if_ipw.c revision 1.41 1 /* $NetBSD: if_ipw.c,v 1.41 2008/05/27 21:41:01 dyoung Exp $ */
2 /* FreeBSD: src/sys/dev/ipw/if_ipw.c,v 1.15 2005/11/13 17:17:40 damien Exp */
3
4 /*-
5 * Copyright (c) 2004, 2005
6 * Damien Bergamini <damien.bergamini (at) free.fr>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: if_ipw.c,v 1.41 2008/05/27 21:41:01 dyoung Exp $");
33
34 /*-
35 * Intel(R) PRO/Wireless 2100 MiniPCI driver
36 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
37 */
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 #include <sys/mbuf.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/systm.h>
48 #include <sys/malloc.h>
49 #include <sys/conf.h>
50
51 #include <sys/bus.h>
52 #include <machine/endian.h>
53 #include <sys/intr.h>
54
55 #include <dev/pci/pcireg.h>
56 #include <dev/pci/pcivar.h>
57 #include <dev/pci/pcidevs.h>
58
59 #if NBPFILTER > 0
60 #include <net/bpf.h>
61 #endif
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_ether.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_radiotap.h>
71
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip.h>
76
77 #include <dev/firmload.h>
78
79 #include <dev/pci/if_ipwreg.h>
80 #include <dev/pci/if_ipwvar.h>
81
82 #ifdef IPW_DEBUG
83 #define DPRINTF(x) if (ipw_debug > 0) printf x
84 #define DPRINTFN(n, x) if (ipw_debug >= (n)) printf x
85 int ipw_debug = 0;
86 #else
87 #define DPRINTF(x)
88 #define DPRINTFN(n, x)
89 #endif
90
91 static int ipw_dma_alloc(struct ipw_softc *);
92 static void ipw_release(struct ipw_softc *);
93 static int ipw_match(struct device *, struct cfdata *, void *);
94 static void ipw_attach(struct device *, struct device *, void *);
95 static int ipw_detach(struct device *, int);
96
97 static int ipw_media_change(struct ifnet *);
98 static void ipw_media_status(struct ifnet *, struct ifmediareq *);
99 static int ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
100 static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t);
101 static void ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
102 static void ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
103 static void ipw_data_intr(struct ipw_softc *, struct ipw_status *,
104 struct ipw_soft_bd *, struct ipw_soft_buf *);
105 static void ipw_rx_intr(struct ipw_softc *);
106 static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
107 static void ipw_tx_intr(struct ipw_softc *);
108 static int ipw_intr(void *);
109 static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
110 static int ipw_tx_start(struct ifnet *, struct mbuf *,
111 struct ieee80211_node *);
112 static void ipw_start(struct ifnet *);
113 static void ipw_watchdog(struct ifnet *);
114 static int ipw_ioctl(struct ifnet *, u_long, void *);
115 static int ipw_get_table1(struct ipw_softc *, uint32_t *);
116 static int ipw_get_radio(struct ipw_softc *, int *);
117 static void ipw_stop_master(struct ipw_softc *);
118 static int ipw_reset(struct ipw_softc *);
119 static int ipw_load_ucode(struct ipw_softc *, u_char *, int);
120 static int ipw_load_firmware(struct ipw_softc *, u_char *, int);
121 static int ipw_cache_firmware(struct ipw_softc *);
122 static void ipw_free_firmware(struct ipw_softc *);
123 static int ipw_config(struct ipw_softc *);
124 static int ipw_init(struct ifnet *);
125 static void ipw_stop(struct ifnet *, int);
126 static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t);
127 static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
128 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, uint32_t *);
129 static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
130 bus_size_t);
131 static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
132 bus_size_t);
133
134 /*
135 * Supported rates for 802.11b mode (in 500Kbps unit).
136 */
137 static const struct ieee80211_rateset ipw_rateset_11b =
138 { 4, { 2, 4, 11, 22 } };
139
140 static inline uint8_t
141 MEM_READ_1(struct ipw_softc *sc, uint32_t addr)
142 {
143 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
144 return CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA);
145 }
146
147 static inline uint32_t
148 MEM_READ_4(struct ipw_softc *sc, uint32_t addr)
149 {
150 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
151 return CSR_READ_4(sc, IPW_CSR_INDIRECT_DATA);
152 }
153
154 CFATTACH_DECL(ipw, sizeof (struct ipw_softc), ipw_match, ipw_attach,
155 ipw_detach, NULL);
156
157 static int
158 ipw_match(struct device *parent, struct cfdata *match,
159 void *aux)
160 {
161 struct pci_attach_args *pa = aux;
162
163 if (PCI_VENDOR (pa->pa_id) == PCI_VENDOR_INTEL &&
164 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2100)
165 return 1;
166
167 return 0;
168 }
169
170 /* Base Address Register */
171 #define IPW_PCI_BAR0 0x10
172
173 static void
174 ipw_attach(struct device *parent, struct device *self, void *aux)
175 {
176 struct ipw_softc *sc = (struct ipw_softc *)self;
177 struct ieee80211com *ic = &sc->sc_ic;
178 struct ifnet *ifp = &sc->sc_if;
179 struct pci_attach_args *pa = aux;
180 const char *intrstr;
181 char devinfo[256];
182 bus_space_tag_t memt;
183 bus_space_handle_t memh;
184 bus_addr_t base;
185 pci_intr_handle_t ih;
186 uint32_t data;
187 uint16_t val;
188 int i, revision, error;
189
190 sc->sc_pct = pa->pa_pc;
191 sc->sc_pcitag = pa->pa_tag;
192
193 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
194 revision = PCI_REVISION(pa->pa_class);
195 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
196
197 /* enable bus-mastering */
198 data = pci_conf_read(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG);
199 data |= PCI_COMMAND_MASTER_ENABLE;
200 pci_conf_write(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG, data);
201
202 /* map the register window */
203 error = pci_mapreg_map(pa, IPW_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
204 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz);
205 if (error != 0) {
206 aprint_error_dev(&sc->sc_dev, "could not map memory space\n");
207 return;
208 }
209
210 sc->sc_st = memt;
211 sc->sc_sh = memh;
212 sc->sc_dmat = pa->pa_dmat;
213 strlcpy(sc->sc_fwname, "ipw2100-1.2.fw", sizeof(sc->sc_fwname));
214
215 /* disable interrupts */
216 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
217
218 if (pci_intr_map(pa, &ih) != 0) {
219 aprint_error_dev(&sc->sc_dev, "could not map interrupt\n");
220 return;
221 }
222
223 intrstr = pci_intr_string(sc->sc_pct, ih);
224 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, ipw_intr, sc);
225 if (sc->sc_ih == NULL) {
226 aprint_error_dev(&sc->sc_dev, "could not establish interrupt");
227 if (intrstr != NULL)
228 aprint_error(" at %s", intrstr);
229 aprint_error("\n");
230 return;
231 }
232 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
233
234 if (ipw_reset(sc) != 0) {
235 aprint_error_dev(&sc->sc_dev, "could not reset adapter\n");
236 goto fail;
237 }
238
239 if (ipw_dma_alloc(sc) != 0) {
240 aprint_error_dev(&sc->sc_dev, "could not allocate DMA resources\n");
241 goto fail;
242 }
243
244 ifp->if_softc = sc;
245 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
246 ifp->if_init = ipw_init;
247 ifp->if_stop = ipw_stop;
248 ifp->if_ioctl = ipw_ioctl;
249 ifp->if_start = ipw_start;
250 ifp->if_watchdog = ipw_watchdog;
251 IFQ_SET_READY(&ifp->if_snd);
252 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
253
254 ic->ic_ifp = ifp;
255 ic->ic_phytype = IEEE80211_T_DS;
256 ic->ic_opmode = IEEE80211_M_STA;
257 ic->ic_state = IEEE80211_S_INIT;
258
259 /* set device capabilities */
260 ic->ic_caps =
261 IEEE80211_C_SHPREAMBLE /* short preamble supported */
262 | IEEE80211_C_TXPMGT /* tx power management */
263 | IEEE80211_C_IBSS /* ibss mode */
264 | IEEE80211_C_MONITOR /* monitor mode */
265 ;
266
267 /* read MAC address from EEPROM */
268 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
269 ic->ic_myaddr[0] = val >> 8;
270 ic->ic_myaddr[1] = val & 0xff;
271 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
272 ic->ic_myaddr[2] = val >> 8;
273 ic->ic_myaddr[3] = val & 0xff;
274 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
275 ic->ic_myaddr[4] = val >> 8;
276 ic->ic_myaddr[5] = val & 0xff;
277
278 /* set supported .11b rates */
279 ic->ic_sup_rates[IEEE80211_MODE_11B] = ipw_rateset_11b;
280
281 /* set supported .11b channels (read from EEPROM) */
282 if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0)
283 val = 0x7ff; /* default to channels 1-11 */
284 val <<= 1;
285 for (i = 1; i < 16; i++) {
286 if (val & (1 << i)) {
287 ic->ic_channels[i].ic_freq =
288 ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
289 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
290 }
291 }
292
293 /* check support for radio transmitter switch in EEPROM */
294 if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
295 sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
296
297 aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n",
298 ether_sprintf(ic->ic_myaddr));
299
300 if_attach(ifp);
301 ieee80211_ifattach(ic);
302
303 /* override state transition machine */
304 sc->sc_newstate = ic->ic_newstate;
305 ic->ic_newstate = ipw_newstate;
306
307 ieee80211_media_init(ic, ipw_media_change, ipw_media_status);
308
309 #if NBPFILTER > 0
310 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
311 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
312
313 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
314 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
315 sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
316
317 sc->sc_txtap_len = sizeof sc->sc_txtapu;
318 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
319 sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
320 #endif
321
322 /*
323 * Add a few sysctl knobs.
324 * XXX: Not yet
325 */
326 sc->dwelltime = 100;
327
328 if (!pmf_device_register(self, NULL, NULL))
329 aprint_error_dev(self, "couldn't establish power handler\n");
330 else
331 pmf_class_network_register(self, ifp);
332
333 ieee80211_announce(ic);
334
335 return;
336
337 fail: ipw_detach(self, 0);
338 }
339
340 static int
341 ipw_detach(struct device* self, int flags)
342 {
343 struct ipw_softc *sc = (struct ipw_softc *)self;
344 struct ifnet *ifp = &sc->sc_if;
345
346 if (ifp->if_softc) {
347 ipw_stop(ifp, 1);
348 ipw_free_firmware(sc);
349
350 #if NBPFILTER > 0
351 bpfdetach(ifp);
352 #endif
353 ieee80211_ifdetach(&sc->sc_ic);
354 if_detach(ifp);
355
356 ipw_release(sc);
357 }
358
359 if (sc->sc_ih != NULL) {
360 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
361 sc->sc_ih = NULL;
362 }
363
364 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
365
366 return 0;
367 }
368
369 static int
370 ipw_dma_alloc(struct ipw_softc *sc)
371 {
372 struct ipw_soft_bd *sbd;
373 struct ipw_soft_hdr *shdr;
374 struct ipw_soft_buf *sbuf;
375 int error, i, nsegs;
376
377 /*
378 * Allocate and map tx ring.
379 */
380 error = bus_dmamap_create(sc->sc_dmat, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0,
381 BUS_DMA_NOWAIT, &sc->tbd_map);
382 if (error != 0) {
383 aprint_error_dev(&sc->sc_dev, "could not create tbd dma map\n");
384 goto fail;
385 }
386
387 error = bus_dmamem_alloc(sc->sc_dmat, IPW_TBD_SZ, PAGE_SIZE, 0,
388 &sc->tbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
389 if (error != 0) {
390 aprint_error_dev(&sc->sc_dev, "could not allocate tbd dma memory\n");
391 goto fail;
392 }
393
394 error = bus_dmamem_map(sc->sc_dmat, &sc->tbd_seg, nsegs, IPW_TBD_SZ,
395 (void **)&sc->tbd_list, BUS_DMA_NOWAIT);
396 if (error != 0) {
397 aprint_error_dev(&sc->sc_dev, "could not map tbd dma memory\n");
398 goto fail;
399 }
400
401 error = bus_dmamap_load(sc->sc_dmat, sc->tbd_map, sc->tbd_list,
402 IPW_TBD_SZ, NULL, BUS_DMA_NOWAIT);
403 if (error != 0) {
404 aprint_error_dev(&sc->sc_dev, "could not load tbd dma memory\n");
405 goto fail;
406 }
407
408 (void)memset(sc->tbd_list, 0, IPW_TBD_SZ);
409
410 /*
411 * Allocate and map rx ring.
412 */
413 error = bus_dmamap_create(sc->sc_dmat, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0,
414 BUS_DMA_NOWAIT, &sc->rbd_map);
415 if (error != 0) {
416 aprint_error_dev(&sc->sc_dev, "could not create rbd dma map\n");
417 goto fail;
418 }
419
420 error = bus_dmamem_alloc(sc->sc_dmat, IPW_RBD_SZ, PAGE_SIZE, 0,
421 &sc->rbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
422 if (error != 0) {
423 aprint_error_dev(&sc->sc_dev, "could not allocate rbd dma memory\n");
424 goto fail;
425 }
426
427 error = bus_dmamem_map(sc->sc_dmat, &sc->rbd_seg, nsegs, IPW_RBD_SZ,
428 (void **)&sc->rbd_list, BUS_DMA_NOWAIT);
429 if (error != 0) {
430 aprint_error_dev(&sc->sc_dev, "could not map rbd dma memory\n");
431 goto fail;
432 }
433
434 error = bus_dmamap_load(sc->sc_dmat, sc->rbd_map, sc->rbd_list,
435 IPW_RBD_SZ, NULL, BUS_DMA_NOWAIT);
436 if (error != 0) {
437 aprint_error_dev(&sc->sc_dev, "could not load rbd dma memory\n");
438 goto fail;
439 }
440
441 (void)memset(sc->rbd_list, 0, IPW_RBD_SZ);
442
443 /*
444 * Allocate and map status ring.
445 */
446 error = bus_dmamap_create(sc->sc_dmat, IPW_STATUS_SZ, 1, IPW_STATUS_SZ,
447 0, BUS_DMA_NOWAIT, &sc->status_map);
448 if (error != 0) {
449 aprint_error_dev(&sc->sc_dev, "could not create status dma map\n");
450 goto fail;
451 }
452
453 error = bus_dmamem_alloc(sc->sc_dmat, IPW_STATUS_SZ, PAGE_SIZE, 0,
454 &sc->status_seg, 1, &nsegs, BUS_DMA_NOWAIT);
455 if (error != 0) {
456 aprint_error_dev(&sc->sc_dev, "could not allocate status dma memory\n");
457 goto fail;
458 }
459
460 error = bus_dmamem_map(sc->sc_dmat, &sc->status_seg, nsegs,
461 IPW_STATUS_SZ, (void **)&sc->status_list, BUS_DMA_NOWAIT);
462 if (error != 0) {
463 aprint_error_dev(&sc->sc_dev, "could not map status dma memory\n");
464 goto fail;
465 }
466
467 error = bus_dmamap_load(sc->sc_dmat, sc->status_map, sc->status_list,
468 IPW_STATUS_SZ, NULL, BUS_DMA_NOWAIT);
469 if (error != 0) {
470 aprint_error_dev(&sc->sc_dev, "could not load status dma memory\n");
471 goto fail;
472 }
473
474 (void)memset(sc->status_list, 0, IPW_STATUS_SZ);
475
476 /*
477 * Allocate command DMA map.
478 */
479 error = bus_dmamap_create(sc->sc_dmat, sizeof (struct ipw_cmd),
480 1, sizeof (struct ipw_cmd), 0, BUS_DMA_NOWAIT, &sc->cmd_map);
481 if (error != 0) {
482 aprint_error_dev(&sc->sc_dev, "could not create cmd dma map\n");
483 goto fail;
484 }
485
486 error = bus_dmamem_alloc(sc->sc_dmat, sizeof (struct ipw_cmd),
487 PAGE_SIZE, 0, &sc->cmd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
488 if (error != 0) {
489 aprint_error_dev(&sc->sc_dev, "could not allocate cmd dma memory\n");
490 goto fail;
491 }
492
493 error = bus_dmamem_map(sc->sc_dmat, &sc->cmd_seg, nsegs,
494 sizeof (struct ipw_cmd), (void **)&sc->cmd, BUS_DMA_NOWAIT);
495 if (error != 0) {
496 aprint_error_dev(&sc->sc_dev, "could not map cmd dma memory\n");
497 goto fail;
498 }
499
500 error = bus_dmamap_load(sc->sc_dmat, sc->cmd_map, &sc->cmd,
501 sizeof (struct ipw_cmd), NULL, BUS_DMA_NOWAIT);
502 if (error != 0) {
503 aprint_error_dev(&sc->sc_dev, "could not map cmd dma memory\n");
504 return error;
505 }
506
507 /*
508 * Allocate and map hdr list.
509 */
510
511 error = bus_dmamap_create(sc->sc_dmat,
512 IPW_NDATA * sizeof(struct ipw_hdr), 1,
513 sizeof(struct ipw_hdr), 0, BUS_DMA_NOWAIT,
514 &sc->hdr_map);
515 if (error != 0) {
516 aprint_error_dev(&sc->sc_dev, "could not create hdr dma map\n");
517 goto fail;
518 }
519
520 error = bus_dmamem_alloc(sc->sc_dmat,
521 IPW_NDATA * sizeof(struct ipw_hdr), PAGE_SIZE, 0, &sc->hdr_seg,
522 1, &nsegs, BUS_DMA_NOWAIT);
523 if (error != 0) {
524 aprint_error_dev(&sc->sc_dev, "could not allocate hdr memory\n");
525 goto fail;
526 }
527
528 error = bus_dmamem_map(sc->sc_dmat, &sc->hdr_seg, nsegs,
529 IPW_NDATA * sizeof(struct ipw_hdr), (void **)&sc->hdr_list,
530 BUS_DMA_NOWAIT);
531 if (error != 0) {
532 aprint_error_dev(&sc->sc_dev, "could not map hdr memory\n");
533 goto fail;
534 }
535
536 error = bus_dmamap_load(sc->sc_dmat, sc->hdr_map, sc->hdr_list,
537 IPW_NDATA * sizeof(struct ipw_hdr), NULL, BUS_DMA_NOWAIT);
538 if (error != 0) {
539 aprint_error_dev(&sc->sc_dev, "could not load hdr memory\n");
540 goto fail;
541 }
542
543 (void)memset(sc->hdr_list, 0, IPW_HDR_SZ);
544
545 /*
546 * Create DMA hdrs tailq.
547 */
548 TAILQ_INIT(&sc->sc_free_shdr);
549 for (i = 0; i < IPW_NDATA; i++) {
550 shdr = &sc->shdr_list[i];
551 shdr->hdr = sc->hdr_list + i;
552 shdr->offset = sizeof(struct ipw_hdr) * i;
553 shdr->addr = sc->hdr_map->dm_segs[0].ds_addr + shdr->offset;
554 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
555 }
556
557 /*
558 * Allocate tx buffers DMA maps.
559 */
560 TAILQ_INIT(&sc->sc_free_sbuf);
561 for (i = 0; i < IPW_NDATA; i++) {
562 sbuf = &sc->tx_sbuf_list[i];
563
564 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
565 IPW_MAX_NSEG, MCLBYTES, 0, BUS_DMA_NOWAIT, &sbuf->map);
566 if (error != 0) {
567 aprint_error_dev(&sc->sc_dev, "could not create txbuf dma map\n");
568 goto fail;
569 }
570 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
571 }
572
573 /*
574 * Initialize tx ring.
575 */
576 for (i = 0; i < IPW_NTBD; i++) {
577 sbd = &sc->stbd_list[i];
578 sbd->bd = &sc->tbd_list[i];
579 sbd->type = IPW_SBD_TYPE_NOASSOC;
580 }
581
582 /*
583 * Pre-allocate rx buffers and DMA maps
584 */
585 for (i = 0; i < IPW_NRBD; i++) {
586 sbd = &sc->srbd_list[i];
587 sbuf = &sc->rx_sbuf_list[i];
588 sbd->bd = &sc->rbd_list[i];
589
590 MGETHDR(sbuf->m, M_DONTWAIT, MT_DATA);
591 if (sbuf->m == NULL) {
592 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
593 error = ENOMEM;
594 goto fail;
595 }
596
597 MCLGET(sbuf->m, M_DONTWAIT);
598 if (!(sbuf->m->m_flags & M_EXT)) {
599 m_freem(sbuf->m);
600 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
601 error = ENOMEM;
602 goto fail;
603 }
604
605 sbuf->m->m_pkthdr.len = sbuf->m->m_len = sbuf->m->m_ext.ext_size;
606
607 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
608 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sbuf->map);
609 if (error != 0) {
610 aprint_error_dev(&sc->sc_dev, "could not create rxbuf dma map\n");
611 m_freem(sbuf->m);
612 goto fail;
613 }
614
615 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
616 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
617 if (error != 0) {
618 bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
619 m_freem(sbuf->m);
620 aprint_error_dev(&sc->sc_dev, "could not map rxbuf dma memory\n");
621 goto fail;
622 }
623
624 sbd->type = IPW_SBD_TYPE_DATA;
625 sbd->priv = sbuf;
626 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
627 sbd->bd->len = htole32(MCLBYTES);
628
629 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
630 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
631
632 }
633
634 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, 0, IPW_RBD_SZ,
635 BUS_DMASYNC_PREREAD);
636
637 return 0;
638
639 fail: ipw_release(sc);
640 return error;
641 }
642
643 static void
644 ipw_release(struct ipw_softc *sc)
645 {
646 struct ipw_soft_buf *sbuf;
647 int i;
648
649 if (sc->tbd_map != NULL) {
650 if (sc->tbd_list != NULL) {
651 bus_dmamap_unload(sc->sc_dmat, sc->tbd_map);
652 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->tbd_list,
653 IPW_TBD_SZ);
654 bus_dmamem_free(sc->sc_dmat, &sc->tbd_seg, 1);
655 }
656 bus_dmamap_destroy(sc->sc_dmat, sc->tbd_map);
657 }
658
659 if (sc->rbd_map != NULL) {
660 if (sc->rbd_list != NULL) {
661 bus_dmamap_unload(sc->sc_dmat, sc->rbd_map);
662 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rbd_list,
663 IPW_RBD_SZ);
664 bus_dmamem_free(sc->sc_dmat, &sc->rbd_seg, 1);
665 }
666 bus_dmamap_destroy(sc->sc_dmat, sc->rbd_map);
667 }
668
669 if (sc->status_map != NULL) {
670 if (sc->status_list != NULL) {
671 bus_dmamap_unload(sc->sc_dmat, sc->status_map);
672 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->status_list,
673 IPW_RBD_SZ);
674 bus_dmamem_free(sc->sc_dmat, &sc->status_seg, 1);
675 }
676 bus_dmamap_destroy(sc->sc_dmat, sc->status_map);
677 }
678
679 for (i = 0; i < IPW_NTBD; i++)
680 ipw_release_sbd(sc, &sc->stbd_list[i]);
681
682 if (sc->cmd_map != NULL)
683 bus_dmamap_destroy(sc->sc_dmat, sc->cmd_map);
684
685 if (sc->hdr_list != NULL) {
686 bus_dmamap_unload(sc->sc_dmat, sc->hdr_map);
687 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->hdr_list,
688 IPW_NDATA * sizeof(struct ipw_hdr));
689 }
690 if (sc->hdr_map != NULL) {
691 bus_dmamem_free(sc->sc_dmat, &sc->hdr_seg, 1);
692 bus_dmamap_destroy(sc->sc_dmat, sc->hdr_map);
693 }
694
695 for (i = 0; i < IPW_NDATA; i++)
696 bus_dmamap_destroy(sc->sc_dmat, sc->tx_sbuf_list[i].map);
697
698 for (i = 0; i < IPW_NRBD; i++) {
699 sbuf = &sc->rx_sbuf_list[i];
700 if (sbuf->map != NULL) {
701 if (sbuf->m != NULL) {
702 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
703 m_freem(sbuf->m);
704 }
705 bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
706 }
707 }
708
709 }
710
711 static int
712 ipw_media_change(struct ifnet *ifp)
713 {
714 int error;
715
716 error = ieee80211_media_change(ifp);
717 if (error != ENETRESET)
718 return error;
719
720 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
721 ipw_init(ifp);
722
723 return 0;
724 }
725
726 /*
727 * The firmware automatically adapts the transmit speed. We report the current
728 * transmit speed here.
729 */
730 static void
731 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
732 {
733 #define N(a) (sizeof (a) / sizeof (a[0]))
734 struct ipw_softc *sc = ifp->if_softc;
735 struct ieee80211com *ic = &sc->sc_ic;
736 static const struct {
737 uint32_t val;
738 int rate;
739 } rates[] = {
740 { IPW_RATE_DS1, 2 },
741 { IPW_RATE_DS2, 4 },
742 { IPW_RATE_DS5, 11 },
743 { IPW_RATE_DS11, 22 },
744 };
745 uint32_t val;
746 int rate, i;
747
748 imr->ifm_status = IFM_AVALID;
749 imr->ifm_active = IFM_IEEE80211;
750 if (ic->ic_state == IEEE80211_S_RUN)
751 imr->ifm_status |= IFM_ACTIVE;
752
753 /* read current transmission rate from adapter */
754 val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf;
755
756 /* convert ipw rate to 802.11 rate */
757 for (i = 0; i < N(rates) && rates[i].val != val; i++);
758 rate = (i < N(rates)) ? rates[i].rate : 0;
759
760 imr->ifm_active |= IFM_IEEE80211_11B;
761 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
762 switch (ic->ic_opmode) {
763 case IEEE80211_M_STA:
764 break;
765
766 case IEEE80211_M_IBSS:
767 imr->ifm_active |= IFM_IEEE80211_ADHOC;
768 break;
769
770 case IEEE80211_M_MONITOR:
771 imr->ifm_active |= IFM_IEEE80211_MONITOR;
772 break;
773
774 case IEEE80211_M_AHDEMO:
775 case IEEE80211_M_HOSTAP:
776 /* should not get there */
777 break;
778 }
779 #undef N
780 }
781
782 static int
783 ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
784 int arg)
785 {
786 struct ifnet *ifp = ic->ic_ifp;
787 struct ipw_softc *sc = ifp->if_softc;
788 struct ieee80211_node *ni;
789 uint8_t macaddr[IEEE80211_ADDR_LEN];
790 uint32_t len;
791 struct ipw_rx_radiotap_header *wr = &sc->sc_rxtap;
792 struct ipw_tx_radiotap_header *wt = &sc->sc_txtap;
793
794 switch (nstate) {
795 case IEEE80211_S_INIT:
796 break;
797 default:
798 KASSERT(ic->ic_curchan != IEEE80211_CHAN_ANYC);
799 KASSERT(ic->ic_curchan != NULL);
800 wt->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
801 wt->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
802 wr->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
803 wr->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
804 break;
805 }
806
807 switch (nstate) {
808 case IEEE80211_S_RUN:
809 DELAY(200); /* firmware needs a short delay here */
810
811 len = IEEE80211_ADDR_LEN;
812 ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len);
813
814 ni = ieee80211_find_node(&ic->ic_scan, macaddr);
815 if (ni == NULL)
816 break;
817
818 ieee80211_ref_node(ni);
819 ieee80211_sta_join(ic, ni);
820 ieee80211_node_authorize(ni);
821
822 if (ic->ic_opmode == IEEE80211_M_STA)
823 ieee80211_notify_node_join(ic, ni, 1);
824 break;
825
826 case IEEE80211_S_INIT:
827 case IEEE80211_S_SCAN:
828 case IEEE80211_S_AUTH:
829 case IEEE80211_S_ASSOC:
830 break;
831 }
832
833 ic->ic_state = nstate;
834 return 0;
835 }
836
837 /*
838 * Read 16 bits at address 'addr' from the serial EEPROM.
839 */
840 static uint16_t
841 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
842 {
843 uint32_t tmp;
844 uint16_t val;
845 int n;
846
847 /* clock C once before the first command */
848 IPW_EEPROM_CTL(sc, 0);
849 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
850 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
851 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
852
853 /* write start bit (1) */
854 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
855 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
856
857 /* write READ opcode (10) */
858 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
859 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
860 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
861 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
862
863 /* write address A7-A0 */
864 for (n = 7; n >= 0; n--) {
865 IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
866 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
867 IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
868 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
869 }
870
871 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
872
873 /* read data Q15-Q0 */
874 val = 0;
875 for (n = 15; n >= 0; n--) {
876 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
877 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
878 tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
879 val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
880 }
881
882 IPW_EEPROM_CTL(sc, 0);
883
884 /* clear Chip Select and clock C */
885 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
886 IPW_EEPROM_CTL(sc, 0);
887 IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
888
889 return le16toh(val);
890 }
891
892 static void
893 ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
894 {
895 struct ipw_cmd *cmd;
896
897 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof (struct ipw_cmd),
898 BUS_DMASYNC_POSTREAD);
899
900 cmd = mtod(sbuf->m, struct ipw_cmd *);
901
902 DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type),
903 le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
904 le32toh(cmd->status)));
905
906 wakeup(&sc->cmd);
907 }
908
909 static void
910 ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
911 {
912 struct ieee80211com *ic = &sc->sc_ic;
913 struct ifnet *ifp = sc->sc_ic.ic_ifp;
914 uint32_t state;
915
916 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof state,
917 BUS_DMASYNC_POSTREAD);
918
919 state = le32toh(*mtod(sbuf->m, uint32_t *));
920
921 DPRINTFN(2, ("entering state %u\n", state));
922
923 switch (state) {
924 case IPW_STATE_ASSOCIATED:
925 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
926 break;
927
928 case IPW_STATE_SCANNING:
929 /* don't leave run state on background scan */
930 if (ic->ic_state != IEEE80211_S_RUN)
931 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
932
933 ic->ic_flags |= IEEE80211_F_SCAN;
934 break;
935
936 case IPW_STATE_SCAN_COMPLETE:
937 ieee80211_notify_scan_done(ic);
938 ic->ic_flags &= ~IEEE80211_F_SCAN;
939 break;
940
941 case IPW_STATE_ASSOCIATION_LOST:
942 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
943 break;
944
945 case IPW_STATE_RADIO_DISABLED:
946 ic->ic_ifp->if_flags &= ~IFF_UP;
947 ipw_stop(ifp, 1);
948 break;
949 }
950 }
951
952 /*
953 * XXX: Hack to set the current channel to the value advertised in beacons or
954 * probe responses. Only used during AP detection.
955 */
956 static void
957 ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m)
958 {
959 struct ieee80211_frame *wh;
960 uint8_t subtype;
961 uint8_t *frm, *efrm;
962
963 wh = mtod(m, struct ieee80211_frame *);
964
965 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
966 return;
967
968 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
969
970 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
971 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
972 return;
973
974 frm = (uint8_t *)(wh + 1);
975 efrm = mtod(m, uint8_t *) + m->m_len;
976
977 frm += 12; /* skip tstamp, bintval and capinfo fields */
978 while (frm < efrm) {
979 if (*frm == IEEE80211_ELEMID_DSPARMS)
980 #if IEEE80211_CHAN_MAX < 255
981 if (frm[2] <= IEEE80211_CHAN_MAX)
982 #endif
983 ic->ic_curchan = &ic->ic_channels[frm[2]];
984
985 frm += frm[1] + 2;
986 }
987 }
988
989 static void
990 ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
991 struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
992 {
993 struct ieee80211com *ic = &sc->sc_ic;
994 struct ifnet *ifp = &sc->sc_if;
995 struct mbuf *mnew, *m;
996 struct ieee80211_frame *wh;
997 struct ieee80211_node *ni;
998 int error;
999
1000 DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
1001 status->rssi));
1002
1003 if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
1004 le32toh(status->len) > MCLBYTES)
1005 return;
1006
1007 /*
1008 * Try to allocate a new mbuf for this ring element and load it before
1009 * processing the current mbuf. If the ring element cannot be loaded,
1010 * drop the received packet and reuse the old mbuf. In the unlikely
1011 * case that the old mbuf can't be reloaded either, explicitly panic.
1012 */
1013 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1014 if (mnew == NULL) {
1015 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
1016 ifp->if_ierrors++;
1017 return;
1018 }
1019
1020 MCLGET(mnew, M_DONTWAIT);
1021 if (!(mnew->m_flags & M_EXT)) {
1022 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
1023 m_freem(mnew);
1024 ifp->if_ierrors++;
1025 return;
1026 }
1027
1028 mnew->m_pkthdr.len = mnew->m_len = mnew->m_ext.ext_size;
1029
1030 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, le32toh(status->len),
1031 BUS_DMASYNC_POSTREAD);
1032 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
1033
1034 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, mnew,
1035 BUS_DMA_READ | BUS_DMA_NOWAIT);
1036 if (error != 0) {
1037 aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map\n");
1038 m_freem(mnew);
1039
1040 /* try to reload the old mbuf */
1041 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
1042 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
1043 if (error != 0) {
1044 /* very unlikely that it will fail... */
1045 panic("%s: unable to remap rx buf",
1046 device_xname(&sc->sc_dev));
1047 }
1048 ifp->if_ierrors++;
1049 return;
1050 }
1051
1052 /*
1053 * New mbuf successfully loaded, update Rx ring and continue
1054 * processing.
1055 */
1056 m = sbuf->m;
1057 sbuf->m = mnew;
1058 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
1059
1060 /* finalize mbuf */
1061 m->m_pkthdr.rcvif = ifp;
1062 m->m_pkthdr.len = m->m_len = le32toh(status->len);
1063
1064 #if NBPFILTER > 0
1065 if (sc->sc_drvbpf != NULL) {
1066 struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
1067
1068 tap->wr_antsignal = status->rssi;
1069
1070 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1071 }
1072 #endif
1073
1074 if (ic->ic_state == IEEE80211_S_SCAN)
1075 ipw_fix_channel(ic, m);
1076
1077 wh = mtod(m, struct ieee80211_frame *);
1078 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1079
1080 /* send the frame to the 802.11 layer */
1081 ieee80211_input(ic, m, ni, status->rssi, 0);
1082
1083 /* node is no longer needed */
1084 ieee80211_free_node(ni);
1085
1086 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
1087 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1088 }
1089
1090 static void
1091 ipw_rx_intr(struct ipw_softc *sc)
1092 {
1093 struct ipw_status *status;
1094 struct ipw_soft_bd *sbd;
1095 struct ipw_soft_buf *sbuf;
1096 uint32_t r, i;
1097
1098 if (!(sc->flags & IPW_FLAG_FW_INITED))
1099 return;
1100
1101 r = CSR_READ_4(sc, IPW_CSR_RX_READ);
1102
1103 for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
1104
1105 /* firmware was killed, stop processing received frames */
1106 if (!(sc->flags & IPW_FLAG_FW_INITED))
1107 return;
1108
1109 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
1110 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1111 BUS_DMASYNC_POSTREAD);
1112
1113 bus_dmamap_sync(sc->sc_dmat, sc->status_map,
1114 i * sizeof (struct ipw_status), sizeof (struct ipw_status),
1115 BUS_DMASYNC_POSTREAD);
1116
1117 status = &sc->status_list[i];
1118 sbd = &sc->srbd_list[i];
1119 sbuf = sbd->priv;
1120
1121 switch (le16toh(status->code) & 0xf) {
1122 case IPW_STATUS_CODE_COMMAND:
1123 ipw_command_intr(sc, sbuf);
1124 break;
1125
1126 case IPW_STATUS_CODE_NEWSTATE:
1127 ipw_newstate_intr(sc, sbuf);
1128 break;
1129
1130 case IPW_STATUS_CODE_DATA_802_3:
1131 case IPW_STATUS_CODE_DATA_802_11:
1132 ipw_data_intr(sc, status, sbd, sbuf);
1133 break;
1134
1135 case IPW_STATUS_CODE_NOTIFICATION:
1136 DPRINTFN(2, ("received notification\n"));
1137 break;
1138
1139 default:
1140 aprint_error_dev(&sc->sc_dev, "unknown status code %u\n",
1141 le16toh(status->code));
1142 }
1143
1144 sbd->bd->flags = 0;
1145
1146 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
1147 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1148 BUS_DMASYNC_PREREAD);
1149
1150 bus_dmamap_sync(sc->sc_dmat, sc->status_map,
1151 i * sizeof (struct ipw_status), sizeof (struct ipw_status),
1152 BUS_DMASYNC_PREREAD);
1153 }
1154
1155 /* Tell the firmware what we have processed */
1156 sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
1157 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
1158 }
1159
1160 static void
1161 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
1162 {
1163 struct ieee80211com *ic;
1164 struct ipw_soft_hdr *shdr;
1165 struct ipw_soft_buf *sbuf;
1166
1167 switch (sbd->type) {
1168 case IPW_SBD_TYPE_COMMAND:
1169 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map,
1170 0, sizeof(struct ipw_cmd), BUS_DMASYNC_POSTWRITE);
1171 /* bus_dmamap_unload(sc->sc_dmat, sc->cmd_map); */
1172 break;
1173
1174 case IPW_SBD_TYPE_HEADER:
1175 shdr = sbd->priv;
1176 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map,
1177 shdr->offset, sizeof(struct ipw_hdr), BUS_DMASYNC_POSTWRITE);
1178 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
1179 break;
1180
1181 case IPW_SBD_TYPE_DATA:
1182 ic = &sc->sc_ic;
1183 sbuf = sbd->priv;
1184
1185 bus_dmamap_sync(sc->sc_dmat, sbuf->map,
1186 0, MCLBYTES, BUS_DMASYNC_POSTWRITE);
1187 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
1188 m_freem(sbuf->m);
1189 if (sbuf->ni != NULL)
1190 ieee80211_free_node(sbuf->ni);
1191 /* kill watchdog timer */
1192 sc->sc_tx_timer = 0;
1193 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
1194 break;
1195 }
1196 sbd->type = IPW_SBD_TYPE_NOASSOC;
1197 }
1198
1199 static void
1200 ipw_tx_intr(struct ipw_softc *sc)
1201 {
1202 struct ifnet *ifp = &sc->sc_if;
1203 struct ipw_soft_bd *sbd;
1204 uint32_t r, i;
1205
1206 if (!(sc->flags & IPW_FLAG_FW_INITED))
1207 return;
1208
1209 r = CSR_READ_4(sc, IPW_CSR_TX_READ);
1210
1211 for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
1212 sbd = &sc->stbd_list[i];
1213
1214 if (sbd->type == IPW_SBD_TYPE_DATA)
1215 ifp->if_opackets++;
1216
1217 ipw_release_sbd(sc, sbd);
1218 sc->txfree++;
1219 }
1220
1221 /* remember what the firmware has processed */
1222 sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
1223
1224 /* Call start() since some buffer descriptors have been released */
1225 ifp->if_flags &= ~IFF_OACTIVE;
1226 (*ifp->if_start)(ifp);
1227 }
1228
1229 static int
1230 ipw_intr(void *arg)
1231 {
1232 struct ipw_softc *sc = arg;
1233 uint32_t r;
1234
1235 r = CSR_READ_4(sc, IPW_CSR_INTR);
1236 if (r == 0 || r == 0xffffffff)
1237 return 0;
1238
1239 /* Disable interrupts */
1240 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1241
1242 if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
1243 aprint_error_dev(&sc->sc_dev, "fatal error\n");
1244 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1245 ipw_stop(&sc->sc_if, 1);
1246 }
1247
1248 if (r & IPW_INTR_FW_INIT_DONE) {
1249 if (!(r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)))
1250 wakeup(sc);
1251 }
1252
1253 if (r & IPW_INTR_RX_TRANSFER)
1254 ipw_rx_intr(sc);
1255
1256 if (r & IPW_INTR_TX_TRANSFER)
1257 ipw_tx_intr(sc);
1258
1259 /* Acknowledge all interrupts */
1260 CSR_WRITE_4(sc, IPW_CSR_INTR, r);
1261
1262 /* Re-enable interrupts */
1263 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1264
1265 return 0;
1266 }
1267
1268 /*
1269 * Send a command to the firmware and wait for the acknowledgement.
1270 */
1271 static int
1272 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
1273 {
1274 struct ipw_soft_bd *sbd;
1275
1276 sbd = &sc->stbd_list[sc->txcur];
1277
1278 sc->cmd.type = htole32(type);
1279 sc->cmd.subtype = 0;
1280 sc->cmd.len = htole32(len);
1281 sc->cmd.seq = 0;
1282
1283 (void)memcpy(sc->cmd.data, data, len);
1284
1285 sbd->type = IPW_SBD_TYPE_COMMAND;
1286 sbd->bd->physaddr = htole32(sc->cmd_map->dm_segs[0].ds_addr);
1287 sbd->bd->len = htole32(sizeof (struct ipw_cmd));
1288 sbd->bd->nfrag = 1;
1289 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
1290 IPW_BD_FLAG_TX_LAST_FRAGMENT;
1291
1292 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map, 0, sizeof (struct ipw_cmd),
1293 BUS_DMASYNC_PREWRITE);
1294
1295 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1296 sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1297 BUS_DMASYNC_PREWRITE);
1298
1299 DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len));
1300
1301 /* kick firmware */
1302 sc->txfree--;
1303 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1304 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1305
1306 /* Wait at most one second for command to complete */
1307 return tsleep(&sc->cmd, 0, "ipwcmd", hz);
1308 }
1309
1310 static int
1311 ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
1312 {
1313 struct ipw_softc *sc = ifp->if_softc;
1314 struct ieee80211com *ic = &sc->sc_ic;
1315 struct ieee80211_frame *wh;
1316 struct ipw_soft_bd *sbd;
1317 struct ipw_soft_hdr *shdr;
1318 struct ipw_soft_buf *sbuf;
1319 struct ieee80211_key *k;
1320 struct mbuf *mnew;
1321 int error, i;
1322
1323 wh = mtod(m0, struct ieee80211_frame *);
1324
1325 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1326 k = ieee80211_crypto_encap(ic, ni, m0);
1327 if (k == NULL) {
1328 m_freem(m0);
1329 return ENOBUFS;
1330 }
1331
1332 /* packet header may have moved, reset our local pointer */
1333 wh = mtod(m0, struct ieee80211_frame *);
1334 }
1335
1336 #if NBPFILTER > 0
1337 if (sc->sc_drvbpf != NULL) {
1338 struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
1339
1340 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1341 }
1342 #endif
1343
1344 shdr = TAILQ_FIRST(&sc->sc_free_shdr);
1345 sbuf = TAILQ_FIRST(&sc->sc_free_sbuf);
1346 KASSERT(shdr != NULL && sbuf != NULL);
1347
1348 shdr->hdr->type = htole32(IPW_HDR_TYPE_SEND);
1349 shdr->hdr->subtype = 0;
1350 shdr->hdr->encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
1351 shdr->hdr->encrypt = 0;
1352 shdr->hdr->keyidx = 0;
1353 shdr->hdr->keysz = 0;
1354 shdr->hdr->fragmentsz = 0;
1355 IEEE80211_ADDR_COPY(shdr->hdr->src_addr, wh->i_addr2);
1356 if (ic->ic_opmode == IEEE80211_M_STA)
1357 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr3);
1358 else
1359 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr1);
1360
1361 /* trim IEEE802.11 header */
1362 m_adj(m0, sizeof (struct ieee80211_frame));
1363
1364 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0, BUS_DMA_NOWAIT);
1365 if (error != 0 && error != EFBIG) {
1366 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1367 error);
1368 m_freem(m0);
1369 return error;
1370 }
1371
1372 if (error != 0) {
1373 /* too many fragments, linearize */
1374
1375 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1376 if (mnew == NULL) {
1377 m_freem(m0);
1378 return ENOMEM;
1379 }
1380
1381 M_COPY_PKTHDR(mnew, m0);
1382
1383 /* If the data won't fit in the header, get a cluster */
1384 if (m0->m_pkthdr.len > MHLEN) {
1385 MCLGET(mnew, M_DONTWAIT);
1386 if (!(mnew->m_flags & M_EXT)) {
1387 m_freem(m0);
1388 m_freem(mnew);
1389 return ENOMEM;
1390 }
1391 }
1392 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1393 m_freem(m0);
1394 mnew->m_len = mnew->m_pkthdr.len;
1395 m0 = mnew;
1396
1397 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0,
1398 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1399 if (error != 0) {
1400 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error);
1401 m_freem(m0);
1402 return error;
1403 }
1404 }
1405
1406 TAILQ_REMOVE(&sc->sc_free_sbuf, sbuf, next);
1407 TAILQ_REMOVE(&sc->sc_free_shdr, shdr, next);
1408
1409 sbd = &sc->stbd_list[sc->txcur];
1410 sbd->type = IPW_SBD_TYPE_HEADER;
1411 sbd->priv = shdr;
1412 sbd->bd->physaddr = htole32(shdr->addr);
1413 sbd->bd->len = htole32(sizeof (struct ipw_hdr));
1414 sbd->bd->nfrag = 1 + sbuf->map->dm_nsegs;
1415 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
1416 IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1417
1418 DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, )\n",
1419 shdr->hdr->type, shdr->hdr->subtype, shdr->hdr->encrypted,
1420 shdr->hdr->encrypt));
1421 DPRINTFN(5, ("%s->", ether_sprintf(shdr->hdr->src_addr)));
1422 DPRINTFN(5, ("%s\n", ether_sprintf(shdr->hdr->dst_addr)));
1423
1424 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1425 sc->txcur * sizeof (struct ipw_bd),
1426 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
1427
1428 sc->txfree--;
1429 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1430
1431 sbuf->m = m0;
1432 sbuf->ni = ni;
1433
1434 for (i = 0; i < sbuf->map->dm_nsegs; i++) {
1435 sbd = &sc->stbd_list[sc->txcur];
1436
1437 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[i].ds_addr);
1438 sbd->bd->len = htole32(sbuf->map->dm_segs[i].ds_len);
1439 sbd->bd->nfrag = 0;
1440 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
1441 if (i == sbuf->map->dm_nsegs - 1) {
1442 sbd->type = IPW_SBD_TYPE_DATA;
1443 sbd->priv = sbuf;
1444 sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
1445 } else {
1446 sbd->type = IPW_SBD_TYPE_NOASSOC;
1447 sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1448 }
1449
1450 DPRINTFN(5, ("sending fragment (%d, %d)\n", i,
1451 (int)sbuf->map->dm_segs[i].ds_len));
1452
1453 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1454 sc->txcur * sizeof (struct ipw_bd),
1455 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
1456
1457 sc->txfree--;
1458 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1459 }
1460
1461 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map, shdr->offset,
1462 sizeof (struct ipw_hdr), BUS_DMASYNC_PREWRITE);
1463
1464 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, MCLBYTES,
1465 BUS_DMASYNC_PREWRITE);
1466
1467 /* Inform firmware about this new packet */
1468 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1469
1470 return 0;
1471 }
1472
1473 static void
1474 ipw_start(struct ifnet *ifp)
1475 {
1476 struct ipw_softc *sc = ifp->if_softc;
1477 struct ieee80211com *ic = &sc->sc_ic;
1478 struct mbuf *m0;
1479 struct ether_header *eh;
1480 struct ieee80211_node *ni;
1481
1482
1483 if (ic->ic_state != IEEE80211_S_RUN)
1484 return;
1485
1486 for (;;) {
1487 IF_DEQUEUE(&ifp->if_snd, m0);
1488 if (m0 == NULL)
1489 break;
1490
1491 if (sc->txfree < 1 + IPW_MAX_NSEG) {
1492 IF_PREPEND(&ifp->if_snd, m0);
1493 ifp->if_flags |= IFF_OACTIVE;
1494 break;
1495 }
1496
1497 if (m0->m_len < sizeof (struct ether_header) &&
1498 (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL)
1499 continue;
1500
1501 eh = mtod(m0, struct ether_header *);
1502 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1503 if (ni == NULL) {
1504 m_freem(m0);
1505 continue;
1506 }
1507
1508 #if NBPFILTER > 0
1509 if (ifp->if_bpf != NULL)
1510 bpf_mtap(ifp->if_bpf, m0);
1511 #endif
1512
1513 m0 = ieee80211_encap(ic, m0, ni);
1514 if (m0 == NULL) {
1515 ieee80211_free_node(ni);
1516 continue;
1517 }
1518
1519 #if NBPFILTER > 0
1520 if (ic->ic_rawbpf != NULL)
1521 bpf_mtap(ic->ic_rawbpf, m0);
1522 #endif
1523
1524 if (ipw_tx_start(ifp, m0, ni) != 0) {
1525 ieee80211_free_node(ni);
1526 ifp->if_oerrors++;
1527 break;
1528 }
1529
1530 /* start watchdog timer */
1531 sc->sc_tx_timer = 5;
1532 ifp->if_timer = 1;
1533 }
1534 }
1535
1536 static void
1537 ipw_watchdog(struct ifnet *ifp)
1538 {
1539 struct ipw_softc *sc = ifp->if_softc;
1540
1541 ifp->if_timer = 0;
1542
1543 if (sc->sc_tx_timer > 0) {
1544 if (--sc->sc_tx_timer == 0) {
1545 aprint_error_dev(&sc->sc_dev, "device timeout\n");
1546 ifp->if_oerrors++;
1547 ifp->if_flags &= ~IFF_UP;
1548 ipw_stop(ifp, 1);
1549 return;
1550 }
1551 ifp->if_timer = 1;
1552 }
1553
1554 ieee80211_watchdog(&sc->sc_ic);
1555 }
1556
1557 static int
1558 ipw_get_table1(struct ipw_softc *sc, uint32_t *tbl)
1559 {
1560 uint32_t addr, size, i;
1561
1562 if (!(sc->flags & IPW_FLAG_FW_INITED))
1563 return ENOTTY;
1564
1565 CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
1566
1567 size = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
1568 if (suword(tbl, size) != 0)
1569 return EFAULT;
1570
1571 for (i = 1, ++tbl; i < size; i++, tbl++) {
1572 addr = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
1573 if (suword(tbl, MEM_READ_4(sc, addr)) != 0)
1574 return EFAULT;
1575 }
1576 return 0;
1577 }
1578
1579 static int
1580 ipw_get_radio(struct ipw_softc *sc, int *ret)
1581 {
1582 uint32_t addr;
1583
1584 if (!(sc->flags & IPW_FLAG_FW_INITED))
1585 return ENOTTY;
1586
1587 addr = ipw_read_table1(sc, IPW_INFO_EEPROM_ADDRESS);
1588 if ((MEM_READ_4(sc, addr + 32) >> 24) & 1) {
1589 suword(ret, -1);
1590 return 0;
1591 }
1592
1593 if (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)
1594 suword(ret, 0);
1595 else
1596 suword(ret, 1);
1597
1598 return 0;
1599 }
1600
1601 static int
1602 ipw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1603 {
1604 #define IS_RUNNING(ifp) \
1605 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1606
1607 struct ipw_softc *sc = ifp->if_softc;
1608 struct ieee80211com *ic = &sc->sc_ic;
1609 struct ifreq *ifr = (struct ifreq *)data;
1610 int s, error = 0;
1611
1612 s = splnet();
1613
1614 switch (cmd) {
1615 case SIOCSIFFLAGS:
1616 if (ifp->if_flags & IFF_UP) {
1617 if (!(ifp->if_flags & IFF_RUNNING))
1618 ipw_init(ifp);
1619 } else {
1620 if (ifp->if_flags & IFF_RUNNING)
1621 ipw_stop(ifp, 1);
1622 }
1623 break;
1624
1625 case SIOCADDMULTI:
1626 case SIOCDELMULTI:
1627 /* XXX no h/w multicast filter? --dyoung */
1628 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1629 /* setup multicast filter, etc */
1630 error = 0;
1631 }
1632 break;
1633
1634 case SIOCGTABLE1:
1635 error = ipw_get_table1(sc, (uint32_t *)ifr->ifr_data);
1636 break;
1637
1638 case SIOCGRADIO:
1639 error = ipw_get_radio(sc, (int *)ifr->ifr_data);
1640 break;
1641
1642 case SIOCSIFMEDIA:
1643 if (ifr->ifr_media & IFM_IEEE80211_ADHOC)
1644 strlcpy(sc->sc_fwname, "ipw2100-1.2-i.fw",
1645 sizeof(sc->sc_fwname));
1646 else if (ifr->ifr_media & IFM_IEEE80211_MONITOR)
1647 strlcpy(sc->sc_fwname, "ipw2100-1.2-p.fw",
1648 sizeof(sc->sc_fwname));
1649 else
1650 strlcpy(sc->sc_fwname, "ipw2100-1.2.fw",
1651 sizeof(sc->sc_fwname));
1652
1653 ipw_free_firmware(sc);
1654 /* FALLTRHOUGH */
1655 default:
1656 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1657 if (error != ENETRESET)
1658 break;
1659
1660 if (error == ENETRESET) {
1661 if (IS_RUNNING(ifp) &&
1662 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1663 ipw_init(ifp);
1664 error = 0;
1665 }
1666
1667 }
1668
1669 splx(s);
1670 return error;
1671 #undef IS_RUNNING
1672 }
1673
1674 static uint32_t
1675 ipw_read_table1(struct ipw_softc *sc, uint32_t off)
1676 {
1677 return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
1678 }
1679
1680 static void
1681 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
1682 {
1683 MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
1684 }
1685
1686 static int
1687 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
1688 {
1689 uint32_t addr, info;
1690 uint16_t count, size;
1691 uint32_t total;
1692
1693 /* addr[4] + count[2] + size[2] */
1694 addr = MEM_READ_4(sc, sc->table2_base + off);
1695 info = MEM_READ_4(sc, sc->table2_base + off + 4);
1696
1697 count = info >> 16;
1698 size = info & 0xffff;
1699 total = count * size;
1700
1701 if (total > *len) {
1702 *len = total;
1703 return EINVAL;
1704 }
1705
1706 *len = total;
1707 ipw_read_mem_1(sc, addr, buf, total);
1708
1709 return 0;
1710 }
1711
1712 static void
1713 ipw_stop_master(struct ipw_softc *sc)
1714 {
1715 int ntries;
1716
1717 /* disable interrupts */
1718 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1719
1720 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
1721 for (ntries = 0; ntries < 50; ntries++) {
1722 if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
1723 break;
1724 DELAY(10);
1725 }
1726 if (ntries == 50)
1727 aprint_error_dev(&sc->sc_dev, "timeout waiting for master\n");
1728
1729 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
1730 IPW_RST_PRINCETON_RESET);
1731
1732 sc->flags &= ~IPW_FLAG_FW_INITED;
1733 }
1734
1735 static int
1736 ipw_reset(struct ipw_softc *sc)
1737 {
1738 int ntries;
1739
1740 ipw_stop_master(sc);
1741
1742 /* move adapter to D0 state */
1743 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1744 IPW_CTL_INIT);
1745
1746 /* wait for clock stabilization */
1747 for (ntries = 0; ntries < 1000; ntries++) {
1748 if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
1749 break;
1750 DELAY(200);
1751 }
1752 if (ntries == 1000)
1753 return EIO;
1754
1755 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
1756 IPW_RST_SW_RESET);
1757
1758 DELAY(10);
1759
1760 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1761 IPW_CTL_INIT);
1762
1763 return 0;
1764 }
1765
1766 /*
1767 * Upload the microcode to the device.
1768 */
1769 static int
1770 ipw_load_ucode(struct ipw_softc *sc, u_char *uc, int size)
1771 {
1772 int ntries;
1773
1774 MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
1775 CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1776
1777 MEM_WRITE_2(sc, 0x220000, 0x0703);
1778 MEM_WRITE_2(sc, 0x220000, 0x0707);
1779
1780 MEM_WRITE_1(sc, 0x210014, 0x72);
1781 MEM_WRITE_1(sc, 0x210014, 0x72);
1782
1783 MEM_WRITE_1(sc, 0x210000, 0x40);
1784 MEM_WRITE_1(sc, 0x210000, 0x00);
1785 MEM_WRITE_1(sc, 0x210000, 0x40);
1786
1787 MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
1788
1789 MEM_WRITE_1(sc, 0x210000, 0x00);
1790 MEM_WRITE_1(sc, 0x210000, 0x00);
1791 MEM_WRITE_1(sc, 0x210000, 0x80);
1792
1793 MEM_WRITE_2(sc, 0x220000, 0x0703);
1794 MEM_WRITE_2(sc, 0x220000, 0x0707);
1795
1796 MEM_WRITE_1(sc, 0x210014, 0x72);
1797 MEM_WRITE_1(sc, 0x210014, 0x72);
1798
1799 MEM_WRITE_1(sc, 0x210000, 0x00);
1800 MEM_WRITE_1(sc, 0x210000, 0x80);
1801
1802 for (ntries = 0; ntries < 10; ntries++) {
1803 if (MEM_READ_1(sc, 0x210000) & 1)
1804 break;
1805 DELAY(10);
1806 }
1807 if (ntries == 10) {
1808 aprint_error_dev(&sc->sc_dev, "timeout waiting for ucode to initialize\n");
1809 return EIO;
1810 }
1811
1812 MEM_WRITE_4(sc, 0x3000e0, 0);
1813
1814 return 0;
1815 }
1816
1817 /* set of macros to handle unaligned little endian data in firmware image */
1818 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
1819 #define GETLE16(p) ((p)[0] | (p)[1] << 8)
1820 static int
1821 ipw_load_firmware(struct ipw_softc *sc, u_char *fw, int size)
1822 {
1823 u_char *p, *end;
1824 uint32_t dst;
1825 uint16_t len;
1826 int error;
1827
1828 p = fw;
1829 end = fw + size;
1830 while (p < end) {
1831 dst = GETLE32(p); p += 4;
1832 len = GETLE16(p); p += 2;
1833
1834 ipw_write_mem_1(sc, dst, p, len);
1835 p += len;
1836 }
1837
1838 CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
1839 IPW_IO_LED_OFF);
1840
1841 /* enable interrupts */
1842 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1843
1844 /* kick the firmware */
1845 CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1846
1847 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1848 IPW_CTL_ALLOW_STANDBY);
1849
1850 /* wait at most one second for firmware initialization to complete */
1851 if ((error = tsleep(sc, 0, "ipwinit", hz)) != 0) {
1852 aprint_error_dev(&sc->sc_dev, "timeout waiting for firmware initialization "
1853 "to complete\n");
1854 return error;
1855 }
1856
1857 CSR_WRITE_4(sc, IPW_CSR_IO, CSR_READ_4(sc, IPW_CSR_IO) |
1858 IPW_IO_GPIO1_MASK | IPW_IO_GPIO3_MASK);
1859
1860 return 0;
1861 }
1862
1863 /*
1864 * Store firmware into kernel memory so we can download it when we need to,
1865 * e.g when the adapter wakes up from suspend mode.
1866 */
1867 static int
1868 ipw_cache_firmware(struct ipw_softc *sc)
1869 {
1870 struct ipw_firmware *fw = &sc->fw;
1871 struct ipw_firmware_hdr hdr;
1872 firmware_handle_t fwh;
1873 off_t fwsz, p;
1874 int error;
1875
1876 ipw_free_firmware(sc);
1877
1878 if ((error = firmware_open("if_ipw", sc->sc_fwname, &fwh)) != 0)
1879 goto fail0;
1880
1881 fwsz = firmware_get_size(fwh);
1882
1883 if (fwsz < sizeof(hdr))
1884 goto fail2;
1885
1886 if ((error = firmware_read(fwh, 0, &hdr, sizeof(hdr))) != 0)
1887 goto fail2;
1888
1889 fw->main_size = le32toh(hdr.main_size);
1890 fw->ucode_size = le32toh(hdr.ucode_size);
1891
1892 fw->main = firmware_malloc(fw->main_size);
1893 if (fw->main == NULL) {
1894 error = ENOMEM;
1895 goto fail1;
1896 }
1897
1898 fw->ucode = firmware_malloc(fw->ucode_size);
1899 if (fw->ucode == NULL) {
1900 error = ENOMEM;
1901 goto fail2;
1902 }
1903
1904 p = sizeof(hdr);
1905 if ((error = firmware_read(fwh, p, fw->main, fw->main_size)) != 0)
1906 goto fail3;
1907
1908 p += fw->main_size;
1909 if ((error = firmware_read(fwh, p, fw->ucode, fw->ucode_size)) != 0)
1910 goto fail3;
1911
1912 DPRINTF(("Firmware cached: main %u, ucode %u\n", fw->main_size,
1913 fw->ucode_size));
1914
1915 sc->flags |= IPW_FLAG_FW_CACHED;
1916
1917 firmware_close(fwh);
1918
1919 return 0;
1920
1921 fail3: firmware_free(fw->ucode, 0);
1922 fail2: firmware_free(fw->main, 0);
1923 fail1: firmware_close(fwh);
1924 fail0:
1925 return error;
1926 }
1927
1928 static void
1929 ipw_free_firmware(struct ipw_softc *sc)
1930 {
1931 if (!(sc->flags & IPW_FLAG_FW_CACHED))
1932 return;
1933
1934 firmware_free(sc->fw.main, 0);
1935 firmware_free(sc->fw.ucode, 0);
1936
1937 sc->flags &= ~IPW_FLAG_FW_CACHED;
1938 }
1939
1940 static int
1941 ipw_config(struct ipw_softc *sc)
1942 {
1943 struct ieee80211com *ic = &sc->sc_ic;
1944 struct ifnet *ifp = &sc->sc_if;
1945 struct ipw_security security;
1946 struct ieee80211_key *k;
1947 struct ipw_wep_key wepkey;
1948 struct ipw_scan_options options;
1949 struct ipw_configuration config;
1950 uint32_t data;
1951 int error, i;
1952
1953 switch (ic->ic_opmode) {
1954 case IEEE80211_M_STA:
1955 case IEEE80211_M_HOSTAP:
1956 data = htole32(IPW_MODE_BSS);
1957 break;
1958
1959 case IEEE80211_M_IBSS:
1960 case IEEE80211_M_AHDEMO:
1961 data = htole32(IPW_MODE_IBSS);
1962 break;
1963
1964 case IEEE80211_M_MONITOR:
1965 data = htole32(IPW_MODE_MONITOR);
1966 break;
1967 }
1968 DPRINTF(("Setting mode to %u\n", le32toh(data)));
1969 error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
1970 if (error != 0)
1971 return error;
1972
1973 if (ic->ic_opmode == IEEE80211_M_IBSS ||
1974 ic->ic_opmode == IEEE80211_M_MONITOR) {
1975 data = htole32(ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
1976 DPRINTF(("Setting channel to %u\n", le32toh(data)));
1977 error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
1978 if (error != 0)
1979 return error;
1980 }
1981
1982 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1983 DPRINTF(("Enabling adapter\n"));
1984 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
1985 }
1986
1987 DPRINTF(("Setting MAC to %s\n", ether_sprintf(ic->ic_myaddr)));
1988 if_set_sadl(ifp, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1989 error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
1990 IEEE80211_ADDR_LEN);
1991 if (error != 0)
1992 return error;
1993
1994 config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
1995 IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
1996
1997 if (ic->ic_opmode == IEEE80211_M_IBSS)
1998 config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
1999 if (ifp->if_flags & IFF_PROMISC)
2000 config.flags |= htole32(IPW_CFG_PROMISCUOUS);
2001 config.bss_chan = htole32(0x3fff); /* channels 1-14 */
2002 config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
2003 DPRINTF(("Setting adapter configuration 0x%08x\n", config.flags));
2004 error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
2005 if (error != 0)
2006 return error;
2007
2008 data = htole32(0x3); /* 1, 2 */
2009 DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
2010 error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
2011 if (error != 0)
2012 return error;
2013
2014 data = htole32(0xf); /* 1, 2, 5.5, 11 */
2015 DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
2016 error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
2017 if (error != 0)
2018 return error;
2019
2020 data = htole32(IPW_POWER_MODE_CAM);
2021 DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2022 error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
2023 if (error != 0)
2024 return error;
2025
2026 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2027 data = htole32(32); /* default value */
2028 DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
2029 error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
2030 sizeof data);
2031 if (error != 0)
2032 return error;
2033 }
2034
2035 data = htole32(ic->ic_rtsthreshold);
2036 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2037 error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2038 if (error != 0)
2039 return error;
2040
2041 data = htole32(ic->ic_fragthreshold);
2042 DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
2043 error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2044 if (error != 0)
2045 return error;
2046
2047 #ifdef IPW_DEBUG
2048 if (ipw_debug > 0) {
2049 printf("Setting ESSID to ");
2050 ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen);
2051 printf("\n");
2052 }
2053 #endif
2054 error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid,
2055 ic->ic_des_esslen);
2056 if (error != 0)
2057 return error;
2058
2059 /* no mandatory BSSID */
2060 DPRINTF(("Setting mandatory BSSID to null\n"));
2061 error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
2062 if (error != 0)
2063 return error;
2064
2065 if (ic->ic_flags & IEEE80211_F_DESBSSID) {
2066 DPRINTF(("Setting desired BSSID to %s\n",
2067 ether_sprintf(ic->ic_des_bssid)));
2068 error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID,
2069 ic->ic_des_bssid, IEEE80211_ADDR_LEN);
2070 if (error != 0)
2071 return error;
2072 }
2073
2074 (void)memset(&security, 0, sizeof(security));
2075 security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ?
2076 IPW_AUTH_SHARED : IPW_AUTH_OPEN;
2077 security.ciphers = htole32(IPW_CIPHER_NONE);
2078 DPRINTF(("Setting authmode to %u\n", security.authmode));
2079 error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
2080 sizeof security);
2081 if (error != 0)
2082 return error;
2083
2084 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2085 k = ic->ic_crypto.cs_nw_keys;
2086 for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
2087 if (k->wk_keylen == 0)
2088 continue;
2089
2090 wepkey.idx = i;
2091 wepkey.len = k->wk_keylen;
2092 memset(wepkey.key, 0, sizeof(wepkey.key));
2093 memcpy(wepkey.key, k->wk_key, k->wk_keylen);
2094 DPRINTF(("Setting wep key index %u len %u\n",
2095 wepkey.idx, wepkey.len));
2096 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
2097 sizeof wepkey);
2098 if (error != 0)
2099 return error;
2100 }
2101
2102 data = htole32(ic->ic_crypto.cs_def_txkey);
2103 DPRINTF(("Setting tx key index to %u\n", le32toh(data)));
2104 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
2105 sizeof data);
2106 if (error != 0)
2107 return error;
2108 }
2109
2110 data = htole32((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
2111 DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
2112 error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
2113 if (error != 0)
2114 return error;
2115
2116 #if 0
2117 struct ipw_wpa_ie ie;
2118
2119 memset(&ie, 0 sizeof(ie));
2120 ie.len = htole32(sizeof (struct ieee80211_ie_wpa));
2121 DPRINTF(("Setting wpa ie\n"));
2122 error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie);
2123 if (error != 0)
2124 return error;
2125 #endif
2126
2127 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2128 data = htole32(ic->ic_bintval);
2129 DPRINTF(("Setting beacon interval to %u\n", le32toh(data)));
2130 error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
2131 sizeof data);
2132 if (error != 0)
2133 return error;
2134 }
2135
2136 options.flags = 0;
2137 options.channels = htole32(0x3fff); /* scan channels 1-14 */
2138 DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags)));
2139 error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options);
2140 if (error != 0)
2141 return error;
2142
2143 /* finally, enable adapter (start scanning for an access point) */
2144 DPRINTF(("Enabling adapter\n"));
2145 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
2146 }
2147
2148 static int
2149 ipw_init(struct ifnet *ifp)
2150 {
2151 struct ipw_softc *sc = ifp->if_softc;
2152 struct ipw_firmware *fw = &sc->fw;
2153
2154 if (!(sc->flags & IPW_FLAG_FW_CACHED)) {
2155 if (ipw_cache_firmware(sc) != 0) {
2156 aprint_error_dev(&sc->sc_dev, "could not cache the firmware (%s)\n",
2157 sc->sc_fwname);
2158 goto fail;
2159 }
2160 }
2161
2162 ipw_stop(ifp, 0);
2163
2164 if (ipw_reset(sc) != 0) {
2165 aprint_error_dev(&sc->sc_dev, "could not reset adapter\n");
2166 goto fail;
2167 }
2168
2169 if (ipw_load_ucode(sc, fw->ucode, fw->ucode_size) != 0) {
2170 aprint_error_dev(&sc->sc_dev, "could not load microcode\n");
2171 goto fail;
2172 }
2173
2174 ipw_stop_master(sc);
2175
2176 /*
2177 * Setup tx, rx and status rings.
2178 */
2179 sc->txold = IPW_NTBD - 1;
2180 sc->txcur = 0;
2181 sc->txfree = IPW_NTBD - 2;
2182 sc->rxcur = IPW_NRBD - 1;
2183
2184 CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_map->dm_segs[0].ds_addr);
2185 CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD);
2186 CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0);
2187 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
2188
2189 CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_map->dm_segs[0].ds_addr);
2190 CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD);
2191 CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0);
2192 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
2193
2194 CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_map->dm_segs[0].ds_addr);
2195
2196 if (ipw_load_firmware(sc, fw->main, fw->main_size) != 0) {
2197 aprint_error_dev(&sc->sc_dev, "could not load firmware\n");
2198 goto fail;
2199 }
2200
2201 sc->flags |= IPW_FLAG_FW_INITED;
2202
2203 /* retrieve information tables base addresses */
2204 sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
2205 sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
2206
2207 ipw_write_table1(sc, IPW_INFO_LOCK, 0);
2208
2209 if (ipw_config(sc) != 0) {
2210 aprint_error_dev(&sc->sc_dev, "device configuration failed\n");
2211 goto fail;
2212 }
2213
2214 ifp->if_flags &= ~IFF_OACTIVE;
2215 ifp->if_flags |= IFF_RUNNING;
2216
2217 return 0;
2218
2219 fail: ifp->if_flags &= ~IFF_UP;
2220 ipw_stop(ifp, 0);
2221
2222 return EIO;
2223 }
2224
2225 static void
2226 ipw_stop(struct ifnet *ifp, int disable)
2227 {
2228 struct ipw_softc *sc = ifp->if_softc;
2229 struct ieee80211com *ic = &sc->sc_ic;
2230 int i;
2231
2232 ipw_stop_master(sc);
2233
2234 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
2235
2236 /*
2237 * Release tx buffers.
2238 */
2239 for (i = 0; i < IPW_NTBD; i++)
2240 ipw_release_sbd(sc, &sc->stbd_list[i]);
2241
2242 sc->sc_tx_timer = 0;
2243 ifp->if_timer = 0;
2244 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2245
2246 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2247 }
2248
2249 static void
2250 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2251 bus_size_t count)
2252 {
2253 for (; count > 0; offset++, datap++, count--) {
2254 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2255 *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
2256 }
2257 }
2258
2259 static void
2260 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2261 bus_size_t count)
2262 {
2263 for (; count > 0; offset++, datap++, count--) {
2264 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2265 CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
2266 }
2267 }
2268