if_ipw.c revision 1.52.8.1 1 /* $NetBSD: if_ipw.c,v 1.52.8.1 2012/04/17 00:07:47 yamt Exp $ */
2 /* FreeBSD: src/sys/dev/ipw/if_ipw.c,v 1.15 2005/11/13 17:17:40 damien Exp */
3
4 /*-
5 * Copyright (c) 2004, 2005
6 * Damien Bergamini <damien.bergamini (at) free.fr>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: if_ipw.c,v 1.52.8.1 2012/04/17 00:07:47 yamt Exp $");
33
34 /*-
35 * Intel(R) PRO/Wireless 2100 MiniPCI driver
36 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
37 */
38
39
40 #include <sys/param.h>
41 #include <sys/sockio.h>
42 #include <sys/sysctl.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/socket.h>
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/proc.h>
50
51 #include <sys/bus.h>
52 #include <machine/endian.h>
53 #include <sys/intr.h>
54
55 #include <dev/pci/pcireg.h>
56 #include <dev/pci/pcivar.h>
57 #include <dev/pci/pcidevs.h>
58
59 #include <net/bpf.h>
60 #include <net/if.h>
61 #include <net/if_arp.h>
62 #include <net/if_dl.h>
63 #include <net/if_ether.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/in_var.h>
73 #include <netinet/ip.h>
74
75 #include <dev/firmload.h>
76
77 #include <dev/pci/if_ipwreg.h>
78 #include <dev/pci/if_ipwvar.h>
79
80 #ifdef IPW_DEBUG
81 #define DPRINTF(x) if (ipw_debug > 0) printf x
82 #define DPRINTFN(n, x) if (ipw_debug >= (n)) printf x
83 int ipw_debug = 0;
84 #else
85 #define DPRINTF(x)
86 #define DPRINTFN(n, x)
87 #endif
88
89 /* Permit loading the Intel firmware */
90 static int ipw_accept_eula;
91
92 static int ipw_dma_alloc(struct ipw_softc *);
93 static void ipw_release(struct ipw_softc *);
94 static int ipw_match(device_t, cfdata_t, void *);
95 static void ipw_attach(device_t, device_t, void *);
96 static int ipw_detach(device_t, int);
97
98 static int ipw_media_change(struct ifnet *);
99 static void ipw_media_status(struct ifnet *, struct ifmediareq *);
100 static int ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
101 static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t);
102 static void ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
103 static void ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
104 static void ipw_data_intr(struct ipw_softc *, struct ipw_status *,
105 struct ipw_soft_bd *, struct ipw_soft_buf *);
106 static void ipw_rx_intr(struct ipw_softc *);
107 static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
108 static void ipw_tx_intr(struct ipw_softc *);
109 static int ipw_intr(void *);
110 static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
111 static int ipw_tx_start(struct ifnet *, struct mbuf *,
112 struct ieee80211_node *);
113 static void ipw_start(struct ifnet *);
114 static void ipw_watchdog(struct ifnet *);
115 static int ipw_ioctl(struct ifnet *, u_long, void *);
116 static int ipw_get_table1(struct ipw_softc *, uint32_t *);
117 static int ipw_get_radio(struct ipw_softc *, int *);
118 static void ipw_stop_master(struct ipw_softc *);
119 static int ipw_reset(struct ipw_softc *);
120 static int ipw_load_ucode(struct ipw_softc *, u_char *, int);
121 static int ipw_load_firmware(struct ipw_softc *, u_char *, int);
122 static int ipw_cache_firmware(struct ipw_softc *);
123 static void ipw_free_firmware(struct ipw_softc *);
124 static int ipw_config(struct ipw_softc *);
125 static int ipw_init(struct ifnet *);
126 static void ipw_stop(struct ifnet *, int);
127 static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t);
128 static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
129 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, uint32_t *);
130 static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
131 bus_size_t);
132 static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
133 bus_size_t);
134
135 /*
136 * Supported rates for 802.11b mode (in 500Kbps unit).
137 */
138 static const struct ieee80211_rateset ipw_rateset_11b =
139 { 4, { 2, 4, 11, 22 } };
140
141 static inline uint8_t
142 MEM_READ_1(struct ipw_softc *sc, uint32_t addr)
143 {
144 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
145 return CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA);
146 }
147
148 static inline uint32_t
149 MEM_READ_4(struct ipw_softc *sc, uint32_t addr)
150 {
151 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
152 return CSR_READ_4(sc, IPW_CSR_INDIRECT_DATA);
153 }
154
155 CFATTACH_DECL(ipw, sizeof (struct ipw_softc), ipw_match, ipw_attach,
156 ipw_detach, NULL);
157
158 static int
159 ipw_match(device_t parent, cfdata_t match, void *aux)
160 {
161 struct pci_attach_args *pa = aux;
162
163 if (PCI_VENDOR (pa->pa_id) == PCI_VENDOR_INTEL &&
164 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2100)
165 return 1;
166
167 return 0;
168 }
169
170 /* Base Address Register */
171 #define IPW_PCI_BAR0 0x10
172
173 static void
174 ipw_attach(device_t parent, device_t self, void *aux)
175 {
176 struct ipw_softc *sc = device_private(self);
177 struct ieee80211com *ic = &sc->sc_ic;
178 struct ifnet *ifp = &sc->sc_if;
179 struct pci_attach_args *pa = aux;
180 const char *intrstr;
181 bus_space_tag_t memt;
182 bus_space_handle_t memh;
183 bus_addr_t base;
184 pci_intr_handle_t ih;
185 uint32_t data;
186 uint16_t val;
187 int i, error;
188
189 sc->sc_pct = pa->pa_pc;
190 sc->sc_pcitag = pa->pa_tag;
191
192 pci_aprint_devinfo(pa, NULL);
193
194 /* enable bus-mastering */
195 data = pci_conf_read(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG);
196 data |= PCI_COMMAND_MASTER_ENABLE;
197 pci_conf_write(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG, data);
198
199 /* map the register window */
200 error = pci_mapreg_map(pa, IPW_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
201 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz);
202 if (error != 0) {
203 aprint_error_dev(&sc->sc_dev, "could not map memory space\n");
204 return;
205 }
206
207 sc->sc_st = memt;
208 sc->sc_sh = memh;
209 sc->sc_dmat = pa->pa_dmat;
210 sc->sc_fwname = "ipw2100-1.2.fw";
211
212 /* disable interrupts */
213 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
214
215 if (pci_intr_map(pa, &ih) != 0) {
216 aprint_error_dev(&sc->sc_dev, "could not map interrupt\n");
217 return;
218 }
219
220 intrstr = pci_intr_string(sc->sc_pct, ih);
221 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, ipw_intr, sc);
222 if (sc->sc_ih == NULL) {
223 aprint_error_dev(&sc->sc_dev, "could not establish interrupt");
224 if (intrstr != NULL)
225 aprint_error(" at %s", intrstr);
226 aprint_error("\n");
227 return;
228 }
229 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
230
231 if (ipw_reset(sc) != 0) {
232 aprint_error_dev(&sc->sc_dev, "could not reset adapter\n");
233 goto fail;
234 }
235
236 if (ipw_dma_alloc(sc) != 0) {
237 aprint_error_dev(&sc->sc_dev, "could not allocate DMA resources\n");
238 goto fail;
239 }
240
241 ifp->if_softc = sc;
242 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
243 ifp->if_init = ipw_init;
244 ifp->if_stop = ipw_stop;
245 ifp->if_ioctl = ipw_ioctl;
246 ifp->if_start = ipw_start;
247 ifp->if_watchdog = ipw_watchdog;
248 IFQ_SET_READY(&ifp->if_snd);
249 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
250
251 ic->ic_ifp = ifp;
252 ic->ic_phytype = IEEE80211_T_DS;
253 ic->ic_opmode = IEEE80211_M_STA;
254 ic->ic_state = IEEE80211_S_INIT;
255
256 /* set device capabilities */
257 ic->ic_caps =
258 IEEE80211_C_SHPREAMBLE /* short preamble supported */
259 | IEEE80211_C_TXPMGT /* tx power management */
260 | IEEE80211_C_IBSS /* ibss mode */
261 | IEEE80211_C_MONITOR /* monitor mode */
262 ;
263
264 /* read MAC address from EEPROM */
265 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
266 ic->ic_myaddr[0] = val >> 8;
267 ic->ic_myaddr[1] = val & 0xff;
268 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
269 ic->ic_myaddr[2] = val >> 8;
270 ic->ic_myaddr[3] = val & 0xff;
271 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
272 ic->ic_myaddr[4] = val >> 8;
273 ic->ic_myaddr[5] = val & 0xff;
274
275 /* set supported .11b rates */
276 ic->ic_sup_rates[IEEE80211_MODE_11B] = ipw_rateset_11b;
277
278 /* set supported .11b channels (read from EEPROM) */
279 if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0)
280 val = 0x7ff; /* default to channels 1-11 */
281 val <<= 1;
282 for (i = 1; i < 16; i++) {
283 if (val & (1 << i)) {
284 ic->ic_channels[i].ic_freq =
285 ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
286 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
287 }
288 }
289
290 /* check support for radio transmitter switch in EEPROM */
291 if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
292 sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
293
294 aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n",
295 ether_sprintf(ic->ic_myaddr));
296
297 if_attach(ifp);
298 ieee80211_ifattach(ic);
299
300 /* override state transition machine */
301 sc->sc_newstate = ic->ic_newstate;
302 ic->ic_newstate = ipw_newstate;
303
304 ieee80211_media_init(ic, ipw_media_change, ipw_media_status);
305
306 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
307 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
308
309 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
310 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
311 sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
312
313 sc->sc_txtap_len = sizeof sc->sc_txtapu;
314 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
315 sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
316
317 /*
318 * Add a few sysctl knobs.
319 * XXX: Not yet
320 */
321 sc->dwelltime = 100;
322
323 if (pmf_device_register(self, NULL, NULL))
324 pmf_class_network_register(self, ifp);
325 else
326 aprint_error_dev(self, "couldn't establish power handler\n");
327
328 ieee80211_announce(ic);
329
330 return;
331
332 fail: ipw_detach(self, 0);
333 }
334
335 static int
336 ipw_detach(struct device* self, int flags)
337 {
338 struct ipw_softc *sc = device_private(self);
339 struct ifnet *ifp = &sc->sc_if;
340
341 if (ifp->if_softc) {
342 ipw_stop(ifp, 1);
343 ipw_free_firmware(sc);
344
345 bpf_detach(ifp);
346 ieee80211_ifdetach(&sc->sc_ic);
347 if_detach(ifp);
348
349 ipw_release(sc);
350 }
351
352 if (sc->sc_ih != NULL) {
353 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
354 sc->sc_ih = NULL;
355 }
356
357 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
358
359 return 0;
360 }
361
362 static int
363 ipw_dma_alloc(struct ipw_softc *sc)
364 {
365 struct ipw_soft_bd *sbd;
366 struct ipw_soft_hdr *shdr;
367 struct ipw_soft_buf *sbuf;
368 int error, i, nsegs;
369
370 /*
371 * Allocate and map tx ring.
372 */
373 error = bus_dmamap_create(sc->sc_dmat, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0,
374 BUS_DMA_NOWAIT, &sc->tbd_map);
375 if (error != 0) {
376 aprint_error_dev(&sc->sc_dev, "could not create tbd dma map\n");
377 goto fail;
378 }
379
380 error = bus_dmamem_alloc(sc->sc_dmat, IPW_TBD_SZ, PAGE_SIZE, 0,
381 &sc->tbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
382 if (error != 0) {
383 aprint_error_dev(&sc->sc_dev, "could not allocate tbd dma memory\n");
384 goto fail;
385 }
386
387 error = bus_dmamem_map(sc->sc_dmat, &sc->tbd_seg, nsegs, IPW_TBD_SZ,
388 (void **)&sc->tbd_list, BUS_DMA_NOWAIT);
389 if (error != 0) {
390 aprint_error_dev(&sc->sc_dev, "could not map tbd dma memory\n");
391 goto fail;
392 }
393
394 error = bus_dmamap_load(sc->sc_dmat, sc->tbd_map, sc->tbd_list,
395 IPW_TBD_SZ, NULL, BUS_DMA_NOWAIT);
396 if (error != 0) {
397 aprint_error_dev(&sc->sc_dev, "could not load tbd dma memory\n");
398 goto fail;
399 }
400
401 (void)memset(sc->tbd_list, 0, IPW_TBD_SZ);
402
403 /*
404 * Allocate and map rx ring.
405 */
406 error = bus_dmamap_create(sc->sc_dmat, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0,
407 BUS_DMA_NOWAIT, &sc->rbd_map);
408 if (error != 0) {
409 aprint_error_dev(&sc->sc_dev, "could not create rbd dma map\n");
410 goto fail;
411 }
412
413 error = bus_dmamem_alloc(sc->sc_dmat, IPW_RBD_SZ, PAGE_SIZE, 0,
414 &sc->rbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
415 if (error != 0) {
416 aprint_error_dev(&sc->sc_dev, "could not allocate rbd dma memory\n");
417 goto fail;
418 }
419
420 error = bus_dmamem_map(sc->sc_dmat, &sc->rbd_seg, nsegs, IPW_RBD_SZ,
421 (void **)&sc->rbd_list, BUS_DMA_NOWAIT);
422 if (error != 0) {
423 aprint_error_dev(&sc->sc_dev, "could not map rbd dma memory\n");
424 goto fail;
425 }
426
427 error = bus_dmamap_load(sc->sc_dmat, sc->rbd_map, sc->rbd_list,
428 IPW_RBD_SZ, NULL, BUS_DMA_NOWAIT);
429 if (error != 0) {
430 aprint_error_dev(&sc->sc_dev, "could not load rbd dma memory\n");
431 goto fail;
432 }
433
434 (void)memset(sc->rbd_list, 0, IPW_RBD_SZ);
435
436 /*
437 * Allocate and map status ring.
438 */
439 error = bus_dmamap_create(sc->sc_dmat, IPW_STATUS_SZ, 1, IPW_STATUS_SZ,
440 0, BUS_DMA_NOWAIT, &sc->status_map);
441 if (error != 0) {
442 aprint_error_dev(&sc->sc_dev, "could not create status dma map\n");
443 goto fail;
444 }
445
446 error = bus_dmamem_alloc(sc->sc_dmat, IPW_STATUS_SZ, PAGE_SIZE, 0,
447 &sc->status_seg, 1, &nsegs, BUS_DMA_NOWAIT);
448 if (error != 0) {
449 aprint_error_dev(&sc->sc_dev, "could not allocate status dma memory\n");
450 goto fail;
451 }
452
453 error = bus_dmamem_map(sc->sc_dmat, &sc->status_seg, nsegs,
454 IPW_STATUS_SZ, (void **)&sc->status_list, BUS_DMA_NOWAIT);
455 if (error != 0) {
456 aprint_error_dev(&sc->sc_dev, "could not map status dma memory\n");
457 goto fail;
458 }
459
460 error = bus_dmamap_load(sc->sc_dmat, sc->status_map, sc->status_list,
461 IPW_STATUS_SZ, NULL, BUS_DMA_NOWAIT);
462 if (error != 0) {
463 aprint_error_dev(&sc->sc_dev, "could not load status dma memory\n");
464 goto fail;
465 }
466
467 (void)memset(sc->status_list, 0, IPW_STATUS_SZ);
468
469 /*
470 * Allocate command DMA map.
471 */
472 error = bus_dmamap_create(sc->sc_dmat, sizeof (struct ipw_cmd),
473 1, sizeof (struct ipw_cmd), 0, BUS_DMA_NOWAIT, &sc->cmd_map);
474 if (error != 0) {
475 aprint_error_dev(&sc->sc_dev, "could not create cmd dma map\n");
476 goto fail;
477 }
478
479 error = bus_dmamem_alloc(sc->sc_dmat, sizeof (struct ipw_cmd),
480 PAGE_SIZE, 0, &sc->cmd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
481 if (error != 0) {
482 aprint_error_dev(&sc->sc_dev, "could not allocate cmd dma memory\n");
483 goto fail;
484 }
485
486 error = bus_dmamem_map(sc->sc_dmat, &sc->cmd_seg, nsegs,
487 sizeof (struct ipw_cmd), (void **)&sc->cmd, BUS_DMA_NOWAIT);
488 if (error != 0) {
489 aprint_error_dev(&sc->sc_dev, "could not map cmd dma memory\n");
490 goto fail;
491 }
492
493 error = bus_dmamap_load(sc->sc_dmat, sc->cmd_map, &sc->cmd,
494 sizeof (struct ipw_cmd), NULL, BUS_DMA_NOWAIT);
495 if (error != 0) {
496 aprint_error_dev(&sc->sc_dev, "could not map cmd dma memory\n");
497 return error;
498 }
499
500 /*
501 * Allocate and map hdr list.
502 */
503
504 error = bus_dmamap_create(sc->sc_dmat,
505 IPW_NDATA * sizeof(struct ipw_hdr), 1,
506 sizeof(struct ipw_hdr), 0, BUS_DMA_NOWAIT,
507 &sc->hdr_map);
508 if (error != 0) {
509 aprint_error_dev(&sc->sc_dev, "could not create hdr dma map\n");
510 goto fail;
511 }
512
513 error = bus_dmamem_alloc(sc->sc_dmat,
514 IPW_NDATA * sizeof(struct ipw_hdr), PAGE_SIZE, 0, &sc->hdr_seg,
515 1, &nsegs, BUS_DMA_NOWAIT);
516 if (error != 0) {
517 aprint_error_dev(&sc->sc_dev, "could not allocate hdr memory\n");
518 goto fail;
519 }
520
521 error = bus_dmamem_map(sc->sc_dmat, &sc->hdr_seg, nsegs,
522 IPW_NDATA * sizeof(struct ipw_hdr), (void **)&sc->hdr_list,
523 BUS_DMA_NOWAIT);
524 if (error != 0) {
525 aprint_error_dev(&sc->sc_dev, "could not map hdr memory\n");
526 goto fail;
527 }
528
529 error = bus_dmamap_load(sc->sc_dmat, sc->hdr_map, sc->hdr_list,
530 IPW_NDATA * sizeof(struct ipw_hdr), NULL, BUS_DMA_NOWAIT);
531 if (error != 0) {
532 aprint_error_dev(&sc->sc_dev, "could not load hdr memory\n");
533 goto fail;
534 }
535
536 (void)memset(sc->hdr_list, 0, IPW_HDR_SZ);
537
538 /*
539 * Create DMA hdrs tailq.
540 */
541 TAILQ_INIT(&sc->sc_free_shdr);
542 for (i = 0; i < IPW_NDATA; i++) {
543 shdr = &sc->shdr_list[i];
544 shdr->hdr = sc->hdr_list + i;
545 shdr->offset = sizeof(struct ipw_hdr) * i;
546 shdr->addr = sc->hdr_map->dm_segs[0].ds_addr + shdr->offset;
547 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
548 }
549
550 /*
551 * Allocate tx buffers DMA maps.
552 */
553 TAILQ_INIT(&sc->sc_free_sbuf);
554 for (i = 0; i < IPW_NDATA; i++) {
555 sbuf = &sc->tx_sbuf_list[i];
556
557 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
558 IPW_MAX_NSEG, MCLBYTES, 0, BUS_DMA_NOWAIT, &sbuf->map);
559 if (error != 0) {
560 aprint_error_dev(&sc->sc_dev, "could not create txbuf dma map\n");
561 goto fail;
562 }
563 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
564 }
565
566 /*
567 * Initialize tx ring.
568 */
569 for (i = 0; i < IPW_NTBD; i++) {
570 sbd = &sc->stbd_list[i];
571 sbd->bd = &sc->tbd_list[i];
572 sbd->type = IPW_SBD_TYPE_NOASSOC;
573 }
574
575 /*
576 * Pre-allocate rx buffers and DMA maps
577 */
578 for (i = 0; i < IPW_NRBD; i++) {
579 sbd = &sc->srbd_list[i];
580 sbuf = &sc->rx_sbuf_list[i];
581 sbd->bd = &sc->rbd_list[i];
582
583 MGETHDR(sbuf->m, M_DONTWAIT, MT_DATA);
584 if (sbuf->m == NULL) {
585 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
586 error = ENOMEM;
587 goto fail;
588 }
589
590 MCLGET(sbuf->m, M_DONTWAIT);
591 if (!(sbuf->m->m_flags & M_EXT)) {
592 m_freem(sbuf->m);
593 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
594 error = ENOMEM;
595 goto fail;
596 }
597
598 sbuf->m->m_pkthdr.len = sbuf->m->m_len = sbuf->m->m_ext.ext_size;
599
600 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
601 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sbuf->map);
602 if (error != 0) {
603 aprint_error_dev(&sc->sc_dev, "could not create rxbuf dma map\n");
604 m_freem(sbuf->m);
605 goto fail;
606 }
607
608 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
609 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
610 if (error != 0) {
611 bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
612 m_freem(sbuf->m);
613 aprint_error_dev(&sc->sc_dev, "could not map rxbuf dma memory\n");
614 goto fail;
615 }
616
617 sbd->type = IPW_SBD_TYPE_DATA;
618 sbd->priv = sbuf;
619 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
620 sbd->bd->len = htole32(MCLBYTES);
621
622 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
623 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
624
625 }
626
627 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, 0, IPW_RBD_SZ,
628 BUS_DMASYNC_PREREAD);
629
630 return 0;
631
632 fail: ipw_release(sc);
633 return error;
634 }
635
636 static void
637 ipw_release(struct ipw_softc *sc)
638 {
639 struct ipw_soft_buf *sbuf;
640 int i;
641
642 if (sc->tbd_map != NULL) {
643 if (sc->tbd_list != NULL) {
644 bus_dmamap_unload(sc->sc_dmat, sc->tbd_map);
645 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->tbd_list,
646 IPW_TBD_SZ);
647 bus_dmamem_free(sc->sc_dmat, &sc->tbd_seg, 1);
648 }
649 bus_dmamap_destroy(sc->sc_dmat, sc->tbd_map);
650 }
651
652 if (sc->rbd_map != NULL) {
653 if (sc->rbd_list != NULL) {
654 bus_dmamap_unload(sc->sc_dmat, sc->rbd_map);
655 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rbd_list,
656 IPW_RBD_SZ);
657 bus_dmamem_free(sc->sc_dmat, &sc->rbd_seg, 1);
658 }
659 bus_dmamap_destroy(sc->sc_dmat, sc->rbd_map);
660 }
661
662 if (sc->status_map != NULL) {
663 if (sc->status_list != NULL) {
664 bus_dmamap_unload(sc->sc_dmat, sc->status_map);
665 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->status_list,
666 IPW_RBD_SZ);
667 bus_dmamem_free(sc->sc_dmat, &sc->status_seg, 1);
668 }
669 bus_dmamap_destroy(sc->sc_dmat, sc->status_map);
670 }
671
672 for (i = 0; i < IPW_NTBD; i++)
673 ipw_release_sbd(sc, &sc->stbd_list[i]);
674
675 if (sc->cmd_map != NULL)
676 bus_dmamap_destroy(sc->sc_dmat, sc->cmd_map);
677
678 if (sc->hdr_list != NULL) {
679 bus_dmamap_unload(sc->sc_dmat, sc->hdr_map);
680 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->hdr_list,
681 IPW_NDATA * sizeof(struct ipw_hdr));
682 }
683 if (sc->hdr_map != NULL) {
684 bus_dmamem_free(sc->sc_dmat, &sc->hdr_seg, 1);
685 bus_dmamap_destroy(sc->sc_dmat, sc->hdr_map);
686 }
687
688 for (i = 0; i < IPW_NDATA; i++)
689 bus_dmamap_destroy(sc->sc_dmat, sc->tx_sbuf_list[i].map);
690
691 for (i = 0; i < IPW_NRBD; i++) {
692 sbuf = &sc->rx_sbuf_list[i];
693 if (sbuf->map != NULL) {
694 if (sbuf->m != NULL) {
695 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
696 m_freem(sbuf->m);
697 }
698 bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
699 }
700 }
701
702 }
703
704 static int
705 ipw_media_change(struct ifnet *ifp)
706 {
707 int error;
708
709 error = ieee80211_media_change(ifp);
710 if (error != ENETRESET)
711 return error;
712
713 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
714 ipw_init(ifp);
715
716 return 0;
717 }
718
719 /*
720 * The firmware automatically adapts the transmit speed. We report the current
721 * transmit speed here.
722 */
723 static void
724 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
725 {
726 #define N(a) (sizeof (a) / sizeof (a[0]))
727 struct ipw_softc *sc = ifp->if_softc;
728 struct ieee80211com *ic = &sc->sc_ic;
729 static const struct {
730 uint32_t val;
731 int rate;
732 } rates[] = {
733 { IPW_RATE_DS1, 2 },
734 { IPW_RATE_DS2, 4 },
735 { IPW_RATE_DS5, 11 },
736 { IPW_RATE_DS11, 22 },
737 };
738 uint32_t val;
739 int rate, i;
740
741 imr->ifm_status = IFM_AVALID;
742 imr->ifm_active = IFM_IEEE80211;
743 if (ic->ic_state == IEEE80211_S_RUN)
744 imr->ifm_status |= IFM_ACTIVE;
745
746 /* read current transmission rate from adapter */
747 val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf;
748
749 /* convert ipw rate to 802.11 rate */
750 for (i = 0; i < N(rates) && rates[i].val != val; i++);
751 rate = (i < N(rates)) ? rates[i].rate : 0;
752
753 imr->ifm_active |= IFM_IEEE80211_11B;
754 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
755 switch (ic->ic_opmode) {
756 case IEEE80211_M_STA:
757 break;
758
759 case IEEE80211_M_IBSS:
760 imr->ifm_active |= IFM_IEEE80211_ADHOC;
761 break;
762
763 case IEEE80211_M_MONITOR:
764 imr->ifm_active |= IFM_IEEE80211_MONITOR;
765 break;
766
767 case IEEE80211_M_AHDEMO:
768 case IEEE80211_M_HOSTAP:
769 /* should not get there */
770 break;
771 }
772 #undef N
773 }
774
775 static int
776 ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
777 int arg)
778 {
779 struct ifnet *ifp = ic->ic_ifp;
780 struct ipw_softc *sc = ifp->if_softc;
781 struct ieee80211_node *ni;
782 uint8_t macaddr[IEEE80211_ADDR_LEN];
783 uint32_t len;
784 struct ipw_rx_radiotap_header *wr = &sc->sc_rxtap;
785 struct ipw_tx_radiotap_header *wt = &sc->sc_txtap;
786
787 switch (nstate) {
788 case IEEE80211_S_INIT:
789 break;
790 default:
791 KASSERT(ic->ic_curchan != IEEE80211_CHAN_ANYC);
792 KASSERT(ic->ic_curchan != NULL);
793 wt->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
794 wt->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
795 wr->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
796 wr->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
797 break;
798 }
799
800 switch (nstate) {
801 case IEEE80211_S_RUN:
802 DELAY(200); /* firmware needs a short delay here */
803
804 len = IEEE80211_ADDR_LEN;
805 ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len);
806
807 ni = ieee80211_find_node(&ic->ic_scan, macaddr);
808 if (ni == NULL)
809 break;
810
811 ieee80211_ref_node(ni);
812 ieee80211_sta_join(ic, ni);
813 ieee80211_node_authorize(ni);
814
815 if (ic->ic_opmode == IEEE80211_M_STA)
816 ieee80211_notify_node_join(ic, ni, 1);
817 break;
818
819 case IEEE80211_S_INIT:
820 case IEEE80211_S_SCAN:
821 case IEEE80211_S_AUTH:
822 case IEEE80211_S_ASSOC:
823 break;
824 }
825
826 ic->ic_state = nstate;
827 return 0;
828 }
829
830 /*
831 * Read 16 bits at address 'addr' from the serial EEPROM.
832 */
833 static uint16_t
834 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
835 {
836 uint32_t tmp;
837 uint16_t val;
838 int n;
839
840 /* clock C once before the first command */
841 IPW_EEPROM_CTL(sc, 0);
842 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
843 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
844 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
845
846 /* write start bit (1) */
847 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
848 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
849
850 /* write READ opcode (10) */
851 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
852 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
853 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
854 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
855
856 /* write address A7-A0 */
857 for (n = 7; n >= 0; n--) {
858 IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
859 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
860 IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
861 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
862 }
863
864 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
865
866 /* read data Q15-Q0 */
867 val = 0;
868 for (n = 15; n >= 0; n--) {
869 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
870 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
871 tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
872 val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
873 }
874
875 IPW_EEPROM_CTL(sc, 0);
876
877 /* clear Chip Select and clock C */
878 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
879 IPW_EEPROM_CTL(sc, 0);
880 IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
881
882 return le16toh(val);
883 }
884
885 static void
886 ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
887 {
888 struct ipw_cmd *cmd;
889
890 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof (struct ipw_cmd),
891 BUS_DMASYNC_POSTREAD);
892
893 cmd = mtod(sbuf->m, struct ipw_cmd *);
894
895 DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type),
896 le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
897 le32toh(cmd->status)));
898
899 wakeup(&sc->cmd);
900 }
901
902 static void
903 ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
904 {
905 struct ieee80211com *ic = &sc->sc_ic;
906 struct ifnet *ifp = sc->sc_ic.ic_ifp;
907 uint32_t state;
908
909 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof state,
910 BUS_DMASYNC_POSTREAD);
911
912 state = le32toh(*mtod(sbuf->m, uint32_t *));
913
914 DPRINTFN(2, ("entering state %u\n", state));
915
916 switch (state) {
917 case IPW_STATE_ASSOCIATED:
918 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
919 break;
920
921 case IPW_STATE_SCANNING:
922 /* don't leave run state on background scan */
923 if (ic->ic_state != IEEE80211_S_RUN)
924 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
925
926 ic->ic_flags |= IEEE80211_F_SCAN;
927 break;
928
929 case IPW_STATE_SCAN_COMPLETE:
930 ieee80211_notify_scan_done(ic);
931 ic->ic_flags &= ~IEEE80211_F_SCAN;
932 break;
933
934 case IPW_STATE_ASSOCIATION_LOST:
935 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
936 break;
937
938 case IPW_STATE_RADIO_DISABLED:
939 ic->ic_ifp->if_flags &= ~IFF_UP;
940 ipw_stop(ifp, 1);
941 break;
942 }
943 }
944
945 /*
946 * XXX: Hack to set the current channel to the value advertised in beacons or
947 * probe responses. Only used during AP detection.
948 */
949 static void
950 ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m)
951 {
952 struct ieee80211_frame *wh;
953 uint8_t subtype;
954 uint8_t *frm, *efrm;
955
956 wh = mtod(m, struct ieee80211_frame *);
957
958 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
959 return;
960
961 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
962
963 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
964 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
965 return;
966
967 frm = (uint8_t *)(wh + 1);
968 efrm = mtod(m, uint8_t *) + m->m_len;
969
970 frm += 12; /* skip tstamp, bintval and capinfo fields */
971 while (frm < efrm) {
972 if (*frm == IEEE80211_ELEMID_DSPARMS)
973 #if IEEE80211_CHAN_MAX < 255
974 if (frm[2] <= IEEE80211_CHAN_MAX)
975 #endif
976 ic->ic_curchan = &ic->ic_channels[frm[2]];
977
978 frm += frm[1] + 2;
979 }
980 }
981
982 static void
983 ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
984 struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
985 {
986 struct ieee80211com *ic = &sc->sc_ic;
987 struct ifnet *ifp = &sc->sc_if;
988 struct mbuf *mnew, *m;
989 struct ieee80211_frame *wh;
990 struct ieee80211_node *ni;
991 int error;
992
993 DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
994 status->rssi));
995
996 if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
997 le32toh(status->len) > MCLBYTES)
998 return;
999
1000 /*
1001 * Try to allocate a new mbuf for this ring element and load it before
1002 * processing the current mbuf. If the ring element cannot be loaded,
1003 * drop the received packet and reuse the old mbuf. In the unlikely
1004 * case that the old mbuf can't be reloaded either, explicitly panic.
1005 */
1006 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1007 if (mnew == NULL) {
1008 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
1009 ifp->if_ierrors++;
1010 return;
1011 }
1012
1013 MCLGET(mnew, M_DONTWAIT);
1014 if (!(mnew->m_flags & M_EXT)) {
1015 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
1016 m_freem(mnew);
1017 ifp->if_ierrors++;
1018 return;
1019 }
1020
1021 mnew->m_pkthdr.len = mnew->m_len = mnew->m_ext.ext_size;
1022
1023 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, le32toh(status->len),
1024 BUS_DMASYNC_POSTREAD);
1025 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
1026
1027 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, mnew,
1028 BUS_DMA_READ | BUS_DMA_NOWAIT);
1029 if (error != 0) {
1030 aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map\n");
1031 m_freem(mnew);
1032
1033 /* try to reload the old mbuf */
1034 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
1035 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
1036 if (error != 0) {
1037 /* very unlikely that it will fail... */
1038 panic("%s: unable to remap rx buf",
1039 device_xname(&sc->sc_dev));
1040 }
1041 ifp->if_ierrors++;
1042 return;
1043 }
1044
1045 /*
1046 * New mbuf successfully loaded, update Rx ring and continue
1047 * processing.
1048 */
1049 m = sbuf->m;
1050 sbuf->m = mnew;
1051 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
1052
1053 /* finalize mbuf */
1054 m->m_pkthdr.rcvif = ifp;
1055 m->m_pkthdr.len = m->m_len = le32toh(status->len);
1056
1057 if (sc->sc_drvbpf != NULL) {
1058 struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
1059
1060 tap->wr_antsignal = status->rssi;
1061
1062 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1063 }
1064
1065 if (ic->ic_state == IEEE80211_S_SCAN)
1066 ipw_fix_channel(ic, m);
1067
1068 wh = mtod(m, struct ieee80211_frame *);
1069 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1070
1071 /* send the frame to the 802.11 layer */
1072 ieee80211_input(ic, m, ni, status->rssi, 0);
1073
1074 /* node is no longer needed */
1075 ieee80211_free_node(ni);
1076
1077 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
1078 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1079 }
1080
1081 static void
1082 ipw_rx_intr(struct ipw_softc *sc)
1083 {
1084 struct ipw_status *status;
1085 struct ipw_soft_bd *sbd;
1086 struct ipw_soft_buf *sbuf;
1087 uint32_t r, i;
1088
1089 if (!(sc->flags & IPW_FLAG_FW_INITED))
1090 return;
1091
1092 r = CSR_READ_4(sc, IPW_CSR_RX_READ);
1093
1094 for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
1095
1096 /* firmware was killed, stop processing received frames */
1097 if (!(sc->flags & IPW_FLAG_FW_INITED))
1098 return;
1099
1100 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
1101 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1102 BUS_DMASYNC_POSTREAD);
1103
1104 bus_dmamap_sync(sc->sc_dmat, sc->status_map,
1105 i * sizeof (struct ipw_status), sizeof (struct ipw_status),
1106 BUS_DMASYNC_POSTREAD);
1107
1108 status = &sc->status_list[i];
1109 sbd = &sc->srbd_list[i];
1110 sbuf = sbd->priv;
1111
1112 switch (le16toh(status->code) & 0xf) {
1113 case IPW_STATUS_CODE_COMMAND:
1114 ipw_command_intr(sc, sbuf);
1115 break;
1116
1117 case IPW_STATUS_CODE_NEWSTATE:
1118 ipw_newstate_intr(sc, sbuf);
1119 break;
1120
1121 case IPW_STATUS_CODE_DATA_802_3:
1122 case IPW_STATUS_CODE_DATA_802_11:
1123 ipw_data_intr(sc, status, sbd, sbuf);
1124 break;
1125
1126 case IPW_STATUS_CODE_NOTIFICATION:
1127 DPRINTFN(2, ("received notification\n"));
1128 break;
1129
1130 default:
1131 aprint_error_dev(&sc->sc_dev, "unknown status code %u\n",
1132 le16toh(status->code));
1133 }
1134
1135 sbd->bd->flags = 0;
1136
1137 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
1138 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1139 BUS_DMASYNC_PREREAD);
1140
1141 bus_dmamap_sync(sc->sc_dmat, sc->status_map,
1142 i * sizeof (struct ipw_status), sizeof (struct ipw_status),
1143 BUS_DMASYNC_PREREAD);
1144 }
1145
1146 /* Tell the firmware what we have processed */
1147 sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
1148 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
1149 }
1150
1151 static void
1152 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
1153 {
1154 struct ieee80211com *ic;
1155 struct ipw_soft_hdr *shdr;
1156 struct ipw_soft_buf *sbuf;
1157
1158 switch (sbd->type) {
1159 case IPW_SBD_TYPE_COMMAND:
1160 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map,
1161 0, sizeof(struct ipw_cmd), BUS_DMASYNC_POSTWRITE);
1162 /* bus_dmamap_unload(sc->sc_dmat, sc->cmd_map); */
1163 break;
1164
1165 case IPW_SBD_TYPE_HEADER:
1166 shdr = sbd->priv;
1167 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map,
1168 shdr->offset, sizeof(struct ipw_hdr), BUS_DMASYNC_POSTWRITE);
1169 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
1170 break;
1171
1172 case IPW_SBD_TYPE_DATA:
1173 ic = &sc->sc_ic;
1174 sbuf = sbd->priv;
1175
1176 bus_dmamap_sync(sc->sc_dmat, sbuf->map,
1177 0, MCLBYTES, BUS_DMASYNC_POSTWRITE);
1178 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
1179 m_freem(sbuf->m);
1180 if (sbuf->ni != NULL)
1181 ieee80211_free_node(sbuf->ni);
1182 /* kill watchdog timer */
1183 sc->sc_tx_timer = 0;
1184 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
1185 break;
1186 }
1187 sbd->type = IPW_SBD_TYPE_NOASSOC;
1188 }
1189
1190 static void
1191 ipw_tx_intr(struct ipw_softc *sc)
1192 {
1193 struct ifnet *ifp = &sc->sc_if;
1194 struct ipw_soft_bd *sbd;
1195 uint32_t r, i;
1196
1197 if (!(sc->flags & IPW_FLAG_FW_INITED))
1198 return;
1199
1200 r = CSR_READ_4(sc, IPW_CSR_TX_READ);
1201
1202 for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
1203 sbd = &sc->stbd_list[i];
1204
1205 if (sbd->type == IPW_SBD_TYPE_DATA)
1206 ifp->if_opackets++;
1207
1208 ipw_release_sbd(sc, sbd);
1209 sc->txfree++;
1210 }
1211
1212 /* remember what the firmware has processed */
1213 sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
1214
1215 /* Call start() since some buffer descriptors have been released */
1216 ifp->if_flags &= ~IFF_OACTIVE;
1217 (*ifp->if_start)(ifp);
1218 }
1219
1220 static int
1221 ipw_intr(void *arg)
1222 {
1223 struct ipw_softc *sc = arg;
1224 uint32_t r;
1225
1226 r = CSR_READ_4(sc, IPW_CSR_INTR);
1227 if (r == 0 || r == 0xffffffff)
1228 return 0;
1229
1230 /* Disable interrupts */
1231 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1232
1233 if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
1234 aprint_error_dev(&sc->sc_dev, "fatal error\n");
1235 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1236 ipw_stop(&sc->sc_if, 1);
1237 }
1238
1239 if (r & IPW_INTR_FW_INIT_DONE) {
1240 if (!(r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)))
1241 wakeup(sc);
1242 }
1243
1244 if (r & IPW_INTR_RX_TRANSFER)
1245 ipw_rx_intr(sc);
1246
1247 if (r & IPW_INTR_TX_TRANSFER)
1248 ipw_tx_intr(sc);
1249
1250 /* Acknowledge all interrupts */
1251 CSR_WRITE_4(sc, IPW_CSR_INTR, r);
1252
1253 /* Re-enable interrupts */
1254 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1255
1256 return 0;
1257 }
1258
1259 /*
1260 * Send a command to the firmware and wait for the acknowledgement.
1261 */
1262 static int
1263 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
1264 {
1265 struct ipw_soft_bd *sbd;
1266
1267 sbd = &sc->stbd_list[sc->txcur];
1268
1269 sc->cmd.type = htole32(type);
1270 sc->cmd.subtype = 0;
1271 sc->cmd.len = htole32(len);
1272 sc->cmd.seq = 0;
1273
1274 (void)memcpy(sc->cmd.data, data, len);
1275
1276 sbd->type = IPW_SBD_TYPE_COMMAND;
1277 sbd->bd->physaddr = htole32(sc->cmd_map->dm_segs[0].ds_addr);
1278 sbd->bd->len = htole32(sizeof (struct ipw_cmd));
1279 sbd->bd->nfrag = 1;
1280 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
1281 IPW_BD_FLAG_TX_LAST_FRAGMENT;
1282
1283 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map, 0, sizeof (struct ipw_cmd),
1284 BUS_DMASYNC_PREWRITE);
1285
1286 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1287 sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1288 BUS_DMASYNC_PREWRITE);
1289
1290 DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len));
1291
1292 /* kick firmware */
1293 sc->txfree--;
1294 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1295 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1296
1297 /* Wait at most one second for command to complete */
1298 return tsleep(&sc->cmd, 0, "ipwcmd", hz);
1299 }
1300
1301 static int
1302 ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
1303 {
1304 struct ipw_softc *sc = ifp->if_softc;
1305 struct ieee80211com *ic = &sc->sc_ic;
1306 struct ieee80211_frame *wh;
1307 struct ipw_soft_bd *sbd;
1308 struct ipw_soft_hdr *shdr;
1309 struct ipw_soft_buf *sbuf;
1310 struct ieee80211_key *k;
1311 struct mbuf *mnew;
1312 int error, i;
1313
1314 wh = mtod(m0, struct ieee80211_frame *);
1315
1316 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1317 k = ieee80211_crypto_encap(ic, ni, m0);
1318 if (k == NULL) {
1319 m_freem(m0);
1320 return ENOBUFS;
1321 }
1322
1323 /* packet header may have moved, reset our local pointer */
1324 wh = mtod(m0, struct ieee80211_frame *);
1325 }
1326
1327 if (sc->sc_drvbpf != NULL) {
1328 struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
1329
1330 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1331 }
1332
1333 shdr = TAILQ_FIRST(&sc->sc_free_shdr);
1334 sbuf = TAILQ_FIRST(&sc->sc_free_sbuf);
1335 KASSERT(shdr != NULL && sbuf != NULL);
1336
1337 shdr->hdr->type = htole32(IPW_HDR_TYPE_SEND);
1338 shdr->hdr->subtype = 0;
1339 shdr->hdr->encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
1340 shdr->hdr->encrypt = 0;
1341 shdr->hdr->keyidx = 0;
1342 shdr->hdr->keysz = 0;
1343 shdr->hdr->fragmentsz = 0;
1344 IEEE80211_ADDR_COPY(shdr->hdr->src_addr, wh->i_addr2);
1345 if (ic->ic_opmode == IEEE80211_M_STA)
1346 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr3);
1347 else
1348 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr1);
1349
1350 /* trim IEEE802.11 header */
1351 m_adj(m0, sizeof (struct ieee80211_frame));
1352
1353 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0, BUS_DMA_NOWAIT);
1354 if (error != 0 && error != EFBIG) {
1355 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1356 error);
1357 m_freem(m0);
1358 return error;
1359 }
1360
1361 if (error != 0) {
1362 /* too many fragments, linearize */
1363
1364 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1365 if (mnew == NULL) {
1366 m_freem(m0);
1367 return ENOMEM;
1368 }
1369
1370 M_COPY_PKTHDR(mnew, m0);
1371
1372 /* If the data won't fit in the header, get a cluster */
1373 if (m0->m_pkthdr.len > MHLEN) {
1374 MCLGET(mnew, M_DONTWAIT);
1375 if (!(mnew->m_flags & M_EXT)) {
1376 m_freem(m0);
1377 m_freem(mnew);
1378 return ENOMEM;
1379 }
1380 }
1381 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1382 m_freem(m0);
1383 mnew->m_len = mnew->m_pkthdr.len;
1384 m0 = mnew;
1385
1386 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0,
1387 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1388 if (error != 0) {
1389 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error);
1390 m_freem(m0);
1391 return error;
1392 }
1393 }
1394
1395 TAILQ_REMOVE(&sc->sc_free_sbuf, sbuf, next);
1396 TAILQ_REMOVE(&sc->sc_free_shdr, shdr, next);
1397
1398 sbd = &sc->stbd_list[sc->txcur];
1399 sbd->type = IPW_SBD_TYPE_HEADER;
1400 sbd->priv = shdr;
1401 sbd->bd->physaddr = htole32(shdr->addr);
1402 sbd->bd->len = htole32(sizeof (struct ipw_hdr));
1403 sbd->bd->nfrag = 1 + sbuf->map->dm_nsegs;
1404 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
1405 IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1406
1407 DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, )\n",
1408 shdr->hdr->type, shdr->hdr->subtype, shdr->hdr->encrypted,
1409 shdr->hdr->encrypt));
1410 DPRINTFN(5, ("%s->", ether_sprintf(shdr->hdr->src_addr)));
1411 DPRINTFN(5, ("%s\n", ether_sprintf(shdr->hdr->dst_addr)));
1412
1413 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1414 sc->txcur * sizeof (struct ipw_bd),
1415 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
1416
1417 sc->txfree--;
1418 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1419
1420 sbuf->m = m0;
1421 sbuf->ni = ni;
1422
1423 for (i = 0; i < sbuf->map->dm_nsegs; i++) {
1424 sbd = &sc->stbd_list[sc->txcur];
1425
1426 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[i].ds_addr);
1427 sbd->bd->len = htole32(sbuf->map->dm_segs[i].ds_len);
1428 sbd->bd->nfrag = 0;
1429 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
1430 if (i == sbuf->map->dm_nsegs - 1) {
1431 sbd->type = IPW_SBD_TYPE_DATA;
1432 sbd->priv = sbuf;
1433 sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
1434 } else {
1435 sbd->type = IPW_SBD_TYPE_NOASSOC;
1436 sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1437 }
1438
1439 DPRINTFN(5, ("sending fragment (%d, %d)\n", i,
1440 (int)sbuf->map->dm_segs[i].ds_len));
1441
1442 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1443 sc->txcur * sizeof (struct ipw_bd),
1444 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
1445
1446 sc->txfree--;
1447 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1448 }
1449
1450 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map, shdr->offset,
1451 sizeof (struct ipw_hdr), BUS_DMASYNC_PREWRITE);
1452
1453 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, MCLBYTES,
1454 BUS_DMASYNC_PREWRITE);
1455
1456 /* Inform firmware about this new packet */
1457 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1458
1459 return 0;
1460 }
1461
1462 static void
1463 ipw_start(struct ifnet *ifp)
1464 {
1465 struct ipw_softc *sc = ifp->if_softc;
1466 struct ieee80211com *ic = &sc->sc_ic;
1467 struct mbuf *m0;
1468 struct ether_header *eh;
1469 struct ieee80211_node *ni;
1470
1471
1472 if (ic->ic_state != IEEE80211_S_RUN)
1473 return;
1474
1475 for (;;) {
1476 IF_DEQUEUE(&ifp->if_snd, m0);
1477 if (m0 == NULL)
1478 break;
1479
1480 if (sc->txfree < 1 + IPW_MAX_NSEG) {
1481 IF_PREPEND(&ifp->if_snd, m0);
1482 ifp->if_flags |= IFF_OACTIVE;
1483 break;
1484 }
1485
1486 if (m0->m_len < sizeof (struct ether_header) &&
1487 (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL)
1488 continue;
1489
1490 eh = mtod(m0, struct ether_header *);
1491 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1492 if (ni == NULL) {
1493 m_freem(m0);
1494 continue;
1495 }
1496
1497 bpf_mtap(ifp, m0);
1498
1499 m0 = ieee80211_encap(ic, m0, ni);
1500 if (m0 == NULL) {
1501 ieee80211_free_node(ni);
1502 continue;
1503 }
1504
1505 bpf_mtap3(ic->ic_rawbpf, m0);
1506
1507 if (ipw_tx_start(ifp, m0, ni) != 0) {
1508 ieee80211_free_node(ni);
1509 ifp->if_oerrors++;
1510 break;
1511 }
1512
1513 /* start watchdog timer */
1514 sc->sc_tx_timer = 5;
1515 ifp->if_timer = 1;
1516 }
1517 }
1518
1519 static void
1520 ipw_watchdog(struct ifnet *ifp)
1521 {
1522 struct ipw_softc *sc = ifp->if_softc;
1523
1524 ifp->if_timer = 0;
1525
1526 if (sc->sc_tx_timer > 0) {
1527 if (--sc->sc_tx_timer == 0) {
1528 aprint_error_dev(&sc->sc_dev, "device timeout\n");
1529 ifp->if_oerrors++;
1530 ifp->if_flags &= ~IFF_UP;
1531 ipw_stop(ifp, 1);
1532 return;
1533 }
1534 ifp->if_timer = 1;
1535 }
1536
1537 ieee80211_watchdog(&sc->sc_ic);
1538 }
1539
1540 static int
1541 ipw_get_table1(struct ipw_softc *sc, uint32_t *tbl)
1542 {
1543 uint32_t addr, size, i;
1544
1545 if (!(sc->flags & IPW_FLAG_FW_INITED))
1546 return ENOTTY;
1547
1548 CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
1549
1550 size = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
1551 if (suword(tbl, size) != 0)
1552 return EFAULT;
1553
1554 for (i = 1, ++tbl; i < size; i++, tbl++) {
1555 addr = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
1556 if (suword(tbl, MEM_READ_4(sc, addr)) != 0)
1557 return EFAULT;
1558 }
1559 return 0;
1560 }
1561
1562 static int
1563 ipw_get_radio(struct ipw_softc *sc, int *ret)
1564 {
1565 uint32_t addr;
1566
1567 if (!(sc->flags & IPW_FLAG_FW_INITED))
1568 return ENOTTY;
1569
1570 addr = ipw_read_table1(sc, IPW_INFO_EEPROM_ADDRESS);
1571 if ((MEM_READ_4(sc, addr + 32) >> 24) & 1) {
1572 suword(ret, -1);
1573 return 0;
1574 }
1575
1576 if (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)
1577 suword(ret, 0);
1578 else
1579 suword(ret, 1);
1580
1581 return 0;
1582 }
1583
1584 static int
1585 ipw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1586 {
1587 #define IS_RUNNING(ifp) \
1588 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1589
1590 struct ipw_softc *sc = ifp->if_softc;
1591 struct ieee80211com *ic = &sc->sc_ic;
1592 struct ifreq *ifr = (struct ifreq *)data;
1593 int s, error = 0;
1594
1595 s = splnet();
1596
1597 switch (cmd) {
1598 case SIOCSIFFLAGS:
1599 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1600 break;
1601 if (ifp->if_flags & IFF_UP) {
1602 if (!(ifp->if_flags & IFF_RUNNING))
1603 ipw_init(ifp);
1604 } else {
1605 if (ifp->if_flags & IFF_RUNNING)
1606 ipw_stop(ifp, 1);
1607 }
1608 break;
1609
1610 case SIOCADDMULTI:
1611 case SIOCDELMULTI:
1612 /* XXX no h/w multicast filter? --dyoung */
1613 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1614 /* setup multicast filter, etc */
1615 error = 0;
1616 }
1617 break;
1618
1619 case SIOCGTABLE1:
1620 error = ipw_get_table1(sc, (uint32_t *)ifr->ifr_data);
1621 break;
1622
1623 case SIOCGRADIO:
1624 error = ipw_get_radio(sc, (int *)ifr->ifr_data);
1625 break;
1626
1627 case SIOCSIFMEDIA:
1628 if (ifr->ifr_media & IFM_IEEE80211_ADHOC)
1629 sc->sc_fwname = "ipw2100-1.2-i.fw";
1630 else if (ifr->ifr_media & IFM_IEEE80211_MONITOR)
1631 sc->sc_fwname = "ipw2100-1.2-p.fw";
1632 else
1633 sc->sc_fwname = "ipw2100-1.2.fw";
1634
1635 ipw_free_firmware(sc);
1636 /* FALLTRHOUGH */
1637 default:
1638 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1639 if (error != ENETRESET)
1640 break;
1641
1642 if (error == ENETRESET) {
1643 if (IS_RUNNING(ifp) &&
1644 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1645 ipw_init(ifp);
1646 error = 0;
1647 }
1648
1649 }
1650
1651 splx(s);
1652 return error;
1653 #undef IS_RUNNING
1654 }
1655
1656 static uint32_t
1657 ipw_read_table1(struct ipw_softc *sc, uint32_t off)
1658 {
1659 return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
1660 }
1661
1662 static void
1663 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
1664 {
1665 MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
1666 }
1667
1668 static int
1669 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
1670 {
1671 uint32_t addr, info;
1672 uint16_t count, size;
1673 uint32_t total;
1674
1675 /* addr[4] + count[2] + size[2] */
1676 addr = MEM_READ_4(sc, sc->table2_base + off);
1677 info = MEM_READ_4(sc, sc->table2_base + off + 4);
1678
1679 count = info >> 16;
1680 size = info & 0xffff;
1681 total = count * size;
1682
1683 if (total > *len) {
1684 *len = total;
1685 return EINVAL;
1686 }
1687
1688 *len = total;
1689 ipw_read_mem_1(sc, addr, buf, total);
1690
1691 return 0;
1692 }
1693
1694 static void
1695 ipw_stop_master(struct ipw_softc *sc)
1696 {
1697 int ntries;
1698
1699 /* disable interrupts */
1700 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1701
1702 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
1703 for (ntries = 0; ntries < 50; ntries++) {
1704 if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
1705 break;
1706 DELAY(10);
1707 }
1708 if (ntries == 50)
1709 aprint_error_dev(&sc->sc_dev, "timeout waiting for master\n");
1710
1711 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
1712 IPW_RST_PRINCETON_RESET);
1713
1714 sc->flags &= ~IPW_FLAG_FW_INITED;
1715 }
1716
1717 static int
1718 ipw_reset(struct ipw_softc *sc)
1719 {
1720 int ntries;
1721
1722 ipw_stop_master(sc);
1723
1724 /* move adapter to D0 state */
1725 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1726 IPW_CTL_INIT);
1727
1728 /* wait for clock stabilization */
1729 for (ntries = 0; ntries < 1000; ntries++) {
1730 if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
1731 break;
1732 DELAY(200);
1733 }
1734 if (ntries == 1000)
1735 return EIO;
1736
1737 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
1738 IPW_RST_SW_RESET);
1739
1740 DELAY(10);
1741
1742 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1743 IPW_CTL_INIT);
1744
1745 return 0;
1746 }
1747
1748 /*
1749 * Upload the microcode to the device.
1750 */
1751 static int
1752 ipw_load_ucode(struct ipw_softc *sc, u_char *uc, int size)
1753 {
1754 int ntries;
1755
1756 MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
1757 CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1758
1759 MEM_WRITE_2(sc, 0x220000, 0x0703);
1760 MEM_WRITE_2(sc, 0x220000, 0x0707);
1761
1762 MEM_WRITE_1(sc, 0x210014, 0x72);
1763 MEM_WRITE_1(sc, 0x210014, 0x72);
1764
1765 MEM_WRITE_1(sc, 0x210000, 0x40);
1766 MEM_WRITE_1(sc, 0x210000, 0x00);
1767 MEM_WRITE_1(sc, 0x210000, 0x40);
1768
1769 MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
1770
1771 MEM_WRITE_1(sc, 0x210000, 0x00);
1772 MEM_WRITE_1(sc, 0x210000, 0x00);
1773 MEM_WRITE_1(sc, 0x210000, 0x80);
1774
1775 MEM_WRITE_2(sc, 0x220000, 0x0703);
1776 MEM_WRITE_2(sc, 0x220000, 0x0707);
1777
1778 MEM_WRITE_1(sc, 0x210014, 0x72);
1779 MEM_WRITE_1(sc, 0x210014, 0x72);
1780
1781 MEM_WRITE_1(sc, 0x210000, 0x00);
1782 MEM_WRITE_1(sc, 0x210000, 0x80);
1783
1784 for (ntries = 0; ntries < 10; ntries++) {
1785 if (MEM_READ_1(sc, 0x210000) & 1)
1786 break;
1787 DELAY(10);
1788 }
1789 if (ntries == 10) {
1790 aprint_error_dev(&sc->sc_dev, "timeout waiting for ucode to initialize\n");
1791 return EIO;
1792 }
1793
1794 MEM_WRITE_4(sc, 0x3000e0, 0);
1795
1796 return 0;
1797 }
1798
1799 /* set of macros to handle unaligned little endian data in firmware image */
1800 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
1801 #define GETLE16(p) ((p)[0] | (p)[1] << 8)
1802 static int
1803 ipw_load_firmware(struct ipw_softc *sc, u_char *fw, int size)
1804 {
1805 u_char *p, *end;
1806 uint32_t dst;
1807 uint16_t len;
1808 int error;
1809
1810 p = fw;
1811 end = fw + size;
1812 while (p < end) {
1813 dst = GETLE32(p); p += 4;
1814 len = GETLE16(p); p += 2;
1815
1816 ipw_write_mem_1(sc, dst, p, len);
1817 p += len;
1818 }
1819
1820 CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
1821 IPW_IO_LED_OFF);
1822
1823 /* enable interrupts */
1824 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1825
1826 /* kick the firmware */
1827 CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1828
1829 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1830 IPW_CTL_ALLOW_STANDBY);
1831
1832 /* wait at most one second for firmware initialization to complete */
1833 if ((error = tsleep(sc, 0, "ipwinit", hz)) != 0) {
1834 aprint_error_dev(&sc->sc_dev, "timeout waiting for firmware initialization "
1835 "to complete\n");
1836 return error;
1837 }
1838
1839 CSR_WRITE_4(sc, IPW_CSR_IO, CSR_READ_4(sc, IPW_CSR_IO) |
1840 IPW_IO_GPIO1_MASK | IPW_IO_GPIO3_MASK);
1841
1842 return 0;
1843 }
1844
1845 /*
1846 * Store firmware into kernel memory so we can download it when we need to,
1847 * e.g when the adapter wakes up from suspend mode.
1848 */
1849 static int
1850 ipw_cache_firmware(struct ipw_softc *sc)
1851 {
1852 struct ipw_firmware *fw = &sc->fw;
1853 struct ipw_firmware_hdr hdr;
1854 firmware_handle_t fwh;
1855 off_t fwsz, p;
1856 int error;
1857
1858 ipw_free_firmware(sc);
1859
1860 if (ipw_accept_eula == 0) {
1861 aprint_error_dev(&sc->sc_dev,
1862 "EULA not accepted; please see the ipw(4) man page.\n");
1863 return EPERM;
1864 }
1865
1866 if ((error = firmware_open("if_ipw", sc->sc_fwname, &fwh)) != 0)
1867 goto fail0;
1868
1869 fwsz = firmware_get_size(fwh);
1870
1871 if (fwsz < sizeof(hdr))
1872 goto fail2;
1873
1874 if ((error = firmware_read(fwh, 0, &hdr, sizeof(hdr))) != 0)
1875 goto fail2;
1876
1877 fw->main_size = le32toh(hdr.main_size);
1878 fw->ucode_size = le32toh(hdr.ucode_size);
1879
1880 fw->main = firmware_malloc(fw->main_size);
1881 if (fw->main == NULL) {
1882 error = ENOMEM;
1883 goto fail1;
1884 }
1885
1886 fw->ucode = firmware_malloc(fw->ucode_size);
1887 if (fw->ucode == NULL) {
1888 error = ENOMEM;
1889 goto fail2;
1890 }
1891
1892 p = sizeof(hdr);
1893 if ((error = firmware_read(fwh, p, fw->main, fw->main_size)) != 0)
1894 goto fail3;
1895
1896 p += fw->main_size;
1897 if ((error = firmware_read(fwh, p, fw->ucode, fw->ucode_size)) != 0)
1898 goto fail3;
1899
1900 DPRINTF(("Firmware cached: main %u, ucode %u\n", fw->main_size,
1901 fw->ucode_size));
1902
1903 sc->flags |= IPW_FLAG_FW_CACHED;
1904
1905 firmware_close(fwh);
1906
1907 return 0;
1908
1909 fail3: firmware_free(fw->ucode, 0);
1910 fail2: firmware_free(fw->main, 0);
1911 fail1: firmware_close(fwh);
1912 fail0:
1913 return error;
1914 }
1915
1916 static void
1917 ipw_free_firmware(struct ipw_softc *sc)
1918 {
1919 if (!(sc->flags & IPW_FLAG_FW_CACHED))
1920 return;
1921
1922 firmware_free(sc->fw.main, 0);
1923 firmware_free(sc->fw.ucode, 0);
1924
1925 sc->flags &= ~IPW_FLAG_FW_CACHED;
1926 }
1927
1928 static int
1929 ipw_config(struct ipw_softc *sc)
1930 {
1931 struct ieee80211com *ic = &sc->sc_ic;
1932 struct ifnet *ifp = &sc->sc_if;
1933 struct ipw_security security;
1934 struct ieee80211_key *k;
1935 struct ipw_wep_key wepkey;
1936 struct ipw_scan_options options;
1937 struct ipw_configuration config;
1938 uint32_t data;
1939 int error, i;
1940
1941 switch (ic->ic_opmode) {
1942 case IEEE80211_M_STA:
1943 case IEEE80211_M_HOSTAP:
1944 data = htole32(IPW_MODE_BSS);
1945 break;
1946
1947 case IEEE80211_M_IBSS:
1948 case IEEE80211_M_AHDEMO:
1949 data = htole32(IPW_MODE_IBSS);
1950 break;
1951
1952 case IEEE80211_M_MONITOR:
1953 data = htole32(IPW_MODE_MONITOR);
1954 break;
1955 }
1956 DPRINTF(("Setting mode to %u\n", le32toh(data)));
1957 error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
1958 if (error != 0)
1959 return error;
1960
1961 if (ic->ic_opmode == IEEE80211_M_IBSS ||
1962 ic->ic_opmode == IEEE80211_M_MONITOR) {
1963 data = htole32(ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
1964 DPRINTF(("Setting channel to %u\n", le32toh(data)));
1965 error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
1966 if (error != 0)
1967 return error;
1968 }
1969
1970 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1971 DPRINTF(("Enabling adapter\n"));
1972 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
1973 }
1974
1975 DPRINTF(("Setting MAC to %s\n", ether_sprintf(ic->ic_myaddr)));
1976 error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
1977 IEEE80211_ADDR_LEN);
1978 if (error != 0)
1979 return error;
1980
1981 config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
1982 IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
1983
1984 if (ic->ic_opmode == IEEE80211_M_IBSS)
1985 config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
1986 if (ifp->if_flags & IFF_PROMISC)
1987 config.flags |= htole32(IPW_CFG_PROMISCUOUS);
1988 config.bss_chan = htole32(0x3fff); /* channels 1-14 */
1989 config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
1990 DPRINTF(("Setting adapter configuration 0x%08x\n", config.flags));
1991 error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
1992 if (error != 0)
1993 return error;
1994
1995 data = htole32(0x3); /* 1, 2 */
1996 DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
1997 error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
1998 if (error != 0)
1999 return error;
2000
2001 data = htole32(0xf); /* 1, 2, 5.5, 11 */
2002 DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
2003 error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
2004 if (error != 0)
2005 return error;
2006
2007 data = htole32(IPW_POWER_MODE_CAM);
2008 DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2009 error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
2010 if (error != 0)
2011 return error;
2012
2013 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2014 data = htole32(32); /* default value */
2015 DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
2016 error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
2017 sizeof data);
2018 if (error != 0)
2019 return error;
2020 }
2021
2022 data = htole32(ic->ic_rtsthreshold);
2023 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2024 error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2025 if (error != 0)
2026 return error;
2027
2028 data = htole32(ic->ic_fragthreshold);
2029 DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
2030 error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2031 if (error != 0)
2032 return error;
2033
2034 #ifdef IPW_DEBUG
2035 if (ipw_debug > 0) {
2036 printf("Setting ESSID to ");
2037 ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen);
2038 printf("\n");
2039 }
2040 #endif
2041 error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid,
2042 ic->ic_des_esslen);
2043 if (error != 0)
2044 return error;
2045
2046 /* no mandatory BSSID */
2047 DPRINTF(("Setting mandatory BSSID to null\n"));
2048 error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
2049 if (error != 0)
2050 return error;
2051
2052 if (ic->ic_flags & IEEE80211_F_DESBSSID) {
2053 DPRINTF(("Setting desired BSSID to %s\n",
2054 ether_sprintf(ic->ic_des_bssid)));
2055 error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID,
2056 ic->ic_des_bssid, IEEE80211_ADDR_LEN);
2057 if (error != 0)
2058 return error;
2059 }
2060
2061 (void)memset(&security, 0, sizeof(security));
2062 security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ?
2063 IPW_AUTH_SHARED : IPW_AUTH_OPEN;
2064 security.ciphers = htole32(IPW_CIPHER_NONE);
2065 DPRINTF(("Setting authmode to %u\n", security.authmode));
2066 error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
2067 sizeof security);
2068 if (error != 0)
2069 return error;
2070
2071 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2072 k = ic->ic_crypto.cs_nw_keys;
2073 for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
2074 if (k->wk_keylen == 0)
2075 continue;
2076
2077 wepkey.idx = i;
2078 wepkey.len = k->wk_keylen;
2079 memset(wepkey.key, 0, sizeof(wepkey.key));
2080 memcpy(wepkey.key, k->wk_key, k->wk_keylen);
2081 DPRINTF(("Setting wep key index %u len %u\n",
2082 wepkey.idx, wepkey.len));
2083 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
2084 sizeof wepkey);
2085 if (error != 0)
2086 return error;
2087 }
2088
2089 data = htole32(ic->ic_crypto.cs_def_txkey);
2090 DPRINTF(("Setting tx key index to %u\n", le32toh(data)));
2091 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
2092 sizeof data);
2093 if (error != 0)
2094 return error;
2095 }
2096
2097 data = htole32((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
2098 DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
2099 error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
2100 if (error != 0)
2101 return error;
2102
2103 #if 0
2104 struct ipw_wpa_ie ie;
2105
2106 memset(&ie, 0 sizeof(ie));
2107 ie.len = htole32(sizeof (struct ieee80211_ie_wpa));
2108 DPRINTF(("Setting wpa ie\n"));
2109 error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie);
2110 if (error != 0)
2111 return error;
2112 #endif
2113
2114 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2115 data = htole32(ic->ic_bintval);
2116 DPRINTF(("Setting beacon interval to %u\n", le32toh(data)));
2117 error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
2118 sizeof data);
2119 if (error != 0)
2120 return error;
2121 }
2122
2123 options.flags = 0;
2124 options.channels = htole32(0x3fff); /* scan channels 1-14 */
2125 DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags)));
2126 error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options);
2127 if (error != 0)
2128 return error;
2129
2130 /* finally, enable adapter (start scanning for an access point) */
2131 DPRINTF(("Enabling adapter\n"));
2132 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
2133 }
2134
2135 static int
2136 ipw_init(struct ifnet *ifp)
2137 {
2138 struct ipw_softc *sc = ifp->if_softc;
2139 struct ipw_firmware *fw = &sc->fw;
2140
2141 if (!(sc->flags & IPW_FLAG_FW_CACHED)) {
2142 if (ipw_cache_firmware(sc) != 0) {
2143 aprint_error_dev(&sc->sc_dev, "could not cache the firmware (%s)\n",
2144 sc->sc_fwname);
2145 goto fail;
2146 }
2147 }
2148
2149 ipw_stop(ifp, 0);
2150
2151 if (ipw_reset(sc) != 0) {
2152 aprint_error_dev(&sc->sc_dev, "could not reset adapter\n");
2153 goto fail;
2154 }
2155
2156 if (ipw_load_ucode(sc, fw->ucode, fw->ucode_size) != 0) {
2157 aprint_error_dev(&sc->sc_dev, "could not load microcode\n");
2158 goto fail;
2159 }
2160
2161 ipw_stop_master(sc);
2162
2163 /*
2164 * Setup tx, rx and status rings.
2165 */
2166 sc->txold = IPW_NTBD - 1;
2167 sc->txcur = 0;
2168 sc->txfree = IPW_NTBD - 2;
2169 sc->rxcur = IPW_NRBD - 1;
2170
2171 CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_map->dm_segs[0].ds_addr);
2172 CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD);
2173 CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0);
2174 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
2175
2176 CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_map->dm_segs[0].ds_addr);
2177 CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD);
2178 CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0);
2179 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
2180
2181 CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_map->dm_segs[0].ds_addr);
2182
2183 if (ipw_load_firmware(sc, fw->main, fw->main_size) != 0) {
2184 aprint_error_dev(&sc->sc_dev, "could not load firmware\n");
2185 goto fail;
2186 }
2187
2188 sc->flags |= IPW_FLAG_FW_INITED;
2189
2190 /* retrieve information tables base addresses */
2191 sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
2192 sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
2193
2194 ipw_write_table1(sc, IPW_INFO_LOCK, 0);
2195
2196 if (ipw_config(sc) != 0) {
2197 aprint_error_dev(&sc->sc_dev, "device configuration failed\n");
2198 goto fail;
2199 }
2200
2201 ifp->if_flags &= ~IFF_OACTIVE;
2202 ifp->if_flags |= IFF_RUNNING;
2203
2204 return 0;
2205
2206 fail: ifp->if_flags &= ~IFF_UP;
2207 ipw_stop(ifp, 0);
2208
2209 return EIO;
2210 }
2211
2212 static void
2213 ipw_stop(struct ifnet *ifp, int disable)
2214 {
2215 struct ipw_softc *sc = ifp->if_softc;
2216 struct ieee80211com *ic = &sc->sc_ic;
2217 int i;
2218
2219 ipw_stop_master(sc);
2220
2221 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
2222
2223 /*
2224 * Release tx buffers.
2225 */
2226 for (i = 0; i < IPW_NTBD; i++)
2227 ipw_release_sbd(sc, &sc->stbd_list[i]);
2228
2229 sc->sc_tx_timer = 0;
2230 ifp->if_timer = 0;
2231 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2232
2233 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2234 }
2235
2236 static void
2237 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2238 bus_size_t count)
2239 {
2240 for (; count > 0; offset++, datap++, count--) {
2241 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2242 *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
2243 }
2244 }
2245
2246 static void
2247 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2248 bus_size_t count)
2249 {
2250 for (; count > 0; offset++, datap++, count--) {
2251 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2252 CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
2253 }
2254 }
2255
2256 SYSCTL_SETUP(sysctl_hw_ipw_accept_eula_setup, "sysctl hw.ipw.accept_eula")
2257 {
2258 const struct sysctlnode *rnode;
2259 const struct sysctlnode *cnode;
2260
2261 sysctl_createv(NULL, 0, NULL, &rnode,
2262 CTLFLAG_PERMANENT,
2263 CTLTYPE_NODE, "hw",
2264 NULL,
2265 NULL, 0,
2266 NULL, 0,
2267 CTL_HW, CTL_EOL);
2268
2269 sysctl_createv(NULL, 0, &rnode, &rnode,
2270 CTLFLAG_PERMANENT,
2271 CTLTYPE_NODE, "ipw",
2272 NULL,
2273 NULL, 0,
2274 NULL, 0,
2275 CTL_CREATE, CTL_EOL);
2276
2277 sysctl_createv(NULL, 0, &rnode, &cnode,
2278 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2279 CTLTYPE_INT, "accept_eula",
2280 SYSCTL_DESCR("Accept Intel EULA and permit use of ipw(4) firmware"),
2281 NULL, 0,
2282 &ipw_accept_eula, sizeof(ipw_accept_eula),
2283 CTL_CREATE, CTL_EOL);
2284 }
2285