if_iwn.c revision 1.100 1 /* $NetBSD: if_iwn.c,v 1.100 2024/04/03 01:13:41 gutteridge Exp $ */
2 /* $OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $ */
3
4 /*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.100 2024/04/03 01:13:41 gutteridge Exp $");
26
27 #define IWN_USE_RBUF /* Use local storage for RX */
28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45
46 #include <dev/sysmon/sysmonvar.h>
47
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <sys/intr.h>
51
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #include <dev/firmload.h>
74
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77
78 static const struct device_compatible_entry compat_data[] = {
79 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
80 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1), },
81
82 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
83 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2), },
84
85 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
86 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1), },
87
88 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
89 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2), },
90
91 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
92 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3), },
93
94 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
95 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4), },
96
97 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
98 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1), },
99
100 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
101 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2), },
102
103 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
104 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1), },
105
106 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
107 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2), },
108
109 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
110 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1), },
111
112 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
113 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2), },
114
115 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
116 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1), },
117
118 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
119 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2), },
120
121 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
122 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1), },
123
124 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
125 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2), },
126
127 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
128 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1), },
129
130 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
131 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2), },
132
133 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
134 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1), },
135
136 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
137 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2), },
138
139 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
140 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1), },
141
142 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
143 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2), },
144
145 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
146 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1), },
147
148 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
149 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2), },
150
151 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
152 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1), },
153
154 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
155 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2), },
156
157 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
158 PCI_PRODUCT_INTEL_WIFI_LINK_6235), },
159
160 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
161 PCI_PRODUCT_INTEL_WIFI_LINK_6235_2), },
162
163 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
164 PCI_PRODUCT_INTEL_WIFI_LINK_100_1), },
165
166 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
167 PCI_PRODUCT_INTEL_WIFI_LINK_100_2), },
168
169 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
170 PCI_PRODUCT_INTEL_WIFI_LINK_130_1), },
171
172 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
173 PCI_PRODUCT_INTEL_WIFI_LINK_130_2), },
174
175 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
176 PCI_PRODUCT_INTEL_WIFI_LINK_2230_1), },
177
178 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
179 PCI_PRODUCT_INTEL_WIFI_LINK_2230_2), },
180
181 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
182 PCI_PRODUCT_INTEL_WIFI_LINK_2200_1), },
183
184 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
185 PCI_PRODUCT_INTEL_WIFI_LINK_2200_2), },
186
187 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
188 PCI_PRODUCT_INTEL_WIFI_LINK_135_1), },
189
190 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
191 PCI_PRODUCT_INTEL_WIFI_LINK_135_2), },
192
193 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
194 PCI_PRODUCT_INTEL_WIFI_LINK_105_1), },
195
196 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
197 PCI_PRODUCT_INTEL_WIFI_LINK_105_2), },
198
199 PCI_COMPAT_EOL
200 };
201
202 static int iwn_match(device_t , struct cfdata *, void *);
203 static void iwn_attach(device_t , device_t , void *);
204 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t);
205 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t);
206 static void iwn_radiotap_attach(struct iwn_softc *);
207 static int iwn_detach(device_t , int);
208 #if 0
209 static void iwn_power(int, void *);
210 #endif
211 static bool iwn_resume(device_t, const pmf_qual_t *);
212 static int iwn_nic_lock(struct iwn_softc *);
213 static int iwn_eeprom_lock(struct iwn_softc *);
214 static int iwn_init_otprom(struct iwn_softc *);
215 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
216 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
217 void **, bus_size_t, bus_size_t);
218 static void iwn_dma_contig_free(struct iwn_dma_info *);
219 static int iwn_alloc_sched(struct iwn_softc *);
220 static void iwn_free_sched(struct iwn_softc *);
221 static int iwn_alloc_kw(struct iwn_softc *);
222 static void iwn_free_kw(struct iwn_softc *);
223 static int iwn_alloc_ict(struct iwn_softc *);
224 static void iwn_free_ict(struct iwn_softc *);
225 static int iwn_alloc_fwmem(struct iwn_softc *);
226 static void iwn_free_fwmem(struct iwn_softc *);
227 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
228 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
229 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
230 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
231 int);
232 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
233 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
234 static void iwn5000_ict_reset(struct iwn_softc *);
235 static int iwn_read_eeprom(struct iwn_softc *);
236 static void iwn4965_read_eeprom(struct iwn_softc *);
237
238 #ifdef IWN_DEBUG
239 static void iwn4965_print_power_group(struct iwn_softc *, int);
240 #endif
241 static void iwn5000_read_eeprom(struct iwn_softc *);
242 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
243 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
244 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
245 static void iwn_newassoc(struct ieee80211_node *, int);
246 static int iwn_media_change(struct ifnet *);
247 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
248 static void iwn_iter_func(void *, struct ieee80211_node *);
249 static void iwn_calib_timeout(void *);
250 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
251 struct iwn_rx_data *);
252 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
253 struct iwn_rx_data *);
254 #ifndef IEEE80211_NO_HT
255 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
256 struct iwn_rx_data *);
257 #endif
258 static void iwn5000_rx_calib_results(struct iwn_softc *,
259 struct iwn_rx_desc *, struct iwn_rx_data *);
260 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
261 struct iwn_rx_data *);
262 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
263 struct iwn_rx_data *);
264 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
265 struct iwn_rx_data *);
266 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
267 uint8_t);
268 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
269 static void iwn_notif_intr(struct iwn_softc *);
270 static void iwn_wakeup_intr(struct iwn_softc *);
271 static void iwn_fatal_intr(struct iwn_softc *);
272 static int iwn_intr(void *);
273 static void iwn_softintr(void *);
274 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
275 uint16_t);
276 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
277 uint16_t);
278 #ifdef notyet
279 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
280 #endif
281 static int iwn_tx(struct iwn_softc *, struct mbuf *,
282 struct ieee80211_node *, int);
283 static void iwn_start(struct ifnet *);
284 static void iwn_watchdog(struct ifnet *);
285 static int iwn_ioctl(struct ifnet *, u_long, void *);
286 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
287 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
288 int);
289 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
290 int);
291 static int iwn_set_link_quality(struct iwn_softc *,
292 struct ieee80211_node *);
293 static int iwn_add_broadcast_node(struct iwn_softc *, int);
294 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
295 static int iwn_set_critical_temp(struct iwn_softc *);
296 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
297 static void iwn4965_power_calibration(struct iwn_softc *, int);
298 static int iwn4965_set_txpower(struct iwn_softc *, int);
299 static int iwn5000_set_txpower(struct iwn_softc *, int);
300 static int iwn4965_get_rssi(const struct iwn_rx_stat *);
301 static int iwn5000_get_rssi(const struct iwn_rx_stat *);
302 static int iwn_get_noise(const struct iwn_rx_general_stats *);
303 static int iwn4965_get_temperature(struct iwn_softc *);
304 static int iwn5000_get_temperature(struct iwn_softc *);
305 static int iwn_init_sensitivity(struct iwn_softc *);
306 static void iwn_collect_noise(struct iwn_softc *,
307 const struct iwn_rx_general_stats *);
308 static int iwn4965_init_gains(struct iwn_softc *);
309 static int iwn5000_init_gains(struct iwn_softc *);
310 static int iwn4965_set_gains(struct iwn_softc *);
311 static int iwn5000_set_gains(struct iwn_softc *);
312 static void iwn_tune_sensitivity(struct iwn_softc *,
313 const struct iwn_rx_stats *);
314 static int iwn_send_sensitivity(struct iwn_softc *);
315 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
316 static int iwn5000_runtime_calib(struct iwn_softc *);
317
318 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *);
319 static int iwn_config_bt_coex_prio_table(struct iwn_softc *);
320 static int iwn_config_bt_coex_adv1(struct iwn_softc *);
321 static int iwn_config_bt_coex_adv2(struct iwn_softc *);
322
323 static int iwn_config(struct iwn_softc *);
324 static uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
325 uint8_t);
326 static uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t);
327 static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
328 static int iwn_scan(struct iwn_softc *, uint16_t);
329 static int iwn_auth(struct iwn_softc *);
330 static int iwn_run(struct iwn_softc *);
331 #ifdef IWN_HWCRYPTO
332 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
333 struct ieee80211_key *);
334 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
335 struct ieee80211_key *);
336 #endif
337 static int iwn_wme_update(struct ieee80211com *);
338 #ifndef IEEE80211_NO_HT
339 static int iwn_ampdu_rx_start(struct ieee80211com *,
340 struct ieee80211_node *, uint8_t);
341 static void iwn_ampdu_rx_stop(struct ieee80211com *,
342 struct ieee80211_node *, uint8_t);
343 static int iwn_ampdu_tx_start(struct ieee80211com *,
344 struct ieee80211_node *, uint8_t);
345 static void iwn_ampdu_tx_stop(struct ieee80211com *,
346 struct ieee80211_node *, uint8_t);
347 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
348 struct ieee80211_node *, uint8_t, uint16_t);
349 static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
350 uint8_t, uint16_t);
351 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
352 struct ieee80211_node *, uint8_t, uint16_t);
353 static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
354 uint8_t, uint16_t);
355 #endif
356 static int iwn5000_query_calibration(struct iwn_softc *);
357 static int iwn5000_send_calibration(struct iwn_softc *);
358 static int iwn5000_send_wimax_coex(struct iwn_softc *);
359 static int iwn6000_temp_offset_calib(struct iwn_softc *);
360 static int iwn2000_temp_offset_calib(struct iwn_softc *);
361 static int iwn4965_post_alive(struct iwn_softc *);
362 static int iwn5000_post_alive(struct iwn_softc *);
363 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
364 int);
365 static int iwn4965_load_firmware(struct iwn_softc *);
366 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
367 const uint8_t *, int);
368 static int iwn5000_load_firmware(struct iwn_softc *);
369 static int iwn_read_firmware_leg(struct iwn_softc *,
370 struct iwn_fw_info *);
371 static int iwn_read_firmware_tlv(struct iwn_softc *,
372 struct iwn_fw_info *, uint16_t);
373 static int iwn_read_firmware(struct iwn_softc *);
374 static int iwn_clock_wait(struct iwn_softc *);
375 static int iwn_apm_init(struct iwn_softc *);
376 static void iwn_apm_stop_master(struct iwn_softc *);
377 static void iwn_apm_stop(struct iwn_softc *);
378 static int iwn4965_nic_config(struct iwn_softc *);
379 static int iwn5000_nic_config(struct iwn_softc *);
380 static int iwn_hw_prepare(struct iwn_softc *);
381 static int iwn_hw_init(struct iwn_softc *);
382 static void iwn_hw_stop(struct iwn_softc *);
383 static int iwn_init(struct ifnet *);
384 static void iwn_stop(struct ifnet *, int);
385
386 /* XXX MCLGETI alternative */
387 static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
388 struct ifnet *, u_int);
389 #ifdef IWN_USE_RBUF
390 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
391 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
392 static int iwn_alloc_rpool(struct iwn_softc *);
393 static void iwn_free_rpool(struct iwn_softc *);
394 #endif
395
396 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *,
397 struct iwn_rx_stat *);
398
399 #ifdef IWN_DEBUG
400 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
401 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
402 int iwn_debug = 0;
403 #else
404 #define DPRINTF(x)
405 #define DPRINTFN(n, x)
406 #endif
407
408 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
409 iwn_detach, NULL);
410
411 static int
412 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
413 {
414 struct pci_attach_args *pa = aux;
415
416 return pci_compatible_match(pa, compat_data);
417 }
418
419 static void
420 iwn_attach(device_t parent __unused, device_t self, void *aux)
421 {
422 struct iwn_softc *sc = device_private(self);
423 struct ieee80211com *ic = &sc->sc_ic;
424 struct ifnet *ifp = &sc->sc_ec.ec_if;
425 struct pci_attach_args *pa = aux;
426 const char *intrstr;
427 pcireg_t memtype, reg;
428 int i, error;
429 char intrbuf[PCI_INTRSTR_LEN];
430
431 sc->sc_dev = self;
432 sc->sc_pct = pa->pa_pc;
433 sc->sc_pcitag = pa->pa_tag;
434 sc->sc_dmat = pa->pa_dmat;
435 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
436
437 callout_init(&sc->calib_to, 0);
438 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
439
440 pci_aprint_devinfo(pa, NULL);
441
442 /*
443 * Get the offset of the PCI Express Capability Structure in PCI
444 * Configuration Space.
445 */
446 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
447 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
448 if (error == 0) {
449 aprint_error_dev(self,
450 "PCIe capability structure not found!\n");
451 return;
452 }
453
454 /* Clear device-specific "PCI retry timeout" register (41h). */
455 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
456 if (reg & 0xff00)
457 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
458
459 /* Enable bus-mastering. */
460 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */
461 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
462 reg |= PCI_COMMAND_MASTER_ENABLE;
463 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
464
465 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
466 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
467 &sc->sc_sh, NULL, &sc->sc_sz);
468 if (error != 0) {
469 aprint_error_dev(self, "can't map mem space\n");
470 return;
471 }
472
473 sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
474 if (sc->sc_soft_ih == NULL) {
475 aprint_error_dev(self, "can't establish soft interrupt\n");
476 goto unmap;
477 }
478
479 /* Install interrupt handler. */
480 error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
481 if (error) {
482 aprint_error_dev(self, "can't allocate interrupt\n");
483 goto failsi;
484 }
485 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
486 if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
487 CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
488 else
489 SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
490 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
491 intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
492 sizeof(intrbuf));
493 sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
494 IPL_NET, iwn_intr, sc, device_xname(self));
495 if (sc->sc_ih == NULL) {
496 aprint_error_dev(self, "can't establish interrupt");
497 if (intrstr != NULL)
498 aprint_error(" at %s", intrstr);
499 aprint_error("\n");
500 goto failia;
501 }
502 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
503
504 /* Read hardware revision and attach. */
505 sc->hw_type =
506 (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
507 >> IWN_HW_REV_TYPE_SHIFT;
508 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
509 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
510 else
511 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
512 if (error != 0) {
513 aprint_error_dev(self, "could not attach device\n");
514 goto failih;
515 }
516
517 if ((error = iwn_hw_prepare(sc)) != 0) {
518 aprint_error_dev(self, "hardware not ready\n");
519 goto failih;
520 }
521
522 /* Read MAC address, channels, etc from EEPROM. */
523 if ((error = iwn_read_eeprom(sc)) != 0) {
524 aprint_error_dev(self, "could not read EEPROM\n");
525 goto failih;
526 }
527
528 /* Allocate DMA memory for firmware transfers. */
529 if ((error = iwn_alloc_fwmem(sc)) != 0) {
530 aprint_error_dev(self,
531 "could not allocate memory for firmware\n");
532 goto failih;
533 }
534
535 /* Allocate "Keep Warm" page. */
536 if ((error = iwn_alloc_kw(sc)) != 0) {
537 aprint_error_dev(self, "could not allocate keep warm page\n");
538 goto fail1;
539 }
540
541 /* Allocate ICT table for 5000 Series. */
542 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
543 (error = iwn_alloc_ict(sc)) != 0) {
544 aprint_error_dev(self, "could not allocate ICT table\n");
545 goto fail2;
546 }
547
548 /* Allocate TX scheduler "rings". */
549 if ((error = iwn_alloc_sched(sc)) != 0) {
550 aprint_error_dev(self,
551 "could not allocate TX scheduler rings\n");
552 goto fail3;
553 }
554
555 #ifdef IWN_USE_RBUF
556 /* Allocate RX buffers. */
557 if ((error = iwn_alloc_rpool(sc)) != 0) {
558 aprint_error_dev(self, "could not allocate RX buffers\n");
559 goto fail3;
560 }
561 #endif
562
563 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
564 for (i = 0; i < sc->ntxqs; i++) {
565 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
566 aprint_error_dev(self,
567 "could not allocate TX ring %d\n", i);
568 goto fail4;
569 }
570 }
571
572 /* Allocate RX ring. */
573 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
574 aprint_error_dev(self, "could not allocate RX ring\n");
575 goto fail4;
576 }
577
578 /* Clear pending interrupts. */
579 IWN_WRITE(sc, IWN_INT, 0xffffffff);
580
581 /* Count the number of available chains. */
582 sc->ntxchains =
583 ((sc->txchainmask >> 2) & 1) +
584 ((sc->txchainmask >> 1) & 1) +
585 ((sc->txchainmask >> 0) & 1);
586 sc->nrxchains =
587 ((sc->rxchainmask >> 2) & 1) +
588 ((sc->rxchainmask >> 1) & 1) +
589 ((sc->rxchainmask >> 0) & 1);
590 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
591 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
592 ether_sprintf(ic->ic_myaddr));
593
594 ic->ic_ifp = ifp;
595 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
596 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
597 ic->ic_state = IEEE80211_S_INIT;
598
599 /*
600 * Set device capabilities.
601 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and
602 * IEEE80211_C_PMGT too.
603 */
604 ic->ic_caps =
605 IEEE80211_C_IBSS | /* IBSS mode support */
606 IEEE80211_C_WPA | /* 802.11i */
607 IEEE80211_C_MONITOR | /* monitor mode supported */
608 IEEE80211_C_TXPMGT | /* tx power management */
609 IEEE80211_C_SHSLOT | /* short slot time supported */
610 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
611 IEEE80211_C_WME; /* 802.11e */
612
613 #ifndef IEEE80211_NO_HT
614 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
615 /* Set HT capabilities. */
616 ic->ic_htcaps =
617 #if IWN_RBUF_SIZE == 8192
618 IEEE80211_HTCAP_AMSDU7935 |
619 #endif
620 IEEE80211_HTCAP_CBW20_40 |
621 IEEE80211_HTCAP_SGI20 |
622 IEEE80211_HTCAP_SGI40;
623 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
624 ic->ic_htcaps |= IEEE80211_HTCAP_GF;
625 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
626 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
627 else
628 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
629 }
630 #endif /* !IEEE80211_NO_HT */
631
632 /* Set supported legacy rates. */
633 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
634 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
635 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
636 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
637 }
638 #ifndef IEEE80211_NO_HT
639 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
640 /* Set supported HT rates. */
641 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
642 if (sc->nrxchains > 1)
643 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
644 if (sc->nrxchains > 2)
645 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
646 }
647 #endif
648
649 /* IBSS channel undefined for now. */
650 ic->ic_ibss_chan = &ic->ic_channels[0];
651
652 ifp->if_softc = sc;
653 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
654 ifp->if_init = iwn_init;
655 ifp->if_ioctl = iwn_ioctl;
656 ifp->if_start = iwn_start;
657 ifp->if_stop = iwn_stop;
658 ifp->if_watchdog = iwn_watchdog;
659 IFQ_SET_READY(&ifp->if_snd);
660 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
661
662 if_initialize(ifp);
663 ieee80211_ifattach(ic);
664 /* Use common softint-based if_input */
665 ifp->if_percpuq = if_percpuq_create(ifp);
666 if_register(ifp);
667
668 ic->ic_node_alloc = iwn_node_alloc;
669 ic->ic_newassoc = iwn_newassoc;
670 #ifdef IWN_HWCRYPTO
671 ic->ic_crypto.cs_key_set = iwn_set_key;
672 ic->ic_crypto.cs_key_delete = iwn_delete_key;
673 #endif
674 ic->ic_wme.wme_update = iwn_wme_update;
675 #ifndef IEEE80211_NO_HT
676 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
677 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
678 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
679 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
680 #endif
681
682 /* Override 802.11 state transition machine. */
683 sc->sc_newstate = ic->ic_newstate;
684 ic->ic_newstate = iwn_newstate;
685
686 /* XXX media locking needs revisiting */
687 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
688 ieee80211_media_init_with_lock(ic,
689 iwn_media_change, ieee80211_media_status, &sc->sc_media_mtx);
690
691 sc->amrr.amrr_min_success_threshold = 1;
692 sc->amrr.amrr_max_success_threshold = 15;
693
694 iwn_radiotap_attach(sc);
695
696 /*
697 * XXX for NetBSD, OpenBSD timeout_set replaced by
698 * callout_init and callout_setfunc, above.
699 */
700
701 if (pmf_device_register(self, NULL, iwn_resume))
702 pmf_class_network_register(self, ifp);
703 else
704 aprint_error_dev(self, "couldn't establish power handler\n");
705
706 /* XXX NetBSD add call to ieee80211_announce for dmesg. */
707 ieee80211_announce(ic);
708
709 sc->sc_flags |= IWN_FLAG_ATTACHED;
710 return;
711
712 /* Free allocated memory if something failed during attachment. */
713 fail4: while (--i >= 0)
714 iwn_free_tx_ring(sc, &sc->txq[i]);
715 #ifdef IWN_USE_RBUF
716 iwn_free_rpool(sc);
717 #endif
718 iwn_free_sched(sc);
719 fail3: if (sc->ict != NULL)
720 iwn_free_ict(sc);
721 fail2: iwn_free_kw(sc);
722 fail1: iwn_free_fwmem(sc);
723 failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
724 sc->sc_ih = NULL;
725 failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
726 sc->sc_pihp = NULL;
727 failsi: softint_disestablish(sc->sc_soft_ih);
728 sc->sc_soft_ih = NULL;
729 unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
730 }
731
732 int
733 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
734 {
735 struct iwn_ops *ops = &sc->ops;
736
737 ops->load_firmware = iwn4965_load_firmware;
738 ops->read_eeprom = iwn4965_read_eeprom;
739 ops->post_alive = iwn4965_post_alive;
740 ops->nic_config = iwn4965_nic_config;
741 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
742 ops->update_sched = iwn4965_update_sched;
743 ops->get_temperature = iwn4965_get_temperature;
744 ops->get_rssi = iwn4965_get_rssi;
745 ops->set_txpower = iwn4965_set_txpower;
746 ops->init_gains = iwn4965_init_gains;
747 ops->set_gains = iwn4965_set_gains;
748 ops->add_node = iwn4965_add_node;
749 ops->tx_done = iwn4965_tx_done;
750 #ifndef IEEE80211_NO_HT
751 ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
752 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
753 #endif
754 sc->ntxqs = IWN4965_NTXQUEUES;
755 sc->ndmachnls = IWN4965_NDMACHNLS;
756 sc->broadcast_id = IWN4965_ID_BROADCAST;
757 sc->rxonsz = IWN4965_RXONSZ;
758 sc->schedsz = IWN4965_SCHEDSZ;
759 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
760 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
761 sc->fwsz = IWN4965_FWSZ;
762 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
763 sc->limits = &iwn4965_sensitivity_limits;
764 sc->fwname = "iwlwifi-4965-2.ucode";
765 /* Override chains masks, ROM is known to be broken. */
766 sc->txchainmask = IWN_ANT_AB;
767 sc->rxchainmask = IWN_ANT_ABC;
768
769 return 0;
770 }
771
772 int
773 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
774 {
775 struct iwn_ops *ops = &sc->ops;
776
777 ops->load_firmware = iwn5000_load_firmware;
778 ops->read_eeprom = iwn5000_read_eeprom;
779 ops->post_alive = iwn5000_post_alive;
780 ops->nic_config = iwn5000_nic_config;
781 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
782 ops->update_sched = iwn5000_update_sched;
783 ops->get_temperature = iwn5000_get_temperature;
784 ops->get_rssi = iwn5000_get_rssi;
785 ops->set_txpower = iwn5000_set_txpower;
786 ops->init_gains = iwn5000_init_gains;
787 ops->set_gains = iwn5000_set_gains;
788 ops->add_node = iwn5000_add_node;
789 ops->tx_done = iwn5000_tx_done;
790 #ifndef IEEE80211_NO_HT
791 ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
792 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
793 #endif
794 sc->ntxqs = IWN5000_NTXQUEUES;
795 sc->ndmachnls = IWN5000_NDMACHNLS;
796 sc->broadcast_id = IWN5000_ID_BROADCAST;
797 sc->rxonsz = IWN5000_RXONSZ;
798 sc->schedsz = IWN5000_SCHEDSZ;
799 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
800 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
801 sc->fwsz = IWN5000_FWSZ;
802 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
803
804 switch (sc->hw_type) {
805 case IWN_HW_REV_TYPE_5100:
806 sc->limits = &iwn5000_sensitivity_limits;
807 sc->fwname = "iwlwifi-5000-2.ucode";
808 /* Override chains masks, ROM is known to be broken. */
809 sc->txchainmask = IWN_ANT_B;
810 sc->rxchainmask = IWN_ANT_AB;
811 break;
812 case IWN_HW_REV_TYPE_5150:
813 sc->limits = &iwn5150_sensitivity_limits;
814 sc->fwname = "iwlwifi-5150-2.ucode";
815 break;
816 case IWN_HW_REV_TYPE_5300:
817 case IWN_HW_REV_TYPE_5350:
818 sc->limits = &iwn5000_sensitivity_limits;
819 sc->fwname = "iwlwifi-5000-2.ucode";
820 break;
821 case IWN_HW_REV_TYPE_1000:
822 sc->limits = &iwn1000_sensitivity_limits;
823 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
824 pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
825 sc->fwname = "iwlwifi-100-5.ucode";
826 else
827 sc->fwname = "iwlwifi-1000-3.ucode";
828 break;
829 case IWN_HW_REV_TYPE_6000:
830 sc->limits = &iwn6000_sensitivity_limits;
831 sc->fwname = "iwlwifi-6000-4.ucode";
832 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
833 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
834 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
835 /* Override chains masks, ROM is known to be broken. */
836 sc->txchainmask = IWN_ANT_BC;
837 sc->rxchainmask = IWN_ANT_BC;
838 }
839 break;
840 case IWN_HW_REV_TYPE_6050:
841 sc->limits = &iwn6000_sensitivity_limits;
842 sc->fwname = "iwlwifi-6050-5.ucode";
843 break;
844 case IWN_HW_REV_TYPE_6005:
845 sc->limits = &iwn6000_sensitivity_limits;
846 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
847 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
848 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
849 pid == PCI_PRODUCT_INTEL_WIFI_LINK_130_1 ||
850 pid == PCI_PRODUCT_INTEL_WIFI_LINK_130_2 ||
851 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
852 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
853 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235 ||
854 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
855 sc->fwname = "iwlwifi-6000g2b-6.ucode";
856 ops->config_bt_coex = iwn_config_bt_coex_adv1;
857 }
858 /*
859 * This covers:
860 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1
861 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2
862 */
863 else
864 sc->fwname = "iwlwifi-6000g2a-6.ucode";
865 break;
866 case IWN_HW_REV_TYPE_2030:
867 sc->limits = &iwn2030_sensitivity_limits;
868 sc->fwname = "iwlwifi-2030-6.ucode";
869 ops->config_bt_coex = iwn_config_bt_coex_adv2;
870 break;
871 case IWN_HW_REV_TYPE_2000:
872 sc->limits = &iwn2000_sensitivity_limits;
873 sc->fwname = "iwlwifi-2000-6.ucode";
874 break;
875 case IWN_HW_REV_TYPE_135:
876 sc->limits = &iwn2000_sensitivity_limits;
877 sc->fwname = "iwlwifi-135-6.ucode";
878 ops->config_bt_coex = iwn_config_bt_coex_adv2;
879 break;
880 case IWN_HW_REV_TYPE_105:
881 sc->limits = &iwn2000_sensitivity_limits;
882 sc->fwname = "iwlwifi-105-6.ucode";
883 break;
884 default:
885 aprint_normal(": adapter type %d not supported\n", sc->hw_type);
886 return ENOTSUP;
887 }
888 return 0;
889 }
890
891 /*
892 * Attach the interface to 802.11 radiotap.
893 */
894 static void
895 iwn_radiotap_attach(struct iwn_softc *sc)
896 {
897 struct ifnet *ifp = sc->sc_ic.ic_ifp;
898
899 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
900 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
901 &sc->sc_drvbpf);
902
903 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
904 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
905 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
906
907 sc->sc_txtap_len = sizeof sc->sc_txtapu;
908 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
909 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
910 }
911
912 static int
913 iwn_detach(device_t self, int flags __unused)
914 {
915 struct iwn_softc *sc = device_private(self);
916 struct ifnet *ifp = sc->sc_ic.ic_ifp;
917 int qid;
918
919 if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
920 return 0;
921
922 callout_stop(&sc->calib_to);
923
924 /* Uninstall interrupt handler. */
925 if (sc->sc_ih != NULL)
926 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
927 if (sc->sc_pihp != NULL)
928 pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
929 if (sc->sc_soft_ih != NULL)
930 softint_disestablish(sc->sc_soft_ih);
931
932 /* Free DMA resources. */
933 iwn_free_rx_ring(sc, &sc->rxq);
934 for (qid = 0; qid < sc->ntxqs; qid++)
935 iwn_free_tx_ring(sc, &sc->txq[qid]);
936 #ifdef IWN_USE_RBUF
937 iwn_free_rpool(sc);
938 #endif
939 iwn_free_sched(sc);
940 iwn_free_kw(sc);
941 if (sc->ict != NULL)
942 iwn_free_ict(sc);
943 iwn_free_fwmem(sc);
944
945 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
946
947 ieee80211_ifdetach(&sc->sc_ic);
948 if_detach(ifp);
949
950 return 0;
951 }
952
953 #if 0
954 /*
955 * XXX Investigate if clearing the PCI retry timeout could eliminate
956 * the repeated scan calls. Also the calls to if_init and if_start
957 * are similar to the effect of adding the call to ifioctl_common .
958 */
959 static void
960 iwn_power(int why, void *arg)
961 {
962 struct iwn_softc *sc = arg;
963 struct ifnet *ifp;
964 pcireg_t reg;
965 int s;
966
967 if (why != PWR_RESUME)
968 return;
969
970 /* Clear device-specific "PCI retry timeout" register (41h). */
971 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
972 if (reg & 0xff00)
973 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
974
975 s = splnet();
976 ifp = &sc->sc_ic.ic_if;
977 if (ifp->if_flags & IFF_UP) {
978 if_init(ifp);
979 if (ifp->if_flags & IFF_RUNNING)
980 ifp->if_start(ifp);
981 }
982 splx(s);
983 }
984 #endif
985
986 static bool
987 iwn_resume(device_t dv, const pmf_qual_t *qual)
988 {
989 return true;
990 }
991
992 static int
993 iwn_nic_lock(struct iwn_softc *sc)
994 {
995 int ntries;
996
997 /* Request exclusive access to NIC. */
998 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
999
1000 /* Spin until we actually get the lock. */
1001 for (ntries = 0; ntries < 1000; ntries++) {
1002 if ((IWN_READ(sc, IWN_GP_CNTRL) &
1003 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1004 IWN_GP_CNTRL_MAC_ACCESS_ENA)
1005 return 0;
1006 DELAY(10);
1007 }
1008 return ETIMEDOUT;
1009 }
1010
1011 static __inline void
1012 iwn_nic_unlock(struct iwn_softc *sc)
1013 {
1014 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1015 }
1016
1017 static __inline uint32_t
1018 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1019 {
1020 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1021 IWN_BARRIER_READ_WRITE(sc);
1022 return IWN_READ(sc, IWN_PRPH_RDATA);
1023 }
1024
1025 static __inline void
1026 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1027 {
1028 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1029 IWN_BARRIER_WRITE(sc);
1030 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1031 }
1032
1033 static __inline void
1034 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1035 {
1036 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1037 }
1038
1039 static __inline void
1040 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1041 {
1042 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1043 }
1044
1045 static __inline void
1046 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1047 const uint32_t *data, int count)
1048 {
1049 for (; count > 0; count--, data++, addr += 4)
1050 iwn_prph_write(sc, addr, *data);
1051 }
1052
1053 static __inline uint32_t
1054 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1055 {
1056 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1057 IWN_BARRIER_READ_WRITE(sc);
1058 return IWN_READ(sc, IWN_MEM_RDATA);
1059 }
1060
1061 static __inline void
1062 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1063 {
1064 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1065 IWN_BARRIER_WRITE(sc);
1066 IWN_WRITE(sc, IWN_MEM_WDATA, data);
1067 }
1068
1069 #ifndef IEEE80211_NO_HT
1070 static __inline void
1071 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1072 {
1073 uint32_t tmp;
1074
1075 tmp = iwn_mem_read(sc, addr & ~3);
1076 if (addr & 3)
1077 tmp = (tmp & 0x0000ffff) | data << 16;
1078 else
1079 tmp = (tmp & 0xffff0000) | data;
1080 iwn_mem_write(sc, addr & ~3, tmp);
1081 }
1082 #endif
1083
1084 static __inline void
1085 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1086 int count)
1087 {
1088 for (; count > 0; count--, addr += 4)
1089 *data++ = iwn_mem_read(sc, addr);
1090 }
1091
1092 static __inline void
1093 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1094 int count)
1095 {
1096 for (; count > 0; count--, addr += 4)
1097 iwn_mem_write(sc, addr, val);
1098 }
1099
1100 static int
1101 iwn_eeprom_lock(struct iwn_softc *sc)
1102 {
1103 int i, ntries;
1104
1105 for (i = 0; i < 100; i++) {
1106 /* Request exclusive access to EEPROM. */
1107 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1108 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1109
1110 /* Spin until we actually get the lock. */
1111 for (ntries = 0; ntries < 100; ntries++) {
1112 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1113 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1114 return 0;
1115 DELAY(10);
1116 }
1117 }
1118 return ETIMEDOUT;
1119 }
1120
1121 static __inline void
1122 iwn_eeprom_unlock(struct iwn_softc *sc)
1123 {
1124 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1125 }
1126
1127 /*
1128 * Initialize access by host to One Time Programmable ROM.
1129 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1130 */
1131 static int
1132 iwn_init_otprom(struct iwn_softc *sc)
1133 {
1134 uint16_t prev = 0, base, next;
1135 int count, error;
1136
1137 /* Wait for clock stabilization before accessing prph. */
1138 if ((error = iwn_clock_wait(sc)) != 0)
1139 return error;
1140
1141 if ((error = iwn_nic_lock(sc)) != 0)
1142 return error;
1143 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1144 DELAY(5);
1145 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1146 iwn_nic_unlock(sc);
1147
1148 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1149 if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1150 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1151 IWN_RESET_LINK_PWR_MGMT_DIS);
1152 }
1153 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1154 /* Clear ECC status. */
1155 IWN_SETBITS(sc, IWN_OTP_GP,
1156 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1157
1158 /*
1159 * Find the block before last block (contains the EEPROM image)
1160 * for HW without OTP shadow RAM.
1161 */
1162 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1163 /* Switch to absolute addressing mode. */
1164 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1165 base = 0;
1166 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1167 error = iwn_read_prom_data(sc, base, &next, 2);
1168 if (error != 0)
1169 return error;
1170 if (next == 0) /* End of linked-list. */
1171 break;
1172 prev = base;
1173 base = le16toh(next);
1174 }
1175 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1176 return EIO;
1177 /* Skip "next" word. */
1178 sc->prom_base = prev + 1;
1179 }
1180 return 0;
1181 }
1182
1183 static int
1184 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1185 {
1186 uint8_t *out = data;
1187 uint32_t val, tmp;
1188 int ntries;
1189
1190 addr += sc->prom_base;
1191 for (; count > 0; count -= 2, addr++) {
1192 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1193 for (ntries = 0; ntries < 10; ntries++) {
1194 val = IWN_READ(sc, IWN_EEPROM);
1195 if (val & IWN_EEPROM_READ_VALID)
1196 break;
1197 DELAY(5);
1198 }
1199 if (ntries == 10) {
1200 aprint_error_dev(sc->sc_dev,
1201 "timeout reading ROM at 0x%x\n", addr);
1202 return ETIMEDOUT;
1203 }
1204 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1205 /* OTPROM, check for ECC errors. */
1206 tmp = IWN_READ(sc, IWN_OTP_GP);
1207 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1208 aprint_error_dev(sc->sc_dev,
1209 "OTPROM ECC error at 0x%x\n", addr);
1210 return EIO;
1211 }
1212 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1213 /* Correctable ECC error, clear bit. */
1214 IWN_SETBITS(sc, IWN_OTP_GP,
1215 IWN_OTP_GP_ECC_CORR_STTS);
1216 }
1217 }
1218 *out++ = val >> 16;
1219 if (count > 1)
1220 *out++ = val >> 24;
1221 }
1222 return 0;
1223 }
1224
1225 static int
1226 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1227 bus_size_t size, bus_size_t alignment)
1228 {
1229 int nsegs, error;
1230
1231 dma->tag = tag;
1232 dma->size = size;
1233
1234 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1235 &dma->map);
1236 if (error != 0)
1237 goto fail;
1238
1239 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1240 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1241 if (error != 0)
1242 goto fail;
1243
1244 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1245 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1246 if (error != 0)
1247 goto fail;
1248
1249 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1250 BUS_DMA_NOWAIT);
1251 if (error != 0)
1252 goto fail;
1253
1254 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1255 memset(dma->vaddr, 0, size);
1256 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1257
1258 dma->paddr = dma->map->dm_segs[0].ds_addr;
1259 if (kvap != NULL)
1260 *kvap = dma->vaddr;
1261
1262 return 0;
1263
1264 fail: iwn_dma_contig_free(dma);
1265 return error;
1266 }
1267
1268 static void
1269 iwn_dma_contig_free(struct iwn_dma_info *dma)
1270 {
1271 if (dma->map != NULL) {
1272 if (dma->vaddr != NULL) {
1273 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1274 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1275 bus_dmamap_unload(dma->tag, dma->map);
1276 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1277 bus_dmamem_free(dma->tag, &dma->seg, 1);
1278 dma->vaddr = NULL;
1279 }
1280 bus_dmamap_destroy(dma->tag, dma->map);
1281 dma->map = NULL;
1282 }
1283 }
1284
1285 static int
1286 iwn_alloc_sched(struct iwn_softc *sc)
1287 {
1288 /* TX scheduler rings must be aligned on a 1KB boundary. */
1289 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1290 (void **)&sc->sched, sc->schedsz, 1024);
1291 }
1292
1293 static void
1294 iwn_free_sched(struct iwn_softc *sc)
1295 {
1296 iwn_dma_contig_free(&sc->sched_dma);
1297 }
1298
1299 static int
1300 iwn_alloc_kw(struct iwn_softc *sc)
1301 {
1302 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1303 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1304 4096);
1305 }
1306
1307 static void
1308 iwn_free_kw(struct iwn_softc *sc)
1309 {
1310 iwn_dma_contig_free(&sc->kw_dma);
1311 }
1312
1313 static int
1314 iwn_alloc_ict(struct iwn_softc *sc)
1315 {
1316 /* ICT table must be aligned on a 4KB boundary. */
1317 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1318 (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1319 }
1320
1321 static void
1322 iwn_free_ict(struct iwn_softc *sc)
1323 {
1324 iwn_dma_contig_free(&sc->ict_dma);
1325 }
1326
1327 static int
1328 iwn_alloc_fwmem(struct iwn_softc *sc)
1329 {
1330 /* Must be aligned on a 16-byte boundary. */
1331 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1332 sc->fwsz, 16);
1333 }
1334
1335 static void
1336 iwn_free_fwmem(struct iwn_softc *sc)
1337 {
1338 iwn_dma_contig_free(&sc->fw_dma);
1339 }
1340
1341 static int
1342 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1343 {
1344 bus_size_t size;
1345 int i, error;
1346
1347 ring->cur = 0;
1348
1349 /* Allocate RX descriptors (256-byte aligned). */
1350 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1351 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1352 (void **)&ring->desc, size, 256);
1353 if (error != 0) {
1354 aprint_error_dev(sc->sc_dev,
1355 "could not allocate RX ring DMA memory\n");
1356 goto fail;
1357 }
1358
1359 /* Allocate RX status area (16-byte aligned). */
1360 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1361 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1362 if (error != 0) {
1363 aprint_error_dev(sc->sc_dev,
1364 "could not allocate RX status DMA memory\n");
1365 goto fail;
1366 }
1367
1368 /*
1369 * Allocate and map RX buffers.
1370 */
1371 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1372 struct iwn_rx_data *data = &ring->data[i];
1373
1374 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1375 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1376 &data->map);
1377 if (error != 0) {
1378 aprint_error_dev(sc->sc_dev,
1379 "could not create RX buf DMA map\n");
1380 goto fail;
1381 }
1382
1383 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1384 if (data->m == NULL) {
1385 aprint_error_dev(sc->sc_dev,
1386 "could not allocate RX mbuf\n");
1387 error = ENOBUFS;
1388 goto fail;
1389 }
1390
1391 error = bus_dmamap_load(sc->sc_dmat, data->map,
1392 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1393 BUS_DMA_NOWAIT | BUS_DMA_READ);
1394 if (error != 0) {
1395 aprint_error_dev(sc->sc_dev,
1396 "can't not map mbuf (error %d)\n", error);
1397 goto fail;
1398 }
1399
1400 /* Set physical address of RX buffer (256-byte aligned). */
1401 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1402 }
1403
1404 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1405 BUS_DMASYNC_PREWRITE);
1406
1407 return 0;
1408
1409 fail: iwn_free_rx_ring(sc, ring);
1410 return error;
1411 }
1412
1413 static void
1414 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1415 {
1416 int ntries;
1417
1418 if (iwn_nic_lock(sc) == 0) {
1419 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1420 for (ntries = 0; ntries < 1000; ntries++) {
1421 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1422 IWN_FH_RX_STATUS_IDLE)
1423 break;
1424 DELAY(10);
1425 }
1426 iwn_nic_unlock(sc);
1427 }
1428 ring->cur = 0;
1429 sc->last_rx_valid = 0;
1430 }
1431
1432 static void
1433 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1434 {
1435 int i;
1436
1437 iwn_dma_contig_free(&ring->desc_dma);
1438 iwn_dma_contig_free(&ring->stat_dma);
1439
1440 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1441 struct iwn_rx_data *data = &ring->data[i];
1442
1443 if (data->m != NULL) {
1444 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1445 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1446 bus_dmamap_unload(sc->sc_dmat, data->map);
1447 m_freem(data->m);
1448 }
1449 if (data->map != NULL)
1450 bus_dmamap_destroy(sc->sc_dmat, data->map);
1451 }
1452 }
1453
1454 static int
1455 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1456 {
1457 bus_addr_t paddr;
1458 bus_size_t size;
1459 int i, error;
1460
1461 ring->qid = qid;
1462 ring->queued = 0;
1463 ring->cur = 0;
1464
1465 /* Allocate TX descriptors (256-byte aligned). */
1466 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1467 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1468 (void **)&ring->desc, size, 256);
1469 if (error != 0) {
1470 aprint_error_dev(sc->sc_dev,
1471 "could not allocate TX ring DMA memory\n");
1472 goto fail;
1473 }
1474 /*
1475 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1476 * to allocate commands space for other rings.
1477 * XXX Do we really need to allocate descriptors for other rings?
1478 */
1479 if (qid > 4)
1480 return 0;
1481
1482 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1483 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1484 (void **)&ring->cmd, size, 4);
1485 if (error != 0) {
1486 aprint_error_dev(sc->sc_dev,
1487 "could not allocate TX cmd DMA memory\n");
1488 goto fail;
1489 }
1490
1491 paddr = ring->cmd_dma.paddr;
1492 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1493 struct iwn_tx_data *data = &ring->data[i];
1494
1495 data->cmd_paddr = paddr;
1496 data->scratch_paddr = paddr + 12;
1497 paddr += sizeof (struct iwn_tx_cmd);
1498
1499 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1500 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1501 &data->map);
1502 if (error != 0) {
1503 aprint_error_dev(sc->sc_dev,
1504 "could not create TX buf DMA map\n");
1505 goto fail;
1506 }
1507 }
1508 return 0;
1509
1510 fail: iwn_free_tx_ring(sc, ring);
1511 return error;
1512 }
1513
1514 static void
1515 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1516 {
1517 int i;
1518
1519 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1520 struct iwn_tx_data *data = &ring->data[i];
1521
1522 if (data->m != NULL) {
1523 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1524 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1525 bus_dmamap_unload(sc->sc_dmat, data->map);
1526 m_freem(data->m);
1527 data->m = NULL;
1528 }
1529 }
1530 /* Clear TX descriptors. */
1531 memset(ring->desc, 0, ring->desc_dma.size);
1532 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1533 ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1534 sc->qfullmsk &= ~(1 << ring->qid);
1535 ring->queued = 0;
1536 ring->cur = 0;
1537 }
1538
1539 static void
1540 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1541 {
1542 int i;
1543
1544 iwn_dma_contig_free(&ring->desc_dma);
1545 iwn_dma_contig_free(&ring->cmd_dma);
1546
1547 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1548 struct iwn_tx_data *data = &ring->data[i];
1549
1550 if (data->m != NULL) {
1551 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1552 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1553 bus_dmamap_unload(sc->sc_dmat, data->map);
1554 m_freem(data->m);
1555 }
1556 if (data->map != NULL)
1557 bus_dmamap_destroy(sc->sc_dmat, data->map);
1558 }
1559 }
1560
1561 static void
1562 iwn5000_ict_reset(struct iwn_softc *sc)
1563 {
1564 /* Disable interrupts. */
1565 IWN_WRITE(sc, IWN_INT_MASK, 0);
1566
1567 /* Reset ICT table. */
1568 memset(sc->ict, 0, IWN_ICT_SIZE);
1569 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
1570 BUS_DMASYNC_PREWRITE);
1571 sc->ict_cur = 0;
1572
1573 /* Set physical address of ICT table (4KB aligned). */
1574 DPRINTF(("enabling ICT\n"));
1575 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1576 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1577
1578 /* Enable periodic RX interrupt. */
1579 sc->int_mask |= IWN_INT_RX_PERIODIC;
1580 /* Switch to ICT interrupt mode in driver. */
1581 sc->sc_flags |= IWN_FLAG_USE_ICT;
1582
1583 /* Re-enable interrupts. */
1584 IWN_WRITE(sc, IWN_INT, 0xffffffff);
1585 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1586 }
1587
1588 static int
1589 iwn_read_eeprom(struct iwn_softc *sc)
1590 {
1591 struct iwn_ops *ops = &sc->ops;
1592 struct ieee80211com *ic = &sc->sc_ic;
1593 uint16_t val;
1594 int error;
1595
1596 /* Check whether adapter has an EEPROM or an OTPROM. */
1597 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1598 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1599 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1600 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1601 "OTPROM" : "EEPROM"));
1602
1603 /* Adapter has to be powered on for EEPROM access to work. */
1604 if ((error = iwn_apm_init(sc)) != 0) {
1605 aprint_error_dev(sc->sc_dev,
1606 "could not power ON adapter\n");
1607 return error;
1608 }
1609
1610 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1611 aprint_error_dev(sc->sc_dev,
1612 "bad ROM signature\n");
1613 return EIO;
1614 }
1615 if ((error = iwn_eeprom_lock(sc)) != 0) {
1616 aprint_error_dev(sc->sc_dev,
1617 "could not lock ROM (error=%d)\n", error);
1618 return error;
1619 }
1620 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1621 if ((error = iwn_init_otprom(sc)) != 0) {
1622 aprint_error_dev(sc->sc_dev,
1623 "could not initialize OTPROM\n");
1624 return error;
1625 }
1626 }
1627
1628 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1629 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1630 /* Check if HT support is bonded out. */
1631 if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1632 sc->sc_flags |= IWN_FLAG_HAS_11N;
1633
1634 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1635 sc->rfcfg = le16toh(val);
1636 DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1637 /* Read Tx/Rx chains from ROM unless it's known to be broken. */
1638 if (sc->txchainmask == 0)
1639 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1640 if (sc->rxchainmask == 0)
1641 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1642
1643 /* Read MAC address. */
1644 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, ETHER_ADDR_LEN);
1645
1646 /* Read adapter-specific information from EEPROM. */
1647 ops->read_eeprom(sc);
1648
1649 iwn_apm_stop(sc); /* Power OFF adapter. */
1650
1651 iwn_eeprom_unlock(sc);
1652 return 0;
1653 }
1654
1655 static void
1656 iwn4965_read_eeprom(struct iwn_softc *sc)
1657 {
1658 uint32_t addr;
1659 uint16_t val;
1660 int i;
1661
1662 /* Read regulatory domain (4 ASCII characters). */
1663 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1664
1665 /* Read the list of authorized channels (20MHz ones only). */
1666 for (i = 0; i < 5; i++) {
1667 addr = iwn4965_regulatory_bands[i];
1668 iwn_read_eeprom_channels(sc, i, addr);
1669 }
1670
1671 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1672 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1673 sc->maxpwr2GHz = val & 0xff;
1674 sc->maxpwr5GHz = val >> 8;
1675 /* Check that EEPROM values are within valid range. */
1676 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1677 sc->maxpwr5GHz = 38;
1678 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1679 sc->maxpwr2GHz = 38;
1680 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1681
1682 /* Read samples for each TX power group. */
1683 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1684 sizeof sc->bands);
1685
1686 /* Read voltage at which samples were taken. */
1687 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1688 sc->eeprom_voltage = (int16_t)le16toh(val);
1689 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1690
1691 #ifdef IWN_DEBUG
1692 /* Print samples. */
1693 if (iwn_debug > 0) {
1694 for (i = 0; i < IWN_NBANDS; i++)
1695 iwn4965_print_power_group(sc, i);
1696 }
1697 #endif
1698 }
1699
1700 #ifdef IWN_DEBUG
1701 static void
1702 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1703 {
1704 struct iwn4965_eeprom_band *band = &sc->bands[i];
1705 struct iwn4965_eeprom_chan_samples *chans = band->chans;
1706 int j, c;
1707
1708 aprint_normal("===band %d===\n", i);
1709 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1710 aprint_normal("chan1 num=%d\n", chans[0].num);
1711 for (c = 0; c < 2; c++) {
1712 for (j = 0; j < IWN_NSAMPLES; j++) {
1713 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1714 "power=%d pa_det=%d\n", c, j,
1715 chans[0].samples[c][j].temp,
1716 chans[0].samples[c][j].gain,
1717 chans[0].samples[c][j].power,
1718 chans[0].samples[c][j].pa_det);
1719 }
1720 }
1721 aprint_normal("chan2 num=%d\n", chans[1].num);
1722 for (c = 0; c < 2; c++) {
1723 for (j = 0; j < IWN_NSAMPLES; j++) {
1724 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1725 "power=%d pa_det=%d\n", c, j,
1726 chans[1].samples[c][j].temp,
1727 chans[1].samples[c][j].gain,
1728 chans[1].samples[c][j].power,
1729 chans[1].samples[c][j].pa_det);
1730 }
1731 }
1732 }
1733 #endif
1734
1735 static void
1736 iwn5000_read_eeprom(struct iwn_softc *sc)
1737 {
1738 struct iwn5000_eeprom_calib_hdr hdr;
1739 int32_t volt;
1740 uint32_t base, addr;
1741 uint16_t val;
1742 int i;
1743
1744 /* Read regulatory domain (4 ASCII characters). */
1745 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1746 base = le16toh(val);
1747 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1748 sc->eeprom_domain, 4);
1749
1750 /* Read the list of authorized channels (20MHz ones only). */
1751 for (i = 0; i < 5; i++) {
1752 addr = base + iwn5000_regulatory_bands[i];
1753 iwn_read_eeprom_channels(sc, i, addr);
1754 }
1755
1756 /* Read enhanced TX power information for 6000 Series. */
1757 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1758 iwn_read_eeprom_enhinfo(sc);
1759
1760 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1761 base = le16toh(val);
1762 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1763 DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1764 hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1765 sc->calib_ver = hdr.version;
1766
1767 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1768 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1769 sc->hw_type == IWN_HW_REV_TYPE_135 ||
1770 sc->hw_type == IWN_HW_REV_TYPE_105) {
1771 sc->eeprom_voltage = le16toh(hdr.volt);
1772 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1773 sc->eeprom_temp = le16toh(val);
1774 iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1775 sc->eeprom_rawtemp = le16toh(val);
1776 }
1777
1778 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1779 /* Compute temperature offset. */
1780 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1781 sc->eeprom_temp = le16toh(val);
1782 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1783 volt = le16toh(val);
1784 sc->temp_off = sc->eeprom_temp - (volt / -5);
1785 DPRINTF(("temp=%d volt=%d offset=%dK\n",
1786 sc->eeprom_temp, volt, sc->temp_off));
1787 } else {
1788 /* Read crystal calibration. */
1789 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1790 &sc->eeprom_crystal, sizeof (uint32_t));
1791 DPRINTF(("crystal calibration 0x%08x\n",
1792 le32toh(sc->eeprom_crystal)));
1793 }
1794 }
1795
1796 static void
1797 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1798 {
1799 struct ieee80211com *ic = &sc->sc_ic;
1800 const struct iwn_chan_band *band = &iwn_bands[n];
1801 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1802 uint8_t chan;
1803 int i;
1804
1805 iwn_read_prom_data(sc, addr, channels,
1806 band->nchan * sizeof (struct iwn_eeprom_chan));
1807
1808 for (i = 0; i < band->nchan; i++) {
1809 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1810 continue;
1811
1812 chan = band->chan[i];
1813
1814 if (n == 0) { /* 2GHz band */
1815 ic->ic_channels[chan].ic_freq =
1816 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1817 ic->ic_channels[chan].ic_flags =
1818 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1819 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1820
1821 } else { /* 5GHz band */
1822 /*
1823 * Some adapters support channels 7, 8, 11 and 12
1824 * both in the 2GHz and 4.9GHz bands.
1825 * Because of limitations in our net80211 layer,
1826 * we don't support them in the 4.9GHz band.
1827 */
1828 if (chan <= 14)
1829 continue;
1830
1831 ic->ic_channels[chan].ic_freq =
1832 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1833 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1834 /* We have at least one valid 5GHz channel. */
1835 sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1836 }
1837
1838 /* Is active scan allowed on this channel? */
1839 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1840 ic->ic_channels[chan].ic_flags |=
1841 IEEE80211_CHAN_PASSIVE;
1842 }
1843
1844 /* Save maximum allowed TX power for this channel. */
1845 sc->maxpwr[chan] = channels[i].maxpwr;
1846
1847 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1848 chan, channels[i].flags, sc->maxpwr[chan]));
1849 }
1850 }
1851
1852 static void
1853 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1854 {
1855 struct iwn_eeprom_enhinfo enhinfo[35];
1856 uint16_t val, base;
1857 int8_t maxpwr;
1858 uint8_t flags;
1859 int i;
1860
1861 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1862 base = le16toh(val);
1863 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1864 enhinfo, sizeof enhinfo);
1865
1866 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1867 for (i = 0; i < __arraycount(enhinfo); i++) {
1868 flags = enhinfo[i].flags;
1869 if (!(flags & IWN_ENHINFO_VALID))
1870 continue; /* Skip invalid entries. */
1871
1872 maxpwr = 0;
1873 if (sc->txchainmask & IWN_ANT_A)
1874 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1875 if (sc->txchainmask & IWN_ANT_B)
1876 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1877 if (sc->txchainmask & IWN_ANT_C)
1878 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1879 if (sc->ntxchains == 2)
1880 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1881 else if (sc->ntxchains == 3)
1882 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1883 maxpwr /= 2; /* Convert half-dBm to dBm. */
1884
1885 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1886 sc->enh_maxpwr[i] = maxpwr;
1887 }
1888 }
1889
1890 static struct ieee80211_node *
1891 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1892 {
1893 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1894 }
1895
1896 static void
1897 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1898 {
1899 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1900 struct iwn_node *wn = (void *)ni;
1901 uint8_t rate;
1902 int ridx, i;
1903
1904 ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1905 /* Start at lowest available bit-rate, AMRR will raise. */
1906 ni->ni_txrate = 0;
1907
1908 for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1909 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1910 /* Map 802.11 rate to HW rate index. */
1911 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1912 if (iwn_rates[ridx].rate == rate)
1913 break;
1914 wn->ridx[i] = ridx;
1915 }
1916 }
1917
1918 static int
1919 iwn_media_change(struct ifnet *ifp)
1920 {
1921 struct iwn_softc *sc = ifp->if_softc;
1922 struct ieee80211com *ic = &sc->sc_ic;
1923 uint8_t rate, ridx;
1924 int error;
1925
1926 error = ieee80211_media_change(ifp);
1927 if (error != ENETRESET)
1928 return error;
1929
1930 if (ic->ic_fixed_rate != -1) {
1931 rate = ic->ic_sup_rates[ic->ic_curmode].
1932 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1933 /* Map 802.11 rate to HW rate index. */
1934 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1935 if (iwn_rates[ridx].rate == rate)
1936 break;
1937 sc->fixed_ridx = ridx;
1938 }
1939
1940 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1941 (IFF_UP | IFF_RUNNING)) {
1942 iwn_stop(ifp, 0);
1943 error = iwn_init(ifp);
1944 }
1945 return error;
1946 }
1947
1948 static int
1949 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1950 {
1951 struct ifnet *ifp = ic->ic_ifp;
1952 struct iwn_softc *sc = ifp->if_softc;
1953 int error;
1954
1955 callout_stop(&sc->calib_to);
1956
1957 switch (nstate) {
1958 case IEEE80211_S_SCAN:
1959 /* XXX Do not abort a running scan. */
1960 if (sc->sc_flags & IWN_FLAG_SCANNING) {
1961 if (ic->ic_state != nstate)
1962 aprint_debug_dev(sc->sc_dev, "scan request(%d) "
1963 "while scanning(%d) ignored\n", nstate,
1964 ic->ic_state);
1965 break;
1966 }
1967
1968 /* XXX Not sure if call and flags are needed. */
1969 ieee80211_node_table_reset(&ic->ic_scan);
1970 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1971 sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1972
1973 /* Make the link LED blink while we're scanning. */
1974 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1975
1976 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1977 aprint_error_dev(sc->sc_dev,
1978 "could not initiate scan\n");
1979 return error;
1980 }
1981 ic->ic_state = nstate;
1982 return 0;
1983
1984 case IEEE80211_S_ASSOC:
1985 if (ic->ic_state != IEEE80211_S_RUN)
1986 break;
1987 /* FALLTHROUGH */
1988 case IEEE80211_S_AUTH:
1989 /* Reset state to handle reassociations correctly. */
1990 sc->rxon.associd = 0;
1991 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1992 sc->calib.state = IWN_CALIB_STATE_INIT;
1993
1994 /* Wait until we hear a beacon before we transmit */
1995 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
1996 sc->sc_beacon_wait = 1;
1997
1998 if ((error = iwn_auth(sc)) != 0) {
1999 aprint_error_dev(sc->sc_dev,
2000 "could not move to auth state\n");
2001 return error;
2002 }
2003 break;
2004
2005 case IEEE80211_S_RUN:
2006 /*
2007 * RUN -> RUN transition; Just restart timers.
2008 */
2009 if (ic->ic_state == IEEE80211_S_RUN) {
2010 sc->calib_cnt = 0;
2011 break;
2012 }
2013
2014 /* Wait until we hear a beacon before we transmit */
2015 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2016 sc->sc_beacon_wait = 1;
2017
2018 if ((error = iwn_run(sc)) != 0) {
2019 aprint_error_dev(sc->sc_dev,
2020 "could not move to run state\n");
2021 return error;
2022 }
2023 break;
2024
2025 case IEEE80211_S_INIT:
2026 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2027 sc->calib.state = IWN_CALIB_STATE_INIT;
2028 /*
2029 * Purge the xmit queue so we don't have old frames
2030 * during a new association attempt.
2031 */
2032 sc->sc_beacon_wait = 0;
2033 ifp->if_flags &= ~IFF_OACTIVE;
2034 iwn_start(ifp);
2035 break;
2036 }
2037
2038 return sc->sc_newstate(ic, nstate, arg);
2039 }
2040
2041 static void
2042 iwn_iter_func(void *arg, struct ieee80211_node *ni)
2043 {
2044 struct iwn_softc *sc = arg;
2045 struct iwn_node *wn = (struct iwn_node *)ni;
2046
2047 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
2048 }
2049
2050 static void
2051 iwn_calib_timeout(void *arg)
2052 {
2053 struct iwn_softc *sc = arg;
2054 struct ieee80211com *ic = &sc->sc_ic;
2055 int s;
2056
2057 s = splnet();
2058 if (ic->ic_fixed_rate == -1) {
2059 if (ic->ic_opmode == IEEE80211_M_STA)
2060 iwn_iter_func(sc, ic->ic_bss);
2061 else
2062 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
2063 }
2064 /* Force automatic TX power calibration every 60 secs. */
2065 if (++sc->calib_cnt >= 120) {
2066 uint32_t flags = 0;
2067
2068 DPRINTF(("sending request for statistics\n"));
2069 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2070 sizeof flags, 1);
2071 sc->calib_cnt = 0;
2072 }
2073 splx(s);
2074
2075 /* Automatic rate control triggered every 500ms. */
2076 callout_schedule(&sc->calib_to, mstohz(500));
2077 }
2078
2079 /*
2080 * Process an RX_PHY firmware notification. This is usually immediately
2081 * followed by an MPDU_RX_DONE notification.
2082 */
2083 static void
2084 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2085 struct iwn_rx_data *data)
2086 {
2087 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2088
2089 DPRINTFN(2, ("received PHY stats\n"));
2090 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2091 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2092
2093 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
2094 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2095 sc->last_rx_valid = 1;
2096 }
2097
2098 /*
2099 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2100 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2101 */
2102 static void
2103 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2104 struct iwn_rx_data *data)
2105 {
2106 struct iwn_ops *ops = &sc->ops;
2107 struct ieee80211com *ic = &sc->sc_ic;
2108 struct ifnet *ifp = ic->ic_ifp;
2109 struct iwn_rx_ring *ring = &sc->rxq;
2110 struct ieee80211_frame *wh;
2111 struct ieee80211_node *ni;
2112 struct mbuf *m, *m1;
2113 struct iwn_rx_stat *stat;
2114 char *head;
2115 uint32_t flags;
2116 int error, len, rssi, s;
2117
2118 if (desc->type == IWN_MPDU_RX_DONE) {
2119 /* Check for prior RX_PHY notification. */
2120 if (!sc->last_rx_valid) {
2121 DPRINTF(("missing RX_PHY\n"));
2122 return;
2123 }
2124 sc->last_rx_valid = 0;
2125 stat = &sc->last_rx_stat;
2126 } else
2127 stat = (struct iwn_rx_stat *)(desc + 1);
2128
2129 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2130 BUS_DMASYNC_POSTREAD);
2131
2132 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2133 aprint_error_dev(sc->sc_dev,
2134 "invalid RX statistic header\n");
2135 return;
2136 }
2137 if (desc->type == IWN_MPDU_RX_DONE) {
2138 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2139 head = (char *)(mpdu + 1);
2140 len = le16toh(mpdu->len);
2141 } else {
2142 head = (char *)(stat + 1) + stat->cfg_phy_len;
2143 len = le16toh(stat->len);
2144 }
2145
2146 flags = le32toh(*(uint32_t *)(head + len));
2147
2148 /* Discard frames with a bad FCS early. */
2149 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2150 DPRINTFN(2, ("RX flags error %x\n", flags));
2151 if_statinc(ifp, if_ierrors);
2152 return;
2153 }
2154 /* Discard frames that are too short. */
2155 if (len < sizeof (*wh)) {
2156 DPRINTF(("frame too short: %d\n", len));
2157 ic->ic_stats.is_rx_tooshort++;
2158 if_statinc(ifp, if_ierrors);
2159 return;
2160 }
2161
2162 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2163 if (m1 == NULL) {
2164 ic->ic_stats.is_rx_nobuf++;
2165 if_statinc(ifp, if_ierrors);
2166 return;
2167 }
2168 bus_dmamap_unload(sc->sc_dmat, data->map);
2169
2170 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2171 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2172 if (error != 0) {
2173 m_freem(m1);
2174
2175 /* Try to reload the old mbuf. */
2176 error = bus_dmamap_load(sc->sc_dmat, data->map,
2177 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2178 BUS_DMA_NOWAIT | BUS_DMA_READ);
2179 if (error != 0) {
2180 panic("%s: could not load old RX mbuf",
2181 device_xname(sc->sc_dev));
2182 }
2183 /* Physical address may have changed. */
2184 ring->desc[ring->cur] =
2185 htole32(data->map->dm_segs[0].ds_addr >> 8);
2186 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2187 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2188 BUS_DMASYNC_PREWRITE);
2189 if_statinc(ifp, if_ierrors);
2190 return;
2191 }
2192
2193 m = data->m;
2194 data->m = m1;
2195 /* Update RX descriptor. */
2196 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2197 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2198 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2199 BUS_DMASYNC_PREWRITE);
2200
2201 /* Finalize mbuf. */
2202 m_set_rcvif(m, ifp);
2203 m->m_data = head;
2204 m->m_pkthdr.len = m->m_len = len;
2205
2206 s = splnet();
2207
2208 /* Grab a reference to the source node. */
2209 wh = mtod(m, struct ieee80211_frame *);
2210 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2211
2212 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2213 /* NetBSD does decryption in ieee80211_input. */
2214
2215 rssi = ops->get_rssi(stat);
2216
2217 /* XXX Added for NetBSD: scans never stop without it */
2218 if (ic->ic_state == IEEE80211_S_SCAN)
2219 iwn_fix_channel(ic, m, stat);
2220
2221 if (sc->sc_drvbpf != NULL) {
2222 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2223
2224 tap->wr_flags = 0;
2225 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2226 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2227 tap->wr_chan_freq =
2228 htole16(ic->ic_channels[stat->chan].ic_freq);
2229 tap->wr_chan_flags =
2230 htole16(ic->ic_channels[stat->chan].ic_flags);
2231 tap->wr_dbm_antsignal = (int8_t)rssi;
2232 tap->wr_dbm_antnoise = (int8_t)sc->noise;
2233 tap->wr_tsft = stat->tstamp;
2234 switch (stat->rate) {
2235 /* CCK rates. */
2236 case 10: tap->wr_rate = 2; break;
2237 case 20: tap->wr_rate = 4; break;
2238 case 55: tap->wr_rate = 11; break;
2239 case 110: tap->wr_rate = 22; break;
2240 /* OFDM rates. */
2241 case 0xd: tap->wr_rate = 12; break;
2242 case 0xf: tap->wr_rate = 18; break;
2243 case 0x5: tap->wr_rate = 24; break;
2244 case 0x7: tap->wr_rate = 36; break;
2245 case 0x9: tap->wr_rate = 48; break;
2246 case 0xb: tap->wr_rate = 72; break;
2247 case 0x1: tap->wr_rate = 96; break;
2248 case 0x3: tap->wr_rate = 108; break;
2249 /* Unknown rate: should not happen. */
2250 default: tap->wr_rate = 0;
2251 }
2252
2253 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
2254 }
2255
2256 /*
2257 * If it's a beacon and we're waiting, then do the wakeup.
2258 */
2259 if (sc->sc_beacon_wait) {
2260 uint8_t type, subtype;
2261 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2262 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2263 /*
2264 * This assumes at this point we've received our own
2265 * beacon.
2266 */
2267 if (type == IEEE80211_FC0_TYPE_MGT &&
2268 subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
2269 sc->sc_beacon_wait = 0;
2270 ifp->if_flags &= ~IFF_OACTIVE;
2271 iwn_start(ifp);
2272 }
2273 }
2274
2275 /* Send the frame to the 802.11 layer. */
2276 ieee80211_input(ic, m, ni, rssi, 0);
2277
2278 /* Node is no longer needed. */
2279 ieee80211_free_node(ni);
2280
2281 splx(s);
2282 }
2283
2284 #ifndef IEEE80211_NO_HT
2285 /* Process an incoming Compressed BlockAck. */
2286 static void
2287 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2288 struct iwn_rx_data *data)
2289 {
2290 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2291 struct iwn_tx_ring *txq;
2292
2293 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2294 BUS_DMASYNC_POSTREAD);
2295
2296 txq = &sc->txq[le16toh(ba->qid)];
2297 /* XXX TBD */
2298 }
2299 #endif
2300
2301 /*
2302 * Process a CALIBRATION_RESULT notification sent by the initialization
2303 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2304 */
2305 static void
2306 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2307 struct iwn_rx_data *data)
2308 {
2309 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2310 int len, idx = -1;
2311
2312 /* Runtime firmware should not send such a notification. */
2313 if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2314 return;
2315
2316 len = (le32toh(desc->len) & 0x3fff) - 4;
2317 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2318 BUS_DMASYNC_POSTREAD);
2319
2320 switch (calib->code) {
2321 case IWN5000_PHY_CALIB_DC:
2322 if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2323 sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2324 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2325 sc->hw_type == IWN_HW_REV_TYPE_135 ||
2326 sc->hw_type == IWN_HW_REV_TYPE_105)
2327 idx = 0;
2328 break;
2329 case IWN5000_PHY_CALIB_LO:
2330 idx = 1;
2331 break;
2332 case IWN5000_PHY_CALIB_TX_IQ:
2333 idx = 2;
2334 break;
2335 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2336 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2337 sc->hw_type != IWN_HW_REV_TYPE_5150)
2338 idx = 3;
2339 break;
2340 case IWN5000_PHY_CALIB_BASE_BAND:
2341 idx = 4;
2342 break;
2343 }
2344 if (idx == -1) /* Ignore other results. */
2345 return;
2346
2347 /* Save calibration result. */
2348 if (sc->calibcmd[idx].buf != NULL)
2349 free(sc->calibcmd[idx].buf, M_DEVBUF);
2350 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2351 if (sc->calibcmd[idx].buf == NULL) {
2352 DPRINTF(("not enough memory for calibration result %d\n",
2353 calib->code));
2354 return;
2355 }
2356 DPRINTF(("saving calibration result code=%d len=%d\n",
2357 calib->code, len));
2358 sc->calibcmd[idx].len = len;
2359 memcpy(sc->calibcmd[idx].buf, calib, len);
2360 }
2361
2362 /*
2363 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2364 * The latter is sent by the firmware after each received beacon.
2365 */
2366 static void
2367 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2368 struct iwn_rx_data *data)
2369 {
2370 struct iwn_ops *ops = &sc->ops;
2371 struct ieee80211com *ic = &sc->sc_ic;
2372 struct iwn_calib_state *calib = &sc->calib;
2373 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2374 int temp;
2375
2376 /* Ignore statistics received during a scan. */
2377 if (ic->ic_state != IEEE80211_S_RUN)
2378 return;
2379
2380 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2381 sizeof (*stats), BUS_DMASYNC_POSTREAD);
2382
2383 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2384 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2385
2386 /* Test if temperature has changed. */
2387 if (stats->general.temp != sc->rawtemp) {
2388 /* Convert "raw" temperature to degC. */
2389 sc->rawtemp = stats->general.temp;
2390 temp = ops->get_temperature(sc);
2391 DPRINTFN(2, ("temperature=%dC\n", temp));
2392
2393 /* Update TX power if need be (4965AGN only). */
2394 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2395 iwn4965_power_calibration(sc, temp);
2396 }
2397
2398 if (desc->type != IWN_BEACON_STATISTICS)
2399 return; /* Reply to a statistics request. */
2400
2401 sc->noise = iwn_get_noise(&stats->rx.general);
2402
2403 /* Test that RSSI and noise are present in stats report. */
2404 if (le32toh(stats->rx.general.flags) != 1) {
2405 DPRINTF(("received statistics without RSSI\n"));
2406 return;
2407 }
2408
2409 /*
2410 * XXX Differential gain calibration makes the 6005 firmware
2411 * crap out, so skip it for now. This effectively disables
2412 * sensitivity tuning as well.
2413 */
2414 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2415 return;
2416
2417 if (calib->state == IWN_CALIB_STATE_ASSOC)
2418 iwn_collect_noise(sc, &stats->rx.general);
2419 else if (calib->state == IWN_CALIB_STATE_RUN)
2420 iwn_tune_sensitivity(sc, &stats->rx);
2421 }
2422
2423 /*
2424 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2425 * and 5000 adapters have different incompatible TX status formats.
2426 */
2427 static void
2428 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2429 struct iwn_rx_data *data)
2430 {
2431 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2432
2433 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2434 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2435 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2436 }
2437
2438 static void
2439 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2440 struct iwn_rx_data *data)
2441 {
2442 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2443
2444 #ifdef notyet
2445 /* Reset TX scheduler slot. */
2446 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2447 #endif
2448
2449 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2450 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2451 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2452 }
2453
2454 /*
2455 * Adapter-independent backend for TX_DONE firmware notifications.
2456 */
2457 static void
2458 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2459 uint8_t status)
2460 {
2461 struct ieee80211com *ic = &sc->sc_ic;
2462 struct ifnet *ifp = ic->ic_ifp;
2463 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2464 struct iwn_tx_data *data = &ring->data[desc->idx];
2465 struct iwn_node *wn = (struct iwn_node *)data->ni;
2466 int s;
2467
2468 s = splnet();
2469
2470 /* Update rate control statistics. */
2471 wn->amn.amn_txcnt++;
2472 if (ackfailcnt > 0)
2473 wn->amn.amn_retrycnt++;
2474
2475 if (status != 1 && status != 2)
2476 if_statinc(ifp, if_oerrors);
2477 else
2478 if_statinc(ifp, if_opackets);
2479
2480 /* Unmap and free mbuf. */
2481 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2482 BUS_DMASYNC_POSTWRITE);
2483 bus_dmamap_unload(sc->sc_dmat, data->map);
2484 m_freem(data->m);
2485 data->m = NULL;
2486 ieee80211_free_node(data->ni);
2487 data->ni = NULL;
2488
2489 sc->sc_tx_timer = 0;
2490 if (--ring->queued < IWN_TX_RING_LOMARK) {
2491 sc->qfullmsk &= ~(1 << ring->qid);
2492 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2493 ifp->if_flags &= ~IFF_OACTIVE;
2494 iwn_start(ifp);
2495 }
2496 }
2497
2498 splx(s);
2499 }
2500
2501 /*
2502 * Process a "command done" firmware notification. This is where we wakeup
2503 * processes waiting for a synchronous command completion.
2504 */
2505 static void
2506 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2507 {
2508 struct iwn_tx_ring *ring = &sc->txq[4];
2509 struct iwn_tx_data *data;
2510
2511 if ((desc->qid & 0xf) != 4)
2512 return; /* Not a command ack. */
2513
2514 data = &ring->data[desc->idx];
2515
2516 /* If the command was mapped in an mbuf, free it. */
2517 if (data->m != NULL) {
2518 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2519 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2520 bus_dmamap_unload(sc->sc_dmat, data->map);
2521 m_freem(data->m);
2522 data->m = NULL;
2523 }
2524 wakeup(&ring->desc[desc->idx]);
2525 }
2526
2527 /*
2528 * Process an INT_FH_RX or INT_SW_RX interrupt.
2529 */
2530 static void
2531 iwn_notif_intr(struct iwn_softc *sc)
2532 {
2533 struct iwn_ops *ops = &sc->ops;
2534 struct ieee80211com *ic = &sc->sc_ic;
2535 struct ifnet *ifp = ic->ic_ifp;
2536 uint16_t hw;
2537 int s;
2538
2539 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2540 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2541
2542 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2543 while (sc->rxq.cur != hw) {
2544 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2545 struct iwn_rx_desc *desc;
2546
2547 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2548 BUS_DMASYNC_POSTREAD);
2549 desc = mtod(data->m, struct iwn_rx_desc *);
2550
2551 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2552 desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2553
2554 if (!(desc->qid & 0x80)) /* Reply to a command. */
2555 iwn_cmd_done(sc, desc);
2556
2557 switch (desc->type) {
2558 case IWN_RX_PHY:
2559 iwn_rx_phy(sc, desc, data);
2560 break;
2561
2562 case IWN_RX_DONE: /* 4965AGN only. */
2563 case IWN_MPDU_RX_DONE:
2564 /* An 802.11 frame has been received. */
2565 iwn_rx_done(sc, desc, data);
2566 break;
2567 #ifndef IEEE80211_NO_HT
2568 case IWN_RX_COMPRESSED_BA:
2569 /* A Compressed BlockAck has been received. */
2570 iwn_rx_compressed_ba(sc, desc, data);
2571 break;
2572 #endif
2573 case IWN_TX_DONE:
2574 /* An 802.11 frame has been transmitted. */
2575 ops->tx_done(sc, desc, data);
2576 break;
2577
2578 case IWN_RX_STATISTICS:
2579 case IWN_BEACON_STATISTICS:
2580 iwn_rx_statistics(sc, desc, data);
2581 break;
2582
2583 case IWN_BEACON_MISSED:
2584 {
2585 struct iwn_beacon_missed *miss =
2586 (struct iwn_beacon_missed *)(desc + 1);
2587
2588 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2589 sizeof (*miss), BUS_DMASYNC_POSTREAD);
2590 /*
2591 * If more than 5 consecutive beacons are missed,
2592 * reinitialize the sensitivity state machine.
2593 */
2594 DPRINTF(("beacons missed %d/%d\n",
2595 le32toh(miss->consecutive), le32toh(miss->total)));
2596 if (ic->ic_state == IEEE80211_S_RUN &&
2597 le32toh(miss->consecutive) > 5)
2598 (void)iwn_init_sensitivity(sc);
2599 break;
2600 }
2601 case IWN_UC_READY:
2602 {
2603 struct iwn_ucode_info *uc =
2604 (struct iwn_ucode_info *)(desc + 1);
2605
2606 /* The microcontroller is ready. */
2607 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2608 sizeof (*uc), BUS_DMASYNC_POSTREAD);
2609 DPRINTF(("microcode alive notification version=%d.%d "
2610 "subtype=%x alive=%x\n", uc->major, uc->minor,
2611 uc->subtype, le32toh(uc->valid)));
2612
2613 if (le32toh(uc->valid) != 1) {
2614 aprint_error_dev(sc->sc_dev,
2615 "microcontroller initialization "
2616 "failed\n");
2617 break;
2618 }
2619 if (uc->subtype == IWN_UCODE_INIT) {
2620 /* Save microcontroller report. */
2621 memcpy(&sc->ucode_info, uc, sizeof (*uc));
2622 }
2623 /* Save the address of the error log in SRAM. */
2624 sc->errptr = le32toh(uc->errptr);
2625 break;
2626 }
2627 case IWN_STATE_CHANGED:
2628 {
2629 uint32_t *status = (uint32_t *)(desc + 1);
2630
2631 /* Enabled/disabled notification. */
2632 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2633 sizeof (*status), BUS_DMASYNC_POSTREAD);
2634 DPRINTF(("state changed to %x\n", le32toh(*status)));
2635
2636 if (le32toh(*status) & 1) {
2637 /* The radio button has to be pushed. */
2638 aprint_error_dev(sc->sc_dev,
2639 "Radio transmitter is off\n");
2640 /* Turn the interface down. */
2641 s = splnet();
2642 ifp->if_flags &= ~IFF_UP;
2643 iwn_stop(ifp, 1);
2644 splx(s);
2645 return; /* No further processing. */
2646 }
2647 break;
2648 }
2649 case IWN_START_SCAN:
2650 {
2651 struct iwn_start_scan *scan =
2652 (struct iwn_start_scan *)(desc + 1);
2653
2654 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2655 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2656 DPRINTFN(2, ("scanning channel %d status %x\n",
2657 scan->chan, le32toh(scan->status)));
2658
2659 /* Fix current channel. */
2660 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2661 break;
2662 }
2663 case IWN_STOP_SCAN:
2664 {
2665 struct iwn_stop_scan *scan =
2666 (struct iwn_stop_scan *)(desc + 1);
2667
2668 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2669 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2670 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2671 scan->nchan, scan->status, scan->chan));
2672
2673 if (scan->status == 1 && scan->chan <= 14 &&
2674 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2675 /*
2676 * We just finished scanning 2GHz channels,
2677 * start scanning 5GHz ones.
2678 */
2679 sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2680 sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2681 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2682 break;
2683 }
2684 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2685 ieee80211_end_scan(ic);
2686 break;
2687 }
2688 case IWN5000_CALIBRATION_RESULT:
2689 iwn5000_rx_calib_results(sc, desc, data);
2690 break;
2691
2692 case IWN5000_CALIBRATION_DONE:
2693 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2694 wakeup(sc);
2695 break;
2696 }
2697
2698 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2699 }
2700
2701 /* Tell the firmware what we have processed. */
2702 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2703 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2704 }
2705
2706 /*
2707 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2708 * from power-down sleep mode.
2709 */
2710 static void
2711 iwn_wakeup_intr(struct iwn_softc *sc)
2712 {
2713 int qid;
2714
2715 DPRINTF(("ucode wakeup from power-down sleep\n"));
2716
2717 /* Wakeup RX and TX rings. */
2718 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2719 for (qid = 0; qid < sc->ntxqs; qid++) {
2720 struct iwn_tx_ring *ring = &sc->txq[qid];
2721 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2722 }
2723 }
2724
2725 /*
2726 * Dump the error log of the firmware when a firmware panic occurs. Although
2727 * we can't debug the firmware because it is neither open source nor free, it
2728 * can help us to identify certain classes of problems.
2729 */
2730 static void
2731 iwn_fatal_intr(struct iwn_softc *sc)
2732 {
2733 struct iwn_fw_dump dump;
2734 int i;
2735
2736 /* Force a complete recalibration on next init. */
2737 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2738
2739 /* Check that the error log address is valid. */
2740 if (sc->errptr < IWN_FW_DATA_BASE ||
2741 sc->errptr + sizeof (dump) >
2742 IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2743 aprint_error_dev(sc->sc_dev,
2744 "bad firmware error log address 0x%08x\n", sc->errptr);
2745 return;
2746 }
2747 if (iwn_nic_lock(sc) != 0) {
2748 aprint_error_dev(sc->sc_dev,
2749 "could not read firmware error log\n");
2750 return;
2751 }
2752 /* Read firmware error log from SRAM. */
2753 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2754 sizeof (dump) / sizeof (uint32_t));
2755 iwn_nic_unlock(sc);
2756
2757 if (dump.valid == 0) {
2758 aprint_error_dev(sc->sc_dev,
2759 "firmware error log is empty\n");
2760 return;
2761 }
2762 aprint_error("firmware error log:\n");
2763 aprint_error(" error type = \"%s\" (0x%08X)\n",
2764 (dump.id < __arraycount(iwn_fw_errmsg)) ?
2765 iwn_fw_errmsg[dump.id] : "UNKNOWN",
2766 dump.id);
2767 aprint_error(" program counter = 0x%08X\n", dump.pc);
2768 aprint_error(" source line = 0x%08X\n", dump.src_line);
2769 aprint_error(" error data = 0x%08X%08X\n",
2770 dump.error_data[0], dump.error_data[1]);
2771 aprint_error(" branch link = 0x%08X%08X\n",
2772 dump.branch_link[0], dump.branch_link[1]);
2773 aprint_error(" interrupt link = 0x%08X%08X\n",
2774 dump.interrupt_link[0], dump.interrupt_link[1]);
2775 aprint_error(" time = %u\n", dump.time[0]);
2776
2777 /* Dump driver status (TX and RX rings) while we're here. */
2778 aprint_error("driver status:\n");
2779 for (i = 0; i < sc->ntxqs; i++) {
2780 struct iwn_tx_ring *ring = &sc->txq[i];
2781 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2782 i, ring->qid, ring->cur, ring->queued);
2783 }
2784 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
2785 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
2786 }
2787
2788 static int
2789 iwn_intr(void *arg)
2790 {
2791 struct iwn_softc *sc = arg;
2792
2793 /* Disable interrupts. */
2794 IWN_WRITE(sc, IWN_INT_MASK, 0);
2795
2796 softint_schedule(sc->sc_soft_ih);
2797 return 1;
2798 }
2799
2800 static void
2801 iwn_softintr(void *arg)
2802 {
2803 struct iwn_softc *sc = arg;
2804 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2805 uint32_t r1, r2, tmp;
2806 int s;
2807
2808 /* Read interrupts from ICT (fast) or from registers (slow). */
2809 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2810 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2811 IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
2812 tmp = 0;
2813 while (sc->ict[sc->ict_cur] != 0) {
2814 tmp |= sc->ict[sc->ict_cur];
2815 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2816 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2817 }
2818 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2819 IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
2820 tmp = le32toh(tmp);
2821 if (tmp == 0xffffffff) /* Shouldn't happen. */
2822 tmp = 0;
2823 else if (tmp & 0xc0000) /* Workaround a HW bug. */
2824 tmp |= 0x8000;
2825 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2826 r2 = 0; /* Unused. */
2827 } else {
2828 r1 = IWN_READ(sc, IWN_INT);
2829 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2830 return; /* Hardware gone! */
2831 r2 = IWN_READ(sc, IWN_FH_INT);
2832 }
2833 if (r1 == 0 && r2 == 0) {
2834 goto out; /* Interrupt not for us. */
2835 }
2836
2837 /* Acknowledge interrupts. */
2838 IWN_WRITE(sc, IWN_INT, r1);
2839 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2840 IWN_WRITE(sc, IWN_FH_INT, r2);
2841
2842 if (r1 & IWN_INT_RF_TOGGLED) {
2843 tmp = IWN_READ(sc, IWN_GP_CNTRL);
2844 aprint_error_dev(sc->sc_dev,
2845 "RF switch: radio %s\n",
2846 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2847 }
2848 if (r1 & IWN_INT_CT_REACHED) {
2849 aprint_error_dev(sc->sc_dev,
2850 "critical temperature reached!\n");
2851 }
2852 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2853 aprint_error_dev(sc->sc_dev,
2854 "fatal firmware error\n");
2855 /* Dump firmware error log and stop. */
2856 iwn_fatal_intr(sc);
2857 s = splnet();
2858 ifp->if_flags &= ~IFF_UP;
2859 iwn_stop(ifp, 1);
2860 splx(s);
2861 return;
2862 }
2863 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2864 (r2 & IWN_FH_INT_RX)) {
2865 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2866 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2867 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2868 IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
2869 iwn_notif_intr(sc);
2870 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2871 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2872 IWN_INT_PERIODIC_ENA);
2873 }
2874 } else
2875 iwn_notif_intr(sc);
2876 }
2877
2878 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2879 if (sc->sc_flags & IWN_FLAG_USE_ICT)
2880 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2881 wakeup(sc); /* FH DMA transfer completed. */
2882 }
2883
2884 if (r1 & IWN_INT_ALIVE)
2885 wakeup(sc); /* Firmware is alive. */
2886
2887 if (r1 & IWN_INT_WAKEUP)
2888 iwn_wakeup_intr(sc);
2889
2890 out:
2891 /* Re-enable interrupts. */
2892 if (ifp->if_flags & IFF_UP)
2893 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2894 }
2895
2896 /*
2897 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2898 * 5000 adapters use a slightly different format).
2899 */
2900 static void
2901 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2902 uint16_t len)
2903 {
2904 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2905
2906 *w = htole16(len + 8);
2907 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2908 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2909 sizeof (uint16_t),
2910 BUS_DMASYNC_PREWRITE);
2911 if (idx < IWN_SCHED_WINSZ) {
2912 *(w + IWN_TX_RING_COUNT) = *w;
2913 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2914 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2915 (char *)(void *)sc->sched_dma.vaddr,
2916 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2917 }
2918 }
2919
2920 static void
2921 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2922 uint16_t len)
2923 {
2924 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2925
2926 *w = htole16(id << 12 | (len + 8));
2927 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2928 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2929 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2930 if (idx < IWN_SCHED_WINSZ) {
2931 *(w + IWN_TX_RING_COUNT) = *w;
2932 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2933 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2934 (char *)(void *)sc->sched_dma.vaddr,
2935 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2936 }
2937 }
2938
2939 #ifdef notyet
2940 static void
2941 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2942 {
2943 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2944
2945 *w = (*w & htole16(0xf000)) | htole16(1);
2946 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2947 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2948 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2949 if (idx < IWN_SCHED_WINSZ) {
2950 *(w + IWN_TX_RING_COUNT) = *w;
2951 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2952 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2953 (char *)(void *)sc->sched_dma.vaddr,
2954 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2955 }
2956 }
2957 #endif
2958
2959 static int
2960 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2961 {
2962 struct ieee80211com *ic = &sc->sc_ic;
2963 struct iwn_node *wn = (void *)ni;
2964 struct iwn_tx_ring *ring;
2965 struct iwn_tx_desc *desc;
2966 struct iwn_tx_data *data;
2967 struct iwn_tx_cmd *cmd;
2968 struct iwn_cmd_data *tx;
2969 const struct iwn_rate *rinfo;
2970 struct ieee80211_frame *wh;
2971 struct ieee80211_key *k = NULL;
2972 struct mbuf *m1;
2973 uint32_t flags;
2974 u_int hdrlen;
2975 bus_dma_segment_t *seg;
2976 uint8_t tid, ridx, txant, type;
2977 int i, totlen, error, pad;
2978
2979 const struct chanAccParams *cap;
2980 int noack;
2981 int hdrlen2;
2982
2983 wh = mtod(m, struct ieee80211_frame *);
2984 hdrlen = ieee80211_anyhdrsize(wh);
2985 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2986
2987 hdrlen2 = (ieee80211_has_qos(wh)) ?
2988 sizeof (struct ieee80211_qosframe) :
2989 sizeof (struct ieee80211_frame);
2990
2991 if (hdrlen != hdrlen2)
2992 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2993 hdrlen, hdrlen2);
2994
2995 /* XXX OpenBSD sets a different tid when using QOS */
2996 tid = 0;
2997 if (ieee80211_has_qos(wh)) {
2998 cap = &ic->ic_wme.wme_chanParams;
2999 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
3000 }
3001 else
3002 noack = 0;
3003
3004 ring = &sc->txq[ac];
3005 desc = &ring->desc[ring->cur];
3006 data = &ring->data[ring->cur];
3007
3008 /* Choose a TX rate index. */
3009 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3010 type != IEEE80211_FC0_TYPE_DATA) {
3011 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3012 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
3013 } else if (ic->ic_fixed_rate != -1) {
3014 ridx = sc->fixed_ridx;
3015 } else
3016 ridx = wn->ridx[ni->ni_txrate];
3017 rinfo = &iwn_rates[ridx];
3018
3019 /* Encrypt the frame if need be. */
3020 /*
3021 * XXX For now, NetBSD swaps the encryption and bpf sections
3022 * in order to match old code and other drivers. Tests with
3023 * tcpdump indicates that the order is irrelevant, however,
3024 * as bpf produces unencrypted data for both ordering choices.
3025 */
3026 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3027 k = ieee80211_crypto_encap(ic, ni, m);
3028 if (k == NULL) {
3029 m_freem(m);
3030 return ENOBUFS;
3031 }
3032 /* Packet header may have moved, reset our local pointer. */
3033 wh = mtod(m, struct ieee80211_frame *);
3034 }
3035 totlen = m->m_pkthdr.len;
3036
3037 if (sc->sc_drvbpf != NULL) {
3038 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3039
3040 tap->wt_flags = 0;
3041 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3042 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3043 tap->wt_rate = rinfo->rate;
3044 tap->wt_hwqueue = ac;
3045 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3046 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3047
3048 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
3049 }
3050
3051 /* Prepare TX firmware command. */
3052 cmd = &ring->cmd[ring->cur];
3053 cmd->code = IWN_CMD_TX_DATA;
3054 cmd->flags = 0;
3055 cmd->qid = ring->qid;
3056 cmd->idx = ring->cur;
3057
3058 tx = (struct iwn_cmd_data *)cmd->data;
3059 /* NB: No need to clear tx, all fields are reinitialized here. */
3060 tx->scratch = 0; /* clear "scratch" area */
3061
3062 flags = 0;
3063 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3064 /* Unicast frame, check if an ACK is expected. */
3065 if (!noack)
3066 flags |= IWN_TX_NEED_ACK;
3067 }
3068
3069 #ifdef notyet
3070 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
3071 if ((wh->i_fc[0] &
3072 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3073 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3074 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
3075 #endif
3076
3077 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3078 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
3079
3080 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3081 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3082 /* NB: Group frames are sent using CCK in 802.11b/g. */
3083 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3084 flags |= IWN_TX_NEED_RTS;
3085 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3086 ridx >= IWN_RIDX_OFDM6) {
3087 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3088 flags |= IWN_TX_NEED_CTS;
3089 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3090 flags |= IWN_TX_NEED_RTS;
3091 }
3092 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3093 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3094 /* 5000 autoselects RTS/CTS or CTS-to-self. */
3095 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3096 flags |= IWN_TX_NEED_PROTECTION;
3097 } else
3098 flags |= IWN_TX_FULL_TXOP;
3099 }
3100 }
3101
3102 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3103 type != IEEE80211_FC0_TYPE_DATA)
3104 tx->id = sc->broadcast_id;
3105 else
3106 tx->id = wn->id;
3107
3108 if (type == IEEE80211_FC0_TYPE_MGT) {
3109 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3110
3111 #ifndef IEEE80211_STA_ONLY
3112 /* Tell HW to set timestamp in probe responses. */
3113 /* XXX NetBSD rev 1.11 added probe requests here but */
3114 /* probe requests do not take timestamps (from Bergamini). */
3115 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3116 flags |= IWN_TX_INSERT_TSTAMP;
3117 #endif
3118 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
3119 /* changes here. These are not needed (from Bergamini). */
3120 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3121 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3122 tx->timeout = htole16(3);
3123 else
3124 tx->timeout = htole16(2);
3125 } else
3126 tx->timeout = htole16(0);
3127
3128 if (hdrlen & 3) {
3129 /* First segment length must be a multiple of 4. */
3130 flags |= IWN_TX_NEED_PADDING;
3131 pad = 4 - (hdrlen & 3);
3132 } else
3133 pad = 0;
3134
3135 tx->len = htole16(totlen);
3136 tx->tid = tid;
3137 tx->rts_ntries = 60;
3138 tx->data_ntries = 15;
3139 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3140 tx->plcp = rinfo->plcp;
3141 tx->rflags = rinfo->flags;
3142 if (tx->id == sc->broadcast_id) {
3143 /* Group or management frame. */
3144 tx->linkq = 0;
3145 /* XXX Alternate between antenna A and B? */
3146 txant = IWN_LSB(sc->txchainmask);
3147 tx->rflags |= IWN_RFLAG_ANT(txant);
3148 } else {
3149 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3150 flags |= IWN_TX_LINKQ; /* enable MRR */
3151 }
3152 /* Set physical address of "scratch area". */
3153 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3154 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3155
3156 /* Copy 802.11 header in TX command. */
3157 /* XXX NetBSD changed this in rev 1.20 */
3158 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3159
3160 /* Trim 802.11 header. */
3161 m_adj(m, hdrlen);
3162 tx->security = 0;
3163 tx->flags = htole32(flags);
3164
3165 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3166 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3167 if (error != 0) {
3168 if (error != EFBIG) {
3169 aprint_error_dev(sc->sc_dev,
3170 "can't map mbuf (error %d)\n", error);
3171 m_freem(m);
3172 return error;
3173 }
3174 /* Too many DMA segments, linearize mbuf. */
3175 MGETHDR(m1, M_DONTWAIT, MT_DATA);
3176 if (m1 == NULL) {
3177 m_freem(m);
3178 return ENOBUFS;
3179 }
3180 if (m->m_pkthdr.len > MHLEN) {
3181 MCLGET(m1, M_DONTWAIT);
3182 if (!(m1->m_flags & M_EXT)) {
3183 m_freem(m);
3184 m_freem(m1);
3185 return ENOBUFS;
3186 }
3187 }
3188 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3189 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3190 m_freem(m);
3191 m = m1;
3192
3193 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3194 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3195 if (error != 0) {
3196 aprint_error_dev(sc->sc_dev,
3197 "can't map mbuf (error %d)\n", error);
3198 m_freem(m);
3199 return error;
3200 }
3201 }
3202
3203 data->m = m;
3204 data->ni = ni;
3205
3206 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3207 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3208
3209 /* Fill TX descriptor. */
3210 desc->nsegs = 1 + data->map->dm_nsegs;
3211 /* First DMA segment is used by the TX command. */
3212 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3213 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
3214 (4 + sizeof (*tx) + hdrlen + pad) << 4);
3215 /* Other DMA segments are for data payload. */
3216 seg = data->map->dm_segs;
3217 for (i = 1; i <= data->map->dm_nsegs; i++) {
3218 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3219 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
3220 seg->ds_len << 4);
3221 seg++;
3222 }
3223
3224 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3225 BUS_DMASYNC_PREWRITE);
3226 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3227 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3228 sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3229 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3230 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3231 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3232
3233 #ifdef notyet
3234 /* Update TX scheduler. */
3235 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3236 #endif
3237
3238 /* Kick TX ring. */
3239 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3240 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3241
3242 /* Mark TX ring as full if we reach a certain threshold. */
3243 if (++ring->queued > IWN_TX_RING_HIMARK)
3244 sc->qfullmsk |= 1 << ring->qid;
3245
3246 return 0;
3247 }
3248
3249 static void
3250 iwn_start(struct ifnet *ifp)
3251 {
3252 struct iwn_softc *sc = ifp->if_softc;
3253 struct ieee80211com *ic = &sc->sc_ic;
3254 struct ieee80211_node *ni;
3255 struct ether_header *eh;
3256 struct mbuf *m;
3257 int ac;
3258
3259 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3260 return;
3261
3262 for (;;) {
3263 if (sc->sc_beacon_wait == 1) {
3264 ifp->if_flags |= IFF_OACTIVE;
3265 break;
3266 }
3267
3268 if (sc->qfullmsk != 0) {
3269 ifp->if_flags |= IFF_OACTIVE;
3270 break;
3271 }
3272 /* Send pending management frames first. */
3273 IF_DEQUEUE(&ic->ic_mgtq, m);
3274 if (m != NULL) {
3275 ni = M_GETCTX(m, struct ieee80211_node *);
3276 ac = 0;
3277 goto sendit;
3278 }
3279 if (ic->ic_state != IEEE80211_S_RUN)
3280 break;
3281
3282 /* Encapsulate and send data frames. */
3283 IFQ_DEQUEUE(&ifp->if_snd, m);
3284 if (m == NULL)
3285 break;
3286 if (m->m_len < sizeof (*eh) &&
3287 (m = m_pullup(m, sizeof (*eh))) == NULL) {
3288 if_statinc(ifp, if_oerrors);
3289 continue;
3290 }
3291 eh = mtod(m, struct ether_header *);
3292 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3293 if (ni == NULL) {
3294 m_freem(m);
3295 if_statinc(ifp, if_oerrors);
3296 continue;
3297 }
3298 /* classify mbuf so we can find which tx ring to use */
3299 if (ieee80211_classify(ic, m, ni) != 0) {
3300 m_freem(m);
3301 ieee80211_free_node(ni);
3302 if_statinc(ifp, if_oerrors);
3303 continue;
3304 }
3305
3306 /* No QoS encapsulation for EAPOL frames. */
3307 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3308 M_WME_GETAC(m) : WME_AC_BE;
3309
3310 if (sc->sc_beacon_wait == 0)
3311 bpf_mtap(ifp, m, BPF_D_OUT);
3312
3313 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3314 ieee80211_free_node(ni);
3315 if_statinc(ifp, if_oerrors);
3316 continue;
3317 }
3318 sendit:
3319 if (sc->sc_beacon_wait)
3320 continue;
3321
3322 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
3323
3324 if (iwn_tx(sc, m, ni, ac) != 0) {
3325 ieee80211_free_node(ni);
3326 if_statinc(ifp, if_oerrors);
3327 continue;
3328 }
3329
3330 sc->sc_tx_timer = 5;
3331 ifp->if_timer = 1;
3332 }
3333
3334 if (sc->sc_beacon_wait > 1)
3335 sc->sc_beacon_wait = 0;
3336 }
3337
3338 static void
3339 iwn_watchdog(struct ifnet *ifp)
3340 {
3341 struct iwn_softc *sc = ifp->if_softc;
3342
3343 ifp->if_timer = 0;
3344
3345 if (sc->sc_tx_timer > 0) {
3346 if (--sc->sc_tx_timer == 0) {
3347 aprint_error_dev(sc->sc_dev,
3348 "device timeout\n");
3349 ifp->if_flags &= ~IFF_UP;
3350 iwn_stop(ifp, 1);
3351 if_statinc(ifp, if_oerrors);
3352 return;
3353 }
3354 ifp->if_timer = 1;
3355 }
3356
3357 ieee80211_watchdog(&sc->sc_ic);
3358 }
3359
3360 static int
3361 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3362 {
3363 struct iwn_softc *sc = ifp->if_softc;
3364 struct ieee80211com *ic = &sc->sc_ic;
3365 const struct sockaddr *sa;
3366 int s, error = 0;
3367
3368 s = splnet();
3369
3370 switch (cmd) {
3371 case SIOCSIFADDR:
3372 ifp->if_flags |= IFF_UP;
3373 /* FALLTHROUGH */
3374 case SIOCSIFFLAGS:
3375 /* XXX Added as it is in every NetBSD driver */
3376 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3377 break;
3378 if (ifp->if_flags & IFF_UP) {
3379 if (!(ifp->if_flags & IFF_RUNNING))
3380 error = iwn_init(ifp);
3381 } else {
3382 if (ifp->if_flags & IFF_RUNNING)
3383 iwn_stop(ifp, 1);
3384 }
3385 break;
3386
3387 case SIOCADDMULTI:
3388 case SIOCDELMULTI:
3389 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3390 error = (cmd == SIOCADDMULTI) ?
3391 ether_addmulti(sa, &sc->sc_ec) :
3392 ether_delmulti(sa, &sc->sc_ec);
3393
3394 if (error == ENETRESET)
3395 error = 0;
3396 break;
3397
3398 default:
3399 error = ieee80211_ioctl(ic, cmd, data);
3400 }
3401
3402 if (error == ENETRESET) {
3403 error = 0;
3404 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3405 (IFF_UP | IFF_RUNNING)) {
3406 iwn_stop(ifp, 0);
3407 error = iwn_init(ifp);
3408 }
3409 }
3410
3411 splx(s);
3412 return error;
3413 }
3414
3415 /*
3416 * Send a command to the firmware.
3417 */
3418 static int
3419 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3420 {
3421 struct iwn_tx_ring *ring = &sc->txq[4];
3422 struct iwn_tx_desc *desc;
3423 struct iwn_tx_data *data;
3424 struct iwn_tx_cmd *cmd;
3425 struct mbuf *m;
3426 bus_addr_t paddr;
3427 int totlen, error;
3428
3429 desc = &ring->desc[ring->cur];
3430 data = &ring->data[ring->cur];
3431 totlen = 4 + size;
3432
3433 if (size > sizeof cmd->data) {
3434 /* Command is too large to fit in a descriptor. */
3435 if (totlen > MCLBYTES)
3436 return EINVAL;
3437 MGETHDR(m, M_DONTWAIT, MT_DATA);
3438 if (m == NULL)
3439 return ENOMEM;
3440 if (totlen > MHLEN) {
3441 MCLGET(m, M_DONTWAIT);
3442 if (!(m->m_flags & M_EXT)) {
3443 m_freem(m);
3444 return ENOMEM;
3445 }
3446 }
3447 cmd = mtod(m, struct iwn_tx_cmd *);
3448 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3449 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3450 if (error != 0) {
3451 m_freem(m);
3452 return error;
3453 }
3454 data->m = m;
3455 paddr = data->map->dm_segs[0].ds_addr;
3456 } else {
3457 cmd = &ring->cmd[ring->cur];
3458 paddr = data->cmd_paddr;
3459 }
3460
3461 cmd->code = code;
3462 cmd->flags = 0;
3463 cmd->qid = ring->qid;
3464 cmd->idx = ring->cur;
3465 /*
3466 * Coverity:[OUT_OF_BOUNDS]
3467 * false positive since, allocated in mbuf if it does not fit
3468 */
3469 memcpy(cmd->data, buf, size);
3470
3471 desc->nsegs = 1;
3472 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3473 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3474
3475 if (size > sizeof cmd->data) {
3476 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3477 BUS_DMASYNC_PREWRITE);
3478 } else {
3479 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3480 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3481 totlen, BUS_DMASYNC_PREWRITE);
3482 }
3483 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3484 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3485 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3486
3487 #ifdef notyet
3488 /* Update TX scheduler. */
3489 ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3490 #endif
3491 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3492
3493 /* Kick command ring. */
3494 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3495 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3496
3497 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3498 }
3499
3500 static int
3501 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3502 {
3503 struct iwn4965_node_info hnode;
3504 char *src, *dst;
3505
3506 /*
3507 * We use the node structure for 5000 Series internally (it is
3508 * a superset of the one for 4965AGN). We thus copy the common
3509 * fields before sending the command.
3510 */
3511 src = (char *)node;
3512 dst = (char *)&hnode;
3513 memcpy(dst, src, 48);
3514 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3515 memcpy(dst + 48, src + 72, 20);
3516 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3517 }
3518
3519 static int
3520 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3521 {
3522 /* Direct mapping. */
3523 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3524 }
3525
3526 static int
3527 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3528 {
3529 struct iwn_node *wn = (void *)ni;
3530 struct ieee80211_rateset *rs = &ni->ni_rates;
3531 struct iwn_cmd_link_quality linkq;
3532 const struct iwn_rate *rinfo;
3533 uint8_t txant;
3534 int i, txrate;
3535
3536 /* Use the first valid TX antenna. */
3537 txant = IWN_LSB(sc->txchainmask);
3538
3539 memset(&linkq, 0, sizeof linkq);
3540 linkq.id = wn->id;
3541 linkq.antmsk_1stream = txant;
3542 linkq.antmsk_2stream = IWN_ANT_AB;
3543 linkq.ampdu_max = 31;
3544 linkq.ampdu_threshold = 3;
3545 linkq.ampdu_limit = htole16(4000); /* 4ms */
3546
3547 /* Start at highest available bit-rate. */
3548 txrate = rs->rs_nrates - 1;
3549 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3550 rinfo = &iwn_rates[wn->ridx[txrate]];
3551 linkq.retry[i].plcp = rinfo->plcp;
3552 linkq.retry[i].rflags = rinfo->flags;
3553 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3554 /* Next retry at immediate lower bit-rate. */
3555 if (txrate > 0)
3556 txrate--;
3557 }
3558 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3559 }
3560
3561 /*
3562 * Broadcast node is used to send group-addressed and management frames.
3563 */
3564 static int
3565 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3566 {
3567 struct iwn_ops *ops = &sc->ops;
3568 struct iwn_node_info node;
3569 struct iwn_cmd_link_quality linkq;
3570 const struct iwn_rate *rinfo;
3571 uint8_t txant;
3572 int i, error;
3573
3574 memset(&node, 0, sizeof node);
3575 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3576 node.id = sc->broadcast_id;
3577 DPRINTF(("adding broadcast node\n"));
3578 if ((error = ops->add_node(sc, &node, async)) != 0)
3579 return error;
3580
3581 /* Use the first valid TX antenna. */
3582 txant = IWN_LSB(sc->txchainmask);
3583
3584 memset(&linkq, 0, sizeof linkq);
3585 linkq.id = sc->broadcast_id;
3586 linkq.antmsk_1stream = txant;
3587 linkq.antmsk_2stream = IWN_ANT_AB;
3588 linkq.ampdu_max = 64;
3589 linkq.ampdu_threshold = 3;
3590 linkq.ampdu_limit = htole16(4000); /* 4ms */
3591
3592 /* Use lowest mandatory bit-rate. */
3593 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3594 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3595 linkq.retry[0].plcp = rinfo->plcp;
3596 linkq.retry[0].rflags = rinfo->flags;
3597 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3598 /* Use same bit-rate for all TX retries. */
3599 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3600 linkq.retry[i].plcp = linkq.retry[0].plcp;
3601 linkq.retry[i].rflags = linkq.retry[0].rflags;
3602 }
3603 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3604 }
3605
3606 static void
3607 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3608 {
3609 struct iwn_cmd_led led;
3610
3611 /* Clear microcode LED ownership. */
3612 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3613
3614 led.which = which;
3615 led.unit = htole32(10000); /* on/off in unit of 100ms */
3616 led.off = off;
3617 led.on = on;
3618 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3619 }
3620
3621 /*
3622 * Set the critical temperature at which the firmware will stop the radio
3623 * and notify us.
3624 */
3625 static int
3626 iwn_set_critical_temp(struct iwn_softc *sc)
3627 {
3628 struct iwn_critical_temp crit;
3629 int32_t temp;
3630
3631 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3632
3633 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3634 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3635 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3636 temp = IWN_CTOK(110);
3637 else
3638 temp = 110;
3639 memset(&crit, 0, sizeof crit);
3640 crit.tempR = htole32(temp);
3641 DPRINTF(("setting critical temperature to %d\n", temp));
3642 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3643 }
3644
3645 static int
3646 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3647 {
3648 struct iwn_cmd_timing cmd;
3649 uint64_t val, mod;
3650
3651 memset(&cmd, 0, sizeof cmd);
3652 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3653 cmd.bintval = htole16(ni->ni_intval);
3654 cmd.lintval = htole16(10);
3655
3656 /* Compute remaining time until next beacon. */
3657 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
3658 mod = le64toh(cmd.tstamp) % val;
3659 cmd.binitval = htole32((uint32_t)(val - mod));
3660
3661 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3662 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3663
3664 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3665 }
3666
3667 static void
3668 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3669 {
3670 /* Adjust TX power if need be (delta >= 3 degC). */
3671 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3672 if (abs(temp - sc->temp) >= 3) {
3673 /* Record temperature of last calibration. */
3674 sc->temp = temp;
3675 (void)iwn4965_set_txpower(sc, 1);
3676 }
3677 }
3678
3679 /*
3680 * Set TX power for current channel (each rate has its own power settings).
3681 * This function takes into account the regulatory information from EEPROM,
3682 * the current temperature and the current voltage.
3683 */
3684 static int
3685 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3686 {
3687 /* Fixed-point arithmetic division using a n-bit fractional part. */
3688 #define fdivround(a, b, n) \
3689 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3690 /* Linear interpolation. */
3691 #define interpolate(x, x1, y1, x2, y2, n) \
3692 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3693
3694 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3695 struct ieee80211com *ic = &sc->sc_ic;
3696 struct iwn_ucode_info *uc = &sc->ucode_info;
3697 struct ieee80211_channel *ch;
3698 struct iwn4965_cmd_txpower cmd;
3699 struct iwn4965_eeprom_chan_samples *chans;
3700 const uint8_t *rf_gain, *dsp_gain;
3701 int32_t vdiff, tdiff;
3702 int i, c, grp, maxpwr;
3703 uint8_t chan;
3704
3705 /* Retrieve current channel from last RXON. */
3706 chan = sc->rxon.chan;
3707 DPRINTF(("setting TX power for channel %d\n", chan));
3708 ch = &ic->ic_channels[chan];
3709
3710 memset(&cmd, 0, sizeof cmd);
3711 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3712 cmd.chan = chan;
3713
3714 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3715 maxpwr = sc->maxpwr5GHz;
3716 rf_gain = iwn4965_rf_gain_5ghz;
3717 dsp_gain = iwn4965_dsp_gain_5ghz;
3718 } else {
3719 maxpwr = sc->maxpwr2GHz;
3720 rf_gain = iwn4965_rf_gain_2ghz;
3721 dsp_gain = iwn4965_dsp_gain_2ghz;
3722 }
3723
3724 /* Compute voltage compensation. */
3725 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3726 if (vdiff > 0)
3727 vdiff *= 2;
3728 if (abs(vdiff) > 2)
3729 vdiff = 0;
3730 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3731 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3732
3733 /* Get channel attenuation group. */
3734 if (chan <= 20) /* 1-20 */
3735 grp = 4;
3736 else if (chan <= 43) /* 34-43 */
3737 grp = 0;
3738 else if (chan <= 70) /* 44-70 */
3739 grp = 1;
3740 else if (chan <= 124) /* 71-124 */
3741 grp = 2;
3742 else /* 125-200 */
3743 grp = 3;
3744 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3745
3746 /* Get channel sub-band. */
3747 for (i = 0; i < IWN_NBANDS; i++)
3748 if (sc->bands[i].lo != 0 &&
3749 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3750 break;
3751 if (i == IWN_NBANDS) /* Can't happen in real-life. */
3752 return EINVAL;
3753 chans = sc->bands[i].chans;
3754 DPRINTF(("chan %d sub-band=%d\n", chan, i));
3755
3756 for (c = 0; c < 2; c++) {
3757 uint8_t power, gain, temp;
3758 int maxchpwr, pwr, ridx, idx;
3759
3760 power = interpolate(chan,
3761 chans[0].num, chans[0].samples[c][1].power,
3762 chans[1].num, chans[1].samples[c][1].power, 1);
3763 gain = interpolate(chan,
3764 chans[0].num, chans[0].samples[c][1].gain,
3765 chans[1].num, chans[1].samples[c][1].gain, 1);
3766 temp = interpolate(chan,
3767 chans[0].num, chans[0].samples[c][1].temp,
3768 chans[1].num, chans[1].samples[c][1].temp, 1);
3769 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3770 c, power, gain, temp));
3771
3772 /* Compute temperature compensation. */
3773 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3774 DPRINTF(("temperature compensation=%d (current=%d, "
3775 "EEPROM=%d)\n", tdiff, sc->temp, temp));
3776
3777 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3778 /* Convert dBm to half-dBm. */
3779 maxchpwr = sc->maxpwr[chan] * 2;
3780 if ((ridx / 8) & 1)
3781 maxchpwr -= 6; /* MIMO 2T: -3dB */
3782
3783 pwr = maxpwr;
3784
3785 /* Adjust TX power based on rate. */
3786 if ((ridx % 8) == 5)
3787 pwr -= 15; /* OFDM48: -7.5dB */
3788 else if ((ridx % 8) == 6)
3789 pwr -= 17; /* OFDM54: -8.5dB */
3790 else if ((ridx % 8) == 7)
3791 pwr -= 20; /* OFDM60: -10dB */
3792 else
3793 pwr -= 10; /* Others: -5dB */
3794
3795 /* Do not exceed channel max TX power. */
3796 if (pwr > maxchpwr)
3797 pwr = maxchpwr;
3798
3799 idx = gain - (pwr - power) - tdiff - vdiff;
3800 if ((ridx / 8) & 1) /* MIMO */
3801 idx += (int32_t)le32toh(uc->atten[grp][c]);
3802
3803 if (cmd.band == 0)
3804 idx += 9; /* 5GHz */
3805 if (ridx == IWN_RIDX_MAX)
3806 idx += 5; /* CCK */
3807
3808 /* Make sure idx stays in a valid range. */
3809 if (idx < 0)
3810 idx = 0;
3811 else if (idx > IWN4965_MAX_PWR_INDEX)
3812 idx = IWN4965_MAX_PWR_INDEX;
3813
3814 DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3815 c, ridx, idx));
3816 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3817 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3818 }
3819 }
3820
3821 DPRINTF(("setting TX power for chan %d\n", chan));
3822 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3823
3824 #undef interpolate
3825 #undef fdivround
3826 }
3827
3828 static int
3829 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3830 {
3831 struct iwn5000_cmd_txpower cmd;
3832 int cmdid;
3833
3834 /*
3835 * TX power calibration is handled automatically by the firmware
3836 * for 5000 Series.
3837 */
3838 memset(&cmd, 0, sizeof cmd);
3839 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3840 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3841 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3842 DPRINTF(("setting TX power\n"));
3843 if (IWN_UCODE_API(sc->ucode_rev) == 1)
3844 cmdid = IWN_CMD_TXPOWER_DBM_V1;
3845 else
3846 cmdid = IWN_CMD_TXPOWER_DBM;
3847 return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
3848 }
3849
3850 /*
3851 * Retrieve the maximum RSSI (in dBm) among receivers.
3852 */
3853 static int
3854 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3855 {
3856 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3857 uint8_t mask, agc;
3858 int rssi;
3859
3860 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3861 agc = (le16toh(phy->agc) >> 7) & 0x7f;
3862
3863 rssi = 0;
3864 if (mask & IWN_ANT_A)
3865 rssi = MAX(rssi, phy->rssi[0]);
3866 if (mask & IWN_ANT_B)
3867 rssi = MAX(rssi, phy->rssi[2]);
3868 if (mask & IWN_ANT_C)
3869 rssi = MAX(rssi, phy->rssi[4]);
3870
3871 return rssi - agc - IWN_RSSI_TO_DBM;
3872 }
3873
3874 static int
3875 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3876 {
3877 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3878 uint8_t agc;
3879 int rssi;
3880
3881 agc = (le32toh(phy->agc) >> 9) & 0x7f;
3882
3883 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3884 le16toh(phy->rssi[1]) & 0xff);
3885 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3886
3887 return rssi - agc - IWN_RSSI_TO_DBM;
3888 }
3889
3890 /*
3891 * Retrieve the average noise (in dBm) among receivers.
3892 */
3893 static int
3894 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3895 {
3896 int i, total, nbant, noise;
3897
3898 total = nbant = 0;
3899 for (i = 0; i < 3; i++) {
3900 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3901 continue;
3902 total += noise;
3903 nbant++;
3904 }
3905 /* There should be at least one antenna but check anyway. */
3906 return (nbant == 0) ? -127 : (total / nbant) - 107;
3907 }
3908
3909 /*
3910 * Compute temperature (in degC) from last received statistics.
3911 */
3912 static int
3913 iwn4965_get_temperature(struct iwn_softc *sc)
3914 {
3915 struct iwn_ucode_info *uc = &sc->ucode_info;
3916 int32_t r1, r2, r3, r4, temp;
3917
3918 r1 = le32toh(uc->temp[0].chan20MHz);
3919 r2 = le32toh(uc->temp[1].chan20MHz);
3920 r3 = le32toh(uc->temp[2].chan20MHz);
3921 r4 = le32toh(sc->rawtemp);
3922
3923 if (r1 == r3) /* Prevents division by 0 (should not happen). */
3924 return 0;
3925
3926 /* Sign-extend 23-bit R4 value to 32-bit. */
3927 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3928 /* Compute temperature in Kelvin. */
3929 temp = (259 * (r4 - r2)) / (r3 - r1);
3930 temp = (temp * 97) / 100 + 8;
3931
3932 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3933 return IWN_KTOC(temp);
3934 }
3935
3936 static int
3937 iwn5000_get_temperature(struct iwn_softc *sc)
3938 {
3939 int32_t temp;
3940
3941 /*
3942 * Temperature is not used by the driver for 5000 Series because
3943 * TX power calibration is handled by firmware. We export it to
3944 * users through the sensor framework though.
3945 */
3946 temp = le32toh(sc->rawtemp);
3947 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3948 temp = (temp / -5) + sc->temp_off;
3949 temp = IWN_KTOC(temp);
3950 }
3951 return temp;
3952 }
3953
3954 /*
3955 * Initialize sensitivity calibration state machine.
3956 */
3957 static int
3958 iwn_init_sensitivity(struct iwn_softc *sc)
3959 {
3960 struct iwn_ops *ops = &sc->ops;
3961 struct iwn_calib_state *calib = &sc->calib;
3962 uint32_t flags;
3963 int error;
3964
3965 /* Reset calibration state machine. */
3966 memset(calib, 0, sizeof (*calib));
3967 calib->state = IWN_CALIB_STATE_INIT;
3968 calib->cck_state = IWN_CCK_STATE_HIFA;
3969 /* Set initial correlation values. */
3970 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3971 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3972 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3973 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3974 calib->cck_x4 = 125;
3975 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3976 calib->energy_cck = sc->limits->energy_cck;
3977
3978 /* Write initial sensitivity. */
3979 if ((error = iwn_send_sensitivity(sc)) != 0)
3980 return error;
3981
3982 /* Write initial gains. */
3983 if ((error = ops->init_gains(sc)) != 0)
3984 return error;
3985
3986 /* Request statistics at each beacon interval. */
3987 flags = 0;
3988 DPRINTF(("sending request for statistics\n"));
3989 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3990 }
3991
3992 /*
3993 * Collect noise and RSSI statistics for the first 20 beacons received
3994 * after association and use them to determine connected antennas and
3995 * to set differential gains.
3996 */
3997 static void
3998 iwn_collect_noise(struct iwn_softc *sc,
3999 const struct iwn_rx_general_stats *stats)
4000 {
4001 struct iwn_ops *ops = &sc->ops;
4002 struct iwn_calib_state *calib = &sc->calib;
4003 uint32_t val;
4004 int i;
4005
4006 /* Accumulate RSSI and noise for all 3 antennas. */
4007 for (i = 0; i < 3; i++) {
4008 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4009 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4010 }
4011 /* NB: We update differential gains only once after 20 beacons. */
4012 if (++calib->nbeacons < 20)
4013 return;
4014
4015 /* Determine highest average RSSI. */
4016 val = MAX(calib->rssi[0], calib->rssi[1]);
4017 val = MAX(calib->rssi[2], val);
4018
4019 /* Determine which antennas are connected. */
4020 sc->chainmask = sc->rxchainmask;
4021 for (i = 0; i < 3; i++)
4022 if (val - calib->rssi[i] > 15 * 20)
4023 sc->chainmask &= ~(1 << i);
4024 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
4025 sc->rxchainmask, sc->chainmask));
4026
4027 /* If none of the TX antennas are connected, keep at least one. */
4028 if ((sc->chainmask & sc->txchainmask) == 0)
4029 sc->chainmask |= IWN_LSB(sc->txchainmask);
4030
4031 (void)ops->set_gains(sc);
4032 calib->state = IWN_CALIB_STATE_RUN;
4033
4034 #ifdef notyet
4035 /* XXX Disable RX chains with no antennas connected. */
4036 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4037 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4038 #endif
4039
4040 /* Enable power-saving mode if requested by user. */
4041 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4042 (void)iwn_set_pslevel(sc, 0, 3, 1);
4043 }
4044
4045 static int
4046 iwn4965_init_gains(struct iwn_softc *sc)
4047 {
4048 struct iwn_phy_calib_gain cmd;
4049
4050 memset(&cmd, 0, sizeof cmd);
4051 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4052 /* Differential gains initially set to 0 for all 3 antennas. */
4053 DPRINTF(("setting initial differential gains\n"));
4054 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4055 }
4056
4057 static int
4058 iwn5000_init_gains(struct iwn_softc *sc)
4059 {
4060 struct iwn_phy_calib cmd;
4061
4062 memset(&cmd, 0, sizeof cmd);
4063 cmd.code = sc->reset_noise_gain;
4064 cmd.ngroups = 1;
4065 cmd.isvalid = 1;
4066 DPRINTF(("setting initial differential gains\n"));
4067 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4068 }
4069
4070 static int
4071 iwn4965_set_gains(struct iwn_softc *sc)
4072 {
4073 struct iwn_calib_state *calib = &sc->calib;
4074 struct iwn_phy_calib_gain cmd;
4075 int i, delta, noise;
4076
4077 /* Get minimal noise among connected antennas. */
4078 noise = INT_MAX; /* NB: There's at least one antenna. */
4079 for (i = 0; i < 3; i++)
4080 if (sc->chainmask & (1 << i))
4081 noise = MIN(calib->noise[i], noise);
4082
4083 memset(&cmd, 0, sizeof cmd);
4084 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4085 /* Set differential gains for connected antennas. */
4086 for (i = 0; i < 3; i++) {
4087 if (sc->chainmask & (1 << i)) {
4088 /* Compute attenuation (in unit of 1.5dB). */
4089 delta = (noise - (int32_t)calib->noise[i]) / 30;
4090 /* NB: delta <= 0 */
4091 /* Limit to [-4.5dB,0]. */
4092 cmd.gain[i] = MIN(abs(delta), 3);
4093 if (delta < 0)
4094 cmd.gain[i] |= 1 << 2; /* sign bit */
4095 }
4096 }
4097 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4098 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4099 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4100 }
4101
4102 static int
4103 iwn5000_set_gains(struct iwn_softc *sc)
4104 {
4105 struct iwn_calib_state *calib = &sc->calib;
4106 struct iwn_phy_calib_gain cmd;
4107 int i, ant, div, delta;
4108
4109 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
4110 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4111
4112 memset(&cmd, 0, sizeof cmd);
4113 cmd.code = sc->noise_gain;
4114 cmd.ngroups = 1;
4115 cmd.isvalid = 1;
4116 /* Get first available RX antenna as referential. */
4117 ant = IWN_LSB(sc->rxchainmask);
4118 /* Set differential gains for other antennas. */
4119 for (i = ant + 1; i < 3; i++) {
4120 if (sc->chainmask & (1 << i)) {
4121 /* The delta is relative to antenna "ant". */
4122 delta = ((int32_t)calib->noise[ant] -
4123 (int32_t)calib->noise[i]) / div;
4124 /* Limit to [-4.5dB,+4.5dB]. */
4125 cmd.gain[i - 1] = MIN(abs(delta), 3);
4126 if (delta < 0)
4127 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
4128 }
4129 }
4130 DPRINTF(("setting differential gains: %x/%x (%x)\n",
4131 cmd.gain[0], cmd.gain[1], sc->chainmask));
4132 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4133 }
4134
4135 /*
4136 * Tune RF RX sensitivity based on the number of false alarms detected
4137 * during the last beacon period.
4138 */
4139 static void
4140 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4141 {
4142 #define inc(val, inc, max) \
4143 if ((val) < (max)) { \
4144 if ((val) < (max) - (inc)) \
4145 (val) += (inc); \
4146 else \
4147 (val) = (max); \
4148 needs_update = 1; \
4149 }
4150 #define dec(val, dec, min) \
4151 if ((val) > (min)) { \
4152 if ((val) > (min) + (dec)) \
4153 (val) -= (dec); \
4154 else \
4155 (val) = (min); \
4156 needs_update = 1; \
4157 }
4158
4159 const struct iwn_sensitivity_limits *limits = sc->limits;
4160 struct iwn_calib_state *calib = &sc->calib;
4161 uint32_t val, rxena, fa;
4162 uint32_t energy[3], energy_min;
4163 uint8_t noise[3], noise_ref;
4164 int i, needs_update = 0;
4165
4166 /* Check that we've been enabled long enough. */
4167 if ((rxena = le32toh(stats->general.load)) == 0)
4168 return;
4169
4170 /* Compute number of false alarms since last call for OFDM. */
4171 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4172 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4173 fa *= 200 * 1024; /* 200TU */
4174
4175 /* Save counters values for next call. */
4176 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4177 calib->fa_ofdm = le32toh(stats->ofdm.fa);
4178
4179 if (fa > 50 * rxena) {
4180 /* High false alarm count, decrease sensitivity. */
4181 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4182 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
4183 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4184 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
4185 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4186
4187 } else if (fa < 5 * rxena) {
4188 /* Low false alarm count, increase sensitivity. */
4189 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4190 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
4191 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4192 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
4193 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4194 }
4195
4196 /* Compute maximum noise among 3 receivers. */
4197 for (i = 0; i < 3; i++)
4198 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4199 val = MAX(noise[0], noise[1]);
4200 val = MAX(noise[2], val);
4201 /* Insert it into our samples table. */
4202 calib->noise_samples[calib->cur_noise_sample] = val;
4203 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4204
4205 /* Compute maximum noise among last 20 samples. */
4206 noise_ref = calib->noise_samples[0];
4207 for (i = 1; i < 20; i++)
4208 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4209
4210 /* Compute maximum energy among 3 receivers. */
4211 for (i = 0; i < 3; i++)
4212 energy[i] = le32toh(stats->general.energy[i]);
4213 val = MIN(energy[0], energy[1]);
4214 val = MIN(energy[2], val);
4215 /* Insert it into our samples table. */
4216 calib->energy_samples[calib->cur_energy_sample] = val;
4217 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4218
4219 /* Compute minimum energy among last 10 samples. */
4220 energy_min = calib->energy_samples[0];
4221 for (i = 1; i < 10; i++)
4222 energy_min = MAX(energy_min, calib->energy_samples[i]);
4223 energy_min += 6;
4224
4225 /* Compute number of false alarms since last call for CCK. */
4226 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4227 fa += le32toh(stats->cck.fa) - calib->fa_cck;
4228 fa *= 200 * 1024; /* 200TU */
4229
4230 /* Save counters values for next call. */
4231 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4232 calib->fa_cck = le32toh(stats->cck.fa);
4233
4234 if (fa > 50 * rxena) {
4235 /* High false alarm count, decrease sensitivity. */
4236 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4237 calib->cck_state = IWN_CCK_STATE_HIFA;
4238 calib->low_fa = 0;
4239
4240 if (calib->cck_x4 > 160) {
4241 calib->noise_ref = noise_ref;
4242 if (calib->energy_cck > 2)
4243 dec(calib->energy_cck, 2, energy_min);
4244 }
4245 if (calib->cck_x4 < 160) {
4246 calib->cck_x4 = 161;
4247 needs_update = 1;
4248 } else
4249 inc(calib->cck_x4, 3, limits->max_cck_x4);
4250
4251 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4252
4253 } else if (fa < 5 * rxena) {
4254 /* Low false alarm count, increase sensitivity. */
4255 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4256 calib->cck_state = IWN_CCK_STATE_LOFA;
4257 calib->low_fa++;
4258
4259 if (calib->cck_state != IWN_CCK_STATE_INIT &&
4260 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4261 calib->low_fa > 100)) {
4262 inc(calib->energy_cck, 2, limits->min_energy_cck);
4263 dec(calib->cck_x4, 3, limits->min_cck_x4);
4264 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4265 }
4266 } else {
4267 /* Not worth to increase or decrease sensitivity. */
4268 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4269 calib->low_fa = 0;
4270 calib->noise_ref = noise_ref;
4271
4272 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4273 /* Previous interval had many false alarms. */
4274 dec(calib->energy_cck, 8, energy_min);
4275 }
4276 calib->cck_state = IWN_CCK_STATE_INIT;
4277 }
4278
4279 if (needs_update)
4280 (void)iwn_send_sensitivity(sc);
4281 #undef dec
4282 #undef inc
4283 }
4284
4285 static int
4286 iwn_send_sensitivity(struct iwn_softc *sc)
4287 {
4288 struct iwn_calib_state *calib = &sc->calib;
4289 struct iwn_enhanced_sensitivity_cmd cmd;
4290 int len;
4291
4292 memset(&cmd, 0, sizeof cmd);
4293 len = sizeof (struct iwn_sensitivity_cmd);
4294 cmd.which = IWN_SENSITIVITY_WORKTBL;
4295 /* OFDM modulation. */
4296 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4297 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4298 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4299 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4300 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4301 cmd.energy_ofdm_th = htole16(62);
4302 /* CCK modulation. */
4303 cmd.corr_cck_x4 = htole16(calib->cck_x4);
4304 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4305 cmd.energy_cck = htole16(calib->energy_cck);
4306 /* Barker modulation: use default values. */
4307 cmd.corr_barker = htole16(190);
4308 cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc);
4309 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4310 goto send;
4311 /* Enhanced sensitivity settings. */
4312 len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4313 cmd.ofdm_det_slope_mrc = htole16(668);
4314 cmd.ofdm_det_icept_mrc = htole16(4);
4315 cmd.ofdm_det_slope = htole16(486);
4316 cmd.ofdm_det_icept = htole16(37);
4317 cmd.cck_det_slope_mrc = htole16(853);
4318 cmd.cck_det_icept_mrc = htole16(4);
4319 cmd.cck_det_slope = htole16(476);
4320 cmd.cck_det_icept = htole16(99);
4321 send:
4322 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4323 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4324 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4325 calib->energy_cck));
4326 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4327 }
4328
4329 /*
4330 * Set STA mode power saving level (between 0 and 5).
4331 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4332 */
4333 static int
4334 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4335 {
4336 struct iwn_pmgt_cmd cmd;
4337 const struct iwn_pmgt *pmgt;
4338 uint32_t maxp, skip_dtim;
4339 pcireg_t reg;
4340 int i;
4341
4342 /* Select which PS parameters to use. */
4343 if (dtim <= 2)
4344 pmgt = &iwn_pmgt[0][level];
4345 else if (dtim <= 10)
4346 pmgt = &iwn_pmgt[1][level];
4347 else
4348 pmgt = &iwn_pmgt[2][level];
4349
4350 memset(&cmd, 0, sizeof cmd);
4351 if (level != 0) /* not CAM */
4352 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4353 if (level == 5)
4354 cmd.flags |= htole16(IWN_PS_FAST_PD);
4355 /* Retrieve PCIe Active State Power Management (ASPM). */
4356 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4357 sc->sc_cap_off + PCIE_LCSR);
4358 if (!(reg & PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4359 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4360 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4361 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4362
4363 if (dtim == 0) {
4364 dtim = 1;
4365 skip_dtim = 0;
4366 } else
4367 skip_dtim = pmgt->skip_dtim;
4368 if (skip_dtim != 0) {
4369 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4370 maxp = pmgt->intval[4];
4371 if (maxp == (uint32_t)-1)
4372 maxp = dtim * (skip_dtim + 1);
4373 else if (maxp > dtim)
4374 maxp = (maxp / dtim) * dtim;
4375 } else
4376 maxp = dtim;
4377 for (i = 0; i < 5; i++)
4378 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4379
4380 DPRINTF(("setting power saving level to %d\n", level));
4381 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4382 }
4383
4384 int
4385 iwn5000_runtime_calib(struct iwn_softc *sc)
4386 {
4387 struct iwn5000_calib_config cmd;
4388
4389 memset(&cmd, 0, sizeof cmd);
4390 cmd.ucode.once.enable = 0xffffffff;
4391 cmd.ucode.once.start = IWN5000_CALIB_DC;
4392 DPRINTF(("configuring runtime calibration\n"));
4393 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4394 }
4395
4396 static int
4397 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4398 {
4399 struct iwn_bluetooth bluetooth;
4400
4401 memset(&bluetooth, 0, sizeof bluetooth);
4402 bluetooth.flags = IWN_BT_COEX_ENABLE;
4403 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4404 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4405
4406 DPRINTF(("configuring bluetooth coexistence\n"));
4407 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4408 }
4409
4410 static int
4411 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4412 {
4413 uint8_t prio_table[16];
4414
4415 memset(&prio_table, 0, sizeof prio_table);
4416 prio_table[ 0] = 6; /* init calibration 1 */
4417 prio_table[ 1] = 7; /* init calibration 2 */
4418 prio_table[ 2] = 2; /* periodic calib low 1 */
4419 prio_table[ 3] = 3; /* periodic calib low 2 */
4420 prio_table[ 4] = 4; /* periodic calib high 1 */
4421 prio_table[ 5] = 5; /* periodic calib high 2 */
4422 prio_table[ 6] = 6; /* dtim */
4423 prio_table[ 7] = 8; /* scan52 */
4424 prio_table[ 8] = 10; /* scan24 */
4425
4426 DPRINTF(("sending priority lookup table\n"));
4427 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4428 &prio_table, sizeof prio_table, 0);
4429 }
4430
4431 static int
4432 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4433 size_t len)
4434 {
4435 struct iwn_btcoex_prot btprot;
4436 int error;
4437
4438 basic->bt.flags = IWN_BT_COEX_ENABLE;
4439 basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4440 basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4441 basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4442 basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4443 basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4444 basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4445 basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4446 basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4447 basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4448 basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4449 basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4450 basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4451 basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4452 basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4453 basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4454 basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4455 basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4456 basic->bt3_lookup_table[10] = htole32(0xf0005000);
4457 basic->bt3_lookup_table[11] = htole32(0xf0005000);
4458 basic->reduce_txpower = 0; /* as not implemented */
4459 basic->valid = IWN_BT_ALL_VALID_MASK;
4460
4461 DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4462 error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4463 if (error != 0) {
4464 aprint_error_dev(sc->sc_dev,
4465 "could not configure advanced bluetooth coexistence\n");
4466 return error;
4467 }
4468
4469 error = iwn_config_bt_coex_prio_table(sc);
4470 if (error != 0) {
4471 aprint_error_dev(sc->sc_dev,
4472 "could not configure send BT priority table\n");
4473 return error;
4474 }
4475
4476 /* Force BT state machine change */
4477 memset(&btprot, 0, sizeof btprot);
4478 btprot.open = 1;
4479 btprot.type = 1;
4480 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4481 if (error != 0) {
4482 aprint_error_dev(sc->sc_dev, "could not open BT protocol\n");
4483 return error;
4484 }
4485
4486 btprot.open = 0;
4487 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4488 if (error != 0) {
4489 aprint_error_dev(sc->sc_dev, "could not close BT protocol\n");
4490 return error;
4491 }
4492 return 0;
4493 }
4494
4495 static int
4496 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4497 {
4498 struct iwn_bt_adv1 d;
4499
4500 memset(&d, 0, sizeof d);
4501 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4502 d.tx_prio_boost = 0;
4503 d.rx_prio_boost = 0;
4504 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4505 }
4506
4507 static int
4508 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4509 {
4510 struct iwn_bt_adv2 d;
4511
4512 memset(&d, 0, sizeof d);
4513 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4514 d.tx_prio_boost = 0;
4515 d.rx_prio_boost = 0;
4516 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4517 }
4518
4519 static int
4520 iwn_config(struct iwn_softc *sc)
4521 {
4522 struct iwn_ops *ops = &sc->ops;
4523 struct ieee80211com *ic = &sc->sc_ic;
4524 struct ifnet *ifp = ic->ic_ifp;
4525 uint32_t txmask;
4526 uint16_t rxchain;
4527 int error;
4528
4529 error = ops->config_bt_coex(sc);
4530 if (error != 0) {
4531 aprint_error_dev(sc->sc_dev,
4532 "could not configure bluetooth coexistence\n");
4533 return error;
4534 }
4535
4536 /* Set radio temperature sensor offset. */
4537 if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4538 error = iwn6000_temp_offset_calib(sc);
4539 if (error != 0) {
4540 aprint_error_dev(sc->sc_dev,
4541 "could not set temperature offset\n");
4542 return error;
4543 }
4544 }
4545
4546 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4547 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4548 sc->hw_type == IWN_HW_REV_TYPE_135 ||
4549 sc->hw_type == IWN_HW_REV_TYPE_105) {
4550 error = iwn2000_temp_offset_calib(sc);
4551 if (error != 0) {
4552 aprint_error_dev(sc->sc_dev,
4553 "could not set temperature offset\n");
4554 return error;
4555 }
4556 }
4557
4558 if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4559 sc->hw_type == IWN_HW_REV_TYPE_6005) {
4560 /* Configure runtime DC calibration. */
4561 error = iwn5000_runtime_calib(sc);
4562 if (error != 0) {
4563 aprint_error_dev(sc->sc_dev,
4564 "could not configure runtime calibration\n");
4565 return error;
4566 }
4567 }
4568
4569 /* Configure valid TX chains for 5000 Series. */
4570 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4571 txmask = htole32(sc->txchainmask);
4572 DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4573 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4574 sizeof txmask, 0);
4575 if (error != 0) {
4576 aprint_error_dev(sc->sc_dev,
4577 "could not configure valid TX chains\n");
4578 return error;
4579 }
4580 }
4581
4582 /* Set mode, channel, RX filter and enable RX. */
4583 memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4584 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4585 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4586 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4587 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4588 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4589 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4590 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4591 switch (ic->ic_opmode) {
4592 case IEEE80211_M_STA:
4593 sc->rxon.mode = IWN_MODE_STA;
4594 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4595 break;
4596 case IEEE80211_M_MONITOR:
4597 sc->rxon.mode = IWN_MODE_MONITOR;
4598 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4599 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4600 break;
4601 default:
4602 /* Should not get there. */
4603 break;
4604 }
4605 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4606 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4607 sc->rxon.ht_single_mask = 0xff;
4608 sc->rxon.ht_dual_mask = 0xff;
4609 sc->rxon.ht_triple_mask = 0xff;
4610 rxchain =
4611 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4612 IWN_RXCHAIN_MIMO_COUNT(2) |
4613 IWN_RXCHAIN_IDLE_COUNT(2);
4614 sc->rxon.rxchain = htole16(rxchain);
4615 DPRINTF(("setting configuration\n"));
4616 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4617 if (error != 0) {
4618 aprint_error_dev(sc->sc_dev,
4619 "RXON command failed\n");
4620 return error;
4621 }
4622
4623 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4624 aprint_error_dev(sc->sc_dev,
4625 "could not add broadcast node\n");
4626 return error;
4627 }
4628
4629 /* Configuration has changed, set TX power accordingly. */
4630 if ((error = ops->set_txpower(sc, 0)) != 0) {
4631 aprint_error_dev(sc->sc_dev,
4632 "could not set TX power\n");
4633 return error;
4634 }
4635
4636 if ((error = iwn_set_critical_temp(sc)) != 0) {
4637 aprint_error_dev(sc->sc_dev,
4638 "could not set critical temperature\n");
4639 return error;
4640 }
4641
4642 /* Set power saving level to CAM during initialization. */
4643 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4644 aprint_error_dev(sc->sc_dev,
4645 "could not set power saving level\n");
4646 return error;
4647 }
4648 return 0;
4649 }
4650
4651 static uint16_t
4652 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4653 uint8_t n_probes)
4654 {
4655 /* No channel? Default to 2GHz settings */
4656 if (flags & IEEE80211_CHAN_2GHZ)
4657 return IWN_ACTIVE_DWELL_TIME_2GHZ +
4658 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4659
4660 /* 5GHz dwell time */
4661 return IWN_ACTIVE_DWELL_TIME_5GHZ +
4662 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4663 }
4664
4665 /*
4666 * Limit the total dwell time to 85% of the beacon interval.
4667 *
4668 * Returns the dwell time in milliseconds.
4669 */
4670 static uint16_t
4671 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4672 {
4673 struct ieee80211com *ic = &sc->sc_ic;
4674 struct ieee80211_node *ni = ic->ic_bss;
4675 int bintval = 0;
4676
4677 /* bintval is in TU (1.024mS) */
4678 if (ni != NULL)
4679 bintval = ni->ni_intval;
4680
4681 /*
4682 * If it's non-zero, we should calculate the minimum of
4683 * it and the DWELL_BASE.
4684 *
4685 * XXX Yes, the math should take into account that bintval
4686 * is 1.024mS, not 1mS..
4687 */
4688 if (bintval > 0)
4689 return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4690
4691 /* No association context? Default */
4692 return IWN_PASSIVE_DWELL_BASE;
4693 }
4694
4695 static uint16_t
4696 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4697 {
4698 uint16_t passive;
4699 if (flags & IEEE80211_CHAN_2GHZ)
4700 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4701 else
4702 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4703
4704 /* Clamp to the beacon interval if we're associated */
4705 return iwn_limit_dwell(sc, passive);
4706 }
4707
4708 static int
4709 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4710 {
4711 struct ieee80211com *ic = &sc->sc_ic;
4712 struct iwn_scan_hdr *hdr;
4713 struct iwn_cmd_data *tx;
4714 struct iwn_scan_essid *essid;
4715 struct iwn_scan_chan *chan;
4716 struct ieee80211_frame *wh;
4717 struct ieee80211_rateset *rs;
4718 struct ieee80211_channel *c;
4719 uint8_t *buf, *frm;
4720 uint16_t rxchain, dwell_active, dwell_passive;
4721 uint8_t txant;
4722 int buflen, error, is_active;
4723
4724 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4725 if (buf == NULL) {
4726 aprint_error_dev(sc->sc_dev,
4727 "could not allocate buffer for scan command\n");
4728 return ENOMEM;
4729 }
4730 hdr = (struct iwn_scan_hdr *)buf;
4731 /*
4732 * Move to the next channel if no frames are received within 10ms
4733 * after sending the probe request.
4734 */
4735 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4736 hdr->quiet_threshold = htole16(1); /* min # of packets */
4737
4738 /* Select antennas for scanning. */
4739 rxchain =
4740 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4741 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4742 IWN_RXCHAIN_DRIVER_FORCE;
4743 if ((flags & IEEE80211_CHAN_5GHZ) &&
4744 sc->hw_type == IWN_HW_REV_TYPE_4965) {
4745 /* Ant A must be avoided in 5GHz because of an HW bug. */
4746 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4747 } else /* Use all available RX antennas. */
4748 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4749 hdr->rxchain = htole16(rxchain);
4750 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4751
4752 tx = (struct iwn_cmd_data *)(hdr + 1);
4753 tx->flags = htole32(IWN_TX_AUTO_SEQ);
4754 tx->id = sc->broadcast_id;
4755 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4756
4757 if (flags & IEEE80211_CHAN_5GHZ) {
4758 hdr->crc_threshold = 0xffff;
4759 /* Send probe requests at 6Mbps. */
4760 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4761 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4762 } else {
4763 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4764 /* Send probe requests at 1Mbps. */
4765 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4766 tx->rflags = IWN_RFLAG_CCK;
4767 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4768 }
4769 /* Use the first valid TX antenna. */
4770 txant = IWN_LSB(sc->txchainmask);
4771 tx->rflags |= IWN_RFLAG_ANT(txant);
4772
4773 /*
4774 * Only do active scanning if we're announcing a probe request
4775 * for a given SSID (or more, if we ever add it to the driver.)
4776 */
4777 is_active = 0;
4778
4779 essid = (struct iwn_scan_essid *)(tx + 1);
4780 if (ic->ic_des_esslen != 0) {
4781 essid[0].id = IEEE80211_ELEMID_SSID;
4782 essid[0].len = ic->ic_des_esslen;
4783 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4784
4785 is_active = 1;
4786 }
4787 /*
4788 * Build a probe request frame. Most of the following code is a
4789 * copy & paste of what is done in net80211.
4790 */
4791 wh = (struct ieee80211_frame *)(essid + 20);
4792 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4793 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4794 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4795 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4796 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4797 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4798 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4799 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4800
4801 frm = (uint8_t *)(wh + 1);
4802 frm = ieee80211_add_ssid(frm, NULL, 0);
4803 frm = ieee80211_add_rates(frm, rs);
4804 #ifndef IEEE80211_NO_HT
4805 if (ic->ic_flags & IEEE80211_F_HTON)
4806 frm = ieee80211_add_htcaps(frm, ic);
4807 #endif
4808 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4809 frm = ieee80211_add_xrates(frm, rs);
4810
4811 /* Set length of probe request. */
4812 tx->len = htole16(frm - (uint8_t *)wh);
4813
4814
4815 /*
4816 * If active scanning is requested but a certain channel is
4817 * marked passive, we can do active scanning if we detect
4818 * transmissions.
4819 *
4820 * There is an issue with some firmware versions that triggers
4821 * a sysassert on a "good CRC threshold" of zero (== disabled),
4822 * on a radar channel even though this means that we should NOT
4823 * send probes.
4824 *
4825 * The "good CRC threshold" is the number of frames that we
4826 * need to receive during our dwell time on a channel before
4827 * sending out probes -- setting this to a huge value will
4828 * mean we never reach it, but at the same time work around
4829 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4830 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4831 *
4832 * This was fixed in later versions along with some other
4833 * scan changes, and the threshold behaves as a flag in those
4834 * versions.
4835 */
4836
4837 /*
4838 * If we're doing active scanning, set the crc_threshold
4839 * to a suitable value. This is different to active veruss
4840 * passive scanning depending upon the channel flags; the
4841 * firmware will obey that particular check for us.
4842 */
4843 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4844 hdr->crc_threshold = is_active ?
4845 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4846 else
4847 hdr->crc_threshold = is_active ?
4848 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4849
4850 chan = (struct iwn_scan_chan *)frm;
4851 for (c = &ic->ic_channels[1];
4852 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4853 if ((c->ic_flags & flags) != flags)
4854 continue;
4855
4856 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4857 DPRINTFN(2, ("adding channel %d\n", chan->chan));
4858 chan->flags = 0;
4859 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4860 chan->flags |= htole32(IWN_CHAN_ACTIVE);
4861 if (ic->ic_des_esslen != 0)
4862 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4863
4864 /*
4865 * Calculate the active/passive dwell times.
4866 */
4867
4868 dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4869 dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4870
4871 /* Make sure they're valid */
4872 if (dwell_passive <= dwell_active)
4873 dwell_passive = dwell_active + 1;
4874
4875 chan->active = htole16(dwell_active);
4876 chan->passive = htole16(dwell_passive);
4877
4878 chan->dsp_gain = 0x6e;
4879 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4880 chan->rf_gain = 0x3b;
4881 } else {
4882 chan->rf_gain = 0x28;
4883 }
4884 hdr->nchan++;
4885 chan++;
4886 }
4887
4888 buflen = (uint8_t *)chan - buf;
4889 hdr->len = htole16(buflen);
4890
4891 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4892 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4893 free(buf, M_DEVBUF);
4894 return error;
4895 }
4896
4897 static int
4898 iwn_auth(struct iwn_softc *sc)
4899 {
4900 struct iwn_ops *ops = &sc->ops;
4901 struct ieee80211com *ic = &sc->sc_ic;
4902 struct ieee80211_node *ni = ic->ic_bss;
4903 int error;
4904
4905 /* Update adapter configuration. */
4906 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4907 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4908 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4909 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4910 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4911 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4912 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4913 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4914 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4915 switch (ic->ic_curmode) {
4916 case IEEE80211_MODE_11A:
4917 sc->rxon.cck_mask = 0;
4918 sc->rxon.ofdm_mask = 0x15;
4919 break;
4920 case IEEE80211_MODE_11B:
4921 sc->rxon.cck_mask = 0x03;
4922 sc->rxon.ofdm_mask = 0;
4923 break;
4924 default: /* Assume 802.11b/g. */
4925 sc->rxon.cck_mask = 0x0f;
4926 sc->rxon.ofdm_mask = 0x15;
4927 }
4928 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4929 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4930 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4931 if (error != 0) {
4932 aprint_error_dev(sc->sc_dev,
4933 "RXON command failed\n");
4934 return error;
4935 }
4936
4937 /* Configuration has changed, set TX power accordingly. */
4938 if ((error = ops->set_txpower(sc, 1)) != 0) {
4939 aprint_error_dev(sc->sc_dev,
4940 "could not set TX power\n");
4941 return error;
4942 }
4943 /*
4944 * Reconfiguring RXON clears the firmware nodes table so we must
4945 * add the broadcast node again.
4946 */
4947 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4948 aprint_error_dev(sc->sc_dev,
4949 "could not add broadcast node\n");
4950 return error;
4951 }
4952 return 0;
4953 }
4954
4955 static int
4956 iwn_run(struct iwn_softc *sc)
4957 {
4958 struct iwn_ops *ops = &sc->ops;
4959 struct ieee80211com *ic = &sc->sc_ic;
4960 struct ieee80211_node *ni = ic->ic_bss;
4961 struct iwn_node_info node;
4962 int error;
4963
4964 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4965 /* Link LED blinks while monitoring. */
4966 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4967 return 0;
4968 }
4969 if ((error = iwn_set_timing(sc, ni)) != 0) {
4970 aprint_error_dev(sc->sc_dev,
4971 "could not set timing\n");
4972 return error;
4973 }
4974
4975 /* Update adapter configuration. */
4976 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4977 /* Short preamble and slot time are negotiated when associating. */
4978 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4979 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4980 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4981 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4982 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4983 sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4984 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4985 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4986 if (error != 0) {
4987 aprint_error_dev(sc->sc_dev,
4988 "could not update configuration\n");
4989 return error;
4990 }
4991
4992 /* Configuration has changed, set TX power accordingly. */
4993 if ((error = ops->set_txpower(sc, 1)) != 0) {
4994 aprint_error_dev(sc->sc_dev,
4995 "could not set TX power\n");
4996 return error;
4997 }
4998
4999 /* Fake a join to initialize the TX rate. */
5000 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
5001 iwn_newassoc(ni, 1);
5002
5003 /* Add BSS node. */
5004 memset(&node, 0, sizeof node);
5005 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5006 node.id = IWN_ID_BSS;
5007 #ifdef notyet
5008 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
5009 IWN_AMDPU_DENSITY(5)); /* 2us */
5010 #endif
5011 DPRINTF(("adding BSS node\n"));
5012 error = ops->add_node(sc, &node, 1);
5013 if (error != 0) {
5014 aprint_error_dev(sc->sc_dev,
5015 "could not add BSS node\n");
5016 return error;
5017 }
5018 DPRINTF(("setting link quality for node %d\n", node.id));
5019 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5020 aprint_error_dev(sc->sc_dev,
5021 "could not setup link quality for node %d\n", node.id);
5022 return error;
5023 }
5024
5025 if ((error = iwn_init_sensitivity(sc)) != 0) {
5026 aprint_error_dev(sc->sc_dev,
5027 "could not set sensitivity\n");
5028 return error;
5029 }
5030 /* Start periodic calibration timer. */
5031 sc->calib.state = IWN_CALIB_STATE_ASSOC;
5032 sc->calib_cnt = 0;
5033 callout_schedule(&sc->calib_to, hz/2);
5034
5035 /* Link LED always on while associated. */
5036 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5037 return 0;
5038 }
5039
5040 #ifdef IWN_HWCRYPTO
5041 /*
5042 * We support CCMP hardware encryption/decryption of unicast frames only.
5043 * HW support for TKIP really sucks. We should let TKIP die anyway.
5044 */
5045 static int
5046 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5047 struct ieee80211_key *k)
5048 {
5049 struct iwn_softc *sc = ic->ic_softc;
5050 struct iwn_ops *ops = &sc->ops;
5051 struct iwn_node *wn = (void *)ni;
5052 struct iwn_node_info node;
5053 uint16_t kflags;
5054
5055 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5056 k->k_cipher != IEEE80211_CIPHER_CCMP)
5057 return ieee80211_set_key(ic, ni, k);
5058
5059 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
5060 if (k->k_flags & IEEE80211_KEY_GROUP)
5061 kflags |= IWN_KFLAG_GROUP;
5062
5063 memset(&node, 0, sizeof node);
5064 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5065 sc->broadcast_id : wn->id;
5066 node.control = IWN_NODE_UPDATE;
5067 node.flags = IWN_FLAG_SET_KEY;
5068 node.kflags = htole16(kflags);
5069 node.kid = k->k_id;
5070 memcpy(node.key, k->k_key, k->k_len);
5071 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
5072 return ops->add_node(sc, &node, 1);
5073 }
5074
5075 static void
5076 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5077 struct ieee80211_key *k)
5078 {
5079 struct iwn_softc *sc = ic->ic_softc;
5080 struct iwn_ops *ops = &sc->ops;
5081 struct iwn_node *wn = (void *)ni;
5082 struct iwn_node_info node;
5083
5084 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5085 k->k_cipher != IEEE80211_CIPHER_CCMP) {
5086 /* See comment about other ciphers above. */
5087 ieee80211_delete_key(ic, ni, k);
5088 return;
5089 }
5090 if (ic->ic_state != IEEE80211_S_RUN)
5091 return; /* Nothing to do. */
5092 memset(&node, 0, sizeof node);
5093 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5094 sc->broadcast_id : wn->id;
5095 node.control = IWN_NODE_UPDATE;
5096 node.flags = IWN_FLAG_SET_KEY;
5097 node.kflags = htole16(IWN_KFLAG_INVALID);
5098 node.kid = 0xff;
5099 DPRINTF(("delete keys for node %d\n", node.id));
5100 (void)ops->add_node(sc, &node, 1);
5101 }
5102 #endif
5103
5104 /* XXX Added for NetBSD (copied from rev 1.39). */
5105
5106 static int
5107 iwn_wme_update(struct ieee80211com *ic)
5108 {
5109 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
5110 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
5111 struct iwn_softc *sc = ic->ic_ifp->if_softc;
5112 const struct wmeParams *wmep;
5113 struct iwn_edca_params cmd;
5114 int ac;
5115
5116 /* don't override default WME values if WME is not actually enabled */
5117 if (!(ic->ic_flags & IEEE80211_F_WME))
5118 return 0;
5119 cmd.flags = 0;
5120 for (ac = 0; ac < WME_NUM_AC; ac++) {
5121 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
5122 cmd.ac[ac].aifsn = wmep->wmep_aifsn;
5123 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
5124 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
5125 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
5126
5127 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
5128 "txop=%d\n", ac, cmd.ac[ac].aifsn,
5129 cmd.ac[ac].cwmin,
5130 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
5131 }
5132 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5133 #undef IWN_USEC
5134 #undef IWN_EXP2
5135 }
5136
5137 #ifndef IEEE80211_NO_HT
5138 /*
5139 * This function is called by upper layer when an ADDBA request is received
5140 * from another STA and before the ADDBA response is sent.
5141 */
5142 static int
5143 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5144 uint8_t tid)
5145 {
5146 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5147 struct iwn_softc *sc = ic->ic_softc;
5148 struct iwn_ops *ops = &sc->ops;
5149 struct iwn_node *wn = (void *)ni;
5150 struct iwn_node_info node;
5151
5152 memset(&node, 0, sizeof node);
5153 node.id = wn->id;
5154 node.control = IWN_NODE_UPDATE;
5155 node.flags = IWN_FLAG_SET_ADDBA;
5156 node.addba_tid = tid;
5157 node.addba_ssn = htole16(ba->ba_winstart);
5158 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5159 ba->ba_winstart));
5160 return ops->add_node(sc, &node, 1);
5161 }
5162
5163 /*
5164 * This function is called by upper layer on teardown of an HT-immediate
5165 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5166 */
5167 static void
5168 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5169 uint8_t tid)
5170 {
5171 struct iwn_softc *sc = ic->ic_softc;
5172 struct iwn_ops *ops = &sc->ops;
5173 struct iwn_node *wn = (void *)ni;
5174 struct iwn_node_info node;
5175
5176 memset(&node, 0, sizeof node);
5177 node.id = wn->id;
5178 node.control = IWN_NODE_UPDATE;
5179 node.flags = IWN_FLAG_SET_DELBA;
5180 node.delba_tid = tid;
5181 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
5182 (void)ops->add_node(sc, &node, 1);
5183 }
5184
5185 /*
5186 * This function is called by upper layer when an ADDBA response is received
5187 * from another STA.
5188 */
5189 static int
5190 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5191 uint8_t tid)
5192 {
5193 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5194 struct iwn_softc *sc = ic->ic_softc;
5195 struct iwn_ops *ops = &sc->ops;
5196 struct iwn_node *wn = (void *)ni;
5197 struct iwn_node_info node;
5198 int error;
5199
5200 /* Enable TX for the specified RA/TID. */
5201 wn->disable_tid &= ~(1 << tid);
5202 memset(&node, 0, sizeof node);
5203 node.id = wn->id;
5204 node.control = IWN_NODE_UPDATE;
5205 node.flags = IWN_FLAG_SET_DISABLE_TID;
5206 node.disable_tid = htole16(wn->disable_tid);
5207 error = ops->add_node(sc, &node, 1);
5208 if (error != 0)
5209 return error;
5210
5211 if ((error = iwn_nic_lock(sc)) != 0)
5212 return error;
5213 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5214 iwn_nic_unlock(sc);
5215 return 0;
5216 }
5217
5218 static void
5219 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5220 uint8_t tid)
5221 {
5222 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5223 struct iwn_softc *sc = ic->ic_softc;
5224 struct iwn_ops *ops = &sc->ops;
5225
5226 if (iwn_nic_lock(sc) != 0)
5227 return;
5228 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5229 iwn_nic_unlock(sc);
5230 }
5231
5232 static void
5233 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5234 uint8_t tid, uint16_t ssn)
5235 {
5236 struct iwn_node *wn = (void *)ni;
5237 int qid = 7 + tid;
5238
5239 /* Stop TX scheduler while we're changing its configuration. */
5240 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5241 IWN4965_TXQ_STATUS_CHGACT);
5242
5243 /* Assign RA/TID translation to the queue. */
5244 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5245 wn->id << 4 | tid);
5246
5247 /* Enable chain-building mode for the queue. */
5248 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5249
5250 /* Set starting sequence number from the ADDBA request. */
5251 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5252 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5253
5254 /* Set scheduler window size. */
5255 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5256 IWN_SCHED_WINSZ);
5257 /* Set scheduler frame limit. */
5258 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5259 IWN_SCHED_LIMIT << 16);
5260
5261 /* Enable interrupts for the queue. */
5262 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5263
5264 /* Mark the queue as active. */
5265 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5266 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5267 iwn_tid2fifo[tid] << 1);
5268 }
5269
5270 static void
5271 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5272 {
5273 int qid = 7 + tid;
5274
5275 /* Stop TX scheduler while we're changing its configuration. */
5276 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5277 IWN4965_TXQ_STATUS_CHGACT);
5278
5279 /* Set starting sequence number from the ADDBA request. */
5280 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5281 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5282
5283 /* Disable interrupts for the queue. */
5284 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5285
5286 /* Mark the queue as inactive. */
5287 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5288 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5289 }
5290
5291 static void
5292 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5293 uint8_t tid, uint16_t ssn)
5294 {
5295 struct iwn_node *wn = (void *)ni;
5296 int qid = 10 + tid;
5297
5298 /* Stop TX scheduler while we're changing its configuration. */
5299 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5300 IWN5000_TXQ_STATUS_CHGACT);
5301
5302 /* Assign RA/TID translation to the queue. */
5303 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5304 wn->id << 4 | tid);
5305
5306 /* Enable chain-building mode for the queue. */
5307 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5308
5309 /* Enable aggregation for the queue. */
5310 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5311
5312 /* Set starting sequence number from the ADDBA request. */
5313 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5314 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5315
5316 /* Set scheduler window size and frame limit. */
5317 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5318 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5319
5320 /* Enable interrupts for the queue. */
5321 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5322
5323 /* Mark the queue as active. */
5324 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5325 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5326 }
5327
5328 static void
5329 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5330 {
5331 int qid = 10 + tid;
5332
5333 /* Stop TX scheduler while we're changing its configuration. */
5334 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5335 IWN5000_TXQ_STATUS_CHGACT);
5336
5337 /* Disable aggregation for the queue. */
5338 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5339
5340 /* Set starting sequence number from the ADDBA request. */
5341 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5342 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5343
5344 /* Disable interrupts for the queue. */
5345 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5346
5347 /* Mark the queue as inactive. */
5348 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5349 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5350 }
5351 #endif /* !IEEE80211_NO_HT */
5352
5353 /*
5354 * Query calibration tables from the initialization firmware. We do this
5355 * only once at first boot. Called from a process context.
5356 */
5357 static int
5358 iwn5000_query_calibration(struct iwn_softc *sc)
5359 {
5360 struct iwn5000_calib_config cmd;
5361 int error;
5362
5363 memset(&cmd, 0, sizeof cmd);
5364 cmd.ucode.once.enable = 0xffffffff;
5365 cmd.ucode.once.start = 0xffffffff;
5366 cmd.ucode.once.send = 0xffffffff;
5367 cmd.ucode.flags = 0xffffffff;
5368 DPRINTF(("sending calibration query\n"));
5369 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5370 if (error != 0)
5371 return error;
5372
5373 /* Wait at most two seconds for calibration to complete. */
5374 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5375 error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5376 return error;
5377 }
5378
5379 /*
5380 * Send calibration results to the runtime firmware. These results were
5381 * obtained on first boot from the initialization firmware.
5382 */
5383 static int
5384 iwn5000_send_calibration(struct iwn_softc *sc)
5385 {
5386 int idx, error;
5387
5388 for (idx = 0; idx < 5; idx++) {
5389 if (sc->calibcmd[idx].buf == NULL)
5390 continue; /* No results available. */
5391 DPRINTF(("send calibration result idx=%d len=%d\n",
5392 idx, sc->calibcmd[idx].len));
5393 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5394 sc->calibcmd[idx].len, 0);
5395 if (error != 0) {
5396 aprint_error_dev(sc->sc_dev,
5397 "could not send calibration result\n");
5398 return error;
5399 }
5400 }
5401 return 0;
5402 }
5403
5404 static int
5405 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5406 {
5407 struct iwn5000_wimax_coex wimax;
5408
5409 #ifdef notyet
5410 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5411 /* Enable WiMAX coexistence for combo adapters. */
5412 wimax.flags =
5413 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5414 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5415 IWN_WIMAX_COEX_STA_TABLE_VALID |
5416 IWN_WIMAX_COEX_ENABLE;
5417 memcpy(wimax.events, iwn6050_wimax_events,
5418 sizeof iwn6050_wimax_events);
5419 } else
5420 #endif
5421 {
5422 /* Disable WiMAX coexistence. */
5423 wimax.flags = 0;
5424 memset(wimax.events, 0, sizeof wimax.events);
5425 }
5426 DPRINTF(("Configuring WiMAX coexistence\n"));
5427 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5428 }
5429
5430 static int
5431 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5432 {
5433 struct iwn6000_phy_calib_temp_offset cmd;
5434
5435 memset(&cmd, 0, sizeof cmd);
5436 cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5437 cmd.ngroups = 1;
5438 cmd.isvalid = 1;
5439 if (sc->eeprom_temp != 0)
5440 cmd.offset = htole16(sc->eeprom_temp);
5441 else
5442 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5443 DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5444 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5445 }
5446
5447 static int
5448 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5449 {
5450 struct iwn2000_phy_calib_temp_offset cmd;
5451
5452 memset(&cmd, 0, sizeof cmd);
5453 cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5454 cmd.ngroups = 1;
5455 cmd.isvalid = 1;
5456 if (sc->eeprom_rawtemp != 0) {
5457 cmd.offset_low = htole16(sc->eeprom_rawtemp);
5458 cmd.offset_high = htole16(sc->eeprom_temp);
5459 } else {
5460 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5461 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5462 }
5463 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5464 DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5465 le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5466 le16toh(cmd.burnt_voltage_ref)));
5467 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5468 }
5469
5470 /*
5471 * This function is called after the runtime firmware notifies us of its
5472 * readiness (called in a process context).
5473 */
5474 static int
5475 iwn4965_post_alive(struct iwn_softc *sc)
5476 {
5477 int error, qid;
5478
5479 if ((error = iwn_nic_lock(sc)) != 0)
5480 return error;
5481
5482 /* Clear TX scheduler state in SRAM. */
5483 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5484 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5485 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5486
5487 /* Set physical address of TX scheduler rings (1KB aligned). */
5488 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5489
5490 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5491
5492 /* Disable chain mode for all our 16 queues. */
5493 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5494
5495 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5496 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5497 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5498
5499 /* Set scheduler window size. */
5500 iwn_mem_write(sc, sc->sched_base +
5501 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5502 /* Set scheduler frame limit. */
5503 iwn_mem_write(sc, sc->sched_base +
5504 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5505 IWN_SCHED_LIMIT << 16);
5506 }
5507
5508 /* Enable interrupts for all our 16 queues. */
5509 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5510 /* Identify TX FIFO rings (0-7). */
5511 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5512
5513 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5514 for (qid = 0; qid < 7; qid++) {
5515 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5516 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5517 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5518 }
5519 iwn_nic_unlock(sc);
5520 return 0;
5521 }
5522
5523 /*
5524 * This function is called after the initialization or runtime firmware
5525 * notifies us of its readiness (called in a process context).
5526 */
5527 static int
5528 iwn5000_post_alive(struct iwn_softc *sc)
5529 {
5530 int error, qid;
5531
5532 /* Switch to using ICT interrupt mode. */
5533 iwn5000_ict_reset(sc);
5534
5535 if ((error = iwn_nic_lock(sc)) != 0)
5536 return error;
5537
5538 /* Clear TX scheduler state in SRAM. */
5539 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5540 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5541 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5542
5543 /* Set physical address of TX scheduler rings (1KB aligned). */
5544 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5545
5546 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5547
5548 /* Enable chain mode for all queues, except command queue. */
5549 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5550 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5551
5552 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5553 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5554 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5555
5556 iwn_mem_write(sc, sc->sched_base +
5557 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5558 /* Set scheduler window size and frame limit. */
5559 iwn_mem_write(sc, sc->sched_base +
5560 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5561 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5562 }
5563
5564 /* Enable interrupts for all our 20 queues. */
5565 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5566 /* Identify TX FIFO rings (0-7). */
5567 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5568
5569 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5570 for (qid = 0; qid < 7; qid++) {
5571 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5572 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5573 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5574 }
5575 iwn_nic_unlock(sc);
5576
5577 /* Configure WiMAX coexistence for combo adapters. */
5578 error = iwn5000_send_wimax_coex(sc);
5579 if (error != 0) {
5580 aprint_error_dev(sc->sc_dev,
5581 "could not configure WiMAX coexistence\n");
5582 return error;
5583 }
5584 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5585 struct iwn5000_phy_calib_crystal cmd;
5586
5587 /* Perform crystal calibration. */
5588 memset(&cmd, 0, sizeof cmd);
5589 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5590 cmd.ngroups = 1;
5591 cmd.isvalid = 1;
5592 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5593 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5594 DPRINTF(("sending crystal calibration %d, %d\n",
5595 cmd.cap_pin[0], cmd.cap_pin[1]));
5596 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5597 if (error != 0) {
5598 aprint_error_dev(sc->sc_dev,
5599 "crystal calibration failed\n");
5600 return error;
5601 }
5602 }
5603 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5604 /* Query calibration from the initialization firmware. */
5605 if ((error = iwn5000_query_calibration(sc)) != 0) {
5606 aprint_error_dev(sc->sc_dev,
5607 "could not query calibration\n");
5608 return error;
5609 }
5610 /*
5611 * We have the calibration results now, reboot with the
5612 * runtime firmware (call ourselves recursively!)
5613 */
5614 iwn_hw_stop(sc);
5615 error = iwn_hw_init(sc);
5616 } else {
5617 /* Send calibration results to runtime firmware. */
5618 error = iwn5000_send_calibration(sc);
5619 }
5620 return error;
5621 }
5622
5623 /*
5624 * The firmware boot code is small and is intended to be copied directly into
5625 * the NIC internal memory (no DMA transfer).
5626 */
5627 static int
5628 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5629 {
5630 int error, ntries;
5631
5632 size /= sizeof (uint32_t);
5633
5634 if ((error = iwn_nic_lock(sc)) != 0)
5635 return error;
5636
5637 /* Copy microcode image into NIC memory. */
5638 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5639 (const uint32_t *)ucode, size);
5640
5641 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5642 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5643 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5644
5645 /* Start boot load now. */
5646 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5647
5648 /* Wait for transfer to complete. */
5649 for (ntries = 0; ntries < 1000; ntries++) {
5650 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5651 IWN_BSM_WR_CTRL_START))
5652 break;
5653 DELAY(10);
5654 }
5655 if (ntries == 1000) {
5656 aprint_error_dev(sc->sc_dev,
5657 "could not load boot firmware\n");
5658 iwn_nic_unlock(sc);
5659 return ETIMEDOUT;
5660 }
5661
5662 /* Enable boot after power up. */
5663 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5664
5665 iwn_nic_unlock(sc);
5666 return 0;
5667 }
5668
5669 static int
5670 iwn4965_load_firmware(struct iwn_softc *sc)
5671 {
5672 struct iwn_fw_info *fw = &sc->fw;
5673 struct iwn_dma_info *dma = &sc->fw_dma;
5674 int error;
5675
5676 /* Copy initialization sections into pre-allocated DMA-safe memory. */
5677 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5678 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5679 BUS_DMASYNC_PREWRITE);
5680 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5681 fw->init.text, fw->init.textsz);
5682 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5683 fw->init.textsz, BUS_DMASYNC_PREWRITE);
5684
5685 /* Tell adapter where to find initialization sections. */
5686 if ((error = iwn_nic_lock(sc)) != 0)
5687 return error;
5688 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5689 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5690 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5691 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5692 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5693 iwn_nic_unlock(sc);
5694
5695 /* Load firmware boot code. */
5696 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5697 if (error != 0) {
5698 aprint_error_dev(sc->sc_dev,
5699 "could not load boot firmware\n");
5700 return error;
5701 }
5702 /* Now press "execute". */
5703 IWN_WRITE(sc, IWN_RESET, 0);
5704
5705 /* Wait at most one second for first alive notification. */
5706 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5707 aprint_error_dev(sc->sc_dev,
5708 "timeout waiting for adapter to initialize\n");
5709 return error;
5710 }
5711
5712 /* Retrieve current temperature for initial TX power calibration. */
5713 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5714 sc->temp = iwn4965_get_temperature(sc);
5715
5716 /* Copy runtime sections into pre-allocated DMA-safe memory. */
5717 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5718 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5719 BUS_DMASYNC_PREWRITE);
5720 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5721 fw->main.text, fw->main.textsz);
5722 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5723 fw->main.textsz, BUS_DMASYNC_PREWRITE);
5724
5725 /* Tell adapter where to find runtime sections. */
5726 if ((error = iwn_nic_lock(sc)) != 0)
5727 return error;
5728 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5729 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5730 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5731 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5732 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5733 IWN_FW_UPDATED | fw->main.textsz);
5734 iwn_nic_unlock(sc);
5735
5736 return 0;
5737 }
5738
5739 static int
5740 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5741 const uint8_t *section, int size)
5742 {
5743 struct iwn_dma_info *dma = &sc->fw_dma;
5744 int error;
5745
5746 /* Copy firmware section into pre-allocated DMA-safe memory. */
5747 memcpy(dma->vaddr, section, size);
5748 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5749
5750 if ((error = iwn_nic_lock(sc)) != 0)
5751 return error;
5752
5753 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5754 IWN_FH_TX_CONFIG_DMA_PAUSE);
5755
5756 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5757 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5758 IWN_LOADDR(dma->paddr));
5759 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5760 IWN_HIADDR(dma->paddr) << 28 | size);
5761 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5762 IWN_FH_TXBUF_STATUS_TBNUM(1) |
5763 IWN_FH_TXBUF_STATUS_TBIDX(1) |
5764 IWN_FH_TXBUF_STATUS_TFBD_VALID);
5765
5766 /* Kick Flow Handler to start DMA transfer. */
5767 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5768 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5769
5770 iwn_nic_unlock(sc);
5771
5772 /* Wait at most five seconds for FH DMA transfer to complete. */
5773 return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5774 }
5775
5776 static int
5777 iwn5000_load_firmware(struct iwn_softc *sc)
5778 {
5779 struct iwn_fw_part *fw;
5780 int error;
5781
5782 /* Load the initialization firmware on first boot only. */
5783 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5784 &sc->fw.main : &sc->fw.init;
5785
5786 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5787 fw->text, fw->textsz);
5788 if (error != 0) {
5789 aprint_error_dev(sc->sc_dev,
5790 "could not load firmware %s section\n", ".text");
5791 return error;
5792 }
5793 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5794 fw->data, fw->datasz);
5795 if (error != 0) {
5796 aprint_error_dev(sc->sc_dev,
5797 "could not load firmware %s section\n", ".data");
5798 return error;
5799 }
5800
5801 /* Now press "execute". */
5802 IWN_WRITE(sc, IWN_RESET, 0);
5803 return 0;
5804 }
5805
5806 /*
5807 * Extract text and data sections from a legacy firmware image.
5808 */
5809 static int
5810 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5811 {
5812 const uint32_t *ptr;
5813 size_t hdrlen = 24;
5814 uint32_t rev;
5815
5816 ptr = (const uint32_t *)fw->data;
5817 rev = le32toh(*ptr++);
5818
5819 sc->ucode_rev = rev;
5820
5821 /* Check firmware API version. */
5822 if (IWN_FW_API(rev) <= 1) {
5823 aprint_error_dev(sc->sc_dev,
5824 "bad firmware, need API version >=2\n");
5825 return EINVAL;
5826 }
5827 if (IWN_FW_API(rev) >= 3) {
5828 /* Skip build number (version 2 header). */
5829 hdrlen += 4;
5830 ptr++;
5831 }
5832 if (fw->size < hdrlen) {
5833 aprint_error_dev(sc->sc_dev,
5834 "firmware too short: %zd bytes\n", fw->size);
5835 return EINVAL;
5836 }
5837 fw->main.textsz = le32toh(*ptr++);
5838 fw->main.datasz = le32toh(*ptr++);
5839 fw->init.textsz = le32toh(*ptr++);
5840 fw->init.datasz = le32toh(*ptr++);
5841 fw->boot.textsz = le32toh(*ptr++);
5842
5843 /* Check that all firmware sections fit. */
5844 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5845 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5846 aprint_error_dev(sc->sc_dev,
5847 "firmware too short: %zd bytes\n", fw->size);
5848 return EINVAL;
5849 }
5850
5851 /* Get pointers to firmware sections. */
5852 fw->main.text = (const uint8_t *)ptr;
5853 fw->main.data = fw->main.text + fw->main.textsz;
5854 fw->init.text = fw->main.data + fw->main.datasz;
5855 fw->init.data = fw->init.text + fw->init.textsz;
5856 fw->boot.text = fw->init.data + fw->init.datasz;
5857 return 0;
5858 }
5859
5860 /*
5861 * Extract text and data sections from a TLV firmware image.
5862 */
5863 static int
5864 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5865 uint16_t alt)
5866 {
5867 const struct iwn_fw_tlv_hdr *hdr;
5868 const struct iwn_fw_tlv *tlv;
5869 const uint8_t *ptr, *end;
5870 uint64_t altmask;
5871 uint32_t len;
5872
5873 if (fw->size < sizeof (*hdr)) {
5874 aprint_error_dev(sc->sc_dev,
5875 "firmware too short: %zd bytes\n", fw->size);
5876 return EINVAL;
5877 }
5878 hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5879 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5880 aprint_error_dev(sc->sc_dev,
5881 "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5882 return EINVAL;
5883 }
5884 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5885 le32toh(hdr->build)));
5886 sc->ucode_rev = le32toh(hdr->rev);
5887
5888 /*
5889 * Select the closest supported alternative that is less than
5890 * or equal to the specified one.
5891 */
5892 altmask = le64toh(hdr->altmask);
5893 while (alt > 0 && !(altmask & (1ULL << alt)))
5894 alt--; /* Downgrade. */
5895 DPRINTF(("using alternative %d\n", alt));
5896
5897 ptr = (const uint8_t *)(hdr + 1);
5898 end = (const uint8_t *)(fw->data + fw->size);
5899
5900 /* Parse type-length-value fields. */
5901 while (ptr + sizeof (*tlv) <= end) {
5902 tlv = (const struct iwn_fw_tlv *)ptr;
5903 len = le32toh(tlv->len);
5904
5905 ptr += sizeof (*tlv);
5906 if (ptr + len > end) {
5907 aprint_error_dev(sc->sc_dev,
5908 "firmware too short: %zd bytes\n", fw->size);
5909 return EINVAL;
5910 }
5911 /* Skip other alternatives. */
5912 if (tlv->alt != 0 && tlv->alt != htole16(alt))
5913 goto next;
5914
5915 switch (le16toh(tlv->type)) {
5916 case IWN_FW_TLV_MAIN_TEXT:
5917 fw->main.text = ptr;
5918 fw->main.textsz = len;
5919 break;
5920 case IWN_FW_TLV_MAIN_DATA:
5921 fw->main.data = ptr;
5922 fw->main.datasz = len;
5923 break;
5924 case IWN_FW_TLV_INIT_TEXT:
5925 fw->init.text = ptr;
5926 fw->init.textsz = len;
5927 break;
5928 case IWN_FW_TLV_INIT_DATA:
5929 fw->init.data = ptr;
5930 fw->init.datasz = len;
5931 break;
5932 case IWN_FW_TLV_BOOT_TEXT:
5933 fw->boot.text = ptr;
5934 fw->boot.textsz = len;
5935 break;
5936 case IWN_FW_TLV_ENH_SENS:
5937 if (len != 0) {
5938 aprint_error_dev(sc->sc_dev,
5939 "TLV type %d has invalid size %u\n",
5940 le16toh(tlv->type), len);
5941 goto next;
5942 }
5943 sc->sc_flags |= IWN_FLAG_ENH_SENS;
5944 break;
5945 case IWN_FW_TLV_PHY_CALIB:
5946 if (len != sizeof(uint32_t)) {
5947 aprint_error_dev(sc->sc_dev,
5948 "TLV type %d has invalid size %u\n",
5949 le16toh(tlv->type), len);
5950 goto next;
5951 }
5952 if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5953 sc->reset_noise_gain = le32toh(*ptr);
5954 sc->noise_gain = le32toh(*ptr) + 1;
5955 }
5956 break;
5957 case IWN_FW_TLV_FLAGS:
5958 if (len < sizeof(uint32_t))
5959 break;
5960 if (len % sizeof(uint32_t))
5961 break;
5962 sc->tlv_feature_flags = le32toh(*ptr);
5963 DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5964 break;
5965 default:
5966 DPRINTF(("TLV type %d not handled\n",
5967 le16toh(tlv->type)));
5968 break;
5969 }
5970 next: /* TLV fields are 32-bit aligned. */
5971 ptr += (len + 3) & ~3;
5972 }
5973 return 0;
5974 }
5975
5976 static int
5977 iwn_read_firmware(struct iwn_softc *sc)
5978 {
5979 struct iwn_fw_info *fw = &sc->fw;
5980 firmware_handle_t fwh;
5981 int error;
5982
5983 /*
5984 * Some PHY calibration commands are firmware-dependent; these
5985 * are the default values that will be overridden if
5986 * necessary.
5987 */
5988 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5989 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5990
5991 /* Initialize for error returns */
5992 fw->data = NULL;
5993 fw->size = 0;
5994
5995 /* Open firmware image. */
5996 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5997 aprint_error_dev(sc->sc_dev,
5998 "could not get firmware handle %s\n", sc->fwname);
5999 return error;
6000 }
6001 fw->size = firmware_get_size(fwh);
6002 if (fw->size < sizeof (uint32_t)) {
6003 aprint_error_dev(sc->sc_dev,
6004 "firmware too short: %zd bytes\n", fw->size);
6005 firmware_close(fwh);
6006 return EINVAL;
6007 }
6008
6009 /* Read the firmware. */
6010 fw->data = firmware_malloc(fw->size);
6011 if (fw->data == NULL) {
6012 aprint_error_dev(sc->sc_dev,
6013 "not enough memory to stock firmware %s\n", sc->fwname);
6014 firmware_close(fwh);
6015 return ENOMEM;
6016 }
6017 error = firmware_read(fwh, 0, fw->data, fw->size);
6018 firmware_close(fwh);
6019 if (error != 0) {
6020 aprint_error_dev(sc->sc_dev,
6021 "could not read firmware %s\n", sc->fwname);
6022 goto out;
6023 }
6024
6025 /* Retrieve text and data sections. */
6026 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
6027 error = iwn_read_firmware_leg(sc, fw);
6028 else
6029 error = iwn_read_firmware_tlv(sc, fw, 1);
6030 if (error != 0) {
6031 aprint_error_dev(sc->sc_dev,
6032 "could not read firmware sections\n");
6033 goto out;
6034 }
6035
6036 /* Make sure text and data sections fit in hardware memory. */
6037 if (fw->main.textsz > sc->fw_text_maxsz ||
6038 fw->main.datasz > sc->fw_data_maxsz ||
6039 fw->init.textsz > sc->fw_text_maxsz ||
6040 fw->init.datasz > sc->fw_data_maxsz ||
6041 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6042 (fw->boot.textsz & 3) != 0) {
6043 aprint_error_dev(sc->sc_dev,
6044 "firmware sections too large\n");
6045 goto out;
6046 }
6047
6048 /* We can proceed with loading the firmware. */
6049 return 0;
6050 out:
6051 firmware_free(fw->data, fw->size);
6052 fw->data = NULL;
6053 fw->size = 0;
6054 return error ? error : EINVAL;
6055 }
6056
6057 static int
6058 iwn_clock_wait(struct iwn_softc *sc)
6059 {
6060 int ntries;
6061
6062 /* Set "initialization complete" bit. */
6063 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6064
6065 /* Wait for clock stabilization. */
6066 for (ntries = 0; ntries < 2500; ntries++) {
6067 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6068 return 0;
6069 DELAY(10);
6070 }
6071 aprint_error_dev(sc->sc_dev,
6072 "timeout waiting for clock stabilization\n");
6073 return ETIMEDOUT;
6074 }
6075
6076 static int
6077 iwn_apm_init(struct iwn_softc *sc)
6078 {
6079 pcireg_t reg;
6080 int error;
6081
6082 /* Disable L0s exit timer (NMI bug workaround). */
6083 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6084 /* Don't wait for ICH L0s (ICH bug workaround). */
6085 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6086
6087 /* Set FH wait threshold to max (HW bug under stress workaround). */
6088 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6089
6090 /* Enable HAP INTA to move adapter from L1a to L0s. */
6091 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6092
6093 /* Retrieve PCIe Active State Power Management (ASPM). */
6094 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6095 sc->sc_cap_off + PCIE_LCSR);
6096 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6097 if (reg & PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
6098 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6099 else
6100 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6101
6102 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6103 sc->hw_type <= IWN_HW_REV_TYPE_1000)
6104 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6105
6106 /* Wait for clock stabilization before accessing prph. */
6107 if ((error = iwn_clock_wait(sc)) != 0)
6108 return error;
6109
6110 if ((error = iwn_nic_lock(sc)) != 0)
6111 return error;
6112 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6113 /* Enable DMA and BSM (Bootstrap State Machine). */
6114 iwn_prph_write(sc, IWN_APMG_CLK_EN,
6115 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6116 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6117 } else {
6118 /* Enable DMA. */
6119 iwn_prph_write(sc, IWN_APMG_CLK_EN,
6120 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6121 }
6122 DELAY(20);
6123 /* Disable L1-Active. */
6124 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6125 iwn_nic_unlock(sc);
6126
6127 return 0;
6128 }
6129
6130 static void
6131 iwn_apm_stop_master(struct iwn_softc *sc)
6132 {
6133 int ntries;
6134
6135 /* Stop busmaster DMA activity. */
6136 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6137 for (ntries = 0; ntries < 100; ntries++) {
6138 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6139 return;
6140 DELAY(10);
6141 }
6142 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
6143 }
6144
6145 static void
6146 iwn_apm_stop(struct iwn_softc *sc)
6147 {
6148 iwn_apm_stop_master(sc);
6149
6150 /* Reset the entire device. */
6151 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6152 DELAY(10);
6153 /* Clear "initialization complete" bit. */
6154 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6155 }
6156
6157 static int
6158 iwn4965_nic_config(struct iwn_softc *sc)
6159 {
6160 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6161 /*
6162 * I don't believe this to be correct but this is what the
6163 * vendor driver is doing. Probably the bits should not be
6164 * shifted in IWN_RFCFG_*.
6165 */
6166 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6167 IWN_RFCFG_TYPE(sc->rfcfg) |
6168 IWN_RFCFG_STEP(sc->rfcfg) |
6169 IWN_RFCFG_DASH(sc->rfcfg));
6170 }
6171 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6172 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6173 return 0;
6174 }
6175
6176 static int
6177 iwn5000_nic_config(struct iwn_softc *sc)
6178 {
6179 uint32_t tmp;
6180 int error;
6181
6182 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6183 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6184 IWN_RFCFG_TYPE(sc->rfcfg) |
6185 IWN_RFCFG_STEP(sc->rfcfg) |
6186 IWN_RFCFG_DASH(sc->rfcfg));
6187 }
6188 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6189 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6190
6191 if ((error = iwn_nic_lock(sc)) != 0)
6192 return error;
6193 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6194
6195 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6196 /*
6197 * Select first Switching Voltage Regulator (1.32V) to
6198 * solve a stability issue related to noisy DC2DC line
6199 * in the silicon of 1000 Series.
6200 */
6201 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6202 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6203 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6204 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6205 }
6206 iwn_nic_unlock(sc);
6207
6208 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6209 /* Use internal power amplifier only. */
6210 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6211 }
6212 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6213 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6214 /* Indicate that ROM calibration version is >=6. */
6215 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6216 }
6217 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6218 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6219 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6220 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6221 sc->hw_type == IWN_HW_REV_TYPE_135 ||
6222 sc->hw_type == IWN_HW_REV_TYPE_105)
6223 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6224 return 0;
6225 }
6226
6227 /*
6228 * Take NIC ownership over Intel Active Management Technology (AMT).
6229 */
6230 static int
6231 iwn_hw_prepare(struct iwn_softc *sc)
6232 {
6233 int ntries;
6234
6235 /* Check if hardware is ready. */
6236 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6237 for (ntries = 0; ntries < 5; ntries++) {
6238 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6239 IWN_HW_IF_CONFIG_NIC_READY)
6240 return 0;
6241 DELAY(10);
6242 }
6243
6244 /* Hardware not ready, force into ready state. */
6245 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6246 for (ntries = 0; ntries < 15000; ntries++) {
6247 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6248 IWN_HW_IF_CONFIG_PREPARE_DONE))
6249 break;
6250 DELAY(10);
6251 }
6252 if (ntries == 15000)
6253 return ETIMEDOUT;
6254
6255 /* Hardware should be ready now. */
6256 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6257 for (ntries = 0; ntries < 5; ntries++) {
6258 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6259 IWN_HW_IF_CONFIG_NIC_READY)
6260 return 0;
6261 DELAY(10);
6262 }
6263 return ETIMEDOUT;
6264 }
6265
6266 static int
6267 iwn_hw_init(struct iwn_softc *sc)
6268 {
6269 struct iwn_ops *ops = &sc->ops;
6270 int error, chnl, qid;
6271
6272 /* Clear pending interrupts. */
6273 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6274
6275 if ((error = iwn_apm_init(sc)) != 0) {
6276 aprint_error_dev(sc->sc_dev,
6277 "could not power ON adapter\n");
6278 return error;
6279 }
6280
6281 /* Select VMAIN power source. */
6282 if ((error = iwn_nic_lock(sc)) != 0)
6283 return error;
6284 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6285 iwn_nic_unlock(sc);
6286
6287 /* Perform adapter-specific initialization. */
6288 if ((error = ops->nic_config(sc)) != 0)
6289 return error;
6290
6291 /* Initialize RX ring. */
6292 if ((error = iwn_nic_lock(sc)) != 0)
6293 return error;
6294 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6295 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6296 /* Set physical address of RX ring (256-byte aligned). */
6297 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6298 /* Set physical address of RX status (16-byte aligned). */
6299 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6300 /* Enable RX. */
6301 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6302 IWN_FH_RX_CONFIG_ENA |
6303 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
6304 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
6305 IWN_FH_RX_CONFIG_SINGLE_FRAME |
6306 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6307 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6308 iwn_nic_unlock(sc);
6309 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6310
6311 if ((error = iwn_nic_lock(sc)) != 0)
6312 return error;
6313
6314 /* Initialize TX scheduler. */
6315 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6316
6317 /* Set physical address of "keep warm" page (16-byte aligned). */
6318 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6319
6320 /* Initialize TX rings. */
6321 for (qid = 0; qid < sc->ntxqs; qid++) {
6322 struct iwn_tx_ring *txq = &sc->txq[qid];
6323
6324 /* Set physical address of TX ring (256-byte aligned). */
6325 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6326 txq->desc_dma.paddr >> 8);
6327 }
6328 iwn_nic_unlock(sc);
6329
6330 /* Enable DMA channels. */
6331 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6332 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6333 IWN_FH_TX_CONFIG_DMA_ENA |
6334 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6335 }
6336
6337 /* Clear "radio off" and "commands blocked" bits. */
6338 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6339 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6340
6341 /* Clear pending interrupts. */
6342 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6343 /* Enable interrupt coalescing. */
6344 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6345 /* Enable interrupts. */
6346 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6347
6348 /* _Really_ make sure "radio off" bit is cleared! */
6349 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6350 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6351
6352 /* Enable shadow registers. */
6353 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6354 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6355
6356 if ((error = ops->load_firmware(sc)) != 0) {
6357 aprint_error_dev(sc->sc_dev,
6358 "could not load firmware\n");
6359 return error;
6360 }
6361 /* Wait at most one second for firmware alive notification. */
6362 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6363 aprint_error_dev(sc->sc_dev,
6364 "timeout waiting for adapter to initialize\n");
6365 return error;
6366 }
6367 /* Do post-firmware initialization. */
6368 return ops->post_alive(sc);
6369 }
6370
6371 static void
6372 iwn_hw_stop(struct iwn_softc *sc)
6373 {
6374 int chnl, qid, ntries;
6375
6376 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6377
6378 /* Disable interrupts. */
6379 IWN_WRITE(sc, IWN_INT_MASK, 0);
6380 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6381 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6382 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6383
6384 /* Make sure we no longer hold the NIC lock. */
6385 iwn_nic_unlock(sc);
6386
6387 /* Stop TX scheduler. */
6388 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6389
6390 /* Stop all DMA channels. */
6391 if (iwn_nic_lock(sc) == 0) {
6392 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6393 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6394 for (ntries = 0; ntries < 200; ntries++) {
6395 if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6396 IWN_FH_TX_STATUS_IDLE(chnl))
6397 break;
6398 DELAY(10);
6399 }
6400 }
6401 iwn_nic_unlock(sc);
6402 }
6403
6404 /* Stop RX ring. */
6405 iwn_reset_rx_ring(sc, &sc->rxq);
6406
6407 /* Reset all TX rings. */
6408 for (qid = 0; qid < sc->ntxqs; qid++)
6409 iwn_reset_tx_ring(sc, &sc->txq[qid]);
6410
6411 if (iwn_nic_lock(sc) == 0) {
6412 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6413 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6414 iwn_nic_unlock(sc);
6415 }
6416 DELAY(5);
6417 /* Power OFF adapter. */
6418 iwn_apm_stop(sc);
6419 }
6420
6421 static int
6422 iwn_init(struct ifnet *ifp)
6423 {
6424 struct iwn_softc *sc = ifp->if_softc;
6425 struct ieee80211com *ic = &sc->sc_ic;
6426 int error;
6427
6428 mutex_enter(&sc->sc_mtx);
6429 if (sc->sc_flags & IWN_FLAG_HW_INITED)
6430 goto out;
6431 if ((error = iwn_hw_prepare(sc)) != 0) {
6432 aprint_error_dev(sc->sc_dev,
6433 "hardware not ready\n");
6434 goto fail;
6435 }
6436
6437 /* Check that the radio is not disabled by hardware switch. */
6438 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6439 aprint_error_dev(sc->sc_dev,
6440 "radio is disabled by hardware switch\n");
6441 error = EPERM; /* :-) */
6442 goto fail;
6443 }
6444
6445 /* Read firmware images from the filesystem. */
6446 if ((error = iwn_read_firmware(sc)) != 0) {
6447 aprint_error_dev(sc->sc_dev,
6448 "could not read firmware\n");
6449 goto fail;
6450 }
6451
6452 /* Initialize interrupt mask to default value. */
6453 sc->int_mask = IWN_INT_MASK_DEF;
6454 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6455
6456 /* Initialize hardware and upload firmware. */
6457 KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6458 error = iwn_hw_init(sc);
6459 firmware_free(sc->fw.data, sc->fw.size);
6460 sc->fw.data = NULL;
6461 sc->fw.size = 0;
6462 if (error != 0) {
6463 aprint_error_dev(sc->sc_dev,
6464 "could not initialize hardware\n");
6465 goto fail;
6466 }
6467
6468 /* Configure adapter now that it is ready. */
6469 if ((error = iwn_config(sc)) != 0) {
6470 aprint_error_dev(sc->sc_dev,
6471 "could not configure device\n");
6472 goto fail;
6473 }
6474
6475 sc->sc_beacon_wait = 0;
6476
6477 ifp->if_flags &= ~IFF_OACTIVE;
6478 ifp->if_flags |= IFF_RUNNING;
6479
6480 if (ic->ic_opmode != IEEE80211_M_MONITOR)
6481 ieee80211_begin_scan(ic, 0);
6482 else
6483 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6484
6485 sc->sc_flags |= IWN_FLAG_HW_INITED;
6486 out:
6487 mutex_exit(&sc->sc_mtx);
6488 return 0;
6489
6490 fail: mutex_exit(&sc->sc_mtx);
6491 iwn_stop(ifp, 1);
6492 return error;
6493 }
6494
6495 static void
6496 iwn_stop(struct ifnet *ifp, int disable)
6497 {
6498 struct iwn_softc *sc = ifp->if_softc;
6499 struct ieee80211com *ic = &sc->sc_ic;
6500
6501 if (!disable)
6502 mutex_enter(&sc->sc_mtx);
6503 sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6504 ifp->if_timer = sc->sc_tx_timer = 0;
6505 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6506
6507 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6508
6509 /* Power OFF hardware. */
6510 iwn_hw_stop(sc);
6511
6512 if (!disable)
6513 mutex_exit(&sc->sc_mtx);
6514 }
6515
6516 /*
6517 * XXX MCLGETI alternative
6518 *
6519 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6520 * as long as there are available free buffers then it uses MEXTMALLOC.,
6521 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6522 * The MCLGET4K code is used for testing an alternative mbuf cache.
6523 */
6524
6525 static struct mbuf *
6526 MCLGETIalt(struct iwn_softc *sc, int how,
6527 struct ifnet *ifp __unused, u_int size)
6528 {
6529 struct mbuf *m;
6530 #ifdef IWN_USE_RBUF
6531 struct iwn_rbuf *rbuf;
6532 #endif
6533
6534 MGETHDR(m, how, MT_DATA);
6535 if (m == NULL)
6536 return NULL;
6537
6538 #ifdef IWN_USE_RBUF
6539 if (sc->rxq.nb_free_entries > 0 &&
6540 (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6541 /* Attach buffer to mbuf header. */
6542 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6543 m->m_flags |= M_EXT_RW;
6544 }
6545 else {
6546 MEXTMALLOC(m, size, how);
6547 if ((m->m_flags & M_EXT) == 0) {
6548 m_freem(m);
6549 return NULL;
6550 }
6551 }
6552
6553 #else
6554 #ifdef MCLGET4K
6555 if (size == 4096)
6556 MCLGET4K(m, how);
6557 else
6558 panic("size must be 4k");
6559 #else
6560 MEXTMALLOC(m, size, how);
6561 #endif
6562 if ((m->m_flags & M_EXT) == 0) {
6563 m_freem(m);
6564 return NULL;
6565 }
6566 #endif
6567
6568 return m;
6569 }
6570
6571 #ifdef IWN_USE_RBUF
6572 static struct iwn_rbuf *
6573 iwn_alloc_rbuf(struct iwn_softc *sc)
6574 {
6575 struct iwn_rbuf *rbuf;
6576 mutex_enter(&sc->rxq.freelist_mtx);
6577
6578 rbuf = SLIST_FIRST(&sc->rxq.freelist);
6579 if (rbuf != NULL) {
6580 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6581 sc->rxq.nb_free_entries --;
6582 }
6583 mutex_exit(&sc->rxq.freelist_mtx);
6584 return rbuf;
6585 }
6586
6587 /*
6588 * This is called automatically by the network stack when the mbuf to which
6589 * our RX buffer is attached is freed.
6590 */
6591 static void
6592 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
6593 {
6594 struct iwn_rbuf *rbuf = arg;
6595 struct iwn_softc *sc = rbuf->sc;
6596
6597 /* Put the RX buffer back in the free list. */
6598 mutex_enter(&sc->rxq.freelist_mtx);
6599 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6600 mutex_exit(&sc->rxq.freelist_mtx);
6601
6602 sc->rxq.nb_free_entries ++;
6603 if (__predict_true(m != NULL))
6604 pool_cache_put(mb_cache, m);
6605 }
6606
6607 static int
6608 iwn_alloc_rpool(struct iwn_softc *sc)
6609 {
6610 struct iwn_rx_ring *ring = &sc->rxq;
6611 struct iwn_rbuf *rbuf;
6612 int i, error;
6613
6614 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6615
6616 /* Allocate a big chunk of DMA'able memory... */
6617 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6618 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6619 if (error != 0) {
6620 aprint_error_dev(sc->sc_dev,
6621 "could not allocate RX buffers DMA memory\n");
6622 return error;
6623 }
6624 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6625 SLIST_INIT(&ring->freelist);
6626 for (i = 0; i < IWN_RBUF_COUNT; i++) {
6627 rbuf = &ring->rbuf[i];
6628
6629 rbuf->sc = sc; /* Backpointer for callbacks. */
6630 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6631 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6632
6633 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6634 }
6635 ring->nb_free_entries = IWN_RBUF_COUNT;
6636 return 0;
6637 }
6638
6639 static void
6640 iwn_free_rpool(struct iwn_softc *sc)
6641 {
6642 iwn_dma_contig_free(&sc->rxq.buf_dma);
6643 }
6644 #endif
6645
6646 /*
6647 * XXX: Hack to set the current channel to the value advertised in beacons or
6648 * probe responses. Only used during AP detection.
6649 * XXX: Duplicated from if_iwi.c
6650 */
6651 static void
6652 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6653 struct iwn_rx_stat *stat)
6654 {
6655 struct iwn_softc *sc = ic->ic_ifp->if_softc;
6656 struct ieee80211_frame *wh;
6657 uint8_t subtype;
6658 uint8_t *frm, *efrm;
6659
6660 wh = mtod(m, struct ieee80211_frame *);
6661
6662 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6663 return;
6664
6665 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6666
6667 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6668 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6669 return;
6670
6671 if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6672 int chan = le16toh(stat->chan);
6673 if (chan < __arraycount(ic->ic_channels))
6674 ic->ic_curchan = &ic->ic_channels[chan];
6675 return;
6676 }
6677
6678 frm = (uint8_t *)(wh + 1);
6679 efrm = mtod(m, uint8_t *) + m->m_len;
6680
6681 frm += 12; /* skip tstamp, bintval and capinfo fields */
6682 while (frm + 2 < efrm) {
6683 if (*frm == IEEE80211_ELEMID_DSPARMS) {
6684 #if IEEE80211_CHAN_MAX < 255
6685 if (frm[2] <= IEEE80211_CHAN_MAX)
6686 #endif
6687 ic->ic_curchan = &ic->ic_channels[frm[2]];
6688 }
6689
6690 frm += frm[1] + 2;
6691 }
6692 }
6693
6694 #ifdef notyetMODULE
6695
6696 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6697
6698 #ifdef _MODULE
6699 #include "ioconf.c"
6700 #endif
6701
6702 static int
6703 if_iwn_modcmd(modcmd_t cmd, void *data)
6704 {
6705 int error = 0;
6706
6707 switch (cmd) {
6708 case MODULE_CMD_INIT:
6709 #ifdef _MODULE
6710 error = config_init_component(cfdriver_ioconf_if_iwn,
6711 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6712 #endif
6713 return error;
6714 case MODULE_CMD_FINI:
6715 #ifdef _MODULE
6716 error = config_fini_component(cfdriver_ioconf_if_iwn,
6717 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6718 #endif
6719 return error;
6720 case MODULE_CMD_AUTOUNLOAD:
6721 #ifdef _MODULE
6722 /* XXX This is not optional! */
6723 #endif
6724 return error;
6725 default:
6726 return ENOTTY;
6727 }
6728 }
6729 #endif
6730