if_ipw.c revision 1.60.2.1 1 /* $NetBSD: if_ipw.c,v 1.60.2.1 2017/01/07 08:56:33 pgoyette Exp $ */
2 /* FreeBSD: src/sys/dev/ipw/if_ipw.c,v 1.15 2005/11/13 17:17:40 damien Exp */
3
4 /*-
5 * Copyright (c) 2004, 2005
6 * Damien Bergamini <damien.bergamini (at) free.fr>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: if_ipw.c,v 1.60.2.1 2017/01/07 08:56:33 pgoyette Exp $");
33
34 /*-
35 * Intel(R) PRO/Wireless 2100 MiniPCI driver
36 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
37 */
38
39
40 #include <sys/param.h>
41 #include <sys/sockio.h>
42 #include <sys/sysctl.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/socket.h>
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/proc.h>
50
51 #include <sys/bus.h>
52 #include <machine/endian.h>
53 #include <sys/intr.h>
54
55 #include <dev/pci/pcireg.h>
56 #include <dev/pci/pcivar.h>
57 #include <dev/pci/pcidevs.h>
58
59 #include <net/bpf.h>
60 #include <net/if.h>
61 #include <net/if_arp.h>
62 #include <net/if_dl.h>
63 #include <net/if_ether.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/in_var.h>
73 #include <netinet/ip.h>
74
75 #include <dev/firmload.h>
76
77 #include <dev/pci/if_ipwreg.h>
78 #include <dev/pci/if_ipwvar.h>
79
80 #ifdef IPW_DEBUG
81 #define DPRINTF(x) if (ipw_debug > 0) printf x
82 #define DPRINTFN(n, x) if (ipw_debug >= (n)) printf x
83 int ipw_debug = 0;
84 #else
85 #define DPRINTF(x)
86 #define DPRINTFN(n, x)
87 #endif
88
89 /* Permit loading the Intel firmware */
90 static int ipw_accept_eula;
91
92 static int ipw_dma_alloc(struct ipw_softc *);
93 static void ipw_release(struct ipw_softc *);
94 static int ipw_match(device_t, cfdata_t, void *);
95 static void ipw_attach(device_t, device_t, void *);
96 static int ipw_detach(device_t, int);
97
98 static int ipw_media_change(struct ifnet *);
99 static void ipw_media_status(struct ifnet *, struct ifmediareq *);
100 static int ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
101 static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t);
102 static void ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
103 static void ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
104 static void ipw_data_intr(struct ipw_softc *, struct ipw_status *,
105 struct ipw_soft_bd *, struct ipw_soft_buf *);
106 static void ipw_rx_intr(struct ipw_softc *);
107 static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
108 static void ipw_tx_intr(struct ipw_softc *);
109 static int ipw_intr(void *);
110 static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
111 static int ipw_tx_start(struct ifnet *, struct mbuf *,
112 struct ieee80211_node *);
113 static void ipw_start(struct ifnet *);
114 static void ipw_watchdog(struct ifnet *);
115 static int ipw_ioctl(struct ifnet *, u_long, void *);
116 static int ipw_get_table1(struct ipw_softc *, uint32_t *);
117 static int ipw_get_radio(struct ipw_softc *, int *);
118 static void ipw_stop_master(struct ipw_softc *);
119 static int ipw_reset(struct ipw_softc *);
120 static int ipw_load_ucode(struct ipw_softc *, u_char *, int);
121 static int ipw_load_firmware(struct ipw_softc *, u_char *, int);
122 static int ipw_cache_firmware(struct ipw_softc *);
123 static void ipw_free_firmware(struct ipw_softc *);
124 static int ipw_config(struct ipw_softc *);
125 static int ipw_init(struct ifnet *);
126 static void ipw_stop(struct ifnet *, int);
127 static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t);
128 static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
129 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, uint32_t *);
130 static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
131 bus_size_t);
132 static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
133 bus_size_t);
134
135 /*
136 * Supported rates for 802.11b mode (in 500Kbps unit).
137 */
138 static const struct ieee80211_rateset ipw_rateset_11b =
139 { 4, { 2, 4, 11, 22 } };
140
141 static inline uint8_t
142 MEM_READ_1(struct ipw_softc *sc, uint32_t addr)
143 {
144 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
145 return CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA);
146 }
147
148 static inline uint32_t
149 MEM_READ_4(struct ipw_softc *sc, uint32_t addr)
150 {
151 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
152 return CSR_READ_4(sc, IPW_CSR_INDIRECT_DATA);
153 }
154
155 CFATTACH_DECL_NEW(ipw, sizeof (struct ipw_softc), ipw_match, ipw_attach,
156 ipw_detach, NULL);
157
158 static int
159 ipw_match(device_t parent, cfdata_t match, void *aux)
160 {
161 struct pci_attach_args *pa = aux;
162
163 if (PCI_VENDOR (pa->pa_id) == PCI_VENDOR_INTEL &&
164 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2100)
165 return 1;
166
167 return 0;
168 }
169
170 /* Base Address Register */
171 #define IPW_PCI_BAR0 0x10
172
173 static void
174 ipw_attach(device_t parent, device_t self, void *aux)
175 {
176 struct ipw_softc *sc = device_private(self);
177 struct ieee80211com *ic = &sc->sc_ic;
178 struct ifnet *ifp = &sc->sc_if;
179 struct pci_attach_args *pa = aux;
180 const char *intrstr;
181 bus_space_tag_t memt;
182 bus_space_handle_t memh;
183 bus_addr_t base;
184 pci_intr_handle_t ih;
185 uint32_t data;
186 uint16_t val;
187 int i, error;
188 char intrbuf[PCI_INTRSTR_LEN];
189
190 sc->sc_dev = self;
191 sc->sc_pct = pa->pa_pc;
192 sc->sc_pcitag = pa->pa_tag;
193
194 pci_aprint_devinfo(pa, NULL);
195
196 /* enable bus-mastering */
197 data = pci_conf_read(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG);
198 data |= PCI_COMMAND_MASTER_ENABLE;
199 pci_conf_write(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG, data);
200
201 /* map the register window */
202 error = pci_mapreg_map(pa, IPW_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
203 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz);
204 if (error != 0) {
205 aprint_error_dev(sc->sc_dev, "could not map memory space\n");
206 return;
207 }
208
209 sc->sc_st = memt;
210 sc->sc_sh = memh;
211 sc->sc_dmat = pa->pa_dmat;
212 sc->sc_fwname = "ipw2100-1.2.fw";
213
214 /* disable interrupts */
215 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
216
217 if (pci_intr_map(pa, &ih) != 0) {
218 aprint_error_dev(sc->sc_dev, "could not map interrupt\n");
219 return;
220 }
221
222 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
223 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, ipw_intr, sc);
224 if (sc->sc_ih == NULL) {
225 aprint_error_dev(sc->sc_dev, "could not establish interrupt");
226 if (intrstr != NULL)
227 aprint_error(" at %s", intrstr);
228 aprint_error("\n");
229 return;
230 }
231 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
232
233 if (ipw_reset(sc) != 0) {
234 aprint_error_dev(sc->sc_dev, "could not reset adapter\n");
235 goto fail;
236 }
237
238 if (ipw_dma_alloc(sc) != 0) {
239 aprint_error_dev(sc->sc_dev, "could not allocate DMA resources\n");
240 goto fail;
241 }
242
243 ifp->if_softc = sc;
244 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
245 ifp->if_init = ipw_init;
246 ifp->if_stop = ipw_stop;
247 ifp->if_ioctl = ipw_ioctl;
248 ifp->if_start = ipw_start;
249 ifp->if_watchdog = ipw_watchdog;
250 IFQ_SET_READY(&ifp->if_snd);
251 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
252
253 ic->ic_ifp = ifp;
254 ic->ic_phytype = IEEE80211_T_DS;
255 ic->ic_opmode = IEEE80211_M_STA;
256 ic->ic_state = IEEE80211_S_INIT;
257
258 /* set device capabilities */
259 ic->ic_caps =
260 IEEE80211_C_SHPREAMBLE /* short preamble supported */
261 | IEEE80211_C_TXPMGT /* tx power management */
262 | IEEE80211_C_IBSS /* ibss mode */
263 | IEEE80211_C_MONITOR /* monitor mode */
264 ;
265
266 /* read MAC address from EEPROM */
267 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
268 ic->ic_myaddr[0] = val >> 8;
269 ic->ic_myaddr[1] = val & 0xff;
270 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
271 ic->ic_myaddr[2] = val >> 8;
272 ic->ic_myaddr[3] = val & 0xff;
273 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
274 ic->ic_myaddr[4] = val >> 8;
275 ic->ic_myaddr[5] = val & 0xff;
276
277 /* set supported .11b rates */
278 ic->ic_sup_rates[IEEE80211_MODE_11B] = ipw_rateset_11b;
279
280 /* set supported .11b channels (read from EEPROM) */
281 if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0)
282 val = 0x7ff; /* default to channels 1-11 */
283 val <<= 1;
284 for (i = 1; i < 16; i++) {
285 if (val & (1 << i)) {
286 ic->ic_channels[i].ic_freq =
287 ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
288 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
289 }
290 }
291
292 /* check support for radio transmitter switch in EEPROM */
293 if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
294 sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
295
296 aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
297 ether_sprintf(ic->ic_myaddr));
298
299 if_attach(ifp);
300 if_deferred_start_init(ifp, NULL);
301 ieee80211_ifattach(ic);
302
303 /* override state transition machine */
304 sc->sc_newstate = ic->ic_newstate;
305 ic->ic_newstate = ipw_newstate;
306
307 ieee80211_media_init(ic, ipw_media_change, ipw_media_status);
308
309 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
310 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
311
312 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
313 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
314 sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
315
316 sc->sc_txtap_len = sizeof sc->sc_txtapu;
317 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
318 sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
319
320 /*
321 * Add a few sysctl knobs.
322 * XXX: Not yet
323 */
324 sc->dwelltime = 100;
325
326 if (pmf_device_register(self, NULL, NULL))
327 pmf_class_network_register(self, ifp);
328 else
329 aprint_error_dev(self, "couldn't establish power handler\n");
330
331 ieee80211_announce(ic);
332
333 return;
334
335 fail: ipw_detach(self, 0);
336 }
337
338 static int
339 ipw_detach(device_t self, int flags)
340 {
341 struct ipw_softc *sc = device_private(self);
342 struct ifnet *ifp = &sc->sc_if;
343
344 if (ifp->if_softc) {
345 ipw_stop(ifp, 1);
346 ipw_free_firmware(sc);
347
348 bpf_detach(ifp);
349 ieee80211_ifdetach(&sc->sc_ic);
350 if_detach(ifp);
351
352 ipw_release(sc);
353 }
354
355 if (sc->sc_ih != NULL) {
356 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
357 sc->sc_ih = NULL;
358 }
359
360 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
361
362 return 0;
363 }
364
365 static int
366 ipw_dma_alloc(struct ipw_softc *sc)
367 {
368 struct ipw_soft_bd *sbd;
369 struct ipw_soft_hdr *shdr;
370 struct ipw_soft_buf *sbuf;
371 int error, i, nsegs;
372
373 /*
374 * Allocate and map tx ring.
375 */
376 error = bus_dmamap_create(sc->sc_dmat, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0,
377 BUS_DMA_NOWAIT, &sc->tbd_map);
378 if (error != 0) {
379 aprint_error_dev(sc->sc_dev, "could not create tbd dma map\n");
380 goto fail;
381 }
382
383 error = bus_dmamem_alloc(sc->sc_dmat, IPW_TBD_SZ, PAGE_SIZE, 0,
384 &sc->tbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
385 if (error != 0) {
386 aprint_error_dev(sc->sc_dev, "could not allocate tbd dma memory\n");
387 goto fail;
388 }
389
390 error = bus_dmamem_map(sc->sc_dmat, &sc->tbd_seg, nsegs, IPW_TBD_SZ,
391 (void **)&sc->tbd_list, BUS_DMA_NOWAIT);
392 if (error != 0) {
393 aprint_error_dev(sc->sc_dev, "could not map tbd dma memory\n");
394 goto fail;
395 }
396
397 error = bus_dmamap_load(sc->sc_dmat, sc->tbd_map, sc->tbd_list,
398 IPW_TBD_SZ, NULL, BUS_DMA_NOWAIT);
399 if (error != 0) {
400 aprint_error_dev(sc->sc_dev, "could not load tbd dma memory\n");
401 goto fail;
402 }
403
404 (void)memset(sc->tbd_list, 0, IPW_TBD_SZ);
405
406 /*
407 * Allocate and map rx ring.
408 */
409 error = bus_dmamap_create(sc->sc_dmat, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0,
410 BUS_DMA_NOWAIT, &sc->rbd_map);
411 if (error != 0) {
412 aprint_error_dev(sc->sc_dev, "could not create rbd dma map\n");
413 goto fail;
414 }
415
416 error = bus_dmamem_alloc(sc->sc_dmat, IPW_RBD_SZ, PAGE_SIZE, 0,
417 &sc->rbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
418 if (error != 0) {
419 aprint_error_dev(sc->sc_dev, "could not allocate rbd dma memory\n");
420 goto fail;
421 }
422
423 error = bus_dmamem_map(sc->sc_dmat, &sc->rbd_seg, nsegs, IPW_RBD_SZ,
424 (void **)&sc->rbd_list, BUS_DMA_NOWAIT);
425 if (error != 0) {
426 aprint_error_dev(sc->sc_dev, "could not map rbd dma memory\n");
427 goto fail;
428 }
429
430 error = bus_dmamap_load(sc->sc_dmat, sc->rbd_map, sc->rbd_list,
431 IPW_RBD_SZ, NULL, BUS_DMA_NOWAIT);
432 if (error != 0) {
433 aprint_error_dev(sc->sc_dev, "could not load rbd dma memory\n");
434 goto fail;
435 }
436
437 (void)memset(sc->rbd_list, 0, IPW_RBD_SZ);
438
439 /*
440 * Allocate and map status ring.
441 */
442 error = bus_dmamap_create(sc->sc_dmat, IPW_STATUS_SZ, 1, IPW_STATUS_SZ,
443 0, BUS_DMA_NOWAIT, &sc->status_map);
444 if (error != 0) {
445 aprint_error_dev(sc->sc_dev, "could not create status dma map\n");
446 goto fail;
447 }
448
449 error = bus_dmamem_alloc(sc->sc_dmat, IPW_STATUS_SZ, PAGE_SIZE, 0,
450 &sc->status_seg, 1, &nsegs, BUS_DMA_NOWAIT);
451 if (error != 0) {
452 aprint_error_dev(sc->sc_dev, "could not allocate status dma memory\n");
453 goto fail;
454 }
455
456 error = bus_dmamem_map(sc->sc_dmat, &sc->status_seg, nsegs,
457 IPW_STATUS_SZ, (void **)&sc->status_list, BUS_DMA_NOWAIT);
458 if (error != 0) {
459 aprint_error_dev(sc->sc_dev, "could not map status dma memory\n");
460 goto fail;
461 }
462
463 error = bus_dmamap_load(sc->sc_dmat, sc->status_map, sc->status_list,
464 IPW_STATUS_SZ, NULL, BUS_DMA_NOWAIT);
465 if (error != 0) {
466 aprint_error_dev(sc->sc_dev, "could not load status dma memory\n");
467 goto fail;
468 }
469
470 (void)memset(sc->status_list, 0, IPW_STATUS_SZ);
471
472 /*
473 * Allocate command DMA map.
474 */
475 error = bus_dmamap_create(sc->sc_dmat, sizeof (struct ipw_cmd),
476 1, sizeof (struct ipw_cmd), 0, BUS_DMA_NOWAIT, &sc->cmd_map);
477 if (error != 0) {
478 aprint_error_dev(sc->sc_dev, "could not create cmd dma map\n");
479 goto fail;
480 }
481
482 error = bus_dmamem_alloc(sc->sc_dmat, sizeof (struct ipw_cmd),
483 PAGE_SIZE, 0, &sc->cmd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
484 if (error != 0) {
485 aprint_error_dev(sc->sc_dev, "could not allocate cmd dma memory\n");
486 goto fail;
487 }
488
489 error = bus_dmamem_map(sc->sc_dmat, &sc->cmd_seg, nsegs,
490 sizeof (struct ipw_cmd), (void **)&sc->cmd, BUS_DMA_NOWAIT);
491 if (error != 0) {
492 aprint_error_dev(sc->sc_dev, "could not map cmd dma memory\n");
493 goto fail;
494 }
495
496 error = bus_dmamap_load(sc->sc_dmat, sc->cmd_map, &sc->cmd,
497 sizeof (struct ipw_cmd), NULL, BUS_DMA_NOWAIT);
498 if (error != 0) {
499 aprint_error_dev(sc->sc_dev, "could not map cmd dma memory\n");
500 return error;
501 }
502
503 /*
504 * Allocate and map hdr list.
505 */
506
507 error = bus_dmamap_create(sc->sc_dmat,
508 IPW_NDATA * sizeof(struct ipw_hdr), 1,
509 sizeof(struct ipw_hdr), 0, BUS_DMA_NOWAIT,
510 &sc->hdr_map);
511 if (error != 0) {
512 aprint_error_dev(sc->sc_dev, "could not create hdr dma map\n");
513 goto fail;
514 }
515
516 error = bus_dmamem_alloc(sc->sc_dmat,
517 IPW_NDATA * sizeof(struct ipw_hdr), PAGE_SIZE, 0, &sc->hdr_seg,
518 1, &nsegs, BUS_DMA_NOWAIT);
519 if (error != 0) {
520 aprint_error_dev(sc->sc_dev, "could not allocate hdr memory\n");
521 goto fail;
522 }
523
524 error = bus_dmamem_map(sc->sc_dmat, &sc->hdr_seg, nsegs,
525 IPW_NDATA * sizeof(struct ipw_hdr), (void **)&sc->hdr_list,
526 BUS_DMA_NOWAIT);
527 if (error != 0) {
528 aprint_error_dev(sc->sc_dev, "could not map hdr memory\n");
529 goto fail;
530 }
531
532 error = bus_dmamap_load(sc->sc_dmat, sc->hdr_map, sc->hdr_list,
533 IPW_NDATA * sizeof(struct ipw_hdr), NULL, BUS_DMA_NOWAIT);
534 if (error != 0) {
535 aprint_error_dev(sc->sc_dev, "could not load hdr memory\n");
536 goto fail;
537 }
538
539 (void)memset(sc->hdr_list, 0, IPW_HDR_SZ);
540
541 /*
542 * Create DMA hdrs tailq.
543 */
544 TAILQ_INIT(&sc->sc_free_shdr);
545 for (i = 0; i < IPW_NDATA; i++) {
546 shdr = &sc->shdr_list[i];
547 shdr->hdr = sc->hdr_list + i;
548 shdr->offset = sizeof(struct ipw_hdr) * i;
549 shdr->addr = sc->hdr_map->dm_segs[0].ds_addr + shdr->offset;
550 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
551 }
552
553 /*
554 * Allocate tx buffers DMA maps.
555 */
556 TAILQ_INIT(&sc->sc_free_sbuf);
557 for (i = 0; i < IPW_NDATA; i++) {
558 sbuf = &sc->tx_sbuf_list[i];
559
560 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
561 IPW_MAX_NSEG, MCLBYTES, 0, BUS_DMA_NOWAIT, &sbuf->map);
562 if (error != 0) {
563 aprint_error_dev(sc->sc_dev, "could not create txbuf dma map\n");
564 goto fail;
565 }
566 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
567 }
568
569 /*
570 * Initialize tx ring.
571 */
572 for (i = 0; i < IPW_NTBD; i++) {
573 sbd = &sc->stbd_list[i];
574 sbd->bd = &sc->tbd_list[i];
575 sbd->type = IPW_SBD_TYPE_NOASSOC;
576 }
577
578 /*
579 * Pre-allocate rx buffers and DMA maps
580 */
581 for (i = 0; i < IPW_NRBD; i++) {
582 sbd = &sc->srbd_list[i];
583 sbuf = &sc->rx_sbuf_list[i];
584 sbd->bd = &sc->rbd_list[i];
585
586 MGETHDR(sbuf->m, M_DONTWAIT, MT_DATA);
587 if (sbuf->m == NULL) {
588 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
589 error = ENOMEM;
590 goto fail;
591 }
592
593 MCLGET(sbuf->m, M_DONTWAIT);
594 if (!(sbuf->m->m_flags & M_EXT)) {
595 m_freem(sbuf->m);
596 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
597 error = ENOMEM;
598 goto fail;
599 }
600
601 sbuf->m->m_pkthdr.len = sbuf->m->m_len = sbuf->m->m_ext.ext_size;
602
603 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
604 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sbuf->map);
605 if (error != 0) {
606 aprint_error_dev(sc->sc_dev, "could not create rxbuf dma map\n");
607 m_freem(sbuf->m);
608 goto fail;
609 }
610
611 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
612 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
613 if (error != 0) {
614 bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
615 m_freem(sbuf->m);
616 aprint_error_dev(sc->sc_dev, "could not map rxbuf dma memory\n");
617 goto fail;
618 }
619
620 sbd->type = IPW_SBD_TYPE_DATA;
621 sbd->priv = sbuf;
622 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
623 sbd->bd->len = htole32(MCLBYTES);
624
625 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
626 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
627
628 }
629
630 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, 0, IPW_RBD_SZ,
631 BUS_DMASYNC_PREREAD);
632
633 return 0;
634
635 fail: ipw_release(sc);
636 return error;
637 }
638
639 static void
640 ipw_release(struct ipw_softc *sc)
641 {
642 struct ipw_soft_buf *sbuf;
643 int i;
644
645 if (sc->tbd_map != NULL) {
646 if (sc->tbd_list != NULL) {
647 bus_dmamap_unload(sc->sc_dmat, sc->tbd_map);
648 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->tbd_list,
649 IPW_TBD_SZ);
650 bus_dmamem_free(sc->sc_dmat, &sc->tbd_seg, 1);
651 }
652 bus_dmamap_destroy(sc->sc_dmat, sc->tbd_map);
653 }
654
655 if (sc->rbd_map != NULL) {
656 if (sc->rbd_list != NULL) {
657 bus_dmamap_unload(sc->sc_dmat, sc->rbd_map);
658 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rbd_list,
659 IPW_RBD_SZ);
660 bus_dmamem_free(sc->sc_dmat, &sc->rbd_seg, 1);
661 }
662 bus_dmamap_destroy(sc->sc_dmat, sc->rbd_map);
663 }
664
665 if (sc->status_map != NULL) {
666 if (sc->status_list != NULL) {
667 bus_dmamap_unload(sc->sc_dmat, sc->status_map);
668 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->status_list,
669 IPW_RBD_SZ);
670 bus_dmamem_free(sc->sc_dmat, &sc->status_seg, 1);
671 }
672 bus_dmamap_destroy(sc->sc_dmat, sc->status_map);
673 }
674
675 for (i = 0; i < IPW_NTBD; i++)
676 ipw_release_sbd(sc, &sc->stbd_list[i]);
677
678 if (sc->cmd_map != NULL)
679 bus_dmamap_destroy(sc->sc_dmat, sc->cmd_map);
680
681 if (sc->hdr_list != NULL) {
682 bus_dmamap_unload(sc->sc_dmat, sc->hdr_map);
683 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->hdr_list,
684 IPW_NDATA * sizeof(struct ipw_hdr));
685 }
686 if (sc->hdr_map != NULL) {
687 bus_dmamem_free(sc->sc_dmat, &sc->hdr_seg, 1);
688 bus_dmamap_destroy(sc->sc_dmat, sc->hdr_map);
689 }
690
691 for (i = 0; i < IPW_NDATA; i++)
692 bus_dmamap_destroy(sc->sc_dmat, sc->tx_sbuf_list[i].map);
693
694 for (i = 0; i < IPW_NRBD; i++) {
695 sbuf = &sc->rx_sbuf_list[i];
696 if (sbuf->map != NULL) {
697 if (sbuf->m != NULL) {
698 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
699 m_freem(sbuf->m);
700 }
701 bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
702 }
703 }
704
705 }
706
707 static int
708 ipw_media_change(struct ifnet *ifp)
709 {
710 int error;
711
712 error = ieee80211_media_change(ifp);
713 if (error != ENETRESET)
714 return error;
715
716 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
717 ipw_init(ifp);
718
719 return 0;
720 }
721
722 /*
723 * The firmware automatically adapts the transmit speed. We report the current
724 * transmit speed here.
725 */
726 static void
727 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
728 {
729 #define N(a) (sizeof (a) / sizeof (a[0]))
730 struct ipw_softc *sc = ifp->if_softc;
731 struct ieee80211com *ic = &sc->sc_ic;
732 static const struct {
733 uint32_t val;
734 int rate;
735 } rates[] = {
736 { IPW_RATE_DS1, 2 },
737 { IPW_RATE_DS2, 4 },
738 { IPW_RATE_DS5, 11 },
739 { IPW_RATE_DS11, 22 },
740 };
741 uint32_t val;
742 int rate, i;
743
744 imr->ifm_status = IFM_AVALID;
745 imr->ifm_active = IFM_IEEE80211;
746 if (ic->ic_state == IEEE80211_S_RUN)
747 imr->ifm_status |= IFM_ACTIVE;
748
749 /* read current transmission rate from adapter */
750 val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf;
751
752 /* convert ipw rate to 802.11 rate */
753 for (i = 0; i < N(rates) && rates[i].val != val; i++);
754 rate = (i < N(rates)) ? rates[i].rate : 0;
755
756 imr->ifm_active |= IFM_IEEE80211_11B;
757 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
758 switch (ic->ic_opmode) {
759 case IEEE80211_M_STA:
760 break;
761
762 case IEEE80211_M_IBSS:
763 imr->ifm_active |= IFM_IEEE80211_ADHOC;
764 break;
765
766 case IEEE80211_M_MONITOR:
767 imr->ifm_active |= IFM_IEEE80211_MONITOR;
768 break;
769
770 case IEEE80211_M_AHDEMO:
771 case IEEE80211_M_HOSTAP:
772 /* should not get there */
773 break;
774 }
775 #undef N
776 }
777
778 static int
779 ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
780 int arg)
781 {
782 struct ifnet *ifp = ic->ic_ifp;
783 struct ipw_softc *sc = ifp->if_softc;
784 struct ieee80211_node *ni;
785 uint8_t macaddr[IEEE80211_ADDR_LEN];
786 uint32_t len;
787 struct ipw_rx_radiotap_header *wr = &sc->sc_rxtap;
788 struct ipw_tx_radiotap_header *wt = &sc->sc_txtap;
789
790 switch (nstate) {
791 case IEEE80211_S_INIT:
792 break;
793 default:
794 KASSERT(ic->ic_curchan != IEEE80211_CHAN_ANYC);
795 KASSERT(ic->ic_curchan != NULL);
796 wt->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
797 wt->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
798 wr->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
799 wr->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
800 break;
801 }
802
803 switch (nstate) {
804 case IEEE80211_S_RUN:
805 DELAY(200); /* firmware needs a short delay here */
806
807 len = IEEE80211_ADDR_LEN;
808 ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len);
809
810 ni = ieee80211_find_node(&ic->ic_scan, macaddr);
811 if (ni == NULL)
812 break;
813
814 ieee80211_ref_node(ni);
815 ieee80211_sta_join(ic, ni);
816 ieee80211_node_authorize(ni);
817
818 if (ic->ic_opmode == IEEE80211_M_STA)
819 ieee80211_notify_node_join(ic, ni, 1);
820 break;
821
822 case IEEE80211_S_INIT:
823 case IEEE80211_S_SCAN:
824 case IEEE80211_S_AUTH:
825 case IEEE80211_S_ASSOC:
826 break;
827 }
828
829 ic->ic_state = nstate;
830 return 0;
831 }
832
833 /*
834 * Read 16 bits at address 'addr' from the serial EEPROM.
835 */
836 static uint16_t
837 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
838 {
839 uint32_t tmp;
840 uint16_t val;
841 int n;
842
843 /* clock C once before the first command */
844 IPW_EEPROM_CTL(sc, 0);
845 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
846 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
847 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
848
849 /* write start bit (1) */
850 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
851 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
852
853 /* write READ opcode (10) */
854 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
855 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
856 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
857 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
858
859 /* write address A7-A0 */
860 for (n = 7; n >= 0; n--) {
861 IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
862 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
863 IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
864 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
865 }
866
867 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
868
869 /* read data Q15-Q0 */
870 val = 0;
871 for (n = 15; n >= 0; n--) {
872 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
873 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
874 tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
875 val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
876 }
877
878 IPW_EEPROM_CTL(sc, 0);
879
880 /* clear Chip Select and clock C */
881 IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
882 IPW_EEPROM_CTL(sc, 0);
883 IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
884
885 return le16toh(val);
886 }
887
888 static void
889 ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
890 {
891
892 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof (struct ipw_cmd),
893 BUS_DMASYNC_POSTREAD);
894
895 #ifdef IPW_DEBUG
896 struct ipw_cmd *cmd = mtod(sbuf->m, struct ipw_cmd *);
897
898 DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type),
899 le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
900 le32toh(cmd->status)));
901 #endif
902
903 wakeup(&sc->cmd);
904 }
905
906 static void
907 ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
908 {
909 struct ieee80211com *ic = &sc->sc_ic;
910 struct ifnet *ifp = sc->sc_ic.ic_ifp;
911 uint32_t state;
912
913 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof state,
914 BUS_DMASYNC_POSTREAD);
915
916 state = le32toh(*mtod(sbuf->m, uint32_t *));
917
918 DPRINTFN(2, ("entering state %u\n", state));
919
920 switch (state) {
921 case IPW_STATE_ASSOCIATED:
922 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
923 break;
924
925 case IPW_STATE_SCANNING:
926 /* don't leave run state on background scan */
927 if (ic->ic_state != IEEE80211_S_RUN)
928 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
929
930 ic->ic_flags |= IEEE80211_F_SCAN;
931 break;
932
933 case IPW_STATE_SCAN_COMPLETE:
934 ieee80211_notify_scan_done(ic);
935 ic->ic_flags &= ~IEEE80211_F_SCAN;
936 break;
937
938 case IPW_STATE_ASSOCIATION_LOST:
939 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
940 break;
941
942 case IPW_STATE_RADIO_DISABLED:
943 ic->ic_ifp->if_flags &= ~IFF_UP;
944 ipw_stop(ifp, 1);
945 break;
946 }
947 }
948
949 /*
950 * XXX: Hack to set the current channel to the value advertised in beacons or
951 * probe responses. Only used during AP detection.
952 */
953 static void
954 ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m)
955 {
956 struct ieee80211_frame *wh;
957 uint8_t subtype;
958 uint8_t *frm, *efrm;
959
960 wh = mtod(m, struct ieee80211_frame *);
961
962 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
963 return;
964
965 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
966
967 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
968 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
969 return;
970
971 frm = (uint8_t *)(wh + 1);
972 efrm = mtod(m, uint8_t *) + m->m_len;
973
974 frm += 12; /* skip tstamp, bintval and capinfo fields */
975 while (frm < efrm) {
976 if (*frm == IEEE80211_ELEMID_DSPARMS)
977 #if IEEE80211_CHAN_MAX < 255
978 if (frm[2] <= IEEE80211_CHAN_MAX)
979 #endif
980 ic->ic_curchan = &ic->ic_channels[frm[2]];
981
982 frm += frm[1] + 2;
983 }
984 }
985
986 static void
987 ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
988 struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
989 {
990 struct ieee80211com *ic = &sc->sc_ic;
991 struct ifnet *ifp = &sc->sc_if;
992 struct mbuf *mnew, *m;
993 struct ieee80211_frame *wh;
994 struct ieee80211_node *ni;
995 int error;
996
997 DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
998 status->rssi));
999
1000 if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
1001 le32toh(status->len) > MCLBYTES)
1002 return;
1003
1004 /*
1005 * Try to allocate a new mbuf for this ring element and load it before
1006 * processing the current mbuf. If the ring element cannot be loaded,
1007 * drop the received packet and reuse the old mbuf. In the unlikely
1008 * case that the old mbuf can't be reloaded either, explicitly panic.
1009 */
1010 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1011 if (mnew == NULL) {
1012 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
1013 ifp->if_ierrors++;
1014 return;
1015 }
1016
1017 MCLGET(mnew, M_DONTWAIT);
1018 if (!(mnew->m_flags & M_EXT)) {
1019 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
1020 m_freem(mnew);
1021 ifp->if_ierrors++;
1022 return;
1023 }
1024
1025 mnew->m_pkthdr.len = mnew->m_len = mnew->m_ext.ext_size;
1026
1027 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, le32toh(status->len),
1028 BUS_DMASYNC_POSTREAD);
1029 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
1030
1031 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, mnew,
1032 BUS_DMA_READ | BUS_DMA_NOWAIT);
1033 if (error != 0) {
1034 aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map\n");
1035 m_freem(mnew);
1036
1037 /* try to reload the old mbuf */
1038 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
1039 sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
1040 if (error != 0) {
1041 /* very unlikely that it will fail... */
1042 panic("%s: unable to remap rx buf",
1043 device_xname(sc->sc_dev));
1044 }
1045 ifp->if_ierrors++;
1046 return;
1047 }
1048
1049 /*
1050 * New mbuf successfully loaded, update Rx ring and continue
1051 * processing.
1052 */
1053 m = sbuf->m;
1054 sbuf->m = mnew;
1055 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
1056
1057 /* finalize mbuf */
1058 m_set_rcvif(m, ifp);
1059 m->m_pkthdr.len = m->m_len = le32toh(status->len);
1060
1061 if (sc->sc_drvbpf != NULL) {
1062 struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
1063
1064 tap->wr_antsignal = status->rssi;
1065
1066 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1067 }
1068
1069 if (ic->ic_state == IEEE80211_S_SCAN)
1070 ipw_fix_channel(ic, m);
1071
1072 wh = mtod(m, struct ieee80211_frame *);
1073 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1074
1075 /* send the frame to the 802.11 layer */
1076 ieee80211_input(ic, m, ni, status->rssi, 0);
1077
1078 /* node is no longer needed */
1079 ieee80211_free_node(ni);
1080
1081 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
1082 sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1083 }
1084
1085 static void
1086 ipw_rx_intr(struct ipw_softc *sc)
1087 {
1088 struct ipw_status *status;
1089 struct ipw_soft_bd *sbd;
1090 struct ipw_soft_buf *sbuf;
1091 uint32_t r, i;
1092
1093 if (!(sc->flags & IPW_FLAG_FW_INITED))
1094 return;
1095
1096 r = CSR_READ_4(sc, IPW_CSR_RX_READ);
1097
1098 for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
1099
1100 /* firmware was killed, stop processing received frames */
1101 if (!(sc->flags & IPW_FLAG_FW_INITED))
1102 return;
1103
1104 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
1105 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1106 BUS_DMASYNC_POSTREAD);
1107
1108 bus_dmamap_sync(sc->sc_dmat, sc->status_map,
1109 i * sizeof (struct ipw_status), sizeof (struct ipw_status),
1110 BUS_DMASYNC_POSTREAD);
1111
1112 status = &sc->status_list[i];
1113 sbd = &sc->srbd_list[i];
1114 sbuf = sbd->priv;
1115
1116 switch (le16toh(status->code) & 0xf) {
1117 case IPW_STATUS_CODE_COMMAND:
1118 ipw_command_intr(sc, sbuf);
1119 break;
1120
1121 case IPW_STATUS_CODE_NEWSTATE:
1122 ipw_newstate_intr(sc, sbuf);
1123 break;
1124
1125 case IPW_STATUS_CODE_DATA_802_3:
1126 case IPW_STATUS_CODE_DATA_802_11:
1127 ipw_data_intr(sc, status, sbd, sbuf);
1128 break;
1129
1130 case IPW_STATUS_CODE_NOTIFICATION:
1131 DPRINTFN(2, ("received notification\n"));
1132 break;
1133
1134 default:
1135 aprint_error_dev(sc->sc_dev, "unknown status code %u\n",
1136 le16toh(status->code));
1137 }
1138
1139 sbd->bd->flags = 0;
1140
1141 bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
1142 i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1143 BUS_DMASYNC_PREREAD);
1144
1145 bus_dmamap_sync(sc->sc_dmat, sc->status_map,
1146 i * sizeof (struct ipw_status), sizeof (struct ipw_status),
1147 BUS_DMASYNC_PREREAD);
1148 }
1149
1150 /* Tell the firmware what we have processed */
1151 sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
1152 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
1153 }
1154
1155 static void
1156 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
1157 {
1158 struct ipw_soft_hdr *shdr;
1159 struct ipw_soft_buf *sbuf;
1160
1161 switch (sbd->type) {
1162 case IPW_SBD_TYPE_COMMAND:
1163 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map,
1164 0, sizeof(struct ipw_cmd), BUS_DMASYNC_POSTWRITE);
1165 /* bus_dmamap_unload(sc->sc_dmat, sc->cmd_map); */
1166 break;
1167
1168 case IPW_SBD_TYPE_HEADER:
1169 shdr = sbd->priv;
1170 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map,
1171 shdr->offset, sizeof(struct ipw_hdr), BUS_DMASYNC_POSTWRITE);
1172 TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
1173 break;
1174
1175 case IPW_SBD_TYPE_DATA:
1176 sbuf = sbd->priv;
1177
1178 bus_dmamap_sync(sc->sc_dmat, sbuf->map,
1179 0, MCLBYTES, BUS_DMASYNC_POSTWRITE);
1180 bus_dmamap_unload(sc->sc_dmat, sbuf->map);
1181 m_freem(sbuf->m);
1182 if (sbuf->ni != NULL)
1183 ieee80211_free_node(sbuf->ni);
1184 /* kill watchdog timer */
1185 sc->sc_tx_timer = 0;
1186 TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
1187 break;
1188 }
1189 sbd->type = IPW_SBD_TYPE_NOASSOC;
1190 }
1191
1192 static void
1193 ipw_tx_intr(struct ipw_softc *sc)
1194 {
1195 struct ifnet *ifp = &sc->sc_if;
1196 struct ipw_soft_bd *sbd;
1197 uint32_t r, i;
1198
1199 if (!(sc->flags & IPW_FLAG_FW_INITED))
1200 return;
1201
1202 r = CSR_READ_4(sc, IPW_CSR_TX_READ);
1203
1204 for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
1205 sbd = &sc->stbd_list[i];
1206
1207 if (sbd->type == IPW_SBD_TYPE_DATA)
1208 ifp->if_opackets++;
1209
1210 ipw_release_sbd(sc, sbd);
1211 sc->txfree++;
1212 }
1213
1214 /* remember what the firmware has processed */
1215 sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
1216
1217 /* Call start() since some buffer descriptors have been released */
1218 ifp->if_flags &= ~IFF_OACTIVE;
1219 if_schedule_deferred_start(ifp);
1220 }
1221
1222 static int
1223 ipw_intr(void *arg)
1224 {
1225 struct ipw_softc *sc = arg;
1226 uint32_t r;
1227
1228 r = CSR_READ_4(sc, IPW_CSR_INTR);
1229 if (r == 0 || r == 0xffffffff)
1230 return 0;
1231
1232 /* Disable interrupts */
1233 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1234
1235 if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
1236 aprint_error_dev(sc->sc_dev, "fatal error\n");
1237 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1238 ipw_stop(&sc->sc_if, 1);
1239 }
1240
1241 if (r & IPW_INTR_FW_INIT_DONE) {
1242 if (!(r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)))
1243 wakeup(sc);
1244 }
1245
1246 if (r & IPW_INTR_RX_TRANSFER)
1247 ipw_rx_intr(sc);
1248
1249 if (r & IPW_INTR_TX_TRANSFER)
1250 ipw_tx_intr(sc);
1251
1252 /* Acknowledge all interrupts */
1253 CSR_WRITE_4(sc, IPW_CSR_INTR, r);
1254
1255 /* Re-enable interrupts */
1256 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1257
1258 return 0;
1259 }
1260
1261 /*
1262 * Send a command to the firmware and wait for the acknowledgement.
1263 */
1264 static int
1265 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
1266 {
1267 struct ipw_soft_bd *sbd;
1268
1269 sbd = &sc->stbd_list[sc->txcur];
1270
1271 sc->cmd.type = htole32(type);
1272 sc->cmd.subtype = 0;
1273 sc->cmd.len = htole32(len);
1274 sc->cmd.seq = 0;
1275
1276 (void)memcpy(sc->cmd.data, data, len);
1277
1278 sbd->type = IPW_SBD_TYPE_COMMAND;
1279 sbd->bd->physaddr = htole32(sc->cmd_map->dm_segs[0].ds_addr);
1280 sbd->bd->len = htole32(sizeof (struct ipw_cmd));
1281 sbd->bd->nfrag = 1;
1282 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
1283 IPW_BD_FLAG_TX_LAST_FRAGMENT;
1284
1285 bus_dmamap_sync(sc->sc_dmat, sc->cmd_map, 0, sizeof (struct ipw_cmd),
1286 BUS_DMASYNC_PREWRITE);
1287
1288 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1289 sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
1290 BUS_DMASYNC_PREWRITE);
1291
1292 DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len));
1293
1294 /* kick firmware */
1295 sc->txfree--;
1296 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1297 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1298
1299 /* Wait at most one second for command to complete */
1300 return tsleep(&sc->cmd, 0, "ipwcmd", hz);
1301 }
1302
1303 static int
1304 ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
1305 {
1306 struct ipw_softc *sc = ifp->if_softc;
1307 struct ieee80211com *ic = &sc->sc_ic;
1308 struct ieee80211_frame *wh;
1309 struct ipw_soft_bd *sbd;
1310 struct ipw_soft_hdr *shdr;
1311 struct ipw_soft_buf *sbuf;
1312 struct ieee80211_key *k;
1313 struct mbuf *mnew;
1314 int error, i;
1315
1316 wh = mtod(m0, struct ieee80211_frame *);
1317
1318 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1319 k = ieee80211_crypto_encap(ic, ni, m0);
1320 if (k == NULL) {
1321 m_freem(m0);
1322 return ENOBUFS;
1323 }
1324
1325 /* packet header may have moved, reset our local pointer */
1326 wh = mtod(m0, struct ieee80211_frame *);
1327 }
1328
1329 if (sc->sc_drvbpf != NULL) {
1330 struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
1331
1332 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1333 }
1334
1335 shdr = TAILQ_FIRST(&sc->sc_free_shdr);
1336 sbuf = TAILQ_FIRST(&sc->sc_free_sbuf);
1337 KASSERT(shdr != NULL && sbuf != NULL);
1338
1339 shdr->hdr->type = htole32(IPW_HDR_TYPE_SEND);
1340 shdr->hdr->subtype = 0;
1341 shdr->hdr->encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
1342 shdr->hdr->encrypt = 0;
1343 shdr->hdr->keyidx = 0;
1344 shdr->hdr->keysz = 0;
1345 shdr->hdr->fragmentsz = 0;
1346 IEEE80211_ADDR_COPY(shdr->hdr->src_addr, wh->i_addr2);
1347 if (ic->ic_opmode == IEEE80211_M_STA)
1348 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr3);
1349 else
1350 IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr1);
1351
1352 /* trim IEEE802.11 header */
1353 m_adj(m0, sizeof (struct ieee80211_frame));
1354
1355 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0, BUS_DMA_NOWAIT);
1356 if (error != 0 && error != EFBIG) {
1357 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1358 error);
1359 m_freem(m0);
1360 return error;
1361 }
1362
1363 if (error != 0) {
1364 /* too many fragments, linearize */
1365
1366 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1367 if (mnew == NULL) {
1368 m_freem(m0);
1369 return ENOMEM;
1370 }
1371
1372 M_COPY_PKTHDR(mnew, m0);
1373
1374 /* If the data won't fit in the header, get a cluster */
1375 if (m0->m_pkthdr.len > MHLEN) {
1376 MCLGET(mnew, M_DONTWAIT);
1377 if (!(mnew->m_flags & M_EXT)) {
1378 m_freem(m0);
1379 m_freem(mnew);
1380 return ENOMEM;
1381 }
1382 }
1383 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1384 m_freem(m0);
1385 mnew->m_len = mnew->m_pkthdr.len;
1386 m0 = mnew;
1387
1388 error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0,
1389 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1390 if (error != 0) {
1391 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1392 m_freem(m0);
1393 return error;
1394 }
1395 }
1396
1397 TAILQ_REMOVE(&sc->sc_free_sbuf, sbuf, next);
1398 TAILQ_REMOVE(&sc->sc_free_shdr, shdr, next);
1399
1400 sbd = &sc->stbd_list[sc->txcur];
1401 sbd->type = IPW_SBD_TYPE_HEADER;
1402 sbd->priv = shdr;
1403 sbd->bd->physaddr = htole32(shdr->addr);
1404 sbd->bd->len = htole32(sizeof (struct ipw_hdr));
1405 sbd->bd->nfrag = 1 + sbuf->map->dm_nsegs;
1406 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
1407 IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1408
1409 DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, )\n",
1410 shdr->hdr->type, shdr->hdr->subtype, shdr->hdr->encrypted,
1411 shdr->hdr->encrypt));
1412 DPRINTFN(5, ("%s->", ether_sprintf(shdr->hdr->src_addr)));
1413 DPRINTFN(5, ("%s\n", ether_sprintf(shdr->hdr->dst_addr)));
1414
1415 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1416 sc->txcur * sizeof (struct ipw_bd),
1417 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
1418
1419 sc->txfree--;
1420 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1421
1422 sbuf->m = m0;
1423 sbuf->ni = ni;
1424
1425 for (i = 0; i < sbuf->map->dm_nsegs; i++) {
1426 sbd = &sc->stbd_list[sc->txcur];
1427
1428 sbd->bd->physaddr = htole32(sbuf->map->dm_segs[i].ds_addr);
1429 sbd->bd->len = htole32(sbuf->map->dm_segs[i].ds_len);
1430 sbd->bd->nfrag = 0;
1431 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
1432 if (i == sbuf->map->dm_nsegs - 1) {
1433 sbd->type = IPW_SBD_TYPE_DATA;
1434 sbd->priv = sbuf;
1435 sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
1436 } else {
1437 sbd->type = IPW_SBD_TYPE_NOASSOC;
1438 sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1439 }
1440
1441 DPRINTFN(5, ("sending fragment (%d, %d)\n", i,
1442 (int)sbuf->map->dm_segs[i].ds_len));
1443
1444 bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
1445 sc->txcur * sizeof (struct ipw_bd),
1446 sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
1447
1448 sc->txfree--;
1449 sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1450 }
1451
1452 bus_dmamap_sync(sc->sc_dmat, sc->hdr_map, shdr->offset,
1453 sizeof (struct ipw_hdr), BUS_DMASYNC_PREWRITE);
1454
1455 bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, MCLBYTES,
1456 BUS_DMASYNC_PREWRITE);
1457
1458 /* Inform firmware about this new packet */
1459 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1460
1461 return 0;
1462 }
1463
1464 static void
1465 ipw_start(struct ifnet *ifp)
1466 {
1467 struct ipw_softc *sc = ifp->if_softc;
1468 struct ieee80211com *ic = &sc->sc_ic;
1469 struct mbuf *m0;
1470 struct ether_header *eh;
1471 struct ieee80211_node *ni;
1472
1473
1474 if (ic->ic_state != IEEE80211_S_RUN)
1475 return;
1476
1477 for (;;) {
1478 IF_DEQUEUE(&ifp->if_snd, m0);
1479 if (m0 == NULL)
1480 break;
1481
1482 if (sc->txfree < 1 + IPW_MAX_NSEG) {
1483 IF_PREPEND(&ifp->if_snd, m0);
1484 ifp->if_flags |= IFF_OACTIVE;
1485 break;
1486 }
1487
1488 if (m0->m_len < sizeof (struct ether_header) &&
1489 (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL)
1490 continue;
1491
1492 eh = mtod(m0, struct ether_header *);
1493 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1494 if (ni == NULL) {
1495 m_freem(m0);
1496 continue;
1497 }
1498
1499 bpf_mtap(ifp, m0);
1500
1501 m0 = ieee80211_encap(ic, m0, ni);
1502 if (m0 == NULL) {
1503 ieee80211_free_node(ni);
1504 continue;
1505 }
1506
1507 bpf_mtap3(ic->ic_rawbpf, m0);
1508
1509 if (ipw_tx_start(ifp, m0, ni) != 0) {
1510 ieee80211_free_node(ni);
1511 ifp->if_oerrors++;
1512 break;
1513 }
1514
1515 /* start watchdog timer */
1516 sc->sc_tx_timer = 5;
1517 ifp->if_timer = 1;
1518 }
1519 }
1520
1521 static void
1522 ipw_watchdog(struct ifnet *ifp)
1523 {
1524 struct ipw_softc *sc = ifp->if_softc;
1525
1526 ifp->if_timer = 0;
1527
1528 if (sc->sc_tx_timer > 0) {
1529 if (--sc->sc_tx_timer == 0) {
1530 aprint_error_dev(sc->sc_dev, "device timeout\n");
1531 ifp->if_oerrors++;
1532 ifp->if_flags &= ~IFF_UP;
1533 ipw_stop(ifp, 1);
1534 return;
1535 }
1536 ifp->if_timer = 1;
1537 }
1538
1539 ieee80211_watchdog(&sc->sc_ic);
1540 }
1541
1542 static int
1543 ipw_get_table1(struct ipw_softc *sc, uint32_t *tbl)
1544 {
1545 uint32_t addr, size, data, i;
1546 int error;
1547
1548 if (!(sc->flags & IPW_FLAG_FW_INITED))
1549 return ENOTTY;
1550
1551 CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
1552
1553 size = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
1554 if ((error = copyout(&size, tbl, sizeof(size))) != 0)
1555 return error;
1556
1557 for (i = 1, ++tbl; i < size; i++, tbl++) {
1558 addr = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
1559 data = MEM_READ_4(sc, addr);
1560 if ((error = copyout(&data, tbl, sizeof(data))) != 0)
1561 return error;
1562 }
1563 return 0;
1564 }
1565
1566 static int
1567 ipw_get_radio(struct ipw_softc *sc, int *ret)
1568 {
1569 uint32_t addr, data;
1570
1571 if (!(sc->flags & IPW_FLAG_FW_INITED))
1572 return ENOTTY;
1573
1574 addr = ipw_read_table1(sc, IPW_INFO_EEPROM_ADDRESS);
1575 if ((MEM_READ_4(sc, addr + 32) >> 24) & 1)
1576 data = -1;
1577 else if (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)
1578 data = 0;
1579 else
1580 data = 1;
1581
1582 return copyout(&data, ret, sizeof(data));
1583 }
1584
1585 static int
1586 ipw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1587 {
1588 #define IS_RUNNING(ifp) \
1589 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1590
1591 struct ipw_softc *sc = ifp->if_softc;
1592 struct ieee80211com *ic = &sc->sc_ic;
1593 struct ifreq *ifr = (struct ifreq *)data;
1594 int s, error = 0;
1595
1596 s = splnet();
1597
1598 switch (cmd) {
1599 case SIOCSIFFLAGS:
1600 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1601 break;
1602 if (ifp->if_flags & IFF_UP) {
1603 if (!(ifp->if_flags & IFF_RUNNING))
1604 ipw_init(ifp);
1605 } else {
1606 if (ifp->if_flags & IFF_RUNNING)
1607 ipw_stop(ifp, 1);
1608 }
1609 break;
1610
1611 case SIOCADDMULTI:
1612 case SIOCDELMULTI:
1613 /* XXX no h/w multicast filter? --dyoung */
1614 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1615 /* setup multicast filter, etc */
1616 error = 0;
1617 }
1618 break;
1619
1620 case SIOCGTABLE1:
1621 error = ipw_get_table1(sc, (uint32_t *)ifr->ifr_data);
1622 break;
1623
1624 case SIOCGRADIO:
1625 error = ipw_get_radio(sc, (int *)ifr->ifr_data);
1626 break;
1627
1628 case SIOCSIFMEDIA:
1629 if (ifr->ifr_media & IFM_IEEE80211_ADHOC)
1630 sc->sc_fwname = "ipw2100-1.2-i.fw";
1631 else if (ifr->ifr_media & IFM_IEEE80211_MONITOR)
1632 sc->sc_fwname = "ipw2100-1.2-p.fw";
1633 else
1634 sc->sc_fwname = "ipw2100-1.2.fw";
1635
1636 ipw_free_firmware(sc);
1637 /* FALLTRHOUGH */
1638 default:
1639 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1640 if (error != ENETRESET)
1641 break;
1642
1643 if (error == ENETRESET) {
1644 if (IS_RUNNING(ifp) &&
1645 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1646 ipw_init(ifp);
1647 error = 0;
1648 }
1649
1650 }
1651
1652 splx(s);
1653 return error;
1654 #undef IS_RUNNING
1655 }
1656
1657 static uint32_t
1658 ipw_read_table1(struct ipw_softc *sc, uint32_t off)
1659 {
1660 return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
1661 }
1662
1663 static void
1664 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
1665 {
1666 MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
1667 }
1668
1669 static int
1670 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
1671 {
1672 uint32_t addr, info;
1673 uint16_t count, size;
1674 uint32_t total;
1675
1676 /* addr[4] + count[2] + size[2] */
1677 addr = MEM_READ_4(sc, sc->table2_base + off);
1678 info = MEM_READ_4(sc, sc->table2_base + off + 4);
1679
1680 count = info >> 16;
1681 size = info & 0xffff;
1682 total = count * size;
1683
1684 if (total > *len) {
1685 *len = total;
1686 return EINVAL;
1687 }
1688
1689 *len = total;
1690 ipw_read_mem_1(sc, addr, buf, total);
1691
1692 return 0;
1693 }
1694
1695 static void
1696 ipw_stop_master(struct ipw_softc *sc)
1697 {
1698 int ntries;
1699
1700 /* disable interrupts */
1701 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1702
1703 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
1704 for (ntries = 0; ntries < 50; ntries++) {
1705 if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
1706 break;
1707 DELAY(10);
1708 }
1709 if (ntries == 50)
1710 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
1711
1712 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
1713 IPW_RST_PRINCETON_RESET);
1714
1715 sc->flags &= ~IPW_FLAG_FW_INITED;
1716 }
1717
1718 static int
1719 ipw_reset(struct ipw_softc *sc)
1720 {
1721 int ntries;
1722
1723 ipw_stop_master(sc);
1724
1725 /* move adapter to D0 state */
1726 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1727 IPW_CTL_INIT);
1728
1729 /* wait for clock stabilization */
1730 for (ntries = 0; ntries < 1000; ntries++) {
1731 if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
1732 break;
1733 DELAY(200);
1734 }
1735 if (ntries == 1000)
1736 return EIO;
1737
1738 CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
1739 IPW_RST_SW_RESET);
1740
1741 DELAY(10);
1742
1743 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1744 IPW_CTL_INIT);
1745
1746 return 0;
1747 }
1748
1749 /*
1750 * Upload the microcode to the device.
1751 */
1752 static int
1753 ipw_load_ucode(struct ipw_softc *sc, u_char *uc, int size)
1754 {
1755 int ntries;
1756
1757 MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
1758 CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1759
1760 MEM_WRITE_2(sc, 0x220000, 0x0703);
1761 MEM_WRITE_2(sc, 0x220000, 0x0707);
1762
1763 MEM_WRITE_1(sc, 0x210014, 0x72);
1764 MEM_WRITE_1(sc, 0x210014, 0x72);
1765
1766 MEM_WRITE_1(sc, 0x210000, 0x40);
1767 MEM_WRITE_1(sc, 0x210000, 0x00);
1768 MEM_WRITE_1(sc, 0x210000, 0x40);
1769
1770 MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
1771
1772 MEM_WRITE_1(sc, 0x210000, 0x00);
1773 MEM_WRITE_1(sc, 0x210000, 0x00);
1774 MEM_WRITE_1(sc, 0x210000, 0x80);
1775
1776 MEM_WRITE_2(sc, 0x220000, 0x0703);
1777 MEM_WRITE_2(sc, 0x220000, 0x0707);
1778
1779 MEM_WRITE_1(sc, 0x210014, 0x72);
1780 MEM_WRITE_1(sc, 0x210014, 0x72);
1781
1782 MEM_WRITE_1(sc, 0x210000, 0x00);
1783 MEM_WRITE_1(sc, 0x210000, 0x80);
1784
1785 for (ntries = 0; ntries < 10; ntries++) {
1786 if (MEM_READ_1(sc, 0x210000) & 1)
1787 break;
1788 DELAY(10);
1789 }
1790 if (ntries == 10) {
1791 aprint_error_dev(sc->sc_dev, "timeout waiting for ucode to initialize\n");
1792 return EIO;
1793 }
1794
1795 MEM_WRITE_4(sc, 0x3000e0, 0);
1796
1797 return 0;
1798 }
1799
1800 /* set of macros to handle unaligned little endian data in firmware image */
1801 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
1802 #define GETLE16(p) ((p)[0] | (p)[1] << 8)
1803 static int
1804 ipw_load_firmware(struct ipw_softc *sc, u_char *fw, int size)
1805 {
1806 u_char *p, *end;
1807 uint32_t dst;
1808 uint16_t len;
1809 int error;
1810
1811 p = fw;
1812 end = fw + size;
1813 while (p < end) {
1814 dst = GETLE32(p); p += 4;
1815 len = GETLE16(p); p += 2;
1816
1817 ipw_write_mem_1(sc, dst, p, len);
1818 p += len;
1819 }
1820
1821 CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
1822 IPW_IO_LED_OFF);
1823
1824 /* enable interrupts */
1825 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1826
1827 /* kick the firmware */
1828 CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1829
1830 CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
1831 IPW_CTL_ALLOW_STANDBY);
1832
1833 /* wait at most one second for firmware initialization to complete */
1834 if ((error = tsleep(sc, 0, "ipwinit", hz)) != 0) {
1835 aprint_error_dev(sc->sc_dev, "timeout waiting for firmware initialization "
1836 "to complete\n");
1837 return error;
1838 }
1839
1840 CSR_WRITE_4(sc, IPW_CSR_IO, CSR_READ_4(sc, IPW_CSR_IO) |
1841 IPW_IO_GPIO1_MASK | IPW_IO_GPIO3_MASK);
1842
1843 return 0;
1844 }
1845
1846 /*
1847 * Store firmware into kernel memory so we can download it when we need to,
1848 * e.g when the adapter wakes up from suspend mode.
1849 */
1850 static int
1851 ipw_cache_firmware(struct ipw_softc *sc)
1852 {
1853 struct ipw_firmware *fw = &sc->fw;
1854 struct ipw_firmware_hdr hdr;
1855 firmware_handle_t fwh;
1856 off_t fwsz, p;
1857 int error;
1858
1859 ipw_free_firmware(sc);
1860
1861 if (ipw_accept_eula == 0) {
1862 aprint_error_dev(sc->sc_dev,
1863 "EULA not accepted; please see the ipw(4) man page.\n");
1864 return EPERM;
1865 }
1866
1867 if ((error = firmware_open("if_ipw", sc->sc_fwname, &fwh)) != 0)
1868 goto fail0;
1869
1870 fwsz = firmware_get_size(fwh);
1871
1872 if (fwsz < sizeof(hdr))
1873 goto fail2;
1874
1875 if ((error = firmware_read(fwh, 0, &hdr, sizeof(hdr))) != 0)
1876 goto fail2;
1877
1878 fw->main_size = le32toh(hdr.main_size);
1879 fw->ucode_size = le32toh(hdr.ucode_size);
1880
1881 fw->main = firmware_malloc(fw->main_size);
1882 if (fw->main == NULL) {
1883 error = ENOMEM;
1884 goto fail1;
1885 }
1886
1887 fw->ucode = firmware_malloc(fw->ucode_size);
1888 if (fw->ucode == NULL) {
1889 error = ENOMEM;
1890 goto fail2;
1891 }
1892
1893 p = sizeof(hdr);
1894 if ((error = firmware_read(fwh, p, fw->main, fw->main_size)) != 0)
1895 goto fail3;
1896
1897 p += fw->main_size;
1898 if ((error = firmware_read(fwh, p, fw->ucode, fw->ucode_size)) != 0)
1899 goto fail3;
1900
1901 DPRINTF(("Firmware cached: main %u, ucode %u\n", fw->main_size,
1902 fw->ucode_size));
1903
1904 sc->flags |= IPW_FLAG_FW_CACHED;
1905
1906 firmware_close(fwh);
1907
1908 return 0;
1909
1910 fail3: firmware_free(fw->ucode, fw->ucode_size);
1911 fail2: firmware_free(fw->main, fw->main_size);
1912 fail1: firmware_close(fwh);
1913 fail0:
1914 return error;
1915 }
1916
1917 static void
1918 ipw_free_firmware(struct ipw_softc *sc)
1919 {
1920 if (!(sc->flags & IPW_FLAG_FW_CACHED))
1921 return;
1922
1923 firmware_free(sc->fw.main, sc->fw.main_size);
1924 firmware_free(sc->fw.ucode, sc->fw.ucode_size);
1925
1926 sc->flags &= ~IPW_FLAG_FW_CACHED;
1927 }
1928
1929 static int
1930 ipw_config(struct ipw_softc *sc)
1931 {
1932 struct ieee80211com *ic = &sc->sc_ic;
1933 struct ifnet *ifp = &sc->sc_if;
1934 struct ipw_security security;
1935 struct ieee80211_key *k;
1936 struct ipw_wep_key wepkey;
1937 struct ipw_scan_options options;
1938 struct ipw_configuration config;
1939 uint32_t data;
1940 int error, i;
1941
1942 switch (ic->ic_opmode) {
1943 case IEEE80211_M_STA:
1944 case IEEE80211_M_HOSTAP:
1945 data = htole32(IPW_MODE_BSS);
1946 break;
1947
1948 case IEEE80211_M_IBSS:
1949 case IEEE80211_M_AHDEMO:
1950 data = htole32(IPW_MODE_IBSS);
1951 break;
1952
1953 case IEEE80211_M_MONITOR:
1954 data = htole32(IPW_MODE_MONITOR);
1955 break;
1956 }
1957 DPRINTF(("Setting mode to %u\n", le32toh(data)));
1958 error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
1959 if (error != 0)
1960 return error;
1961
1962 if (ic->ic_opmode == IEEE80211_M_IBSS ||
1963 ic->ic_opmode == IEEE80211_M_MONITOR) {
1964 data = htole32(ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
1965 DPRINTF(("Setting channel to %u\n", le32toh(data)));
1966 error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
1967 if (error != 0)
1968 return error;
1969 }
1970
1971 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1972 DPRINTF(("Enabling adapter\n"));
1973 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
1974 }
1975
1976 DPRINTF(("Setting MAC to %s\n", ether_sprintf(ic->ic_myaddr)));
1977 error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
1978 IEEE80211_ADDR_LEN);
1979 if (error != 0)
1980 return error;
1981
1982 config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
1983 IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
1984
1985 if (ic->ic_opmode == IEEE80211_M_IBSS)
1986 config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
1987 if (ifp->if_flags & IFF_PROMISC)
1988 config.flags |= htole32(IPW_CFG_PROMISCUOUS);
1989 config.bss_chan = htole32(0x3fff); /* channels 1-14 */
1990 config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
1991 DPRINTF(("Setting adapter configuration 0x%08x\n", config.flags));
1992 error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
1993 if (error != 0)
1994 return error;
1995
1996 data = htole32(0x3); /* 1, 2 */
1997 DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
1998 error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
1999 if (error != 0)
2000 return error;
2001
2002 data = htole32(0xf); /* 1, 2, 5.5, 11 */
2003 DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
2004 error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
2005 if (error != 0)
2006 return error;
2007
2008 data = htole32(IPW_POWER_MODE_CAM);
2009 DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2010 error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
2011 if (error != 0)
2012 return error;
2013
2014 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2015 data = htole32(32); /* default value */
2016 DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
2017 error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
2018 sizeof data);
2019 if (error != 0)
2020 return error;
2021 }
2022
2023 data = htole32(ic->ic_rtsthreshold);
2024 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2025 error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2026 if (error != 0)
2027 return error;
2028
2029 data = htole32(ic->ic_fragthreshold);
2030 DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
2031 error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2032 if (error != 0)
2033 return error;
2034
2035 #ifdef IPW_DEBUG
2036 if (ipw_debug > 0) {
2037 printf("Setting ESSID to ");
2038 ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen);
2039 printf("\n");
2040 }
2041 #endif
2042 error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid,
2043 ic->ic_des_esslen);
2044 if (error != 0)
2045 return error;
2046
2047 /* no mandatory BSSID */
2048 DPRINTF(("Setting mandatory BSSID to null\n"));
2049 error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
2050 if (error != 0)
2051 return error;
2052
2053 if (ic->ic_flags & IEEE80211_F_DESBSSID) {
2054 DPRINTF(("Setting desired BSSID to %s\n",
2055 ether_sprintf(ic->ic_des_bssid)));
2056 error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID,
2057 ic->ic_des_bssid, IEEE80211_ADDR_LEN);
2058 if (error != 0)
2059 return error;
2060 }
2061
2062 (void)memset(&security, 0, sizeof(security));
2063 security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ?
2064 IPW_AUTH_SHARED : IPW_AUTH_OPEN;
2065 security.ciphers = htole32(IPW_CIPHER_NONE);
2066 DPRINTF(("Setting authmode to %u\n", security.authmode));
2067 error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
2068 sizeof security);
2069 if (error != 0)
2070 return error;
2071
2072 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2073 k = ic->ic_crypto.cs_nw_keys;
2074 for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
2075 if (k->wk_keylen == 0)
2076 continue;
2077
2078 wepkey.idx = i;
2079 wepkey.len = k->wk_keylen;
2080 memset(wepkey.key, 0, sizeof(wepkey.key));
2081 memcpy(wepkey.key, k->wk_key, k->wk_keylen);
2082 DPRINTF(("Setting wep key index %u len %u\n",
2083 wepkey.idx, wepkey.len));
2084 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
2085 sizeof wepkey);
2086 if (error != 0)
2087 return error;
2088 }
2089
2090 data = htole32(ic->ic_crypto.cs_def_txkey);
2091 DPRINTF(("Setting tx key index to %u\n", le32toh(data)));
2092 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
2093 sizeof data);
2094 if (error != 0)
2095 return error;
2096 }
2097
2098 data = htole32((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
2099 DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
2100 error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
2101 if (error != 0)
2102 return error;
2103
2104 #if 0
2105 struct ipw_wpa_ie ie;
2106
2107 memset(&ie, 0 sizeof(ie));
2108 ie.len = htole32(sizeof (struct ieee80211_ie_wpa));
2109 DPRINTF(("Setting wpa ie\n"));
2110 error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie);
2111 if (error != 0)
2112 return error;
2113 #endif
2114
2115 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2116 data = htole32(ic->ic_bintval);
2117 DPRINTF(("Setting beacon interval to %u\n", le32toh(data)));
2118 error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
2119 sizeof data);
2120 if (error != 0)
2121 return error;
2122 }
2123
2124 options.flags = 0;
2125 options.channels = htole32(0x3fff); /* scan channels 1-14 */
2126 DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags)));
2127 error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options);
2128 if (error != 0)
2129 return error;
2130
2131 /* finally, enable adapter (start scanning for an access point) */
2132 DPRINTF(("Enabling adapter\n"));
2133 return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
2134 }
2135
2136 static int
2137 ipw_init(struct ifnet *ifp)
2138 {
2139 struct ipw_softc *sc = ifp->if_softc;
2140 struct ipw_firmware *fw = &sc->fw;
2141
2142 if (!(sc->flags & IPW_FLAG_FW_CACHED)) {
2143 if (ipw_cache_firmware(sc) != 0) {
2144 aprint_error_dev(sc->sc_dev, "could not cache the firmware (%s)\n",
2145 sc->sc_fwname);
2146 goto fail;
2147 }
2148 }
2149
2150 ipw_stop(ifp, 0);
2151
2152 if (ipw_reset(sc) != 0) {
2153 aprint_error_dev(sc->sc_dev, "could not reset adapter\n");
2154 goto fail;
2155 }
2156
2157 if (ipw_load_ucode(sc, fw->ucode, fw->ucode_size) != 0) {
2158 aprint_error_dev(sc->sc_dev, "could not load microcode\n");
2159 goto fail;
2160 }
2161
2162 ipw_stop_master(sc);
2163
2164 /*
2165 * Setup tx, rx and status rings.
2166 */
2167 sc->txold = IPW_NTBD - 1;
2168 sc->txcur = 0;
2169 sc->txfree = IPW_NTBD - 2;
2170 sc->rxcur = IPW_NRBD - 1;
2171
2172 CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_map->dm_segs[0].ds_addr);
2173 CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD);
2174 CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0);
2175 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
2176
2177 CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_map->dm_segs[0].ds_addr);
2178 CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD);
2179 CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0);
2180 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
2181
2182 CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_map->dm_segs[0].ds_addr);
2183
2184 if (ipw_load_firmware(sc, fw->main, fw->main_size) != 0) {
2185 aprint_error_dev(sc->sc_dev, "could not load firmware\n");
2186 goto fail;
2187 }
2188
2189 sc->flags |= IPW_FLAG_FW_INITED;
2190
2191 /* retrieve information tables base addresses */
2192 sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
2193 sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
2194
2195 ipw_write_table1(sc, IPW_INFO_LOCK, 0);
2196
2197 if (ipw_config(sc) != 0) {
2198 aprint_error_dev(sc->sc_dev, "device configuration failed\n");
2199 goto fail;
2200 }
2201
2202 ifp->if_flags &= ~IFF_OACTIVE;
2203 ifp->if_flags |= IFF_RUNNING;
2204
2205 return 0;
2206
2207 fail: ifp->if_flags &= ~IFF_UP;
2208 ipw_stop(ifp, 0);
2209
2210 return EIO;
2211 }
2212
2213 static void
2214 ipw_stop(struct ifnet *ifp, int disable)
2215 {
2216 struct ipw_softc *sc = ifp->if_softc;
2217 struct ieee80211com *ic = &sc->sc_ic;
2218 int i;
2219
2220 ipw_stop_master(sc);
2221
2222 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
2223
2224 /*
2225 * Release tx buffers.
2226 */
2227 for (i = 0; i < IPW_NTBD; i++)
2228 ipw_release_sbd(sc, &sc->stbd_list[i]);
2229
2230 sc->sc_tx_timer = 0;
2231 ifp->if_timer = 0;
2232 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2233
2234 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2235 }
2236
2237 static void
2238 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2239 bus_size_t count)
2240 {
2241 for (; count > 0; offset++, datap++, count--) {
2242 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2243 *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
2244 }
2245 }
2246
2247 static void
2248 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2249 bus_size_t count)
2250 {
2251 for (; count > 0; offset++, datap++, count--) {
2252 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2253 CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
2254 }
2255 }
2256
2257 SYSCTL_SETUP(sysctl_hw_ipw_accept_eula_setup, "sysctl hw.ipw.accept_eula")
2258 {
2259 const struct sysctlnode *rnode;
2260 const struct sysctlnode *cnode;
2261
2262 sysctl_createv(NULL, 0, NULL, &rnode,
2263 CTLFLAG_PERMANENT,
2264 CTLTYPE_NODE, "ipw",
2265 NULL,
2266 NULL, 0,
2267 NULL, 0,
2268 CTL_HW, CTL_CREATE, CTL_EOL);
2269
2270 sysctl_createv(NULL, 0, &rnode, &cnode,
2271 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2272 CTLTYPE_INT, "accept_eula",
2273 SYSCTL_DESCR("Accept Intel EULA and permit use of ipw(4) firmware"),
2274 NULL, 0,
2275 &ipw_accept_eula, sizeof(ipw_accept_eula),
2276 CTL_CREATE, CTL_EOL);
2277 }
2278