if_iwn.c revision 1.3 1 /* $NetBSD: if_iwn.c,v 1.3 2008/02/09 19:14:53 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.3 2008/02/09 19:14:53 skrll Exp $");
22
23
24 /*
25 * Driver for Intel Wireless WiFi Link 4965AGN 802.11 network adapters.
26 */
27
28 #include "bpfilter.h"
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/sysctl.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45
46 #include <dev/pci/pcireg.h>
47 #include <dev/pci/pcivar.h>
48 #include <dev/pci/pcidevs.h>
49
50 #if NBPFILTER > 0
51 #include <net/bpf.h>
52 #endif
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/in_var.h>
62 #include <net/if_ether.h>
63 #include <netinet/ip.h>
64
65 #include <net80211/ieee80211_var.h>
66 #include <net80211/ieee80211_amrr.h>
67 #include <net80211/ieee80211_radiotap.h>
68
69 #include <dev/firmload.h>
70
71 #include <dev/pci/if_iwnreg.h>
72 #include <dev/pci/if_iwnvar.h>
73
74 #if 0
75 static const struct pci_matchid iwn_devices[] = {
76 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1 },
77 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2 }
78 };
79 #endif
80
81 /*
82 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
83 */
84 static const struct ieee80211_rateset iwn_rateset_11a =
85 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
86
87 static const struct ieee80211_rateset iwn_rateset_11b =
88 { 4, { 2, 4, 11, 22 } };
89
90 static const struct ieee80211_rateset iwn_rateset_11g =
91 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
92
93
94 #define EDCA_NUM_AC 4
95 static int iwn_match(device_t , struct cfdata *, void *);
96 static void iwn_attach(device_t , device_t, void *);
97 static int iwn_detach(device_t, int);
98
99 static void iwn_radiotap_attach(struct iwn_softc *);
100 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
101 void **, bus_size_t, bus_size_t, int);
102 static void iwn_dma_contig_free(struct iwn_dma_info *);
103 static int iwn_alloc_shared(struct iwn_softc *);
104 static void iwn_free_shared(struct iwn_softc *);
105 static int iwn_alloc_kw(struct iwn_softc *);
106 static void iwn_free_kw(struct iwn_softc *);
107 static int iwn_alloc_fwmem(struct iwn_softc *);
108 static void iwn_free_fwmem(struct iwn_softc *);
109 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
110 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
111 static int iwn_alloc_rpool(struct iwn_softc *);
112 static void iwn_free_rpool(struct iwn_softc *);
113 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
114 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
115 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
116 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
117 int, int);
118 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
119 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
120 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
121 static void iwn_newassoc(struct ieee80211_node *, int);
122 static int iwn_media_change(struct ifnet *);
123 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
124 static void iwn_mem_lock(struct iwn_softc *);
125 static void iwn_mem_unlock(struct iwn_softc *);
126 static uint32_t iwn_mem_read(struct iwn_softc *, uint32_t);
127 static void iwn_mem_write(struct iwn_softc *, uint32_t, uint32_t);
128 static void iwn_mem_write_region_4(struct iwn_softc *, uint32_t,
129 const uint32_t *, int);
130 static int iwn_eeprom_lock(struct iwn_softc *);
131 static void iwn_eeprom_unlock(struct iwn_softc *);
132 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
133 static int iwn_load_microcode(struct iwn_softc *, const uint8_t *, int);
134 static int iwn_load_firmware(struct iwn_softc *);
135 static void iwn_calib_timeout(void *);
136 static void iwn_iter_func(void *, struct ieee80211_node *);
137 static void iwn_ampdu_rx_start(struct iwn_softc *, struct iwn_rx_desc *);
138 static void iwn_rx_intr(struct iwn_softc *, struct iwn_rx_desc *,
139 struct iwn_rx_data *);
140 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
141 static void iwn_tx_intr(struct iwn_softc *, struct iwn_rx_desc *);
142 static void iwn_cmd_intr(struct iwn_softc *, struct iwn_rx_desc *);
143 static void iwn_notif_intr(struct iwn_softc *);
144 static int iwn_intr(void *);
145 static void iwn_read_eeprom(struct iwn_softc *);
146 static void iwn_read_eeprom_channels(struct iwn_softc *, int);
147 static void iwn_print_power_group(struct iwn_softc *, int);
148 static uint8_t iwn_plcp_signal(int);
149 static int iwn_tx_data(struct iwn_softc *, struct mbuf *,
150 struct ieee80211_node *, int);
151 static void iwn_start(struct ifnet *);
152 static void iwn_watchdog(struct ifnet *);
153 static int iwn_ioctl(struct ifnet *, u_long, void *);
154 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
155 static int iwn_wme_update(struct ieee80211com *);
156 static int iwn_setup_node_mrr(struct iwn_softc *, uint8_t, int);
157 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
158 static int iwn_set_critical_temp(struct iwn_softc *);
159 static void iwn_enable_tsf(struct iwn_softc *, struct ieee80211_node *);
160 static void iwn_power_calibration(struct iwn_softc *, int);
161 static int iwn_set_txpower(struct iwn_softc *,
162 struct ieee80211_channel *, int);
163 static int iwn_get_rssi(const struct iwn_rx_stat *);
164 static int iwn_get_noise(const struct iwn_rx_general_stats *);
165 static int iwn_get_temperature(struct iwn_softc *);
166 static int iwn_init_sensitivity(struct iwn_softc *);
167 static void iwn_compute_differential_gain(struct iwn_softc *,
168 const struct iwn_rx_general_stats *);
169 static void iwn_tune_sensitivity(struct iwn_softc *,
170 const struct iwn_rx_stats *);
171 static int iwn_send_sensitivity(struct iwn_softc *);
172 /*static int iwn_setup_beacon(struct iwn_softc *, struct ieee80211_node *);*/
173 static int iwn_auth(struct iwn_softc *);
174 static int iwn_run(struct iwn_softc *);
175 static int iwn_scan(struct iwn_softc *, uint16_t);
176 static int iwn_config(struct iwn_softc *);
177 static void iwn_post_alive(struct iwn_softc *);
178 static void iwn_stop_master(struct iwn_softc *);
179 static int iwn_reset(struct iwn_softc *);
180 static void iwn_hw_config(struct iwn_softc *);
181 static int iwn_init(struct ifnet *);
182 static void iwn_stop(struct ifnet *, int);
183 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *);
184 static bool iwn_resume(device_t dv);
185
186
187
188 #define IWN_DEBUG
189
190 #ifdef IWN_DEBUG
191 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
192 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
193 int iwn_debug = 2;
194 #else
195 #define DPRINTF(x)
196 #define DPRINTFN(n, x)
197 #endif
198
199 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
200 iwn_detach, NULL);
201
202 static int
203 iwn_match(device_t parent, struct cfdata *match __unused, void *aux)
204 {
205 struct pci_attach_args *pa = aux;
206
207 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
208 return 0;
209
210 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1 ||
211 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2)
212 return 1;
213
214 return 0;
215 }
216
217 /* Base Address Register */
218 #define IWN_PCI_BAR0 0x10
219
220 static void
221 iwn_attach(device_t parent __unused, device_t self, void *aux)
222 {
223 struct iwn_softc *sc = device_private(self);
224 struct ieee80211com *ic = &sc->sc_ic;
225 struct ifnet *ifp = &sc->sc_ec.ec_if;
226 struct pci_attach_args *pa = aux;
227 const char *intrstr;
228 char devinfo[256];
229 pci_intr_handle_t ih;
230 pcireg_t memtype, data;
231 int i, error, revision;
232
233 sc->sc_dev = self;
234 sc->sc_pct = pa->pa_pc;
235 sc->sc_pcitag = pa->pa_tag;
236
237 callout_init(&sc->calib_to, 0);
238 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
239
240 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
241 revision = PCI_REVISION(pa->pa_class);
242 aprint_normal(": %s (rev. 0x%2x)\n", devinfo, revision);
243
244
245 /* clear device specific PCI configuration register 0x41 */
246 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
247 data &= ~0x0000ff00;
248 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
249
250 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
251 data |= PCI_COMMAND_MASTER_ENABLE;
252 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
253
254 /* enable bus-mastering */
255 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
256 data |= PCI_COMMAND_MASTER_ENABLE;
257 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
258
259 /* map the register window */
260 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
261 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
262 &sc->sc_sh, NULL, &sc->sc_sz);
263 if (error != 0) {
264 aprint_error_dev(self, "could not map memory space\n");
265 return;
266 }
267
268 sc->sc_dmat = pa->pa_dmat;
269
270 if (pci_intr_map(pa, &ih) != 0) {
271 aprint_error_dev(self, "could not map interrupt\n");
272 return;
273 }
274
275 intrstr = pci_intr_string(sc->sc_pct, ih);
276 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
277
278 if (sc->sc_ih == NULL) {
279 aprint_error_dev(self, "could not establish interrupt");
280 if (intrstr != NULL)
281 aprint_error(" at %s", intrstr);
282 aprint_error("\n");
283 return;
284 }
285 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
286
287 if (iwn_reset(sc) != 0) {
288 aprint_error_dev(self, "could not reset adapter\n");
289 return;
290 }
291
292 /*
293 * Allocate DMA memory for firmware transfers.
294 */
295 if ((error = iwn_alloc_fwmem(sc)) != 0) {
296 aprint_error_dev(self, "could not allocate firmware memory\n");
297 return;
298 }
299
300 /*
301 * Allocate a "keep warm" page.
302 */
303 if ((error = iwn_alloc_kw(sc)) != 0) {
304 aprint_error_dev(self, "could not allocate keep warm page\n");
305 goto fail1;
306 }
307
308 /*
309 * Allocate shared area (communication area).
310 */
311 if ((error = iwn_alloc_shared(sc)) != 0) {
312 aprint_error_dev(self, "could not allocate shared area\n");
313 goto fail2;
314 }
315
316 /*
317 * Allocate Rx buffers and Tx/Rx rings.
318 */
319 if ((error = iwn_alloc_rpool(sc)) != 0) {
320 aprint_error_dev(self, "could not allocate Rx buffers\n");
321 goto fail3;
322 }
323
324 for (i = 0; i < IWN_NTXQUEUES; i++) {
325 struct iwn_tx_ring *txq = &sc->txq[i];
326 error = iwn_alloc_tx_ring(sc, txq, IWN_TX_RING_COUNT, i);
327 if (error != 0) {
328 aprint_error_dev(self, "could not allocate Tx ring %d\n", i);
329 goto fail4;
330 }
331 }
332
333 if (iwn_alloc_rx_ring(sc, &sc->rxq) != 0) {
334 aprint_error_dev(self, "could not allocate Rx ring\n");
335 goto fail4;
336 }
337
338
339 ic->ic_ifp = ifp;
340 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
341 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
342 ic->ic_state = IEEE80211_S_INIT;
343
344 /* set device capabilities */
345 ic->ic_caps =
346 IEEE80211_C_IBSS | /* IBSS mode support */
347 IEEE80211_C_WPA | /* 802.11i */
348 IEEE80211_C_MONITOR | /* monitor mode supported */
349 IEEE80211_C_TXPMGT | /* tx power management */
350 IEEE80211_C_SHSLOT | /* short slot time supported */
351 IEEE80211_C_SHPREAMBLE| /* short preamble supported */
352 IEEE80211_C_WME; /* 802.11e */
353
354 /* read supported channels and MAC address from EEPROM */
355 iwn_read_eeprom(sc);
356
357 /* set supported .11a, .11b and .11g rates */
358 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
359 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
360 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
361
362 /* IBSS channel undefined for now */
363 ic->ic_ibss_chan = &ic->ic_channels[0];
364
365 ifp->if_softc = sc;
366 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
367 ifp->if_init = iwn_init;
368 ifp->if_stop = iwn_stop;
369 ifp->if_ioctl = iwn_ioctl;
370 ifp->if_start = iwn_start;
371 ifp->if_watchdog = iwn_watchdog;
372 IFQ_SET_READY(&ifp->if_snd);
373 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
374
375 if_attach(ifp);
376 ieee80211_ifattach(ic);
377 ic->ic_node_alloc = iwn_node_alloc;
378 ic->ic_newassoc = iwn_newassoc;
379 ic->ic_wme.wme_update = iwn_wme_update;
380
381 /* override state transition machine */
382 sc->sc_newstate = ic->ic_newstate;
383 ic->ic_newstate = iwn_newstate;
384 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
385
386 sc->amrr.amrr_min_success_threshold = 1;
387 sc->amrr.amrr_max_success_threshold = 15;
388
389 if (!pmf_device_register(self, NULL, iwn_resume))
390 aprint_error_dev(self, "couldn't establish power handler\n");
391 else
392 pmf_class_network_register(self, ifp);
393
394 iwn_radiotap_attach(sc);
395
396 ieee80211_announce(ic);
397
398 return;
399
400 /* free allocated memory if something failed during attachment */
401 fail4: while (--i >= 0)
402 iwn_free_tx_ring(sc, &sc->txq[i]);
403 iwn_free_rpool(sc);
404 fail3: iwn_free_shared(sc);
405 fail2: iwn_free_kw(sc);
406 fail1: iwn_free_fwmem(sc);
407 }
408
409 static int
410 iwn_detach(struct device* self, int flags __unused)
411 {
412 struct iwn_softc *sc = (struct iwn_softc *)self;
413 struct ifnet *ifp = sc->sc_ic.ic_ifp;
414 int ac;
415
416 iwn_stop(ifp, 1);
417
418 #if NBPFILTER > 0
419 if (ifp != NULL)
420 bpfdetach(ifp);
421 #endif
422 ieee80211_ifdetach(&sc->sc_ic);
423 if (ifp != NULL)
424 if_detach(ifp);
425
426 for (ac = 0; ac < IWN_NTXQUEUES; ac++)
427 iwn_free_tx_ring(sc, &sc->txq[ac]);
428 iwn_free_rx_ring(sc, &sc->rxq);
429 iwn_free_rpool(sc);
430 iwn_free_shared(sc);
431
432 if (sc->sc_ih != NULL) {
433 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
434 sc->sc_ih = NULL;
435 }
436
437 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
438
439 return 0;
440 }
441
442 /*
443 * Attach the interface to 802.11 radiotap.
444 */
445 static void
446 iwn_radiotap_attach(struct iwn_softc *sc)
447 {
448 struct ifnet *ifp = sc->sc_ic.ic_ifp;
449
450 #if NBPFILTER > 0
451 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
452 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
453 &sc->sc_drvbpf);
454
455 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
456 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
457 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
458
459 sc->sc_txtap_len = sizeof sc->sc_txtapu;
460 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
461 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
462 #endif
463 }
464
465
466 /*
467 * Build a beacon frame that the firmware will broadcast periodically in
468 * IBSS or HostAP modes.
469 */
470 #if 0
471 static int
472 iwn_setup_beacon(struct iwn_softc *sc, struct ieee80211_node *ni)
473 {
474 struct ieee80211com *ic = &sc->sc_ic;
475 struct iwn_tx_ring *ring = &sc->txq[4];
476 struct iwn_tx_desc *desc;
477 struct iwn_tx_data *data;
478 struct iwn_tx_cmd *cmd;
479 struct iwn_cmd_beacon *bcn;
480 struct ieee80211_beacon_offsets bo;
481 struct mbuf *m0;
482 bus_addr_t paddr;
483 int error;
484
485 desc = &ring->desc[ring->cur];
486 data = &ring->data[ring->cur];
487
488 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
489 if (m0 == NULL) {
490 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
491 return ENOMEM;
492 }
493
494 cmd = &ring->cmd[ring->cur];
495 cmd->code = IWN_CMD_SET_BEACON;
496 cmd->flags = 0;
497 cmd->qid = ring->qid;
498 cmd->idx = ring->cur;
499
500 bcn = (struct iwn_cmd_beacon *)cmd->data;
501 memset(bcn, 0, sizeof (struct iwn_cmd_beacon));
502 bcn->id = IWN_ID_BROADCAST;
503 bcn->ofdm_mask = 0xff;
504 bcn->cck_mask = 0x0f;
505 bcn->lifetime = htole32(IWN_LIFETIME_INFINITE);
506 bcn->len = htole16(m0->m_pkthdr.len);
507 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
508 iwn_plcp_signal(12) : iwn_plcp_signal(2);
509 bcn->flags = htole32(IWN_TX_AUTO_SEQ | IWN_TX_INSERT_TSTAMP);
510
511 /* save and trim IEEE802.11 header */
512 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
513 m_adj(m0, sizeof (struct ieee80211_frame));
514
515 /* assume beacon frame is contiguous */
516 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
517 BUS_DMA_READ | BUS_DMA_NOWAIT);
518 if (error) {
519 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
520 m_freem(m0);
521 return error;
522 }
523
524 data->m = m0;
525
526 /* first scatter/gather segment is used by the beacon command */
527 paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
528
529 IWN_SET_DESC_NSEGS(desc, 2);
530 IWN_SET_DESC_SEG(desc, 0, paddr , 4 + sizeof(struct iwn_cmd_beacon));
531 IWN_SET_DESC_SEG(desc, 1, data->map->dm_segs[0].ds_addr,
532 data->map->dm_segs[1].ds_len);
533
534
535 /* kick cmd ring */
536 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
537 IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
538
539 return 0;
540 }
541 #endif
542
543 static int
544 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
545 bus_size_t size, bus_size_t alignment, int flags)
546 {
547 int nsegs, error;
548
549 dma->tag = tag;
550 dma->size = size;
551
552 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
553 if (error != 0)
554 goto fail;
555
556 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
557 flags);
558 if (error != 0)
559 goto fail;
560
561 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
562 if (error != 0)
563 goto fail;
564
565 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
566 if (error != 0)
567 goto fail;
568
569 memset(dma->vaddr, 0, size);
570
571 dma->paddr = dma->map->dm_segs[0].ds_addr;
572 if (kvap != NULL)
573 *kvap = dma->vaddr;
574
575 return 0;
576
577 fail: iwn_dma_contig_free(dma);
578 return error;
579 }
580
581 static void
582 iwn_dma_contig_free(struct iwn_dma_info *dma)
583 {
584 if (dma->map != NULL) {
585 if (dma->vaddr != NULL) {
586 bus_dmamap_unload(dma->tag, dma->map);
587 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
588 bus_dmamem_free(dma->tag, &dma->seg, 1);
589 dma->vaddr = NULL;
590 }
591 bus_dmamap_destroy(dma->tag, dma->map);
592 dma->map = NULL;
593 }
594 }
595
596 static int
597 iwn_alloc_shared(struct iwn_softc *sc)
598 {
599 int error;
600 /* must be aligned on a 1KB boundary */
601 error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
602 (void **)&sc->shared, sizeof (struct iwn_shared),
603 1024,BUS_DMA_NOWAIT);
604 if (error != 0)
605 aprint_error_dev(sc->sc_dev,
606 "could not allocate shared area DMA memory\n");
607
608 return error;
609
610 }
611
612 static void
613 iwn_free_shared(struct iwn_softc *sc)
614 {
615 iwn_dma_contig_free(&sc->shared_dma);
616 }
617
618 static int
619 iwn_alloc_kw(struct iwn_softc *sc)
620 {
621 /* must be aligned on a 16-byte boundary */
622 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL,
623 PAGE_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
624 }
625
626 static void
627 iwn_free_kw(struct iwn_softc *sc)
628 {
629 iwn_dma_contig_free(&sc->kw_dma);
630 }
631
632 static int
633 iwn_alloc_fwmem(struct iwn_softc *sc)
634 {
635 int error;
636 /* allocate enough contiguous space to store text and data */
637 error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
638 IWN_FW_MAIN_TEXT_MAXSZ + IWN_FW_MAIN_DATA_MAXSZ, 16,
639 BUS_DMA_NOWAIT);
640
641 if (error != 0){
642 aprint_error_dev(sc->sc_dev,
643 "could not allocate firmware transfer area DMA memory\n" );
644
645 }
646 return error;
647 }
648
649 static void
650 iwn_free_fwmem(struct iwn_softc *sc)
651 {
652 iwn_dma_contig_free(&sc->fw_dma);
653 }
654
655 static struct iwn_rbuf *
656 iwn_alloc_rbuf(struct iwn_softc *sc)
657 {
658 struct iwn_rbuf *rbuf;
659
660 rbuf = SLIST_FIRST(&sc->rxq.freelist);
661 if (rbuf == NULL)
662 return NULL;
663 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
664 sc->rxq.nb_free_entries --;
665 return rbuf;
666 }
667
668 /*
669 * This is called automatically by the network stack when the mbuf to which
670 * our Rx buffer is attached is freed.
671 */
672 static void
673 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
674 {
675 struct iwn_rbuf *rbuf = arg;
676 struct iwn_softc *sc = rbuf->sc;
677
678 /* put the buffer back in the free list */
679 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
680
681 sc->rxq.nb_free_entries ++;
682
683 if (__predict_true(m != NULL))
684 pool_cache_put(mb_cache, m);
685 }
686
687
688 static int
689 iwn_alloc_rpool(struct iwn_softc *sc)
690 {
691 struct iwn_rx_ring *ring = &sc->rxq;
692 struct iwn_rbuf *rbuf;
693 int i, error;
694
695 /* allocate a big chunk of DMA'able memory.. */
696 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
697 IWN_RBUF_COUNT * IWN_RBUF_SIZE, IWN_BUF_ALIGN, BUS_DMA_NOWAIT);
698 if (error != 0) {
699 aprint_error_dev(sc->sc_dev,
700 "could not allocate Rx buffers DMA memory\n");
701 return error;
702 }
703
704 /* ..and split it into chunks of "rbufsz" bytes */
705 SLIST_INIT(&ring->freelist);
706 for (i = 0; i < IWN_RBUF_COUNT; i++) {
707 rbuf = &ring->rbuf[i];
708
709 rbuf->sc = sc; /* backpointer for callbacks */
710 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE;
711 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
712
713 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
714 }
715 ring->nb_free_entries = IWN_RBUF_COUNT;
716 return 0;
717 }
718
719 static void
720 iwn_free_rpool(struct iwn_softc *sc)
721 {
722 iwn_dma_contig_free(&sc->rxq.buf_dma);
723 }
724
725 static int
726 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
727 {
728 struct iwn_rx_data *data;
729 struct iwn_rbuf *rbuf;
730 int i, error;
731
732 ring->cur = 0;
733
734 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
735 (void **)&ring->desc, IWN_RX_RING_COUNT * sizeof (struct iwn_rx_desc),
736 IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
737 if (error != 0) {
738 aprint_error_dev(sc->sc_dev,
739 "could not allocate rx ring DMA memory\n");
740 goto fail;
741 }
742
743 /*
744 * Setup Rx buffers.
745 */
746 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
747 data = &ring->data[i];
748
749 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
750 if (data->m == NULL) {
751 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
752 error = ENOMEM;
753 goto fail;
754 }
755 if ((rbuf = iwn_alloc_rbuf(sc)) == NULL) {
756 m_freem(data->m);
757 data->m = NULL;
758 aprint_error_dev(sc->sc_dev, "could not allocate rx buffer\n");
759 error = ENOMEM;
760 goto fail;
761 }
762 /* attach Rx buffer to mbuf */
763 MEXTADD(data->m, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
764 rbuf);
765
766 data->m->m_flags |= M_EXT_RW;
767 /* Rx buffers are aligned on a 256-byte boundary */
768 ring->desc[i] = htole32(rbuf->paddr >> 8);
769 }
770
771 return 0;
772
773 fail: iwn_free_rx_ring(sc, ring);
774 return error;
775 }
776
777 static void
778 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
779 {
780 int ntries;
781
782 iwn_mem_lock(sc);
783
784 IWN_WRITE(sc, IWN_RX_CONFIG, 0);
785 for (ntries = 0; ntries < 100; ntries++) {
786 if (IWN_READ(sc, IWN_RX_STATUS) & IWN_RX_IDLE)
787 break;
788 DELAY(10);
789 }
790 #ifdef IWN_DEBUG
791 if (ntries == 100 && iwn_debug > 0)
792 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
793 #endif
794 iwn_mem_unlock(sc);
795
796 ring->cur = 0;
797 }
798
799 static void
800 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
801 {
802 int i;
803
804 iwn_dma_contig_free(&ring->desc_dma);
805
806 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
807 if (ring->data[i].m != NULL)
808 m_freem(ring->data[i].m);
809 }
810 }
811
812 static int
813 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int count,
814 int qid)
815 {
816 struct iwn_tx_data *data;
817 int i, error;
818
819 ring->qid = qid;
820 ring->count = count;
821 ring->queued = 0;
822 ring->cur = 0;
823
824 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
825 (void **)&ring->desc, count * sizeof (struct iwn_tx_desc),
826 IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
827 if (error != 0) {
828 aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
829 goto fail;
830 }
831
832 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
833 (void **)&ring->cmd, count * sizeof (struct iwn_tx_cmd), 4,
834 BUS_DMA_NOWAIT);
835 if (error != 0) {
836 aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
837 goto fail;
838 }
839
840 ring->data = malloc(count * sizeof (struct iwn_tx_data), M_DEVBUF, M_NOWAIT);
841
842 if (ring->data == NULL) {
843 aprint_error_dev(sc->sc_dev,"could not allocate tx data slots\n");
844 goto fail;
845 }
846
847 memset(ring->data, 0, count * sizeof (struct iwn_tx_data));
848
849 for (i = 0; i < count; i++) {
850 data = &ring->data[i];
851
852 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
853 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
854 &data->map);
855 if (error != 0) {
856 aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
857 goto fail;
858 }
859 }
860
861 return 0;
862
863 fail: iwn_free_tx_ring(sc, ring);
864 return error;
865 }
866
867 static void
868 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
869 {
870 struct iwn_tx_data *data;
871 uint32_t tmp;
872 int i, ntries;
873
874 iwn_mem_lock(sc);
875
876 IWN_WRITE(sc, IWN_TX_CONFIG(ring->qid), 0);
877 for (ntries = 0; ntries < 100; ntries++) {
878 tmp = IWN_READ(sc, IWN_TX_STATUS);
879 if ((tmp & IWN_TX_IDLE(ring->qid)) == IWN_TX_IDLE(ring->qid))
880 break;
881 DELAY(10);
882 }
883 #ifdef IWN_DEBUG
884 if (ntries == 100 && iwn_debug > 1) {
885 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n", ring->qid);
886 }
887 #endif
888 iwn_mem_unlock(sc);
889
890 for (i = 0; i < ring->count; i++) {
891 data = &ring->data[i];
892
893 if (data->m != NULL) {
894 bus_dmamap_unload(sc->sc_dmat, data->map);
895 m_freem(data->m);
896 data->m = NULL;
897 }
898 }
899
900 ring->queued = 0;
901 ring->cur = 0;
902 }
903
904 static void
905 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
906 {
907 struct iwn_tx_data *data;
908 int i;
909
910 iwn_dma_contig_free(&ring->desc_dma);
911 iwn_dma_contig_free(&ring->cmd_dma);
912
913 if (ring->data != NULL) {
914 for (i = 0; i < ring->count; i++) {
915 data = &ring->data[i];
916
917 if (data->m != NULL) {
918 bus_dmamap_unload(sc->sc_dmat, data->map);
919 m_freem(data->m);
920 }
921 }
922 free(ring->data, M_DEVBUF);
923 }
924 }
925
926 /*ARGUSED*/
927 struct ieee80211_node *
928 iwn_node_alloc(struct ieee80211_node_table *nt __unused)
929 {
930 struct iwn_node *wn;
931
932 wn = malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT);
933
934 if (wn != NULL)
935 memset(wn, 0, sizeof (struct iwn_node));
936 return (struct ieee80211_node *)wn;
937
938 }
939
940 static void
941 iwn_newassoc(struct ieee80211_node *ni, int isnew)
942 {
943 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
944 int i;
945
946 ieee80211_amrr_node_init(&sc->amrr, &((struct iwn_node *)ni)->amn);
947
948 /* set rate to some reasonable initial value */
949 for (i = ni->ni_rates.rs_nrates - 1;
950 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
951 i--);
952 ni->ni_txrate = i;
953 }
954
955 static int
956 iwn_media_change(struct ifnet *ifp)
957 {
958 int error;
959
960 error = ieee80211_media_change(ifp);
961 if (error != ENETRESET)
962 return error;
963
964 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
965 iwn_init(ifp);
966
967 return 0;
968 }
969
970 static int
971 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
972 {
973 struct ifnet *ifp = ic->ic_ifp;
974 struct iwn_softc *sc = ifp->if_softc;
975 int error;
976
977 callout_stop(&sc->calib_to);
978
979 switch (nstate) {
980
981 case IEEE80211_S_SCAN:
982
983 if (sc->is_scanning)
984 break;
985
986 sc->is_scanning = true;
987 ieee80211_node_table_reset(&ic->ic_scan);
988 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
989
990 /* make the link LED blink while we're scanning */
991 iwn_set_led(sc, IWN_LED_LINK, 20, 2);
992
993 if ((error = iwn_scan(sc, IEEE80211_CHAN_G)) != 0) {
994 aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
995 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
996 return error;
997 }
998 ic->ic_state = nstate;
999 return 0;
1000
1001 case IEEE80211_S_ASSOC:
1002 if (ic->ic_state != IEEE80211_S_RUN)
1003 break;
1004 /* FALLTHROUGH */
1005 case IEEE80211_S_AUTH:
1006 /* reset state to handle reassociations correctly */
1007 sc->config.associd = 0;
1008 sc->config.filter &= ~htole32(IWN_FILTER_BSS);
1009 /*sc->calib.state = IWN_CALIB_STATE_INIT;*/
1010
1011 if ((error = iwn_auth(sc)) != 0) {
1012 aprint_error_dev(sc->sc_dev, "could not move to auth state\n");
1013 return error;
1014 }
1015 break;
1016
1017 case IEEE80211_S_RUN:
1018 if ((error = iwn_run(sc)) != 0) {
1019 aprint_error_dev(sc->sc_dev, "could not move to run state\n");
1020 return error;
1021 }
1022
1023 #if 0
1024 /* JAF - code has changed here. need to verify iwn_run handles this properly XXX added to iwn_run */
1025 if (ic->ic_opmode != IEEE80211_M_STA) {
1026 (void) iwn_auth(sc); /* XXX */
1027 iwn_setup_beacon(sc, ni);
1028 }
1029 #endif
1030
1031
1032 break;
1033
1034 case IEEE80211_S_INIT:
1035 sc->is_scanning = false;
1036 break;
1037 }
1038
1039 return sc->sc_newstate(ic, nstate, arg);
1040 }
1041
1042 /*
1043 * Grab exclusive access to NIC memory.
1044 */
1045 static void
1046 iwn_mem_lock(struct iwn_softc *sc)
1047 {
1048 uint32_t tmp;
1049 int ntries;
1050
1051 tmp = IWN_READ(sc, IWN_GPIO_CTL);
1052 IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_MAC);
1053
1054 /* spin until we actually get the lock */
1055 for (ntries = 0; ntries < 1000; ntries++) {
1056 if ((IWN_READ(sc, IWN_GPIO_CTL) &
1057 (IWN_GPIO_CLOCK | IWN_GPIO_SLEEP)) == IWN_GPIO_CLOCK)
1058 break;
1059 DELAY(10);
1060 }
1061 if (ntries == 1000)
1062 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1063 }
1064
1065 /*
1066 * Release lock on NIC memory.
1067 */
1068 static void
1069 iwn_mem_unlock(struct iwn_softc *sc)
1070 {
1071 uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1072 IWN_WRITE(sc, IWN_GPIO_CTL, tmp & ~IWN_GPIO_MAC);
1073 }
1074
1075 static uint32_t
1076 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1077 {
1078 IWN_WRITE(sc, IWN_READ_MEM_ADDR, IWN_MEM_4 | addr);
1079 return IWN_READ(sc, IWN_READ_MEM_DATA);
1080 }
1081
1082 static void
1083 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1084 {
1085 IWN_WRITE(sc, IWN_WRITE_MEM_ADDR, IWN_MEM_4 | addr);
1086 IWN_WRITE(sc, IWN_WRITE_MEM_DATA, data);
1087 }
1088
1089 static void
1090 iwn_mem_write_region_4(struct iwn_softc *sc, uint32_t addr,
1091 const uint32_t *data, int wlen)
1092 {
1093 for (; wlen > 0; wlen--, data++, addr += 4)
1094 iwn_mem_write(sc, addr, *data);
1095 }
1096
1097 static int
1098 iwn_eeprom_lock(struct iwn_softc *sc)
1099 {
1100 uint32_t tmp;
1101 int ntries;
1102
1103 tmp = IWN_READ(sc, IWN_HWCONFIG);
1104 IWN_WRITE(sc, IWN_HWCONFIG, tmp | IWN_HW_EEPROM_LOCKED);
1105
1106 /* spin until we actually get the lock */
1107 for (ntries = 0; ntries < 100; ntries++) {
1108 if (IWN_READ(sc, IWN_HWCONFIG) & IWN_HW_EEPROM_LOCKED)
1109 return 0;
1110 DELAY(10);
1111 }
1112 return ETIMEDOUT;
1113 }
1114
1115 static void
1116 iwn_eeprom_unlock(struct iwn_softc *sc)
1117 {
1118 uint32_t tmp = IWN_READ(sc, IWN_HWCONFIG);
1119 IWN_WRITE(sc, IWN_HWCONFIG, tmp & ~IWN_HW_EEPROM_LOCKED);
1120 }
1121
1122 /*
1123 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1124 * instead of using the traditional bit-bang method.
1125 */
1126 static int
1127 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int len)
1128 {
1129 uint8_t *out = data;
1130 uint32_t val;
1131 int ntries;
1132
1133 iwn_mem_lock(sc);
1134 for (; len > 0; len -= 2, addr++) {
1135 IWN_WRITE(sc, IWN_EEPROM_CTL, addr << 2);
1136 IWN_WRITE(sc, IWN_EEPROM_CTL,
1137 IWN_READ(sc, IWN_EEPROM_CTL) & ~IWN_EEPROM_CMD);
1138
1139 for (ntries = 0; ntries < 10; ntries++) {
1140 if ((val = IWN_READ(sc, IWN_EEPROM_CTL)) &
1141 IWN_EEPROM_READY)
1142 break;
1143 DELAY(5);
1144 }
1145 if (ntries == 10) {
1146 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1147 return ETIMEDOUT;
1148 }
1149 *out++ = val >> 16;
1150 if (len > 1)
1151 *out++ = val >> 24;
1152 }
1153 iwn_mem_unlock(sc);
1154
1155 return 0;
1156 }
1157
1158 /*
1159 * The firmware boot code is small and is intended to be copied directly into
1160 * the NIC internal memory.
1161 */
1162 static int
1163 iwn_load_microcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
1164 {
1165 int ntries;
1166
1167 size /= sizeof (uint32_t);
1168
1169 iwn_mem_lock(sc);
1170
1171 /* copy microcode image into NIC memory */
1172 iwn_mem_write_region_4(sc, IWN_MEM_UCODE_BASE,
1173 (const uint32_t *)ucode, size);
1174
1175 iwn_mem_write(sc, IWN_MEM_UCODE_SRC, 0);
1176 iwn_mem_write(sc, IWN_MEM_UCODE_DST, IWN_FW_TEXT);
1177 iwn_mem_write(sc, IWN_MEM_UCODE_SIZE, size);
1178
1179 /* run microcode */
1180 iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_RUN);
1181
1182 /* wait for transfer to complete */
1183 for (ntries = 0; ntries < 1000; ntries++) {
1184 if (!(iwn_mem_read(sc, IWN_MEM_UCODE_CTL) & IWN_UC_RUN))
1185 break;
1186 DELAY(10);
1187 }
1188 if (ntries == 1000) {
1189 iwn_mem_unlock(sc);
1190 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1191 return ETIMEDOUT;
1192 }
1193 iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_ENABLE);
1194
1195 iwn_mem_unlock(sc);
1196
1197 return 0;
1198 }
1199
1200 static int
1201 iwn_load_firmware(struct iwn_softc *sc)
1202 {
1203 struct iwn_dma_info *dma = &sc->fw_dma;
1204 struct iwn_firmware_hdr hdr;
1205 const uint8_t *init_text, *init_data, *main_text, *main_data;
1206 const uint8_t *boot_text;
1207 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1208 uint32_t boot_textsz;
1209 firmware_handle_t fw;
1210 u_char *dfw;
1211 size_t size;
1212 int error;
1213
1214 /* load firmware image from disk */
1215 if ((error = firmware_open("if_iwn","iwlwifi-4965.ucode", &fw) != 0)) {
1216 aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1217 goto fail1;
1218 }
1219
1220 size = firmware_get_size(fw);
1221
1222 /* extract firmware header information */
1223 if (size < sizeof (struct iwn_firmware_hdr)) {
1224 aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n", size);
1225
1226 error = EINVAL;
1227 goto fail2;
1228 }
1229
1230
1231 if ((error = firmware_read(fw, 0, &hdr,
1232 sizeof (struct iwn_firmware_hdr))) != 0) {
1233 aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
1234 goto fail2;
1235 }
1236
1237 main_textsz = le32toh(hdr.main_textsz);
1238 main_datasz = le32toh(hdr.main_datasz);
1239 init_textsz = le32toh(hdr.init_textsz);
1240 init_datasz = le32toh(hdr.init_datasz);
1241 boot_textsz = le32toh(hdr.boot_textsz);
1242
1243 /* sanity-check firmware segments sizes */
1244 if (main_textsz > IWN_FW_MAIN_TEXT_MAXSZ ||
1245 main_datasz > IWN_FW_MAIN_DATA_MAXSZ ||
1246 init_textsz > IWN_FW_INIT_TEXT_MAXSZ ||
1247 init_datasz > IWN_FW_INIT_DATA_MAXSZ ||
1248 boot_textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
1249 (boot_textsz & 3) != 0) {
1250 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1251 error = EINVAL;
1252 goto fail2;
1253 }
1254
1255 /* check that all firmware segments are present */
1256 if (size < sizeof (struct iwn_firmware_hdr) + main_textsz +
1257 main_datasz + init_textsz + init_datasz + boot_textsz) {
1258 aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n", size);
1259 error = EINVAL;
1260 goto fail2;
1261 }
1262
1263 dfw = firmware_malloc(size);
1264 if (dfw == NULL) {
1265 aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1266 error = ENOMEM;
1267 goto fail2;
1268 }
1269
1270 if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1271 aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1272 goto fail2;
1273 }
1274
1275 /* get pointers to firmware segments */
1276 main_text = dfw + sizeof (struct iwn_firmware_hdr);
1277 main_data = main_text + main_textsz;
1278 init_text = main_data + main_datasz;
1279 init_data = init_text + init_textsz;
1280 boot_text = init_data + init_datasz;
1281
1282 /* copy initialization images into pre-allocated DMA-safe memory */
1283 memcpy(dma->vaddr, init_data, init_datasz);
1284 memcpy((char *)dma->vaddr + IWN_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1285
1286 /* tell adapter where to find initialization images */
1287 iwn_mem_lock(sc);
1288 iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
1289 iwn_mem_write(sc, IWN_MEM_DATA_SIZE, init_datasz);
1290 iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
1291 (dma->paddr + IWN_FW_INIT_DATA_MAXSZ) >> 4);
1292 iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, init_textsz);
1293 iwn_mem_unlock(sc);
1294
1295 /* load firmware boot code */
1296 if ((error = iwn_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1297 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1298 goto fail3;
1299 }
1300
1301 /* now press "execute" ;-) */
1302 IWN_WRITE(sc, IWN_RESET, 0);
1303
1304 /* ..and wait at most one second for adapter to initialize */
1305 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
1306 /* this isn't what was supposed to happen.. */
1307 aprint_error_dev(sc->sc_dev, "timeout waiting for adapter to initialize\n");
1308 }
1309
1310 /* copy runtime images into pre-allocated DMA-safe memory */
1311 memcpy((char *)dma->vaddr, main_data, main_datasz);
1312 memcpy((char *)dma->vaddr + IWN_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1313
1314 /* tell adapter where to find runtime images */
1315 iwn_mem_lock(sc);
1316 iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
1317 iwn_mem_write(sc, IWN_MEM_DATA_SIZE, main_datasz);
1318 iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
1319 (dma->paddr + IWN_FW_MAIN_DATA_MAXSZ) >> 4);
1320 iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, IWN_FW_UPDATED | main_textsz);
1321 iwn_mem_unlock(sc);
1322
1323 /* wait at most one second for second alive notification */
1324 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
1325 /* this isn't what was supposed to happen.. */
1326 aprint_error_dev(sc->sc_dev, "timeout waiting for adapter to initialize\n");
1327 }
1328
1329 fail3: firmware_free(dfw,size);
1330 fail2: firmware_close(fw);
1331 fail1: return error;
1332 }
1333
1334 static void
1335 iwn_calib_timeout(void *arg)
1336 {
1337 struct iwn_softc *sc = arg;
1338 struct ieee80211com *ic = &sc->sc_ic;
1339 int s;
1340
1341 /* automatic rate control triggered every 500ms */
1342 if (ic->ic_fixed_rate == -1) {
1343 s = splnet();
1344 if (ic->ic_opmode == IEEE80211_M_STA)
1345 iwn_iter_func(sc, ic->ic_bss);
1346 else
1347 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1348 splx(s);
1349 }
1350
1351 /* automatic calibration every 60s */
1352 if (++sc->calib_cnt >= 120) {
1353 DPRINTF(("sending request for statistics\n"));
1354 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, NULL, 0, 1);
1355 sc->calib_cnt = 0;
1356 }
1357
1358 callout_schedule(&sc->calib_to, hz/2);
1359
1360 }
1361
1362 static void
1363 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1364 {
1365 struct iwn_softc *sc = arg;
1366 struct iwn_node *wn = (struct iwn_node *)ni;
1367
1368 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1369 }
1370
1371 static void
1372 iwn_ampdu_rx_start(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1373 {
1374 struct iwn_rx_stat *stat;
1375
1376 DPRINTFN(2, ("received AMPDU stats\n"));
1377 /* save Rx statistics, they will be used on IWN_AMPDU_RX_DONE */
1378 stat = (struct iwn_rx_stat *)(desc + 1);
1379 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1380 sc->last_rx_valid = 1;
1381 }
1382
1383 void
1384 iwn_rx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1385 struct iwn_rx_data *data)
1386 {
1387 struct ieee80211com *ic = &sc->sc_ic;
1388 struct ifnet *ifp = ic->ic_ifp;
1389 struct iwn_rx_ring *ring = &sc->rxq;
1390 struct iwn_rbuf *rbuf;
1391 struct ieee80211_frame *wh;
1392 struct ieee80211_node *ni;
1393 struct mbuf *m, *mnew;
1394 struct iwn_rx_stat *stat;
1395 char *head;
1396 uint32_t *tail;
1397 int len, rssi;
1398
1399 if (desc->type == IWN_AMPDU_RX_DONE) {
1400 /* check for prior AMPDU_RX_START */
1401 if (!sc->last_rx_valid) {
1402 DPRINTF(("missing AMPDU_RX_START\n"));
1403 ifp->if_ierrors++;
1404 return;
1405 }
1406 sc->last_rx_valid = 0;
1407 stat = &sc->last_rx_stat;
1408 } else
1409 stat = (struct iwn_rx_stat *)(desc + 1);
1410
1411 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1412 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1413 ifp->if_ierrors++;
1414 return;
1415 }
1416
1417 if (desc->type == IWN_AMPDU_RX_DONE) {
1418 struct iwn_rx_ampdu *ampdu =
1419 (struct iwn_rx_ampdu *)(desc + 1);
1420 head = (char *)(ampdu + 1);
1421 len = le16toh(ampdu->len);
1422 } else {
1423 head = (char *)(stat + 1) + stat->cfg_phy_len;
1424 len = le16toh(stat->len);
1425 }
1426
1427 /* discard Rx frames with bad CRC early */
1428 tail = (uint32_t *)(head + len);
1429 if ((le32toh(*tail) & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1430 DPRINTFN(2, ("rx flags error %x\n", le32toh(*tail)));
1431 ifp->if_ierrors++;
1432 return;
1433 }
1434 /* XXX for ieee80211_find_rxnode() */
1435 if (len < sizeof (struct ieee80211_frame)) {
1436 DPRINTF(("frame too short: %d\n", len));
1437 ic->ic_stats.is_rx_tooshort++;
1438 ifp->if_ierrors++;
1439 return;
1440 }
1441
1442 m = data->m;
1443
1444 /* finalize mbuf */
1445 m->m_pkthdr.rcvif = ifp;
1446 m->m_data = head;
1447 m->m_pkthdr.len = m->m_len = len;
1448
1449 if ((rbuf = SLIST_FIRST(&sc->rxq.freelist)) != NULL) {
1450 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1451 if (mnew == NULL) {
1452 ic->ic_stats.is_rx_nobuf++;
1453 ifp->if_ierrors++;
1454 return;
1455 }
1456
1457 /* attach Rx buffer to mbuf */
1458 MEXTADD(mnew, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
1459 rbuf);
1460 mnew->m_flags |= M_EXT_RW;
1461 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
1462
1463 data->m = mnew;
1464
1465 /* update Rx descriptor */
1466 ring->desc[ring->cur] = htole32(rbuf->paddr >> 8);
1467 } else {
1468 /* no free rbufs, copy frame */
1469 m = m_dup(m, 0, M_COPYALL, M_DONTWAIT);
1470 if (m == NULL) {
1471 /* no free mbufs either, drop frame */
1472 ic->ic_stats.is_rx_nobuf++;
1473 ifp->if_ierrors++;
1474 return;
1475 }
1476 }
1477
1478 rssi = iwn_get_rssi(stat);
1479
1480 if (ic->ic_state == IEEE80211_S_SCAN)
1481 iwn_fix_channel(ic, m);
1482
1483 #if NBPFILTER > 0
1484 if (sc->sc_drvbpf != NULL) {
1485 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
1486
1487 tap->wr_flags = 0;
1488 tap->wr_chan_freq =
1489 htole16(ic->ic_channels[stat->chan].ic_freq);
1490 tap->wr_chan_flags =
1491 htole16(ic->ic_channels[stat->chan].ic_flags);
1492 tap->wr_dbm_antsignal = (int8_t)rssi;
1493 tap->wr_dbm_antnoise = (int8_t)sc->noise;
1494 tap->wr_tsft = stat->tstamp;
1495 switch (stat->rate) {
1496 /* CCK rates */
1497 case 10: tap->wr_rate = 2; break;
1498 case 20: tap->wr_rate = 4; break;
1499 case 55: tap->wr_rate = 11; break;
1500 case 110: tap->wr_rate = 22; break;
1501 /* OFDM rates */
1502 case 0xd: tap->wr_rate = 12; break;
1503 case 0xf: tap->wr_rate = 18; break;
1504 case 0x5: tap->wr_rate = 24; break;
1505 case 0x7: tap->wr_rate = 36; break;
1506 case 0x9: tap->wr_rate = 48; break;
1507 case 0xb: tap->wr_rate = 72; break;
1508 case 0x1: tap->wr_rate = 96; break;
1509 case 0x3: tap->wr_rate = 108; break;
1510 /* unknown rate: should not happen */
1511 default: tap->wr_rate = 0;
1512 }
1513
1514 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1515 }
1516 #endif
1517
1518 /* grab a reference to the source node */
1519 wh = mtod(m, struct ieee80211_frame *);
1520 ni = ieee80211_find_rxnode(ic,(struct ieee80211_frame_min *)wh);
1521
1522 /* send the frame to the 802.11 layer */
1523 ieee80211_input(ic, m, ni, rssi, 0);
1524
1525 /* node is no longer needed */
1526 ieee80211_free_node(ni);
1527 }
1528
1529
1530 /*
1531 * XXX: Hack to set the current channel to the value advertised in beacons or
1532 * probe responses. Only used during AP detection.
1533 * XXX: Duplicated from if_iwi.c
1534 */
1535 static void
1536 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
1537 {
1538 struct ieee80211_frame *wh;
1539 uint8_t subtype;
1540 uint8_t *frm, *efrm;
1541
1542 wh = mtod(m, struct ieee80211_frame *);
1543
1544 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
1545 return;
1546
1547 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1548
1549 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
1550 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1551 return;
1552
1553 frm = (uint8_t *)(wh + 1);
1554 efrm = mtod(m, uint8_t *) + m->m_len;
1555
1556 frm += 12; /* skip tstamp, bintval and capinfo fields */
1557 while (frm < efrm) {
1558 if (*frm == IEEE80211_ELEMID_DSPARMS)
1559 #if IEEE80211_CHAN_MAX < 255
1560 if (frm[2] <= IEEE80211_CHAN_MAX)
1561 #endif
1562 ic->ic_curchan = &ic->ic_channels[frm[2]];
1563
1564 frm += frm[1] + 2;
1565 }
1566 }
1567
1568 static void
1569 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1570 {
1571 struct ieee80211com *ic = &sc->sc_ic;
1572 struct iwn_calib_state *calib = &sc->calib;
1573 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
1574
1575 /* ignore beacon statistics received during a scan */
1576 if (ic->ic_state != IEEE80211_S_RUN)
1577 return;
1578
1579 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
1580 sc->calib_cnt = 0; /* reset timeout */
1581
1582 /* test if temperature has changed */
1583 if (stats->general.temp != sc->rawtemp) {
1584 int temp;
1585
1586 sc->rawtemp = stats->general.temp;
1587 temp = iwn_get_temperature(sc);
1588 DPRINTFN(2, ("temperature=%d\n", temp));
1589
1590 /* update Tx power if need be */
1591 iwn_power_calibration(sc, temp);
1592 }
1593
1594 if (desc->type != IWN_BEACON_STATISTICS)
1595 return; /* reply to a statistics request */
1596
1597 sc->noise = iwn_get_noise(&stats->rx.general);
1598 DPRINTFN(3, ("noise=%d\n", sc->noise));
1599
1600 /* test that RSSI and noise are present in stats report */
1601 if (le32toh(stats->rx.general.flags) != 1) {
1602 DPRINTF(("received statistics without RSSI\n"));
1603 return;
1604 }
1605
1606 if (calib->state == IWN_CALIB_STATE_ASSOC)
1607 iwn_compute_differential_gain(sc, &stats->rx.general);
1608 else if (calib->state == IWN_CALIB_STATE_RUN)
1609 iwn_tune_sensitivity(sc, &stats->rx);
1610 }
1611
1612 static void
1613 iwn_tx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1614 {
1615 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1616 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
1617 struct iwn_tx_data *txdata = &ring->data[desc->idx];
1618 struct iwn_tx_stat *stat = (struct iwn_tx_stat *)(desc + 1);
1619 struct iwn_node *wn = (struct iwn_node *)txdata->ni;
1620 uint32_t status;
1621
1622 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1623 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1624 stat->nkill, stat->rate, le16toh(stat->duration),
1625 le32toh(stat->status)));
1626
1627 /*
1628 * Update rate control statistics for the node.
1629 */
1630 wn->amn.amn_txcnt++;
1631 if (stat->ntries > 0) {
1632 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1633 wn->amn.amn_retrycnt++;
1634 }
1635
1636 status = le32toh(stat->status) & 0xff;
1637 if (status != 1 && status != 2)
1638 ifp->if_oerrors++;
1639 else
1640 ifp->if_opackets++;
1641
1642 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1643 m_freem(txdata->m);
1644 txdata->m = NULL;
1645 ieee80211_free_node(txdata->ni);
1646 txdata->ni = NULL;
1647
1648 ring->queued--;
1649
1650 sc->sc_tx_timer = 0;
1651 ifp->if_flags &= ~IFF_OACTIVE;
1652 iwn_start(ifp);
1653 }
1654
1655 static void
1656 iwn_cmd_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1657 {
1658 struct iwn_tx_ring *ring = &sc->txq[4];
1659 struct iwn_tx_data *data;
1660
1661 if ((desc->qid & 0xf) != 4)
1662 return; /* not a command ack */
1663
1664 data = &ring->data[desc->idx];
1665
1666 /* if the command was mapped in a mbuf, free it */
1667 if (data->m != NULL) {
1668 bus_dmamap_unload(sc->sc_dmat, data->map);
1669 m_freem(data->m);
1670 data->m = NULL;
1671 }
1672
1673 wakeup(&ring->cmd[desc->idx]);
1674 }
1675
1676 static void
1677 iwn_notif_intr(struct iwn_softc *sc)
1678 {
1679 struct ieee80211com *ic = &sc->sc_ic;
1680 struct ifnet *ifp = ic->ic_ifp;
1681 uint16_t hw;
1682
1683 hw = le16toh(sc->shared->closed_count);
1684 while (sc->rxq.cur != hw) {
1685 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1686 struct iwn_rx_desc *desc = (void *)data->m->m_ext.ext_buf;
1687
1688 DPRINTFN(4,("rx notification qid=%x idx=%d flags=%x type=%d "
1689 "len=%d\n", desc->qid, desc->idx, desc->flags, desc->type,
1690 le32toh(desc->len)));
1691
1692 if (!(desc->qid & 0x80)) /* reply to a command */
1693 iwn_cmd_intr(sc, desc);
1694
1695 switch (desc->type) {
1696 case IWN_RX_DONE:
1697 case IWN_AMPDU_RX_DONE:
1698 iwn_rx_intr(sc, desc, data);
1699 break;
1700
1701 case IWN_AMPDU_RX_START:
1702 iwn_ampdu_rx_start(sc, desc);
1703 break;
1704
1705 case IWN_TX_DONE:
1706 /* a 802.11 frame has been transmitted */
1707 iwn_tx_intr(sc, desc);
1708 break;
1709
1710 case IWN_RX_STATISTICS:
1711 case IWN_BEACON_STATISTICS:
1712 iwn_rx_statistics(sc, desc);
1713 break;
1714
1715 case IWN_BEACON_MISSED:
1716 {
1717 struct iwn_beacon_missed *miss =
1718 (struct iwn_beacon_missed *)(desc + 1);
1719 /*
1720 * If more than 5 consecutive beacons are missed,
1721 * reinitialize the sensitivity state machine.
1722 */
1723 DPRINTFN(2, ("beacons missed %d/%d\n",
1724 le32toh(miss->consecutive), le32toh(miss->total)));
1725 if (ic->ic_state == IEEE80211_S_RUN &&
1726 le32toh(miss->consecutive) > 5)
1727 (void)iwn_init_sensitivity(sc);
1728 break;
1729 }
1730
1731 case IWN_UC_READY:
1732 {
1733 struct iwn_ucode_info *uc =
1734 (struct iwn_ucode_info *)(desc + 1);
1735
1736 /* the microcontroller is ready */
1737 DPRINTF(("microcode alive notification version=%d.%d "
1738 "subtype=%x alive=%x\n", uc->major, uc->minor,
1739 uc->subtype, le32toh(uc->valid)));
1740
1741 if (le32toh(uc->valid) != 1) {
1742 aprint_error_dev(sc->sc_dev, "microcontroller initialization "
1743 "failed\n");
1744 break;
1745 }
1746 if (uc->subtype == IWN_UCODE_INIT) {
1747 /* save microcontroller's report */
1748 memcpy(&sc->ucode_info, uc, sizeof (*uc));
1749 }
1750 break;
1751 }
1752 case IWN_STATE_CHANGED:
1753 {
1754 uint32_t *status = (uint32_t *)(desc + 1);
1755
1756 /* enabled/disabled notification */
1757 DPRINTF(("state changed to %x\n", le32toh(*status)));
1758
1759 if (le32toh(*status) & 1) {
1760 /* the radio button has to be pushed */
1761 aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1762 /* turn the interface down */
1763 ifp->if_flags &= ~IFF_UP;
1764 iwn_stop(ifp, 1);
1765 return; /* no further processing */
1766 }
1767 break;
1768 }
1769 case IWN_START_SCAN:
1770 {
1771 struct iwn_start_scan *scan =
1772 (struct iwn_start_scan *)(desc + 1);
1773
1774 DPRINTFN(2, ("scanning channel %d status %x\n",
1775 scan->chan, le32toh(scan->status)));
1776
1777 /* fix current channel */
1778 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1779 break;
1780 }
1781 case IWN_STOP_SCAN:
1782 {
1783 struct iwn_stop_scan *scan =
1784 (struct iwn_stop_scan *)(desc + 1);
1785
1786 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1787 scan->nchan, scan->status, scan->chan));
1788
1789 if (scan->status == 1 && scan->chan <= 14) {
1790 /*
1791 * We just finished scanning 802.11g channels,
1792 * start scanning 802.11a ones.
1793 */
1794 if (iwn_scan(sc, IEEE80211_CHAN_A) == 0)
1795 break;
1796 }
1797 sc->is_scanning = false;
1798 ieee80211_end_scan(ic);
1799 break;
1800 }
1801 }
1802
1803 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
1804 }
1805
1806 /* tell the firmware what we have processed */
1807 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
1808 IWN_WRITE(sc, IWN_RX_WIDX, hw & ~7);
1809 }
1810
1811 static int
1812 iwn_intr(void *arg)
1813 {
1814 struct iwn_softc *sc = arg;
1815 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1816 uint32_t r1, r2;
1817
1818 /* disable interrupts */
1819 IWN_WRITE(sc, IWN_MASK, 0);
1820
1821 r1 = IWN_READ(sc, IWN_INTR);
1822 r2 = IWN_READ(sc, IWN_INTR_STATUS);
1823
1824 if (r1 == 0 && r2 == 0) {
1825 if (ifp->if_flags & IFF_UP)
1826 IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
1827 return 0; /* not for us */
1828 }
1829
1830 if (r1 == 0xffffffff)
1831 return 0; /* hardware gone */
1832
1833 /* ack interrupts */
1834 IWN_WRITE(sc, IWN_INTR, r1);
1835 IWN_WRITE(sc, IWN_INTR_STATUS, r2);
1836
1837 DPRINTFN(5, ("interrupt reg1=%x reg2=%x\n", r1, r2));
1838
1839 if (r1 & IWN_RF_TOGGLED) {
1840 uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1841 aprint_error_dev(sc->sc_dev, "RF switch: radio %s\n",
1842 (tmp & IWN_GPIO_RF_ENABLED) ? "enabled" : "disabled");
1843 }
1844 if (r1 & IWN_CT_REACHED) {
1845 aprint_error_dev(sc->sc_dev, "critical temperature reached!\n");
1846 }
1847 if (r1 & (IWN_SW_ERROR | IWN_HW_ERROR)) {
1848 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1849 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1850 iwn_stop(sc->sc_ic.ic_ifp, 1);
1851 return 1;
1852 }
1853
1854 if ((r1 & (IWN_RX_INTR | IWN_SW_RX_INTR)) ||
1855 (r2 & IWN_RX_STATUS_INTR))
1856 iwn_notif_intr(sc);
1857
1858 if (r1 & IWN_ALIVE_INTR)
1859 wakeup(sc);
1860
1861 /* re-enable interrupts */
1862 if (ifp->if_flags & IFF_UP)
1863 IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
1864
1865 return 1;
1866 }
1867
1868 static uint8_t
1869 iwn_plcp_signal(int rate)
1870 {
1871 switch (rate) {
1872 /* CCK rates (returned values are device-dependent) */
1873 case 2: return 10;
1874 case 4: return 20;
1875 case 11: return 55;
1876 case 22: return 110;
1877
1878 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1879 /* R1-R4, (u)ral is R4-R1 */
1880 case 12: return 0xd;
1881 case 18: return 0xf;
1882 case 24: return 0x5;
1883 case 36: return 0x7;
1884 case 48: return 0x9;
1885 case 72: return 0xb;
1886 case 96: return 0x1;
1887 case 108: return 0x3;
1888 case 120: return 0x3;
1889 }
1890 /* unknown rate (should not get there) */
1891 return 0;
1892 }
1893
1894 /* determine if a given rate is CCK or OFDM */
1895 #define IWN_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1896
1897 static int
1898 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1899 int ac)
1900 {
1901 struct ieee80211com *ic = &sc->sc_ic;
1902 struct iwn_tx_ring *ring = &sc->txq[ac];
1903 struct iwn_tx_desc *desc;
1904 struct iwn_tx_data *data;
1905 struct iwn_tx_cmd *cmd;
1906 struct iwn_cmd_data *tx;
1907 struct ieee80211_frame *wh;
1908 struct ieee80211_key *k;
1909 const struct chanAccParams *cap;
1910 struct mbuf *mnew;
1911 bus_addr_t paddr;
1912 uint32_t flags;
1913 uint8_t type;
1914 int i, error, pad, rate, hdrlen, noack = 0;
1915
1916 desc = &ring->desc[ring->cur];
1917 data = &ring->data[ring->cur];
1918
1919 wh = mtod(m0, struct ieee80211_frame *);
1920 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1921 /* JAF XXX two lines above were not in wpi. check we don't duplicate this */
1922
1923 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1924 hdrlen = sizeof (struct ieee80211_qosframe);
1925 cap = &ic->ic_wme.wme_chanParams;
1926 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1927 } else
1928 hdrlen = sizeof (struct ieee80211_frame);
1929
1930 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1931 k = ieee80211_crypto_encap(ic, ni, m0);
1932 if (k == NULL) {
1933 m_freem(m0);
1934 return ENOBUFS;
1935 }
1936 /* packet header may have moved, reset our local pointer */
1937 wh = mtod(m0, struct ieee80211_frame *);
1938 }
1939
1940 /* pickup a rate */
1941 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1942 IEEE80211_FC0_TYPE_MGT) {
1943 /* mgmt frames are sent at the lowest available bit-rate */
1944 rate = ni->ni_rates.rs_rates[0];
1945 } else {
1946 if (ic->ic_fixed_rate != -1) {
1947 rate = ic->ic_sup_rates[ic->ic_curmode].
1948 rs_rates[ic->ic_fixed_rate];
1949 } else
1950 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1951 }
1952 rate &= IEEE80211_RATE_VAL;
1953
1954 #if NBPFILTER > 0
1955 if (sc->sc_drvbpf != NULL) {
1956 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
1957
1958 tap->wt_flags = 0;
1959 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1960 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1961 tap->wt_rate = rate;
1962 tap->wt_hwqueue = ac;
1963 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1964 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1965
1966 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1967 }
1968 #endif
1969
1970 cmd = &ring->cmd[ring->cur];
1971 cmd->code = IWN_CMD_TX_DATA;
1972 cmd->flags = 0;
1973 cmd->qid = ring->qid;
1974 cmd->idx = ring->cur;
1975
1976 tx = (struct iwn_cmd_data *)cmd->data;
1977
1978 flags = IWN_TX_AUTO_SEQ;
1979 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)){
1980 flags |= IWN_TX_NEED_ACK;
1981 }else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1982 flags |= htole32(IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP);
1983
1984 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? IWN_ID_BROADCAST : IWN_ID_BSS;
1985
1986 if (type == IEEE80211_FC0_TYPE_MGT) {
1987 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1988
1989 /* tell h/w to set timestamp in probe responses */
1990 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1991 flags |= IWN_TX_INSERT_TSTAMP;
1992
1993 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1994 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1995 tx->timeout = htole16(3);
1996 else
1997 tx->timeout = htole16(2);
1998 } else
1999 tx->timeout = htole16(0);
2000
2001 if (hdrlen & 3) {
2002 /* first segment's length must be a multiple of 4 */
2003 flags |= IWN_TX_NEED_PADDING;
2004 pad = 4 - (hdrlen & 3);
2005 } else
2006 pad = 0;
2007
2008 tx->flags = htole32(flags);
2009 tx->len = htole16(m0->m_pkthdr.len);
2010 tx->rate = iwn_plcp_signal(rate);
2011 tx->rts_ntries = 60;
2012 tx->data_ntries = 15;
2013 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2014
2015 /* XXX alternate between Ant A and Ant B ? */
2016 tx->rflags = IWN_RFLAG_ANT_B;
2017 if (tx->id == IWN_ID_BROADCAST) {
2018 tx->ridx = IWN_MAX_TX_RETRIES - 1;
2019 if (!IWN_RATE_IS_OFDM(rate))
2020 tx->rflags |= IWN_RFLAG_CCK;
2021 } else {
2022 tx->ridx = 0;
2023 /* tell adapter to ignore rflags */
2024 tx->flags |= htole32(IWN_TX_USE_NODE_RATE);
2025 }
2026
2027 /* copy and trim IEEE802.11 header */
2028 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2029 m_adj(m0, hdrlen);
2030
2031 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2032 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2033 if (error != 0 && error != EFBIG) {
2034 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
2035 m_freem(m0);
2036 return error;
2037 }
2038 if (error != 0) {
2039 /* too many fragments, linearize */
2040
2041 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2042 if (mnew == NULL) {
2043 m_freem(m0);
2044 return ENOMEM;
2045 }
2046 M_COPY_PKTHDR(mnew, m0);
2047 if (m0->m_pkthdr.len > MHLEN) {
2048 MCLGET(mnew, M_DONTWAIT);
2049 if (!(mnew->m_flags & M_EXT)) {
2050 m_freem(m0);
2051 m_freem(mnew);
2052 return ENOMEM;
2053 }
2054 }
2055
2056 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2057 m_freem(m0);
2058 mnew->m_len = mnew->m_pkthdr.len;
2059 m0 = mnew;
2060
2061 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2062 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2063 if (error != 0) {
2064 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
2065 m_freem(m0);
2066 return error;
2067 }
2068 }
2069
2070 data->m = m0;
2071 data->ni = ni;
2072
2073 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2074 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2075
2076 paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2077 tx->loaddr = htole32(paddr + 4 +
2078 offsetof(struct iwn_cmd_data, ntries));
2079 tx->hiaddr = 0; /* limit to 32-bit physical addresses */
2080
2081 /* first scatter/gather segment is used by the tx data command */
2082 IWN_SET_DESC_NSEGS(desc, 1 + data->map->dm_nsegs);
2083 IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
2084 for (i = 1; i <= data->map->dm_nsegs; i++) {
2085 IWN_SET_DESC_SEG(desc, i, data->map->dm_segs[i - 1].ds_addr,
2086 data->map->dm_segs[i - 1].ds_len);
2087 }
2088 sc->shared->len[ring->qid][ring->cur] =
2089 htole16(hdrlen + m0->m_pkthdr.len + 8);
2090 if (ring->cur < IWN_TX_WINDOW) {
2091 sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2092 htole16(hdrlen + m0->m_pkthdr.len + 8);
2093 }
2094
2095 ring->queued++;
2096
2097 /* kick ring */
2098 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2099 IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2100
2101 return 0;
2102 }
2103
2104 static void
2105 iwn_start(struct ifnet *ifp)
2106 {
2107 struct iwn_softc *sc = ifp->if_softc;
2108 struct ieee80211com *ic = &sc->sc_ic;
2109 struct ieee80211_node *ni;
2110 struct ether_header *eh;
2111 struct mbuf *m0;
2112 int ac;
2113
2114 /*
2115 * net80211 may still try to send management frames even if the
2116 * IFF_RUNNING flag is not set...
2117 */
2118 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2119 return;
2120
2121 for (;;) {
2122 IF_DEQUEUE(&ic->ic_mgtq, m0);
2123 if (m0 != NULL) {
2124 /* management frames go into ring 0 */
2125
2126
2127 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2128 m0->m_pkthdr.rcvif = NULL;
2129
2130 /* management goes into ring 0 */
2131 if (sc->txq[0].queued > sc->txq[0].count - 8) {
2132 ifp->if_oerrors++;
2133 continue;
2134 }
2135
2136 #if NBPFILTER > 0
2137 if (ic->ic_rawbpf != NULL)
2138 bpf_mtap(ic->ic_rawbpf, m0);
2139 #endif
2140 if (iwn_tx_data(sc, m0, ni, 0) != 0) {
2141 ifp->if_oerrors++;
2142 break;
2143 }
2144 } else {
2145 if (ic->ic_state != IEEE80211_S_RUN)
2146 break;
2147 IFQ_POLL(&ifp->if_snd, m0);
2148 if (m0 == NULL)
2149 break;
2150
2151 if (m0->m_len < sizeof (*eh) &&
2152 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
2153 ifp->if_oerrors++;
2154 continue;
2155 }
2156 eh = mtod(m0, struct ether_header *);
2157 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2158 if (ni == NULL) {
2159 m_freem(m0);
2160 ifp->if_oerrors++;
2161 continue;
2162 }
2163 /*JAF C266 */
2164 /* classify mbuf so we can find which tx ring to use */
2165 if (ieee80211_classify(ic, m0, ni) != 0) {
2166 m_freem(m0);
2167 ieee80211_free_node(ni);
2168 ifp->if_oerrors++;
2169 continue;
2170 }
2171
2172 /* no QoS encapsulation for EAPOL frames */
2173 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2174 M_WME_GETAC(m0) : WME_AC_BE;
2175
2176 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2177
2178 /* there is no place left in this ring */
2179 ifp->if_flags |= IFF_OACTIVE;
2180 break;
2181 }
2182 IFQ_DEQUEUE(&ifp->if_snd, m0);
2183 #if NBPFILTER > 0
2184 if (ifp->if_bpf != NULL)
2185 bpf_mtap(ifp->if_bpf, m0);
2186 #endif
2187 m0 = ieee80211_encap(ic, m0, ni);
2188 if (m0 == NULL) {
2189 ieee80211_free_node(ni);
2190 ifp->if_oerrors++;
2191 continue;
2192 }
2193 #if NBPFILTER > 0
2194 if (ic->ic_rawbpf != NULL)
2195 bpf_mtap(ic->ic_rawbpf, m0);
2196 #endif
2197 if (iwn_tx_data(sc, m0, ni, ac) != 0) {
2198 ieee80211_free_node(ni);
2199 ifp->if_oerrors++;
2200 break;
2201 }
2202 }
2203
2204 sc->sc_tx_timer = 5;
2205 ifp->if_timer = 1;
2206 }
2207 }
2208
2209 static void
2210 iwn_watchdog(struct ifnet *ifp)
2211 {
2212 struct iwn_softc *sc = ifp->if_softc;
2213
2214 ifp->if_timer = 0;
2215
2216 if (sc->sc_tx_timer > 0) {
2217 if (--sc->sc_tx_timer == 0) {
2218 aprint_error_dev(sc->sc_dev, "device timeout\n");
2219 ifp->if_flags &= ~IFF_UP;
2220 iwn_stop(ifp, 1);
2221 ifp->if_oerrors++;
2222 return;
2223 }
2224 ifp->if_timer = 1;
2225 }
2226
2227 ieee80211_watchdog(&sc->sc_ic);
2228 }
2229
2230 static int
2231 iwn_ioctl(struct ifnet *ifp, u_long cmd, void * data)
2232 {
2233
2234 #define IS_RUNNING(ifp) \
2235 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2236
2237 struct iwn_softc *sc = ifp->if_softc;
2238 struct ieee80211com *ic = &sc->sc_ic;
2239 int s, error = 0;
2240
2241 s = splnet();
2242
2243 switch (cmd) {
2244 case SIOCSIFFLAGS:
2245 if (ifp->if_flags & IFF_UP) {
2246 if (!(ifp->if_flags & IFF_RUNNING))
2247 iwn_init(ifp);
2248 } else {
2249 if (ifp->if_flags & IFF_RUNNING)
2250 iwn_stop(ifp, 1);
2251 }
2252 break;
2253
2254 case SIOCADDMULTI:
2255 case SIOCDELMULTI:
2256 /* XXX no h/w multicast filter? --dyoung */
2257 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2258 /* setup multicast filter, etc */
2259 error = 0;
2260 }
2261 break;
2262
2263 default:
2264 error = ieee80211_ioctl(ic, cmd, data);
2265 }
2266
2267 if (error == ENETRESET) {
2268 if (IS_RUNNING(ifp) &&
2269 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2270 iwn_init(ifp);
2271 error = 0;
2272 }
2273
2274 splx(s);
2275 return error;
2276
2277 #undef IS_RUNNING
2278 }
2279
2280 static void
2281 iwn_read_eeprom(struct iwn_softc *sc)
2282 {
2283 struct ieee80211com *ic = &sc->sc_ic;
2284 char domain[4];
2285 uint16_t val;
2286 int i, error;
2287
2288 if ((error = iwn_eeprom_lock(sc)) != 0) {
2289 aprint_error_dev(sc->sc_dev, "could not lock EEPROM (error=%d)\n", error);
2290 return;
2291 }
2292 /* read and print regulatory domain */
2293 iwn_read_prom_data(sc, IWN_EEPROM_DOMAIN, domain, 4);
2294 aprint_error_dev(sc->sc_dev, "%.4s", domain);
2295
2296 /* read and print MAC address */
2297 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
2298 aprint_error(", address %s\n", ether_sprintf(ic->ic_myaddr));
2299
2300 /* read the list of authorized channels */
2301 for (i = 0; i < IWN_CHAN_BANDS_COUNT; i++)
2302 iwn_read_eeprom_channels(sc, i);
2303
2304 /* read maximum allowed Tx power for 2GHz and 5GHz bands */
2305 iwn_read_prom_data(sc, IWN_EEPROM_MAXPOW, &val, 2);
2306 sc->maxpwr2GHz = val & 0xff;
2307 sc->maxpwr5GHz = val >> 8;
2308 /* check that EEPROM values are correct */
2309 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2310 sc->maxpwr5GHz = 38;
2311 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2312 sc->maxpwr2GHz = 38;
2313 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
2314
2315 /* read voltage at which samples were taken */
2316 iwn_read_prom_data(sc, IWN_EEPROM_VOLTAGE, &val, 2);
2317 sc->eeprom_voltage = (int16_t)le16toh(val);
2318 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
2319
2320 /* read power groups */
2321 iwn_read_prom_data(sc, IWN_EEPROM_BANDS, sc->bands, sizeof sc->bands);
2322 #ifdef IWN_DEBUG
2323 if (iwn_debug > 0) {
2324 for (i = 0; i < IWN_NBANDS; i++)
2325 iwn_print_power_group(sc, i);
2326 }
2327 #endif
2328 iwn_eeprom_unlock(sc);
2329 }
2330
2331 static void
2332 iwn_read_eeprom_channels(struct iwn_softc *sc, int n)
2333 {
2334 struct ieee80211com *ic = &sc->sc_ic;
2335 const struct iwn_chan_band *band = &iwn_bands[n];
2336 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
2337 int chan, i;
2338
2339 iwn_read_prom_data(sc, band->addr, channels,
2340 band->nchan * sizeof (struct iwn_eeprom_chan));
2341
2342 for (i = 0; i < band->nchan; i++) {
2343 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
2344 continue;
2345
2346 chan = band->chan[i];
2347
2348 if (n == 0) { /* 2GHz band */
2349 ic->ic_channels[chan].ic_freq =
2350 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2351 ic->ic_channels[chan].ic_flags =
2352 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2353 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2354
2355 } else { /* 5GHz band */
2356 /*
2357 * Some adapters support channels 7, 8, 11 and 12
2358 * both in the 2GHz *and* 5GHz bands.
2359 * Because of limitations in our net80211(9) stack,
2360 * we can't support these channels in 5GHz band.
2361 */
2362 if (chan <= 14)
2363 continue;
2364
2365 ic->ic_channels[chan].ic_freq =
2366 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2367 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2368 }
2369
2370 /* is active scan allowed on this channel? */
2371 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
2372 ic->ic_channels[chan].ic_flags |=
2373 IEEE80211_CHAN_PASSIVE;
2374 }
2375
2376 /* save maximum allowed power for this channel */
2377 sc->maxpwr[chan] = channels[i].maxpwr;
2378
2379 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2380 chan, channels[i].flags, sc->maxpwr[chan]));
2381 }
2382 }
2383
2384 #ifdef IWN_DEBUG
2385 static void
2386 iwn_print_power_group(struct iwn_softc *sc, int i)
2387 {
2388 struct iwn_eeprom_band *band = &sc->bands[i];
2389 struct iwn_eeprom_chan_samples *chans = band->chans;
2390 int j, c;
2391
2392 DPRINTF(("===band %d===\n", i));
2393 DPRINTF(("chan lo=%d, chan hi=%d\n", band->lo, band->hi));
2394 DPRINTF(("chan1 num=%d\n", chans[0].num));
2395 for (c = 0; c < IWN_NTXCHAINS; c++) {
2396 for (j = 0; j < IWN_NSAMPLES; j++) {
2397 DPRINTF(("chain %d, sample %d: temp=%d gain=%d "
2398 "power=%d pa_det=%d\n", c, j,
2399 chans[0].samples[c][j].temp,
2400 chans[0].samples[c][j].gain,
2401 chans[0].samples[c][j].power,
2402 chans[0].samples[c][j].pa_det));
2403 }
2404 }
2405 DPRINTF(("chan2 num=%d\n", chans[1].num));
2406 for (c = 0; c < IWN_NTXCHAINS; c++) {
2407 for (j = 0; j < IWN_NSAMPLES; j++) {
2408 DPRINTF(("chain %d, sample %d: temp=%d gain=%d "
2409 "power=%d pa_det=%d\n", c, j,
2410 chans[1].samples[c][j].temp,
2411 chans[1].samples[c][j].gain,
2412 chans[1].samples[c][j].power,
2413 chans[1].samples[c][j].pa_det));
2414 }
2415 }
2416 }
2417 #endif
2418
2419 /*
2420 * Send a command to the firmware.
2421 */
2422 static int
2423 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
2424 {
2425 struct iwn_tx_ring *ring = &sc->txq[4];
2426 struct iwn_tx_desc *desc;
2427 struct iwn_tx_cmd *cmd;
2428 bus_addr_t paddr;
2429
2430 KASSERT(size <= sizeof cmd->data);
2431
2432 desc = &ring->desc[ring->cur];
2433 cmd = &ring->cmd[ring->cur];
2434
2435 cmd->code = code;
2436 cmd->flags = 0;
2437 cmd->qid = ring->qid;
2438 cmd->idx = ring->cur;
2439 memcpy(cmd->data, buf, size);
2440
2441 paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2442
2443 IWN_SET_DESC_NSEGS(desc, 1);
2444 IWN_SET_DESC_SEG(desc, 0, paddr, 4 + size);
2445 sc->shared->len[ring->qid][ring->cur] = htole16(8);
2446 if (ring->cur < IWN_TX_WINDOW) {
2447 sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2448 htole16(8);
2449 }
2450
2451 /* kick cmd ring */
2452 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2453 IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2454
2455 return async ? 0 : tsleep(cmd, PCATCH, "iwncmd", hz);
2456 }
2457
2458 /*
2459 * Configure hardware multi-rate retries for one node.
2460 */
2461 static int
2462 iwn_setup_node_mrr(struct iwn_softc *sc, uint8_t id, int async)
2463 {
2464 struct ieee80211com *ic = &sc->sc_ic;
2465 struct iwn_cmd_mrr mrr;
2466 int i, ridx;
2467
2468 memset(&mrr, 0, sizeof mrr);
2469 mrr.id = id;
2470 mrr.ssmask = 2;
2471 mrr.dsmask = 3;
2472 mrr.ampdu_disable = 3;
2473 mrr.ampdu_limit = 4000;
2474
2475 if (id == IWN_ID_BSS)
2476 ridx = IWN_OFDM54;
2477 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2478 ridx = IWN_OFDM6;
2479 else
2480 ridx = IWN_CCK1;
2481 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
2482 mrr.table[i].rate = iwn_ridx_to_plcp[ridx];
2483 mrr.table[i].rflags = IWN_RFLAG_ANT_B;
2484 if (ridx <= IWN_CCK11)
2485 mrr.table[i].rflags |= IWN_RFLAG_CCK;
2486 ridx = iwn_prev_ridx[ridx];
2487 }
2488 return iwn_cmd(sc, IWN_CMD_NODE_MRR_SETUP, &mrr, sizeof mrr, async);
2489 }
2490
2491 static int
2492 iwn_wme_update(struct ieee80211com *ic)
2493 {
2494 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
2495 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2496 struct iwn_softc *sc = ic->ic_ifp->if_softc;
2497 const struct wmeParams *wmep;
2498 struct iwn_wme_setup wme;
2499 int ac;
2500
2501 /* don't override default WME values if WME is not actually enabled */
2502 if (!(ic->ic_flags & IEEE80211_F_WME))
2503 return 0;
2504
2505 wme.flags = 0;
2506 for (ac = 0; ac < WME_NUM_AC; ac++) {
2507 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2508 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2509 wme.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
2510 wme.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
2511 wme.ac[ac].txop = IWN_USEC(wmep->wmep_txopLimit);
2512
2513 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2514 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2515 wme.ac[ac].cwmax, wme.ac[ac].txop));
2516 }
2517
2518 return iwn_cmd(sc, IWN_CMD_SET_WME, &wme, sizeof wme, 1);
2519 #undef IWN_USEC
2520 #undef IWN_EXP2
2521 }
2522
2523
2524
2525 static void
2526 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2527 {
2528 struct iwn_cmd_led led;
2529
2530 led.which = which;
2531 led.unit = htole32(100000); /* on/off in unit of 100ms */
2532 led.off = off;
2533 led.on = on;
2534
2535 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
2536 }
2537
2538 /*
2539 * Set the critical temperature at which the firmware will automatically stop
2540 * the radio transmitter.
2541 */
2542 static int
2543 iwn_set_critical_temp(struct iwn_softc *sc)
2544 {
2545 struct iwn_ucode_info *uc = &sc->ucode_info;
2546 struct iwn_critical_temp crit;
2547 uint32_t r1, r2, r3, temp;
2548
2549 IWN_WRITE(sc, IWN_UCODE_CLR, IWN_CTEMP_STOP_RF);
2550
2551 r1 = le32toh(uc->temp[0].chan20MHz);
2552 r2 = le32toh(uc->temp[1].chan20MHz);
2553 r3 = le32toh(uc->temp[2].chan20MHz);
2554 /* inverse function of iwn_get_temperature() */
2555
2556 temp = r2 + ((IWN_CTOK(110) * (r3 - r1)) / 259);
2557
2558 memset(&crit, 0, sizeof crit);
2559 crit.tempR = htole32(temp);
2560 DPRINTF(("setting critical temperature to %u\n", temp));
2561 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
2562 }
2563
2564 static void
2565 iwn_enable_tsf(struct iwn_softc *sc, struct ieee80211_node *ni)
2566 {
2567 struct iwn_cmd_tsf tsf;
2568 uint64_t val, mod;
2569
2570 memset(&tsf, 0, sizeof tsf);
2571 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2572 tsf.bintval = htole16(ni->ni_intval);
2573 tsf.lintval = htole16(10);
2574
2575 /* compute remaining time until next beacon */
2576 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2577 mod = le64toh(tsf.tstamp) % val;
2578 tsf.binitval = htole32((uint32_t)(val - mod));
2579
2580 DPRINTF(("TSF bintval=%u tstamp=%llu, init=%u\n",
2581 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2582
2583 if (iwn_cmd(sc, IWN_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2584 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2585 }
2586
2587 static void
2588 iwn_power_calibration(struct iwn_softc *sc, int temp)
2589 {
2590 struct ieee80211com *ic = &sc->sc_ic;
2591
2592 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
2593
2594 /* adjust Tx power if need be (delta >= 3C) */
2595 if (abs(temp - sc->temp) < 3)
2596 return;
2597
2598 sc->temp = temp;
2599
2600 DPRINTF(("setting Tx power for channel %d\n",
2601 ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan)));
2602 if (iwn_set_txpower(sc, ic->ic_bss->ni_chan, 1) != 0) {
2603 /* just warn, too bad for the automatic calibration... */
2604 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
2605 }
2606 }
2607
2608 /*
2609 * Set Tx power for a given channel (each rate has its own power settings).
2610 * This function takes into account the regulatory information from EEPROM,
2611 * the current temperature and the current voltage.
2612 */
2613 static int
2614 iwn_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, int async)
2615 {
2616 /* fixed-point arithmetic division using a n-bit fractional part */
2617 #define fdivround(a, b, n) \
2618 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2619 /* linear interpolation */
2620 #define interpolate(x, x1, y1, x2, y2, n) \
2621 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2622
2623 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
2624 struct ieee80211com *ic = &sc->sc_ic;
2625 struct iwn_ucode_info *uc = &sc->ucode_info;
2626 struct iwn_cmd_txpower cmd;
2627 struct iwn_eeprom_chan_samples *chans;
2628 const uint8_t *rf_gain, *dsp_gain;
2629 int32_t vdiff, tdiff;
2630 int i, c, grp, maxpwr;
2631 u_int chan;
2632
2633 /* get channel number */
2634 chan = ieee80211_chan2ieee(ic, ch);
2635
2636 memset(&cmd, 0, sizeof cmd);
2637 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
2638 cmd.chan = chan;
2639
2640 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2641 maxpwr = sc->maxpwr5GHz;
2642 rf_gain = iwn_rf_gain_5ghz;
2643 dsp_gain = iwn_dsp_gain_5ghz;
2644 } else {
2645 maxpwr = sc->maxpwr2GHz;
2646 rf_gain = iwn_rf_gain_2ghz;
2647 dsp_gain = iwn_dsp_gain_2ghz;
2648 }
2649
2650 /* compute voltage compensation */
2651 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
2652 if (vdiff > 0)
2653 vdiff *= 2;
2654 if (abs(vdiff) > 2)
2655 vdiff = 0;
2656 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
2657 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
2658
2659 /* get channel's attenuation group */
2660 if (chan <= 20) /* 1-20 */
2661 grp = 4;
2662 else if (chan <= 43) /* 34-43 */
2663 grp = 0;
2664 else if (chan <= 70) /* 44-70 */
2665 grp = 1;
2666 else if (chan <= 124) /* 71-124 */
2667 grp = 2;
2668 else /* 125-200 */
2669 grp = 3;
2670 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
2671
2672 /* get channel's sub-band */
2673 for (i = 0; i < IWN_NBANDS; i++)
2674 if (sc->bands[i].lo != 0 &&
2675 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
2676 break;
2677 chans = sc->bands[i].chans;
2678 DPRINTF(("chan %d sub-band=%d\n", chan, i));
2679
2680 for (c = 0; c < IWN_NTXCHAINS; c++) {
2681 uint8_t power, gain, temp;
2682 int maxchpwr, pwr, ridx, idx;
2683
2684 power = interpolate(chan,
2685 chans[0].num, chans[0].samples[c][1].power,
2686 chans[1].num, chans[1].samples[c][1].power, 1);
2687 gain = interpolate(chan,
2688 chans[0].num, chans[0].samples[c][1].gain,
2689 chans[1].num, chans[1].samples[c][1].gain, 1);
2690 temp = interpolate(chan,
2691 chans[0].num, chans[0].samples[c][1].temp,
2692 chans[1].num, chans[1].samples[c][1].temp, 1);
2693 DPRINTF(("Tx chain %d: power=%d gain=%d temp=%d\n",
2694 c, power, gain, temp));
2695
2696 /* compute temperature compensation */
2697 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
2698 DPRINTF(("temperature compensation=%d (current=%d, "
2699 "EEPROM=%d)\n", tdiff, sc->temp, temp));
2700
2701 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
2702 maxchpwr = sc->maxpwr[chan] * 2;
2703 if ((ridx / 8) & 1) {
2704 /* MIMO: decrease Tx power (-3dB) */
2705 maxchpwr -= 6;
2706 }
2707
2708 pwr = maxpwr - 10;
2709
2710 /* decrease power for highest OFDM rates */
2711 if ((ridx % 8) == 5) /* 48Mbit/s */
2712 pwr -= 5;
2713 else if ((ridx % 8) == 6) /* 54Mbit/s */
2714 pwr -= 7;
2715 else if ((ridx % 8) == 7) /* 60Mbit/s */
2716 pwr -= 10;
2717
2718 if (pwr > maxchpwr)
2719 pwr = maxchpwr;
2720
2721 idx = gain - (pwr - power) - tdiff - vdiff;
2722 if ((ridx / 8) & 1) /* MIMO */
2723 idx += (int32_t)le32toh(uc->atten[grp][c]);
2724
2725 if (cmd.band == 0)
2726 idx += 9; /* 5GHz */
2727 if (ridx == IWN_RIDX_MAX)
2728 idx += 5; /* CCK */
2729
2730 /* make sure idx stays in a valid range */
2731 if (idx < 0)
2732 idx = 0;
2733 else if (idx > IWN_MAX_PWR_INDEX)
2734 idx = IWN_MAX_PWR_INDEX;
2735
2736 DPRINTF(("Tx chain %d, rate idx %d: power=%d\n",
2737 c, ridx, idx));
2738 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
2739 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
2740 }
2741 }
2742
2743 DPRINTF(("setting tx power for chan %d\n", chan));
2744 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
2745
2746 #undef interpolate
2747 #undef fdivround
2748 }
2749
2750 /*
2751 * Get the best (maximum) RSSI among Rx antennas (in dBm).
2752 */
2753 static int
2754 iwn_get_rssi(const struct iwn_rx_stat *stat)
2755 {
2756 uint8_t mask, agc;
2757 int rssi;
2758
2759 mask = (le16toh(stat->antenna) >> 4) & 0x7;
2760 agc = (le16toh(stat->agc) >> 7) & 0x7f;
2761
2762 rssi = 0;
2763 if (mask & (1 << 0)) /* Ant A */
2764 rssi = max(rssi, stat->rssi[0]);
2765 if (mask & (1 << 1)) /* Ant B */
2766 rssi = max(rssi, stat->rssi[2]);
2767 if (mask & (1 << 2)) /* Ant C */
2768 rssi = max(rssi, stat->rssi[4]);
2769
2770 return rssi - agc - IWN_RSSI_TO_DBM;
2771 }
2772
2773 /*
2774 * Get the average noise among Rx antennas (in dBm).
2775 */
2776 static int
2777 iwn_get_noise(const struct iwn_rx_general_stats *stats)
2778 {
2779 int i, total, nbant, noise;
2780
2781 total = nbant = 0;
2782 for (i = 0; i < 3; i++) {
2783 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
2784 continue;
2785 total += noise;
2786 nbant++;
2787 }
2788 /* there should be at least one antenna but check anyway */
2789 return (nbant == 0) ? -127 : (total / nbant) - 107;
2790 }
2791
2792 /*
2793 * Read temperature (in degC) from the on-board thermal sensor.
2794 */
2795 static int
2796 iwn_get_temperature(struct iwn_softc *sc)
2797 {
2798 struct iwn_ucode_info *uc = &sc->ucode_info;
2799 int32_t r1, r2, r3, r4, temp;
2800
2801 r1 = le32toh(uc->temp[0].chan20MHz);
2802 r2 = le32toh(uc->temp[1].chan20MHz);
2803 r3 = le32toh(uc->temp[2].chan20MHz);
2804 r4 = le32toh(sc->rawtemp);
2805
2806 if (r1 == r3) /* prevents division by 0 (should not happen) */
2807 return 0;
2808
2809 /* sign-extend 23-bit R4 value to 32-bit */
2810 r4 = (r4 << 8) >> 8;
2811 /* compute temperature */
2812 temp = (259 * (r4 - r2)) / (r3 - r1);
2813 temp = (temp * 97) / 100 + 8;
2814
2815 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
2816 return IWN_KTOC(temp);
2817 }
2818
2819 /*
2820 * Initialize sensitivity calibration state machine.
2821 */
2822 static int
2823 iwn_init_sensitivity(struct iwn_softc *sc)
2824 {
2825 struct iwn_calib_state *calib = &sc->calib;
2826 struct iwn_phy_calib_cmd cmd;
2827 int error;
2828
2829 /* reset calibration state */
2830 memset(calib, 0, sizeof (*calib));
2831 calib->state = IWN_CALIB_STATE_INIT;
2832 calib->cck_state = IWN_CCK_STATE_HIFA;
2833 /* initial values taken from the reference driver */
2834 calib->corr_ofdm_x1 = 105;
2835 calib->corr_ofdm_mrc_x1 = 220;
2836 calib->corr_ofdm_x4 = 90;
2837 calib->corr_ofdm_mrc_x4 = 170;
2838 calib->corr_cck_x4 = 125;
2839 calib->corr_cck_mrc_x4 = 200;
2840 calib->energy_cck = 100;
2841
2842 /* write initial sensitivity values */
2843 if ((error = iwn_send_sensitivity(sc)) != 0)
2844 return error;
2845
2846 memset(&cmd, 0, sizeof cmd);
2847 cmd.code = IWN_SET_DIFF_GAIN;
2848 /* differential gains initially set to 0 for all 3 antennas */
2849 DPRINTF(("setting differential gains\n"));
2850 return iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1);
2851 }
2852
2853 /*
2854 * Collect noise and RSSI statistics for the first 20 beacons received
2855 * after association and use them to determine connected antennas and
2856 * set differential gains.
2857 */
2858 static void
2859 iwn_compute_differential_gain(struct iwn_softc *sc,
2860 const struct iwn_rx_general_stats *stats)
2861 {
2862 struct iwn_calib_state *calib = &sc->calib;
2863 struct iwn_phy_calib_cmd cmd;
2864 int i, val;
2865
2866 /* accumulate RSSI and noise for all 3 antennas */
2867 for (i = 0; i < 3; i++) {
2868 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
2869 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
2870 }
2871
2872 /* we update differential gain only once after 20 beacons */
2873 if (++calib->nbeacons < 20)
2874 return;
2875
2876 /* determine antenna with highest average RSSI */
2877 val = max(calib->rssi[0], calib->rssi[1]);
2878 val = max(calib->rssi[2], val);
2879
2880 /* determine which antennas are connected */
2881 sc->antmsk = 0;
2882 for (i = 0; i < 3; i++)
2883 if (val - calib->rssi[i] <= 15 * 20)
2884 sc->antmsk |= 1 << i;
2885 /* if neither Ant A and Ant B are connected.. */
2886 if ((sc->antmsk & (1 << 0 | 1 << 1)) == 0)
2887 sc->antmsk |= 1 << 1; /* ..mark Ant B as connected! */
2888
2889 /* get minimal noise among connected antennas */
2890 val = INT_MAX; /* ok, there's at least one */
2891 for (i = 0; i < 3; i++)
2892 if (sc->antmsk & (1 << i))
2893 val = min(calib->noise[i], val);
2894
2895 memset(&cmd, 0, sizeof cmd);
2896 cmd.code = IWN_SET_DIFF_GAIN;
2897 /* set differential gains for connected antennas */
2898 for (i = 0; i < 3; i++) {
2899 if (sc->antmsk & (1 << i)) {
2900 cmd.gain[i] = (calib->noise[i] - val) / 30;
2901 /* limit differential gain to 3 */
2902 cmd.gain[i] = min(cmd.gain[i], 3);
2903 cmd.gain[i] |= IWN_GAIN_SET;
2904 }
2905 }
2906 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
2907 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk));
2908 if (iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1) == 0)
2909 calib->state = IWN_CALIB_STATE_RUN;
2910 }
2911
2912 /*
2913 * Tune RF Rx sensitivity based on the number of false alarms detected
2914 * during the last beacon period.
2915 */
2916 static void
2917 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
2918 {
2919 #define inc_clip(val, inc, max) \
2920 if ((val) < (max)) { \
2921 if ((val) < (max) - (inc)) \
2922 (val) += (inc); \
2923 else \
2924 (val) = (max); \
2925 needs_update = 1; \
2926 }
2927 #define dec_clip(val, dec, min) \
2928 if ((val) > (min)) { \
2929 if ((val) > (min) + (dec)) \
2930 (val) -= (dec); \
2931 else \
2932 (val) = (min); \
2933 needs_update = 1; \
2934 }
2935
2936 struct iwn_calib_state *calib = &sc->calib;
2937 uint32_t val, rxena, fa;
2938 uint32_t energy[3], energy_min;
2939 uint8_t noise[3], noise_ref;
2940 int i, needs_update = 0;
2941
2942 /* check that we've been enabled long enough */
2943 if ((rxena = le32toh(stats->general.load)) == 0)
2944 return;
2945
2946 /* compute number of false alarms since last call for OFDM */
2947 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
2948 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
2949 fa *= 200 * 1024; /* 200TU */
2950
2951 /* save counters values for next call */
2952 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
2953 calib->fa_ofdm = le32toh(stats->ofdm.fa);
2954
2955 if (fa > 50 * rxena) {
2956 /* high false alarm count, decrease sensitivity */
2957 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
2958 inc_clip(calib->corr_ofdm_x1, 1, 140);
2959 inc_clip(calib->corr_ofdm_mrc_x1, 1, 270);
2960 inc_clip(calib->corr_ofdm_x4, 1, 120);
2961 inc_clip(calib->corr_ofdm_mrc_x4, 1, 210);
2962
2963 } else if (fa < 5 * rxena) {
2964 /* low false alarm count, increase sensitivity */
2965 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
2966 dec_clip(calib->corr_ofdm_x1, 1, 105);
2967 dec_clip(calib->corr_ofdm_mrc_x1, 1, 220);
2968 dec_clip(calib->corr_ofdm_x4, 1, 85);
2969 dec_clip(calib->corr_ofdm_mrc_x4, 1, 170);
2970 }
2971
2972 /* compute maximum noise among 3 antennas */
2973 for (i = 0; i < 3; i++)
2974 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
2975 val = max(noise[0], noise[1]);
2976 val = max(noise[2], val);
2977 /* insert it into our samples table */
2978 calib->noise_samples[calib->cur_noise_sample] = val;
2979 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
2980
2981 /* compute maximum noise among last 20 samples */
2982 noise_ref = calib->noise_samples[0];
2983 for (i = 1; i < 20; i++)
2984 noise_ref = max(noise_ref, calib->noise_samples[i]);
2985
2986 /* compute maximum energy among 3 antennas */
2987 for (i = 0; i < 3; i++)
2988 energy[i] = le32toh(stats->general.energy[i]);
2989 val = min(energy[0], energy[1]);
2990 val = min(energy[2], val);
2991 /* insert it into our samples table */
2992 calib->energy_samples[calib->cur_energy_sample] = val;
2993 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
2994
2995 /* compute minimum energy among last 10 samples */
2996 energy_min = calib->energy_samples[0];
2997 for (i = 1; i < 10; i++)
2998 energy_min = max(energy_min, calib->energy_samples[i]);
2999 energy_min += 6;
3000
3001 /* compute number of false alarms since last call for CCK */
3002 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3003 fa += le32toh(stats->cck.fa) - calib->fa_cck;
3004 fa *= 200 * 1024; /* 200TU */
3005
3006 /* save counters values for next call */
3007 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3008 calib->fa_cck = le32toh(stats->cck.fa);
3009
3010 if (fa > 50 * rxena) {
3011 /* high false alarm count, decrease sensitivity */
3012 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
3013 calib->cck_state = IWN_CCK_STATE_HIFA;
3014 calib->low_fa = 0;
3015
3016 if (calib->corr_cck_x4 > 160) {
3017 calib->noise_ref = noise_ref;
3018 if (calib->energy_cck > 2)
3019 dec_clip(calib->energy_cck, 2, energy_min);
3020 }
3021 if (calib->corr_cck_x4 < 160) {
3022 calib->corr_cck_x4 = 161;
3023 needs_update = 1;
3024 } else
3025 inc_clip(calib->corr_cck_x4, 3, 200);
3026
3027 inc_clip(calib->corr_cck_mrc_x4, 3, 400);
3028
3029 } else if (fa < 5 * rxena) {
3030 /* low false alarm count, increase sensitivity */
3031 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
3032 calib->cck_state = IWN_CCK_STATE_LOFA;
3033 calib->low_fa++;
3034
3035 if (calib->cck_state != 0 &&
3036 ((calib->noise_ref - noise_ref) > 2 ||
3037 calib->low_fa > 100)) {
3038 inc_clip(calib->energy_cck, 2, 97);
3039 dec_clip(calib->corr_cck_x4, 3, 125);
3040 dec_clip(calib->corr_cck_mrc_x4, 3, 200);
3041 }
3042 } else {
3043 /* not worth to increase or decrease sensitivity */
3044 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
3045 calib->low_fa = 0;
3046 calib->noise_ref = noise_ref;
3047
3048 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
3049 /* previous interval had many false alarms */
3050 dec_clip(calib->energy_cck, 8, energy_min);
3051 }
3052 calib->cck_state = IWN_CCK_STATE_INIT;
3053 }
3054
3055 if (needs_update)
3056 (void)iwn_send_sensitivity(sc);
3057 #undef dec_clip
3058 #undef inc_clip
3059 }
3060
3061 static int
3062 iwn_send_sensitivity(struct iwn_softc *sc)
3063 {
3064 struct iwn_calib_state *calib = &sc->calib;
3065 struct iwn_sensitivity_cmd cmd;
3066
3067 memset(&cmd, 0, sizeof cmd);
3068 cmd.which = IWN_SENSITIVITY_WORKTBL;
3069 /* OFDM modulation */
3070 cmd.corr_ofdm_x1 = le16toh(calib->corr_ofdm_x1);
3071 cmd.corr_ofdm_mrc_x1 = le16toh(calib->corr_ofdm_mrc_x1);
3072 cmd.corr_ofdm_x4 = le16toh(calib->corr_ofdm_x4);
3073 cmd.corr_ofdm_mrc_x4 = le16toh(calib->corr_ofdm_mrc_x4);
3074 cmd.energy_ofdm = le16toh(100);
3075 cmd.energy_ofdm_th = le16toh(62);
3076 /* CCK modulation */
3077 cmd.corr_cck_x4 = le16toh(calib->corr_cck_x4);
3078 cmd.corr_cck_mrc_x4 = le16toh(calib->corr_cck_mrc_x4);
3079 cmd.energy_cck = le16toh(calib->energy_cck);
3080 /* Barker modulation: use default values */
3081 cmd.corr_barker = le16toh(190);
3082 cmd.corr_barker_mrc = le16toh(390);
3083
3084 DPRINTFN(2, ("setting sensitivity\n"));
3085 return iwn_cmd(sc, IWN_SENSITIVITY, &cmd, sizeof cmd, 1);
3086 }
3087
3088 static int
3089 iwn_auth(struct iwn_softc *sc)
3090 {
3091 struct ieee80211com *ic = &sc->sc_ic;
3092 struct ieee80211_node *ni = ic->ic_bss;
3093 struct iwn_node_info node;
3094 int error;
3095
3096 /* update adapter's configuration */
3097 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
3098 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3099 sc->config.flags = htole32(IWN_CONFIG_TSF);
3100 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
3101 sc->config.flags |= htole32(IWN_CONFIG_AUTO |
3102 IWN_CONFIG_24GHZ);
3103 }
3104 switch (ic->ic_curmode) {
3105 case IEEE80211_MODE_11A:
3106 sc->config.cck_mask = 0;
3107 sc->config.ofdm_mask = 0x15;
3108 break;
3109 case IEEE80211_MODE_11B:
3110 sc->config.cck_mask = 0x03;
3111 sc->config.ofdm_mask = 0;
3112 break;
3113 default: /* assume 802.11b/g */
3114 sc->config.cck_mask = 0xf;
3115 sc->config.ofdm_mask = 0x15;
3116 }
3117 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
3118 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
3119 error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3120 sizeof (struct iwn_config), 1);
3121 if (error != 0) {
3122 aprint_error_dev(sc->sc_dev, "could not configure\n");
3123 return error;
3124 }
3125
3126 /* configuration has changed, set Tx power accordingly */
3127 if ((error = iwn_set_txpower(sc, ni->ni_chan, 1)) != 0) {
3128 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3129 return error;
3130 }
3131
3132 /*
3133 * Reconfiguring clears the adapter's nodes table so we must
3134 * add the broadcast node again.
3135 */
3136 memset(&node, 0, sizeof node);
3137 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3138 node.id = IWN_ID_BROADCAST;
3139 DPRINTF(("adding broadcast node\n"));
3140 error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
3141 if (error != 0) {
3142 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3143 return error;
3144 }
3145 DPRINTF(("setting MRR for node %d\n", node.id));
3146 if ((error = iwn_setup_node_mrr(sc, node.id, 1)) != 0) {
3147 aprint_error_dev(sc->sc_dev, "could not setup MRR for broadcast node\n");
3148 return error;
3149 }
3150
3151 return 0;
3152 }
3153
3154 /*
3155 * Configure the adapter for associated state.
3156 */
3157 static int
3158 iwn_run(struct iwn_softc *sc)
3159 {
3160 struct ieee80211com *ic = &sc->sc_ic;
3161 struct ieee80211_node *ni = ic->ic_bss;
3162 struct iwn_node_info node;
3163 int error;
3164
3165 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3166 /* link LED blinks while monitoring */
3167 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
3168 return 0;
3169 }
3170
3171 #if 0
3172 if (ic->ic_opmode != IEEE80211_M_STA) {
3173 (void) iwn_auth(sc); /* XXX */
3174 iwn_setup_beacon(sc, ni);
3175 }
3176 #endif
3177
3178 iwn_enable_tsf(sc, ni);
3179
3180 /* update adapter's configuration */
3181 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
3182 /* short preamble/slot time are negotiated when associating */
3183 sc->config.flags &= ~htole32(IWN_CONFIG_SHPREAMBLE |
3184 IWN_CONFIG_SHSLOT);
3185 if (ic->ic_flags & IEEE80211_F_SHSLOT)
3186 sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
3187 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3188 sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
3189 sc->config.filter |= htole32(IWN_FILTER_BSS);
3190
3191 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
3192 sc->config.flags));
3193 error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3194 sizeof (struct iwn_config), 1);
3195 if (error != 0) {
3196 aprint_error_dev(sc->sc_dev, "could not update configuration\n");
3197 return error;
3198 }
3199
3200 /* configuration has changed, set Tx power accordingly */
3201 if ((error = iwn_set_txpower(sc, ni->ni_chan, 1)) != 0) {
3202 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3203 return error;
3204 }
3205
3206 /* add BSS node */
3207 memset(&node, 0, sizeof node);
3208 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3209 node.id = IWN_ID_BSS;
3210 node.htflags = htole32(3 << IWN_AMDPU_SIZE_FACTOR_SHIFT |
3211 5 << IWN_AMDPU_DENSITY_SHIFT);
3212 DPRINTF(("adding BSS node\n"));
3213 error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
3214 if (error != 0) {
3215 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
3216 return error;
3217 }
3218 DPRINTF(("setting MRR for node %d\n", node.id));
3219 if ((error = iwn_setup_node_mrr(sc, node.id, 1)) != 0) {
3220 aprint_error_dev(sc->sc_dev, "could not setup MRR for node %d\n", node.id);
3221 return error;
3222 }
3223
3224 if (ic->ic_opmode == IEEE80211_M_STA) {
3225 /* fake a join to init the tx rate */
3226 iwn_newassoc(ni, 1);
3227 }
3228
3229 if ((error = iwn_init_sensitivity(sc)) != 0) {
3230 aprint_error_dev(sc->sc_dev, "could not set sensitivity\n");
3231 return error;
3232 }
3233
3234 /* start periodic calibration timer */
3235 sc->calib.state = IWN_CALIB_STATE_ASSOC;
3236 sc->calib_cnt = 0;
3237 callout_schedule(&sc->calib_to, hz / 2);
3238
3239 /* link LED always on while associated */
3240 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
3241
3242 return 0;
3243 }
3244
3245 /*
3246 * Send a scan request to the firmware. Since this command is huge, we map it
3247 * into a mbuf instead of using the pre-allocated set of commands.
3248 */
3249 static int
3250 iwn_scan(struct iwn_softc *sc, uint16_t flags)
3251 {
3252 struct ieee80211com *ic = &sc->sc_ic;
3253 struct iwn_tx_ring *ring = &sc->txq[4];
3254 struct iwn_tx_desc *desc;
3255 struct iwn_tx_data *data;
3256 struct iwn_tx_cmd *cmd;
3257 struct iwn_cmd_data *tx;
3258 struct iwn_scan_hdr *hdr;
3259 struct iwn_scan_essid *essid;
3260 struct iwn_scan_chan *chan;
3261 struct ieee80211_frame *wh;
3262 struct ieee80211_rateset *rs;
3263 struct ieee80211_channel *c;
3264 enum ieee80211_phymode mode;
3265 uint8_t *frm;
3266 int pktlen, error, nrates;
3267
3268 desc = &ring->desc[ring->cur];
3269 data = &ring->data[ring->cur];
3270
3271 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
3272 if (data->m == NULL) {
3273 aprint_error_dev(sc->sc_dev, "could not allocate mbuf for scan command\n");
3274 return ENOMEM;
3275 }
3276 MCLGET(data->m, M_DONTWAIT);
3277 if (!(data->m->m_flags & M_EXT)) {
3278 m_freem(data->m);
3279 data->m = NULL;
3280 aprint_error_dev(sc->sc_dev, "could not allocate mbuf for scan command\n");
3281 return ENOMEM;
3282 }
3283
3284 cmd = mtod(data->m, struct iwn_tx_cmd *);
3285 cmd->code = IWN_CMD_SCAN;
3286 cmd->flags = 0;
3287 cmd->qid = ring->qid;
3288 cmd->idx = ring->cur;
3289
3290 hdr = (struct iwn_scan_hdr *)cmd->data;
3291 memset(hdr, 0, sizeof (struct iwn_scan_hdr));
3292 /*
3293 * Move to the next channel if no packets are received within 5 msecs
3294 * after sending the probe request (this helps to reduce the duration
3295 * of active scans).
3296 */
3297 hdr->quiet = htole16(5); /* timeout in milliseconds */
3298 hdr->plcp_threshold = htole16(1); /* min # of packets */
3299
3300 /* select Ant B and Ant C for scanning */
3301 hdr->rxchain = htole16(0x3e1 | 7 << IWN_RXCHAIN_ANTMSK_SHIFT);
3302
3303 tx = (struct iwn_cmd_data *)(hdr + 1);
3304 memset(tx, 0, sizeof (struct iwn_cmd_data));
3305 tx->flags = htole32(IWN_TX_AUTO_SEQ | 0x200); // XXX
3306 tx->id = IWN_ID_BROADCAST;
3307 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3308 tx->rflags = IWN_RFLAG_ANT_B;
3309
3310 if (flags & IEEE80211_CHAN_A) {
3311 hdr->crc_threshold = htole16(1);
3312 /* send probe requests at 6Mbps */
3313 tx->rate = iwn_ridx_to_plcp[IWN_OFDM6];
3314 } else {
3315 hdr->flags = htole32(IWN_CONFIG_24GHZ | IWN_CONFIG_AUTO);
3316 /* send probe requests at 1Mbps */
3317 tx->rate = iwn_ridx_to_plcp[IWN_CCK1];
3318 tx->rflags |= IWN_RFLAG_CCK;
3319 }
3320
3321 essid = (struct iwn_scan_essid *)(tx + 1);
3322 memset(essid, 0, 4 * sizeof (struct iwn_scan_essid));
3323 essid[0].id = IEEE80211_ELEMID_SSID;
3324 essid[0].len = ic->ic_des_esslen;
3325 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
3326
3327 /*
3328 * Build a probe request frame. Most of the following code is a
3329 * copy & paste of what is done in net80211.
3330 */
3331 wh = (struct ieee80211_frame *)&essid[4];
3332 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3333 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3334 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3335 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
3336 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
3337 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
3338 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
3339 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
3340
3341 frm = (uint8_t *)(wh + 1);
3342
3343 /* add empty SSID IE (firmware generates it for directed scans) */
3344 *frm++ = IEEE80211_ELEMID_SSID;
3345 *frm++ = 0;
3346
3347 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
3348 rs = &ic->ic_sup_rates[mode];
3349
3350 /* add supported rates IE */
3351
3352 *frm++ = IEEE80211_ELEMID_RATES;
3353 nrates = rs->rs_nrates;
3354 if (nrates > IEEE80211_RATE_SIZE)
3355 nrates = IEEE80211_RATE_SIZE;
3356 *frm++ = nrates;
3357 memcpy(frm, rs->rs_rates, nrates);
3358 frm += nrates;
3359
3360 /* add supported xrates IE */
3361
3362 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
3363 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
3364 *frm++ = IEEE80211_ELEMID_XRATES;
3365 *frm++ = nrates;
3366 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
3367 frm += nrates;
3368 }
3369
3370 /* setup length of probe request */
3371 tx->len = htole16(frm - (uint8_t *)wh);
3372
3373 chan = (struct iwn_scan_chan *)frm;
3374 for (c = &ic->ic_channels[1];
3375 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
3376 if ((c->ic_flags & flags) != flags)
3377 continue;
3378
3379 chan->chan = ieee80211_chan2ieee(ic, c);
3380 chan->flags = 0;
3381 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
3382 chan->flags |= IWN_CHAN_ACTIVE;
3383 if (ic->ic_des_esslen != 0)
3384 chan->flags |= IWN_CHAN_DIRECT;
3385 }
3386 chan->dsp_gain = 0x6e;
3387 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3388 chan->rf_gain = 0x3b;
3389 chan->active = htole16(10);
3390 chan->passive = htole16(110);
3391 } else {
3392 chan->rf_gain = 0x28;
3393 chan->active = htole16(20);
3394 chan->passive = htole16(120);
3395 }
3396 hdr->nchan++;
3397 chan++;
3398
3399 frm += sizeof (struct iwn_scan_chan);
3400 }
3401
3402 hdr->len = htole16(frm - (uint8_t *)hdr);
3403 pktlen = frm - (uint8_t *)cmd;
3404
3405 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
3406 BUS_DMA_NOWAIT);
3407 if (error) {
3408 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
3409 m_freem(data->m);
3410 data->m = NULL;
3411 return error;
3412 }
3413
3414 IWN_SET_DESC_NSEGS(desc, 1);
3415 IWN_SET_DESC_SEG(desc, 0, data->map->dm_segs[0].ds_addr,
3416 data->map->dm_segs[0].ds_len);
3417 sc->shared->len[ring->qid][ring->cur] = htole16(8);
3418 if (ring->cur < IWN_TX_WINDOW) {
3419 sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
3420 htole16(8);
3421 }
3422
3423 /* kick cmd ring */
3424 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3425 IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
3426
3427 return 0; /* will be notified async. of failure/success */
3428 }
3429
3430 static int
3431 iwn_config(struct iwn_softc *sc)
3432 {
3433 struct ieee80211com *ic = &sc->sc_ic;
3434 struct ifnet *ifp = ic->ic_ifp;
3435 struct iwn_power power;
3436 struct iwn_bluetooth bluetooth;
3437 struct iwn_node_info node;
3438 int error;
3439
3440 /* set power mode */
3441 memset(&power, 0, sizeof power);
3442 power.flags = htole16(IWN_POWER_CAM | 0x8);
3443 DPRINTF(("setting power mode\n"));
3444 error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0);
3445 if (error != 0) {
3446 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
3447 return error;
3448 }
3449
3450 /* configure bluetooth coexistence */
3451 memset(&bluetooth, 0, sizeof bluetooth);
3452 bluetooth.flags = 3;
3453 bluetooth.lead = 0xaa;
3454 bluetooth.kill = 1;
3455 DPRINTF(("configuring bluetooth coexistence\n"));
3456 error = iwn_cmd(sc, IWN_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3457 0);
3458 if (error != 0) {
3459 aprint_error_dev(sc->sc_dev, "could not configure bluetooth coexistence\n");
3460 return error;
3461 }
3462
3463 /* configure adapter */
3464 memset(&sc->config, 0, sizeof (struct iwn_config));
3465 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3466 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3467 IEEE80211_ADDR_COPY(sc->config.wlap, ic->ic_myaddr);
3468 /* set default channel */
3469 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
3470 sc->config.flags = htole32(IWN_CONFIG_TSF);
3471 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
3472 sc->config.flags |= htole32(IWN_CONFIG_AUTO |
3473 IWN_CONFIG_24GHZ);
3474 }
3475 sc->config.filter = 0;
3476 switch (ic->ic_opmode) {
3477 case IEEE80211_M_STA:
3478 sc->config.mode = IWN_MODE_STA;
3479 sc->config.filter |= htole32(IWN_FILTER_MULTICAST);
3480 break;
3481 case IEEE80211_M_IBSS:
3482 case IEEE80211_M_AHDEMO:
3483 sc->config.mode = IWN_MODE_IBSS;
3484 break;
3485 case IEEE80211_M_HOSTAP:
3486 sc->config.mode = IWN_MODE_HOSTAP;
3487 break;
3488 case IEEE80211_M_MONITOR:
3489 sc->config.mode = IWN_MODE_MONITOR;
3490 sc->config.filter |= htole32(IWN_FILTER_MULTICAST |
3491 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
3492 break;
3493 }
3494 sc->config.cck_mask = 0x0f; /* not yet negotiated */
3495 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
3496 sc->config.ht_single_mask = 0xff;
3497 sc->config.ht_dual_mask = 0xff;
3498 sc->config.rxchain = htole16(0x2800 | 7 << IWN_RXCHAIN_ANTMSK_SHIFT);
3499 DPRINTF(("setting configuration\n"));
3500 error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3501 sizeof (struct iwn_config), 0);
3502 if (error != 0) {
3503 aprint_error_dev(sc->sc_dev, "configure command failed\n");
3504 return error;
3505 }
3506
3507 /* configuration has changed, set Tx power accordingly */
3508 if ((error = iwn_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
3509 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3510 return error;
3511 }
3512
3513 /* add broadcast node */
3514 memset(&node, 0, sizeof node);
3515 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3516 node.id = IWN_ID_BROADCAST;
3517 DPRINTF(("adding broadcast node\n"));
3518 error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 0);
3519 if (error != 0) {
3520 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3521 return error;
3522 }
3523 DPRINTF(("setting MRR for node %d\n", node.id));
3524 if ((error = iwn_setup_node_mrr(sc, node.id, 0)) != 0) {
3525 aprint_error_dev(sc->sc_dev, "could not setup MRR for node %d\n", node.id);
3526 return error;
3527 }
3528
3529 if ((error = iwn_set_critical_temp(sc)) != 0) {
3530 aprint_error_dev(sc->sc_dev, "could not set critical temperature\n");
3531 return error;
3532 }
3533
3534 return 0;
3535 }
3536
3537 /*
3538 * Do post-alive initialization of the NIC (after firmware upload).
3539 */
3540 static void
3541 iwn_post_alive(struct iwn_softc *sc)
3542 {
3543 uint32_t base;
3544 uint16_t offset;
3545 int qid;
3546
3547 iwn_mem_lock(sc);
3548
3549 /* clear SRAM */
3550 base = iwn_mem_read(sc, IWN_SRAM_BASE);
3551 for (offset = 0x380; offset < 0x520; offset += 4) {
3552 IWN_WRITE(sc, IWN_MEM_WADDR, base + offset);
3553 IWN_WRITE(sc, IWN_MEM_WDATA, 0);
3554 }
3555
3556 /* shared area is aligned on a 1K boundary */
3557 iwn_mem_write(sc, IWN_SRAM_BASE, sc->shared_dma.paddr >> 10);
3558 iwn_mem_write(sc, IWN_SELECT_QCHAIN, 0);
3559
3560 for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
3561 iwn_mem_write(sc, IWN_QUEUE_RIDX(qid), 0);
3562 IWN_WRITE(sc, IWN_TX_WIDX, qid << 8 | 0);
3563
3564 /* set sched. window size */
3565 IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid));
3566 IWN_WRITE(sc, IWN_MEM_WDATA, 64);
3567 /* set sched. frame limit */
3568 IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid) + 4);
3569 IWN_WRITE(sc, IWN_MEM_WDATA, 64 << 16);
3570 }
3571
3572 /* enable interrupts for all 16 queues */
3573 iwn_mem_write(sc, IWN_QUEUE_INTR_MASK, 0xffff);
3574
3575 /* identify active Tx rings (0-7) */
3576 iwn_mem_write(sc, IWN_TX_ACTIVE, 0xff);
3577
3578 /* mark Tx rings (4 EDCA + cmd + 2 HCCA) as active */
3579 for (qid = 0; qid < 7; qid++) {
3580 iwn_mem_write(sc, IWN_TXQ_STATUS(qid),
3581 IWN_TXQ_STATUS_ACTIVE | qid << 1);
3582 }
3583
3584 iwn_mem_unlock(sc);
3585 }
3586
3587 static void
3588 iwn_stop_master(struct iwn_softc *sc)
3589 {
3590 uint32_t tmp;
3591 int ntries;
3592
3593 tmp = IWN_READ(sc, IWN_RESET);
3594 IWN_WRITE(sc, IWN_RESET, tmp | IWN_STOP_MASTER);
3595
3596 tmp = IWN_READ(sc, IWN_GPIO_CTL);
3597 if ((tmp & IWN_GPIO_PWR_STATUS) == IWN_GPIO_PWR_SLEEP)
3598 return; /* already asleep */
3599
3600 for (ntries = 0; ntries < 100; ntries++) {
3601 if (IWN_READ(sc, IWN_RESET) & IWN_MASTER_DISABLED)
3602 break;
3603 DELAY(10);
3604 }
3605 if (ntries == 100) {
3606 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3607 }
3608 }
3609
3610 static int
3611 iwn_reset(struct iwn_softc *sc)
3612 {
3613 uint32_t tmp;
3614 int ntries;
3615
3616 /* clear any pending interrupts */
3617 IWN_WRITE(sc, IWN_INTR, 0xffffffff);
3618
3619 tmp = IWN_READ(sc, IWN_CHICKEN);
3620 IWN_WRITE(sc, IWN_CHICKEN, tmp | IWN_CHICKEN_DISLOS);
3621
3622 tmp = IWN_READ(sc, IWN_GPIO_CTL);
3623 IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_INIT);
3624
3625 /* wait for clock stabilization */
3626 for (ntries = 0; ntries < 1000; ntries++) {
3627 if (IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_CLOCK)
3628 break;
3629 DELAY(10);
3630 }
3631 if (ntries == 1000) {
3632 aprint_error_dev(sc->sc_dev, "timeout waiting for clock stabilization\n");
3633 return ETIMEDOUT;
3634 }
3635 return 0;
3636 }
3637
3638 static void
3639 iwn_hw_config(struct iwn_softc *sc)
3640 {
3641 uint32_t tmp, hw;
3642
3643 /* enable interrupts mitigation */
3644 IWN_WRITE(sc, IWN_INTR_MIT, 512 / 32);
3645
3646 /* voodoo from the reference driver */
3647 tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3648 tmp = PCI_REVISION(tmp);
3649 if ((tmp & 0x80) && (tmp & 0x7f) < 8) {
3650 /* enable "no snoop" field */
3651 tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0xe8);
3652 tmp &= ~IWN_DIS_NOSNOOP;
3653 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0xe8, tmp);
3654 }
3655
3656 /* disable L1 entry to work around a hardware bug */
3657 tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0xf0);
3658 tmp &= ~IWN_ENA_L1;
3659 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0xf0, tmp);
3660
3661 hw = IWN_READ(sc, IWN_HWCONFIG);
3662 IWN_WRITE(sc, IWN_HWCONFIG, hw | 0x310);
3663
3664 iwn_mem_lock(sc);
3665 tmp = iwn_mem_read(sc, IWN_MEM_POWER);
3666 iwn_mem_write(sc, IWN_MEM_POWER, tmp | IWN_POWER_RESET);
3667 DELAY(5);
3668 tmp = iwn_mem_read(sc, IWN_MEM_POWER);
3669 iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~IWN_POWER_RESET);
3670 iwn_mem_unlock(sc);
3671 }
3672
3673 static int
3674 iwn_init(struct ifnet *ifp)
3675 {
3676 struct iwn_softc *sc = ifp->if_softc;
3677 struct ieee80211com *ic = &sc->sc_ic;
3678 uint32_t tmp;
3679 int error, qid;
3680
3681 iwn_stop(ifp, 1);
3682 if ((error = iwn_reset(sc)) != 0) {
3683 aprint_error_dev(sc->sc_dev, "could not reset adapter\n");
3684 goto fail1;
3685 }
3686
3687 iwn_mem_lock(sc);
3688 iwn_mem_read(sc, IWN_CLOCK_CTL);
3689 iwn_mem_write(sc, IWN_CLOCK_CTL, 0xa00);
3690 iwn_mem_read(sc, IWN_CLOCK_CTL);
3691 iwn_mem_unlock(sc);
3692
3693 DELAY(20);
3694
3695 iwn_mem_lock(sc);
3696 tmp = iwn_mem_read(sc, IWN_MEM_PCIDEV);
3697 iwn_mem_write(sc, IWN_MEM_PCIDEV, tmp | 0x800);
3698 iwn_mem_unlock(sc);
3699
3700 iwn_mem_lock(sc);
3701 tmp = iwn_mem_read(sc, IWN_MEM_POWER);
3702 iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~0x03000000);
3703 iwn_mem_unlock(sc);
3704
3705 iwn_hw_config(sc);
3706
3707 /* init Rx ring */
3708 iwn_mem_lock(sc);
3709 IWN_WRITE(sc, IWN_RX_CONFIG, 0);
3710 IWN_WRITE(sc, IWN_RX_WIDX, 0);
3711 /* Rx ring is aligned on a 256-byte boundary */
3712 IWN_WRITE(sc, IWN_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
3713 /* shared area is aligned on a 16-byte boundary */
3714 IWN_WRITE(sc, IWN_RW_WIDX_PTR, (sc->shared_dma.paddr +
3715 offsetof(struct iwn_shared, closed_count)) >> 4);
3716 IWN_WRITE(sc, IWN_RX_CONFIG, 0x80601000);
3717 iwn_mem_unlock(sc);
3718
3719 IWN_WRITE(sc, IWN_RX_WIDX, (IWN_RX_RING_COUNT - 1) & ~7);
3720
3721 iwn_mem_lock(sc);
3722 iwn_mem_write(sc, IWN_TX_ACTIVE, 0);
3723
3724 /* set physical address of "keep warm" page */
3725 IWN_WRITE(sc, IWN_KW_BASE, sc->kw_dma.paddr >> 4);
3726
3727 /* init Tx rings */
3728 for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
3729 struct iwn_tx_ring *txq = &sc->txq[qid];
3730 IWN_WRITE(sc, IWN_TX_BASE(qid), txq->desc_dma.paddr >> 8);
3731 IWN_WRITE(sc, IWN_TX_CONFIG(qid), 0x80000008);
3732 }
3733 iwn_mem_unlock(sc);
3734
3735 /* clear "radio off" and "disable command" bits (reversed logic) */
3736 IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
3737 IWN_WRITE(sc, IWN_UCODE_CLR, IWN_DISABLE_CMD);
3738
3739 /* clear any pending interrupts */
3740 IWN_WRITE(sc, IWN_INTR, 0xffffffff);
3741 /* enable interrupts */
3742 IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
3743
3744 /* not sure why/if this is necessary... */
3745 IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
3746 IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
3747
3748 /* check that the radio is not disabled by RF switch */
3749 if (!(IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_RF_ENABLED)) {
3750 aprint_error_dev(sc->sc_dev, "radio is disabled by hardware switch\n");
3751 error = EBUSY; /* XXX ;-) */
3752 goto fail1;
3753 }
3754
3755 if ((error = iwn_load_firmware(sc)) != 0) {
3756 aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3757 goto fail1;
3758 }
3759
3760 /* firmware has notified us that it is alive.. */
3761 iwn_post_alive(sc); /* ..do post alive initialization */
3762
3763 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
3764 sc->temp = iwn_get_temperature(sc);
3765 DPRINTF(("temperature=%d\n", sc->temp));
3766
3767 if ((error = iwn_config(sc)) != 0) {
3768 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3769 goto fail1;
3770 }
3771
3772 DPRINTF(("iwn_config end\n"));
3773
3774 ifp->if_flags &= ~IFF_OACTIVE;
3775 ifp->if_flags |= IFF_RUNNING;
3776
3777 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3778 if (ic->ic_opmode != IEEE80211_ROAMING_MANUAL)
3779 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3780 }
3781 else
3782 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3783
3784 DPRINTF(("iwn_init ok\n"));
3785 return 0;
3786
3787 fail1:
3788 DPRINTF(("iwn_init error\n"));
3789 iwn_stop(ifp, 1);
3790 return error;
3791 }
3792
3793 static void
3794 iwn_stop(struct ifnet *ifp, int disable)
3795 {
3796 struct iwn_softc *sc = ifp->if_softc;
3797 struct ieee80211com *ic = &sc->sc_ic;
3798 uint32_t tmp;
3799 int i;
3800
3801 ifp->if_timer = sc->sc_tx_timer = 0;
3802 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3803
3804 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3805
3806 IWN_WRITE(sc, IWN_RESET, IWN_NEVO_RESET);
3807
3808 /* disable interrupts */
3809 IWN_WRITE(sc, IWN_MASK, 0);
3810 IWN_WRITE(sc, IWN_INTR, 0xffffffff);
3811 IWN_WRITE(sc, IWN_INTR_STATUS, 0xffffffff);
3812
3813 /* make sure we no longer hold the memory lock */
3814 iwn_mem_unlock(sc);
3815
3816 /* reset all Tx rings */
3817 for (i = 0; i < IWN_NTXQUEUES; i++)
3818 iwn_reset_tx_ring(sc, &sc->txq[i]);
3819
3820 /* reset Rx ring */
3821 iwn_reset_rx_ring(sc, &sc->rxq);
3822
3823 iwn_mem_lock(sc);
3824 iwn_mem_write(sc, IWN_MEM_CLOCK2, 0x200);
3825 iwn_mem_unlock(sc);
3826
3827 DELAY(5);
3828
3829 iwn_stop_master(sc);
3830 tmp = IWN_READ(sc, IWN_RESET);
3831 IWN_WRITE(sc, IWN_RESET, tmp | IWN_SW_RESET);
3832 }
3833
3834 static bool
3835 iwn_resume(device_t dv)
3836 {
3837 struct iwn_softc *sc = device_private(dv);
3838
3839 pci_disable_retry(sc->sc_pct, sc->sc_pcitag);
3840 (void)iwn_reset(sc);
3841
3842 return true;
3843 }
3844