if_iwn.c revision 1.101 1 /* $NetBSD: if_iwn.c,v 1.101 2024/11/10 11:45:09 mlelstv Exp $ */
2 /* $OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $ */
3
4 /*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.101 2024/11/10 11:45:09 mlelstv Exp $");
26
27 #define IWN_USE_RBUF /* Use local storage for RX */
28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45
46 #include <dev/sysmon/sysmonvar.h>
47
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <sys/intr.h>
51
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #include <dev/firmload.h>
74
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77
78 static const struct device_compatible_entry compat_data[] = {
79 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
80 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1), },
81
82 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
83 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2), },
84
85 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
86 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1), },
87
88 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
89 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2), },
90
91 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
92 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3), },
93
94 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
95 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4), },
96
97 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
98 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1), },
99
100 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
101 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2), },
102
103 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
104 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1), },
105
106 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
107 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2), },
108
109 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
110 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1), },
111
112 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
113 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2), },
114
115 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
116 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1), },
117
118 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
119 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2), },
120
121 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
122 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1), },
123
124 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
125 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2), },
126
127 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
128 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1), },
129
130 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
131 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2), },
132
133 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
134 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1), },
135
136 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
137 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2), },
138
139 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
140 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1), },
141
142 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
143 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2), },
144
145 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
146 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1), },
147
148 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
149 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2), },
150
151 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
152 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1), },
153
154 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
155 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2), },
156
157 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
158 PCI_PRODUCT_INTEL_WIFI_LINK_6235), },
159
160 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
161 PCI_PRODUCT_INTEL_WIFI_LINK_6235_2), },
162
163 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
164 PCI_PRODUCT_INTEL_WIFI_LINK_100_1), },
165
166 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
167 PCI_PRODUCT_INTEL_WIFI_LINK_100_2), },
168
169 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
170 PCI_PRODUCT_INTEL_WIFI_LINK_130_1), },
171
172 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
173 PCI_PRODUCT_INTEL_WIFI_LINK_130_2), },
174
175 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
176 PCI_PRODUCT_INTEL_WIFI_LINK_2230_1), },
177
178 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
179 PCI_PRODUCT_INTEL_WIFI_LINK_2230_2), },
180
181 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
182 PCI_PRODUCT_INTEL_WIFI_LINK_2200_1), },
183
184 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
185 PCI_PRODUCT_INTEL_WIFI_LINK_2200_2), },
186
187 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
188 PCI_PRODUCT_INTEL_WIFI_LINK_135_1), },
189
190 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
191 PCI_PRODUCT_INTEL_WIFI_LINK_135_2), },
192
193 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
194 PCI_PRODUCT_INTEL_WIFI_LINK_105_1), },
195
196 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
197 PCI_PRODUCT_INTEL_WIFI_LINK_105_2), },
198
199 PCI_COMPAT_EOL
200 };
201
202 static int iwn_match(device_t , struct cfdata *, void *);
203 static void iwn_attach(device_t , device_t , void *);
204 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t);
205 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t);
206 static void iwn_radiotap_attach(struct iwn_softc *);
207 static int iwn_detach(device_t , int);
208 #if 0
209 static void iwn_power(int, void *);
210 #endif
211 static bool iwn_resume(device_t, const pmf_qual_t *);
212 static int iwn_nic_lock(struct iwn_softc *);
213 static int iwn_eeprom_lock(struct iwn_softc *);
214 static int iwn_init_otprom(struct iwn_softc *);
215 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
216 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
217 void **, bus_size_t, bus_size_t);
218 static void iwn_dma_contig_free(struct iwn_dma_info *);
219 static int iwn_alloc_sched(struct iwn_softc *);
220 static void iwn_free_sched(struct iwn_softc *);
221 static int iwn_alloc_kw(struct iwn_softc *);
222 static void iwn_free_kw(struct iwn_softc *);
223 static int iwn_alloc_ict(struct iwn_softc *);
224 static void iwn_free_ict(struct iwn_softc *);
225 static int iwn_alloc_fwmem(struct iwn_softc *);
226 static void iwn_free_fwmem(struct iwn_softc *);
227 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
228 static void iwn_claim_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
229 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
230 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
231 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
232 int);
233 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
234 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
235 static void iwn5000_ict_reset(struct iwn_softc *);
236 static int iwn_read_eeprom(struct iwn_softc *);
237 static void iwn4965_read_eeprom(struct iwn_softc *);
238
239 #ifdef IWN_DEBUG
240 static void iwn4965_print_power_group(struct iwn_softc *, int);
241 #endif
242 static void iwn5000_read_eeprom(struct iwn_softc *);
243 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
244 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
245 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
246 static void iwn_newassoc(struct ieee80211_node *, int);
247 static int iwn_media_change(struct ifnet *);
248 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
249 static void iwn_iter_func(void *, struct ieee80211_node *);
250 static void iwn_calib_timeout(void *);
251 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
252 struct iwn_rx_data *);
253 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
254 struct iwn_rx_data *);
255 #ifndef IEEE80211_NO_HT
256 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
257 struct iwn_rx_data *);
258 #endif
259 static void iwn5000_rx_calib_results(struct iwn_softc *,
260 struct iwn_rx_desc *, struct iwn_rx_data *);
261 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
262 struct iwn_rx_data *);
263 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
264 struct iwn_rx_data *);
265 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
266 struct iwn_rx_data *);
267 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
268 uint8_t);
269 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
270 static void iwn_notif_intr(struct iwn_softc *);
271 static void iwn_wakeup_intr(struct iwn_softc *);
272 static void iwn_fatal_intr(struct iwn_softc *);
273 static int iwn_intr(void *);
274 static void iwn_softintr(void *);
275 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
276 uint16_t);
277 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
278 uint16_t);
279 #ifdef notyet
280 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
281 #endif
282 static int iwn_tx(struct iwn_softc *, struct mbuf *,
283 struct ieee80211_node *, int);
284 static void iwn_start(struct ifnet *);
285 static void iwn_watchdog(struct ifnet *);
286 static int iwn_ioctl(struct ifnet *, u_long, void *);
287 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
288 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
289 int);
290 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
291 int);
292 static int iwn_set_link_quality(struct iwn_softc *,
293 struct ieee80211_node *);
294 static int iwn_add_broadcast_node(struct iwn_softc *, int);
295 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
296 static int iwn_set_critical_temp(struct iwn_softc *);
297 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
298 static void iwn4965_power_calibration(struct iwn_softc *, int);
299 static int iwn4965_set_txpower(struct iwn_softc *, int);
300 static int iwn5000_set_txpower(struct iwn_softc *, int);
301 static int iwn4965_get_rssi(const struct iwn_rx_stat *);
302 static int iwn5000_get_rssi(const struct iwn_rx_stat *);
303 static int iwn_get_noise(const struct iwn_rx_general_stats *);
304 static int iwn4965_get_temperature(struct iwn_softc *);
305 static int iwn5000_get_temperature(struct iwn_softc *);
306 static int iwn_init_sensitivity(struct iwn_softc *);
307 static void iwn_collect_noise(struct iwn_softc *,
308 const struct iwn_rx_general_stats *);
309 static int iwn4965_init_gains(struct iwn_softc *);
310 static int iwn5000_init_gains(struct iwn_softc *);
311 static int iwn4965_set_gains(struct iwn_softc *);
312 static int iwn5000_set_gains(struct iwn_softc *);
313 static void iwn_tune_sensitivity(struct iwn_softc *,
314 const struct iwn_rx_stats *);
315 static int iwn_send_sensitivity(struct iwn_softc *);
316 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
317 static int iwn5000_runtime_calib(struct iwn_softc *);
318
319 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *);
320 static int iwn_config_bt_coex_prio_table(struct iwn_softc *);
321 static int iwn_config_bt_coex_adv1(struct iwn_softc *);
322 static int iwn_config_bt_coex_adv2(struct iwn_softc *);
323
324 static int iwn_config(struct iwn_softc *);
325 static uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
326 uint8_t);
327 static uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t);
328 static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
329 static int iwn_scan(struct iwn_softc *, uint16_t);
330 static int iwn_auth(struct iwn_softc *);
331 static int iwn_run(struct iwn_softc *);
332 #ifdef IWN_HWCRYPTO
333 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
334 struct ieee80211_key *);
335 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
336 struct ieee80211_key *);
337 #endif
338 static int iwn_wme_update(struct ieee80211com *);
339 #ifndef IEEE80211_NO_HT
340 static int iwn_ampdu_rx_start(struct ieee80211com *,
341 struct ieee80211_node *, uint8_t);
342 static void iwn_ampdu_rx_stop(struct ieee80211com *,
343 struct ieee80211_node *, uint8_t);
344 static int iwn_ampdu_tx_start(struct ieee80211com *,
345 struct ieee80211_node *, uint8_t);
346 static void iwn_ampdu_tx_stop(struct ieee80211com *,
347 struct ieee80211_node *, uint8_t);
348 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
349 struct ieee80211_node *, uint8_t, uint16_t);
350 static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
351 uint8_t, uint16_t);
352 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
353 struct ieee80211_node *, uint8_t, uint16_t);
354 static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
355 uint8_t, uint16_t);
356 #endif
357 static int iwn5000_query_calibration(struct iwn_softc *);
358 static int iwn5000_send_calibration(struct iwn_softc *);
359 static int iwn5000_send_wimax_coex(struct iwn_softc *);
360 static int iwn6000_temp_offset_calib(struct iwn_softc *);
361 static int iwn2000_temp_offset_calib(struct iwn_softc *);
362 static int iwn4965_post_alive(struct iwn_softc *);
363 static int iwn5000_post_alive(struct iwn_softc *);
364 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
365 int);
366 static int iwn4965_load_firmware(struct iwn_softc *);
367 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
368 const uint8_t *, int);
369 static int iwn5000_load_firmware(struct iwn_softc *);
370 static int iwn_read_firmware_leg(struct iwn_softc *,
371 struct iwn_fw_info *);
372 static int iwn_read_firmware_tlv(struct iwn_softc *,
373 struct iwn_fw_info *, uint16_t);
374 static int iwn_read_firmware(struct iwn_softc *);
375 static int iwn_clock_wait(struct iwn_softc *);
376 static int iwn_apm_init(struct iwn_softc *);
377 static void iwn_apm_stop_master(struct iwn_softc *);
378 static void iwn_apm_stop(struct iwn_softc *);
379 static int iwn4965_nic_config(struct iwn_softc *);
380 static int iwn5000_nic_config(struct iwn_softc *);
381 static int iwn_hw_prepare(struct iwn_softc *);
382 static int iwn_hw_init(struct iwn_softc *);
383 static void iwn_hw_stop(struct iwn_softc *);
384 static int iwn_init(struct ifnet *);
385 static void iwn_stop(struct ifnet *, int);
386
387 /* XXX MCLGETI alternative */
388 static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
389 struct ifnet *, u_int);
390 #ifdef IWN_USE_RBUF
391 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
392 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
393 static int iwn_alloc_rpool(struct iwn_softc *);
394 static void iwn_free_rpool(struct iwn_softc *);
395 #endif
396
397 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *,
398 struct iwn_rx_stat *);
399
400 #ifdef IWN_DEBUG
401 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
402 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
403 int iwn_debug = 0;
404 #else
405 #define DPRINTF(x)
406 #define DPRINTFN(n, x)
407 #endif
408
409 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
410 iwn_detach, NULL);
411
412 static int
413 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
414 {
415 struct pci_attach_args *pa = aux;
416
417 return pci_compatible_match(pa, compat_data);
418 }
419
420 static void
421 iwn_attach(device_t parent __unused, device_t self, void *aux)
422 {
423 struct iwn_softc *sc = device_private(self);
424 struct ieee80211com *ic = &sc->sc_ic;
425 struct ifnet *ifp = &sc->sc_ec.ec_if;
426 struct pci_attach_args *pa = aux;
427 const char *intrstr;
428 pcireg_t memtype, reg;
429 int i, error;
430 char intrbuf[PCI_INTRSTR_LEN];
431
432 sc->sc_dev = self;
433 sc->sc_pct = pa->pa_pc;
434 sc->sc_pcitag = pa->pa_tag;
435 sc->sc_dmat = pa->pa_dmat;
436 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
437
438 callout_init(&sc->calib_to, 0);
439 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
440
441 pci_aprint_devinfo(pa, NULL);
442
443 /*
444 * Get the offset of the PCI Express Capability Structure in PCI
445 * Configuration Space.
446 */
447 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
448 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
449 if (error == 0) {
450 aprint_error_dev(self,
451 "PCIe capability structure not found!\n");
452 return;
453 }
454
455 /* Clear device-specific "PCI retry timeout" register (41h). */
456 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
457 if (reg & 0xff00)
458 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
459
460 /* Enable bus-mastering. */
461 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */
462 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
463 reg |= PCI_COMMAND_MASTER_ENABLE;
464 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
465
466 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
467 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
468 &sc->sc_sh, NULL, &sc->sc_sz);
469 if (error != 0) {
470 aprint_error_dev(self, "can't map mem space\n");
471 return;
472 }
473
474 sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
475 if (sc->sc_soft_ih == NULL) {
476 aprint_error_dev(self, "can't establish soft interrupt\n");
477 goto unmap;
478 }
479
480 /* Install interrupt handler. */
481 error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
482 if (error) {
483 aprint_error_dev(self, "can't allocate interrupt\n");
484 goto failsi;
485 }
486 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
487 if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
488 CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
489 else
490 SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
491 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
492 intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
493 sizeof(intrbuf));
494 sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
495 IPL_NET, iwn_intr, sc, device_xname(self));
496 if (sc->sc_ih == NULL) {
497 aprint_error_dev(self, "can't establish interrupt");
498 if (intrstr != NULL)
499 aprint_error(" at %s", intrstr);
500 aprint_error("\n");
501 goto failia;
502 }
503 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
504
505 /* Read hardware revision and attach. */
506 sc->hw_type =
507 (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
508 >> IWN_HW_REV_TYPE_SHIFT;
509 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
510 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
511 else
512 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
513 if (error != 0) {
514 aprint_error_dev(self, "could not attach device\n");
515 goto failih;
516 }
517
518 if ((error = iwn_hw_prepare(sc)) != 0) {
519 aprint_error_dev(self, "hardware not ready\n");
520 goto failih;
521 }
522
523 /* Read MAC address, channels, etc from EEPROM. */
524 if ((error = iwn_read_eeprom(sc)) != 0) {
525 aprint_error_dev(self, "could not read EEPROM\n");
526 goto failih;
527 }
528
529 /* Allocate DMA memory for firmware transfers. */
530 if ((error = iwn_alloc_fwmem(sc)) != 0) {
531 aprint_error_dev(self,
532 "could not allocate memory for firmware\n");
533 goto failih;
534 }
535
536 /* Allocate "Keep Warm" page. */
537 if ((error = iwn_alloc_kw(sc)) != 0) {
538 aprint_error_dev(self, "could not allocate keep warm page\n");
539 goto fail1;
540 }
541
542 /* Allocate ICT table for 5000 Series. */
543 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
544 (error = iwn_alloc_ict(sc)) != 0) {
545 aprint_error_dev(self, "could not allocate ICT table\n");
546 goto fail2;
547 }
548
549 /* Allocate TX scheduler "rings". */
550 if ((error = iwn_alloc_sched(sc)) != 0) {
551 aprint_error_dev(self,
552 "could not allocate TX scheduler rings\n");
553 goto fail3;
554 }
555
556 #ifdef IWN_USE_RBUF
557 /* Allocate RX buffers. */
558 if ((error = iwn_alloc_rpool(sc)) != 0) {
559 aprint_error_dev(self, "could not allocate RX buffers\n");
560 goto fail3;
561 }
562 #endif
563
564 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
565 for (i = 0; i < sc->ntxqs; i++) {
566 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
567 aprint_error_dev(self,
568 "could not allocate TX ring %d\n", i);
569 goto fail4;
570 }
571 }
572
573 /* Allocate RX ring. */
574 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
575 aprint_error_dev(self, "could not allocate RX ring\n");
576 goto fail4;
577 }
578
579 /* Clear pending interrupts. */
580 IWN_WRITE(sc, IWN_INT, 0xffffffff);
581
582 /* Count the number of available chains. */
583 sc->ntxchains =
584 ((sc->txchainmask >> 2) & 1) +
585 ((sc->txchainmask >> 1) & 1) +
586 ((sc->txchainmask >> 0) & 1);
587 sc->nrxchains =
588 ((sc->rxchainmask >> 2) & 1) +
589 ((sc->rxchainmask >> 1) & 1) +
590 ((sc->rxchainmask >> 0) & 1);
591 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
592 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
593 ether_sprintf(ic->ic_myaddr));
594
595 ic->ic_ifp = ifp;
596 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
597 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
598 ic->ic_state = IEEE80211_S_INIT;
599
600 /*
601 * Set device capabilities.
602 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and
603 * IEEE80211_C_PMGT too.
604 */
605 ic->ic_caps =
606 IEEE80211_C_IBSS | /* IBSS mode support */
607 IEEE80211_C_WPA | /* 802.11i */
608 IEEE80211_C_MONITOR | /* monitor mode supported */
609 IEEE80211_C_TXPMGT | /* tx power management */
610 IEEE80211_C_SHSLOT | /* short slot time supported */
611 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
612 IEEE80211_C_WME; /* 802.11e */
613
614 #ifndef IEEE80211_NO_HT
615 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
616 /* Set HT capabilities. */
617 ic->ic_htcaps =
618 #if IWN_RBUF_SIZE == 8192
619 IEEE80211_HTCAP_AMSDU7935 |
620 #endif
621 IEEE80211_HTCAP_CBW20_40 |
622 IEEE80211_HTCAP_SGI20 |
623 IEEE80211_HTCAP_SGI40;
624 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
625 ic->ic_htcaps |= IEEE80211_HTCAP_GF;
626 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
627 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
628 else
629 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
630 }
631 #endif /* !IEEE80211_NO_HT */
632
633 /* Set supported legacy rates. */
634 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
635 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
636 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
637 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
638 }
639 #ifndef IEEE80211_NO_HT
640 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
641 /* Set supported HT rates. */
642 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
643 if (sc->nrxchains > 1)
644 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
645 if (sc->nrxchains > 2)
646 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
647 }
648 #endif
649
650 /* IBSS channel undefined for now. */
651 ic->ic_ibss_chan = &ic->ic_channels[0];
652
653 ifp->if_softc = sc;
654 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
655 ifp->if_init = iwn_init;
656 ifp->if_ioctl = iwn_ioctl;
657 ifp->if_start = iwn_start;
658 ifp->if_stop = iwn_stop;
659 ifp->if_watchdog = iwn_watchdog;
660 IFQ_SET_READY(&ifp->if_snd);
661 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
662
663 if_initialize(ifp);
664 ieee80211_ifattach(ic);
665
666 /* MBUFTRACE */
667 iwn_claim_rx_ring(sc, &sc->rxq);
668
669 /* Use common softint-based if_input */
670 ifp->if_percpuq = if_percpuq_create(ifp);
671 if_register(ifp);
672
673 ic->ic_node_alloc = iwn_node_alloc;
674 ic->ic_newassoc = iwn_newassoc;
675 #ifdef IWN_HWCRYPTO
676 ic->ic_crypto.cs_key_set = iwn_set_key;
677 ic->ic_crypto.cs_key_delete = iwn_delete_key;
678 #endif
679 ic->ic_wme.wme_update = iwn_wme_update;
680 #ifndef IEEE80211_NO_HT
681 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
682 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
683 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
684 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
685 #endif
686
687 /* Override 802.11 state transition machine. */
688 sc->sc_newstate = ic->ic_newstate;
689 ic->ic_newstate = iwn_newstate;
690
691 /* XXX media locking needs revisiting */
692 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
693 ieee80211_media_init_with_lock(ic,
694 iwn_media_change, ieee80211_media_status, &sc->sc_media_mtx);
695
696 sc->amrr.amrr_min_success_threshold = 1;
697 sc->amrr.amrr_max_success_threshold = 15;
698
699 iwn_radiotap_attach(sc);
700
701 /*
702 * XXX for NetBSD, OpenBSD timeout_set replaced by
703 * callout_init and callout_setfunc, above.
704 */
705
706 if (pmf_device_register(self, NULL, iwn_resume))
707 pmf_class_network_register(self, ifp);
708 else
709 aprint_error_dev(self, "couldn't establish power handler\n");
710
711 /* XXX NetBSD add call to ieee80211_announce for dmesg. */
712 ieee80211_announce(ic);
713
714 sc->sc_flags |= IWN_FLAG_ATTACHED;
715 return;
716
717 /* Free allocated memory if something failed during attachment. */
718 fail4: while (--i >= 0)
719 iwn_free_tx_ring(sc, &sc->txq[i]);
720 #ifdef IWN_USE_RBUF
721 iwn_free_rpool(sc);
722 #endif
723 iwn_free_sched(sc);
724 fail3: if (sc->ict != NULL)
725 iwn_free_ict(sc);
726 fail2: iwn_free_kw(sc);
727 fail1: iwn_free_fwmem(sc);
728 failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
729 sc->sc_ih = NULL;
730 failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
731 sc->sc_pihp = NULL;
732 failsi: softint_disestablish(sc->sc_soft_ih);
733 sc->sc_soft_ih = NULL;
734 unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
735 }
736
737 int
738 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
739 {
740 struct iwn_ops *ops = &sc->ops;
741
742 ops->load_firmware = iwn4965_load_firmware;
743 ops->read_eeprom = iwn4965_read_eeprom;
744 ops->post_alive = iwn4965_post_alive;
745 ops->nic_config = iwn4965_nic_config;
746 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
747 ops->update_sched = iwn4965_update_sched;
748 ops->get_temperature = iwn4965_get_temperature;
749 ops->get_rssi = iwn4965_get_rssi;
750 ops->set_txpower = iwn4965_set_txpower;
751 ops->init_gains = iwn4965_init_gains;
752 ops->set_gains = iwn4965_set_gains;
753 ops->add_node = iwn4965_add_node;
754 ops->tx_done = iwn4965_tx_done;
755 #ifndef IEEE80211_NO_HT
756 ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
757 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
758 #endif
759 sc->ntxqs = IWN4965_NTXQUEUES;
760 sc->ndmachnls = IWN4965_NDMACHNLS;
761 sc->broadcast_id = IWN4965_ID_BROADCAST;
762 sc->rxonsz = IWN4965_RXONSZ;
763 sc->schedsz = IWN4965_SCHEDSZ;
764 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
765 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
766 sc->fwsz = IWN4965_FWSZ;
767 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
768 sc->limits = &iwn4965_sensitivity_limits;
769 sc->fwname = "iwlwifi-4965-2.ucode";
770 /* Override chains masks, ROM is known to be broken. */
771 sc->txchainmask = IWN_ANT_AB;
772 sc->rxchainmask = IWN_ANT_ABC;
773
774 return 0;
775 }
776
777 int
778 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
779 {
780 struct iwn_ops *ops = &sc->ops;
781
782 ops->load_firmware = iwn5000_load_firmware;
783 ops->read_eeprom = iwn5000_read_eeprom;
784 ops->post_alive = iwn5000_post_alive;
785 ops->nic_config = iwn5000_nic_config;
786 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
787 ops->update_sched = iwn5000_update_sched;
788 ops->get_temperature = iwn5000_get_temperature;
789 ops->get_rssi = iwn5000_get_rssi;
790 ops->set_txpower = iwn5000_set_txpower;
791 ops->init_gains = iwn5000_init_gains;
792 ops->set_gains = iwn5000_set_gains;
793 ops->add_node = iwn5000_add_node;
794 ops->tx_done = iwn5000_tx_done;
795 #ifndef IEEE80211_NO_HT
796 ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
797 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
798 #endif
799 sc->ntxqs = IWN5000_NTXQUEUES;
800 sc->ndmachnls = IWN5000_NDMACHNLS;
801 sc->broadcast_id = IWN5000_ID_BROADCAST;
802 sc->rxonsz = IWN5000_RXONSZ;
803 sc->schedsz = IWN5000_SCHEDSZ;
804 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
805 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
806 sc->fwsz = IWN5000_FWSZ;
807 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
808
809 switch (sc->hw_type) {
810 case IWN_HW_REV_TYPE_5100:
811 sc->limits = &iwn5000_sensitivity_limits;
812 sc->fwname = "iwlwifi-5000-2.ucode";
813 /* Override chains masks, ROM is known to be broken. */
814 sc->txchainmask = IWN_ANT_B;
815 sc->rxchainmask = IWN_ANT_AB;
816 break;
817 case IWN_HW_REV_TYPE_5150:
818 sc->limits = &iwn5150_sensitivity_limits;
819 sc->fwname = "iwlwifi-5150-2.ucode";
820 break;
821 case IWN_HW_REV_TYPE_5300:
822 case IWN_HW_REV_TYPE_5350:
823 sc->limits = &iwn5000_sensitivity_limits;
824 sc->fwname = "iwlwifi-5000-2.ucode";
825 break;
826 case IWN_HW_REV_TYPE_1000:
827 sc->limits = &iwn1000_sensitivity_limits;
828 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
829 pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
830 sc->fwname = "iwlwifi-100-5.ucode";
831 else
832 sc->fwname = "iwlwifi-1000-3.ucode";
833 break;
834 case IWN_HW_REV_TYPE_6000:
835 sc->limits = &iwn6000_sensitivity_limits;
836 sc->fwname = "iwlwifi-6000-4.ucode";
837 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
838 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
839 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
840 /* Override chains masks, ROM is known to be broken. */
841 sc->txchainmask = IWN_ANT_BC;
842 sc->rxchainmask = IWN_ANT_BC;
843 }
844 break;
845 case IWN_HW_REV_TYPE_6050:
846 sc->limits = &iwn6000_sensitivity_limits;
847 sc->fwname = "iwlwifi-6050-5.ucode";
848 break;
849 case IWN_HW_REV_TYPE_6005:
850 sc->limits = &iwn6000_sensitivity_limits;
851 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
852 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
853 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
854 pid == PCI_PRODUCT_INTEL_WIFI_LINK_130_1 ||
855 pid == PCI_PRODUCT_INTEL_WIFI_LINK_130_2 ||
856 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
857 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
858 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235 ||
859 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
860 sc->fwname = "iwlwifi-6000g2b-6.ucode";
861 ops->config_bt_coex = iwn_config_bt_coex_adv1;
862 }
863 /*
864 * This covers:
865 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1
866 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2
867 */
868 else
869 sc->fwname = "iwlwifi-6000g2a-6.ucode";
870 break;
871 case IWN_HW_REV_TYPE_2030:
872 sc->limits = &iwn2030_sensitivity_limits;
873 sc->fwname = "iwlwifi-2030-6.ucode";
874 ops->config_bt_coex = iwn_config_bt_coex_adv2;
875 break;
876 case IWN_HW_REV_TYPE_2000:
877 sc->limits = &iwn2000_sensitivity_limits;
878 sc->fwname = "iwlwifi-2000-6.ucode";
879 break;
880 case IWN_HW_REV_TYPE_135:
881 sc->limits = &iwn2000_sensitivity_limits;
882 sc->fwname = "iwlwifi-135-6.ucode";
883 ops->config_bt_coex = iwn_config_bt_coex_adv2;
884 break;
885 case IWN_HW_REV_TYPE_105:
886 sc->limits = &iwn2000_sensitivity_limits;
887 sc->fwname = "iwlwifi-105-6.ucode";
888 break;
889 default:
890 aprint_normal(": adapter type %d not supported\n", sc->hw_type);
891 return ENOTSUP;
892 }
893 return 0;
894 }
895
896 /*
897 * Attach the interface to 802.11 radiotap.
898 */
899 static void
900 iwn_radiotap_attach(struct iwn_softc *sc)
901 {
902 struct ifnet *ifp = sc->sc_ic.ic_ifp;
903
904 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
905 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
906 &sc->sc_drvbpf);
907
908 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
909 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
910 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
911
912 sc->sc_txtap_len = sizeof sc->sc_txtapu;
913 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
914 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
915 }
916
917 static int
918 iwn_detach(device_t self, int flags __unused)
919 {
920 struct iwn_softc *sc = device_private(self);
921 struct ifnet *ifp = sc->sc_ic.ic_ifp;
922 int qid;
923
924 if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
925 return 0;
926
927 callout_stop(&sc->calib_to);
928
929 /* Uninstall interrupt handler. */
930 if (sc->sc_ih != NULL)
931 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
932 if (sc->sc_pihp != NULL)
933 pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
934 if (sc->sc_soft_ih != NULL)
935 softint_disestablish(sc->sc_soft_ih);
936
937 /* Free DMA resources. */
938 iwn_free_rx_ring(sc, &sc->rxq);
939 for (qid = 0; qid < sc->ntxqs; qid++)
940 iwn_free_tx_ring(sc, &sc->txq[qid]);
941 #ifdef IWN_USE_RBUF
942 iwn_free_rpool(sc);
943 #endif
944 iwn_free_sched(sc);
945 iwn_free_kw(sc);
946 if (sc->ict != NULL)
947 iwn_free_ict(sc);
948 iwn_free_fwmem(sc);
949
950 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
951
952 ieee80211_ifdetach(&sc->sc_ic);
953 if_detach(ifp);
954
955 return 0;
956 }
957
958 #if 0
959 /*
960 * XXX Investigate if clearing the PCI retry timeout could eliminate
961 * the repeated scan calls. Also the calls to if_init and if_start
962 * are similar to the effect of adding the call to ifioctl_common .
963 */
964 static void
965 iwn_power(int why, void *arg)
966 {
967 struct iwn_softc *sc = arg;
968 struct ifnet *ifp;
969 pcireg_t reg;
970 int s;
971
972 if (why != PWR_RESUME)
973 return;
974
975 /* Clear device-specific "PCI retry timeout" register (41h). */
976 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
977 if (reg & 0xff00)
978 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
979
980 s = splnet();
981 ifp = &sc->sc_ic.ic_if;
982 if (ifp->if_flags & IFF_UP) {
983 if_init(ifp);
984 if (ifp->if_flags & IFF_RUNNING)
985 ifp->if_start(ifp);
986 }
987 splx(s);
988 }
989 #endif
990
991 static bool
992 iwn_resume(device_t dv, const pmf_qual_t *qual)
993 {
994 return true;
995 }
996
997 static int
998 iwn_nic_lock(struct iwn_softc *sc)
999 {
1000 int ntries;
1001
1002 /* Request exclusive access to NIC. */
1003 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1004
1005 /* Spin until we actually get the lock. */
1006 for (ntries = 0; ntries < 1000; ntries++) {
1007 if ((IWN_READ(sc, IWN_GP_CNTRL) &
1008 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1009 IWN_GP_CNTRL_MAC_ACCESS_ENA)
1010 return 0;
1011 DELAY(10);
1012 }
1013 return ETIMEDOUT;
1014 }
1015
1016 static __inline void
1017 iwn_nic_unlock(struct iwn_softc *sc)
1018 {
1019 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1020 }
1021
1022 static __inline uint32_t
1023 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1024 {
1025 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1026 IWN_BARRIER_READ_WRITE(sc);
1027 return IWN_READ(sc, IWN_PRPH_RDATA);
1028 }
1029
1030 static __inline void
1031 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1032 {
1033 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1034 IWN_BARRIER_WRITE(sc);
1035 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1036 }
1037
1038 static __inline void
1039 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1040 {
1041 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1042 }
1043
1044 static __inline void
1045 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1046 {
1047 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1048 }
1049
1050 static __inline void
1051 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1052 const uint32_t *data, int count)
1053 {
1054 for (; count > 0; count--, data++, addr += 4)
1055 iwn_prph_write(sc, addr, *data);
1056 }
1057
1058 static __inline uint32_t
1059 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1060 {
1061 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1062 IWN_BARRIER_READ_WRITE(sc);
1063 return IWN_READ(sc, IWN_MEM_RDATA);
1064 }
1065
1066 static __inline void
1067 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1068 {
1069 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1070 IWN_BARRIER_WRITE(sc);
1071 IWN_WRITE(sc, IWN_MEM_WDATA, data);
1072 }
1073
1074 #ifndef IEEE80211_NO_HT
1075 static __inline void
1076 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1077 {
1078 uint32_t tmp;
1079
1080 tmp = iwn_mem_read(sc, addr & ~3);
1081 if (addr & 3)
1082 tmp = (tmp & 0x0000ffff) | data << 16;
1083 else
1084 tmp = (tmp & 0xffff0000) | data;
1085 iwn_mem_write(sc, addr & ~3, tmp);
1086 }
1087 #endif
1088
1089 static __inline void
1090 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1091 int count)
1092 {
1093 for (; count > 0; count--, addr += 4)
1094 *data++ = iwn_mem_read(sc, addr);
1095 }
1096
1097 static __inline void
1098 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1099 int count)
1100 {
1101 for (; count > 0; count--, addr += 4)
1102 iwn_mem_write(sc, addr, val);
1103 }
1104
1105 static int
1106 iwn_eeprom_lock(struct iwn_softc *sc)
1107 {
1108 int i, ntries;
1109
1110 for (i = 0; i < 100; i++) {
1111 /* Request exclusive access to EEPROM. */
1112 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1113 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1114
1115 /* Spin until we actually get the lock. */
1116 for (ntries = 0; ntries < 100; ntries++) {
1117 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1118 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1119 return 0;
1120 DELAY(10);
1121 }
1122 }
1123 return ETIMEDOUT;
1124 }
1125
1126 static __inline void
1127 iwn_eeprom_unlock(struct iwn_softc *sc)
1128 {
1129 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1130 }
1131
1132 /*
1133 * Initialize access by host to One Time Programmable ROM.
1134 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1135 */
1136 static int
1137 iwn_init_otprom(struct iwn_softc *sc)
1138 {
1139 uint16_t prev = 0, base, next;
1140 int count, error;
1141
1142 /* Wait for clock stabilization before accessing prph. */
1143 if ((error = iwn_clock_wait(sc)) != 0)
1144 return error;
1145
1146 if ((error = iwn_nic_lock(sc)) != 0)
1147 return error;
1148 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1149 DELAY(5);
1150 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1151 iwn_nic_unlock(sc);
1152
1153 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1154 if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1155 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1156 IWN_RESET_LINK_PWR_MGMT_DIS);
1157 }
1158 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1159 /* Clear ECC status. */
1160 IWN_SETBITS(sc, IWN_OTP_GP,
1161 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1162
1163 /*
1164 * Find the block before last block (contains the EEPROM image)
1165 * for HW without OTP shadow RAM.
1166 */
1167 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1168 /* Switch to absolute addressing mode. */
1169 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1170 base = 0;
1171 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1172 error = iwn_read_prom_data(sc, base, &next, 2);
1173 if (error != 0)
1174 return error;
1175 if (next == 0) /* End of linked-list. */
1176 break;
1177 prev = base;
1178 base = le16toh(next);
1179 }
1180 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1181 return EIO;
1182 /* Skip "next" word. */
1183 sc->prom_base = prev + 1;
1184 }
1185 return 0;
1186 }
1187
1188 static int
1189 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1190 {
1191 uint8_t *out = data;
1192 uint32_t val, tmp;
1193 int ntries;
1194
1195 addr += sc->prom_base;
1196 for (; count > 0; count -= 2, addr++) {
1197 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1198 for (ntries = 0; ntries < 10; ntries++) {
1199 val = IWN_READ(sc, IWN_EEPROM);
1200 if (val & IWN_EEPROM_READ_VALID)
1201 break;
1202 DELAY(5);
1203 }
1204 if (ntries == 10) {
1205 aprint_error_dev(sc->sc_dev,
1206 "timeout reading ROM at 0x%x\n", addr);
1207 return ETIMEDOUT;
1208 }
1209 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1210 /* OTPROM, check for ECC errors. */
1211 tmp = IWN_READ(sc, IWN_OTP_GP);
1212 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1213 aprint_error_dev(sc->sc_dev,
1214 "OTPROM ECC error at 0x%x\n", addr);
1215 return EIO;
1216 }
1217 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1218 /* Correctable ECC error, clear bit. */
1219 IWN_SETBITS(sc, IWN_OTP_GP,
1220 IWN_OTP_GP_ECC_CORR_STTS);
1221 }
1222 }
1223 *out++ = val >> 16;
1224 if (count > 1)
1225 *out++ = val >> 24;
1226 }
1227 return 0;
1228 }
1229
1230 static int
1231 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1232 bus_size_t size, bus_size_t alignment)
1233 {
1234 int nsegs, error;
1235
1236 dma->tag = tag;
1237 dma->size = size;
1238
1239 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1240 &dma->map);
1241 if (error != 0)
1242 goto fail;
1243
1244 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1245 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1246 if (error != 0)
1247 goto fail;
1248
1249 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1250 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1251 if (error != 0)
1252 goto fail;
1253
1254 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1255 BUS_DMA_NOWAIT);
1256 if (error != 0)
1257 goto fail;
1258
1259 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1260 memset(dma->vaddr, 0, size);
1261 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1262
1263 dma->paddr = dma->map->dm_segs[0].ds_addr;
1264 if (kvap != NULL)
1265 *kvap = dma->vaddr;
1266
1267 return 0;
1268
1269 fail: iwn_dma_contig_free(dma);
1270 return error;
1271 }
1272
1273 static void
1274 iwn_dma_contig_free(struct iwn_dma_info *dma)
1275 {
1276 if (dma->map != NULL) {
1277 if (dma->vaddr != NULL) {
1278 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1279 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1280 bus_dmamap_unload(dma->tag, dma->map);
1281 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1282 bus_dmamem_free(dma->tag, &dma->seg, 1);
1283 dma->vaddr = NULL;
1284 }
1285 bus_dmamap_destroy(dma->tag, dma->map);
1286 dma->map = NULL;
1287 }
1288 }
1289
1290 static int
1291 iwn_alloc_sched(struct iwn_softc *sc)
1292 {
1293 /* TX scheduler rings must be aligned on a 1KB boundary. */
1294 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1295 (void **)&sc->sched, sc->schedsz, 1024);
1296 }
1297
1298 static void
1299 iwn_free_sched(struct iwn_softc *sc)
1300 {
1301 iwn_dma_contig_free(&sc->sched_dma);
1302 }
1303
1304 static int
1305 iwn_alloc_kw(struct iwn_softc *sc)
1306 {
1307 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1308 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1309 4096);
1310 }
1311
1312 static void
1313 iwn_free_kw(struct iwn_softc *sc)
1314 {
1315 iwn_dma_contig_free(&sc->kw_dma);
1316 }
1317
1318 static int
1319 iwn_alloc_ict(struct iwn_softc *sc)
1320 {
1321 /* ICT table must be aligned on a 4KB boundary. */
1322 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1323 (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1324 }
1325
1326 static void
1327 iwn_free_ict(struct iwn_softc *sc)
1328 {
1329 iwn_dma_contig_free(&sc->ict_dma);
1330 }
1331
1332 static int
1333 iwn_alloc_fwmem(struct iwn_softc *sc)
1334 {
1335 /* Must be aligned on a 16-byte boundary. */
1336 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1337 sc->fwsz, 16);
1338 }
1339
1340 static void
1341 iwn_free_fwmem(struct iwn_softc *sc)
1342 {
1343 iwn_dma_contig_free(&sc->fw_dma);
1344 }
1345
1346 static int
1347 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1348 {
1349 bus_size_t size;
1350 int i, error;
1351
1352 ring->cur = 0;
1353
1354 /* Allocate RX descriptors (256-byte aligned). */
1355 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1356 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1357 (void **)&ring->desc, size, 256);
1358 if (error != 0) {
1359 aprint_error_dev(sc->sc_dev,
1360 "could not allocate RX ring DMA memory\n");
1361 goto fail;
1362 }
1363
1364 /* Allocate RX status area (16-byte aligned). */
1365 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1366 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1367 if (error != 0) {
1368 aprint_error_dev(sc->sc_dev,
1369 "could not allocate RX status DMA memory\n");
1370 goto fail;
1371 }
1372
1373 /*
1374 * Allocate and map RX buffers.
1375 */
1376 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1377 struct iwn_rx_data *data = &ring->data[i];
1378
1379 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1380 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1381 &data->map);
1382 if (error != 0) {
1383 aprint_error_dev(sc->sc_dev,
1384 "could not create RX buf DMA map\n");
1385 goto fail;
1386 }
1387
1388 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1389 if (data->m == NULL) {
1390 aprint_error_dev(sc->sc_dev,
1391 "could not allocate RX mbuf\n");
1392 error = ENOBUFS;
1393 goto fail;
1394 }
1395
1396 error = bus_dmamap_load(sc->sc_dmat, data->map,
1397 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1398 BUS_DMA_NOWAIT | BUS_DMA_READ);
1399 if (error != 0) {
1400 aprint_error_dev(sc->sc_dev,
1401 "can't not map mbuf (error %d)\n", error);
1402 goto fail;
1403 }
1404
1405 /* Set physical address of RX buffer (256-byte aligned). */
1406 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1407 }
1408
1409 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1410 BUS_DMASYNC_PREWRITE);
1411
1412 return 0;
1413
1414 fail: iwn_free_rx_ring(sc, ring);
1415 return error;
1416 }
1417
1418 static void
1419 iwn_claim_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1420 {
1421 int i;
1422
1423 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1424 struct iwn_rx_data *data = &ring->data[i];
1425
1426 if (data->m != NULL) {
1427 MCLAIM(data->m, &sc->sc_ec.ec_rx_mowner);
1428 }
1429 }
1430 }
1431
1432 static void
1433 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1434 {
1435 int ntries;
1436
1437 if (iwn_nic_lock(sc) == 0) {
1438 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1439 for (ntries = 0; ntries < 1000; ntries++) {
1440 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1441 IWN_FH_RX_STATUS_IDLE)
1442 break;
1443 DELAY(10);
1444 }
1445 iwn_nic_unlock(sc);
1446 }
1447 ring->cur = 0;
1448 sc->last_rx_valid = 0;
1449 }
1450
1451 static void
1452 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1453 {
1454 int i;
1455
1456 iwn_dma_contig_free(&ring->desc_dma);
1457 iwn_dma_contig_free(&ring->stat_dma);
1458
1459 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1460 struct iwn_rx_data *data = &ring->data[i];
1461
1462 if (data->m != NULL) {
1463 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1464 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1465 bus_dmamap_unload(sc->sc_dmat, data->map);
1466 m_freem(data->m);
1467 }
1468 if (data->map != NULL)
1469 bus_dmamap_destroy(sc->sc_dmat, data->map);
1470 }
1471 }
1472
1473 static int
1474 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1475 {
1476 bus_addr_t paddr;
1477 bus_size_t size;
1478 int i, error;
1479
1480 ring->qid = qid;
1481 ring->queued = 0;
1482 ring->cur = 0;
1483
1484 /* Allocate TX descriptors (256-byte aligned). */
1485 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1486 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1487 (void **)&ring->desc, size, 256);
1488 if (error != 0) {
1489 aprint_error_dev(sc->sc_dev,
1490 "could not allocate TX ring DMA memory\n");
1491 goto fail;
1492 }
1493 /*
1494 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1495 * to allocate commands space for other rings.
1496 * XXX Do we really need to allocate descriptors for other rings?
1497 */
1498 if (qid > 4)
1499 return 0;
1500
1501 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1502 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1503 (void **)&ring->cmd, size, 4);
1504 if (error != 0) {
1505 aprint_error_dev(sc->sc_dev,
1506 "could not allocate TX cmd DMA memory\n");
1507 goto fail;
1508 }
1509
1510 paddr = ring->cmd_dma.paddr;
1511 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1512 struct iwn_tx_data *data = &ring->data[i];
1513
1514 data->cmd_paddr = paddr;
1515 data->scratch_paddr = paddr + 12;
1516 paddr += sizeof (struct iwn_tx_cmd);
1517
1518 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1519 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1520 &data->map);
1521 if (error != 0) {
1522 aprint_error_dev(sc->sc_dev,
1523 "could not create TX buf DMA map\n");
1524 goto fail;
1525 }
1526 }
1527 return 0;
1528
1529 fail: iwn_free_tx_ring(sc, ring);
1530 return error;
1531 }
1532
1533 static void
1534 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1535 {
1536 int i;
1537
1538 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1539 struct iwn_tx_data *data = &ring->data[i];
1540
1541 if (data->m != NULL) {
1542 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1543 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1544 bus_dmamap_unload(sc->sc_dmat, data->map);
1545 m_freem(data->m);
1546 data->m = NULL;
1547 }
1548 }
1549 /* Clear TX descriptors. */
1550 memset(ring->desc, 0, ring->desc_dma.size);
1551 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1552 ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1553 sc->qfullmsk &= ~(1 << ring->qid);
1554 ring->queued = 0;
1555 ring->cur = 0;
1556 }
1557
1558 static void
1559 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1560 {
1561 int i;
1562
1563 iwn_dma_contig_free(&ring->desc_dma);
1564 iwn_dma_contig_free(&ring->cmd_dma);
1565
1566 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1567 struct iwn_tx_data *data = &ring->data[i];
1568
1569 if (data->m != NULL) {
1570 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1571 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1572 bus_dmamap_unload(sc->sc_dmat, data->map);
1573 m_freem(data->m);
1574 }
1575 if (data->map != NULL)
1576 bus_dmamap_destroy(sc->sc_dmat, data->map);
1577 }
1578 }
1579
1580 static void
1581 iwn5000_ict_reset(struct iwn_softc *sc)
1582 {
1583 /* Disable interrupts. */
1584 IWN_WRITE(sc, IWN_INT_MASK, 0);
1585
1586 /* Reset ICT table. */
1587 memset(sc->ict, 0, IWN_ICT_SIZE);
1588 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
1589 BUS_DMASYNC_PREWRITE);
1590 sc->ict_cur = 0;
1591
1592 /* Set physical address of ICT table (4KB aligned). */
1593 DPRINTF(("enabling ICT\n"));
1594 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1595 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1596
1597 /* Enable periodic RX interrupt. */
1598 sc->int_mask |= IWN_INT_RX_PERIODIC;
1599 /* Switch to ICT interrupt mode in driver. */
1600 sc->sc_flags |= IWN_FLAG_USE_ICT;
1601
1602 /* Re-enable interrupts. */
1603 IWN_WRITE(sc, IWN_INT, 0xffffffff);
1604 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1605 }
1606
1607 static int
1608 iwn_read_eeprom(struct iwn_softc *sc)
1609 {
1610 struct iwn_ops *ops = &sc->ops;
1611 struct ieee80211com *ic = &sc->sc_ic;
1612 uint16_t val;
1613 int error;
1614
1615 /* Check whether adapter has an EEPROM or an OTPROM. */
1616 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1617 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1618 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1619 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1620 "OTPROM" : "EEPROM"));
1621
1622 /* Adapter has to be powered on for EEPROM access to work. */
1623 if ((error = iwn_apm_init(sc)) != 0) {
1624 aprint_error_dev(sc->sc_dev,
1625 "could not power ON adapter\n");
1626 return error;
1627 }
1628
1629 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1630 aprint_error_dev(sc->sc_dev,
1631 "bad ROM signature\n");
1632 return EIO;
1633 }
1634 if ((error = iwn_eeprom_lock(sc)) != 0) {
1635 aprint_error_dev(sc->sc_dev,
1636 "could not lock ROM (error=%d)\n", error);
1637 return error;
1638 }
1639 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1640 if ((error = iwn_init_otprom(sc)) != 0) {
1641 aprint_error_dev(sc->sc_dev,
1642 "could not initialize OTPROM\n");
1643 return error;
1644 }
1645 }
1646
1647 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1648 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1649 /* Check if HT support is bonded out. */
1650 if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1651 sc->sc_flags |= IWN_FLAG_HAS_11N;
1652
1653 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1654 sc->rfcfg = le16toh(val);
1655 DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1656 /* Read Tx/Rx chains from ROM unless it's known to be broken. */
1657 if (sc->txchainmask == 0)
1658 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1659 if (sc->rxchainmask == 0)
1660 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1661
1662 /* Read MAC address. */
1663 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, ETHER_ADDR_LEN);
1664
1665 /* Read adapter-specific information from EEPROM. */
1666 ops->read_eeprom(sc);
1667
1668 iwn_apm_stop(sc); /* Power OFF adapter. */
1669
1670 iwn_eeprom_unlock(sc);
1671 return 0;
1672 }
1673
1674 static void
1675 iwn4965_read_eeprom(struct iwn_softc *sc)
1676 {
1677 uint32_t addr;
1678 uint16_t val;
1679 int i;
1680
1681 /* Read regulatory domain (4 ASCII characters). */
1682 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1683
1684 /* Read the list of authorized channels (20MHz ones only). */
1685 for (i = 0; i < 5; i++) {
1686 addr = iwn4965_regulatory_bands[i];
1687 iwn_read_eeprom_channels(sc, i, addr);
1688 }
1689
1690 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1691 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1692 sc->maxpwr2GHz = val & 0xff;
1693 sc->maxpwr5GHz = val >> 8;
1694 /* Check that EEPROM values are within valid range. */
1695 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1696 sc->maxpwr5GHz = 38;
1697 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1698 sc->maxpwr2GHz = 38;
1699 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1700
1701 /* Read samples for each TX power group. */
1702 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1703 sizeof sc->bands);
1704
1705 /* Read voltage at which samples were taken. */
1706 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1707 sc->eeprom_voltage = (int16_t)le16toh(val);
1708 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1709
1710 #ifdef IWN_DEBUG
1711 /* Print samples. */
1712 if (iwn_debug > 0) {
1713 for (i = 0; i < IWN_NBANDS; i++)
1714 iwn4965_print_power_group(sc, i);
1715 }
1716 #endif
1717 }
1718
1719 #ifdef IWN_DEBUG
1720 static void
1721 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1722 {
1723 struct iwn4965_eeprom_band *band = &sc->bands[i];
1724 struct iwn4965_eeprom_chan_samples *chans = band->chans;
1725 int j, c;
1726
1727 aprint_normal("===band %d===\n", i);
1728 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1729 aprint_normal("chan1 num=%d\n", chans[0].num);
1730 for (c = 0; c < 2; c++) {
1731 for (j = 0; j < IWN_NSAMPLES; j++) {
1732 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1733 "power=%d pa_det=%d\n", c, j,
1734 chans[0].samples[c][j].temp,
1735 chans[0].samples[c][j].gain,
1736 chans[0].samples[c][j].power,
1737 chans[0].samples[c][j].pa_det);
1738 }
1739 }
1740 aprint_normal("chan2 num=%d\n", chans[1].num);
1741 for (c = 0; c < 2; c++) {
1742 for (j = 0; j < IWN_NSAMPLES; j++) {
1743 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1744 "power=%d pa_det=%d\n", c, j,
1745 chans[1].samples[c][j].temp,
1746 chans[1].samples[c][j].gain,
1747 chans[1].samples[c][j].power,
1748 chans[1].samples[c][j].pa_det);
1749 }
1750 }
1751 }
1752 #endif
1753
1754 static void
1755 iwn5000_read_eeprom(struct iwn_softc *sc)
1756 {
1757 struct iwn5000_eeprom_calib_hdr hdr;
1758 int32_t volt;
1759 uint32_t base, addr;
1760 uint16_t val;
1761 int i;
1762
1763 /* Read regulatory domain (4 ASCII characters). */
1764 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1765 base = le16toh(val);
1766 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1767 sc->eeprom_domain, 4);
1768
1769 /* Read the list of authorized channels (20MHz ones only). */
1770 for (i = 0; i < 5; i++) {
1771 addr = base + iwn5000_regulatory_bands[i];
1772 iwn_read_eeprom_channels(sc, i, addr);
1773 }
1774
1775 /* Read enhanced TX power information for 6000 Series. */
1776 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1777 iwn_read_eeprom_enhinfo(sc);
1778
1779 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1780 base = le16toh(val);
1781 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1782 DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1783 hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1784 sc->calib_ver = hdr.version;
1785
1786 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1787 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1788 sc->hw_type == IWN_HW_REV_TYPE_135 ||
1789 sc->hw_type == IWN_HW_REV_TYPE_105) {
1790 sc->eeprom_voltage = le16toh(hdr.volt);
1791 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1792 sc->eeprom_temp = le16toh(val);
1793 iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1794 sc->eeprom_rawtemp = le16toh(val);
1795 }
1796
1797 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1798 /* Compute temperature offset. */
1799 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1800 sc->eeprom_temp = le16toh(val);
1801 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1802 volt = le16toh(val);
1803 sc->temp_off = sc->eeprom_temp - (volt / -5);
1804 DPRINTF(("temp=%d volt=%d offset=%dK\n",
1805 sc->eeprom_temp, volt, sc->temp_off));
1806 } else {
1807 /* Read crystal calibration. */
1808 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1809 &sc->eeprom_crystal, sizeof (uint32_t));
1810 DPRINTF(("crystal calibration 0x%08x\n",
1811 le32toh(sc->eeprom_crystal)));
1812 }
1813 }
1814
1815 static void
1816 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1817 {
1818 struct ieee80211com *ic = &sc->sc_ic;
1819 const struct iwn_chan_band *band = &iwn_bands[n];
1820 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1821 uint8_t chan;
1822 int i;
1823
1824 iwn_read_prom_data(sc, addr, channels,
1825 band->nchan * sizeof (struct iwn_eeprom_chan));
1826
1827 for (i = 0; i < band->nchan; i++) {
1828 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1829 continue;
1830
1831 chan = band->chan[i];
1832
1833 if (n == 0) { /* 2GHz band */
1834 ic->ic_channels[chan].ic_freq =
1835 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1836 ic->ic_channels[chan].ic_flags =
1837 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1838 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1839
1840 } else { /* 5GHz band */
1841 /*
1842 * Some adapters support channels 7, 8, 11 and 12
1843 * both in the 2GHz and 4.9GHz bands.
1844 * Because of limitations in our net80211 layer,
1845 * we don't support them in the 4.9GHz band.
1846 */
1847 if (chan <= 14)
1848 continue;
1849
1850 ic->ic_channels[chan].ic_freq =
1851 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1852 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1853 /* We have at least one valid 5GHz channel. */
1854 sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1855 }
1856
1857 /* Is active scan allowed on this channel? */
1858 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1859 ic->ic_channels[chan].ic_flags |=
1860 IEEE80211_CHAN_PASSIVE;
1861 }
1862
1863 /* Save maximum allowed TX power for this channel. */
1864 sc->maxpwr[chan] = channels[i].maxpwr;
1865
1866 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1867 chan, channels[i].flags, sc->maxpwr[chan]));
1868 }
1869 }
1870
1871 static void
1872 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1873 {
1874 struct iwn_eeprom_enhinfo enhinfo[35];
1875 uint16_t val, base;
1876 int8_t maxpwr;
1877 uint8_t flags;
1878 int i;
1879
1880 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1881 base = le16toh(val);
1882 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1883 enhinfo, sizeof enhinfo);
1884
1885 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1886 for (i = 0; i < __arraycount(enhinfo); i++) {
1887 flags = enhinfo[i].flags;
1888 if (!(flags & IWN_ENHINFO_VALID))
1889 continue; /* Skip invalid entries. */
1890
1891 maxpwr = 0;
1892 if (sc->txchainmask & IWN_ANT_A)
1893 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1894 if (sc->txchainmask & IWN_ANT_B)
1895 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1896 if (sc->txchainmask & IWN_ANT_C)
1897 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1898 if (sc->ntxchains == 2)
1899 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1900 else if (sc->ntxchains == 3)
1901 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1902 maxpwr /= 2; /* Convert half-dBm to dBm. */
1903
1904 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1905 sc->enh_maxpwr[i] = maxpwr;
1906 }
1907 }
1908
1909 static struct ieee80211_node *
1910 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1911 {
1912 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1913 }
1914
1915 static void
1916 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1917 {
1918 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1919 struct iwn_node *wn = (void *)ni;
1920 uint8_t rate;
1921 int ridx, i;
1922
1923 ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1924 /* Start at lowest available bit-rate, AMRR will raise. */
1925 ni->ni_txrate = 0;
1926
1927 for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1928 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1929 /* Map 802.11 rate to HW rate index. */
1930 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1931 if (iwn_rates[ridx].rate == rate)
1932 break;
1933 wn->ridx[i] = ridx;
1934 }
1935 }
1936
1937 static int
1938 iwn_media_change(struct ifnet *ifp)
1939 {
1940 struct iwn_softc *sc = ifp->if_softc;
1941 struct ieee80211com *ic = &sc->sc_ic;
1942 uint8_t rate, ridx;
1943 int error;
1944
1945 error = ieee80211_media_change(ifp);
1946 if (error != ENETRESET)
1947 return error;
1948
1949 if (ic->ic_fixed_rate != -1) {
1950 rate = ic->ic_sup_rates[ic->ic_curmode].
1951 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1952 /* Map 802.11 rate to HW rate index. */
1953 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1954 if (iwn_rates[ridx].rate == rate)
1955 break;
1956 sc->fixed_ridx = ridx;
1957 }
1958
1959 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1960 (IFF_UP | IFF_RUNNING)) {
1961 iwn_stop(ifp, 0);
1962 error = iwn_init(ifp);
1963 }
1964 return error;
1965 }
1966
1967 static int
1968 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1969 {
1970 struct ifnet *ifp = ic->ic_ifp;
1971 struct iwn_softc *sc = ifp->if_softc;
1972 int error;
1973
1974 callout_stop(&sc->calib_to);
1975
1976 switch (nstate) {
1977 case IEEE80211_S_SCAN:
1978 /* XXX Do not abort a running scan. */
1979 if (sc->sc_flags & IWN_FLAG_SCANNING) {
1980 if (ic->ic_state != nstate)
1981 aprint_debug_dev(sc->sc_dev, "scan request(%d) "
1982 "while scanning(%d) ignored\n", nstate,
1983 ic->ic_state);
1984 break;
1985 }
1986
1987 /* XXX Not sure if call and flags are needed. */
1988 ieee80211_node_table_reset(&ic->ic_scan);
1989 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1990 sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1991
1992 /* Make the link LED blink while we're scanning. */
1993 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1994
1995 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1996 aprint_error_dev(sc->sc_dev,
1997 "could not initiate scan\n");
1998 return error;
1999 }
2000 ic->ic_state = nstate;
2001 return 0;
2002
2003 case IEEE80211_S_ASSOC:
2004 if (ic->ic_state != IEEE80211_S_RUN)
2005 break;
2006 /* FALLTHROUGH */
2007 case IEEE80211_S_AUTH:
2008 /* Reset state to handle reassociations correctly. */
2009 sc->rxon.associd = 0;
2010 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
2011 sc->calib.state = IWN_CALIB_STATE_INIT;
2012
2013 /* Wait until we hear a beacon before we transmit */
2014 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2015 sc->sc_beacon_wait = 1;
2016
2017 if ((error = iwn_auth(sc)) != 0) {
2018 aprint_error_dev(sc->sc_dev,
2019 "could not move to auth state\n");
2020 return error;
2021 }
2022 break;
2023
2024 case IEEE80211_S_RUN:
2025 /*
2026 * RUN -> RUN transition; Just restart timers.
2027 */
2028 if (ic->ic_state == IEEE80211_S_RUN) {
2029 sc->calib_cnt = 0;
2030 break;
2031 }
2032
2033 /* Wait until we hear a beacon before we transmit */
2034 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2035 sc->sc_beacon_wait = 1;
2036
2037 if ((error = iwn_run(sc)) != 0) {
2038 aprint_error_dev(sc->sc_dev,
2039 "could not move to run state\n");
2040 return error;
2041 }
2042 break;
2043
2044 case IEEE80211_S_INIT:
2045 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2046 sc->calib.state = IWN_CALIB_STATE_INIT;
2047 /*
2048 * Purge the xmit queue so we don't have old frames
2049 * during a new association attempt.
2050 */
2051 sc->sc_beacon_wait = 0;
2052 ifp->if_flags &= ~IFF_OACTIVE;
2053 iwn_start(ifp);
2054 break;
2055 }
2056
2057 return sc->sc_newstate(ic, nstate, arg);
2058 }
2059
2060 static void
2061 iwn_iter_func(void *arg, struct ieee80211_node *ni)
2062 {
2063 struct iwn_softc *sc = arg;
2064 struct iwn_node *wn = (struct iwn_node *)ni;
2065
2066 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
2067 }
2068
2069 static void
2070 iwn_calib_timeout(void *arg)
2071 {
2072 struct iwn_softc *sc = arg;
2073 struct ieee80211com *ic = &sc->sc_ic;
2074 int s;
2075
2076 s = splnet();
2077 if (ic->ic_fixed_rate == -1) {
2078 if (ic->ic_opmode == IEEE80211_M_STA)
2079 iwn_iter_func(sc, ic->ic_bss);
2080 else
2081 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
2082 }
2083 /* Force automatic TX power calibration every 60 secs. */
2084 if (++sc->calib_cnt >= 120) {
2085 uint32_t flags = 0;
2086
2087 DPRINTF(("sending request for statistics\n"));
2088 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2089 sizeof flags, 1);
2090 sc->calib_cnt = 0;
2091 }
2092 splx(s);
2093
2094 /* Automatic rate control triggered every 500ms. */
2095 callout_schedule(&sc->calib_to, mstohz(500));
2096 }
2097
2098 /*
2099 * Process an RX_PHY firmware notification. This is usually immediately
2100 * followed by an MPDU_RX_DONE notification.
2101 */
2102 static void
2103 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2104 struct iwn_rx_data *data)
2105 {
2106 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2107
2108 DPRINTFN(2, ("received PHY stats\n"));
2109 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2110 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2111
2112 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
2113 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2114 sc->last_rx_valid = 1;
2115 }
2116
2117 /*
2118 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2119 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2120 */
2121 static void
2122 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2123 struct iwn_rx_data *data)
2124 {
2125 struct iwn_ops *ops = &sc->ops;
2126 struct ieee80211com *ic = &sc->sc_ic;
2127 struct ifnet *ifp = ic->ic_ifp;
2128 struct iwn_rx_ring *ring = &sc->rxq;
2129 struct ieee80211_frame *wh;
2130 struct ieee80211_node *ni;
2131 struct mbuf *m, *m1;
2132 struct iwn_rx_stat *stat;
2133 char *head;
2134 uint32_t flags;
2135 int error, len, rssi, s;
2136
2137 if (desc->type == IWN_MPDU_RX_DONE) {
2138 /* Check for prior RX_PHY notification. */
2139 if (!sc->last_rx_valid) {
2140 DPRINTF(("missing RX_PHY\n"));
2141 return;
2142 }
2143 sc->last_rx_valid = 0;
2144 stat = &sc->last_rx_stat;
2145 } else
2146 stat = (struct iwn_rx_stat *)(desc + 1);
2147
2148 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2149 BUS_DMASYNC_POSTREAD);
2150
2151 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2152 aprint_error_dev(sc->sc_dev,
2153 "invalid RX statistic header\n");
2154 return;
2155 }
2156 if (desc->type == IWN_MPDU_RX_DONE) {
2157 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2158 head = (char *)(mpdu + 1);
2159 len = le16toh(mpdu->len);
2160 } else {
2161 head = (char *)(stat + 1) + stat->cfg_phy_len;
2162 len = le16toh(stat->len);
2163 }
2164
2165 flags = le32toh(*(uint32_t *)(head + len));
2166
2167 /* Discard frames with a bad FCS early. */
2168 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2169 DPRINTFN(2, ("RX flags error %x\n", flags));
2170 if_statinc(ifp, if_ierrors);
2171 return;
2172 }
2173 /* Discard frames that are too short. */
2174 if (len < sizeof (*wh)) {
2175 DPRINTF(("frame too short: %d\n", len));
2176 ic->ic_stats.is_rx_tooshort++;
2177 if_statinc(ifp, if_ierrors);
2178 return;
2179 }
2180
2181 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2182 if (m1 == NULL) {
2183 ic->ic_stats.is_rx_nobuf++;
2184 if_statinc(ifp, if_ierrors);
2185 return;
2186 }
2187 MCLAIM(m1, &sc->sc_ec.ec_rx_mowner);
2188 bus_dmamap_unload(sc->sc_dmat, data->map);
2189
2190 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2191 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2192 if (error != 0) {
2193 m_freem(m1);
2194
2195 /* Try to reload the old mbuf. */
2196 error = bus_dmamap_load(sc->sc_dmat, data->map,
2197 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2198 BUS_DMA_NOWAIT | BUS_DMA_READ);
2199 if (error != 0) {
2200 panic("%s: could not load old RX mbuf",
2201 device_xname(sc->sc_dev));
2202 }
2203 /* Physical address may have changed. */
2204 ring->desc[ring->cur] =
2205 htole32(data->map->dm_segs[0].ds_addr >> 8);
2206 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2207 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2208 BUS_DMASYNC_PREWRITE);
2209 if_statinc(ifp, if_ierrors);
2210 return;
2211 }
2212
2213 m = data->m;
2214 data->m = m1;
2215 /* Update RX descriptor. */
2216 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2217 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2218 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2219 BUS_DMASYNC_PREWRITE);
2220
2221 /* Finalize mbuf. */
2222 m_set_rcvif(m, ifp);
2223 m->m_data = head;
2224 m->m_pkthdr.len = m->m_len = len;
2225
2226 s = splnet();
2227
2228 /* Grab a reference to the source node. */
2229 wh = mtod(m, struct ieee80211_frame *);
2230 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2231
2232 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2233 /* NetBSD does decryption in ieee80211_input. */
2234
2235 rssi = ops->get_rssi(stat);
2236
2237 /* XXX Added for NetBSD: scans never stop without it */
2238 if (ic->ic_state == IEEE80211_S_SCAN)
2239 iwn_fix_channel(ic, m, stat);
2240
2241 if (sc->sc_drvbpf != NULL) {
2242 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2243
2244 tap->wr_flags = 0;
2245 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2246 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2247 tap->wr_chan_freq =
2248 htole16(ic->ic_channels[stat->chan].ic_freq);
2249 tap->wr_chan_flags =
2250 htole16(ic->ic_channels[stat->chan].ic_flags);
2251 tap->wr_dbm_antsignal = (int8_t)rssi;
2252 tap->wr_dbm_antnoise = (int8_t)sc->noise;
2253 tap->wr_tsft = stat->tstamp;
2254 switch (stat->rate) {
2255 /* CCK rates. */
2256 case 10: tap->wr_rate = 2; break;
2257 case 20: tap->wr_rate = 4; break;
2258 case 55: tap->wr_rate = 11; break;
2259 case 110: tap->wr_rate = 22; break;
2260 /* OFDM rates. */
2261 case 0xd: tap->wr_rate = 12; break;
2262 case 0xf: tap->wr_rate = 18; break;
2263 case 0x5: tap->wr_rate = 24; break;
2264 case 0x7: tap->wr_rate = 36; break;
2265 case 0x9: tap->wr_rate = 48; break;
2266 case 0xb: tap->wr_rate = 72; break;
2267 case 0x1: tap->wr_rate = 96; break;
2268 case 0x3: tap->wr_rate = 108; break;
2269 /* Unknown rate: should not happen. */
2270 default: tap->wr_rate = 0;
2271 }
2272
2273 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
2274 }
2275
2276 /*
2277 * If it's a beacon and we're waiting, then do the wakeup.
2278 */
2279 if (sc->sc_beacon_wait) {
2280 uint8_t type, subtype;
2281 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2282 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2283 /*
2284 * This assumes at this point we've received our own
2285 * beacon.
2286 */
2287 if (type == IEEE80211_FC0_TYPE_MGT &&
2288 subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
2289 sc->sc_beacon_wait = 0;
2290 ifp->if_flags &= ~IFF_OACTIVE;
2291 iwn_start(ifp);
2292 }
2293 }
2294
2295 /* Send the frame to the 802.11 layer. */
2296 ieee80211_input(ic, m, ni, rssi, 0);
2297
2298 /* Node is no longer needed. */
2299 ieee80211_free_node(ni);
2300
2301 splx(s);
2302 }
2303
2304 #ifndef IEEE80211_NO_HT
2305 /* Process an incoming Compressed BlockAck. */
2306 static void
2307 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2308 struct iwn_rx_data *data)
2309 {
2310 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2311 struct iwn_tx_ring *txq;
2312
2313 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2314 BUS_DMASYNC_POSTREAD);
2315
2316 txq = &sc->txq[le16toh(ba->qid)];
2317 /* XXX TBD */
2318 }
2319 #endif
2320
2321 /*
2322 * Process a CALIBRATION_RESULT notification sent by the initialization
2323 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2324 */
2325 static void
2326 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2327 struct iwn_rx_data *data)
2328 {
2329 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2330 int len, idx = -1;
2331
2332 /* Runtime firmware should not send such a notification. */
2333 if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2334 return;
2335
2336 len = (le32toh(desc->len) & 0x3fff) - 4;
2337 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2338 BUS_DMASYNC_POSTREAD);
2339
2340 switch (calib->code) {
2341 case IWN5000_PHY_CALIB_DC:
2342 if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2343 sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2344 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2345 sc->hw_type == IWN_HW_REV_TYPE_135 ||
2346 sc->hw_type == IWN_HW_REV_TYPE_105)
2347 idx = 0;
2348 break;
2349 case IWN5000_PHY_CALIB_LO:
2350 idx = 1;
2351 break;
2352 case IWN5000_PHY_CALIB_TX_IQ:
2353 idx = 2;
2354 break;
2355 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2356 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2357 sc->hw_type != IWN_HW_REV_TYPE_5150)
2358 idx = 3;
2359 break;
2360 case IWN5000_PHY_CALIB_BASE_BAND:
2361 idx = 4;
2362 break;
2363 }
2364 if (idx == -1) /* Ignore other results. */
2365 return;
2366
2367 /* Save calibration result. */
2368 if (sc->calibcmd[idx].buf != NULL)
2369 free(sc->calibcmd[idx].buf, M_DEVBUF);
2370 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2371 if (sc->calibcmd[idx].buf == NULL) {
2372 DPRINTF(("not enough memory for calibration result %d\n",
2373 calib->code));
2374 return;
2375 }
2376 DPRINTF(("saving calibration result code=%d len=%d\n",
2377 calib->code, len));
2378 sc->calibcmd[idx].len = len;
2379 memcpy(sc->calibcmd[idx].buf, calib, len);
2380 }
2381
2382 /*
2383 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2384 * The latter is sent by the firmware after each received beacon.
2385 */
2386 static void
2387 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2388 struct iwn_rx_data *data)
2389 {
2390 struct iwn_ops *ops = &sc->ops;
2391 struct ieee80211com *ic = &sc->sc_ic;
2392 struct iwn_calib_state *calib = &sc->calib;
2393 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2394 int temp;
2395
2396 /* Ignore statistics received during a scan. */
2397 if (ic->ic_state != IEEE80211_S_RUN)
2398 return;
2399
2400 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2401 sizeof (*stats), BUS_DMASYNC_POSTREAD);
2402
2403 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2404 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2405
2406 /* Test if temperature has changed. */
2407 if (stats->general.temp != sc->rawtemp) {
2408 /* Convert "raw" temperature to degC. */
2409 sc->rawtemp = stats->general.temp;
2410 temp = ops->get_temperature(sc);
2411 DPRINTFN(2, ("temperature=%dC\n", temp));
2412
2413 /* Update TX power if need be (4965AGN only). */
2414 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2415 iwn4965_power_calibration(sc, temp);
2416 }
2417
2418 if (desc->type != IWN_BEACON_STATISTICS)
2419 return; /* Reply to a statistics request. */
2420
2421 sc->noise = iwn_get_noise(&stats->rx.general);
2422
2423 /* Test that RSSI and noise are present in stats report. */
2424 if (le32toh(stats->rx.general.flags) != 1) {
2425 DPRINTF(("received statistics without RSSI\n"));
2426 return;
2427 }
2428
2429 /*
2430 * XXX Differential gain calibration makes the 6005 firmware
2431 * crap out, so skip it for now. This effectively disables
2432 * sensitivity tuning as well.
2433 */
2434 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2435 return;
2436
2437 if (calib->state == IWN_CALIB_STATE_ASSOC)
2438 iwn_collect_noise(sc, &stats->rx.general);
2439 else if (calib->state == IWN_CALIB_STATE_RUN)
2440 iwn_tune_sensitivity(sc, &stats->rx);
2441 }
2442
2443 /*
2444 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2445 * and 5000 adapters have different incompatible TX status formats.
2446 */
2447 static void
2448 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2449 struct iwn_rx_data *data)
2450 {
2451 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2452
2453 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2454 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2455 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2456 }
2457
2458 static void
2459 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2460 struct iwn_rx_data *data)
2461 {
2462 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2463
2464 #ifdef notyet
2465 /* Reset TX scheduler slot. */
2466 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2467 #endif
2468
2469 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2470 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2471 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2472 }
2473
2474 /*
2475 * Adapter-independent backend for TX_DONE firmware notifications.
2476 */
2477 static void
2478 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2479 uint8_t status)
2480 {
2481 struct ieee80211com *ic = &sc->sc_ic;
2482 struct ifnet *ifp = ic->ic_ifp;
2483 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2484 struct iwn_tx_data *data = &ring->data[desc->idx];
2485 struct iwn_node *wn = (struct iwn_node *)data->ni;
2486 int s;
2487
2488 s = splnet();
2489
2490 /* Update rate control statistics. */
2491 wn->amn.amn_txcnt++;
2492 if (ackfailcnt > 0)
2493 wn->amn.amn_retrycnt++;
2494
2495 if (status != 1 && status != 2)
2496 if_statinc(ifp, if_oerrors);
2497 else
2498 if_statinc(ifp, if_opackets);
2499
2500 /* Unmap and free mbuf. */
2501 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2502 BUS_DMASYNC_POSTWRITE);
2503 bus_dmamap_unload(sc->sc_dmat, data->map);
2504 m_freem(data->m);
2505 data->m = NULL;
2506 ieee80211_free_node(data->ni);
2507 data->ni = NULL;
2508
2509 sc->sc_tx_timer = 0;
2510 if (--ring->queued < IWN_TX_RING_LOMARK) {
2511 sc->qfullmsk &= ~(1 << ring->qid);
2512 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2513 ifp->if_flags &= ~IFF_OACTIVE;
2514 iwn_start(ifp);
2515 }
2516 }
2517
2518 splx(s);
2519 }
2520
2521 /*
2522 * Process a "command done" firmware notification. This is where we wakeup
2523 * processes waiting for a synchronous command completion.
2524 */
2525 static void
2526 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2527 {
2528 struct iwn_tx_ring *ring = &sc->txq[4];
2529 struct iwn_tx_data *data;
2530
2531 if ((desc->qid & 0xf) != 4)
2532 return; /* Not a command ack. */
2533
2534 data = &ring->data[desc->idx];
2535
2536 /* If the command was mapped in an mbuf, free it. */
2537 if (data->m != NULL) {
2538 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2539 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2540 bus_dmamap_unload(sc->sc_dmat, data->map);
2541 m_freem(data->m);
2542 data->m = NULL;
2543 }
2544 wakeup(&ring->desc[desc->idx]);
2545 }
2546
2547 /*
2548 * Process an INT_FH_RX or INT_SW_RX interrupt.
2549 */
2550 static void
2551 iwn_notif_intr(struct iwn_softc *sc)
2552 {
2553 struct iwn_ops *ops = &sc->ops;
2554 struct ieee80211com *ic = &sc->sc_ic;
2555 struct ifnet *ifp = ic->ic_ifp;
2556 uint16_t hw;
2557 int s;
2558
2559 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2560 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2561
2562 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2563 while (sc->rxq.cur != hw) {
2564 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2565 struct iwn_rx_desc *desc;
2566
2567 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2568 BUS_DMASYNC_POSTREAD);
2569 desc = mtod(data->m, struct iwn_rx_desc *);
2570
2571 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2572 desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2573
2574 if (!(desc->qid & 0x80)) /* Reply to a command. */
2575 iwn_cmd_done(sc, desc);
2576
2577 switch (desc->type) {
2578 case IWN_RX_PHY:
2579 iwn_rx_phy(sc, desc, data);
2580 break;
2581
2582 case IWN_RX_DONE: /* 4965AGN only. */
2583 case IWN_MPDU_RX_DONE:
2584 /* An 802.11 frame has been received. */
2585 iwn_rx_done(sc, desc, data);
2586 break;
2587 #ifndef IEEE80211_NO_HT
2588 case IWN_RX_COMPRESSED_BA:
2589 /* A Compressed BlockAck has been received. */
2590 iwn_rx_compressed_ba(sc, desc, data);
2591 break;
2592 #endif
2593 case IWN_TX_DONE:
2594 /* An 802.11 frame has been transmitted. */
2595 ops->tx_done(sc, desc, data);
2596 break;
2597
2598 case IWN_RX_STATISTICS:
2599 case IWN_BEACON_STATISTICS:
2600 iwn_rx_statistics(sc, desc, data);
2601 break;
2602
2603 case IWN_BEACON_MISSED:
2604 {
2605 struct iwn_beacon_missed *miss =
2606 (struct iwn_beacon_missed *)(desc + 1);
2607
2608 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2609 sizeof (*miss), BUS_DMASYNC_POSTREAD);
2610 /*
2611 * If more than 5 consecutive beacons are missed,
2612 * reinitialize the sensitivity state machine.
2613 */
2614 DPRINTF(("beacons missed %d/%d\n",
2615 le32toh(miss->consecutive), le32toh(miss->total)));
2616 if (ic->ic_state == IEEE80211_S_RUN &&
2617 le32toh(miss->consecutive) > 5)
2618 (void)iwn_init_sensitivity(sc);
2619 break;
2620 }
2621 case IWN_UC_READY:
2622 {
2623 struct iwn_ucode_info *uc =
2624 (struct iwn_ucode_info *)(desc + 1);
2625
2626 /* The microcontroller is ready. */
2627 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2628 sizeof (*uc), BUS_DMASYNC_POSTREAD);
2629 DPRINTF(("microcode alive notification version=%d.%d "
2630 "subtype=%x alive=%x\n", uc->major, uc->minor,
2631 uc->subtype, le32toh(uc->valid)));
2632
2633 if (le32toh(uc->valid) != 1) {
2634 aprint_error_dev(sc->sc_dev,
2635 "microcontroller initialization "
2636 "failed\n");
2637 break;
2638 }
2639 if (uc->subtype == IWN_UCODE_INIT) {
2640 /* Save microcontroller report. */
2641 memcpy(&sc->ucode_info, uc, sizeof (*uc));
2642 }
2643 /* Save the address of the error log in SRAM. */
2644 sc->errptr = le32toh(uc->errptr);
2645 break;
2646 }
2647 case IWN_STATE_CHANGED:
2648 {
2649 uint32_t *status = (uint32_t *)(desc + 1);
2650
2651 /* Enabled/disabled notification. */
2652 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2653 sizeof (*status), BUS_DMASYNC_POSTREAD);
2654 DPRINTF(("state changed to %x\n", le32toh(*status)));
2655
2656 if (le32toh(*status) & 1) {
2657 /* The radio button has to be pushed. */
2658 aprint_error_dev(sc->sc_dev,
2659 "Radio transmitter is off\n");
2660 /* Turn the interface down. */
2661 s = splnet();
2662 ifp->if_flags &= ~IFF_UP;
2663 iwn_stop(ifp, 1);
2664 splx(s);
2665 return; /* No further processing. */
2666 }
2667 break;
2668 }
2669 case IWN_START_SCAN:
2670 {
2671 struct iwn_start_scan *scan =
2672 (struct iwn_start_scan *)(desc + 1);
2673
2674 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2675 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2676 DPRINTFN(2, ("scanning channel %d status %x\n",
2677 scan->chan, le32toh(scan->status)));
2678
2679 /* Fix current channel. */
2680 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2681 break;
2682 }
2683 case IWN_STOP_SCAN:
2684 {
2685 struct iwn_stop_scan *scan =
2686 (struct iwn_stop_scan *)(desc + 1);
2687
2688 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2689 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2690 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2691 scan->nchan, scan->status, scan->chan));
2692
2693 if (scan->status == 1 && scan->chan <= 14 &&
2694 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2695 /*
2696 * We just finished scanning 2GHz channels,
2697 * start scanning 5GHz ones.
2698 */
2699 sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2700 sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2701 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2702 break;
2703 }
2704 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2705 ieee80211_end_scan(ic);
2706 break;
2707 }
2708 case IWN5000_CALIBRATION_RESULT:
2709 iwn5000_rx_calib_results(sc, desc, data);
2710 break;
2711
2712 case IWN5000_CALIBRATION_DONE:
2713 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2714 wakeup(sc);
2715 break;
2716 }
2717
2718 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2719 }
2720
2721 /* Tell the firmware what we have processed. */
2722 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2723 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2724 }
2725
2726 /*
2727 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2728 * from power-down sleep mode.
2729 */
2730 static void
2731 iwn_wakeup_intr(struct iwn_softc *sc)
2732 {
2733 int qid;
2734
2735 DPRINTF(("ucode wakeup from power-down sleep\n"));
2736
2737 /* Wakeup RX and TX rings. */
2738 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2739 for (qid = 0; qid < sc->ntxqs; qid++) {
2740 struct iwn_tx_ring *ring = &sc->txq[qid];
2741 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2742 }
2743 }
2744
2745 /*
2746 * Dump the error log of the firmware when a firmware panic occurs. Although
2747 * we can't debug the firmware because it is neither open source nor free, it
2748 * can help us to identify certain classes of problems.
2749 */
2750 static void
2751 iwn_fatal_intr(struct iwn_softc *sc)
2752 {
2753 struct iwn_fw_dump dump;
2754 int i;
2755
2756 /* Force a complete recalibration on next init. */
2757 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2758
2759 /* Check that the error log address is valid. */
2760 if (sc->errptr < IWN_FW_DATA_BASE ||
2761 sc->errptr + sizeof (dump) >
2762 IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2763 aprint_error_dev(sc->sc_dev,
2764 "bad firmware error log address 0x%08x\n", sc->errptr);
2765 return;
2766 }
2767 if (iwn_nic_lock(sc) != 0) {
2768 aprint_error_dev(sc->sc_dev,
2769 "could not read firmware error log\n");
2770 return;
2771 }
2772 /* Read firmware error log from SRAM. */
2773 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2774 sizeof (dump) / sizeof (uint32_t));
2775 iwn_nic_unlock(sc);
2776
2777 if (dump.valid == 0) {
2778 aprint_error_dev(sc->sc_dev,
2779 "firmware error log is empty\n");
2780 return;
2781 }
2782 aprint_error("firmware error log:\n");
2783 aprint_error(" error type = \"%s\" (0x%08X)\n",
2784 (dump.id < __arraycount(iwn_fw_errmsg)) ?
2785 iwn_fw_errmsg[dump.id] : "UNKNOWN",
2786 dump.id);
2787 aprint_error(" program counter = 0x%08X\n", dump.pc);
2788 aprint_error(" source line = 0x%08X\n", dump.src_line);
2789 aprint_error(" error data = 0x%08X%08X\n",
2790 dump.error_data[0], dump.error_data[1]);
2791 aprint_error(" branch link = 0x%08X%08X\n",
2792 dump.branch_link[0], dump.branch_link[1]);
2793 aprint_error(" interrupt link = 0x%08X%08X\n",
2794 dump.interrupt_link[0], dump.interrupt_link[1]);
2795 aprint_error(" time = %u\n", dump.time[0]);
2796
2797 /* Dump driver status (TX and RX rings) while we're here. */
2798 aprint_error("driver status:\n");
2799 for (i = 0; i < sc->ntxqs; i++) {
2800 struct iwn_tx_ring *ring = &sc->txq[i];
2801 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2802 i, ring->qid, ring->cur, ring->queued);
2803 }
2804 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
2805 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
2806 }
2807
2808 static int
2809 iwn_intr(void *arg)
2810 {
2811 struct iwn_softc *sc = arg;
2812
2813 /* Disable interrupts. */
2814 IWN_WRITE(sc, IWN_INT_MASK, 0);
2815
2816 softint_schedule(sc->sc_soft_ih);
2817 return 1;
2818 }
2819
2820 static void
2821 iwn_softintr(void *arg)
2822 {
2823 struct iwn_softc *sc = arg;
2824 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2825 uint32_t r1, r2, tmp;
2826 int s;
2827
2828 /* Read interrupts from ICT (fast) or from registers (slow). */
2829 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2830 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2831 IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
2832 tmp = 0;
2833 while (sc->ict[sc->ict_cur] != 0) {
2834 tmp |= sc->ict[sc->ict_cur];
2835 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2836 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2837 }
2838 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2839 IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
2840 tmp = le32toh(tmp);
2841 if (tmp == 0xffffffff) /* Shouldn't happen. */
2842 tmp = 0;
2843 else if (tmp & 0xc0000) /* Workaround a HW bug. */
2844 tmp |= 0x8000;
2845 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2846 r2 = 0; /* Unused. */
2847 } else {
2848 r1 = IWN_READ(sc, IWN_INT);
2849 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2850 return; /* Hardware gone! */
2851 r2 = IWN_READ(sc, IWN_FH_INT);
2852 }
2853 if (r1 == 0 && r2 == 0) {
2854 goto out; /* Interrupt not for us. */
2855 }
2856
2857 /* Acknowledge interrupts. */
2858 IWN_WRITE(sc, IWN_INT, r1);
2859 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2860 IWN_WRITE(sc, IWN_FH_INT, r2);
2861
2862 if (r1 & IWN_INT_RF_TOGGLED) {
2863 tmp = IWN_READ(sc, IWN_GP_CNTRL);
2864 aprint_error_dev(sc->sc_dev,
2865 "RF switch: radio %s\n",
2866 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2867 }
2868 if (r1 & IWN_INT_CT_REACHED) {
2869 aprint_error_dev(sc->sc_dev,
2870 "critical temperature reached!\n");
2871 }
2872 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2873 aprint_error_dev(sc->sc_dev,
2874 "fatal firmware error\n");
2875 /* Dump firmware error log and stop. */
2876 iwn_fatal_intr(sc);
2877 s = splnet();
2878 ifp->if_flags &= ~IFF_UP;
2879 iwn_stop(ifp, 1);
2880 splx(s);
2881 return;
2882 }
2883 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2884 (r2 & IWN_FH_INT_RX)) {
2885 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2886 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2887 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2888 IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
2889 iwn_notif_intr(sc);
2890 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2891 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2892 IWN_INT_PERIODIC_ENA);
2893 }
2894 } else
2895 iwn_notif_intr(sc);
2896 }
2897
2898 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2899 if (sc->sc_flags & IWN_FLAG_USE_ICT)
2900 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2901 wakeup(sc); /* FH DMA transfer completed. */
2902 }
2903
2904 if (r1 & IWN_INT_ALIVE)
2905 wakeup(sc); /* Firmware is alive. */
2906
2907 if (r1 & IWN_INT_WAKEUP)
2908 iwn_wakeup_intr(sc);
2909
2910 out:
2911 /* Re-enable interrupts. */
2912 if (ifp->if_flags & IFF_UP)
2913 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2914 }
2915
2916 /*
2917 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2918 * 5000 adapters use a slightly different format).
2919 */
2920 static void
2921 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2922 uint16_t len)
2923 {
2924 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2925
2926 *w = htole16(len + 8);
2927 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2928 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2929 sizeof (uint16_t),
2930 BUS_DMASYNC_PREWRITE);
2931 if (idx < IWN_SCHED_WINSZ) {
2932 *(w + IWN_TX_RING_COUNT) = *w;
2933 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2934 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2935 (char *)(void *)sc->sched_dma.vaddr,
2936 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2937 }
2938 }
2939
2940 static void
2941 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2942 uint16_t len)
2943 {
2944 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2945
2946 *w = htole16(id << 12 | (len + 8));
2947 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2948 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2949 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2950 if (idx < IWN_SCHED_WINSZ) {
2951 *(w + IWN_TX_RING_COUNT) = *w;
2952 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2953 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2954 (char *)(void *)sc->sched_dma.vaddr,
2955 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2956 }
2957 }
2958
2959 #ifdef notyet
2960 static void
2961 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2962 {
2963 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2964
2965 *w = (*w & htole16(0xf000)) | htole16(1);
2966 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2967 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2968 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2969 if (idx < IWN_SCHED_WINSZ) {
2970 *(w + IWN_TX_RING_COUNT) = *w;
2971 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2972 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2973 (char *)(void *)sc->sched_dma.vaddr,
2974 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2975 }
2976 }
2977 #endif
2978
2979 static int
2980 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2981 {
2982 struct ieee80211com *ic = &sc->sc_ic;
2983 struct iwn_node *wn = (void *)ni;
2984 struct iwn_tx_ring *ring;
2985 struct iwn_tx_desc *desc;
2986 struct iwn_tx_data *data;
2987 struct iwn_tx_cmd *cmd;
2988 struct iwn_cmd_data *tx;
2989 const struct iwn_rate *rinfo;
2990 struct ieee80211_frame *wh;
2991 struct ieee80211_key *k = NULL;
2992 struct mbuf *m1;
2993 uint32_t flags;
2994 u_int hdrlen;
2995 bus_dma_segment_t *seg;
2996 uint8_t tid, ridx, txant, type;
2997 int i, totlen, error, pad;
2998
2999 const struct chanAccParams *cap;
3000 int noack;
3001 int hdrlen2;
3002
3003 wh = mtod(m, struct ieee80211_frame *);
3004 hdrlen = ieee80211_anyhdrsize(wh);
3005 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3006
3007 hdrlen2 = (ieee80211_has_qos(wh)) ?
3008 sizeof (struct ieee80211_qosframe) :
3009 sizeof (struct ieee80211_frame);
3010
3011 if (hdrlen != hdrlen2)
3012 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
3013 hdrlen, hdrlen2);
3014
3015 /* XXX OpenBSD sets a different tid when using QOS */
3016 tid = 0;
3017 if (ieee80211_has_qos(wh)) {
3018 cap = &ic->ic_wme.wme_chanParams;
3019 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
3020 }
3021 else
3022 noack = 0;
3023
3024 ring = &sc->txq[ac];
3025 desc = &ring->desc[ring->cur];
3026 data = &ring->data[ring->cur];
3027
3028 /* Choose a TX rate index. */
3029 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3030 type != IEEE80211_FC0_TYPE_DATA) {
3031 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3032 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
3033 } else if (ic->ic_fixed_rate != -1) {
3034 ridx = sc->fixed_ridx;
3035 } else
3036 ridx = wn->ridx[ni->ni_txrate];
3037 rinfo = &iwn_rates[ridx];
3038
3039 /* Encrypt the frame if need be. */
3040 /*
3041 * XXX For now, NetBSD swaps the encryption and bpf sections
3042 * in order to match old code and other drivers. Tests with
3043 * tcpdump indicates that the order is irrelevant, however,
3044 * as bpf produces unencrypted data for both ordering choices.
3045 */
3046 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3047 k = ieee80211_crypto_encap(ic, ni, m);
3048 if (k == NULL) {
3049 m_freem(m);
3050 return ENOBUFS;
3051 }
3052 /* Packet header may have moved, reset our local pointer. */
3053 wh = mtod(m, struct ieee80211_frame *);
3054 }
3055 totlen = m->m_pkthdr.len;
3056
3057 if (sc->sc_drvbpf != NULL) {
3058 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3059
3060 tap->wt_flags = 0;
3061 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3062 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3063 tap->wt_rate = rinfo->rate;
3064 tap->wt_hwqueue = ac;
3065 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3066 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3067
3068 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
3069 }
3070
3071 /* Prepare TX firmware command. */
3072 cmd = &ring->cmd[ring->cur];
3073 cmd->code = IWN_CMD_TX_DATA;
3074 cmd->flags = 0;
3075 cmd->qid = ring->qid;
3076 cmd->idx = ring->cur;
3077
3078 tx = (struct iwn_cmd_data *)cmd->data;
3079 /* NB: No need to clear tx, all fields are reinitialized here. */
3080 tx->scratch = 0; /* clear "scratch" area */
3081
3082 flags = 0;
3083 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3084 /* Unicast frame, check if an ACK is expected. */
3085 if (!noack)
3086 flags |= IWN_TX_NEED_ACK;
3087 }
3088
3089 #ifdef notyet
3090 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
3091 if ((wh->i_fc[0] &
3092 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3093 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3094 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
3095 #endif
3096
3097 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3098 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
3099
3100 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3101 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3102 /* NB: Group frames are sent using CCK in 802.11b/g. */
3103 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3104 flags |= IWN_TX_NEED_RTS;
3105 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3106 ridx >= IWN_RIDX_OFDM6) {
3107 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3108 flags |= IWN_TX_NEED_CTS;
3109 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3110 flags |= IWN_TX_NEED_RTS;
3111 }
3112 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3113 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3114 /* 5000 autoselects RTS/CTS or CTS-to-self. */
3115 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3116 flags |= IWN_TX_NEED_PROTECTION;
3117 } else
3118 flags |= IWN_TX_FULL_TXOP;
3119 }
3120 }
3121
3122 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3123 type != IEEE80211_FC0_TYPE_DATA)
3124 tx->id = sc->broadcast_id;
3125 else
3126 tx->id = wn->id;
3127
3128 if (type == IEEE80211_FC0_TYPE_MGT) {
3129 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3130
3131 #ifndef IEEE80211_STA_ONLY
3132 /* Tell HW to set timestamp in probe responses. */
3133 /* XXX NetBSD rev 1.11 added probe requests here but */
3134 /* probe requests do not take timestamps (from Bergamini). */
3135 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3136 flags |= IWN_TX_INSERT_TSTAMP;
3137 #endif
3138 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
3139 /* changes here. These are not needed (from Bergamini). */
3140 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3141 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3142 tx->timeout = htole16(3);
3143 else
3144 tx->timeout = htole16(2);
3145 } else
3146 tx->timeout = htole16(0);
3147
3148 if (hdrlen & 3) {
3149 /* First segment length must be a multiple of 4. */
3150 flags |= IWN_TX_NEED_PADDING;
3151 pad = 4 - (hdrlen & 3);
3152 } else
3153 pad = 0;
3154
3155 tx->len = htole16(totlen);
3156 tx->tid = tid;
3157 tx->rts_ntries = 60;
3158 tx->data_ntries = 15;
3159 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3160 tx->plcp = rinfo->plcp;
3161 tx->rflags = rinfo->flags;
3162 if (tx->id == sc->broadcast_id) {
3163 /* Group or management frame. */
3164 tx->linkq = 0;
3165 /* XXX Alternate between antenna A and B? */
3166 txant = IWN_LSB(sc->txchainmask);
3167 tx->rflags |= IWN_RFLAG_ANT(txant);
3168 } else {
3169 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3170 flags |= IWN_TX_LINKQ; /* enable MRR */
3171 }
3172 /* Set physical address of "scratch area". */
3173 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3174 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3175
3176 /* Copy 802.11 header in TX command. */
3177 /* XXX NetBSD changed this in rev 1.20 */
3178 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3179
3180 /* Trim 802.11 header. */
3181 m_adj(m, hdrlen);
3182 tx->security = 0;
3183 tx->flags = htole32(flags);
3184
3185 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3186 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3187 if (error != 0) {
3188 if (error != EFBIG) {
3189 aprint_error_dev(sc->sc_dev,
3190 "can't map mbuf (error %d)\n", error);
3191 m_freem(m);
3192 return error;
3193 }
3194 /* Too many DMA segments, linearize mbuf. */
3195 MGETHDR(m1, M_DONTWAIT, MT_DATA);
3196 if (m1 == NULL) {
3197 m_freem(m);
3198 return ENOBUFS;
3199 }
3200 MCLAIM(m1, &sc->sc_ec.ec_tx_mowner);
3201 if (m->m_pkthdr.len > MHLEN) {
3202 MCLGET(m1, M_DONTWAIT);
3203 if (!(m1->m_flags & M_EXT)) {
3204 m_freem(m);
3205 m_freem(m1);
3206 return ENOBUFS;
3207 }
3208 }
3209 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3210 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3211 m_freem(m);
3212 m = m1;
3213
3214 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3215 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3216 if (error != 0) {
3217 aprint_error_dev(sc->sc_dev,
3218 "can't map mbuf (error %d)\n", error);
3219 m_freem(m);
3220 return error;
3221 }
3222 }
3223
3224 data->m = m;
3225 data->ni = ni;
3226
3227 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3228 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3229
3230 /* Fill TX descriptor. */
3231 desc->nsegs = 1 + data->map->dm_nsegs;
3232 /* First DMA segment is used by the TX command. */
3233 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3234 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
3235 (4 + sizeof (*tx) + hdrlen + pad) << 4);
3236 /* Other DMA segments are for data payload. */
3237 seg = data->map->dm_segs;
3238 for (i = 1; i <= data->map->dm_nsegs; i++) {
3239 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3240 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
3241 seg->ds_len << 4);
3242 seg++;
3243 }
3244
3245 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3246 BUS_DMASYNC_PREWRITE);
3247 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3248 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3249 sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3250 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3251 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3252 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3253
3254 #ifdef notyet
3255 /* Update TX scheduler. */
3256 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3257 #endif
3258
3259 /* Kick TX ring. */
3260 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3261 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3262
3263 /* Mark TX ring as full if we reach a certain threshold. */
3264 if (++ring->queued > IWN_TX_RING_HIMARK)
3265 sc->qfullmsk |= 1 << ring->qid;
3266
3267 return 0;
3268 }
3269
3270 static void
3271 iwn_start(struct ifnet *ifp)
3272 {
3273 struct iwn_softc *sc = ifp->if_softc;
3274 struct ieee80211com *ic = &sc->sc_ic;
3275 struct ieee80211_node *ni;
3276 struct ether_header *eh;
3277 struct mbuf *m;
3278 int ac;
3279
3280 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3281 return;
3282
3283 for (;;) {
3284 if (sc->sc_beacon_wait == 1) {
3285 ifp->if_flags |= IFF_OACTIVE;
3286 break;
3287 }
3288
3289 if (sc->qfullmsk != 0) {
3290 ifp->if_flags |= IFF_OACTIVE;
3291 break;
3292 }
3293 /* Send pending management frames first. */
3294 IF_DEQUEUE(&ic->ic_mgtq, m);
3295 if (m != NULL) {
3296 ni = M_GETCTX(m, struct ieee80211_node *);
3297 ac = 0;
3298 goto sendit;
3299 }
3300 if (ic->ic_state != IEEE80211_S_RUN)
3301 break;
3302
3303 /* Encapsulate and send data frames. */
3304 IFQ_DEQUEUE(&ifp->if_snd, m);
3305 if (m == NULL)
3306 break;
3307 if (m->m_len < sizeof (*eh) &&
3308 (m = m_pullup(m, sizeof (*eh))) == NULL) {
3309 if_statinc(ifp, if_oerrors);
3310 continue;
3311 }
3312 eh = mtod(m, struct ether_header *);
3313 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3314 if (ni == NULL) {
3315 m_freem(m);
3316 if_statinc(ifp, if_oerrors);
3317 continue;
3318 }
3319 /* classify mbuf so we can find which tx ring to use */
3320 if (ieee80211_classify(ic, m, ni) != 0) {
3321 m_freem(m);
3322 ieee80211_free_node(ni);
3323 if_statinc(ifp, if_oerrors);
3324 continue;
3325 }
3326
3327 /* No QoS encapsulation for EAPOL frames. */
3328 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3329 M_WME_GETAC(m) : WME_AC_BE;
3330
3331 if (sc->sc_beacon_wait == 0)
3332 bpf_mtap(ifp, m, BPF_D_OUT);
3333
3334 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3335 ieee80211_free_node(ni);
3336 if_statinc(ifp, if_oerrors);
3337 continue;
3338 }
3339 sendit:
3340 if (sc->sc_beacon_wait)
3341 continue;
3342
3343 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
3344
3345 if (iwn_tx(sc, m, ni, ac) != 0) {
3346 ieee80211_free_node(ni);
3347 if_statinc(ifp, if_oerrors);
3348 continue;
3349 }
3350
3351 sc->sc_tx_timer = 5;
3352 ifp->if_timer = 1;
3353 }
3354
3355 if (sc->sc_beacon_wait > 1)
3356 sc->sc_beacon_wait = 0;
3357 }
3358
3359 static void
3360 iwn_watchdog(struct ifnet *ifp)
3361 {
3362 struct iwn_softc *sc = ifp->if_softc;
3363
3364 ifp->if_timer = 0;
3365
3366 if (sc->sc_tx_timer > 0) {
3367 if (--sc->sc_tx_timer == 0) {
3368 aprint_error_dev(sc->sc_dev,
3369 "device timeout\n");
3370 ifp->if_flags &= ~IFF_UP;
3371 iwn_stop(ifp, 1);
3372 if_statinc(ifp, if_oerrors);
3373 return;
3374 }
3375 ifp->if_timer = 1;
3376 }
3377
3378 ieee80211_watchdog(&sc->sc_ic);
3379 }
3380
3381 static int
3382 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3383 {
3384 struct iwn_softc *sc = ifp->if_softc;
3385 struct ieee80211com *ic = &sc->sc_ic;
3386 const struct sockaddr *sa;
3387 int s, error = 0;
3388
3389 s = splnet();
3390
3391 switch (cmd) {
3392 case SIOCSIFADDR:
3393 ifp->if_flags |= IFF_UP;
3394 /* FALLTHROUGH */
3395 case SIOCSIFFLAGS:
3396 /* XXX Added as it is in every NetBSD driver */
3397 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3398 break;
3399 if (ifp->if_flags & IFF_UP) {
3400 if (!(ifp->if_flags & IFF_RUNNING))
3401 error = iwn_init(ifp);
3402 } else {
3403 if (ifp->if_flags & IFF_RUNNING)
3404 iwn_stop(ifp, 1);
3405 }
3406 break;
3407
3408 case SIOCADDMULTI:
3409 case SIOCDELMULTI:
3410 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3411 error = (cmd == SIOCADDMULTI) ?
3412 ether_addmulti(sa, &sc->sc_ec) :
3413 ether_delmulti(sa, &sc->sc_ec);
3414
3415 if (error == ENETRESET)
3416 error = 0;
3417 break;
3418
3419 default:
3420 error = ieee80211_ioctl(ic, cmd, data);
3421 }
3422
3423 if (error == ENETRESET) {
3424 error = 0;
3425 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3426 (IFF_UP | IFF_RUNNING)) {
3427 iwn_stop(ifp, 0);
3428 error = iwn_init(ifp);
3429 }
3430 }
3431
3432 splx(s);
3433 return error;
3434 }
3435
3436 /*
3437 * Send a command to the firmware.
3438 */
3439 static int
3440 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3441 {
3442 struct iwn_tx_ring *ring = &sc->txq[4];
3443 struct iwn_tx_desc *desc;
3444 struct iwn_tx_data *data;
3445 struct iwn_tx_cmd *cmd;
3446 struct mbuf *m;
3447 bus_addr_t paddr;
3448 int totlen, error;
3449
3450 desc = &ring->desc[ring->cur];
3451 data = &ring->data[ring->cur];
3452 totlen = 4 + size;
3453
3454 if (size > sizeof cmd->data) {
3455 /* Command is too large to fit in a descriptor. */
3456 if (totlen > MCLBYTES)
3457 return EINVAL;
3458 MGETHDR(m, M_DONTWAIT, MT_DATA);
3459 if (m == NULL)
3460 return ENOMEM;
3461 MCLAIM(m, &sc->sc_ec.ec_tx_mowner);
3462 if (totlen > MHLEN) {
3463 MCLGET(m, M_DONTWAIT);
3464 if (!(m->m_flags & M_EXT)) {
3465 m_freem(m);
3466 return ENOMEM;
3467 }
3468 }
3469 cmd = mtod(m, struct iwn_tx_cmd *);
3470 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3471 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3472 if (error != 0) {
3473 m_freem(m);
3474 return error;
3475 }
3476 data->m = m;
3477 paddr = data->map->dm_segs[0].ds_addr;
3478 } else {
3479 cmd = &ring->cmd[ring->cur];
3480 paddr = data->cmd_paddr;
3481 }
3482
3483 cmd->code = code;
3484 cmd->flags = 0;
3485 cmd->qid = ring->qid;
3486 cmd->idx = ring->cur;
3487 /*
3488 * Coverity:[OUT_OF_BOUNDS]
3489 * false positive since, allocated in mbuf if it does not fit
3490 */
3491 memcpy(cmd->data, buf, size);
3492
3493 desc->nsegs = 1;
3494 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3495 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3496
3497 if (size > sizeof cmd->data) {
3498 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3499 BUS_DMASYNC_PREWRITE);
3500 } else {
3501 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3502 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3503 totlen, BUS_DMASYNC_PREWRITE);
3504 }
3505 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3506 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3507 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3508
3509 #ifdef notyet
3510 /* Update TX scheduler. */
3511 ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3512 #endif
3513 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3514
3515 /* Kick command ring. */
3516 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3517 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3518
3519 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3520 }
3521
3522 static int
3523 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3524 {
3525 struct iwn4965_node_info hnode;
3526 char *src, *dst;
3527
3528 /*
3529 * We use the node structure for 5000 Series internally (it is
3530 * a superset of the one for 4965AGN). We thus copy the common
3531 * fields before sending the command.
3532 */
3533 src = (char *)node;
3534 dst = (char *)&hnode;
3535 memcpy(dst, src, 48);
3536 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3537 memcpy(dst + 48, src + 72, 20);
3538 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3539 }
3540
3541 static int
3542 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3543 {
3544 /* Direct mapping. */
3545 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3546 }
3547
3548 static int
3549 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3550 {
3551 struct iwn_node *wn = (void *)ni;
3552 struct ieee80211_rateset *rs = &ni->ni_rates;
3553 struct iwn_cmd_link_quality linkq;
3554 const struct iwn_rate *rinfo;
3555 uint8_t txant;
3556 int i, txrate;
3557
3558 /* Use the first valid TX antenna. */
3559 txant = IWN_LSB(sc->txchainmask);
3560
3561 memset(&linkq, 0, sizeof linkq);
3562 linkq.id = wn->id;
3563 linkq.antmsk_1stream = txant;
3564 linkq.antmsk_2stream = IWN_ANT_AB;
3565 linkq.ampdu_max = 31;
3566 linkq.ampdu_threshold = 3;
3567 linkq.ampdu_limit = htole16(4000); /* 4ms */
3568
3569 /* Start at highest available bit-rate. */
3570 txrate = rs->rs_nrates - 1;
3571 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3572 rinfo = &iwn_rates[wn->ridx[txrate]];
3573 linkq.retry[i].plcp = rinfo->plcp;
3574 linkq.retry[i].rflags = rinfo->flags;
3575 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3576 /* Next retry at immediate lower bit-rate. */
3577 if (txrate > 0)
3578 txrate--;
3579 }
3580 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3581 }
3582
3583 /*
3584 * Broadcast node is used to send group-addressed and management frames.
3585 */
3586 static int
3587 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3588 {
3589 struct iwn_ops *ops = &sc->ops;
3590 struct iwn_node_info node;
3591 struct iwn_cmd_link_quality linkq;
3592 const struct iwn_rate *rinfo;
3593 uint8_t txant;
3594 int i, error;
3595
3596 memset(&node, 0, sizeof node);
3597 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3598 node.id = sc->broadcast_id;
3599 DPRINTF(("adding broadcast node\n"));
3600 if ((error = ops->add_node(sc, &node, async)) != 0)
3601 return error;
3602
3603 /* Use the first valid TX antenna. */
3604 txant = IWN_LSB(sc->txchainmask);
3605
3606 memset(&linkq, 0, sizeof linkq);
3607 linkq.id = sc->broadcast_id;
3608 linkq.antmsk_1stream = txant;
3609 linkq.antmsk_2stream = IWN_ANT_AB;
3610 linkq.ampdu_max = 64;
3611 linkq.ampdu_threshold = 3;
3612 linkq.ampdu_limit = htole16(4000); /* 4ms */
3613
3614 /* Use lowest mandatory bit-rate. */
3615 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3616 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3617 linkq.retry[0].plcp = rinfo->plcp;
3618 linkq.retry[0].rflags = rinfo->flags;
3619 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3620 /* Use same bit-rate for all TX retries. */
3621 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3622 linkq.retry[i].plcp = linkq.retry[0].plcp;
3623 linkq.retry[i].rflags = linkq.retry[0].rflags;
3624 }
3625 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3626 }
3627
3628 static void
3629 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3630 {
3631 struct iwn_cmd_led led;
3632
3633 /* Clear microcode LED ownership. */
3634 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3635
3636 led.which = which;
3637 led.unit = htole32(10000); /* on/off in unit of 100ms */
3638 led.off = off;
3639 led.on = on;
3640 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3641 }
3642
3643 /*
3644 * Set the critical temperature at which the firmware will stop the radio
3645 * and notify us.
3646 */
3647 static int
3648 iwn_set_critical_temp(struct iwn_softc *sc)
3649 {
3650 struct iwn_critical_temp crit;
3651 int32_t temp;
3652
3653 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3654
3655 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3656 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3657 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3658 temp = IWN_CTOK(110);
3659 else
3660 temp = 110;
3661 memset(&crit, 0, sizeof crit);
3662 crit.tempR = htole32(temp);
3663 DPRINTF(("setting critical temperature to %d\n", temp));
3664 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3665 }
3666
3667 static int
3668 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3669 {
3670 struct iwn_cmd_timing cmd;
3671 uint64_t val, mod;
3672
3673 memset(&cmd, 0, sizeof cmd);
3674 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3675 cmd.bintval = htole16(ni->ni_intval);
3676 cmd.lintval = htole16(10);
3677
3678 /* Compute remaining time until next beacon. */
3679 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
3680 mod = le64toh(cmd.tstamp) % val;
3681 cmd.binitval = htole32((uint32_t)(val - mod));
3682
3683 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3684 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3685
3686 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3687 }
3688
3689 static void
3690 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3691 {
3692 /* Adjust TX power if need be (delta >= 3 degC). */
3693 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3694 if (abs(temp - sc->temp) >= 3) {
3695 /* Record temperature of last calibration. */
3696 sc->temp = temp;
3697 (void)iwn4965_set_txpower(sc, 1);
3698 }
3699 }
3700
3701 /*
3702 * Set TX power for current channel (each rate has its own power settings).
3703 * This function takes into account the regulatory information from EEPROM,
3704 * the current temperature and the current voltage.
3705 */
3706 static int
3707 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3708 {
3709 /* Fixed-point arithmetic division using a n-bit fractional part. */
3710 #define fdivround(a, b, n) \
3711 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3712 /* Linear interpolation. */
3713 #define interpolate(x, x1, y1, x2, y2, n) \
3714 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3715
3716 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3717 struct ieee80211com *ic = &sc->sc_ic;
3718 struct iwn_ucode_info *uc = &sc->ucode_info;
3719 struct ieee80211_channel *ch;
3720 struct iwn4965_cmd_txpower cmd;
3721 struct iwn4965_eeprom_chan_samples *chans;
3722 const uint8_t *rf_gain, *dsp_gain;
3723 int32_t vdiff, tdiff;
3724 int i, c, grp, maxpwr;
3725 uint8_t chan;
3726
3727 /* Retrieve current channel from last RXON. */
3728 chan = sc->rxon.chan;
3729 DPRINTF(("setting TX power for channel %d\n", chan));
3730 ch = &ic->ic_channels[chan];
3731
3732 memset(&cmd, 0, sizeof cmd);
3733 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3734 cmd.chan = chan;
3735
3736 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3737 maxpwr = sc->maxpwr5GHz;
3738 rf_gain = iwn4965_rf_gain_5ghz;
3739 dsp_gain = iwn4965_dsp_gain_5ghz;
3740 } else {
3741 maxpwr = sc->maxpwr2GHz;
3742 rf_gain = iwn4965_rf_gain_2ghz;
3743 dsp_gain = iwn4965_dsp_gain_2ghz;
3744 }
3745
3746 /* Compute voltage compensation. */
3747 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3748 if (vdiff > 0)
3749 vdiff *= 2;
3750 if (abs(vdiff) > 2)
3751 vdiff = 0;
3752 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3753 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3754
3755 /* Get channel attenuation group. */
3756 if (chan <= 20) /* 1-20 */
3757 grp = 4;
3758 else if (chan <= 43) /* 34-43 */
3759 grp = 0;
3760 else if (chan <= 70) /* 44-70 */
3761 grp = 1;
3762 else if (chan <= 124) /* 71-124 */
3763 grp = 2;
3764 else /* 125-200 */
3765 grp = 3;
3766 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3767
3768 /* Get channel sub-band. */
3769 for (i = 0; i < IWN_NBANDS; i++)
3770 if (sc->bands[i].lo != 0 &&
3771 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3772 break;
3773 if (i == IWN_NBANDS) /* Can't happen in real-life. */
3774 return EINVAL;
3775 chans = sc->bands[i].chans;
3776 DPRINTF(("chan %d sub-band=%d\n", chan, i));
3777
3778 for (c = 0; c < 2; c++) {
3779 uint8_t power, gain, temp;
3780 int maxchpwr, pwr, ridx, idx;
3781
3782 power = interpolate(chan,
3783 chans[0].num, chans[0].samples[c][1].power,
3784 chans[1].num, chans[1].samples[c][1].power, 1);
3785 gain = interpolate(chan,
3786 chans[0].num, chans[0].samples[c][1].gain,
3787 chans[1].num, chans[1].samples[c][1].gain, 1);
3788 temp = interpolate(chan,
3789 chans[0].num, chans[0].samples[c][1].temp,
3790 chans[1].num, chans[1].samples[c][1].temp, 1);
3791 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3792 c, power, gain, temp));
3793
3794 /* Compute temperature compensation. */
3795 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3796 DPRINTF(("temperature compensation=%d (current=%d, "
3797 "EEPROM=%d)\n", tdiff, sc->temp, temp));
3798
3799 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3800 /* Convert dBm to half-dBm. */
3801 maxchpwr = sc->maxpwr[chan] * 2;
3802 if ((ridx / 8) & 1)
3803 maxchpwr -= 6; /* MIMO 2T: -3dB */
3804
3805 pwr = maxpwr;
3806
3807 /* Adjust TX power based on rate. */
3808 if ((ridx % 8) == 5)
3809 pwr -= 15; /* OFDM48: -7.5dB */
3810 else if ((ridx % 8) == 6)
3811 pwr -= 17; /* OFDM54: -8.5dB */
3812 else if ((ridx % 8) == 7)
3813 pwr -= 20; /* OFDM60: -10dB */
3814 else
3815 pwr -= 10; /* Others: -5dB */
3816
3817 /* Do not exceed channel max TX power. */
3818 if (pwr > maxchpwr)
3819 pwr = maxchpwr;
3820
3821 idx = gain - (pwr - power) - tdiff - vdiff;
3822 if ((ridx / 8) & 1) /* MIMO */
3823 idx += (int32_t)le32toh(uc->atten[grp][c]);
3824
3825 if (cmd.band == 0)
3826 idx += 9; /* 5GHz */
3827 if (ridx == IWN_RIDX_MAX)
3828 idx += 5; /* CCK */
3829
3830 /* Make sure idx stays in a valid range. */
3831 if (idx < 0)
3832 idx = 0;
3833 else if (idx > IWN4965_MAX_PWR_INDEX)
3834 idx = IWN4965_MAX_PWR_INDEX;
3835
3836 DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3837 c, ridx, idx));
3838 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3839 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3840 }
3841 }
3842
3843 DPRINTF(("setting TX power for chan %d\n", chan));
3844 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3845
3846 #undef interpolate
3847 #undef fdivround
3848 }
3849
3850 static int
3851 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3852 {
3853 struct iwn5000_cmd_txpower cmd;
3854 int cmdid;
3855
3856 /*
3857 * TX power calibration is handled automatically by the firmware
3858 * for 5000 Series.
3859 */
3860 memset(&cmd, 0, sizeof cmd);
3861 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3862 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3863 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3864 DPRINTF(("setting TX power\n"));
3865 if (IWN_UCODE_API(sc->ucode_rev) == 1)
3866 cmdid = IWN_CMD_TXPOWER_DBM_V1;
3867 else
3868 cmdid = IWN_CMD_TXPOWER_DBM;
3869 return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
3870 }
3871
3872 /*
3873 * Retrieve the maximum RSSI (in dBm) among receivers.
3874 */
3875 static int
3876 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3877 {
3878 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3879 uint8_t mask, agc;
3880 int rssi;
3881
3882 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3883 agc = (le16toh(phy->agc) >> 7) & 0x7f;
3884
3885 rssi = 0;
3886 if (mask & IWN_ANT_A)
3887 rssi = MAX(rssi, phy->rssi[0]);
3888 if (mask & IWN_ANT_B)
3889 rssi = MAX(rssi, phy->rssi[2]);
3890 if (mask & IWN_ANT_C)
3891 rssi = MAX(rssi, phy->rssi[4]);
3892
3893 return rssi - agc - IWN_RSSI_TO_DBM;
3894 }
3895
3896 static int
3897 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3898 {
3899 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3900 uint8_t agc;
3901 int rssi;
3902
3903 agc = (le32toh(phy->agc) >> 9) & 0x7f;
3904
3905 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3906 le16toh(phy->rssi[1]) & 0xff);
3907 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3908
3909 return rssi - agc - IWN_RSSI_TO_DBM;
3910 }
3911
3912 /*
3913 * Retrieve the average noise (in dBm) among receivers.
3914 */
3915 static int
3916 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3917 {
3918 int i, total, nbant, noise;
3919
3920 total = nbant = 0;
3921 for (i = 0; i < 3; i++) {
3922 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3923 continue;
3924 total += noise;
3925 nbant++;
3926 }
3927 /* There should be at least one antenna but check anyway. */
3928 return (nbant == 0) ? -127 : (total / nbant) - 107;
3929 }
3930
3931 /*
3932 * Compute temperature (in degC) from last received statistics.
3933 */
3934 static int
3935 iwn4965_get_temperature(struct iwn_softc *sc)
3936 {
3937 struct iwn_ucode_info *uc = &sc->ucode_info;
3938 int32_t r1, r2, r3, r4, temp;
3939
3940 r1 = le32toh(uc->temp[0].chan20MHz);
3941 r2 = le32toh(uc->temp[1].chan20MHz);
3942 r3 = le32toh(uc->temp[2].chan20MHz);
3943 r4 = le32toh(sc->rawtemp);
3944
3945 if (r1 == r3) /* Prevents division by 0 (should not happen). */
3946 return 0;
3947
3948 /* Sign-extend 23-bit R4 value to 32-bit. */
3949 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3950 /* Compute temperature in Kelvin. */
3951 temp = (259 * (r4 - r2)) / (r3 - r1);
3952 temp = (temp * 97) / 100 + 8;
3953
3954 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3955 return IWN_KTOC(temp);
3956 }
3957
3958 static int
3959 iwn5000_get_temperature(struct iwn_softc *sc)
3960 {
3961 int32_t temp;
3962
3963 /*
3964 * Temperature is not used by the driver for 5000 Series because
3965 * TX power calibration is handled by firmware. We export it to
3966 * users through the sensor framework though.
3967 */
3968 temp = le32toh(sc->rawtemp);
3969 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3970 temp = (temp / -5) + sc->temp_off;
3971 temp = IWN_KTOC(temp);
3972 }
3973 return temp;
3974 }
3975
3976 /*
3977 * Initialize sensitivity calibration state machine.
3978 */
3979 static int
3980 iwn_init_sensitivity(struct iwn_softc *sc)
3981 {
3982 struct iwn_ops *ops = &sc->ops;
3983 struct iwn_calib_state *calib = &sc->calib;
3984 uint32_t flags;
3985 int error;
3986
3987 /* Reset calibration state machine. */
3988 memset(calib, 0, sizeof (*calib));
3989 calib->state = IWN_CALIB_STATE_INIT;
3990 calib->cck_state = IWN_CCK_STATE_HIFA;
3991 /* Set initial correlation values. */
3992 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3993 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3994 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3995 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3996 calib->cck_x4 = 125;
3997 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3998 calib->energy_cck = sc->limits->energy_cck;
3999
4000 /* Write initial sensitivity. */
4001 if ((error = iwn_send_sensitivity(sc)) != 0)
4002 return error;
4003
4004 /* Write initial gains. */
4005 if ((error = ops->init_gains(sc)) != 0)
4006 return error;
4007
4008 /* Request statistics at each beacon interval. */
4009 flags = 0;
4010 DPRINTF(("sending request for statistics\n"));
4011 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4012 }
4013
4014 /*
4015 * Collect noise and RSSI statistics for the first 20 beacons received
4016 * after association and use them to determine connected antennas and
4017 * to set differential gains.
4018 */
4019 static void
4020 iwn_collect_noise(struct iwn_softc *sc,
4021 const struct iwn_rx_general_stats *stats)
4022 {
4023 struct iwn_ops *ops = &sc->ops;
4024 struct iwn_calib_state *calib = &sc->calib;
4025 uint32_t val;
4026 int i;
4027
4028 /* Accumulate RSSI and noise for all 3 antennas. */
4029 for (i = 0; i < 3; i++) {
4030 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4031 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4032 }
4033 /* NB: We update differential gains only once after 20 beacons. */
4034 if (++calib->nbeacons < 20)
4035 return;
4036
4037 /* Determine highest average RSSI. */
4038 val = MAX(calib->rssi[0], calib->rssi[1]);
4039 val = MAX(calib->rssi[2], val);
4040
4041 /* Determine which antennas are connected. */
4042 sc->chainmask = sc->rxchainmask;
4043 for (i = 0; i < 3; i++)
4044 if (val - calib->rssi[i] > 15 * 20)
4045 sc->chainmask &= ~(1 << i);
4046 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
4047 sc->rxchainmask, sc->chainmask));
4048
4049 /* If none of the TX antennas are connected, keep at least one. */
4050 if ((sc->chainmask & sc->txchainmask) == 0)
4051 sc->chainmask |= IWN_LSB(sc->txchainmask);
4052
4053 (void)ops->set_gains(sc);
4054 calib->state = IWN_CALIB_STATE_RUN;
4055
4056 #ifdef notyet
4057 /* XXX Disable RX chains with no antennas connected. */
4058 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4059 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4060 #endif
4061
4062 /* Enable power-saving mode if requested by user. */
4063 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4064 (void)iwn_set_pslevel(sc, 0, 3, 1);
4065 }
4066
4067 static int
4068 iwn4965_init_gains(struct iwn_softc *sc)
4069 {
4070 struct iwn_phy_calib_gain cmd;
4071
4072 memset(&cmd, 0, sizeof cmd);
4073 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4074 /* Differential gains initially set to 0 for all 3 antennas. */
4075 DPRINTF(("setting initial differential gains\n"));
4076 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4077 }
4078
4079 static int
4080 iwn5000_init_gains(struct iwn_softc *sc)
4081 {
4082 struct iwn_phy_calib cmd;
4083
4084 memset(&cmd, 0, sizeof cmd);
4085 cmd.code = sc->reset_noise_gain;
4086 cmd.ngroups = 1;
4087 cmd.isvalid = 1;
4088 DPRINTF(("setting initial differential gains\n"));
4089 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4090 }
4091
4092 static int
4093 iwn4965_set_gains(struct iwn_softc *sc)
4094 {
4095 struct iwn_calib_state *calib = &sc->calib;
4096 struct iwn_phy_calib_gain cmd;
4097 int i, delta, noise;
4098
4099 /* Get minimal noise among connected antennas. */
4100 noise = INT_MAX; /* NB: There's at least one antenna. */
4101 for (i = 0; i < 3; i++)
4102 if (sc->chainmask & (1 << i))
4103 noise = MIN(calib->noise[i], noise);
4104
4105 memset(&cmd, 0, sizeof cmd);
4106 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4107 /* Set differential gains for connected antennas. */
4108 for (i = 0; i < 3; i++) {
4109 if (sc->chainmask & (1 << i)) {
4110 /* Compute attenuation (in unit of 1.5dB). */
4111 delta = (noise - (int32_t)calib->noise[i]) / 30;
4112 /* NB: delta <= 0 */
4113 /* Limit to [-4.5dB,0]. */
4114 cmd.gain[i] = MIN(abs(delta), 3);
4115 if (delta < 0)
4116 cmd.gain[i] |= 1 << 2; /* sign bit */
4117 }
4118 }
4119 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4120 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4121 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4122 }
4123
4124 static int
4125 iwn5000_set_gains(struct iwn_softc *sc)
4126 {
4127 struct iwn_calib_state *calib = &sc->calib;
4128 struct iwn_phy_calib_gain cmd;
4129 int i, ant, div, delta;
4130
4131 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
4132 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4133
4134 memset(&cmd, 0, sizeof cmd);
4135 cmd.code = sc->noise_gain;
4136 cmd.ngroups = 1;
4137 cmd.isvalid = 1;
4138 /* Get first available RX antenna as referential. */
4139 ant = IWN_LSB(sc->rxchainmask);
4140 /* Set differential gains for other antennas. */
4141 for (i = ant + 1; i < 3; i++) {
4142 if (sc->chainmask & (1 << i)) {
4143 /* The delta is relative to antenna "ant". */
4144 delta = ((int32_t)calib->noise[ant] -
4145 (int32_t)calib->noise[i]) / div;
4146 /* Limit to [-4.5dB,+4.5dB]. */
4147 cmd.gain[i - 1] = MIN(abs(delta), 3);
4148 if (delta < 0)
4149 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
4150 }
4151 }
4152 DPRINTF(("setting differential gains: %x/%x (%x)\n",
4153 cmd.gain[0], cmd.gain[1], sc->chainmask));
4154 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4155 }
4156
4157 /*
4158 * Tune RF RX sensitivity based on the number of false alarms detected
4159 * during the last beacon period.
4160 */
4161 static void
4162 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4163 {
4164 #define inc(val, inc, max) \
4165 if ((val) < (max)) { \
4166 if ((val) < (max) - (inc)) \
4167 (val) += (inc); \
4168 else \
4169 (val) = (max); \
4170 needs_update = 1; \
4171 }
4172 #define dec(val, dec, min) \
4173 if ((val) > (min)) { \
4174 if ((val) > (min) + (dec)) \
4175 (val) -= (dec); \
4176 else \
4177 (val) = (min); \
4178 needs_update = 1; \
4179 }
4180
4181 const struct iwn_sensitivity_limits *limits = sc->limits;
4182 struct iwn_calib_state *calib = &sc->calib;
4183 uint32_t val, rxena, fa;
4184 uint32_t energy[3], energy_min;
4185 uint8_t noise[3], noise_ref;
4186 int i, needs_update = 0;
4187
4188 /* Check that we've been enabled long enough. */
4189 if ((rxena = le32toh(stats->general.load)) == 0)
4190 return;
4191
4192 /* Compute number of false alarms since last call for OFDM. */
4193 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4194 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4195 fa *= 200 * 1024; /* 200TU */
4196
4197 /* Save counters values for next call. */
4198 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4199 calib->fa_ofdm = le32toh(stats->ofdm.fa);
4200
4201 if (fa > 50 * rxena) {
4202 /* High false alarm count, decrease sensitivity. */
4203 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4204 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
4205 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4206 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
4207 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4208
4209 } else if (fa < 5 * rxena) {
4210 /* Low false alarm count, increase sensitivity. */
4211 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4212 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
4213 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4214 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
4215 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4216 }
4217
4218 /* Compute maximum noise among 3 receivers. */
4219 for (i = 0; i < 3; i++)
4220 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4221 val = MAX(noise[0], noise[1]);
4222 val = MAX(noise[2], val);
4223 /* Insert it into our samples table. */
4224 calib->noise_samples[calib->cur_noise_sample] = val;
4225 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4226
4227 /* Compute maximum noise among last 20 samples. */
4228 noise_ref = calib->noise_samples[0];
4229 for (i = 1; i < 20; i++)
4230 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4231
4232 /* Compute maximum energy among 3 receivers. */
4233 for (i = 0; i < 3; i++)
4234 energy[i] = le32toh(stats->general.energy[i]);
4235 val = MIN(energy[0], energy[1]);
4236 val = MIN(energy[2], val);
4237 /* Insert it into our samples table. */
4238 calib->energy_samples[calib->cur_energy_sample] = val;
4239 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4240
4241 /* Compute minimum energy among last 10 samples. */
4242 energy_min = calib->energy_samples[0];
4243 for (i = 1; i < 10; i++)
4244 energy_min = MAX(energy_min, calib->energy_samples[i]);
4245 energy_min += 6;
4246
4247 /* Compute number of false alarms since last call for CCK. */
4248 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4249 fa += le32toh(stats->cck.fa) - calib->fa_cck;
4250 fa *= 200 * 1024; /* 200TU */
4251
4252 /* Save counters values for next call. */
4253 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4254 calib->fa_cck = le32toh(stats->cck.fa);
4255
4256 if (fa > 50 * rxena) {
4257 /* High false alarm count, decrease sensitivity. */
4258 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4259 calib->cck_state = IWN_CCK_STATE_HIFA;
4260 calib->low_fa = 0;
4261
4262 if (calib->cck_x4 > 160) {
4263 calib->noise_ref = noise_ref;
4264 if (calib->energy_cck > 2)
4265 dec(calib->energy_cck, 2, energy_min);
4266 }
4267 if (calib->cck_x4 < 160) {
4268 calib->cck_x4 = 161;
4269 needs_update = 1;
4270 } else
4271 inc(calib->cck_x4, 3, limits->max_cck_x4);
4272
4273 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4274
4275 } else if (fa < 5 * rxena) {
4276 /* Low false alarm count, increase sensitivity. */
4277 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4278 calib->cck_state = IWN_CCK_STATE_LOFA;
4279 calib->low_fa++;
4280
4281 if (calib->cck_state != IWN_CCK_STATE_INIT &&
4282 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4283 calib->low_fa > 100)) {
4284 inc(calib->energy_cck, 2, limits->min_energy_cck);
4285 dec(calib->cck_x4, 3, limits->min_cck_x4);
4286 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4287 }
4288 } else {
4289 /* Not worth to increase or decrease sensitivity. */
4290 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4291 calib->low_fa = 0;
4292 calib->noise_ref = noise_ref;
4293
4294 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4295 /* Previous interval had many false alarms. */
4296 dec(calib->energy_cck, 8, energy_min);
4297 }
4298 calib->cck_state = IWN_CCK_STATE_INIT;
4299 }
4300
4301 if (needs_update)
4302 (void)iwn_send_sensitivity(sc);
4303 #undef dec
4304 #undef inc
4305 }
4306
4307 static int
4308 iwn_send_sensitivity(struct iwn_softc *sc)
4309 {
4310 struct iwn_calib_state *calib = &sc->calib;
4311 struct iwn_enhanced_sensitivity_cmd cmd;
4312 int len;
4313
4314 memset(&cmd, 0, sizeof cmd);
4315 len = sizeof (struct iwn_sensitivity_cmd);
4316 cmd.which = IWN_SENSITIVITY_WORKTBL;
4317 /* OFDM modulation. */
4318 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4319 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4320 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4321 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4322 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4323 cmd.energy_ofdm_th = htole16(62);
4324 /* CCK modulation. */
4325 cmd.corr_cck_x4 = htole16(calib->cck_x4);
4326 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4327 cmd.energy_cck = htole16(calib->energy_cck);
4328 /* Barker modulation: use default values. */
4329 cmd.corr_barker = htole16(190);
4330 cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc);
4331 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4332 goto send;
4333 /* Enhanced sensitivity settings. */
4334 len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4335 cmd.ofdm_det_slope_mrc = htole16(668);
4336 cmd.ofdm_det_icept_mrc = htole16(4);
4337 cmd.ofdm_det_slope = htole16(486);
4338 cmd.ofdm_det_icept = htole16(37);
4339 cmd.cck_det_slope_mrc = htole16(853);
4340 cmd.cck_det_icept_mrc = htole16(4);
4341 cmd.cck_det_slope = htole16(476);
4342 cmd.cck_det_icept = htole16(99);
4343 send:
4344 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4345 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4346 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4347 calib->energy_cck));
4348 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4349 }
4350
4351 /*
4352 * Set STA mode power saving level (between 0 and 5).
4353 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4354 */
4355 static int
4356 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4357 {
4358 struct iwn_pmgt_cmd cmd;
4359 const struct iwn_pmgt *pmgt;
4360 uint32_t maxp, skip_dtim;
4361 pcireg_t reg;
4362 int i;
4363
4364 /* Select which PS parameters to use. */
4365 if (dtim <= 2)
4366 pmgt = &iwn_pmgt[0][level];
4367 else if (dtim <= 10)
4368 pmgt = &iwn_pmgt[1][level];
4369 else
4370 pmgt = &iwn_pmgt[2][level];
4371
4372 memset(&cmd, 0, sizeof cmd);
4373 if (level != 0) /* not CAM */
4374 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4375 if (level == 5)
4376 cmd.flags |= htole16(IWN_PS_FAST_PD);
4377 /* Retrieve PCIe Active State Power Management (ASPM). */
4378 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4379 sc->sc_cap_off + PCIE_LCSR);
4380 if (!(reg & PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4381 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4382 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4383 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4384
4385 if (dtim == 0) {
4386 dtim = 1;
4387 skip_dtim = 0;
4388 } else
4389 skip_dtim = pmgt->skip_dtim;
4390 if (skip_dtim != 0) {
4391 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4392 maxp = pmgt->intval[4];
4393 if (maxp == (uint32_t)-1)
4394 maxp = dtim * (skip_dtim + 1);
4395 else if (maxp > dtim)
4396 maxp = (maxp / dtim) * dtim;
4397 } else
4398 maxp = dtim;
4399 for (i = 0; i < 5; i++)
4400 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4401
4402 DPRINTF(("setting power saving level to %d\n", level));
4403 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4404 }
4405
4406 int
4407 iwn5000_runtime_calib(struct iwn_softc *sc)
4408 {
4409 struct iwn5000_calib_config cmd;
4410
4411 memset(&cmd, 0, sizeof cmd);
4412 cmd.ucode.once.enable = 0xffffffff;
4413 cmd.ucode.once.start = IWN5000_CALIB_DC;
4414 DPRINTF(("configuring runtime calibration\n"));
4415 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4416 }
4417
4418 static int
4419 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4420 {
4421 struct iwn_bluetooth bluetooth;
4422
4423 memset(&bluetooth, 0, sizeof bluetooth);
4424 bluetooth.flags = IWN_BT_COEX_ENABLE;
4425 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4426 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4427
4428 DPRINTF(("configuring bluetooth coexistence\n"));
4429 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4430 }
4431
4432 static int
4433 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4434 {
4435 uint8_t prio_table[16];
4436
4437 memset(&prio_table, 0, sizeof prio_table);
4438 prio_table[ 0] = 6; /* init calibration 1 */
4439 prio_table[ 1] = 7; /* init calibration 2 */
4440 prio_table[ 2] = 2; /* periodic calib low 1 */
4441 prio_table[ 3] = 3; /* periodic calib low 2 */
4442 prio_table[ 4] = 4; /* periodic calib high 1 */
4443 prio_table[ 5] = 5; /* periodic calib high 2 */
4444 prio_table[ 6] = 6; /* dtim */
4445 prio_table[ 7] = 8; /* scan52 */
4446 prio_table[ 8] = 10; /* scan24 */
4447
4448 DPRINTF(("sending priority lookup table\n"));
4449 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4450 &prio_table, sizeof prio_table, 0);
4451 }
4452
4453 static int
4454 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4455 size_t len)
4456 {
4457 struct iwn_btcoex_prot btprot;
4458 int error;
4459
4460 basic->bt.flags = IWN_BT_COEX_ENABLE;
4461 basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4462 basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4463 basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4464 basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4465 basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4466 basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4467 basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4468 basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4469 basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4470 basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4471 basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4472 basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4473 basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4474 basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4475 basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4476 basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4477 basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4478 basic->bt3_lookup_table[10] = htole32(0xf0005000);
4479 basic->bt3_lookup_table[11] = htole32(0xf0005000);
4480 basic->reduce_txpower = 0; /* as not implemented */
4481 basic->valid = IWN_BT_ALL_VALID_MASK;
4482
4483 DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4484 error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4485 if (error != 0) {
4486 aprint_error_dev(sc->sc_dev,
4487 "could not configure advanced bluetooth coexistence\n");
4488 return error;
4489 }
4490
4491 error = iwn_config_bt_coex_prio_table(sc);
4492 if (error != 0) {
4493 aprint_error_dev(sc->sc_dev,
4494 "could not configure send BT priority table\n");
4495 return error;
4496 }
4497
4498 /* Force BT state machine change */
4499 memset(&btprot, 0, sizeof btprot);
4500 btprot.open = 1;
4501 btprot.type = 1;
4502 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4503 if (error != 0) {
4504 aprint_error_dev(sc->sc_dev, "could not open BT protocol\n");
4505 return error;
4506 }
4507
4508 btprot.open = 0;
4509 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4510 if (error != 0) {
4511 aprint_error_dev(sc->sc_dev, "could not close BT protocol\n");
4512 return error;
4513 }
4514 return 0;
4515 }
4516
4517 static int
4518 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4519 {
4520 struct iwn_bt_adv1 d;
4521
4522 memset(&d, 0, sizeof d);
4523 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4524 d.tx_prio_boost = 0;
4525 d.rx_prio_boost = 0;
4526 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4527 }
4528
4529 static int
4530 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4531 {
4532 struct iwn_bt_adv2 d;
4533
4534 memset(&d, 0, sizeof d);
4535 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4536 d.tx_prio_boost = 0;
4537 d.rx_prio_boost = 0;
4538 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4539 }
4540
4541 static int
4542 iwn_config(struct iwn_softc *sc)
4543 {
4544 struct iwn_ops *ops = &sc->ops;
4545 struct ieee80211com *ic = &sc->sc_ic;
4546 struct ifnet *ifp = ic->ic_ifp;
4547 uint32_t txmask;
4548 uint16_t rxchain;
4549 int error;
4550
4551 error = ops->config_bt_coex(sc);
4552 if (error != 0) {
4553 aprint_error_dev(sc->sc_dev,
4554 "could not configure bluetooth coexistence\n");
4555 return error;
4556 }
4557
4558 /* Set radio temperature sensor offset. */
4559 if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4560 error = iwn6000_temp_offset_calib(sc);
4561 if (error != 0) {
4562 aprint_error_dev(sc->sc_dev,
4563 "could not set temperature offset\n");
4564 return error;
4565 }
4566 }
4567
4568 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4569 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4570 sc->hw_type == IWN_HW_REV_TYPE_135 ||
4571 sc->hw_type == IWN_HW_REV_TYPE_105) {
4572 error = iwn2000_temp_offset_calib(sc);
4573 if (error != 0) {
4574 aprint_error_dev(sc->sc_dev,
4575 "could not set temperature offset\n");
4576 return error;
4577 }
4578 }
4579
4580 if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4581 sc->hw_type == IWN_HW_REV_TYPE_6005) {
4582 /* Configure runtime DC calibration. */
4583 error = iwn5000_runtime_calib(sc);
4584 if (error != 0) {
4585 aprint_error_dev(sc->sc_dev,
4586 "could not configure runtime calibration\n");
4587 return error;
4588 }
4589 }
4590
4591 /* Configure valid TX chains for 5000 Series. */
4592 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4593 txmask = htole32(sc->txchainmask);
4594 DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4595 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4596 sizeof txmask, 0);
4597 if (error != 0) {
4598 aprint_error_dev(sc->sc_dev,
4599 "could not configure valid TX chains\n");
4600 return error;
4601 }
4602 }
4603
4604 /* Set mode, channel, RX filter and enable RX. */
4605 memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4606 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4607 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4608 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4609 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4610 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4611 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4612 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4613 switch (ic->ic_opmode) {
4614 case IEEE80211_M_STA:
4615 sc->rxon.mode = IWN_MODE_STA;
4616 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4617 break;
4618 case IEEE80211_M_MONITOR:
4619 sc->rxon.mode = IWN_MODE_MONITOR;
4620 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4621 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4622 break;
4623 default:
4624 /* Should not get there. */
4625 break;
4626 }
4627 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4628 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4629 sc->rxon.ht_single_mask = 0xff;
4630 sc->rxon.ht_dual_mask = 0xff;
4631 sc->rxon.ht_triple_mask = 0xff;
4632 rxchain =
4633 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4634 IWN_RXCHAIN_MIMO_COUNT(2) |
4635 IWN_RXCHAIN_IDLE_COUNT(2);
4636 sc->rxon.rxchain = htole16(rxchain);
4637 DPRINTF(("setting configuration\n"));
4638 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4639 if (error != 0) {
4640 aprint_error_dev(sc->sc_dev,
4641 "RXON command failed\n");
4642 return error;
4643 }
4644
4645 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4646 aprint_error_dev(sc->sc_dev,
4647 "could not add broadcast node\n");
4648 return error;
4649 }
4650
4651 /* Configuration has changed, set TX power accordingly. */
4652 if ((error = ops->set_txpower(sc, 0)) != 0) {
4653 aprint_error_dev(sc->sc_dev,
4654 "could not set TX power\n");
4655 return error;
4656 }
4657
4658 if ((error = iwn_set_critical_temp(sc)) != 0) {
4659 aprint_error_dev(sc->sc_dev,
4660 "could not set critical temperature\n");
4661 return error;
4662 }
4663
4664 /* Set power saving level to CAM during initialization. */
4665 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4666 aprint_error_dev(sc->sc_dev,
4667 "could not set power saving level\n");
4668 return error;
4669 }
4670 return 0;
4671 }
4672
4673 static uint16_t
4674 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4675 uint8_t n_probes)
4676 {
4677 /* No channel? Default to 2GHz settings */
4678 if (flags & IEEE80211_CHAN_2GHZ)
4679 return IWN_ACTIVE_DWELL_TIME_2GHZ +
4680 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4681
4682 /* 5GHz dwell time */
4683 return IWN_ACTIVE_DWELL_TIME_5GHZ +
4684 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4685 }
4686
4687 /*
4688 * Limit the total dwell time to 85% of the beacon interval.
4689 *
4690 * Returns the dwell time in milliseconds.
4691 */
4692 static uint16_t
4693 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4694 {
4695 struct ieee80211com *ic = &sc->sc_ic;
4696 struct ieee80211_node *ni = ic->ic_bss;
4697 int bintval = 0;
4698
4699 /* bintval is in TU (1.024mS) */
4700 if (ni != NULL)
4701 bintval = ni->ni_intval;
4702
4703 /*
4704 * If it's non-zero, we should calculate the minimum of
4705 * it and the DWELL_BASE.
4706 *
4707 * XXX Yes, the math should take into account that bintval
4708 * is 1.024mS, not 1mS..
4709 */
4710 if (bintval > 0)
4711 return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4712
4713 /* No association context? Default */
4714 return IWN_PASSIVE_DWELL_BASE;
4715 }
4716
4717 static uint16_t
4718 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4719 {
4720 uint16_t passive;
4721 if (flags & IEEE80211_CHAN_2GHZ)
4722 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4723 else
4724 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4725
4726 /* Clamp to the beacon interval if we're associated */
4727 return iwn_limit_dwell(sc, passive);
4728 }
4729
4730 static int
4731 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4732 {
4733 struct ieee80211com *ic = &sc->sc_ic;
4734 struct iwn_scan_hdr *hdr;
4735 struct iwn_cmd_data *tx;
4736 struct iwn_scan_essid *essid;
4737 struct iwn_scan_chan *chan;
4738 struct ieee80211_frame *wh;
4739 struct ieee80211_rateset *rs;
4740 struct ieee80211_channel *c;
4741 uint8_t *buf, *frm;
4742 uint16_t rxchain, dwell_active, dwell_passive;
4743 uint8_t txant;
4744 int buflen, error, is_active;
4745
4746 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4747 if (buf == NULL) {
4748 aprint_error_dev(sc->sc_dev,
4749 "could not allocate buffer for scan command\n");
4750 return ENOMEM;
4751 }
4752 hdr = (struct iwn_scan_hdr *)buf;
4753 /*
4754 * Move to the next channel if no frames are received within 10ms
4755 * after sending the probe request.
4756 */
4757 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4758 hdr->quiet_threshold = htole16(1); /* min # of packets */
4759
4760 /* Select antennas for scanning. */
4761 rxchain =
4762 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4763 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4764 IWN_RXCHAIN_DRIVER_FORCE;
4765 if ((flags & IEEE80211_CHAN_5GHZ) &&
4766 sc->hw_type == IWN_HW_REV_TYPE_4965) {
4767 /* Ant A must be avoided in 5GHz because of an HW bug. */
4768 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4769 } else /* Use all available RX antennas. */
4770 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4771 hdr->rxchain = htole16(rxchain);
4772 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4773
4774 tx = (struct iwn_cmd_data *)(hdr + 1);
4775 tx->flags = htole32(IWN_TX_AUTO_SEQ);
4776 tx->id = sc->broadcast_id;
4777 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4778
4779 if (flags & IEEE80211_CHAN_5GHZ) {
4780 hdr->crc_threshold = 0xffff;
4781 /* Send probe requests at 6Mbps. */
4782 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4783 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4784 } else {
4785 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4786 /* Send probe requests at 1Mbps. */
4787 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4788 tx->rflags = IWN_RFLAG_CCK;
4789 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4790 }
4791 /* Use the first valid TX antenna. */
4792 txant = IWN_LSB(sc->txchainmask);
4793 tx->rflags |= IWN_RFLAG_ANT(txant);
4794
4795 /*
4796 * Only do active scanning if we're announcing a probe request
4797 * for a given SSID (or more, if we ever add it to the driver.)
4798 */
4799 is_active = 0;
4800
4801 essid = (struct iwn_scan_essid *)(tx + 1);
4802 if (ic->ic_des_esslen != 0) {
4803 essid[0].id = IEEE80211_ELEMID_SSID;
4804 essid[0].len = ic->ic_des_esslen;
4805 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4806
4807 is_active = 1;
4808 }
4809 /*
4810 * Build a probe request frame. Most of the following code is a
4811 * copy & paste of what is done in net80211.
4812 */
4813 wh = (struct ieee80211_frame *)(essid + 20);
4814 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4815 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4816 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4817 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4818 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4819 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4820 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4821 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4822
4823 frm = (uint8_t *)(wh + 1);
4824 frm = ieee80211_add_ssid(frm, NULL, 0);
4825 frm = ieee80211_add_rates(frm, rs);
4826 #ifndef IEEE80211_NO_HT
4827 if (ic->ic_flags & IEEE80211_F_HTON)
4828 frm = ieee80211_add_htcaps(frm, ic);
4829 #endif
4830 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4831 frm = ieee80211_add_xrates(frm, rs);
4832
4833 /* Set length of probe request. */
4834 tx->len = htole16(frm - (uint8_t *)wh);
4835
4836
4837 /*
4838 * If active scanning is requested but a certain channel is
4839 * marked passive, we can do active scanning if we detect
4840 * transmissions.
4841 *
4842 * There is an issue with some firmware versions that triggers
4843 * a sysassert on a "good CRC threshold" of zero (== disabled),
4844 * on a radar channel even though this means that we should NOT
4845 * send probes.
4846 *
4847 * The "good CRC threshold" is the number of frames that we
4848 * need to receive during our dwell time on a channel before
4849 * sending out probes -- setting this to a huge value will
4850 * mean we never reach it, but at the same time work around
4851 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4852 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4853 *
4854 * This was fixed in later versions along with some other
4855 * scan changes, and the threshold behaves as a flag in those
4856 * versions.
4857 */
4858
4859 /*
4860 * If we're doing active scanning, set the crc_threshold
4861 * to a suitable value. This is different to active veruss
4862 * passive scanning depending upon the channel flags; the
4863 * firmware will obey that particular check for us.
4864 */
4865 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4866 hdr->crc_threshold = is_active ?
4867 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4868 else
4869 hdr->crc_threshold = is_active ?
4870 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4871
4872 chan = (struct iwn_scan_chan *)frm;
4873 for (c = &ic->ic_channels[1];
4874 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4875 if ((c->ic_flags & flags) != flags)
4876 continue;
4877
4878 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4879 DPRINTFN(2, ("adding channel %d\n", chan->chan));
4880 chan->flags = 0;
4881 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4882 chan->flags |= htole32(IWN_CHAN_ACTIVE);
4883 if (ic->ic_des_esslen != 0)
4884 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4885
4886 /*
4887 * Calculate the active/passive dwell times.
4888 */
4889
4890 dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4891 dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4892
4893 /* Make sure they're valid */
4894 if (dwell_passive <= dwell_active)
4895 dwell_passive = dwell_active + 1;
4896
4897 chan->active = htole16(dwell_active);
4898 chan->passive = htole16(dwell_passive);
4899
4900 chan->dsp_gain = 0x6e;
4901 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4902 chan->rf_gain = 0x3b;
4903 } else {
4904 chan->rf_gain = 0x28;
4905 }
4906 hdr->nchan++;
4907 chan++;
4908 }
4909
4910 buflen = (uint8_t *)chan - buf;
4911 hdr->len = htole16(buflen);
4912
4913 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4914 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4915 free(buf, M_DEVBUF);
4916 return error;
4917 }
4918
4919 static int
4920 iwn_auth(struct iwn_softc *sc)
4921 {
4922 struct iwn_ops *ops = &sc->ops;
4923 struct ieee80211com *ic = &sc->sc_ic;
4924 struct ieee80211_node *ni = ic->ic_bss;
4925 int error;
4926
4927 /* Update adapter configuration. */
4928 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4929 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4930 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4931 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4932 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4933 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4934 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4935 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4936 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4937 switch (ic->ic_curmode) {
4938 case IEEE80211_MODE_11A:
4939 sc->rxon.cck_mask = 0;
4940 sc->rxon.ofdm_mask = 0x15;
4941 break;
4942 case IEEE80211_MODE_11B:
4943 sc->rxon.cck_mask = 0x03;
4944 sc->rxon.ofdm_mask = 0;
4945 break;
4946 default: /* Assume 802.11b/g. */
4947 sc->rxon.cck_mask = 0x0f;
4948 sc->rxon.ofdm_mask = 0x15;
4949 }
4950 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4951 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4952 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4953 if (error != 0) {
4954 aprint_error_dev(sc->sc_dev,
4955 "RXON command failed\n");
4956 return error;
4957 }
4958
4959 /* Configuration has changed, set TX power accordingly. */
4960 if ((error = ops->set_txpower(sc, 1)) != 0) {
4961 aprint_error_dev(sc->sc_dev,
4962 "could not set TX power\n");
4963 return error;
4964 }
4965 /*
4966 * Reconfiguring RXON clears the firmware nodes table so we must
4967 * add the broadcast node again.
4968 */
4969 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4970 aprint_error_dev(sc->sc_dev,
4971 "could not add broadcast node\n");
4972 return error;
4973 }
4974 return 0;
4975 }
4976
4977 static int
4978 iwn_run(struct iwn_softc *sc)
4979 {
4980 struct iwn_ops *ops = &sc->ops;
4981 struct ieee80211com *ic = &sc->sc_ic;
4982 struct ieee80211_node *ni = ic->ic_bss;
4983 struct iwn_node_info node;
4984 int error;
4985
4986 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4987 /* Link LED blinks while monitoring. */
4988 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4989 return 0;
4990 }
4991 if ((error = iwn_set_timing(sc, ni)) != 0) {
4992 aprint_error_dev(sc->sc_dev,
4993 "could not set timing\n");
4994 return error;
4995 }
4996
4997 /* Update adapter configuration. */
4998 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4999 /* Short preamble and slot time are negotiated when associating. */
5000 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
5001 if (ic->ic_flags & IEEE80211_F_SHSLOT)
5002 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5003 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5004 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5005 sc->rxon.filter |= htole32(IWN_FILTER_BSS);
5006 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
5007 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5008 if (error != 0) {
5009 aprint_error_dev(sc->sc_dev,
5010 "could not update configuration\n");
5011 return error;
5012 }
5013
5014 /* Configuration has changed, set TX power accordingly. */
5015 if ((error = ops->set_txpower(sc, 1)) != 0) {
5016 aprint_error_dev(sc->sc_dev,
5017 "could not set TX power\n");
5018 return error;
5019 }
5020
5021 /* Fake a join to initialize the TX rate. */
5022 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
5023 iwn_newassoc(ni, 1);
5024
5025 /* Add BSS node. */
5026 memset(&node, 0, sizeof node);
5027 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5028 node.id = IWN_ID_BSS;
5029 #ifdef notyet
5030 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
5031 IWN_AMDPU_DENSITY(5)); /* 2us */
5032 #endif
5033 DPRINTF(("adding BSS node\n"));
5034 error = ops->add_node(sc, &node, 1);
5035 if (error != 0) {
5036 aprint_error_dev(sc->sc_dev,
5037 "could not add BSS node\n");
5038 return error;
5039 }
5040 DPRINTF(("setting link quality for node %d\n", node.id));
5041 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5042 aprint_error_dev(sc->sc_dev,
5043 "could not setup link quality for node %d\n", node.id);
5044 return error;
5045 }
5046
5047 if ((error = iwn_init_sensitivity(sc)) != 0) {
5048 aprint_error_dev(sc->sc_dev,
5049 "could not set sensitivity\n");
5050 return error;
5051 }
5052 /* Start periodic calibration timer. */
5053 sc->calib.state = IWN_CALIB_STATE_ASSOC;
5054 sc->calib_cnt = 0;
5055 callout_schedule(&sc->calib_to, hz/2);
5056
5057 /* Link LED always on while associated. */
5058 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5059 return 0;
5060 }
5061
5062 #ifdef IWN_HWCRYPTO
5063 /*
5064 * We support CCMP hardware encryption/decryption of unicast frames only.
5065 * HW support for TKIP really sucks. We should let TKIP die anyway.
5066 */
5067 static int
5068 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5069 struct ieee80211_key *k)
5070 {
5071 struct iwn_softc *sc = ic->ic_softc;
5072 struct iwn_ops *ops = &sc->ops;
5073 struct iwn_node *wn = (void *)ni;
5074 struct iwn_node_info node;
5075 uint16_t kflags;
5076
5077 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5078 k->k_cipher != IEEE80211_CIPHER_CCMP)
5079 return ieee80211_set_key(ic, ni, k);
5080
5081 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
5082 if (k->k_flags & IEEE80211_KEY_GROUP)
5083 kflags |= IWN_KFLAG_GROUP;
5084
5085 memset(&node, 0, sizeof node);
5086 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5087 sc->broadcast_id : wn->id;
5088 node.control = IWN_NODE_UPDATE;
5089 node.flags = IWN_FLAG_SET_KEY;
5090 node.kflags = htole16(kflags);
5091 node.kid = k->k_id;
5092 memcpy(node.key, k->k_key, k->k_len);
5093 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
5094 return ops->add_node(sc, &node, 1);
5095 }
5096
5097 static void
5098 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5099 struct ieee80211_key *k)
5100 {
5101 struct iwn_softc *sc = ic->ic_softc;
5102 struct iwn_ops *ops = &sc->ops;
5103 struct iwn_node *wn = (void *)ni;
5104 struct iwn_node_info node;
5105
5106 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5107 k->k_cipher != IEEE80211_CIPHER_CCMP) {
5108 /* See comment about other ciphers above. */
5109 ieee80211_delete_key(ic, ni, k);
5110 return;
5111 }
5112 if (ic->ic_state != IEEE80211_S_RUN)
5113 return; /* Nothing to do. */
5114 memset(&node, 0, sizeof node);
5115 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5116 sc->broadcast_id : wn->id;
5117 node.control = IWN_NODE_UPDATE;
5118 node.flags = IWN_FLAG_SET_KEY;
5119 node.kflags = htole16(IWN_KFLAG_INVALID);
5120 node.kid = 0xff;
5121 DPRINTF(("delete keys for node %d\n", node.id));
5122 (void)ops->add_node(sc, &node, 1);
5123 }
5124 #endif
5125
5126 /* XXX Added for NetBSD (copied from rev 1.39). */
5127
5128 static int
5129 iwn_wme_update(struct ieee80211com *ic)
5130 {
5131 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
5132 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
5133 struct iwn_softc *sc = ic->ic_ifp->if_softc;
5134 const struct wmeParams *wmep;
5135 struct iwn_edca_params cmd;
5136 int ac;
5137
5138 /* don't override default WME values if WME is not actually enabled */
5139 if (!(ic->ic_flags & IEEE80211_F_WME))
5140 return 0;
5141 cmd.flags = 0;
5142 for (ac = 0; ac < WME_NUM_AC; ac++) {
5143 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
5144 cmd.ac[ac].aifsn = wmep->wmep_aifsn;
5145 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
5146 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
5147 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
5148
5149 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
5150 "txop=%d\n", ac, cmd.ac[ac].aifsn,
5151 cmd.ac[ac].cwmin,
5152 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
5153 }
5154 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5155 #undef IWN_USEC
5156 #undef IWN_EXP2
5157 }
5158
5159 #ifndef IEEE80211_NO_HT
5160 /*
5161 * This function is called by upper layer when an ADDBA request is received
5162 * from another STA and before the ADDBA response is sent.
5163 */
5164 static int
5165 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5166 uint8_t tid)
5167 {
5168 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5169 struct iwn_softc *sc = ic->ic_softc;
5170 struct iwn_ops *ops = &sc->ops;
5171 struct iwn_node *wn = (void *)ni;
5172 struct iwn_node_info node;
5173
5174 memset(&node, 0, sizeof node);
5175 node.id = wn->id;
5176 node.control = IWN_NODE_UPDATE;
5177 node.flags = IWN_FLAG_SET_ADDBA;
5178 node.addba_tid = tid;
5179 node.addba_ssn = htole16(ba->ba_winstart);
5180 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5181 ba->ba_winstart));
5182 return ops->add_node(sc, &node, 1);
5183 }
5184
5185 /*
5186 * This function is called by upper layer on teardown of an HT-immediate
5187 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5188 */
5189 static void
5190 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5191 uint8_t tid)
5192 {
5193 struct iwn_softc *sc = ic->ic_softc;
5194 struct iwn_ops *ops = &sc->ops;
5195 struct iwn_node *wn = (void *)ni;
5196 struct iwn_node_info node;
5197
5198 memset(&node, 0, sizeof node);
5199 node.id = wn->id;
5200 node.control = IWN_NODE_UPDATE;
5201 node.flags = IWN_FLAG_SET_DELBA;
5202 node.delba_tid = tid;
5203 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
5204 (void)ops->add_node(sc, &node, 1);
5205 }
5206
5207 /*
5208 * This function is called by upper layer when an ADDBA response is received
5209 * from another STA.
5210 */
5211 static int
5212 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5213 uint8_t tid)
5214 {
5215 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5216 struct iwn_softc *sc = ic->ic_softc;
5217 struct iwn_ops *ops = &sc->ops;
5218 struct iwn_node *wn = (void *)ni;
5219 struct iwn_node_info node;
5220 int error;
5221
5222 /* Enable TX for the specified RA/TID. */
5223 wn->disable_tid &= ~(1 << tid);
5224 memset(&node, 0, sizeof node);
5225 node.id = wn->id;
5226 node.control = IWN_NODE_UPDATE;
5227 node.flags = IWN_FLAG_SET_DISABLE_TID;
5228 node.disable_tid = htole16(wn->disable_tid);
5229 error = ops->add_node(sc, &node, 1);
5230 if (error != 0)
5231 return error;
5232
5233 if ((error = iwn_nic_lock(sc)) != 0)
5234 return error;
5235 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5236 iwn_nic_unlock(sc);
5237 return 0;
5238 }
5239
5240 static void
5241 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5242 uint8_t tid)
5243 {
5244 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5245 struct iwn_softc *sc = ic->ic_softc;
5246 struct iwn_ops *ops = &sc->ops;
5247
5248 if (iwn_nic_lock(sc) != 0)
5249 return;
5250 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5251 iwn_nic_unlock(sc);
5252 }
5253
5254 static void
5255 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5256 uint8_t tid, uint16_t ssn)
5257 {
5258 struct iwn_node *wn = (void *)ni;
5259 int qid = 7 + tid;
5260
5261 /* Stop TX scheduler while we're changing its configuration. */
5262 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5263 IWN4965_TXQ_STATUS_CHGACT);
5264
5265 /* Assign RA/TID translation to the queue. */
5266 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5267 wn->id << 4 | tid);
5268
5269 /* Enable chain-building mode for the queue. */
5270 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5271
5272 /* Set starting sequence number from the ADDBA request. */
5273 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5274 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5275
5276 /* Set scheduler window size. */
5277 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5278 IWN_SCHED_WINSZ);
5279 /* Set scheduler frame limit. */
5280 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5281 IWN_SCHED_LIMIT << 16);
5282
5283 /* Enable interrupts for the queue. */
5284 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5285
5286 /* Mark the queue as active. */
5287 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5288 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5289 iwn_tid2fifo[tid] << 1);
5290 }
5291
5292 static void
5293 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5294 {
5295 int qid = 7 + tid;
5296
5297 /* Stop TX scheduler while we're changing its configuration. */
5298 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5299 IWN4965_TXQ_STATUS_CHGACT);
5300
5301 /* Set starting sequence number from the ADDBA request. */
5302 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5303 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5304
5305 /* Disable interrupts for the queue. */
5306 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5307
5308 /* Mark the queue as inactive. */
5309 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5310 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5311 }
5312
5313 static void
5314 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5315 uint8_t tid, uint16_t ssn)
5316 {
5317 struct iwn_node *wn = (void *)ni;
5318 int qid = 10 + tid;
5319
5320 /* Stop TX scheduler while we're changing its configuration. */
5321 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5322 IWN5000_TXQ_STATUS_CHGACT);
5323
5324 /* Assign RA/TID translation to the queue. */
5325 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5326 wn->id << 4 | tid);
5327
5328 /* Enable chain-building mode for the queue. */
5329 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5330
5331 /* Enable aggregation for the queue. */
5332 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5333
5334 /* Set starting sequence number from the ADDBA request. */
5335 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5336 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5337
5338 /* Set scheduler window size and frame limit. */
5339 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5340 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5341
5342 /* Enable interrupts for the queue. */
5343 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5344
5345 /* Mark the queue as active. */
5346 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5347 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5348 }
5349
5350 static void
5351 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5352 {
5353 int qid = 10 + tid;
5354
5355 /* Stop TX scheduler while we're changing its configuration. */
5356 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5357 IWN5000_TXQ_STATUS_CHGACT);
5358
5359 /* Disable aggregation for the queue. */
5360 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5361
5362 /* Set starting sequence number from the ADDBA request. */
5363 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5364 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5365
5366 /* Disable interrupts for the queue. */
5367 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5368
5369 /* Mark the queue as inactive. */
5370 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5371 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5372 }
5373 #endif /* !IEEE80211_NO_HT */
5374
5375 /*
5376 * Query calibration tables from the initialization firmware. We do this
5377 * only once at first boot. Called from a process context.
5378 */
5379 static int
5380 iwn5000_query_calibration(struct iwn_softc *sc)
5381 {
5382 struct iwn5000_calib_config cmd;
5383 int error;
5384
5385 memset(&cmd, 0, sizeof cmd);
5386 cmd.ucode.once.enable = 0xffffffff;
5387 cmd.ucode.once.start = 0xffffffff;
5388 cmd.ucode.once.send = 0xffffffff;
5389 cmd.ucode.flags = 0xffffffff;
5390 DPRINTF(("sending calibration query\n"));
5391 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5392 if (error != 0)
5393 return error;
5394
5395 /* Wait at most two seconds for calibration to complete. */
5396 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5397 error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5398 return error;
5399 }
5400
5401 /*
5402 * Send calibration results to the runtime firmware. These results were
5403 * obtained on first boot from the initialization firmware.
5404 */
5405 static int
5406 iwn5000_send_calibration(struct iwn_softc *sc)
5407 {
5408 int idx, error;
5409
5410 for (idx = 0; idx < 5; idx++) {
5411 if (sc->calibcmd[idx].buf == NULL)
5412 continue; /* No results available. */
5413 DPRINTF(("send calibration result idx=%d len=%d\n",
5414 idx, sc->calibcmd[idx].len));
5415 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5416 sc->calibcmd[idx].len, 0);
5417 if (error != 0) {
5418 aprint_error_dev(sc->sc_dev,
5419 "could not send calibration result\n");
5420 return error;
5421 }
5422 }
5423 return 0;
5424 }
5425
5426 static int
5427 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5428 {
5429 struct iwn5000_wimax_coex wimax;
5430
5431 #ifdef notyet
5432 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5433 /* Enable WiMAX coexistence for combo adapters. */
5434 wimax.flags =
5435 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5436 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5437 IWN_WIMAX_COEX_STA_TABLE_VALID |
5438 IWN_WIMAX_COEX_ENABLE;
5439 memcpy(wimax.events, iwn6050_wimax_events,
5440 sizeof iwn6050_wimax_events);
5441 } else
5442 #endif
5443 {
5444 /* Disable WiMAX coexistence. */
5445 wimax.flags = 0;
5446 memset(wimax.events, 0, sizeof wimax.events);
5447 }
5448 DPRINTF(("Configuring WiMAX coexistence\n"));
5449 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5450 }
5451
5452 static int
5453 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5454 {
5455 struct iwn6000_phy_calib_temp_offset cmd;
5456
5457 memset(&cmd, 0, sizeof cmd);
5458 cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5459 cmd.ngroups = 1;
5460 cmd.isvalid = 1;
5461 if (sc->eeprom_temp != 0)
5462 cmd.offset = htole16(sc->eeprom_temp);
5463 else
5464 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5465 DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5466 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5467 }
5468
5469 static int
5470 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5471 {
5472 struct iwn2000_phy_calib_temp_offset cmd;
5473
5474 memset(&cmd, 0, sizeof cmd);
5475 cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5476 cmd.ngroups = 1;
5477 cmd.isvalid = 1;
5478 if (sc->eeprom_rawtemp != 0) {
5479 cmd.offset_low = htole16(sc->eeprom_rawtemp);
5480 cmd.offset_high = htole16(sc->eeprom_temp);
5481 } else {
5482 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5483 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5484 }
5485 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5486 DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5487 le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5488 le16toh(cmd.burnt_voltage_ref)));
5489 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5490 }
5491
5492 /*
5493 * This function is called after the runtime firmware notifies us of its
5494 * readiness (called in a process context).
5495 */
5496 static int
5497 iwn4965_post_alive(struct iwn_softc *sc)
5498 {
5499 int error, qid;
5500
5501 if ((error = iwn_nic_lock(sc)) != 0)
5502 return error;
5503
5504 /* Clear TX scheduler state in SRAM. */
5505 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5506 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5507 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5508
5509 /* Set physical address of TX scheduler rings (1KB aligned). */
5510 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5511
5512 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5513
5514 /* Disable chain mode for all our 16 queues. */
5515 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5516
5517 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5518 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5519 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5520
5521 /* Set scheduler window size. */
5522 iwn_mem_write(sc, sc->sched_base +
5523 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5524 /* Set scheduler frame limit. */
5525 iwn_mem_write(sc, sc->sched_base +
5526 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5527 IWN_SCHED_LIMIT << 16);
5528 }
5529
5530 /* Enable interrupts for all our 16 queues. */
5531 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5532 /* Identify TX FIFO rings (0-7). */
5533 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5534
5535 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5536 for (qid = 0; qid < 7; qid++) {
5537 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5538 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5539 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5540 }
5541 iwn_nic_unlock(sc);
5542 return 0;
5543 }
5544
5545 /*
5546 * This function is called after the initialization or runtime firmware
5547 * notifies us of its readiness (called in a process context).
5548 */
5549 static int
5550 iwn5000_post_alive(struct iwn_softc *sc)
5551 {
5552 int error, qid;
5553
5554 /* Switch to using ICT interrupt mode. */
5555 iwn5000_ict_reset(sc);
5556
5557 if ((error = iwn_nic_lock(sc)) != 0)
5558 return error;
5559
5560 /* Clear TX scheduler state in SRAM. */
5561 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5562 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5563 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5564
5565 /* Set physical address of TX scheduler rings (1KB aligned). */
5566 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5567
5568 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5569
5570 /* Enable chain mode for all queues, except command queue. */
5571 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5572 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5573
5574 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5575 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5576 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5577
5578 iwn_mem_write(sc, sc->sched_base +
5579 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5580 /* Set scheduler window size and frame limit. */
5581 iwn_mem_write(sc, sc->sched_base +
5582 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5583 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5584 }
5585
5586 /* Enable interrupts for all our 20 queues. */
5587 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5588 /* Identify TX FIFO rings (0-7). */
5589 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5590
5591 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5592 for (qid = 0; qid < 7; qid++) {
5593 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5594 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5595 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5596 }
5597 iwn_nic_unlock(sc);
5598
5599 /* Configure WiMAX coexistence for combo adapters. */
5600 error = iwn5000_send_wimax_coex(sc);
5601 if (error != 0) {
5602 aprint_error_dev(sc->sc_dev,
5603 "could not configure WiMAX coexistence\n");
5604 return error;
5605 }
5606 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5607 struct iwn5000_phy_calib_crystal cmd;
5608
5609 /* Perform crystal calibration. */
5610 memset(&cmd, 0, sizeof cmd);
5611 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5612 cmd.ngroups = 1;
5613 cmd.isvalid = 1;
5614 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5615 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5616 DPRINTF(("sending crystal calibration %d, %d\n",
5617 cmd.cap_pin[0], cmd.cap_pin[1]));
5618 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5619 if (error != 0) {
5620 aprint_error_dev(sc->sc_dev,
5621 "crystal calibration failed\n");
5622 return error;
5623 }
5624 }
5625 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5626 /* Query calibration from the initialization firmware. */
5627 if ((error = iwn5000_query_calibration(sc)) != 0) {
5628 aprint_error_dev(sc->sc_dev,
5629 "could not query calibration\n");
5630 return error;
5631 }
5632 /*
5633 * We have the calibration results now, reboot with the
5634 * runtime firmware (call ourselves recursively!)
5635 */
5636 iwn_hw_stop(sc);
5637 error = iwn_hw_init(sc);
5638 } else {
5639 /* Send calibration results to runtime firmware. */
5640 error = iwn5000_send_calibration(sc);
5641 }
5642 return error;
5643 }
5644
5645 /*
5646 * The firmware boot code is small and is intended to be copied directly into
5647 * the NIC internal memory (no DMA transfer).
5648 */
5649 static int
5650 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5651 {
5652 int error, ntries;
5653
5654 size /= sizeof (uint32_t);
5655
5656 if ((error = iwn_nic_lock(sc)) != 0)
5657 return error;
5658
5659 /* Copy microcode image into NIC memory. */
5660 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5661 (const uint32_t *)ucode, size);
5662
5663 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5664 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5665 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5666
5667 /* Start boot load now. */
5668 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5669
5670 /* Wait for transfer to complete. */
5671 for (ntries = 0; ntries < 1000; ntries++) {
5672 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5673 IWN_BSM_WR_CTRL_START))
5674 break;
5675 DELAY(10);
5676 }
5677 if (ntries == 1000) {
5678 aprint_error_dev(sc->sc_dev,
5679 "could not load boot firmware\n");
5680 iwn_nic_unlock(sc);
5681 return ETIMEDOUT;
5682 }
5683
5684 /* Enable boot after power up. */
5685 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5686
5687 iwn_nic_unlock(sc);
5688 return 0;
5689 }
5690
5691 static int
5692 iwn4965_load_firmware(struct iwn_softc *sc)
5693 {
5694 struct iwn_fw_info *fw = &sc->fw;
5695 struct iwn_dma_info *dma = &sc->fw_dma;
5696 int error;
5697
5698 /* Copy initialization sections into pre-allocated DMA-safe memory. */
5699 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5700 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5701 BUS_DMASYNC_PREWRITE);
5702 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5703 fw->init.text, fw->init.textsz);
5704 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5705 fw->init.textsz, BUS_DMASYNC_PREWRITE);
5706
5707 /* Tell adapter where to find initialization sections. */
5708 if ((error = iwn_nic_lock(sc)) != 0)
5709 return error;
5710 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5711 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5712 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5713 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5714 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5715 iwn_nic_unlock(sc);
5716
5717 /* Load firmware boot code. */
5718 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5719 if (error != 0) {
5720 aprint_error_dev(sc->sc_dev,
5721 "could not load boot firmware\n");
5722 return error;
5723 }
5724 /* Now press "execute". */
5725 IWN_WRITE(sc, IWN_RESET, 0);
5726
5727 /* Wait at most one second for first alive notification. */
5728 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5729 aprint_error_dev(sc->sc_dev,
5730 "timeout waiting for adapter to initialize\n");
5731 return error;
5732 }
5733
5734 /* Retrieve current temperature for initial TX power calibration. */
5735 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5736 sc->temp = iwn4965_get_temperature(sc);
5737
5738 /* Copy runtime sections into pre-allocated DMA-safe memory. */
5739 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5740 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5741 BUS_DMASYNC_PREWRITE);
5742 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5743 fw->main.text, fw->main.textsz);
5744 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5745 fw->main.textsz, BUS_DMASYNC_PREWRITE);
5746
5747 /* Tell adapter where to find runtime sections. */
5748 if ((error = iwn_nic_lock(sc)) != 0)
5749 return error;
5750 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5751 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5752 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5753 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5754 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5755 IWN_FW_UPDATED | fw->main.textsz);
5756 iwn_nic_unlock(sc);
5757
5758 return 0;
5759 }
5760
5761 static int
5762 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5763 const uint8_t *section, int size)
5764 {
5765 struct iwn_dma_info *dma = &sc->fw_dma;
5766 int error;
5767
5768 /* Copy firmware section into pre-allocated DMA-safe memory. */
5769 memcpy(dma->vaddr, section, size);
5770 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5771
5772 if ((error = iwn_nic_lock(sc)) != 0)
5773 return error;
5774
5775 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5776 IWN_FH_TX_CONFIG_DMA_PAUSE);
5777
5778 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5779 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5780 IWN_LOADDR(dma->paddr));
5781 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5782 IWN_HIADDR(dma->paddr) << 28 | size);
5783 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5784 IWN_FH_TXBUF_STATUS_TBNUM(1) |
5785 IWN_FH_TXBUF_STATUS_TBIDX(1) |
5786 IWN_FH_TXBUF_STATUS_TFBD_VALID);
5787
5788 /* Kick Flow Handler to start DMA transfer. */
5789 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5790 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5791
5792 iwn_nic_unlock(sc);
5793
5794 /* Wait at most five seconds for FH DMA transfer to complete. */
5795 return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5796 }
5797
5798 static int
5799 iwn5000_load_firmware(struct iwn_softc *sc)
5800 {
5801 struct iwn_fw_part *fw;
5802 int error;
5803
5804 /* Load the initialization firmware on first boot only. */
5805 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5806 &sc->fw.main : &sc->fw.init;
5807
5808 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5809 fw->text, fw->textsz);
5810 if (error != 0) {
5811 aprint_error_dev(sc->sc_dev,
5812 "could not load firmware %s section\n", ".text");
5813 return error;
5814 }
5815 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5816 fw->data, fw->datasz);
5817 if (error != 0) {
5818 aprint_error_dev(sc->sc_dev,
5819 "could not load firmware %s section\n", ".data");
5820 return error;
5821 }
5822
5823 /* Now press "execute". */
5824 IWN_WRITE(sc, IWN_RESET, 0);
5825 return 0;
5826 }
5827
5828 /*
5829 * Extract text and data sections from a legacy firmware image.
5830 */
5831 static int
5832 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5833 {
5834 const uint32_t *ptr;
5835 size_t hdrlen = 24;
5836 uint32_t rev;
5837
5838 ptr = (const uint32_t *)fw->data;
5839 rev = le32toh(*ptr++);
5840
5841 sc->ucode_rev = rev;
5842
5843 /* Check firmware API version. */
5844 if (IWN_FW_API(rev) <= 1) {
5845 aprint_error_dev(sc->sc_dev,
5846 "bad firmware, need API version >=2\n");
5847 return EINVAL;
5848 }
5849 if (IWN_FW_API(rev) >= 3) {
5850 /* Skip build number (version 2 header). */
5851 hdrlen += 4;
5852 ptr++;
5853 }
5854 if (fw->size < hdrlen) {
5855 aprint_error_dev(sc->sc_dev,
5856 "firmware too short: %zd bytes\n", fw->size);
5857 return EINVAL;
5858 }
5859 fw->main.textsz = le32toh(*ptr++);
5860 fw->main.datasz = le32toh(*ptr++);
5861 fw->init.textsz = le32toh(*ptr++);
5862 fw->init.datasz = le32toh(*ptr++);
5863 fw->boot.textsz = le32toh(*ptr++);
5864
5865 /* Check that all firmware sections fit. */
5866 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5867 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5868 aprint_error_dev(sc->sc_dev,
5869 "firmware too short: %zd bytes\n", fw->size);
5870 return EINVAL;
5871 }
5872
5873 /* Get pointers to firmware sections. */
5874 fw->main.text = (const uint8_t *)ptr;
5875 fw->main.data = fw->main.text + fw->main.textsz;
5876 fw->init.text = fw->main.data + fw->main.datasz;
5877 fw->init.data = fw->init.text + fw->init.textsz;
5878 fw->boot.text = fw->init.data + fw->init.datasz;
5879 return 0;
5880 }
5881
5882 /*
5883 * Extract text and data sections from a TLV firmware image.
5884 */
5885 static int
5886 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5887 uint16_t alt)
5888 {
5889 const struct iwn_fw_tlv_hdr *hdr;
5890 const struct iwn_fw_tlv *tlv;
5891 const uint8_t *ptr, *end;
5892 uint64_t altmask;
5893 uint32_t len;
5894
5895 if (fw->size < sizeof (*hdr)) {
5896 aprint_error_dev(sc->sc_dev,
5897 "firmware too short: %zd bytes\n", fw->size);
5898 return EINVAL;
5899 }
5900 hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5901 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5902 aprint_error_dev(sc->sc_dev,
5903 "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5904 return EINVAL;
5905 }
5906 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5907 le32toh(hdr->build)));
5908 sc->ucode_rev = le32toh(hdr->rev);
5909
5910 /*
5911 * Select the closest supported alternative that is less than
5912 * or equal to the specified one.
5913 */
5914 altmask = le64toh(hdr->altmask);
5915 while (alt > 0 && !(altmask & (1ULL << alt)))
5916 alt--; /* Downgrade. */
5917 DPRINTF(("using alternative %d\n", alt));
5918
5919 ptr = (const uint8_t *)(hdr + 1);
5920 end = (const uint8_t *)(fw->data + fw->size);
5921
5922 /* Parse type-length-value fields. */
5923 while (ptr + sizeof (*tlv) <= end) {
5924 tlv = (const struct iwn_fw_tlv *)ptr;
5925 len = le32toh(tlv->len);
5926
5927 ptr += sizeof (*tlv);
5928 if (ptr + len > end) {
5929 aprint_error_dev(sc->sc_dev,
5930 "firmware too short: %zd bytes\n", fw->size);
5931 return EINVAL;
5932 }
5933 /* Skip other alternatives. */
5934 if (tlv->alt != 0 && tlv->alt != htole16(alt))
5935 goto next;
5936
5937 switch (le16toh(tlv->type)) {
5938 case IWN_FW_TLV_MAIN_TEXT:
5939 fw->main.text = ptr;
5940 fw->main.textsz = len;
5941 break;
5942 case IWN_FW_TLV_MAIN_DATA:
5943 fw->main.data = ptr;
5944 fw->main.datasz = len;
5945 break;
5946 case IWN_FW_TLV_INIT_TEXT:
5947 fw->init.text = ptr;
5948 fw->init.textsz = len;
5949 break;
5950 case IWN_FW_TLV_INIT_DATA:
5951 fw->init.data = ptr;
5952 fw->init.datasz = len;
5953 break;
5954 case IWN_FW_TLV_BOOT_TEXT:
5955 fw->boot.text = ptr;
5956 fw->boot.textsz = len;
5957 break;
5958 case IWN_FW_TLV_ENH_SENS:
5959 if (len != 0) {
5960 aprint_error_dev(sc->sc_dev,
5961 "TLV type %d has invalid size %u\n",
5962 le16toh(tlv->type), len);
5963 goto next;
5964 }
5965 sc->sc_flags |= IWN_FLAG_ENH_SENS;
5966 break;
5967 case IWN_FW_TLV_PHY_CALIB:
5968 if (len != sizeof(uint32_t)) {
5969 aprint_error_dev(sc->sc_dev,
5970 "TLV type %d has invalid size %u\n",
5971 le16toh(tlv->type), len);
5972 goto next;
5973 }
5974 if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5975 sc->reset_noise_gain = le32toh(*ptr);
5976 sc->noise_gain = le32toh(*ptr) + 1;
5977 }
5978 break;
5979 case IWN_FW_TLV_FLAGS:
5980 if (len < sizeof(uint32_t))
5981 break;
5982 if (len % sizeof(uint32_t))
5983 break;
5984 sc->tlv_feature_flags = le32toh(*ptr);
5985 DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5986 break;
5987 default:
5988 DPRINTF(("TLV type %d not handled\n",
5989 le16toh(tlv->type)));
5990 break;
5991 }
5992 next: /* TLV fields are 32-bit aligned. */
5993 ptr += (len + 3) & ~3;
5994 }
5995 return 0;
5996 }
5997
5998 static int
5999 iwn_read_firmware(struct iwn_softc *sc)
6000 {
6001 struct iwn_fw_info *fw = &sc->fw;
6002 firmware_handle_t fwh;
6003 int error;
6004
6005 /*
6006 * Some PHY calibration commands are firmware-dependent; these
6007 * are the default values that will be overridden if
6008 * necessary.
6009 */
6010 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
6011 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
6012
6013 /* Initialize for error returns */
6014 fw->data = NULL;
6015 fw->size = 0;
6016
6017 /* Open firmware image. */
6018 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
6019 aprint_error_dev(sc->sc_dev,
6020 "could not get firmware handle %s\n", sc->fwname);
6021 return error;
6022 }
6023 fw->size = firmware_get_size(fwh);
6024 if (fw->size < sizeof (uint32_t)) {
6025 aprint_error_dev(sc->sc_dev,
6026 "firmware too short: %zd bytes\n", fw->size);
6027 firmware_close(fwh);
6028 return EINVAL;
6029 }
6030
6031 /* Read the firmware. */
6032 fw->data = firmware_malloc(fw->size);
6033 if (fw->data == NULL) {
6034 aprint_error_dev(sc->sc_dev,
6035 "not enough memory to stock firmware %s\n", sc->fwname);
6036 firmware_close(fwh);
6037 return ENOMEM;
6038 }
6039 error = firmware_read(fwh, 0, fw->data, fw->size);
6040 firmware_close(fwh);
6041 if (error != 0) {
6042 aprint_error_dev(sc->sc_dev,
6043 "could not read firmware %s\n", sc->fwname);
6044 goto out;
6045 }
6046
6047 /* Retrieve text and data sections. */
6048 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
6049 error = iwn_read_firmware_leg(sc, fw);
6050 else
6051 error = iwn_read_firmware_tlv(sc, fw, 1);
6052 if (error != 0) {
6053 aprint_error_dev(sc->sc_dev,
6054 "could not read firmware sections\n");
6055 goto out;
6056 }
6057
6058 /* Make sure text and data sections fit in hardware memory. */
6059 if (fw->main.textsz > sc->fw_text_maxsz ||
6060 fw->main.datasz > sc->fw_data_maxsz ||
6061 fw->init.textsz > sc->fw_text_maxsz ||
6062 fw->init.datasz > sc->fw_data_maxsz ||
6063 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6064 (fw->boot.textsz & 3) != 0) {
6065 aprint_error_dev(sc->sc_dev,
6066 "firmware sections too large\n");
6067 goto out;
6068 }
6069
6070 /* We can proceed with loading the firmware. */
6071 return 0;
6072 out:
6073 firmware_free(fw->data, fw->size);
6074 fw->data = NULL;
6075 fw->size = 0;
6076 return error ? error : EINVAL;
6077 }
6078
6079 static int
6080 iwn_clock_wait(struct iwn_softc *sc)
6081 {
6082 int ntries;
6083
6084 /* Set "initialization complete" bit. */
6085 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6086
6087 /* Wait for clock stabilization. */
6088 for (ntries = 0; ntries < 2500; ntries++) {
6089 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6090 return 0;
6091 DELAY(10);
6092 }
6093 aprint_error_dev(sc->sc_dev,
6094 "timeout waiting for clock stabilization\n");
6095 return ETIMEDOUT;
6096 }
6097
6098 static int
6099 iwn_apm_init(struct iwn_softc *sc)
6100 {
6101 pcireg_t reg;
6102 int error;
6103
6104 /* Disable L0s exit timer (NMI bug workaround). */
6105 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6106 /* Don't wait for ICH L0s (ICH bug workaround). */
6107 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6108
6109 /* Set FH wait threshold to max (HW bug under stress workaround). */
6110 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6111
6112 /* Enable HAP INTA to move adapter from L1a to L0s. */
6113 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6114
6115 /* Retrieve PCIe Active State Power Management (ASPM). */
6116 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6117 sc->sc_cap_off + PCIE_LCSR);
6118 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6119 if (reg & PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
6120 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6121 else
6122 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6123
6124 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6125 sc->hw_type <= IWN_HW_REV_TYPE_1000)
6126 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6127
6128 /* Wait for clock stabilization before accessing prph. */
6129 if ((error = iwn_clock_wait(sc)) != 0)
6130 return error;
6131
6132 if ((error = iwn_nic_lock(sc)) != 0)
6133 return error;
6134 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6135 /* Enable DMA and BSM (Bootstrap State Machine). */
6136 iwn_prph_write(sc, IWN_APMG_CLK_EN,
6137 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6138 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6139 } else {
6140 /* Enable DMA. */
6141 iwn_prph_write(sc, IWN_APMG_CLK_EN,
6142 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6143 }
6144 DELAY(20);
6145 /* Disable L1-Active. */
6146 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6147 iwn_nic_unlock(sc);
6148
6149 return 0;
6150 }
6151
6152 static void
6153 iwn_apm_stop_master(struct iwn_softc *sc)
6154 {
6155 int ntries;
6156
6157 /* Stop busmaster DMA activity. */
6158 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6159 for (ntries = 0; ntries < 100; ntries++) {
6160 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6161 return;
6162 DELAY(10);
6163 }
6164 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
6165 }
6166
6167 static void
6168 iwn_apm_stop(struct iwn_softc *sc)
6169 {
6170 iwn_apm_stop_master(sc);
6171
6172 /* Reset the entire device. */
6173 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6174 DELAY(10);
6175 /* Clear "initialization complete" bit. */
6176 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6177 }
6178
6179 static int
6180 iwn4965_nic_config(struct iwn_softc *sc)
6181 {
6182 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6183 /*
6184 * I don't believe this to be correct but this is what the
6185 * vendor driver is doing. Probably the bits should not be
6186 * shifted in IWN_RFCFG_*.
6187 */
6188 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6189 IWN_RFCFG_TYPE(sc->rfcfg) |
6190 IWN_RFCFG_STEP(sc->rfcfg) |
6191 IWN_RFCFG_DASH(sc->rfcfg));
6192 }
6193 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6194 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6195 return 0;
6196 }
6197
6198 static int
6199 iwn5000_nic_config(struct iwn_softc *sc)
6200 {
6201 uint32_t tmp;
6202 int error;
6203
6204 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6205 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6206 IWN_RFCFG_TYPE(sc->rfcfg) |
6207 IWN_RFCFG_STEP(sc->rfcfg) |
6208 IWN_RFCFG_DASH(sc->rfcfg));
6209 }
6210 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6211 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6212
6213 if ((error = iwn_nic_lock(sc)) != 0)
6214 return error;
6215 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6216
6217 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6218 /*
6219 * Select first Switching Voltage Regulator (1.32V) to
6220 * solve a stability issue related to noisy DC2DC line
6221 * in the silicon of 1000 Series.
6222 */
6223 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6224 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6225 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6226 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6227 }
6228 iwn_nic_unlock(sc);
6229
6230 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6231 /* Use internal power amplifier only. */
6232 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6233 }
6234 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6235 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6236 /* Indicate that ROM calibration version is >=6. */
6237 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6238 }
6239 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6240 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6241 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6242 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6243 sc->hw_type == IWN_HW_REV_TYPE_135 ||
6244 sc->hw_type == IWN_HW_REV_TYPE_105)
6245 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6246 return 0;
6247 }
6248
6249 /*
6250 * Take NIC ownership over Intel Active Management Technology (AMT).
6251 */
6252 static int
6253 iwn_hw_prepare(struct iwn_softc *sc)
6254 {
6255 int ntries;
6256
6257 /* Check if hardware is ready. */
6258 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6259 for (ntries = 0; ntries < 5; ntries++) {
6260 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6261 IWN_HW_IF_CONFIG_NIC_READY)
6262 return 0;
6263 DELAY(10);
6264 }
6265
6266 /* Hardware not ready, force into ready state. */
6267 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6268 for (ntries = 0; ntries < 15000; ntries++) {
6269 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6270 IWN_HW_IF_CONFIG_PREPARE_DONE))
6271 break;
6272 DELAY(10);
6273 }
6274 if (ntries == 15000)
6275 return ETIMEDOUT;
6276
6277 /* Hardware should be ready now. */
6278 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6279 for (ntries = 0; ntries < 5; ntries++) {
6280 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6281 IWN_HW_IF_CONFIG_NIC_READY)
6282 return 0;
6283 DELAY(10);
6284 }
6285 return ETIMEDOUT;
6286 }
6287
6288 static int
6289 iwn_hw_init(struct iwn_softc *sc)
6290 {
6291 struct iwn_ops *ops = &sc->ops;
6292 int error, chnl, qid;
6293
6294 /* Clear pending interrupts. */
6295 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6296
6297 if ((error = iwn_apm_init(sc)) != 0) {
6298 aprint_error_dev(sc->sc_dev,
6299 "could not power ON adapter\n");
6300 return error;
6301 }
6302
6303 /* Select VMAIN power source. */
6304 if ((error = iwn_nic_lock(sc)) != 0)
6305 return error;
6306 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6307 iwn_nic_unlock(sc);
6308
6309 /* Perform adapter-specific initialization. */
6310 if ((error = ops->nic_config(sc)) != 0)
6311 return error;
6312
6313 /* Initialize RX ring. */
6314 if ((error = iwn_nic_lock(sc)) != 0)
6315 return error;
6316 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6317 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6318 /* Set physical address of RX ring (256-byte aligned). */
6319 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6320 /* Set physical address of RX status (16-byte aligned). */
6321 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6322 /* Enable RX. */
6323 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6324 IWN_FH_RX_CONFIG_ENA |
6325 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
6326 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
6327 IWN_FH_RX_CONFIG_SINGLE_FRAME |
6328 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6329 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6330 iwn_nic_unlock(sc);
6331 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6332
6333 if ((error = iwn_nic_lock(sc)) != 0)
6334 return error;
6335
6336 /* Initialize TX scheduler. */
6337 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6338
6339 /* Set physical address of "keep warm" page (16-byte aligned). */
6340 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6341
6342 /* Initialize TX rings. */
6343 for (qid = 0; qid < sc->ntxqs; qid++) {
6344 struct iwn_tx_ring *txq = &sc->txq[qid];
6345
6346 /* Set physical address of TX ring (256-byte aligned). */
6347 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6348 txq->desc_dma.paddr >> 8);
6349 }
6350 iwn_nic_unlock(sc);
6351
6352 /* Enable DMA channels. */
6353 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6354 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6355 IWN_FH_TX_CONFIG_DMA_ENA |
6356 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6357 }
6358
6359 /* Clear "radio off" and "commands blocked" bits. */
6360 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6361 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6362
6363 /* Clear pending interrupts. */
6364 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6365 /* Enable interrupt coalescing. */
6366 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6367 /* Enable interrupts. */
6368 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6369
6370 /* _Really_ make sure "radio off" bit is cleared! */
6371 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6372 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6373
6374 /* Enable shadow registers. */
6375 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6376 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6377
6378 if ((error = ops->load_firmware(sc)) != 0) {
6379 aprint_error_dev(sc->sc_dev,
6380 "could not load firmware\n");
6381 return error;
6382 }
6383 /* Wait at most one second for firmware alive notification. */
6384 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6385 aprint_error_dev(sc->sc_dev,
6386 "timeout waiting for adapter to initialize\n");
6387 return error;
6388 }
6389 /* Do post-firmware initialization. */
6390 return ops->post_alive(sc);
6391 }
6392
6393 static void
6394 iwn_hw_stop(struct iwn_softc *sc)
6395 {
6396 int chnl, qid, ntries;
6397
6398 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6399
6400 /* Disable interrupts. */
6401 IWN_WRITE(sc, IWN_INT_MASK, 0);
6402 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6403 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6404 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6405
6406 /* Make sure we no longer hold the NIC lock. */
6407 iwn_nic_unlock(sc);
6408
6409 /* Stop TX scheduler. */
6410 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6411
6412 /* Stop all DMA channels. */
6413 if (iwn_nic_lock(sc) == 0) {
6414 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6415 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6416 for (ntries = 0; ntries < 200; ntries++) {
6417 if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6418 IWN_FH_TX_STATUS_IDLE(chnl))
6419 break;
6420 DELAY(10);
6421 }
6422 }
6423 iwn_nic_unlock(sc);
6424 }
6425
6426 /* Stop RX ring. */
6427 iwn_reset_rx_ring(sc, &sc->rxq);
6428
6429 /* Reset all TX rings. */
6430 for (qid = 0; qid < sc->ntxqs; qid++)
6431 iwn_reset_tx_ring(sc, &sc->txq[qid]);
6432
6433 if (iwn_nic_lock(sc) == 0) {
6434 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6435 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6436 iwn_nic_unlock(sc);
6437 }
6438 DELAY(5);
6439 /* Power OFF adapter. */
6440 iwn_apm_stop(sc);
6441 }
6442
6443 static int
6444 iwn_init(struct ifnet *ifp)
6445 {
6446 struct iwn_softc *sc = ifp->if_softc;
6447 struct ieee80211com *ic = &sc->sc_ic;
6448 int error;
6449
6450 mutex_enter(&sc->sc_mtx);
6451 if (sc->sc_flags & IWN_FLAG_HW_INITED)
6452 goto out;
6453 if ((error = iwn_hw_prepare(sc)) != 0) {
6454 aprint_error_dev(sc->sc_dev,
6455 "hardware not ready\n");
6456 goto fail;
6457 }
6458
6459 /* Check that the radio is not disabled by hardware switch. */
6460 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6461 aprint_error_dev(sc->sc_dev,
6462 "radio is disabled by hardware switch\n");
6463 error = EPERM; /* :-) */
6464 goto fail;
6465 }
6466
6467 /* Read firmware images from the filesystem. */
6468 if ((error = iwn_read_firmware(sc)) != 0) {
6469 aprint_error_dev(sc->sc_dev,
6470 "could not read firmware\n");
6471 goto fail;
6472 }
6473
6474 /* Initialize interrupt mask to default value. */
6475 sc->int_mask = IWN_INT_MASK_DEF;
6476 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6477
6478 /* Initialize hardware and upload firmware. */
6479 KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6480 error = iwn_hw_init(sc);
6481 firmware_free(sc->fw.data, sc->fw.size);
6482 sc->fw.data = NULL;
6483 sc->fw.size = 0;
6484 if (error != 0) {
6485 aprint_error_dev(sc->sc_dev,
6486 "could not initialize hardware\n");
6487 goto fail;
6488 }
6489
6490 /* Configure adapter now that it is ready. */
6491 if ((error = iwn_config(sc)) != 0) {
6492 aprint_error_dev(sc->sc_dev,
6493 "could not configure device\n");
6494 goto fail;
6495 }
6496
6497 sc->sc_beacon_wait = 0;
6498
6499 ifp->if_flags &= ~IFF_OACTIVE;
6500 ifp->if_flags |= IFF_RUNNING;
6501
6502 if (ic->ic_opmode != IEEE80211_M_MONITOR)
6503 ieee80211_begin_scan(ic, 0);
6504 else
6505 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6506
6507 sc->sc_flags |= IWN_FLAG_HW_INITED;
6508 out:
6509 mutex_exit(&sc->sc_mtx);
6510 return 0;
6511
6512 fail: mutex_exit(&sc->sc_mtx);
6513 iwn_stop(ifp, 1);
6514 return error;
6515 }
6516
6517 static void
6518 iwn_stop(struct ifnet *ifp, int disable)
6519 {
6520 struct iwn_softc *sc = ifp->if_softc;
6521 struct ieee80211com *ic = &sc->sc_ic;
6522
6523 if (!disable)
6524 mutex_enter(&sc->sc_mtx);
6525 sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6526 ifp->if_timer = sc->sc_tx_timer = 0;
6527 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6528
6529 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6530
6531 /* Power OFF hardware. */
6532 iwn_hw_stop(sc);
6533
6534 if (!disable)
6535 mutex_exit(&sc->sc_mtx);
6536 }
6537
6538 /*
6539 * XXX MCLGETI alternative
6540 *
6541 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6542 * as long as there are available free buffers then it uses MEXTMALLOC.,
6543 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6544 * The MCLGET4K code is used for testing an alternative mbuf cache.
6545 */
6546
6547 static struct mbuf *
6548 MCLGETIalt(struct iwn_softc *sc, int how,
6549 struct ifnet *ifp __unused, u_int size)
6550 {
6551 struct mbuf *m;
6552 #ifdef IWN_USE_RBUF
6553 struct iwn_rbuf *rbuf;
6554 #endif
6555
6556 MGETHDR(m, how, MT_DATA);
6557 if (m == NULL)
6558 return NULL;
6559
6560 #ifdef IWN_USE_RBUF
6561 if (sc->rxq.nb_free_entries > 0 &&
6562 (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6563 /* Attach buffer to mbuf header. */
6564 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6565 m->m_flags |= M_EXT_RW;
6566 }
6567 else {
6568 MEXTMALLOC(m, size, how);
6569 if ((m->m_flags & M_EXT) == 0) {
6570 m_freem(m);
6571 return NULL;
6572 }
6573 }
6574
6575 #else
6576 #ifdef MCLGET4K
6577 if (size == 4096)
6578 MCLGET4K(m, how);
6579 else
6580 panic("size must be 4k");
6581 #else
6582 MEXTMALLOC(m, size, how);
6583 #endif
6584 if ((m->m_flags & M_EXT) == 0) {
6585 m_freem(m);
6586 return NULL;
6587 }
6588 #endif
6589
6590 return m;
6591 }
6592
6593 #ifdef IWN_USE_RBUF
6594 static struct iwn_rbuf *
6595 iwn_alloc_rbuf(struct iwn_softc *sc)
6596 {
6597 struct iwn_rbuf *rbuf;
6598 mutex_enter(&sc->rxq.freelist_mtx);
6599
6600 rbuf = SLIST_FIRST(&sc->rxq.freelist);
6601 if (rbuf != NULL) {
6602 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6603 sc->rxq.nb_free_entries --;
6604 }
6605 mutex_exit(&sc->rxq.freelist_mtx);
6606 return rbuf;
6607 }
6608
6609 /*
6610 * This is called automatically by the network stack when the mbuf to which
6611 * our RX buffer is attached is freed.
6612 */
6613 static void
6614 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
6615 {
6616 struct iwn_rbuf *rbuf = arg;
6617 struct iwn_softc *sc = rbuf->sc;
6618
6619 /* Put the RX buffer back in the free list. */
6620 mutex_enter(&sc->rxq.freelist_mtx);
6621 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6622 mutex_exit(&sc->rxq.freelist_mtx);
6623
6624 sc->rxq.nb_free_entries ++;
6625 if (__predict_true(m != NULL))
6626 pool_cache_put(mb_cache, m);
6627 }
6628
6629 static int
6630 iwn_alloc_rpool(struct iwn_softc *sc)
6631 {
6632 struct iwn_rx_ring *ring = &sc->rxq;
6633 struct iwn_rbuf *rbuf;
6634 int i, error;
6635
6636 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6637
6638 /* Allocate a big chunk of DMA'able memory... */
6639 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6640 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6641 if (error != 0) {
6642 aprint_error_dev(sc->sc_dev,
6643 "could not allocate RX buffers DMA memory\n");
6644 return error;
6645 }
6646 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6647 SLIST_INIT(&ring->freelist);
6648 for (i = 0; i < IWN_RBUF_COUNT; i++) {
6649 rbuf = &ring->rbuf[i];
6650
6651 rbuf->sc = sc; /* Backpointer for callbacks. */
6652 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6653 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6654
6655 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6656 }
6657 ring->nb_free_entries = IWN_RBUF_COUNT;
6658 return 0;
6659 }
6660
6661 static void
6662 iwn_free_rpool(struct iwn_softc *sc)
6663 {
6664 iwn_dma_contig_free(&sc->rxq.buf_dma);
6665 }
6666 #endif
6667
6668 /*
6669 * XXX: Hack to set the current channel to the value advertised in beacons or
6670 * probe responses. Only used during AP detection.
6671 * XXX: Duplicated from if_iwi.c
6672 */
6673 static void
6674 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6675 struct iwn_rx_stat *stat)
6676 {
6677 struct iwn_softc *sc = ic->ic_ifp->if_softc;
6678 struct ieee80211_frame *wh;
6679 uint8_t subtype;
6680 uint8_t *frm, *efrm;
6681
6682 wh = mtod(m, struct ieee80211_frame *);
6683
6684 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6685 return;
6686
6687 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6688
6689 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6690 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6691 return;
6692
6693 if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6694 int chan = le16toh(stat->chan);
6695 if (chan < __arraycount(ic->ic_channels))
6696 ic->ic_curchan = &ic->ic_channels[chan];
6697 return;
6698 }
6699
6700 frm = (uint8_t *)(wh + 1);
6701 efrm = mtod(m, uint8_t *) + m->m_len;
6702
6703 frm += 12; /* skip tstamp, bintval and capinfo fields */
6704 while (frm + 2 < efrm) {
6705 if (*frm == IEEE80211_ELEMID_DSPARMS) {
6706 #if IEEE80211_CHAN_MAX < 255
6707 if (frm[2] <= IEEE80211_CHAN_MAX)
6708 #endif
6709 ic->ic_curchan = &ic->ic_channels[frm[2]];
6710 }
6711
6712 frm += frm[1] + 2;
6713 }
6714 }
6715
6716 #ifdef notyetMODULE
6717
6718 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6719
6720 #ifdef _MODULE
6721 #include "ioconf.c"
6722 #endif
6723
6724 static int
6725 if_iwn_modcmd(modcmd_t cmd, void *data)
6726 {
6727 int error = 0;
6728
6729 switch (cmd) {
6730 case MODULE_CMD_INIT:
6731 #ifdef _MODULE
6732 error = config_init_component(cfdriver_ioconf_if_iwn,
6733 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6734 #endif
6735 return error;
6736 case MODULE_CMD_FINI:
6737 #ifdef _MODULE
6738 error = config_fini_component(cfdriver_ioconf_if_iwn,
6739 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6740 #endif
6741 return error;
6742 case MODULE_CMD_AUTOUNLOAD:
6743 #ifdef _MODULE
6744 /* XXX This is not optional! */
6745 #endif
6746 return error;
6747 default:
6748 return ENOTTY;
6749 }
6750 }
6751 #endif
6752