sizeof (a[0]))
764 struct ipw_softc *sc = ifp->if_softc;
765 struct ieee80211com *ic = &sc->sc_ic;
766 static const struct {
767 uint32_t val;
768 int rate;
769 } rates[] = {
770 { IPW_RATE_DS1, 2 },
771 { IPW_RATE_DS2, 4 },
772 { IPW_RATE_DS5, 11 },
773 { IPW_RATE_DS11, 22 },
774 };
775 uint32_t val;
776 int rate, i;
777
778 imr->ifm_status = IFM_AVALID;
779 imr->ifm_active = IFM_IEEE80211;
780 if (ic->ic_state == IEEE80211_S_RUN)
781 imr->ifm_status |= IFM_ACTIVE;
782
783 /* read current transmission rate from adapter */
784 val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf;
785
786 /* convert ipw rate to 802.11 rate */
787 for (i = 0; i < N(rates) && rates[i].val != val; i++);
788 rate = (i < N(rates)) ? rates[i].rate : 0;
789
790 imr->ifm_active |= IFM_IEEE80211_11B;
791 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
792 switch (ic->ic_opmode) {
793 case IEEE80211_M_STA:
794 break;
795
796 case IEEE80211_M_IBSS:
797 imr->ifm_active |= IFM_IEEE80211_ADHOC;
798 break;
799
800 case IEEE80211_M_MONITOR:
801 imr->ifm_active |= IFM_IEEE80211_MONITOR;
802 break;
803
804 case IEEE80211_M_AHDEMO:
805 case IEEE80211_M_HOSTAP:
806 /* should not get there */
807 break;
808 }
809 #undef N
810 }
811
812 static int
813 ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
814 int arg)
815 {
816 struct ifnet *ifp = ic->ic_ifp;
817 struct ipw_softc *sc = ifp->if_softc;
818 struct ieee80211_node *ni;
819 uint8_t macaddr[IEEE80211_ADDR_LEN];
820 uint32_t len;
821
822 switch (nstate) {
823 case IEEE80211_S_RUN:
824 DELAY(200); /* firmware needs a short delay here */
825
826 len = IEEE80211_ADDR_LEN;
827 ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len);
828
829 ni = ieee80211_find_node(&ic->ic_scan, macaddr);
830 if (ni == NULL)
831 break;
832
833 ieee80211_ref_node(ni);
834 ieee80211_sta_join(ic, ni);
835 ieee80211_node_authorize(ni);
836
837 if (ic->ic_opmode == IEEE80211_M_STA)
838 ieee80211_notify_node_join(ic, ni, 1);
839 break;
840
841 case IEEE80211_S_INIT:
842 case IEEE80211_S_SCAN:
843 case IEEE80211_S_AUTH:
844 case IEEE80211_S_ASSOC:
845 break;
846 }
847
848 ic->ic_state = nstate;
849 return 0;
850 }
851
852 /*
853 * Read 16 bits at address 'addr' from the serial EEPROM.
854 */
855 static uint16_t
856 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
857 {
858 uint32_t tmp;
859 uint16_t val;
860 int n;
861
862 /* clock C once before the first command */
863 IPW_EEPROM_CTL(sc, 0);
864 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
865 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
866 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
867
868 /* write start bit (1) */
869 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
870 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
871
872 /* write READ opcode (10) */
873 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
874 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
875 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
876 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
877
878 /* write address A7-A0 */
879 for (n = 7; n >= 0; n--) {
880 IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
881 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
882 IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
883 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
884 }
885
886 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
887
888 /* read data Q15-Q0 */
889 val = 0;
890 for (n = 15; n >= 0; n--) {
891 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
892 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
893 tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
894 val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
895 }
896
897 IPW_EEPROM_CTL(sc, 0);
898
899 /* clear Chip Select and clock C */
900 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
901 IPW_EEPROM_CTL(sc, 0);
902 IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
903
904 return le16toh(val);
905 }
906
907 static void
908 ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
909 {
910 struct ipw_cmd *cmd;
911
912 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof (struct ipw_cmd),
913 BUS_DMASYNC_POSTREAD);
914
915 cmd = mtod(sbuf->m, struct ipw_cmd *);
916
917 DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type),
918 le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
919 le32toh(cmd->status)));
920
921 wakeup(&sc->cmd);
922 }
923
924 static void
925 ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
926 {
927 struct ieee80211com *ic = &sc->sc_ic;
928 struct ifnet *ifp = sc->sc_ic.ic_ifp;
929 uint32_t state;
930
931 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof state,
932 BUS_DMASYNC_POSTREAD);
933
934 state = le32toh(*mtod(sbuf->m, uint32_t *));
935
936 DPRINTFN(2, ("entering state %u\n", state));
937
938 switch (state) {
939 case IPW_STATE_ASSOCIATED:
940 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
941 break;
942
943 case IPW_STATE_SCANNING:
944 /* don't leave run state on background scan */
945 if (ic->ic_state != IEEE80211_S_RUN)
946 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
947
948 ic->ic_flags |= IEEE80211_F_SCAN;
949 break;
950
951 case IPW_STATE_SCAN_COMPLETE:
952 ieee80211_notify_scan_done(ic);
953 ic->ic_flags &= ~IEEE80211_F_SCAN;
954 break;
955
956 case IPW_STATE_ASSOCIATION_LOST:
957 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
958 break;
959
960 case IPW_STATE_RADIO_DISABLED:
961 ic->ic_ifp->if_flags &= ~IFF_UP;
962 ipw_stop(ifp, 1);
963 break;
964 }
965 }
966
967 /*
968 * XXX: Hack to set the current channel to the value advertised in beacons or
969 * probe responses. Only used during AP detection.
970 */
971 static void
972 ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m)
973 {
974 struct ieee80211_frame *wh;
975 uint8_t subtype;
976 uint8_t *frm, *efrm;
977
978 wh = mtod(m, struct ieee80211_frame *);
979
980 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
981 return;
982
983 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
984
985 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
986 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
987 return;
988
989 frm = (uint8_t *)(wh + 1);
990 efrm = mtod(m, uint8_t *) + m->m_len;
991
992 frm += 12; /* skip tstamp, bintval and capinfo fields */
993 while (frm < efrm) {
994 if (*frm == IEEE80211_ELEMID_DSPARMS)
995 #if IEEE80211_CHAN_MAX < 255
996 if (frm[2] <= IEEE80211_CHAN_MAX)
997 #endif
998 ic->ic_curchan = &ic->ic_channels[frm[2]];
999
1000 frm += frm[1] + 2;
1001 }
1002 }
1003
1004 static void
1005 ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
1006 struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
1007 {
1008 struct ieee80211com *ic = &sc->sc_ic;
1009 struct ifnet *ifp = &sc->sc_if;
1010 struct mbuf *mnew, *m;
1011 struct ieee80211_frame *wh;
1012 struct ieee80211_node *ni;
1013 int error;
1014
1015 DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
1016 status->rssi));
1017
1018 if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
1019 le32toh(status->len) > MCLBYTES)
1020 return;
1021
1022 /*
1023 * Try to allocate a new mbuf for this ring element and load it before
1024 * processing the current mbuf. If the ring element cannot be loaded,
1025 * drop the received packet and reuse the old mbuf. In the unlikely
1026 * case that the old mbuf can't be reloaded either, explicitly panic.
1027 */
1028 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1029 if (mnew == NULL) {
1030 aprint_error("%s: could not allocate rx mbuf\n",
1031 sc->sc_dev.dv_xname);
1032 ifp->if_ierrors++;
1033 return;
1034 }
1035
1036 MCLGET(mnew, M_DONTWAIT);
1037 if (!(mnew->m_flags & M_EXT)) {
1038 aprint_error("%s: could not allocate rx mbuf cluster\n",
1039 sc->sc_dev.dv_xname);
1040 m_freem(mnew);
1041 ifp->if_ierrors++;
1042 return;
1043 }
1044
1045 mnew->m_pkthdr.len = mnew->m_len = mnew->m_ext.ext_size;
1046
1047 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, le32toh(status->len),
1048 BUS_DMASYNC_POSTREAD);
1049 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
1050
1051 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, mnew,
1052 BUS_DMA_READ | BUS_DMA_NOWAIT);
1053 if (error != 0) {
1054 aprint_error("%s: could not load rx buf DMA map\n",
1055 sc->sc_dev.dv_xname);
1056 m_freem(mnew);
1057
1058 /* try to reload the old mbuf */
1059 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
1060 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
1061 if (error != 0) {
1062 /* very unlikely that it will fail... */
1063 panic("%s: unable to remap rx buf",
1064 sc->sc_dev.dv_xname);
1065 }
1066 ifp->if_ierrors++;
1067 return;
1068 }
1069
1070 /*
1071 * New mbuf successfully loaded, update Rx ring and continue
1072 * processing.
1073 */
1074 m = sbuf->m;
1075 sbuf->m = mnew;
1076 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
1077
1078 /* finalize mbuf */
1079 m->m_pkthdr.rcvif = ifp;
1080 m->m_pkthdr.len = m->m_len = le32toh(status->len);
1081
1082 #if NBPFILTER > 0
1083 if (sc->sc_drvbpf != NULL) {
1084 struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
1085
1086 tap->wr_flags = 0;
1087 tap->wr_antsignal = status->rssi;
1088 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1089 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1090
1091 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1092 }
1093 #endif
1094
1095 if (ic->ic_state == IEEE80211_S_SCAN)
1096 ipw_fix_channel(ic, m);
1097
1098 wh = mtod(m, struct ieee80211_frame *);
1099 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1100
1101 /* send the frame to the 802.11 layer */
1102 ieee80211_input(ic, m, ni, status->rssi, 0);
1103
1104 /* node is no longer needed */
1105 ieee80211_free_node(ni);
1106
1107 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
1108 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1109 }
1110
1111 static void
1112 ipw_rx_intr(struct ipw_softc *sc)
1113 {
1114 struct ipw_status *status;
1115 struct ipw_soft_bd *sbd;
1116 struct ipw_soft_buf *sbuf;
1117 uint32_t r, i;
1118
1119 if (!(sc->flags & IPW_FLAG_FW_INITED))
1120 return;
1121
1122 r = CSR_READ_4(sc, IPW_CSR_RX_READ);
1123
1124 for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
1125
1126 /* firmware was killed, stop processing received frames */
1127 if (!(sc->flags & IPW_FLAG_FW_INITED))
1128 return;
1129
1130 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
1131 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1132 BUS_DMASYNC_POSTREAD);
1133
1134 bus_dmamap_sync(sc->sc_dmat, sc->status_map,
1135 i * sizeof (struct ipw_status), sizeof (struct ipw_status),
1136 BUS_DMASYNC_POSTREAD);
1137
1138 status = &sc->status_list[i];
1139 sbd = &sc->srbd_list[i];
1140 sbuf = sbd->priv;
1141
1142 switch (le16toh(status->code) & 0xf) {
1143 case IPW_STATUS_CODE_COMMAND:
1144 ipw_command_intr(sc, sbuf);
1145 break;
1146
1147 case IPW_STATUS_CODE_NEWSTATE:
1148 ipw_newstate_intr(sc, sbuf);
1149 break;
1150
1151 case IPW_STATUS_CODE_DATA_802_3:
1152 case IPW_STATUS_CODE_DATA_802_11:
1153 ipw_data_intr(sc, status, sbd, sbuf);
1154 break;
1155
1156 case IPW_STATUS_CODE_NOTIFICATION:
1157 DPRINTFN(2, ("received notification\n"));
1158 break;
1159
1160 default:
1161 aprint_error("%s: unknown status code %u\n",
1162 sc->sc_dev.dv_xname, le16toh(status->code));
1163 }
1164
1165 sbd->bd->flags = 0;
1166
1167 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
1168 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1169 BUS_DMASYNC_PREREAD);
1170
1171 bus_dmamap_sync(sc->sc_dmat, sc->status_map,
1172 i * sizeof (struct ipw_status), sizeof (struct ipw_status),
1173 BUS_DMASYNC_PREREAD);
1174 }
1175
1176 /* Tell the firmware what we have processed */
1177 sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
1178 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
1179 }
1180
1181 static void
1182 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
1183 {
1184 struct ieee80211com *ic;
1185 struct ipw_soft_hdr *shdr;
1186 struct ipw_soft_buf *sbuf;
1187
1188 switch (sbd->type) {
1189 case IPW_SBD_TYPE_COMMAND:
1190 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map,
1191 0, sizeof(struct ipw_cmd), BUS_DMASYNC_POSTWRITE);
1192 /* bus_dmamap_unload(sc->sc_dmat, sc->cmd_map); */
1193 break;
1194
1195 case IPW_SBD_TYPE_HEADER:
1196 shdr = sbd->priv;
1197 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map,
1198 shdr->offset, sizeof(struct ipw_hdr), BUS_DMASYNC_POSTWRITE);
1199 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
1200 break;
1201
1202 case IPW_SBD_TYPE_DATA:
1203 ic = &sc->sc_ic;
1204 sbuf = sbd->priv;
1205
1206 bus_dmamap_sync(sc->sc_dmat, sbuf->map,
1207 0, MCLBYTES, BUS_DMASYNC_POSTWRITE);
1208 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
1209 m_freem(sbuf->m);
1210 if (sbuf->ni != NULL)
1211 ieee80211_free_node(sbuf->ni);
1212 /* kill watchdog timer */
1213 sc->sc_tx_timer = 0;
1214 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
1215 break;
1216 }
1217 sbd->type = IPW_SBD_TYPE_NOASSOC;
1218 }
1219
1220 static void
1221 ipw_tx_intr(struct ipw_softc *sc)
1222 {
1223 struct ifnet *ifp = &sc->sc_if;
1224 struct ipw_soft_bd *sbd;
1225 uint32_t r, i;
1226
1227 if (!(sc->flags & IPW_FLAG_FW_INITED))
1228 return;
1229
1230 r = CSR_READ_4(sc, IPW_CSR_TX_READ);
1231
1232 for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
1233 sbd = &sc->stbd_list[i];
1234
1235 if (sbd->type == IPW_SBD_TYPE_DATA)
1236 ifp->if_opackets++;
1237
1238 ipw_release_sbd(sc, sbd);
1239 sc->txfree++;
1240 }
1241
1242 /* remember what the firmware has processed */
1243 sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
1244
1245 /* Call start() since some buffer descriptors have been released */
1246 ifp->if_flags &= ~IFF_OACTIVE;
1247 (*ifp->if_start)(ifp);
1248 }
1249
1250 static int
1251 ipw_intr(void *arg)
1252 {
1253 struct ipw_softc *sc = arg;
1254 uint32_t r;
1255
1256 r = CSR_READ_4(sc, IPW_CSR_INTR);
1257 if (r == 0 || r == 0xffffffff)
1258 return 0;
1259
1260 /* Disable interrupts */
1261 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1262
1263 if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
1264 aprint_error("%s: fatal error\n",
1265 sc->sc_dev.dv_xname);
1266 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1267 ipw_stop(&sc->sc_if, 1);
1268 }
1269
1270 if (r & IPW_INTR_FW_INIT_DONE) {
1271 if (!(r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)))
1272 wakeup(sc);
1273 }
1274
1275 if (r & IPW_INTR_RX_TRANSFER)
1276 ipw_rx_intr(sc);
1277
1278 if (r & IPW_INTR_TX_TRANSFER)
1279 ipw_tx_intr(sc);
1280
1281 /* Acknowledge all interrupts */
1282 CSR_WRITE_4(sc, IPW_CSR_INTR, r);
1283
1284 /* Re-enable interrupts */
1285 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1286
1287 return 0;
1288 }
1289
1290 /*
1291 * Send a command to the firmware and wait for the acknowledgement.
1292 */
1293 static int
1294 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
1295 {
1296 struct ipw_soft_bd *sbd;
1297
1298 sbd = &sc->stbd_list[sc->txcur];
1299
1300 sc->cmd.type = htole32(type);
1301 sc->cmd.subtype = 0;
1302 sc->cmd.len = htole32(len);
1303 sc->cmd.seq = 0;
1304
1305 (void)memcpy(sc->cmd.data, data, len);
1306
1307 sbd->type = IPW_SBD_TYPE_COMMAND;
1308 sbd->bd->physaddr = htole32(sc->cmd_map->dm_segs[0].ds_addr);
1309 sbd->bd->len = htole32(sizeof (struct ipw_cmd));
1310 sbd->bd->nfrag = 1;
1311 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
1312 IPW_BD_FLAG_TX_LAST_FRAGMENT;
1313
1314 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map, 0, sizeof (struct ipw_cmd),
1315 BUS_DMASYNC_PREWRITE);
1316
1317 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1318 sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1319 BUS_DMASYNC_PREWRITE);
1320
1321 DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len));
1322
1323 /* kick firmware */
1324 sc->txfree--;
1325 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1326 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1327
1328 /* Wait at most one second for command to complete */
1329 return tsleep(&sc->cmd, 0, "ipwcmd", hz);
1330 }
1331
1332 static int
1333 ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
1334 {
1335 struct ipw_softc *sc = ifp->if_softc;
1336 struct ieee80211com *ic = &sc->sc_ic;
1337 struct ieee80211_frame *wh;
1338 struct ipw_soft_bd *sbd;
1339 struct ipw_soft_hdr *shdr;
1340 struct ipw_soft_buf *sbuf;
1341 struct ieee80211_key *k;
1342 struct mbuf *mnew;
1343 int error, i;
1344
1345 wh = mtod(m0, struct ieee80211_frame *);
1346
1347 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1348 k = ieee80211_crypto_encap(ic, ni, m0);
1349 if (k == NULL) {
1350 m_freem(m0);
1351 return ENOBUFS;
1352 }
1353
1354 /* packet header may have moved, reset our local pointer */
1355 wh = mtod(m0, struct ieee80211_frame *);
1356 }
1357
1358 #if NBPFILTER > 0
1359 if (sc->sc_drvbpf != NULL) {
1360 struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
1361
1362 tap->wt_flags = 0;
1363 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1364 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1365
1366 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1367 }
1368 #endif
1369
1370 shdr = TAILQ_FIRST(&sc->sc_free_shdr);
1371 sbuf = TAILQ_FIRST(&sc->sc_free_sbuf);
1372 KASSERT(shdr != NULL && sbuf != NULL);
1373
1374 shdr->hdr->type = htole32(IPW_HDR_TYPE_SEND);
1375 shdr->hdr->subtype = 0;
1376 shdr->hdr->encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
1377 shdr->hdr->encrypt = 0;
1378 shdr->hdr->keyidx = 0;
1379 shdr->hdr->keysz = 0;
1380 shdr->hdr->fragmentsz = 0;
1381 IEEE80211_ADDR_COPY(shdr->hdr->src_addr, wh->i_addr2);
1382 if (ic->ic_opmode == IEEE80211_M_STA)
1383 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr3);
1384 else
1385 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr1);
1386
1387 /* trim IEEE802.11 header */
1388 m_adj(m0, sizeof (struct ieee80211_frame));
1389
1390 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0, BUS_DMA_NOWAIT);
1391 if (error != 0 && error != EFBIG) {
1392 aprint_error("%s: could not map mbuf (error %d)\n",
1393 sc->sc_dev.dv_xname, error);
1394 m_freem(m0);
1395 return error;
1396 }
1397
1398 if (error != 0) {
1399 /* too many fragments, linearize */
1400
1401 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1402 if (mnew == NULL) {
1403 m_freem(m0);
1404 return ENOMEM;
1405 }
1406
1407 M_COPY_PKTHDR(mnew, m0);
1408
1409 /* If the data won't fit in the header, get a cluster */
1410 if (m0->m_pkthdr.len > MHLEN) {
1411 MCLGET(mnew, M_DONTWAIT);
1412 if (!(mnew->m_flags & M_EXT)) {
1413 m_freem(m0);
1414 m_freem(mnew);
1415 return ENOMEM;
1416 }
1417 }
1418 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1419 m_freem(m0);
1420 mnew->m_len = mnew->m_pkthdr.len;
1421 m0 = mnew;
1422
1423 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0,
1424 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1425 if (error != 0) {
1426 aprint_error("%s: could not map mbuf (error %d)\n",
1427 sc->sc_dev.dv_xname, error);
1428 m_freem(m0);
1429 return error;
1430 }
1431 }
1432
1433 TAILQ_REMOVE(&sc->sc_free_sbuf, sbuf, next);
1434 TAILQ_REMOVE(&sc->sc_free_shdr, shdr, next);
1435
1436 sbd = &sc->stbd_list[sc->txcur];
1437 sbd->type = IPW_SBD_TYPE_HEADER;
1438 sbd->priv = shdr;
1439 sbd->bd->physaddr = htole32(shdr->addr);
1440 sbd->bd->len = htole32(sizeof (struct ipw_hdr));
1441 sbd->bd->nfrag = 1 + sbuf->map->dm_nsegs;
1442 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
1443 IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1444
1445 DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, )\n",
1446 shdr->hdr->type, shdr->hdr->subtype, shdr->hdr->encrypted,
1447 shdr->hdr->encrypt));
1448 DPRINTFN(5, ("%s->", ether_sprintf(shdr->hdr->src_addr)));
1449 DPRINTFN(5, ("%s\n", ether_sprintf(shdr->hdr->dst_addr)));
1450
1451 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1452 sc->txcur * sizeof (struct ipw_bd),
1453 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
1454
1455 sc->txfree--;
1456 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1457
1458 sbuf->m = m0;
1459 sbuf->ni = ni;
1460
1461 for (i = 0; i < sbuf->map->dm_nsegs; i++) {
1462 sbd = &sc->stbd_list[sc->txcur];
1463
1464 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[i].ds_addr);
1465 sbd->bd->len = htole32(sbuf->map->dm_segs[i].ds_len);
1466 sbd->bd->nfrag = 0;
1467 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
1468 if (i == sbuf->map->dm_nsegs - 1) {
1469 sbd->type = IPW_SBD_TYPE_DATA;
1470 sbd->priv = sbuf;
1471 sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
1472 } else {
1473 sbd->type = IPW_SBD_TYPE_NOASSOC;
1474 sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1475 }
1476
1477 DPRINTFN(5, ("sending fragment (%d, %d)\n", i,
1478 (int)sbuf->map->dm_segs[i].ds_len));
1479
1480 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1481 sc->txcur * sizeof (struct ipw_bd),
1482 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
1483
1484 sc->txfree--;
1485 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1486 }
1487
1488 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map, shdr->offset,
1489 sizeof (struct ipw_hdr), BUS_DMASYNC_PREWRITE);
1490
1491 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, MCLBYTES,
1492 BUS_DMASYNC_PREWRITE);
1493
1494 /* Inform firmware about this new packet */
1495 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1496
1497 return 0;
1498 }
1499
1500 static void
1501 ipw_start(struct ifnet *ifp)
1502 {
1503 struct ipw_softc *sc = ifp->if_softc;
1504 struct ieee80211com *ic = &sc->sc_ic;
1505 struct mbuf *m0;
1506 struct ether_header *eh;
1507 struct ieee80211_node *ni;
1508
1509
1510 if (ic->ic_state != IEEE80211_S_RUN)
1511 return;
1512
1513 for (;;) {
1514 IF_DEQUEUE(&ifp->if_snd, m0);
1515 if (m0 == NULL)
1516 break;
1517
1518 if (sc->txfree < 1 + IPW_MAX_NSEG) {
1519 IF_PREPEND(&ifp->if_snd, m0);
1520 ifp->if_flags |= IFF_OACTIVE;
1521 break;
1522 }
1523
1524 if (m0->m_len < sizeof (struct ether_header) &&
1525 (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL)
1526 continue;
1527
1528 eh = mtod(m0, struct ether_header *);
1529 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1530 if (ni == NULL) {
1531 m_freem(m0);
1532 continue;
1533 }
1534
1535 #if NBPFILTER > 0
1536 if (ifp->if_bpf != NULL)
1537 bpf_mtap(ifp->if_bpf, m0);
1538 #endif
1539
1540 m0 = ieee80211_encap(ic, m0, ni);
1541 if (m0 == NULL) {
1542 ieee80211_free_node(ni);
1543 continue;
1544 }
1545
1546 #if NBPFILTER > 0
1547 if (ic->ic_rawbpf != NULL)
1548 bpf_mtap(ic->ic_rawbpf, m0);
1549 #endif
1550
1551 if (ipw_tx_start(ifp, m0, ni) != 0) {
1552 ieee80211_free_node(ni);
1553 ifp->if_oerrors++;
1554 break;
1555 }
1556
1557 /* start watchdog timer */
1558 sc->sc_tx_timer = 5;
1559 ifp->if_timer = 1;
1560 }
1561 }
1562
1563 static void
1564 ipw_watchdog(struct ifnet *ifp)
1565 {
1566 struct ipw_softc *sc = ifp->if_softc;
1567
1568 ifp->if_timer = 0;
1569
1570 if (sc->sc_tx_timer > 0) {
1571 if (--sc->sc_tx_timer == 0) {
1572 aprint_error("%s: device timeout\n",
1573 sc->sc_dev.dv_xname);
1574 ifp->if_oerrors++;
1575 ifp->if_flags &= ~IFF_UP;
1576 ipw_stop(ifp, 1);
1577 return;
1578 }
1579 ifp->if_timer = 1;
1580 }
1581
1582 ieee80211_watchdog(&sc->sc_ic);
1583 }
1584
1585 static int
1586 ipw_get_table1(struct ipw_softc *sc, uint32_t *tbl)
1587 {
1588 uint32_t addr, size, i;
1589
1590 if (!(sc->flags & IPW_FLAG_FW_INITED))
1591 return ENOTTY;
1592
1593 CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
1594
1595 size = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
1596 if (suword(tbl, size) != 0)
1597 return EFAULT;
1598
1599 for (i = 1, ++tbl; i < size; i++, tbl++) {
1600 addr = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
1601 if (suword(tbl, MEM_READ_4(sc, addr)) != 0)
1602 return EFAULT;
1603 }
1604 return 0;
1605 }
1606
1607 static int
1608 ipw_get_radio(struct ipw_softc *sc, int *ret)
1609 {
1610 uint32_t addr;
1611
1612 if (!(sc->flags & IPW_FLAG_FW_INITED))
1613 return ENOTTY;
1614
1615 addr = ipw_read_table1(sc, IPW_INFO_EEPROM_ADDRESS);
1616 if ((MEM_READ_4(sc, addr + 32) >> 24) & 1) {
1617 suword(ret, -1);
1618 return 0;
1619 }
1620
1621 if (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)
1622 suword(ret, 0);
1623 else
1624 suword(ret, 1);
1625
1626 return 0;
1627 }
1628
1629 static int
1630 ipw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1631 {
1632 #define IS_RUNNING(ifp) \
1633 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1634
1635 struct ipw_softc *sc = ifp->if_softc;
1636 struct ieee80211com *ic = &sc->sc_ic;
1637 struct ifreq *ifr = (struct ifreq *)data;
1638 int s, error = 0;
1639
1640 s = splnet();
1641
1642 switch (cmd) {
1643 case SIOCSIFFLAGS:
1644 if (ifp->if_flags & IFF_UP) {
1645 if (!(ifp->if_flags & IFF_RUNNING))
1646 ipw_init(ifp);
1647 } else {
1648 if (ifp->if_flags & IFF_RUNNING)
1649 ipw_stop(ifp, 1);
1650 }
1651 break;
1652
1653 case SIOCADDMULTI:
1654 case SIOCDELMULTI:
1655 /* XXX no h/w multicast filter? --dyoung */
1656 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1657 /* setup multicast filter, etc */
1658 error = 0;
1659 }
1660 break;
1661
1662 case SIOCGTABLE1:
1663 error = ipw_get_table1(sc, (uint32_t *)ifr->ifr_data);
1664 break;
1665
1666 case SIOCGRADIO:
1667 error = ipw_get_radio(sc, (int *)ifr->ifr_data);
1668 break;
1669
1670 case SIOCSIFMEDIA:
1671 if (ifr->ifr_media & IFM_IEEE80211_ADHOC)
1672 strlcpy(sc->sc_fwname, "ipw2100-1.2-i.fw",
1673 sizeof(sc->sc_fwname));
1674 else if (ifr->ifr_media & IFM_IEEE80211_MONITOR)
1675 strlcpy(sc->sc_fwname, "ipw2100-1.2-p.fw",
1676 sizeof(sc->sc_fwname));
1677 else
1678 strlcpy(sc->sc_fwname, "ipw2100-1.2.fw",
1679 sizeof(sc->sc_fwname));
1680
1681 ipw_free_firmware(sc);
1682 /* FALLTRHOUGH */
1683 default:
1684 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1685 if (error != ENETRESET)
1686 break;
1687
1688 if (error == ENETRESET) {
1689 if (IS_RUNNING(ifp) &&
1690 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1691 ipw_init(ifp);
1692 error = 0;
1693 }
1694
1695 }
1696
1697 splx(s);
1698 return error;
1699 #undef IS_RUNNING
1700 }
1701
1702 static uint32_t
1703 ipw_read_table1(struct ipw_softc *sc, uint32_t off)
1704 {
1705 return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
1706 }
1707
1708 static void
1709 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
1710 {
1711 MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
1712 }
1713
1714 static int
1715 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
1716 {
1717 uint32_t addr, info;
1718 uint16_t count, size;
1719 uint32_t total;
1720
1721 /* addr[4] + count[2] + size[2] */
1722 addr = MEM_READ_4(sc, sc->table2_base + off);
1723 info = MEM_READ_4(sc, sc->table2_base + off + 4);
1724
1725 count = info >> 16;
1726 size = info & 0xffff;
1727 total = count * size;
1728
1729 if (total > *len) {
1730 *len = total;
1731 return EINVAL;
1732 }
1733
1734 *len = total;
1735 ipw_read_mem_1(sc, addr, buf, total);
1736
1737 return 0;
1738 }
1739
1740 static void
1741 ipw_stop_master(struct ipw_softc *sc)
1742 {
1743 int ntries;
1744
1745 /* disable interrupts */
1746 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1747
1748 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
1749 for (ntries = 0; ntries < 50; ntries++) {
1750 if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
1751 break;
1752 DELAY(10);
1753 }
1754 if (ntries == 50)
1755 aprint_error("%s: timeout waiting for master\n",
1756 sc->sc_dev.dv_xname);
1757
1758 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
1759 IPW_RST_PRINCETON_RESET);
1760
1761 sc->flags &= ~IPW_FLAG_FW_INITED;
1762 }
1763
1764 static int
1765 ipw_reset(struct ipw_softc *sc)
1766 {
1767 int ntries;
1768
1769 ipw_stop_master(sc);
1770
1771 /* move adapter to D0 state */
1772 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1773 IPW_CTL_INIT);
1774
1775 /* wait for clock stabilization */
1776 for (ntries = 0; ntries < 1000; ntries++) {
1777 if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
1778 break;
1779 DELAY(200);
1780 }
1781 if (ntries == 1000)
1782 return EIO;
1783
1784 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
1785 IPW_RST_SW_RESET);
1786
1787 DELAY(10);
1788
1789 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1790 IPW_CTL_INIT);
1791
1792 return 0;
1793 }
1794
1795 /*
1796 * Upload the microcode to the device.
1797 */
1798 static int
1799 ipw_load_ucode(struct ipw_softc *sc, u_char *uc, int size)
1800 {
1801 int ntries;
1802
1803 MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
1804 CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1805
1806 MEM_WRITE_2(sc, 0x220000, 0x0703);
1807 MEM_WRITE_2(sc, 0x220000, 0x0707);
1808
1809 MEM_WRITE_1(sc, 0x210014, 0x72);
1810 MEM_WRITE_1(sc, 0x210014, 0x72);
1811
1812 MEM_WRITE_1(sc, 0x210000, 0x40);
1813 MEM_WRITE_1(sc, 0x210000, 0x00);
1814 MEM_WRITE_1(sc, 0x210000, 0x40);
1815
1816 MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
1817
1818 MEM_WRITE_1(sc, 0x210000, 0x00);
1819 MEM_WRITE_1(sc, 0x210000, 0x00);
1820 MEM_WRITE_1(sc, 0x210000, 0x80);
1821
1822 MEM_WRITE_2(sc, 0x220000, 0x0703);
1823 MEM_WRITE_2(sc, 0x220000, 0x0707);
1824
1825 MEM_WRITE_1(sc, 0x210014, 0x72);
1826 MEM_WRITE_1(sc, 0x210014, 0x72);
1827
1828 MEM_WRITE_1(sc, 0x210000, 0x00);
1829 MEM_WRITE_1(sc, 0x210000, 0x80);
1830
1831 for (ntries = 0; ntries < 10; ntries++) {
1832 if (MEM_READ_1(sc, 0x210000) & 1)
1833 break;
1834 DELAY(10);
1835 }
1836 if (ntries == 10) {
1837 aprint_error("%s: timeout waiting for ucode to initialize\n",
1838 sc->sc_dev.dv_xname);
1839 return EIO;
1840 }
1841
1842 MEM_WRITE_4(sc, 0x3000e0, 0);
1843
1844 return 0;
1845 }
1846
1847 /* set of macros to handle unaligned little endian data in firmware image */
1848 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
1849 #define GETLE16(p) ((p)[0] | (p)[1] << 8)
1850 static int
1851 ipw_load_firmware(struct ipw_softc *sc, u_char *fw, int size)
1852 {
1853 u_char *p, *end;
1854 uint32_t dst;
1855 uint16_t len;
1856 int error;
1857
1858 p = fw;
1859 end = fw + size;
1860 while (p < end) {
1861 dst = GETLE32(p); p += 4;
1862 len = GETLE16(p); p += 2;
1863
1864 ipw_write_mem_1(sc, dst, p, len);
1865 p += len;
1866 }
1867
1868 CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
1869 IPW_IO_LED_OFF);
1870
1871 /* enable interrupts */
1872 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1873
1874 /* kick the firmware */
1875 CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1876
1877 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1878 IPW_CTL_ALLOW_STANDBY);
1879
1880 /* wait at most one second for firmware initialization to complete */
1881 if ((error = tsleep(sc, 0, "ipwinit", hz)) != 0) {
1882 aprint_error("%s: timeout waiting for firmware initialization "
1883 "to complete\n", sc->sc_dev.dv_xname);
1884 return error;
1885 }
1886
1887 CSR_WRITE_4(sc, IPW_CSR_IO, CSR_READ_4(sc, IPW_CSR_IO) |
1888 IPW_IO_GPIO1_MASK | IPW_IO_GPIO3_MASK);
1889
1890 return 0;
1891 }
1892
1893 /*
1894 * Store firmware into kernel memory so we can download it when we need to,
1895 * e.g when the adapter wakes up from suspend mode.
1896 */
1897 static int
1898 ipw_cache_firmware(struct ipw_softc *sc)
1899 {
1900 struct ipw_firmware *fw = &sc->fw;
1901 struct ipw_firmware_hdr hdr;
1902 firmware_handle_t fwh;
1903 off_t fwsz, p;
1904 int error;
1905
1906 ipw_free_firmware(sc);
1907
1908 if ((error = firmware_open("if_ipw", sc->sc_fwname, &fwh)) != 0)
1909 goto fail0;
1910
1911 fwsz = firmware_get_size(fwh);
1912
1913 if (fwsz < sizeof(hdr))
1914 goto fail2;
1915
1916 if ((error = firmware_read(fwh, 0, &hdr, sizeof(hdr))) != 0)
1917 goto fail2;
1918
1919 fw->main_size = le32toh(hdr.main_size);
1920 fw->ucode_size = le32toh(hdr.ucode_size);
1921
1922 fw->main = firmware_malloc(fw->main_size);
1923 if (fw->main == NULL) {
1924 error = ENOMEM;
1925 goto fail1;
1926 }
1927
1928 fw->ucode = firmware_malloc(fw->ucode_size);
1929 if (fw->ucode == NULL) {
1930 error = ENOMEM;
1931 goto fail2;
1932 }
1933
1934 p = sizeof(hdr);
1935 if ((error = firmware_read(fwh, p, fw->main, fw->main_size)) != 0)
1936 goto fail3;
1937
1938 p += fw->main_size;
1939 if ((error = firmware_read(fwh, p, fw->ucode, fw->ucode_size)) != 0)
1940 goto fail3;
1941
1942 DPRINTF(("Firmware cached: main %u, ucode %u\n", fw->main_size,
1943 fw->ucode_size));
1944
1945 sc->flags |= IPW_FLAG_FW_CACHED;
1946
1947 firmware_close(fwh);
1948
1949 return 0;
1950
1951 fail3: firmware_free(fw->ucode, 0);
1952 fail2: firmware_free(fw->main, 0);
1953 fail1: firmware_close(fwh);
1954 fail0:
1955 return error;
1956 }
1957
1958 static void
1959 ipw_free_firmware(struct ipw_softc *sc)
1960 {
1961 if (!(sc->flags & IPW_FLAG_FW_CACHED))
1962 return;
1963
1964 firmware_free(sc->fw.main, 0);
1965 firmware_free(sc->fw.ucode, 0);
1966
1967 sc->flags &= ~IPW_FLAG_FW_CACHED;
1968 }
1969
1970 static int
1971 ipw_config(struct ipw_softc *sc)
1972 {
1973 struct ieee80211com *ic = &sc->sc_ic;
1974 struct ifnet *ifp = &sc->sc_if;
1975 struct ipw_security security;
1976 struct ieee80211_key *k;
1977 struct ipw_wep_key wepkey;
1978 struct ipw_scan_options options;
1979 struct ipw_configuration config;
1980 uint32_t data;
1981 int error, i;
1982
1983 switch (ic->ic_opmode) {
1984 case IEEE80211_M_STA:
1985 case IEEE80211_M_HOSTAP:
1986 data = htole32(IPW_MODE_BSS);
1987 break;
1988
1989 case IEEE80211_M_IBSS:
1990 case IEEE80211_M_AHDEMO:
1991 data = htole32(IPW_MODE_IBSS);
1992 break;
1993
1994 case IEEE80211_M_MONITOR:
1995 data = htole32(IPW_MODE_MONITOR);
1996 break;
1997 }
1998 DPRINTF(("Setting mode to %u\n", le32toh(data)));
1999 error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
2000 if (error != 0)
2001 return error;
2002
2003 if (ic->ic_opmode == IEEE80211_M_IBSS ||
2004 ic->ic_opmode == IEEE80211_M_MONITOR) {
2005 data = htole32(ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
2006 DPRINTF(("Setting channel to %u\n", le32toh(data)));
2007 error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
2008 if (error != 0)
2009 return error;
2010 }
2011
2012 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2013 DPRINTF(("Enabling adapter\n"));
2014 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
2015 }
2016
2017 DPRINTF(("Setting MAC to %s\n", ether_sprintf(ic->ic_myaddr)));
2018 if_set_sadl(ifp, ic->ic_myaddr, IEEE80211_ADDR_LEN);
2019 error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
2020 IEEE80211_ADDR_LEN);
2021 if (error != 0)
2022 return error;
2023
2024 config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
2025 IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
2026
2027 if (ic->ic_opmode == IEEE80211_M_IBSS)
2028 config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
2029 if (ifp->if_flags & IFF_PROMISC)
2030 config.flags |= htole32(IPW_CFG_PROMISCUOUS);
2031 config.bss_chan = htole32(0x3fff); /* channels 1-14 */
2032 config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
2033 DPRINTF(("Setting adapter configuration 0x%08x\n", config.flags));
2034 error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
2035 if (error != 0)
2036 return error;
2037
2038 data = htole32(0x3); /* 1, 2 */
2039 DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
2040 error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
2041 if (error != 0)
2042 return error;
2043
2044 data = htole32(0xf); /* 1, 2, 5.5, 11 */
2045 DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
2046 error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
2047 if (error != 0)
2048 return error;
2049
2050 data = htole32(IPW_POWER_MODE_CAM);
2051 DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2052 error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
2053 if (error != 0)
2054 return error;
2055
2056 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2057 data = htole32(32); /* default value */
2058 DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
2059 error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
2060 sizeof data);
2061 if (error != 0)
2062 return error;
2063 }
2064
2065 data = htole32(ic->ic_rtsthreshold);
2066 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2067 error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2068 if (error != 0)
2069 return error;
2070
2071 data = htole32(ic->ic_fragthreshold);
2072 DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
2073 error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2074 if (error != 0)
2075 return error;
2076
2077 #ifdef IPW_DEBUG
2078 if (ipw_debug > 0) {
2079 printf("Setting ESSID to ");
2080 ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen);
2081 printf("\n");
2082 }
2083 #endif
2084 error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid,
2085 ic->ic_des_esslen);
2086 if (error != 0)
2087 return error;
2088
2089 /* no mandatory BSSID */
2090 DPRINTF(("Setting mandatory BSSID to null\n"));
2091 error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
2092 if (error != 0)
2093 return error;
2094
2095 if (ic->ic_flags & IEEE80211_F_DESBSSID) {
2096 DPRINTF(("Setting desired BSSID to %s\n",
2097 ether_sprintf(ic->ic_des_bssid)));
2098 error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID,
2099 ic->ic_des_bssid, IEEE80211_ADDR_LEN);
2100 if (error != 0)
2101 return error;
2102 }
2103
2104 (void)memset(&security, 0, sizeof(security));
2105 security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ?
2106 IPW_AUTH_SHARED : IPW_AUTH_OPEN;
2107 security.ciphers = htole32(IPW_CIPHER_NONE);
2108 DPRINTF(("Setting authmode to %u\n", security.authmode));
2109 error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
2110 sizeof security);
2111 if (error != 0)
2112 return error;
2113
2114 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2115 k = ic->ic_crypto.cs_nw_keys;
2116 for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
2117 if (k->wk_keylen == 0)
2118 continue;
2119
2120 wepkey.idx = i;
2121 wepkey.len = k->wk_keylen;
2122 memset(wepkey.key, 0, sizeof(wepkey.key));
2123 memcpy(wepkey.key, k->wk_key, k->wk_keylen);
2124 DPRINTF(("Setting wep key index %u len %u\n",
2125 wepkey.idx, wepkey.len));
2126 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
2127 sizeof wepkey);
2128 if (error != 0)
2129 return error;
2130 }
2131
2132 data = htole32(ic->ic_crypto.cs_def_txkey);
2133 DPRINTF(("Setting tx key index to %u\n", le32toh(data)));
2134 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
2135 sizeof data);
2136 if (error != 0)
2137 return error;
2138 }
2139
2140 data = htole32((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
2141 DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
2142 error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
2143 if (error != 0)
2144 return error;
2145
2146 #if 0
2147 struct ipw_wpa_ie ie;
2148
2149 memset(&ie, 0 sizeof(ie));
2150 ie.len = htole32(sizeof (struct ieee80211_ie_wpa));
2151 DPRINTF(("Setting wpa ie\n"));
2152 error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie);
2153 if (error != 0)
2154 return error;
2155 #endif
2156
2157 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2158 data = htole32(ic->ic_bintval);
2159 DPRINTF(("Setting beacon interval to %u\n", le32toh(data)));
2160 error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
2161 sizeof data);
2162 if (error != 0)
2163 return error;
2164 }
2165
2166 options.flags = 0;
2167 options.channels = htole32(0x3fff); /* scan channels 1-14 */
2168 DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags)));
2169 error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options);
2170 if (error != 0)
2171 return error;
2172
2173 /* finally, enable adapter (start scanning for an access point) */
2174 DPRINTF(("Enabling adapter\n"));
2175 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
2176 }
2177
2178 static int
2179 ipw_init(struct ifnet *ifp)
2180 {
2181 struct ipw_softc *sc = ifp->if_softc;
2182 struct ipw_firmware *fw = &sc->fw;
2183
2184 if (!(sc->flags & IPW_FLAG_FW_CACHED)) {
2185 if (ipw_cache_firmware(sc) != 0) {
2186 aprint_error("%s: could not cache the firmware (%s)\n",
2187 sc->sc_dev.dv_xname, sc->sc_fwname);
2188 goto fail;
2189 }
2190 }
2191
2192 ipw_stop(ifp, 0);
2193
2194 if (ipw_reset(sc) != 0) {
2195 aprint_error("%s: could not reset adapter\n",
2196 sc->sc_dev.dv_xname);
2197 goto fail;
2198 }
2199
2200 if (ipw_load_ucode(sc, fw->ucode, fw->ucode_size) != 0) {
2201 aprint_error("%s: could not load microcode\n",
2202 sc->sc_dev.dv_xname);
2203 goto fail;
2204 }
2205
2206 ipw_stop_master(sc);
2207
2208 /*
2209 * Setup tx, rx and status rings.
2210 */
2211 sc->txold = IPW_NTBD - 1;
2212 sc->txcur = 0;
2213 sc->txfree = IPW_NTBD - 2;
2214 sc->rxcur = IPW_NRBD - 1;
2215
2216 CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_map->dm_segs[0].ds_addr);
2217 CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD);
2218 CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0);
2219 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
2220
2221 CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_map->dm_segs[0].ds_addr);
2222 CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD);
2223 CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0);
2224 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
2225
2226 CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_map->dm_segs[0].ds_addr);
2227
2228 if (ipw_load_firmware(sc, fw->main, fw->main_size) != 0) {
2229 aprint_error("%s: could not load firmware\n",
2230 sc->sc_dev.dv_xname);
2231 goto fail;
2232 }
2233
2234 sc->flags |= IPW_FLAG_FW_INITED;
2235
2236 /* retrieve information tables base addresses */
2237 sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
2238 sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
2239
2240 ipw_write_table1(sc, IPW_INFO_LOCK, 0);
2241
2242 if (ipw_config(sc) != 0) {
2243 aprint_error("%s: device configuration failed\n",
2244 sc->sc_dev.dv_xname);
2245 goto fail;
2246 }
2247
2248 ifp->if_flags &= ~IFF_OACTIVE;
2249 ifp->if_flags |= IFF_RUNNING;
2250
2251 return 0;
2252
2253 fail: ifp->if_flags &= ~IFF_UP;
2254 ipw_stop(ifp, 0);
2255
2256 return EIO;
2257 }
2258
2259 static void
2260 ipw_stop(struct ifnet *ifp, int disable)
2261 {
2262 struct ipw_softc *sc = ifp->if_softc;
2263 struct ieee80211com *ic = &sc->sc_ic;
2264 int i;
2265
2266 ipw_stop_master(sc);
2267
2268 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
2269
2270 /*
2271 * Release tx buffers.
2272 */
2273 for (i = 0; i < IPW_NTBD; i++)
2274 ipw_release_sbd(sc, &sc->stbd_list[i]);
2275
2276 sc->sc_tx_timer = 0;
2277 ifp->if_timer = 0;
2278 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2279
2280 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2281 }
2282
2283 static void
2284 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2285 bus_size_t count)
2286 {
2287 for (; count > 0; offset++, datap++, count--) {
2288 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2289 *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
2290 }
2291 }
2292
2293 static void
2294 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2295 bus_size_t count)
2296 {
2297 for (; count > 0; offset++, datap++, count--) {
2298 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2299 CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
2300 }
2301 }
2302