if_ipw.c revision 1.39.4.4 1 /* $NetBSD: if_ipw.c,v 1.39.4.4 2010/03/11 15:03:46 yamt Exp $ */
2 /* FreeBSD: src/sys/dev/ipw/if_ipw.c,v 1.15 2005/11/13 17:17:40 damien Exp */
3
4 /*-
5 * Copyright (c) 2004, 2005
6 * Damien Bergamini <damien.bergamini (at) free.fr>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: if_ipw.c,v 1.39.4.4 2010/03/11 15:03:46 yamt Exp $");
33
34 /*-
35 * Intel(R) PRO/Wireless 2100 MiniPCI driver
36 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
37 */
38
39
40 #include <sys/param.h>
41 #include <sys/sockio.h>
42 #include <sys/sysctl.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/socket.h>
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49
50 #include <sys/bus.h>
51 #include <machine/endian.h>
52 #include <sys/intr.h>
53
54 #include <dev/pci/pcireg.h>
55 #include <dev/pci/pcivar.h>
56 #include <dev/pci/pcidevs.h>
57
58 #include <net/bpf.h>
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/if_dl.h>
62 #include <net/if_ether.h>
63 #include <net/if_media.h>
64 #include <net/if_types.h>
65
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_radiotap.h>
68
69 #include <netinet/in.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/in_var.h>
72 #include <netinet/ip.h>
73
74 #include <dev/firmload.h>
75
76 #include <dev/pci/if_ipwreg.h>
77 #include <dev/pci/if_ipwvar.h>
78
79 #ifdef IPW_DEBUG
80 #define DPRINTF(x) if (ipw_debug > 0) printf x
81 #define DPRINTFN(n, x) if (ipw_debug >= (n)) printf x
82 int ipw_debug = 0;
83 #else
84 #define DPRINTF(x)
85 #define DPRINTFN(n, x)
86 #endif
87
88 /* Permit loading the Intel firmware */
89 static int ipw_accept_eula;
90
91 static int ipw_dma_alloc(struct ipw_softc *);
92 static void ipw_release(struct ipw_softc *);
93 static int ipw_match(device_t, cfdata_t, void *);
94 static void ipw_attach(device_t, device_t, void *);
95 static int ipw_detach(device_t, int);
96
97 static int ipw_media_change(struct ifnet *);
98 static void ipw_media_status(struct ifnet *, struct ifmediareq *);
99 static int ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
100 static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t);
101 static void ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
102 static void ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
103 static void ipw_data_intr(struct ipw_softc *, struct ipw_status *,
104 struct ipw_soft_bd *, struct ipw_soft_buf *);
105 static void ipw_rx_intr(struct ipw_softc *);
106 static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
107 static void ipw_tx_intr(struct ipw_softc *);
108 static int ipw_intr(void *);
109 static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
110 static int ipw_tx_start(struct ifnet *, struct mbuf *,
111 struct ieee80211_node *);
112 static void ipw_start(struct ifnet *);
113 static void ipw_watchdog(struct ifnet *);
114 static int ipw_ioctl(struct ifnet *, u_long, void *);
115 static int ipw_get_table1(struct ipw_softc *, uint32_t *);
116 static int ipw_get_radio(struct ipw_softc *, int *);
117 static void ipw_stop_master(struct ipw_softc *);
118 static int ipw_reset(struct ipw_softc *);
119 static int ipw_load_ucode(struct ipw_softc *, u_char *, int);
120 static int ipw_load_firmware(struct ipw_softc *, u_char *, int);
121 static int ipw_cache_firmware(struct ipw_softc *);
122 static void ipw_free_firmware(struct ipw_softc *);
123 static int ipw_config(struct ipw_softc *);
124 static int ipw_init(struct ifnet *);
125 static void ipw_stop(struct ifnet *, int);
126 static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t);
127 static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
128 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, uint32_t *);
129 static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
130 bus_size_t);
131 static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
132 bus_size_t);
133
134 /*
135 * Supported rates for 802.11b mode (in 500Kbps unit).
136 */
137 static const struct ieee80211_rateset ipw_rateset_11b =
138 { 4, { 2, 4, 11, 22 } };
139
140 static inline uint8_t
141 MEM_READ_1(struct ipw_softc *sc, uint32_t addr)
142 {
143 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
144 return CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA);
145 }
146
147 static inline uint32_t
148 MEM_READ_4(struct ipw_softc *sc, uint32_t addr)
149 {
150 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
151 return CSR_READ_4(sc, IPW_CSR_INDIRECT_DATA);
152 }
153
154 CFATTACH_DECL(ipw, sizeof (struct ipw_softc), ipw_match, ipw_attach,
155 ipw_detach, NULL);
156
157 static int
158 ipw_match(device_t parent, cfdata_t match, void *aux)
159 {
160 struct pci_attach_args *pa = aux;
161
162 if (PCI_VENDOR (pa->pa_id) == PCI_VENDOR_INTEL &&
163 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2100)
164 return 1;
165
166 return 0;
167 }
168
169 /* Base Address Register */
170 #define IPW_PCI_BAR0 0x10
171
172 static void
173 ipw_attach(device_t parent, device_t self, void *aux)
174 {
175 struct ipw_softc *sc = device_private(self);
176 struct ieee80211com *ic = &sc->sc_ic;
177 struct ifnet *ifp = &sc->sc_if;
178 struct pci_attach_args *pa = aux;
179 const char *intrstr;
180 char devinfo[256];
181 bus_space_tag_t memt;
182 bus_space_handle_t memh;
183 bus_addr_t base;
184 pci_intr_handle_t ih;
185 uint32_t data;
186 uint16_t val;
187 int i, revision, error;
188
189 sc->sc_pct = pa->pa_pc;
190 sc->sc_pcitag = pa->pa_tag;
191
192 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
193 revision = PCI_REVISION(pa->pa_class);
194 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
195
196 /* enable bus-mastering */
197 data = pci_conf_read(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG);
198 data |= PCI_COMMAND_MASTER_ENABLE;
199 pci_conf_write(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG, data);
200
201 /* map the register window */
202 error = pci_mapreg_map(pa, IPW_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
203 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz);
204 if (error != 0) {
205 aprint_error_dev(&sc->sc_dev, "could not map memory space\n");
206 return;
207 }
208
209 sc->sc_st = memt;
210 sc->sc_sh = memh;
211 sc->sc_dmat = pa->pa_dmat;
212 sc->sc_fwname = "ipw2100-1.2.fw";
213
214 /* disable interrupts */
215 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
216
217 if (pci_intr_map(pa, &ih) != 0) {
218 aprint_error_dev(&sc->sc_dev, "could not map interrupt\n");
219 return;
220 }
221
222 intrstr = pci_intr_string(sc->sc_pct, ih);
223 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, ipw_intr, sc);
224 if (sc->sc_ih == NULL) {
225 aprint_error_dev(&sc->sc_dev, "could not establish interrupt");
226 if (intrstr != NULL)
227 aprint_error(" at %s", intrstr);
228 aprint_error("\n");
229 return;
230 }
231 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
232
233 if (ipw_reset(sc) != 0) {
234 aprint_error_dev(&sc->sc_dev, "could not reset adapter\n");
235 goto fail;
236 }
237
238 if (ipw_dma_alloc(sc) != 0) {
239 aprint_error_dev(&sc->sc_dev, "could not allocate DMA resources\n");
240 goto fail;
241 }
242
243 ifp->if_softc = sc;
244 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
245 ifp->if_init = ipw_init;
246 ifp->if_stop = ipw_stop;
247 ifp->if_ioctl = ipw_ioctl;
248 ifp->if_start = ipw_start;
249 ifp->if_watchdog = ipw_watchdog;
250 IFQ_SET_READY(&ifp->if_snd);
251 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
252
253 ic->ic_ifp = ifp;
254 ic->ic_phytype = IEEE80211_T_DS;
255 ic->ic_opmode = IEEE80211_M_STA;
256 ic->ic_state = IEEE80211_S_INIT;
257
258 /* set device capabilities */
259 ic->ic_caps =
260 IEEE80211_C_SHPREAMBLE /* short preamble supported */
261 | IEEE80211_C_TXPMGT /* tx power management */
262 | IEEE80211_C_IBSS /* ibss mode */
263 | IEEE80211_C_MONITOR /* monitor mode */
264 ;
265
266 /* read MAC address from EEPROM */
267 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
268 ic->ic_myaddr[0] = val >> 8;
269 ic->ic_myaddr[1] = val & 0xff;
270 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
271 ic->ic_myaddr[2] = val >> 8;
272 ic->ic_myaddr[3] = val & 0xff;
273 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
274 ic->ic_myaddr[4] = val >> 8;
275 ic->ic_myaddr[5] = val & 0xff;
276
277 /* set supported .11b rates */
278 ic->ic_sup_rates[IEEE80211_MODE_11B] = ipw_rateset_11b;
279
280 /* set supported .11b channels (read from EEPROM) */
281 if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0)
282 val = 0x7ff; /* default to channels 1-11 */
283 val <<= 1;
284 for (i = 1; i < 16; i++) {
285 if (val & (1 << i)) {
286 ic->ic_channels[i].ic_freq =
287 ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
288 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
289 }
290 }
291
292 /* check support for radio transmitter switch in EEPROM */
293 if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
294 sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
295
296 aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n",
297 ether_sprintf(ic->ic_myaddr));
298
299 if_attach(ifp);
300 ieee80211_ifattach(ic);
301
302 /* override state transition machine */
303 sc->sc_newstate = ic->ic_newstate;
304 ic->ic_newstate = ipw_newstate;
305
306 ieee80211_media_init(ic, ipw_media_change, ipw_media_status);
307
308 bpf_ops->bpf_attach(ifp, DLT_IEEE802_11_RADIO,
309 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
310
311 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
312 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
313 sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
314
315 sc->sc_txtap_len = sizeof sc->sc_txtapu;
316 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
317 sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
318
319 /*
320 * Add a few sysctl knobs.
321 * XXX: Not yet
322 */
323 sc->dwelltime = 100;
324
325 if (pmf_device_register(self, NULL, NULL))
326 pmf_class_network_register(self, ifp);
327 else
328 aprint_error_dev(self, "couldn't establish power handler\n");
329
330 ieee80211_announce(ic);
331
332 return;
333
334 fail: ipw_detach(self, 0);
335 }
336
337 static int
338 ipw_detach(struct device* self, int flags)
339 {
340 struct ipw_softc *sc = device_private(self);
341 struct ifnet *ifp = &sc->sc_if;
342
343 if (ifp->if_softc) {
344 ipw_stop(ifp, 1);
345 ipw_free_firmware(sc);
346
347 bpf_ops->bpf_detach(ifp);
348 ieee80211_ifdetach(&sc->sc_ic);
349 if_detach(ifp);
350
351 ipw_release(sc);
352 }
353
354 if (sc->sc_ih != NULL) {
355 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
356 sc->sc_ih = NULL;
357 }
358
359 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
360
361 return 0;
362 }
363
364 static int
365 ipw_dma_alloc(struct ipw_softc *sc)
366 {
367 struct ipw_soft_bd *sbd;
368 struct ipw_soft_hdr *shdr;
369 struct ipw_soft_buf *sbuf;
370 int error, i, nsegs;
371
372 /*
373 * Allocate and map tx ring.
374 */
375 error = bus_dmamap_create(sc->sc_dmat, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0,
376 BUS_DMA_NOWAIT, &sc->tbd_map);
377 if (error != 0) {
378 aprint_error_dev(&sc->sc_dev, "could not create tbd dma map\n");
379 goto fail;
380 }
381
382 error = bus_dmamem_alloc(sc->sc_dmat, IPW_TBD_SZ, PAGE_SIZE, 0,
383 &sc->tbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
384 if (error != 0) {
385 aprint_error_dev(&sc->sc_dev, "could not allocate tbd dma memory\n");
386 goto fail;
387 }
388
389 error = bus_dmamem_map(sc->sc_dmat, &sc->tbd_seg, nsegs, IPW_TBD_SZ,
390 (void **)&sc->tbd_list, BUS_DMA_NOWAIT);
391 if (error != 0) {
392 aprint_error_dev(&sc->sc_dev, "could not map tbd dma memory\n");
393 goto fail;
394 }
395
396 error = bus_dmamap_load(sc->sc_dmat, sc->tbd_map, sc->tbd_list,
397 IPW_TBD_SZ, NULL, BUS_DMA_NOWAIT);
398 if (error != 0) {
399 aprint_error_dev(&sc->sc_dev, "could not load tbd dma memory\n");
400 goto fail;
401 }
402
403 (void)memset(sc->tbd_list, 0, IPW_TBD_SZ);
404
405 /*
406 * Allocate and map rx ring.
407 */
408 error = bus_dmamap_create(sc->sc_dmat, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0,
409 BUS_DMA_NOWAIT, &sc->rbd_map);
410 if (error != 0) {
411 aprint_error_dev(&sc->sc_dev, "could not create rbd dma map\n");
412 goto fail;
413 }
414
415 error = bus_dmamem_alloc(sc->sc_dmat, IPW_RBD_SZ, PAGE_SIZE, 0,
416 &sc->rbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
417 if (error != 0) {
418 aprint_error_dev(&sc->sc_dev, "could not allocate rbd dma memory\n");
419 goto fail;
420 }
421
422 error = bus_dmamem_map(sc->sc_dmat, &sc->rbd_seg, nsegs, IPW_RBD_SZ,
423 (void **)&sc->rbd_list, BUS_DMA_NOWAIT);
424 if (error != 0) {
425 aprint_error_dev(&sc->sc_dev, "could not map rbd dma memory\n");
426 goto fail;
427 }
428
429 error = bus_dmamap_load(sc->sc_dmat, sc->rbd_map, sc->rbd_list,
430 IPW_RBD_SZ, NULL, BUS_DMA_NOWAIT);
431 if (error != 0) {
432 aprint_error_dev(&sc->sc_dev, "could not load rbd dma memory\n");
433 goto fail;
434 }
435
436 (void)memset(sc->rbd_list, 0, IPW_RBD_SZ);
437
438 /*
439 * Allocate and map status ring.
440 */
441 error = bus_dmamap_create(sc->sc_dmat, IPW_STATUS_SZ, 1, IPW_STATUS_SZ,
442 0, BUS_DMA_NOWAIT, &sc->status_map);
443 if (error != 0) {
444 aprint_error_dev(&sc->sc_dev, "could not create status dma map\n");
445 goto fail;
446 }
447
448 error = bus_dmamem_alloc(sc->sc_dmat, IPW_STATUS_SZ, PAGE_SIZE, 0,
449 &sc->status_seg, 1, &nsegs, BUS_DMA_NOWAIT);
450 if (error != 0) {
451 aprint_error_dev(&sc->sc_dev, "could not allocate status dma memory\n");
452 goto fail;
453 }
454
455 error = bus_dmamem_map(sc->sc_dmat, &sc->status_seg, nsegs,
456 IPW_STATUS_SZ, (void **)&sc->status_list, BUS_DMA_NOWAIT);
457 if (error != 0) {
458 aprint_error_dev(&sc->sc_dev, "could not map status dma memory\n");
459 goto fail;
460 }
461
462 error = bus_dmamap_load(sc->sc_dmat, sc->status_map, sc->status_list,
463 IPW_STATUS_SZ, NULL, BUS_DMA_NOWAIT);
464 if (error != 0) {
465 aprint_error_dev(&sc->sc_dev, "could not load status dma memory\n");
466 goto fail;
467 }
468
469 (void)memset(sc->status_list, 0, IPW_STATUS_SZ);
470
471 /*
472 * Allocate command DMA map.
473 */
474 error = bus_dmamap_create(sc->sc_dmat, sizeof (struct ipw_cmd),
475 1, sizeof (struct ipw_cmd), 0, BUS_DMA_NOWAIT, &sc->cmd_map);
476 if (error != 0) {
477 aprint_error_dev(&sc->sc_dev, "could not create cmd dma map\n");
478 goto fail;
479 }
480
481 error = bus_dmamem_alloc(sc->sc_dmat, sizeof (struct ipw_cmd),
482 PAGE_SIZE, 0, &sc->cmd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
483 if (error != 0) {
484 aprint_error_dev(&sc->sc_dev, "could not allocate cmd dma memory\n");
485 goto fail;
486 }
487
488 error = bus_dmamem_map(sc->sc_dmat, &sc->cmd_seg, nsegs,
489 sizeof (struct ipw_cmd), (void **)&sc->cmd, BUS_DMA_NOWAIT);
490 if (error != 0) {
491 aprint_error_dev(&sc->sc_dev, "could not map cmd dma memory\n");
492 goto fail;
493 }
494
495 error = bus_dmamap_load(sc->sc_dmat, sc->cmd_map, &sc->cmd,
496 sizeof (struct ipw_cmd), NULL, BUS_DMA_NOWAIT);
497 if (error != 0) {
498 aprint_error_dev(&sc->sc_dev, "could not map cmd dma memory\n");
499 return error;
500 }
501
502 /*
503 * Allocate and map hdr list.
504 */
505
506 error = bus_dmamap_create(sc->sc_dmat,
507 IPW_NDATA * sizeof(struct ipw_hdr), 1,
508 sizeof(struct ipw_hdr), 0, BUS_DMA_NOWAIT,
509 &sc->hdr_map);
510 if (error != 0) {
511 aprint_error_dev(&sc->sc_dev, "could not create hdr dma map\n");
512 goto fail;
513 }
514
515 error = bus_dmamem_alloc(sc->sc_dmat,
516 IPW_NDATA * sizeof(struct ipw_hdr), PAGE_SIZE, 0, &sc->hdr_seg,
517 1, &nsegs, BUS_DMA_NOWAIT);
518 if (error != 0) {
519 aprint_error_dev(&sc->sc_dev, "could not allocate hdr memory\n");
520 goto fail;
521 }
522
523 error = bus_dmamem_map(sc->sc_dmat, &sc->hdr_seg, nsegs,
524 IPW_NDATA * sizeof(struct ipw_hdr), (void **)&sc->hdr_list,
525 BUS_DMA_NOWAIT);
526 if (error != 0) {
527 aprint_error_dev(&sc->sc_dev, "could not map hdr memory\n");
528 goto fail;
529 }
530
531 error = bus_dmamap_load(sc->sc_dmat, sc->hdr_map, sc->hdr_list,
532 IPW_NDATA * sizeof(struct ipw_hdr), NULL, BUS_DMA_NOWAIT);
533 if (error != 0) {
534 aprint_error_dev(&sc->sc_dev, "could not load hdr memory\n");
535 goto fail;
536 }
537
538 (void)memset(sc->hdr_list, 0, IPW_HDR_SZ);
539
540 /*
541 * Create DMA hdrs tailq.
542 */
543 TAILQ_INIT(&sc->sc_free_shdr);
544 for (i = 0; i < IPW_NDATA; i++) {
545 shdr = &sc->shdr_list[i];
546 shdr->hdr = sc->hdr_list + i;
547 shdr->offset = sizeof(struct ipw_hdr) * i;
548 shdr->addr = sc->hdr_map->dm_segs[0].ds_addr + shdr->offset;
549 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
550 }
551
552 /*
553 * Allocate tx buffers DMA maps.
554 */
555 TAILQ_INIT(&sc->sc_free_sbuf);
556 for (i = 0; i < IPW_NDATA; i++) {
557 sbuf = &sc->tx_sbuf_list[i];
558
559 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
560 IPW_MAX_NSEG, MCLBYTES, 0, BUS_DMA_NOWAIT, &sbuf->map);
561 if (error != 0) {
562 aprint_error_dev(&sc->sc_dev, "could not create txbuf dma map\n");
563 goto fail;
564 }
565 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
566 }
567
568 /*
569 * Initialize tx ring.
570 */
571 for (i = 0; i < IPW_NTBD; i++) {
572 sbd = &sc->stbd_list[i];
573 sbd->bd = &sc->tbd_list[i];
574 sbd->type = IPW_SBD_TYPE_NOASSOC;
575 }
576
577 /*
578 * Pre-allocate rx buffers and DMA maps
579 */
580 for (i = 0; i < IPW_NRBD; i++) {
581 sbd = &sc->srbd_list[i];
582 sbuf = &sc->rx_sbuf_list[i];
583 sbd->bd = &sc->rbd_list[i];
584
585 MGETHDR(sbuf->m, M_DONTWAIT, MT_DATA);
586 if (sbuf->m == NULL) {
587 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
588 error = ENOMEM;
589 goto fail;
590 }
591
592 MCLGET(sbuf->m, M_DONTWAIT);
593 if (!(sbuf->m->m_flags & M_EXT)) {
594 m_freem(sbuf->m);
595 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
596 error = ENOMEM;
597 goto fail;
598 }
599
600 sbuf->m->m_pkthdr.len = sbuf->m->m_len = sbuf->m->m_ext.ext_size;
601
602 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
603 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sbuf->map);
604 if (error != 0) {
605 aprint_error_dev(&sc->sc_dev, "could not create rxbuf dma map\n");
606 m_freem(sbuf->m);
607 goto fail;
608 }
609
610 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
611 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
612 if (error != 0) {
613 bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
614 m_freem(sbuf->m);
615 aprint_error_dev(&sc->sc_dev, "could not map rxbuf dma memory\n");
616 goto fail;
617 }
618
619 sbd->type = IPW_SBD_TYPE_DATA;
620 sbd->priv = sbuf;
621 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
622 sbd->bd->len = htole32(MCLBYTES);
623
624 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
625 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
626
627 }
628
629 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, 0, IPW_RBD_SZ,
630 BUS_DMASYNC_PREREAD);
631
632 return 0;
633
634 fail: ipw_release(sc);
635 return error;
636 }
637
638 static void
639 ipw_release(struct ipw_softc *sc)
640 {
641 struct ipw_soft_buf *sbuf;
642 int i;
643
644 if (sc->tbd_map != NULL) {
645 if (sc->tbd_list != NULL) {
646 bus_dmamap_unload(sc->sc_dmat, sc->tbd_map);
647 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->tbd_list,
648 IPW_TBD_SZ);
649 bus_dmamem_free(sc->sc_dmat, &sc->tbd_seg, 1);
650 }
651 bus_dmamap_destroy(sc->sc_dmat, sc->tbd_map);
652 }
653
654 if (sc->rbd_map != NULL) {
655 if (sc->rbd_list != NULL) {
656 bus_dmamap_unload(sc->sc_dmat, sc->rbd_map);
657 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rbd_list,
658 IPW_RBD_SZ);
659 bus_dmamem_free(sc->sc_dmat, &sc->rbd_seg, 1);
660 }
661 bus_dmamap_destroy(sc->sc_dmat, sc->rbd_map);
662 }
663
664 if (sc->status_map != NULL) {
665 if (sc->status_list != NULL) {
666 bus_dmamap_unload(sc->sc_dmat, sc->status_map);
667 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->status_list,
668 IPW_RBD_SZ);
669 bus_dmamem_free(sc->sc_dmat, &sc->status_seg, 1);
670 }
671 bus_dmamap_destroy(sc->sc_dmat, sc->status_map);
672 }
673
674 for (i = 0; i < IPW_NTBD; i++)
675 ipw_release_sbd(sc, &sc->stbd_list[i]);
676
677 if (sc->cmd_map != NULL)
678 bus_dmamap_destroy(sc->sc_dmat, sc->cmd_map);
679
680 if (sc->hdr_list != NULL) {
681 bus_dmamap_unload(sc->sc_dmat, sc->hdr_map);
682 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->hdr_list,
683 IPW_NDATA * sizeof(struct ipw_hdr));
684 }
685 if (sc->hdr_map != NULL) {
686 bus_dmamem_free(sc->sc_dmat, &sc->hdr_seg, 1);
687 bus_dmamap_destroy(sc->sc_dmat, sc->hdr_map);
688 }
689
690 for (i = 0; i < IPW_NDATA; i++)
691 bus_dmamap_destroy(sc->sc_dmat, sc->tx_sbuf_list[i].map);
692
693 for (i = 0; i < IPW_NRBD; i++) {
694 sbuf = &sc->rx_sbuf_list[i];
695 if (sbuf->map != NULL) {
696 if (sbuf->m != NULL) {
697 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
698 m_freem(sbuf->m);
699 }
700 bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
701 }
702 }
703
704 }
705
706 static int
707 ipw_media_change(struct ifnet *ifp)
708 {
709 int error;
710
711 error = ieee80211_media_change(ifp);
712 if (error != ENETRESET)
713 return error;
714
715 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
716 ipw_init(ifp);
717
718 return 0;
719 }
720
721 /*
722 * The firmware automatically adapts the transmit speed. We report the current
723 * transmit speed here.
724 */
725 static void
726 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
727 {
728 #define N(a) (sizeof (a) / sizeof (a[0]))
729 struct ipw_softc *sc = ifp->if_softc;
730 struct ieee80211com *ic = &sc->sc_ic;
731 static const struct {
732 uint32_t val;
733 int rate;
734 } rates[] = {
735 { IPW_RATE_DS1, 2 },
736 { IPW_RATE_DS2, 4 },
737 { IPW_RATE_DS5, 11 },
738 { IPW_RATE_DS11, 22 },
739 };
740 uint32_t val;
741 int rate, i;
742
743 imr->ifm_status = IFM_AVALID;
744 imr->ifm_active = IFM_IEEE80211;
745 if (ic->ic_state == IEEE80211_S_RUN)
746 imr->ifm_status |= IFM_ACTIVE;
747
748 /* read current transmission rate from adapter */
749 val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf;
750
751 /* convert ipw rate to 802.11 rate */
752 for (i = 0; i < N(rates) && rates[i].val != val; i++);
753 rate = (i < N(rates)) ? rates[i].rate : 0;
754
755 imr->ifm_active |= IFM_IEEE80211_11B;
756 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
757 switch (ic->ic_opmode) {
758 case IEEE80211_M_STA:
759 break;
760
761 case IEEE80211_M_IBSS:
762 imr->ifm_active |= IFM_IEEE80211_ADHOC;
763 break;
764
765 case IEEE80211_M_MONITOR:
766 imr->ifm_active |= IFM_IEEE80211_MONITOR;
767 break;
768
769 case IEEE80211_M_AHDEMO:
770 case IEEE80211_M_HOSTAP:
771 /* should not get there */
772 break;
773 }
774 #undef N
775 }
776
777 static int
778 ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
779 int arg)
780 {
781 struct ifnet *ifp = ic->ic_ifp;
782 struct ipw_softc *sc = ifp->if_softc;
783 struct ieee80211_node *ni;
784 uint8_t macaddr[IEEE80211_ADDR_LEN];
785 uint32_t len;
786 struct ipw_rx_radiotap_header *wr = &sc->sc_rxtap;
787 struct ipw_tx_radiotap_header *wt = &sc->sc_txtap;
788
789 switch (nstate) {
790 case IEEE80211_S_INIT:
791 break;
792 default:
793 KASSERT(ic->ic_curchan != IEEE80211_CHAN_ANYC);
794 KASSERT(ic->ic_curchan != NULL);
795 wt->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
796 wt->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
797 wr->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
798 wr->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
799 break;
800 }
801
802 switch (nstate) {
803 case IEEE80211_S_RUN:
804 DELAY(200); /* firmware needs a short delay here */
805
806 len = IEEE80211_ADDR_LEN;
807 ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len);
808
809 ni = ieee80211_find_node(&ic->ic_scan, macaddr);
810 if (ni == NULL)
811 break;
812
813 ieee80211_ref_node(ni);
814 ieee80211_sta_join(ic, ni);
815 ieee80211_node_authorize(ni);
816
817 if (ic->ic_opmode == IEEE80211_M_STA)
818 ieee80211_notify_node_join(ic, ni, 1);
819 break;
820
821 case IEEE80211_S_INIT:
822 case IEEE80211_S_SCAN:
823 case IEEE80211_S_AUTH:
824 case IEEE80211_S_ASSOC:
825 break;
826 }
827
828 ic->ic_state = nstate;
829 return 0;
830 }
831
832 /*
833 * Read 16 bits at address 'addr' from the serial EEPROM.
834 */
835 static uint16_t
836 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
837 {
838 uint32_t tmp;
839 uint16_t val;
840 int n;
841
842 /* clock C once before the first command */
843 IPW_EEPROM_CTL(sc, 0);
844 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
845 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
846 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
847
848 /* write start bit (1) */
849 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
850 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
851
852 /* write READ opcode (10) */
853 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
854 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
855 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
856 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
857
858 /* write address A7-A0 */
859 for (n = 7; n >= 0; n--) {
860 IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
861 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
862 IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
863 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
864 }
865
866 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
867
868 /* read data Q15-Q0 */
869 val = 0;
870 for (n = 15; n >= 0; n--) {
871 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
872 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
873 tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
874 val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
875 }
876
877 IPW_EEPROM_CTL(sc, 0);
878
879 /* clear Chip Select and clock C */
880 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
881 IPW_EEPROM_CTL(sc, 0);
882 IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
883
884 return le16toh(val);
885 }
886
887 static void
888 ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
889 {
890 struct ipw_cmd *cmd;
891
892 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof (struct ipw_cmd),
893 BUS_DMASYNC_POSTREAD);
894
895 cmd = mtod(sbuf->m, struct ipw_cmd *);
896
897 DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type),
898 le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
899 le32toh(cmd->status)));
900
901 wakeup(&sc->cmd);
902 }
903
904 static void
905 ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
906 {
907 struct ieee80211com *ic = &sc->sc_ic;
908 struct ifnet *ifp = sc->sc_ic.ic_ifp;
909 uint32_t state;
910
911 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof state,
912 BUS_DMASYNC_POSTREAD);
913
914 state = le32toh(*mtod(sbuf->m, uint32_t *));
915
916 DPRINTFN(2, ("entering state %u\n", state));
917
918 switch (state) {
919 case IPW_STATE_ASSOCIATED:
920 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
921 break;
922
923 case IPW_STATE_SCANNING:
924 /* don't leave run state on background scan */
925 if (ic->ic_state != IEEE80211_S_RUN)
926 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
927
928 ic->ic_flags |= IEEE80211_F_SCAN;
929 break;
930
931 case IPW_STATE_SCAN_COMPLETE:
932 ieee80211_notify_scan_done(ic);
933 ic->ic_flags &= ~IEEE80211_F_SCAN;
934 break;
935
936 case IPW_STATE_ASSOCIATION_LOST:
937 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
938 break;
939
940 case IPW_STATE_RADIO_DISABLED:
941 ic->ic_ifp->if_flags &= ~IFF_UP;
942 ipw_stop(ifp, 1);
943 break;
944 }
945 }
946
947 /*
948 * XXX: Hack to set the current channel to the value advertised in beacons or
949 * probe responses. Only used during AP detection.
950 */
951 static void
952 ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m)
953 {
954 struct ieee80211_frame *wh;
955 uint8_t subtype;
956 uint8_t *frm, *efrm;
957
958 wh = mtod(m, struct ieee80211_frame *);
959
960 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
961 return;
962
963 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
964
965 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
966 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
967 return;
968
969 frm = (uint8_t *)(wh + 1);
970 efrm = mtod(m, uint8_t *) + m->m_len;
971
972 frm += 12; /* skip tstamp, bintval and capinfo fields */
973 while (frm < efrm) {
974 if (*frm == IEEE80211_ELEMID_DSPARMS)
975 #if IEEE80211_CHAN_MAX < 255
976 if (frm[2] <= IEEE80211_CHAN_MAX)
977 #endif
978 ic->ic_curchan = &ic->ic_channels[frm[2]];
979
980 frm += frm[1] + 2;
981 }
982 }
983
984 static void
985 ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
986 struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
987 {
988 struct ieee80211com *ic = &sc->sc_ic;
989 struct ifnet *ifp = &sc->sc_if;
990 struct mbuf *mnew, *m;
991 struct ieee80211_frame *wh;
992 struct ieee80211_node *ni;
993 int error;
994
995 DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
996 status->rssi));
997
998 if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
999 le32toh(status->len) > MCLBYTES)
1000 return;
1001
1002 /*
1003 * Try to allocate a new mbuf for this ring element and load it before
1004 * processing the current mbuf. If the ring element cannot be loaded,
1005 * drop the received packet and reuse the old mbuf. In the unlikely
1006 * case that the old mbuf can't be reloaded either, explicitly panic.
1007 */
1008 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1009 if (mnew == NULL) {
1010 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
1011 ifp->if_ierrors++;
1012 return;
1013 }
1014
1015 MCLGET(mnew, M_DONTWAIT);
1016 if (!(mnew->m_flags & M_EXT)) {
1017 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
1018 m_freem(mnew);
1019 ifp->if_ierrors++;
1020 return;
1021 }
1022
1023 mnew->m_pkthdr.len = mnew->m_len = mnew->m_ext.ext_size;
1024
1025 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, le32toh(status->len),
1026 BUS_DMASYNC_POSTREAD);
1027 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
1028
1029 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, mnew,
1030 BUS_DMA_READ | BUS_DMA_NOWAIT);
1031 if (error != 0) {
1032 aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map\n");
1033 m_freem(mnew);
1034
1035 /* try to reload the old mbuf */
1036 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
1037 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
1038 if (error != 0) {
1039 /* very unlikely that it will fail... */
1040 panic("%s: unable to remap rx buf",
1041 device_xname(&sc->sc_dev));
1042 }
1043 ifp->if_ierrors++;
1044 return;
1045 }
1046
1047 /*
1048 * New mbuf successfully loaded, update Rx ring and continue
1049 * processing.
1050 */
1051 m = sbuf->m;
1052 sbuf->m = mnew;
1053 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
1054
1055 /* finalize mbuf */
1056 m->m_pkthdr.rcvif = ifp;
1057 m->m_pkthdr.len = m->m_len = le32toh(status->len);
1058
1059 if (sc->sc_drvbpf != NULL) {
1060 struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
1061
1062 tap->wr_antsignal = status->rssi;
1063
1064 bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1065 }
1066
1067 if (ic->ic_state == IEEE80211_S_SCAN)
1068 ipw_fix_channel(ic, m);
1069
1070 wh = mtod(m, struct ieee80211_frame *);
1071 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1072
1073 /* send the frame to the 802.11 layer */
1074 ieee80211_input(ic, m, ni, status->rssi, 0);
1075
1076 /* node is no longer needed */
1077 ieee80211_free_node(ni);
1078
1079 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
1080 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1081 }
1082
1083 static void
1084 ipw_rx_intr(struct ipw_softc *sc)
1085 {
1086 struct ipw_status *status;
1087 struct ipw_soft_bd *sbd;
1088 struct ipw_soft_buf *sbuf;
1089 uint32_t r, i;
1090
1091 if (!(sc->flags & IPW_FLAG_FW_INITED))
1092 return;
1093
1094 r = CSR_READ_4(sc, IPW_CSR_RX_READ);
1095
1096 for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
1097
1098 /* firmware was killed, stop processing received frames */
1099 if (!(sc->flags & IPW_FLAG_FW_INITED))
1100 return;
1101
1102 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
1103 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1104 BUS_DMASYNC_POSTREAD);
1105
1106 bus_dmamap_sync(sc->sc_dmat, sc->status_map,
1107 i * sizeof (struct ipw_status), sizeof (struct ipw_status),
1108 BUS_DMASYNC_POSTREAD);
1109
1110 status = &sc->status_list[i];
1111 sbd = &sc->srbd_list[i];
1112 sbuf = sbd->priv;
1113
1114 switch (le16toh(status->code) & 0xf) {
1115 case IPW_STATUS_CODE_COMMAND:
1116 ipw_command_intr(sc, sbuf);
1117 break;
1118
1119 case IPW_STATUS_CODE_NEWSTATE:
1120 ipw_newstate_intr(sc, sbuf);
1121 break;
1122
1123 case IPW_STATUS_CODE_DATA_802_3:
1124 case IPW_STATUS_CODE_DATA_802_11:
1125 ipw_data_intr(sc, status, sbd, sbuf);
1126 break;
1127
1128 case IPW_STATUS_CODE_NOTIFICATION:
1129 DPRINTFN(2, ("received notification\n"));
1130 break;
1131
1132 default:
1133 aprint_error_dev(&sc->sc_dev, "unknown status code %u\n",
1134 le16toh(status->code));
1135 }
1136
1137 sbd->bd->flags = 0;
1138
1139 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
1140 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1141 BUS_DMASYNC_PREREAD);
1142
1143 bus_dmamap_sync(sc->sc_dmat, sc->status_map,
1144 i * sizeof (struct ipw_status), sizeof (struct ipw_status),
1145 BUS_DMASYNC_PREREAD);
1146 }
1147
1148 /* Tell the firmware what we have processed */
1149 sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
1150 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
1151 }
1152
1153 static void
1154 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
1155 {
1156 struct ieee80211com *ic;
1157 struct ipw_soft_hdr *shdr;
1158 struct ipw_soft_buf *sbuf;
1159
1160 switch (sbd->type) {
1161 case IPW_SBD_TYPE_COMMAND:
1162 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map,
1163 0, sizeof(struct ipw_cmd), BUS_DMASYNC_POSTWRITE);
1164 /* bus_dmamap_unload(sc->sc_dmat, sc->cmd_map); */
1165 break;
1166
1167 case IPW_SBD_TYPE_HEADER:
1168 shdr = sbd->priv;
1169 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map,
1170 shdr->offset, sizeof(struct ipw_hdr), BUS_DMASYNC_POSTWRITE);
1171 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
1172 break;
1173
1174 case IPW_SBD_TYPE_DATA:
1175 ic = &sc->sc_ic;
1176 sbuf = sbd->priv;
1177
1178 bus_dmamap_sync(sc->sc_dmat, sbuf->map,
1179 0, MCLBYTES, BUS_DMASYNC_POSTWRITE);
1180 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
1181 m_freem(sbuf->m);
1182 if (sbuf->ni != NULL)
1183 ieee80211_free_node(sbuf->ni);
1184 /* kill watchdog timer */
1185 sc->sc_tx_timer = 0;
1186 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
1187 break;
1188 }
1189 sbd->type = IPW_SBD_TYPE_NOASSOC;
1190 }
1191
1192 static void
1193 ipw_tx_intr(struct ipw_softc *sc)
1194 {
1195 struct ifnet *ifp = &sc->sc_if;
1196 struct ipw_soft_bd *sbd;
1197 uint32_t r, i;
1198
1199 if (!(sc->flags & IPW_FLAG_FW_INITED))
1200 return;
1201
1202 r = CSR_READ_4(sc, IPW_CSR_TX_READ);
1203
1204 for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
1205 sbd = &sc->stbd_list[i];
1206
1207 if (sbd->type == IPW_SBD_TYPE_DATA)
1208 ifp->if_opackets++;
1209
1210 ipw_release_sbd(sc, sbd);
1211 sc->txfree++;
1212 }
1213
1214 /* remember what the firmware has processed */
1215 sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
1216
1217 /* Call start() since some buffer descriptors have been released */
1218 ifp->if_flags &= ~IFF_OACTIVE;
1219 (*ifp->if_start)(ifp);
1220 }
1221
1222 static int
1223 ipw_intr(void *arg)
1224 {
1225 struct ipw_softc *sc = arg;
1226 uint32_t r;
1227
1228 r = CSR_READ_4(sc, IPW_CSR_INTR);
1229 if (r == 0 || r == 0xffffffff)
1230 return 0;
1231
1232 /* Disable interrupts */
1233 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1234
1235 if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
1236 aprint_error_dev(&sc->sc_dev, "fatal error\n");
1237 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1238 ipw_stop(&sc->sc_if, 1);
1239 }
1240
1241 if (r & IPW_INTR_FW_INIT_DONE) {
1242 if (!(r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)))
1243 wakeup(sc);
1244 }
1245
1246 if (r & IPW_INTR_RX_TRANSFER)
1247 ipw_rx_intr(sc);
1248
1249 if (r & IPW_INTR_TX_TRANSFER)
1250 ipw_tx_intr(sc);
1251
1252 /* Acknowledge all interrupts */
1253 CSR_WRITE_4(sc, IPW_CSR_INTR, r);
1254
1255 /* Re-enable interrupts */
1256 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1257
1258 return 0;
1259 }
1260
1261 /*
1262 * Send a command to the firmware and wait for the acknowledgement.
1263 */
1264 static int
1265 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
1266 {
1267 struct ipw_soft_bd *sbd;
1268
1269 sbd = &sc->stbd_list[sc->txcur];
1270
1271 sc->cmd.type = htole32(type);
1272 sc->cmd.subtype = 0;
1273 sc->cmd.len = htole32(len);
1274 sc->cmd.seq = 0;
1275
1276 (void)memcpy(sc->cmd.data, data, len);
1277
1278 sbd->type = IPW_SBD_TYPE_COMMAND;
1279 sbd->bd->physaddr = htole32(sc->cmd_map->dm_segs[0].ds_addr);
1280 sbd->bd->len = htole32(sizeof (struct ipw_cmd));
1281 sbd->bd->nfrag = 1;
1282 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
1283 IPW_BD_FLAG_TX_LAST_FRAGMENT;
1284
1285 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map, 0, sizeof (struct ipw_cmd),
1286 BUS_DMASYNC_PREWRITE);
1287
1288 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1289 sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1290 BUS_DMASYNC_PREWRITE);
1291
1292 DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len));
1293
1294 /* kick firmware */
1295 sc->txfree--;
1296 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1297 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1298
1299 /* Wait at most one second for command to complete */
1300 return tsleep(&sc->cmd, 0, "ipwcmd", hz);
1301 }
1302
1303 static int
1304 ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
1305 {
1306 struct ipw_softc *sc = ifp->if_softc;
1307 struct ieee80211com *ic = &sc->sc_ic;
1308 struct ieee80211_frame *wh;
1309 struct ipw_soft_bd *sbd;
1310 struct ipw_soft_hdr *shdr;
1311 struct ipw_soft_buf *sbuf;
1312 struct ieee80211_key *k;
1313 struct mbuf *mnew;
1314 int error, i;
1315
1316 wh = mtod(m0, struct ieee80211_frame *);
1317
1318 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1319 k = ieee80211_crypto_encap(ic, ni, m0);
1320 if (k == NULL) {
1321 m_freem(m0);
1322 return ENOBUFS;
1323 }
1324
1325 /* packet header may have moved, reset our local pointer */
1326 wh = mtod(m0, struct ieee80211_frame *);
1327 }
1328
1329 if (sc->sc_drvbpf != NULL) {
1330 struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
1331
1332 bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1333 }
1334
1335 shdr = TAILQ_FIRST(&sc->sc_free_shdr);
1336 sbuf = TAILQ_FIRST(&sc->sc_free_sbuf);
1337 KASSERT(shdr != NULL && sbuf != NULL);
1338
1339 shdr->hdr->type = htole32(IPW_HDR_TYPE_SEND);
1340 shdr->hdr->subtype = 0;
1341 shdr->hdr->encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
1342 shdr->hdr->encrypt = 0;
1343 shdr->hdr->keyidx = 0;
1344 shdr->hdr->keysz = 0;
1345 shdr->hdr->fragmentsz = 0;
1346 IEEE80211_ADDR_COPY(shdr->hdr->src_addr, wh->i_addr2);
1347 if (ic->ic_opmode == IEEE80211_M_STA)
1348 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr3);
1349 else
1350 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr1);
1351
1352 /* trim IEEE802.11 header */
1353 m_adj(m0, sizeof (struct ieee80211_frame));
1354
1355 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0, BUS_DMA_NOWAIT);
1356 if (error != 0 && error != EFBIG) {
1357 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1358 error);
1359 m_freem(m0);
1360 return error;
1361 }
1362
1363 if (error != 0) {
1364 /* too many fragments, linearize */
1365
1366 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1367 if (mnew == NULL) {
1368 m_freem(m0);
1369 return ENOMEM;
1370 }
1371
1372 M_COPY_PKTHDR(mnew, m0);
1373
1374 /* If the data won't fit in the header, get a cluster */
1375 if (m0->m_pkthdr.len > MHLEN) {
1376 MCLGET(mnew, M_DONTWAIT);
1377 if (!(mnew->m_flags & M_EXT)) {
1378 m_freem(m0);
1379 m_freem(mnew);
1380 return ENOMEM;
1381 }
1382 }
1383 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1384 m_freem(m0);
1385 mnew->m_len = mnew->m_pkthdr.len;
1386 m0 = mnew;
1387
1388 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0,
1389 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1390 if (error != 0) {
1391 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error);
1392 m_freem(m0);
1393 return error;
1394 }
1395 }
1396
1397 TAILQ_REMOVE(&sc->sc_free_sbuf, sbuf, next);
1398 TAILQ_REMOVE(&sc->sc_free_shdr, shdr, next);
1399
1400 sbd = &sc->stbd_list[sc->txcur];
1401 sbd->type = IPW_SBD_TYPE_HEADER;
1402 sbd->priv = shdr;
1403 sbd->bd->physaddr = htole32(shdr->addr);
1404 sbd->bd->len = htole32(sizeof (struct ipw_hdr));
1405 sbd->bd->nfrag = 1 + sbuf->map->dm_nsegs;
1406 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
1407 IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1408
1409 DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, )\n",
1410 shdr->hdr->type, shdr->hdr->subtype, shdr->hdr->encrypted,
1411 shdr->hdr->encrypt));
1412 DPRINTFN(5, ("%s->", ether_sprintf(shdr->hdr->src_addr)));
1413 DPRINTFN(5, ("%s\n", ether_sprintf(shdr->hdr->dst_addr)));
1414
1415 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1416 sc->txcur * sizeof (struct ipw_bd),
1417 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
1418
1419 sc->txfree--;
1420 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1421
1422 sbuf->m = m0;
1423 sbuf->ni = ni;
1424
1425 for (i = 0; i < sbuf->map->dm_nsegs; i++) {
1426 sbd = &sc->stbd_list[sc->txcur];
1427
1428 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[i].ds_addr);
1429 sbd->bd->len = htole32(sbuf->map->dm_segs[i].ds_len);
1430 sbd->bd->nfrag = 0;
1431 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
1432 if (i == sbuf->map->dm_nsegs - 1) {
1433 sbd->type = IPW_SBD_TYPE_DATA;
1434 sbd->priv = sbuf;
1435 sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
1436 } else {
1437 sbd->type = IPW_SBD_TYPE_NOASSOC;
1438 sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1439 }
1440
1441 DPRINTFN(5, ("sending fragment (%d, %d)\n", i,
1442 (int)sbuf->map->dm_segs[i].ds_len));
1443
1444 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1445 sc->txcur * sizeof (struct ipw_bd),
1446 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
1447
1448 sc->txfree--;
1449 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1450 }
1451
1452 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map, shdr->offset,
1453 sizeof (struct ipw_hdr), BUS_DMASYNC_PREWRITE);
1454
1455 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, MCLBYTES,
1456 BUS_DMASYNC_PREWRITE);
1457
1458 /* Inform firmware about this new packet */
1459 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1460
1461 return 0;
1462 }
1463
1464 static void
1465 ipw_start(struct ifnet *ifp)
1466 {
1467 struct ipw_softc *sc = ifp->if_softc;
1468 struct ieee80211com *ic = &sc->sc_ic;
1469 struct mbuf *m0;
1470 struct ether_header *eh;
1471 struct ieee80211_node *ni;
1472
1473
1474 if (ic->ic_state != IEEE80211_S_RUN)
1475 return;
1476
1477 for (;;) {
1478 IF_DEQUEUE(&ifp->if_snd, m0);
1479 if (m0 == NULL)
1480 break;
1481
1482 if (sc->txfree < 1 + IPW_MAX_NSEG) {
1483 IF_PREPEND(&ifp->if_snd, m0);
1484 ifp->if_flags |= IFF_OACTIVE;
1485 break;
1486 }
1487
1488 if (m0->m_len < sizeof (struct ether_header) &&
1489 (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL)
1490 continue;
1491
1492 eh = mtod(m0, struct ether_header *);
1493 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1494 if (ni == NULL) {
1495 m_freem(m0);
1496 continue;
1497 }
1498
1499 if (ifp->if_bpf != NULL)
1500 bpf_ops->bpf_mtap(ifp->if_bpf, m0);
1501
1502 m0 = ieee80211_encap(ic, m0, ni);
1503 if (m0 == NULL) {
1504 ieee80211_free_node(ni);
1505 continue;
1506 }
1507
1508 if (ic->ic_rawbpf != NULL)
1509 bpf_ops->bpf_mtap(ic->ic_rawbpf, m0);
1510
1511 if (ipw_tx_start(ifp, m0, ni) != 0) {
1512 ieee80211_free_node(ni);
1513 ifp->if_oerrors++;
1514 break;
1515 }
1516
1517 /* start watchdog timer */
1518 sc->sc_tx_timer = 5;
1519 ifp->if_timer = 1;
1520 }
1521 }
1522
1523 static void
1524 ipw_watchdog(struct ifnet *ifp)
1525 {
1526 struct ipw_softc *sc = ifp->if_softc;
1527
1528 ifp->if_timer = 0;
1529
1530 if (sc->sc_tx_timer > 0) {
1531 if (--sc->sc_tx_timer == 0) {
1532 aprint_error_dev(&sc->sc_dev, "device timeout\n");
1533 ifp->if_oerrors++;
1534 ifp->if_flags &= ~IFF_UP;
1535 ipw_stop(ifp, 1);
1536 return;
1537 }
1538 ifp->if_timer = 1;
1539 }
1540
1541 ieee80211_watchdog(&sc->sc_ic);
1542 }
1543
1544 static int
1545 ipw_get_table1(struct ipw_softc *sc, uint32_t *tbl)
1546 {
1547 uint32_t addr, size, i;
1548
1549 if (!(sc->flags & IPW_FLAG_FW_INITED))
1550 return ENOTTY;
1551
1552 CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
1553
1554 size = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
1555 if (suword(tbl, size) != 0)
1556 return EFAULT;
1557
1558 for (i = 1, ++tbl; i < size; i++, tbl++) {
1559 addr = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
1560 if (suword(tbl, MEM_READ_4(sc, addr)) != 0)
1561 return EFAULT;
1562 }
1563 return 0;
1564 }
1565
1566 static int
1567 ipw_get_radio(struct ipw_softc *sc, int *ret)
1568 {
1569 uint32_t addr;
1570
1571 if (!(sc->flags & IPW_FLAG_FW_INITED))
1572 return ENOTTY;
1573
1574 addr = ipw_read_table1(sc, IPW_INFO_EEPROM_ADDRESS);
1575 if ((MEM_READ_4(sc, addr + 32) >> 24) & 1) {
1576 suword(ret, -1);
1577 return 0;
1578 }
1579
1580 if (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)
1581 suword(ret, 0);
1582 else
1583 suword(ret, 1);
1584
1585 return 0;
1586 }
1587
1588 static int
1589 ipw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1590 {
1591 #define IS_RUNNING(ifp) \
1592 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1593
1594 struct ipw_softc *sc = ifp->if_softc;
1595 struct ieee80211com *ic = &sc->sc_ic;
1596 struct ifreq *ifr = (struct ifreq *)data;
1597 int s, error = 0;
1598
1599 s = splnet();
1600
1601 switch (cmd) {
1602 case SIOCSIFFLAGS:
1603 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1604 break;
1605 if (ifp->if_flags & IFF_UP) {
1606 if (!(ifp->if_flags & IFF_RUNNING))
1607 ipw_init(ifp);
1608 } else {
1609 if (ifp->if_flags & IFF_RUNNING)
1610 ipw_stop(ifp, 1);
1611 }
1612 break;
1613
1614 case SIOCADDMULTI:
1615 case SIOCDELMULTI:
1616 /* XXX no h/w multicast filter? --dyoung */
1617 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1618 /* setup multicast filter, etc */
1619 error = 0;
1620 }
1621 break;
1622
1623 case SIOCGTABLE1:
1624 error = ipw_get_table1(sc, (uint32_t *)ifr->ifr_data);
1625 break;
1626
1627 case SIOCGRADIO:
1628 error = ipw_get_radio(sc, (int *)ifr->ifr_data);
1629 break;
1630
1631 case SIOCSIFMEDIA:
1632 if (ifr->ifr_media & IFM_IEEE80211_ADHOC)
1633 sc->sc_fwname = "ipw2100-1.2-i.fw";
1634 else if (ifr->ifr_media & IFM_IEEE80211_MONITOR)
1635 sc->sc_fwname = "ipw2100-1.2-p.fw";
1636 else
1637 sc->sc_fwname = "ipw2100-1.2.fw";
1638
1639 ipw_free_firmware(sc);
1640 /* FALLTRHOUGH */
1641 default:
1642 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1643 if (error != ENETRESET)
1644 break;
1645
1646 if (error == ENETRESET) {
1647 if (IS_RUNNING(ifp) &&
1648 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1649 ipw_init(ifp);
1650 error = 0;
1651 }
1652
1653 }
1654
1655 splx(s);
1656 return error;
1657 #undef IS_RUNNING
1658 }
1659
1660 static uint32_t
1661 ipw_read_table1(struct ipw_softc *sc, uint32_t off)
1662 {
1663 return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
1664 }
1665
1666 static void
1667 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
1668 {
1669 MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
1670 }
1671
1672 static int
1673 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
1674 {
1675 uint32_t addr, info;
1676 uint16_t count, size;
1677 uint32_t total;
1678
1679 /* addr[4] + count[2] + size[2] */
1680 addr = MEM_READ_4(sc, sc->table2_base + off);
1681 info = MEM_READ_4(sc, sc->table2_base + off + 4);
1682
1683 count = info >> 16;
1684 size = info & 0xffff;
1685 total = count * size;
1686
1687 if (total > *len) {
1688 *len = total;
1689 return EINVAL;
1690 }
1691
1692 *len = total;
1693 ipw_read_mem_1(sc, addr, buf, total);
1694
1695 return 0;
1696 }
1697
1698 static void
1699 ipw_stop_master(struct ipw_softc *sc)
1700 {
1701 int ntries;
1702
1703 /* disable interrupts */
1704 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1705
1706 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
1707 for (ntries = 0; ntries < 50; ntries++) {
1708 if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
1709 break;
1710 DELAY(10);
1711 }
1712 if (ntries == 50)
1713 aprint_error_dev(&sc->sc_dev, "timeout waiting for master\n");
1714
1715 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
1716 IPW_RST_PRINCETON_RESET);
1717
1718 sc->flags &= ~IPW_FLAG_FW_INITED;
1719 }
1720
1721 static int
1722 ipw_reset(struct ipw_softc *sc)
1723 {
1724 int ntries;
1725
1726 ipw_stop_master(sc);
1727
1728 /* move adapter to D0 state */
1729 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1730 IPW_CTL_INIT);
1731
1732 /* wait for clock stabilization */
1733 for (ntries = 0; ntries < 1000; ntries++) {
1734 if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
1735 break;
1736 DELAY(200);
1737 }
1738 if (ntries == 1000)
1739 return EIO;
1740
1741 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
1742 IPW_RST_SW_RESET);
1743
1744 DELAY(10);
1745
1746 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1747 IPW_CTL_INIT);
1748
1749 return 0;
1750 }
1751
1752 /*
1753 * Upload the microcode to the device.
1754 */
1755 static int
1756 ipw_load_ucode(struct ipw_softc *sc, u_char *uc, int size)
1757 {
1758 int ntries;
1759
1760 MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
1761 CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1762
1763 MEM_WRITE_2(sc, 0x220000, 0x0703);
1764 MEM_WRITE_2(sc, 0x220000, 0x0707);
1765
1766 MEM_WRITE_1(sc, 0x210014, 0x72);
1767 MEM_WRITE_1(sc, 0x210014, 0x72);
1768
1769 MEM_WRITE_1(sc, 0x210000, 0x40);
1770 MEM_WRITE_1(sc, 0x210000, 0x00);
1771 MEM_WRITE_1(sc, 0x210000, 0x40);
1772
1773 MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
1774
1775 MEM_WRITE_1(sc, 0x210000, 0x00);
1776 MEM_WRITE_1(sc, 0x210000, 0x00);
1777 MEM_WRITE_1(sc, 0x210000, 0x80);
1778
1779 MEM_WRITE_2(sc, 0x220000, 0x0703);
1780 MEM_WRITE_2(sc, 0x220000, 0x0707);
1781
1782 MEM_WRITE_1(sc, 0x210014, 0x72);
1783 MEM_WRITE_1(sc, 0x210014, 0x72);
1784
1785 MEM_WRITE_1(sc, 0x210000, 0x00);
1786 MEM_WRITE_1(sc, 0x210000, 0x80);
1787
1788 for (ntries = 0; ntries < 10; ntries++) {
1789 if (MEM_READ_1(sc, 0x210000) & 1)
1790 break;
1791 DELAY(10);
1792 }
1793 if (ntries == 10) {
1794 aprint_error_dev(&sc->sc_dev, "timeout waiting for ucode to initialize\n");
1795 return EIO;
1796 }
1797
1798 MEM_WRITE_4(sc, 0x3000e0, 0);
1799
1800 return 0;
1801 }
1802
1803 /* set of macros to handle unaligned little endian data in firmware image */
1804 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
1805 #define GETLE16(p) ((p)[0] | (p)[1] << 8)
1806 static int
1807 ipw_load_firmware(struct ipw_softc *sc, u_char *fw, int size)
1808 {
1809 u_char *p, *end;
1810 uint32_t dst;
1811 uint16_t len;
1812 int error;
1813
1814 p = fw;
1815 end = fw + size;
1816 while (p < end) {
1817 dst = GETLE32(p); p += 4;
1818 len = GETLE16(p); p += 2;
1819
1820 ipw_write_mem_1(sc, dst, p, len);
1821 p += len;
1822 }
1823
1824 CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
1825 IPW_IO_LED_OFF);
1826
1827 /* enable interrupts */
1828 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1829
1830 /* kick the firmware */
1831 CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1832
1833 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1834 IPW_CTL_ALLOW_STANDBY);
1835
1836 /* wait at most one second for firmware initialization to complete */
1837 if ((error = tsleep(sc, 0, "ipwinit", hz)) != 0) {
1838 aprint_error_dev(&sc->sc_dev, "timeout waiting for firmware initialization "
1839 "to complete\n");
1840 return error;
1841 }
1842
1843 CSR_WRITE_4(sc, IPW_CSR_IO, CSR_READ_4(sc, IPW_CSR_IO) |
1844 IPW_IO_GPIO1_MASK | IPW_IO_GPIO3_MASK);
1845
1846 return 0;
1847 }
1848
1849 /*
1850 * Store firmware into kernel memory so we can download it when we need to,
1851 * e.g when the adapter wakes up from suspend mode.
1852 */
1853 static int
1854 ipw_cache_firmware(struct ipw_softc *sc)
1855 {
1856 struct ipw_firmware *fw = &sc->fw;
1857 struct ipw_firmware_hdr hdr;
1858 firmware_handle_t fwh;
1859 off_t fwsz, p;
1860 int error;
1861
1862 ipw_free_firmware(sc);
1863
1864 if (ipw_accept_eula == 0) {
1865 aprint_error_dev(&sc->sc_dev,
1866 "EULA not accepted; please see the ipw(4) man page.\n");
1867 return EPERM;
1868 }
1869
1870 if ((error = firmware_open("if_ipw", sc->sc_fwname, &fwh)) != 0)
1871 goto fail0;
1872
1873 fwsz = firmware_get_size(fwh);
1874
1875 if (fwsz < sizeof(hdr))
1876 goto fail2;
1877
1878 if ((error = firmware_read(fwh, 0, &hdr, sizeof(hdr))) != 0)
1879 goto fail2;
1880
1881 fw->main_size = le32toh(hdr.main_size);
1882 fw->ucode_size = le32toh(hdr.ucode_size);
1883
1884 fw->main = firmware_malloc(fw->main_size);
1885 if (fw->main == NULL) {
1886 error = ENOMEM;
1887 goto fail1;
1888 }
1889
1890 fw->ucode = firmware_malloc(fw->ucode_size);
1891 if (fw->ucode == NULL) {
1892 error = ENOMEM;
1893 goto fail2;
1894 }
1895
1896 p = sizeof(hdr);
1897 if ((error = firmware_read(fwh, p, fw->main, fw->main_size)) != 0)
1898 goto fail3;
1899
1900 p += fw->main_size;
1901 if ((error = firmware_read(fwh, p, fw->ucode, fw->ucode_size)) != 0)
1902 goto fail3;
1903
1904 DPRINTF(("Firmware cached: main %u, ucode %u\n", fw->main_size,
1905 fw->ucode_size));
1906
1907 sc->flags |= IPW_FLAG_FW_CACHED;
1908
1909 firmware_close(fwh);
1910
1911 return 0;
1912
1913 fail3: firmware_free(fw->ucode, 0);
1914 fail2: firmware_free(fw->main, 0);
1915 fail1: firmware_close(fwh);
1916 fail0:
1917 return error;
1918 }
1919
1920 static void
1921 ipw_free_firmware(struct ipw_softc *sc)
1922 {
1923 if (!(sc->flags & IPW_FLAG_FW_CACHED))
1924 return;
1925
1926 firmware_free(sc->fw.main, 0);
1927 firmware_free(sc->fw.ucode, 0);
1928
1929 sc->flags &= ~IPW_FLAG_FW_CACHED;
1930 }
1931
1932 static int
1933 ipw_config(struct ipw_softc *sc)
1934 {
1935 struct ieee80211com *ic = &sc->sc_ic;
1936 struct ifnet *ifp = &sc->sc_if;
1937 struct ipw_security security;
1938 struct ieee80211_key *k;
1939 struct ipw_wep_key wepkey;
1940 struct ipw_scan_options options;
1941 struct ipw_configuration config;
1942 uint32_t data;
1943 int error, i;
1944
1945 switch (ic->ic_opmode) {
1946 case IEEE80211_M_STA:
1947 case IEEE80211_M_HOSTAP:
1948 data = htole32(IPW_MODE_BSS);
1949 break;
1950
1951 case IEEE80211_M_IBSS:
1952 case IEEE80211_M_AHDEMO:
1953 data = htole32(IPW_MODE_IBSS);
1954 break;
1955
1956 case IEEE80211_M_MONITOR:
1957 data = htole32(IPW_MODE_MONITOR);
1958 break;
1959 }
1960 DPRINTF(("Setting mode to %u\n", le32toh(data)));
1961 error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
1962 if (error != 0)
1963 return error;
1964
1965 if (ic->ic_opmode == IEEE80211_M_IBSS ||
1966 ic->ic_opmode == IEEE80211_M_MONITOR) {
1967 data = htole32(ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
1968 DPRINTF(("Setting channel to %u\n", le32toh(data)));
1969 error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
1970 if (error != 0)
1971 return error;
1972 }
1973
1974 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1975 DPRINTF(("Enabling adapter\n"));
1976 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
1977 }
1978
1979 DPRINTF(("Setting MAC to %s\n", ether_sprintf(ic->ic_myaddr)));
1980 error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
1981 IEEE80211_ADDR_LEN);
1982 if (error != 0)
1983 return error;
1984
1985 config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
1986 IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
1987
1988 if (ic->ic_opmode == IEEE80211_M_IBSS)
1989 config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
1990 if (ifp->if_flags & IFF_PROMISC)
1991 config.flags |= htole32(IPW_CFG_PROMISCUOUS);
1992 config.bss_chan = htole32(0x3fff); /* channels 1-14 */
1993 config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
1994 DPRINTF(("Setting adapter configuration 0x%08x\n", config.flags));
1995 error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
1996 if (error != 0)
1997 return error;
1998
1999 data = htole32(0x3); /* 1, 2 */
2000 DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
2001 error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
2002 if (error != 0)
2003 return error;
2004
2005 data = htole32(0xf); /* 1, 2, 5.5, 11 */
2006 DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
2007 error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
2008 if (error != 0)
2009 return error;
2010
2011 data = htole32(IPW_POWER_MODE_CAM);
2012 DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2013 error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
2014 if (error != 0)
2015 return error;
2016
2017 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2018 data = htole32(32); /* default value */
2019 DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
2020 error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
2021 sizeof data);
2022 if (error != 0)
2023 return error;
2024 }
2025
2026 data = htole32(ic->ic_rtsthreshold);
2027 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2028 error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2029 if (error != 0)
2030 return error;
2031
2032 data = htole32(ic->ic_fragthreshold);
2033 DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
2034 error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2035 if (error != 0)
2036 return error;
2037
2038 #ifdef IPW_DEBUG
2039 if (ipw_debug > 0) {
2040 printf("Setting ESSID to ");
2041 ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen);
2042 printf("\n");
2043 }
2044 #endif
2045 error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid,
2046 ic->ic_des_esslen);
2047 if (error != 0)
2048 return error;
2049
2050 /* no mandatory BSSID */
2051 DPRINTF(("Setting mandatory BSSID to null\n"));
2052 error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
2053 if (error != 0)
2054 return error;
2055
2056 if (ic->ic_flags & IEEE80211_F_DESBSSID) {
2057 DPRINTF(("Setting desired BSSID to %s\n",
2058 ether_sprintf(ic->ic_des_bssid)));
2059 error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID,
2060 ic->ic_des_bssid, IEEE80211_ADDR_LEN);
2061 if (error != 0)
2062 return error;
2063 }
2064
2065 (void)memset(&security, 0, sizeof(security));
2066 security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ?
2067 IPW_AUTH_SHARED : IPW_AUTH_OPEN;
2068 security.ciphers = htole32(IPW_CIPHER_NONE);
2069 DPRINTF(("Setting authmode to %u\n", security.authmode));
2070 error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
2071 sizeof security);
2072 if (error != 0)
2073 return error;
2074
2075 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2076 k = ic->ic_crypto.cs_nw_keys;
2077 for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
2078 if (k->wk_keylen == 0)
2079 continue;
2080
2081 wepkey.idx = i;
2082 wepkey.len = k->wk_keylen;
2083 memset(wepkey.key, 0, sizeof(wepkey.key));
2084 memcpy(wepkey.key, k->wk_key, k->wk_keylen);
2085 DPRINTF(("Setting wep key index %u len %u\n",
2086 wepkey.idx, wepkey.len));
2087 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
2088 sizeof wepkey);
2089 if (error != 0)
2090 return error;
2091 }
2092
2093 data = htole32(ic->ic_crypto.cs_def_txkey);
2094 DPRINTF(("Setting tx key index to %u\n", le32toh(data)));
2095 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
2096 sizeof data);
2097 if (error != 0)
2098 return error;
2099 }
2100
2101 data = htole32((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
2102 DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
2103 error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
2104 if (error != 0)
2105 return error;
2106
2107 #if 0
2108 struct ipw_wpa_ie ie;
2109
2110 memset(&ie, 0 sizeof(ie));
2111 ie.len = htole32(sizeof (struct ieee80211_ie_wpa));
2112 DPRINTF(("Setting wpa ie\n"));
2113 error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie);
2114 if (error != 0)
2115 return error;
2116 #endif
2117
2118 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2119 data = htole32(ic->ic_bintval);
2120 DPRINTF(("Setting beacon interval to %u\n", le32toh(data)));
2121 error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
2122 sizeof data);
2123 if (error != 0)
2124 return error;
2125 }
2126
2127 options.flags = 0;
2128 options.channels = htole32(0x3fff); /* scan channels 1-14 */
2129 DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags)));
2130 error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options);
2131 if (error != 0)
2132 return error;
2133
2134 /* finally, enable adapter (start scanning for an access point) */
2135 DPRINTF(("Enabling adapter\n"));
2136 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
2137 }
2138
2139 static int
2140 ipw_init(struct ifnet *ifp)
2141 {
2142 struct ipw_softc *sc = ifp->if_softc;
2143 struct ipw_firmware *fw = &sc->fw;
2144
2145 if (!(sc->flags & IPW_FLAG_FW_CACHED)) {
2146 if (ipw_cache_firmware(sc) != 0) {
2147 aprint_error_dev(&sc->sc_dev, "could not cache the firmware (%s)\n",
2148 sc->sc_fwname);
2149 goto fail;
2150 }
2151 }
2152
2153 ipw_stop(ifp, 0);
2154
2155 if (ipw_reset(sc) != 0) {
2156 aprint_error_dev(&sc->sc_dev, "could not reset adapter\n");
2157 goto fail;
2158 }
2159
2160 if (ipw_load_ucode(sc, fw->ucode, fw->ucode_size) != 0) {
2161 aprint_error_dev(&sc->sc_dev, "could not load microcode\n");
2162 goto fail;
2163 }
2164
2165 ipw_stop_master(sc);
2166
2167 /*
2168 * Setup tx, rx and status rings.
2169 */
2170 sc->txold = IPW_NTBD - 1;
2171 sc->txcur = 0;
2172 sc->txfree = IPW_NTBD - 2;
2173 sc->rxcur = IPW_NRBD - 1;
2174
2175 CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_map->dm_segs[0].ds_addr);
2176 CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD);
2177 CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0);
2178 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
2179
2180 CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_map->dm_segs[0].ds_addr);
2181 CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD);
2182 CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0);
2183 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
2184
2185 CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_map->dm_segs[0].ds_addr);
2186
2187 if (ipw_load_firmware(sc, fw->main, fw->main_size) != 0) {
2188 aprint_error_dev(&sc->sc_dev, "could not load firmware\n");
2189 goto fail;
2190 }
2191
2192 sc->flags |= IPW_FLAG_FW_INITED;
2193
2194 /* retrieve information tables base addresses */
2195 sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
2196 sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
2197
2198 ipw_write_table1(sc, IPW_INFO_LOCK, 0);
2199
2200 if (ipw_config(sc) != 0) {
2201 aprint_error_dev(&sc->sc_dev, "device configuration failed\n");
2202 goto fail;
2203 }
2204
2205 ifp->if_flags &= ~IFF_OACTIVE;
2206 ifp->if_flags |= IFF_RUNNING;
2207
2208 return 0;
2209
2210 fail: ifp->if_flags &= ~IFF_UP;
2211 ipw_stop(ifp, 0);
2212
2213 return EIO;
2214 }
2215
2216 static void
2217 ipw_stop(struct ifnet *ifp, int disable)
2218 {
2219 struct ipw_softc *sc = ifp->if_softc;
2220 struct ieee80211com *ic = &sc->sc_ic;
2221 int i;
2222
2223 ipw_stop_master(sc);
2224
2225 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
2226
2227 /*
2228 * Release tx buffers.
2229 */
2230 for (i = 0; i < IPW_NTBD; i++)
2231 ipw_release_sbd(sc, &sc->stbd_list[i]);
2232
2233 sc->sc_tx_timer = 0;
2234 ifp->if_timer = 0;
2235 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2236
2237 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2238 }
2239
2240 static void
2241 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2242 bus_size_t count)
2243 {
2244 for (; count > 0; offset++, datap++, count--) {
2245 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2246 *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
2247 }
2248 }
2249
2250 static void
2251 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2252 bus_size_t count)
2253 {
2254 for (; count > 0; offset++, datap++, count--) {
2255 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2256 CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
2257 }
2258 }
2259
2260 SYSCTL_SETUP(sysctl_hw_ipw_accept_eula_setup, "sysctl hw.ipw.accept_eula")
2261 {
2262 const struct sysctlnode *rnode;
2263 const struct sysctlnode *cnode;
2264
2265 sysctl_createv(NULL, 0, NULL, &rnode,
2266 CTLFLAG_PERMANENT,
2267 CTLTYPE_NODE, "hw",
2268 NULL,
2269 NULL, 0,
2270 NULL, 0,
2271 CTL_HW, CTL_EOL);
2272
2273 sysctl_createv(NULL, 0, &rnode, &rnode,
2274 CTLFLAG_PERMANENT,
2275 CTLTYPE_NODE, "ipw",
2276 NULL,
2277 NULL, 0,
2278 NULL, 0,
2279 CTL_CREATE, CTL_EOL);
2280
2281 sysctl_createv(NULL, 0, &rnode, &cnode,
2282 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2283 CTLTYPE_INT, "accept_eula",
2284 SYSCTL_DESCR("Accept Intel EULA and permit use of ipw(4) firmware"),
2285 NULL, 0,
2286 &ipw_accept_eula, sizeof(ipw_accept_eula),
2287 CTL_CREATE, CTL_EOL);
2288 }
2289