Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.35
      1 /*	$NetBSD: if_iwn.c,v 1.35 2010/01/08 19:56:51 dyoung Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.49 2009/03/29 21:53:52 sthen Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007, 2008
      6  *	Damien Bergamini <damien.bergamini (at) free.fr>
      7  *
      8  * Permission to use, copy, modify, and distribute this software for any
      9  * purpose with or without fee is hereby granted, provided that the above
     10  * copyright notice and this permission notice appear in all copies.
     11  *
     12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19  */
     20 
     21 /*
     22  * Driver for Intel Wireless WiFi Link 4965 and Intel WiFi Link 5000 Series
     23  * 802.11 network adapters.
     24  */
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.35 2010/01/08 19:56:51 dyoung Exp $");
     27 
     28 #include "bpfilter.h"
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/sysctl.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #include <sys/mutex.h>
     39 #include <sys/conf.h>
     40 #include <sys/kauth.h>
     41 #include <sys/callout.h>
     42 
     43 #include <machine/bus.h>
     44 #include <machine/endian.h>
     45 #include <machine/intr.h>
     46 
     47 #include <dev/pci/pcireg.h>
     48 #include <dev/pci/pcivar.h>
     49 #include <dev/pci/pcidevs.h>
     50 
     51 #if NBPFILTER > 0
     52 #include <net/bpf.h>
     53 #endif
     54 #include <net/if.h>
     55 #include <net/if_arp.h>
     56 #include <net/if_dl.h>
     57 #include <net/if_media.h>
     58 #include <net/if_types.h>
     59 
     60 #include <netinet/in.h>
     61 #include <netinet/in_systm.h>
     62 #include <netinet/in_var.h>
     63 #include <net/if_ether.h>
     64 #include <netinet/ip.h>
     65 
     66 #include <net80211/ieee80211_var.h>
     67 #include <net80211/ieee80211_amrr.h>
     68 #include <net80211/ieee80211_radiotap.h>
     69 
     70 #include <dev/firmload.h>
     71 
     72 #include <dev/pci/if_iwnreg.h>
     73 #include <dev/pci/if_iwnvar.h>
     74 
     75 static const pci_product_id_t iwn_devices[] = {
     76 	PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1,
     77 	PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2,
     78 	PCI_PRODUCT_INTEL_PRO_WL_5100AGN_1,
     79 	PCI_PRODUCT_INTEL_PRO_WL_5100AGN_2,
     80 #ifdef notyet
     81 	PCI_PRODUCT_INTEL_PRO_WL_5150AGN_1,
     82 	PCI_PRODUCT_INTEL_PRO_WL_5150AGN_2,
     83 #endif
     84 	PCI_PRODUCT_INTEL_PRO_WL_5300AGN_1,
     85 	PCI_PRODUCT_INTEL_PRO_WL_5300AGN_2,
     86 	PCI_PRODUCT_INTEL_PRO_WL_5350AGN_1,
     87 	PCI_PRODUCT_INTEL_PRO_WL_5350AGN_2,
     88 #ifdef notyet
     89 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     90 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
     99 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_1,
    100 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_2,
    101 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3,
    102 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_4,
    103 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_1,
    104 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2,
    105 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_3,
    106 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_4,
    107 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
    108 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
    109 #endif
    110 };
    111 
    112 /*
    113  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    114  */
    115 static const struct ieee80211_rateset iwn_rateset_11a =
    116 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    117 
    118 static const struct ieee80211_rateset iwn_rateset_11b =
    119 	{ 4, { 2, 4, 11, 22 } };
    120 
    121 static const struct ieee80211_rateset iwn_rateset_11g =
    122 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    123 
    124 
    125 static int	iwn_match(device_t , struct cfdata *, void *);
    126 static void	iwn_attach(device_t , device_t, void *);
    127 static int	iwn_detach(device_t, int);
    128 
    129 const struct	iwn_hal *iwn_hal_attach(struct iwn_softc *);
    130 static int	iwn_nic_lock(struct iwn_softc *);
    131 static int	iwn_eeprom_lock(struct iwn_softc *);
    132 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    133 static void	iwn_radiotap_attach(struct iwn_softc *);
    134 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    135 		    void **, bus_size_t, bus_size_t, int);
    136 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    137 static int	iwn_alloc_sched(struct iwn_softc *);
    138 static void	iwn_free_sched(struct iwn_softc *);
    139 static int	iwn_alloc_kw(struct iwn_softc *);
    140 static void	iwn_free_kw(struct iwn_softc *);
    141 static int	iwn_alloc_fwmem(struct iwn_softc *);
    142 static void	iwn_free_fwmem(struct iwn_softc *);
    143 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    144 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    145 static int	iwn_alloc_rpool(struct iwn_softc *);
    146 static void	iwn_free_rpool(struct iwn_softc *);
    147 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    148 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    149 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    150 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    151 		    int, int);
    152 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    153 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    154 static int	iwn_read_eeprom(struct iwn_softc *);
    155 static void	iwn4965_read_eeprom(struct iwn_softc *);
    156 static void	iwn5000_read_eeprom(struct iwn_softc *);
    157 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    158 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    159 static void	iwn_newassoc(struct ieee80211_node *, int);
    160 static int	iwn_media_change(struct ifnet *);
    161 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    162 static void	iwn_iter_func(void *, struct ieee80211_node *);
    163 static void	iwn_calib_timeout(void *);
    164 #if 0
    165 static int	iwn_ccmp_decap(struct iwn_softc *, struct mbuf *,
    166 		    struct ieee80211_key *);
    167 #endif
    168 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *);
    169 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    170 		    struct iwn_rx_data *);
    171 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    172     struct iwn_rx_desc *, struct iwn_rx_data *);
    173 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    174     struct iwn_rx_data *);
    175 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    176     struct iwn_rx_data *);
    177 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    178     struct iwn_rx_data *);
    179 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    180 		    uint8_t);
    181 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    182 static void	iwn_notif_intr(struct iwn_softc *);
    183 static void	iwn_wakeup_intr(struct iwn_softc *);
    184 static void	iwn_fatal_intr(struct iwn_softc *);
    185 static int	iwn_intr(void *);
    186 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    187 		    uint16_t);
    188 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    189 		    uint16_t);
    190 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    191 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    192 		    struct ieee80211_node *, int);
    193 static void	iwn_start(struct ifnet *);
    194 static void	iwn_watchdog(struct ifnet *);
    195 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    196 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    197 static int	iwn_wme_update(struct ieee80211com *);
    198 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    199 		    int);
    200 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    201 		    int);
    202 static int	iwn_set_link_quality(struct iwn_softc *,
    203 		    struct ieee80211_node *);
    204 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    205 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    206 static int	iwn_set_critical_temp(struct iwn_softc *);
    207 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    208 //static void	iwn4965_power_calibration(struct iwn_softc *, int);
    209 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    210 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    211 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    212 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    213 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    214 static int	iwn4965_get_temperature(struct iwn_softc *);
    215 static int	iwn5000_get_temperature(struct iwn_softc *);
    216 static int	iwn_init_sensitivity(struct iwn_softc *);
    217 static void	iwn_collect_noise(struct iwn_softc *,
    218 		    const struct iwn_rx_general_stats *);
    219 static int	iwn4965_init_gains(struct iwn_softc *);
    220 static int	iwn5000_init_gains(struct iwn_softc *);
    221 static int	iwn4965_set_gains(struct iwn_softc *);
    222 static int	iwn5000_set_gains(struct iwn_softc *);
    223 static void	iwn_tune_sensitivity(struct iwn_softc *,
    224 		    const struct iwn_rx_stats *);
    225 static int	iwn_send_sensitivity(struct iwn_softc *);
    226 // XXX  static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    227 static int	iwn_config(struct iwn_softc *);
    228 static int	iwn_scan(struct iwn_softc *, uint16_t);
    229 static int	iwn_auth(struct iwn_softc *);
    230 static int	iwn_run(struct iwn_softc *);
    231 #ifdef notyet
    232 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    233 		    struct ieee80211_key *);
    234 #endif
    235 #ifndef IEEE80211_NO_HT
    236 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    237 		    struct ieee80211_node *, uint8_t, uint16_t);
    238 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    239 		    struct ieee80211_node *, uint8_t, uint16_t);
    240 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    241 		    struct ieee80211_node *, uint8_t, uint16_t);
    242 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    243 		    struct ieee80211_node *, uint8_t, uint16_t);
    244 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    245 		    struct ieee80211_node *, uint8_t, uint16_t);
    246 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    247 		    uint8_t, uint16_t);
    248 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    249 		    struct ieee80211_node *, uint8_t, uint16_t);
    250 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    251 		    uint8_t, uint16_t);
    252 #endif
    253 static int	iwn5000_query_calibration(struct iwn_softc *);
    254 static int	iwn5000_send_calibration(struct iwn_softc *);
    255 static int	iwn4965_post_alive(struct iwn_softc *);
    256 static int	iwn5000_post_alive(struct iwn_softc *);
    257 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    258 		    int);
    259 static int	iwn4965_load_firmware(struct iwn_softc *);
    260 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    261 		    const uint8_t *, int);
    262 static int	iwn5000_load_firmware(struct iwn_softc *);
    263 static int	iwn_read_firmware(struct iwn_softc *);
    264 static int	iwn_clock_wait(struct iwn_softc *);
    265 static int	iwn4965_apm_init(struct iwn_softc *);
    266 static int	iwn5000_apm_init(struct iwn_softc *);
    267 static void	iwn_apm_stop_master(struct iwn_softc *);
    268 static void	iwn_apm_stop(struct iwn_softc *);
    269 static int	iwn4965_nic_config(struct iwn_softc *);
    270 static int	iwn5000_nic_config(struct iwn_softc *);
    271 static int	iwn_hw_init(struct iwn_softc *);
    272 static void	iwn_hw_stop(struct iwn_softc *);
    273 static int	iwn_init(struct ifnet *);
    274 static void	iwn_stop(struct ifnet *, int);
    275 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
    276 static bool	iwn_resume(device_t, pmf_qual_t);
    277 
    278 #define IWN_DEBUG
    279 #ifdef IWN_DEBUG
    280 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    281 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    282 int iwn_debug = 0;
    283 #else
    284 #define DPRINTF(x)
    285 #define DPRINTFN(n, x)
    286 #endif
    287 #ifdef IWN_DEBUG
    288 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    289 #endif
    290 
    291 static const struct iwn_hal iwn4965_hal = {
    292 	iwn4965_load_firmware,
    293 	iwn4965_read_eeprom,
    294 	iwn4965_post_alive,
    295 	iwn4965_apm_init,
    296 	iwn4965_nic_config,
    297 	iwn4965_update_sched,
    298 	iwn4965_get_temperature,
    299 	iwn4965_get_rssi,
    300 	iwn4965_set_txpower,
    301 	iwn4965_init_gains,
    302 	iwn4965_set_gains,
    303 	iwn4965_add_node,
    304 	iwn4965_tx_done,
    305 #ifndef IEEE80211_NO_HT
    306 	iwn4965_ampdu_tx_start,
    307 	iwn4965_ampdu_tx_stop,
    308 #endif
    309 	&iwn4965_sensitivity_limits,
    310 	IWN4965_NTXQUEUES,
    311 	IWN4965_ID_BROADCAST,
    312 	IWN4965_RXONSZ,
    313 	IWN4965_SCHEDSZ,
    314 	IWN4965_FW_TEXT_MAXSZ,
    315 	IWN4965_FW_DATA_MAXSZ,
    316 	IWN4965_FWSZ,
    317 	IWN4965_SCHED_TXFACT
    318 };
    319 
    320 static const struct iwn_hal iwn5000_hal = {
    321 	iwn5000_load_firmware,
    322 	iwn5000_read_eeprom,
    323 	iwn5000_post_alive,
    324 	iwn5000_apm_init,
    325 	iwn5000_nic_config,
    326 	iwn5000_update_sched,
    327 	iwn5000_get_temperature,
    328 	iwn5000_get_rssi,
    329 	iwn5000_set_txpower,
    330 	iwn5000_init_gains,
    331 	iwn5000_set_gains,
    332 	iwn5000_add_node,
    333 	iwn5000_tx_done,
    334 #ifndef IEEE80211_NO_HT
    335 	iwn5000_ampdu_tx_start,
    336 	iwn5000_ampdu_tx_stop,
    337 #endif
    338 	&iwn5000_sensitivity_limits,
    339 	IWN5000_NTXQUEUES,
    340 	IWN5000_ID_BROADCAST,
    341 	IWN5000_RXONSZ,
    342 	IWN5000_SCHEDSZ,
    343 	IWN5000_FW_TEXT_MAXSZ,
    344 	IWN5000_FW_DATA_MAXSZ,
    345 	IWN5000_FWSZ,
    346 	IWN5000_SCHED_TXFACT
    347 };
    348 
    349 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    350 		iwn_detach, NULL);
    351 
    352 
    353 static int
    354 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    355 {
    356 	struct pci_attach_args *pa = aux;
    357 	size_t i;
    358 
    359 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    360 		return 0;
    361 
    362 	for (i = 0; i < __arraycount(iwn_devices); i++)
    363 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    364 			return 1;
    365 
    366 	return 0;
    367 }
    368 
    369 static void
    370 iwn_attach(device_t parent __unused, device_t self, void *aux)
    371 {
    372 	struct iwn_softc *sc = device_private(self);
    373 	struct ieee80211com *ic = &sc->sc_ic;
    374 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    375 	struct pci_attach_args *pa = aux;
    376 	const struct iwn_hal *hal;
    377 	const char *intrstr;
    378 	char devinfo[256];
    379 	pci_intr_handle_t ih;
    380 	pcireg_t memtype, reg;
    381 	int i, error, revision;
    382 
    383 	sc->sc_dev = self;
    384 	sc->sc_pct = pa->pa_pc;
    385 	sc->sc_pcitag = pa->pa_tag;
    386 
    387 	callout_init(&sc->calib_to, 0);
    388 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    389 
    390 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
    391 	revision = PCI_REVISION(pa->pa_class);
    392 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
    393 
    394 	/*
    395 	 * Get the offset of the PCI Express Capability Structure in PCI
    396 	 * Configuration Space (the vendor driver hard-codes it as E0h.)
    397 	 */
    398 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    399 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    400 	if (error == 0) {
    401 		aprint_error_dev(self, "PCIe capability structure not found!\n");
    402 		return;
    403 	}
    404 
    405 	/* Clear device-specific "PCI retry timeout" register (41h). */
    406 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    407 	reg &= ~0xff00;
    408 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
    409 
    410 	/* enable bus-mastering */
    411 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    412 	reg |= PCI_COMMAND_MASTER_ENABLE;
    413 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    414 
    415 	/* map the register window */
    416 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    417 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    418 	    &sc->sc_sh, NULL, &sc->sc_sz);
    419 	if (error != 0) {
    420 		aprint_error_dev(self, "could not map memory space\n");
    421 		return;
    422 	}
    423 #if 1
    424 	sc->sc_dmat = pa->pa_dmat;
    425 #else
    426 	/* XXX may not be needed */
    427 	if (bus_dmatag_subregion(pa->pa_dmat, 0, 3 << 30,
    428 	    &(sc->sc_dmat), BUS_DMA_NOWAIT) != 0) {
    429 		aprint_error_dev(self,
    430 		    "WARNING: failed to restrict dma range, "
    431 		    "falling back to parent bus dma range\n");
    432 		sc->sc_dmat = pa->pa_dmat;
    433 	}
    434 #endif
    435 
    436 	/* Install interrupt handler. */
    437 	if (pci_intr_map(pa, &ih) != 0) {
    438 		aprint_error_dev(self, "could not map interrupt\n");
    439 		return;
    440 	}
    441 	intrstr = pci_intr_string(sc->sc_pct, ih);
    442 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
    443 
    444 	if (sc->sc_ih == NULL) {
    445 		aprint_error_dev(self, "could not establish interrupt");
    446 		if (intrstr != NULL)
    447 			aprint_error(" at %s", intrstr);
    448 		aprint_error("\n");
    449 		return;
    450 	}
    451 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    452 
    453 	/* Attach Hardware Abstraction Layer. */
    454 	if ((hal = iwn_hal_attach(sc)) == NULL)
    455 		return;
    456 
    457 	/* Power ON adapter. */
    458 	if ((error = hal->apm_init(sc)) != 0) {
    459 		aprint_error_dev(self, "could not power ON adapter\n");
    460 		return;
    461 	}
    462 
    463 	/* Read MAC address, channels, etc from EEPROM. */
    464 	if ((error = iwn_read_eeprom(sc)) != 0) {
    465 		aprint_error_dev(self, "could not read EEPROM\n");
    466 		return;
    467 	}
    468 
    469 	/* Allocate DMA memory for firmware transfers. */
    470 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    471 		aprint_error_dev(self,
    472 		    "could not allocate memory for firmware\n");
    473 		return;
    474 	}
    475 
    476 	/* Allocate "Keep Warm" page. */
    477 	if ((error = iwn_alloc_kw(sc)) != 0) {
    478 		aprint_error_dev(self, "could not allocate keep warm page\n");
    479 		goto fail1;
    480 	}
    481 
    482 	/* Allocate TX scheduler "rings". */
    483 	if ((error = iwn_alloc_sched(sc)) != 0) {
    484 		aprint_error_dev(self,
    485 		    "could not allocate TX scheduler rings\n");
    486 		goto fail2;
    487 	}
    488 
    489 	/* Allocate RX buffers. */
    490 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    491 		aprint_error_dev(self, "could not allocate RX buffers\n");
    492 		goto fail3;
    493 	}
    494 
    495 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */
    496 	for (i = 0; i < hal->ntxqs; i++) {
    497 		struct iwn_tx_ring *txq = &sc->txq[i];
    498 		error = iwn_alloc_tx_ring(sc, txq, IWN_TX_RING_COUNT, i);
    499 		if (error != 0) {
    500 			aprint_error_dev(self,
    501 			    "could not allocate TX ring %d\n", i);
    502 			goto fail4;
    503 		}
    504 	}
    505 
    506 	/* Allocate RX ring. */
    507 	if (iwn_alloc_rx_ring(sc, &sc->rxq) != 0) {
    508 		aprint_error_dev(self, "could not allocate RX ring\n");
    509 		goto fail4;
    510 	}
    511 
    512 	/* Power OFF adapter. */
    513 	iwn_apm_stop(sc);
    514 	/* Clear pending interrupts. */
    515 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    516 
    517 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n", sc->ntxchains,
    518 	    sc->nrxchains, sc->eeprom_domain, ether_sprintf(ic->ic_myaddr));
    519 
    520 	/* Initialization firmware has not been loaded yet. */
    521 	sc->sc_flags |= IWN_FLAG_FIRST_BOOT;
    522 
    523 	/* Set the state of the RF kill switch */
    524 	sc->sc_radio = (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL);
    525 
    526 	ic->ic_ifp = ifp;
    527 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    528 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    529 	ic->ic_state = IEEE80211_S_INIT;
    530 
    531 	/* Set device capabilities. */
    532 	ic->ic_caps =
    533 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    534 	    IEEE80211_C_WPA |		/* 802.11i */
    535 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    536 	    IEEE80211_C_TXPMGT |	/* tx power management */
    537 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    538 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    539 	    IEEE80211_C_WME;		/* 802.11e */
    540 
    541 	/* Set supported rates. */
    542 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
    543 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
    544 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    545 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
    546 	}
    547 
    548 	/* IBSS channel undefined for now. */
    549 	ic->ic_ibss_chan = &ic->ic_channels[0];
    550 
    551 	memset(ic->ic_des_essid, 0, IEEE80211_NWID_LEN);
    552 	ic->ic_des_esslen = 0;
    553 
    554 	ifp->if_softc = sc;
    555 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    556 	ifp->if_stop = iwn_stop;
    557 	ifp->if_init = iwn_init;
    558 	ifp->if_ioctl = iwn_ioctl;
    559 	ifp->if_start = iwn_start;
    560 	ifp->if_watchdog = iwn_watchdog;
    561 	IFQ_SET_READY(&ifp->if_snd);
    562 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    563 
    564 	if_attach(ifp);
    565 	ieee80211_ifattach(ic);
    566 	ic->ic_node_alloc = iwn_node_alloc;
    567 	ic->ic_newassoc = iwn_newassoc;
    568 	ic->ic_wme.wme_update = iwn_wme_update;
    569 #ifdef notyet
    570 	ic->ic_updateedca = iwn_updateedca;
    571 	ic->ic_set_key = iwn_set_key;
    572 	ic->ic_delete_key = iwn_delete_key;
    573 #endif
    574 #ifndef IEEE80211_NO_HT
    575 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    576 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    577 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    578 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    579 #endif
    580 
    581 	/* Override 802.11 state transition machine. */
    582 	sc->sc_newstate = ic->ic_newstate;
    583 	ic->ic_newstate = iwn_newstate;
    584 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    585 
    586 	sc->amrr.amrr_min_success_threshold =  1;
    587 	sc->amrr.amrr_max_success_threshold = 15;
    588 
    589 	if (pmf_device_register(self, NULL, iwn_resume))
    590 		pmf_class_network_register(self, ifp);
    591 	else
    592 		aprint_error_dev(self, "couldn't establish power handler\n");
    593 
    594 	iwn_radiotap_attach(sc);
    595 
    596 	ieee80211_announce(ic);
    597 
    598 	return;
    599 
    600 	/* Free allocated memory if something failed during attachment. */
    601 fail4:	while (--i >= 0)
    602 		iwn_free_tx_ring(sc, &sc->txq[i]);
    603 	iwn_free_rpool(sc);
    604 fail3:	iwn_free_sched(sc);
    605 fail2:	iwn_free_kw(sc);
    606 fail1:	iwn_free_fwmem(sc);
    607 }
    608 
    609 static int
    610 iwn_detach(device_t self, int flags __unused)
    611 {
    612 	struct iwn_softc *sc = device_private(self);
    613 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    614 	int ac;
    615 
    616 	iwn_stop(ifp, 1);
    617 #if NBPFILTER > 0
    618 	if (ifp != NULL)
    619 		bpfdetach(ifp);
    620 #endif
    621 	ieee80211_ifdetach(&sc->sc_ic);
    622 	if (ifp != NULL)
    623 		if_detach(ifp);
    624 
    625 	for (ac = 0; ac < sc->sc_hal->ntxqs; ac++)
    626 		iwn_free_tx_ring(sc, &sc->txq[ac]);
    627 	iwn_free_rx_ring(sc, &sc->rxq);
    628 	iwn_free_rpool(sc);
    629 	iwn_free_sched(sc);
    630 
    631 	if (sc->sc_ih != NULL) {
    632 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    633 		sc->sc_ih = NULL;
    634 	}
    635 
    636 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    637 
    638 	return 0;
    639 }
    640 
    641 const struct iwn_hal *
    642 iwn_hal_attach(struct iwn_softc *sc)
    643 {
    644 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
    645 
    646 	switch (sc->hw_type) {
    647 	case IWN_HW_REV_TYPE_4965:
    648 		sc->sc_hal = &iwn4965_hal;
    649 		sc->fwname = "iwlwifi-4965-1.ucode";
    650 		sc->critical_temp = IWN_CTOK(110);
    651 		sc->txantmsk = IWN_ANT_A | IWN_ANT_B;
    652 		sc->rxantmsk = IWN_ANT_ABC;
    653 		sc->ntxchains = 2;
    654 		sc->nrxchains = 3;
    655 		break;
    656 	case IWN_HW_REV_TYPE_5100:
    657 		sc->sc_hal = &iwn5000_hal;
    658 		sc->fwname = "iwlwifi-5000-1.ucode";
    659 		sc->critical_temp = 110;
    660 		sc->txantmsk = IWN_ANT_B;
    661 		sc->rxantmsk = IWN_ANT_A | IWN_ANT_B;
    662 		sc->ntxchains = 1;
    663 		sc->nrxchains = 2;
    664 		break;
    665 	case IWN_HW_REV_TYPE_5150:
    666 		sc->sc_hal = &iwn5000_hal;
    667 		sc->fwname = "iwlwifi-5150-1.ucode";
    668 		/* NB: critical temperature will be read from EEPROM. */
    669 		sc->txantmsk = IWN_ANT_A;
    670 		sc->rxantmsk = IWN_ANT_A | IWN_ANT_B;
    671 		sc->ntxchains = 1;
    672 		sc->nrxchains = 2;
    673 		break;
    674 	case IWN_HW_REV_TYPE_5300:
    675 	case IWN_HW_REV_TYPE_5350:
    676 		sc->sc_hal = &iwn5000_hal;
    677 		sc->fwname = "iwlwifi-5000-1.ucode";
    678 		sc->critical_temp = 110;
    679 		sc->txantmsk = sc->rxantmsk = IWN_ANT_ABC;
    680 		sc->ntxchains = sc->nrxchains = 3;
    681 		break;
    682 #ifdef notyet
    683 	case IWN_HW_REV_TYPE_1000:
    684 		sc->sc_hal = &iwn5000_hal;
    685 		sc->fwname = "iwn-1000";
    686 		sc->critical_temp = 110;
    687 		sc->txantmsk = IWN_ANT_A;
    688 		sc->rxantmsk = IWN_ANT_A | IWN_ANT_B;
    689 		sc->ntxchains = 1;
    690 		sc->nrxchains = 2;
    691 		break;
    692 	case IWN_HW_REV_TYPE_6000:
    693 		sc->sc_hal = &iwn5000_hal;
    694 		sc->fwname = "iwn-6000";
    695 		sc->critical_temp = 110;
    696 		sc->txantmsk = IWN_ANT_ABC;
    697 		sc->rxantmsk = IWN_ANT_ABC;
    698 		sc->ntxchains = 3;
    699 		sc->nrxchains = 3;
    700 		break;
    701 	case IWN_HW_REV_TYPE_6050:
    702 		sc->sc_hal = &iwn5000_hal;
    703 		sc->fwname = "iwn-6050";
    704 		sc->critical_temp = 110;
    705 		sc->txantmsk = IWN_ANT_ABC;
    706 		sc->rxantmsk = IWN_ANT_ABC;
    707 		sc->ntxchains = 3;
    708 		sc->nrxchains = 3;
    709 		break;
    710 #endif
    711 	default:
    712 		printf(": adapter type %d not supported\n", sc->hw_type);
    713 		return NULL;
    714 	}
    715 	return sc->sc_hal;
    716 }
    717 
    718 #if 0
    719 /*
    720  * Attach the adapter's on-board thermal sensor to the sensors framework.
    721  */
    722 void
    723 iwn_sensor_attach(struct iwn_softc *sc)
    724 {
    725 	strlcpy(sc->sensordev.xname, sc->sc_dev.dv_xname,
    726 	    sizeof sc->sensordev.xname);
    727 	sc->sensor.type = SENSOR_TEMP;
    728 	/* Temperature is not valid unless interface is up. */
    729 	sc->sensor.value = 0;
    730 	sc->sensor.flags = SENSOR_FINVALID;
    731 	sensor_attach(&sc->sensordev, &sc->sensor);
    732 	sensordev_install(&sc->sensordev);
    733 }
    734 #endif /* 0 */
    735 
    736 /*
    737  * Attach the interface to 802.11 radiotap.
    738  */
    739 static void
    740 iwn_radiotap_attach(struct iwn_softc *sc)
    741 {
    742 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    743 #if NBPFILTER > 0
    744 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    745 		   sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    746 		   &sc->sc_drvbpf);
    747 
    748 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    749 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    750 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    751 
    752 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    753 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    754 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    755 #endif
    756 }
    757 
    758 #if 0 /* XXX */
    759 /*
    760  * Build a beacon frame that the firmware will broadcast periodically in
    761  * IBSS or HostAP modes.
    762  */
    763 static int
    764 iwn_setup_beacon(struct iwn_softc *sc, struct ieee80211_node *ni)
    765 {
    766 	struct ieee80211com *ic = &sc->sc_ic;
    767 	struct iwn_tx_ring *ring = &sc->txq[4];
    768 	struct iwn_tx_desc *desc;
    769 	struct iwn_tx_data *data;
    770 	struct iwn_tx_cmd *cmd;
    771 	struct iwn_cmd_beacon *bcn;
    772 	struct ieee80211_beacon_offsets bo;
    773 	struct mbuf *m0;
    774 	bus_addr_t paddr;
    775 	int error;
    776 
    777 	desc = &ring->desc[ring->cur];
    778 	data = &ring->data[ring->cur];
    779 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
    780 	if (m0 == NULL) {
    781 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n"
    782 );
    783 		return ENOMEM;
    784 	}
    785 	cmd = &ring->cmd[ring->cur];
    786 	cmd->code = IWN_CMD_SET_BEACON;
    787 	cmd->flags = 0;
    788 	cmd->qid = ring->qid;
    789 	cmd->idx = ring->cur;
    790 
    791 	bcn = (struct iwn_cmd_beacon *)cmd->data;
    792 	memset(bcn, 0, sizeof (struct iwn_cmd_beacon));
    793 	bcn->id = sc->sc_hal->broadcast_id;
    794 	bcn->lifetime = htole32(IWN_LIFETIME_INFINITE);
    795 	bcn->len = htole16(m0->m_pkthdr.len);
    796 #if 0
    797 	XXX
    798 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
    799 		iwn_plcp_signal(12) : iwn_plcp_signal(2);
    800 #endif
    801 	bcn->flags2 = 0x2; /* RATE_MCS_CCK_MSK */
    802 	bcn->flags = htole32(IWN_TX_AUTO_SEQ | IWN_TX_INSERT_TSTAMP;
    803 		// XXX | IWN_TX_USE_NODE_RATE);
    804 
    805 	/* save and trim IEEE802.11 header */
    806 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
    807 	m_adj(m0, sizeof (struct ieee80211_frame));
    808 
    809 	/* assume beacon frame is contiguous */
    810 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
    811 		BUS_DMA_READ | BUS_DMA_NOWAIT);
    812 	if (error) {
    813 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
    814 		m_freem(m0);
    815 		return error;
    816 	}
    817 
    818 	data->m = m0;
    819 
    820 	/* first scatter/gather segment is used by the beacon command */
    821 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
    822 
    823 	IWN_SET_DESC_NSEGS(desc, 2);
    824 	IWN_SET_DESC_SEG(desc, 0, paddr , 4 + sizeof(struct iwn_cmd_beacon));
    825 	IWN_SET_DESC_SEG(desc, 1,  data->map->dm_segs[0].ds_addr,
    826 					   data->map->dm_segs[1].ds_len);
    827 
    828 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    829 	    data->map->dm_mapsize /* calc? */, BUS_DMASYNC_PREWRITE);
    830 
    831 	/* kick cmd ring */
    832 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
    833 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
    834 	return 0;
    835 }
    836 #endif
    837 
    838 static int
    839 iwn_nic_lock(struct iwn_softc *sc)
    840 {
    841 	int ntries;
    842 
    843 	/* Request exclusive access to NIC. */
    844 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    845 
    846 	/* Spin until we actually get the lock. */
    847 	for (ntries = 0; ntries < 1000; ntries++) {
    848 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    849 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    850 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    851 			return 0;
    852 		DELAY(10);
    853 	}
    854 	return ETIMEDOUT;
    855 }
    856 
    857 static __inline void
    858 iwn_nic_unlock(struct iwn_softc *sc)
    859 {
    860 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    861 }
    862 
    863 static __inline uint32_t
    864 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    865 {
    866 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    867 	return IWN_READ(sc, IWN_PRPH_RDATA);
    868 }
    869 
    870 static __inline void
    871 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    872 {
    873 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    874 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    875 }
    876 
    877 static __inline void
    878 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    879 {
    880 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    881 }
    882 
    883 static __inline void
    884 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    885 {
    886 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    887 }
    888 
    889 static __inline void
    890 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    891     const uint32_t *data, int count)
    892 {
    893 	for (; count > 0; count--, data++, addr += 4)
    894 		iwn_prph_write(sc, addr, *data);
    895 }
    896 
    897 static __inline uint32_t
    898 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    899 {
    900 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    901 	return IWN_READ(sc, IWN_MEM_RDATA);
    902 }
    903 
    904 static __inline void
    905 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    906 {
    907 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    908 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    909 }
    910 
    911 static __inline void
    912 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
    913 {
    914 	uint32_t tmp;
    915 
    916 	tmp = iwn_mem_read(sc, addr & ~3);
    917 	if (addr & 3)
    918 		tmp = (tmp & 0x0000ffff) | data << 16;
    919 	else
    920 		tmp = (tmp & 0xffff0000) | data;
    921 	iwn_mem_write(sc, addr & ~3, tmp);
    922 }
    923 
    924 static __inline void
    925 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
    926     int count)
    927 {
    928 	for (; count > 0; count--, addr += 4)
    929 		*data++ = iwn_mem_read(sc, addr);
    930 }
    931 
    932 static __inline void
    933 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
    934     int count)
    935 {
    936 	for (; count > 0; count--, addr += 4)
    937 		iwn_mem_write(sc, addr, val);
    938 }
    939 
    940 static int
    941 iwn_eeprom_lock(struct iwn_softc *sc)
    942 {
    943 	int i, ntries;
    944 
    945 	for (i = 0; i < 100; i++) {
    946 		/* Request exclusive access to EEPROM. */
    947 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
    948 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
    949 
    950 		/* Spin until we actually get the lock. */
    951 		for (ntries = 0; ntries < 100; ntries++) {
    952 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
    953 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
    954 				return 0;
    955 			DELAY(10);
    956 		}
    957 	}
    958 	return ETIMEDOUT;
    959 }
    960 
    961 static __inline void
    962 iwn_eeprom_unlock(struct iwn_softc *sc)
    963 {
    964 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
    965 }
    966 
    967 static int
    968 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
    969 {
    970 	uint8_t *out = data;
    971 	uint32_t val;
    972 	int ntries;
    973 
    974 	for (; count > 0; count -= 2, addr++) {
    975 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
    976 		IWN_CLRBITS(sc, IWN_EEPROM, IWN_EEPROM_CMD);
    977 
    978 		for (ntries = 0; ntries < 10; ntries++) {
    979 			val = IWN_READ(sc, IWN_EEPROM);
    980 			if (val & IWN_EEPROM_READ_VALID)
    981 				break;
    982 			DELAY(5);
    983 		}
    984 		if (ntries == 10) {
    985 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
    986 			return ETIMEDOUT;
    987 		}
    988 		*out++ = val >> 16;
    989 		if (count > 1)
    990 			*out++ = val >> 24;
    991 	}
    992 	return 0;
    993 }
    994 
    995 static int
    996 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
    997     bus_size_t size, bus_size_t alignment, int flags)
    998 {
    999 	int nsegs, error;
   1000 
   1001 	dma->tag = tag;
   1002 	dma->size = size;
   1003 
   1004 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
   1005 	if (error != 0)
   1006 		goto fail;
   1007 
   1008 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1009 	    flags);
   1010 	if (error != 0)
   1011 		goto fail;
   1012 
   1013 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
   1014 	if (error != 0)
   1015 		goto fail;
   1016 
   1017 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
   1018 	if (error != 0)
   1019 		goto fail;
   1020 
   1021 	memset(dma->vaddr, 0, size);
   1022 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1023 
   1024 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1025 	if (kvap != NULL)
   1026 		*kvap = dma->vaddr;
   1027 
   1028 	return 0;
   1029 
   1030 fail:	iwn_dma_contig_free(dma);
   1031 	return error;
   1032 }
   1033 
   1034 static void
   1035 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1036 {
   1037 	if (dma->map != NULL) {
   1038 		if (dma->vaddr != NULL) {
   1039 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1040 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1041 			bus_dmamap_unload(dma->tag, dma->map);
   1042 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1043 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1044 			dma->vaddr = NULL;
   1045 		}
   1046 		bus_dmamap_destroy(dma->tag, dma->map);
   1047 		dma->map = NULL;
   1048 	}
   1049 }
   1050 
   1051 static int
   1052 iwn_alloc_sched(struct iwn_softc *sc)
   1053 {
   1054 	int error;
   1055 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1056 	error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1057 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024, BUS_DMA_NOWAIT);
   1058 	if (error != 0)
   1059 		aprint_error_dev(sc->sc_dev,
   1060 		    "could not allocate shared area DMA memory\n");
   1061 	return error;
   1062 }
   1063 
   1064 static void
   1065 iwn_free_sched(struct iwn_softc *sc)
   1066 {
   1067 	iwn_dma_contig_free(&sc->sched_dma);
   1068 }
   1069 
   1070 static int
   1071 iwn_alloc_kw(struct iwn_softc *sc)
   1072 {
   1073 	/* "Keep Warm" page must be aligned on a 16-byte boundary. */
   1074 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1075 	    4096, BUS_DMA_NOWAIT);
   1076 }
   1077 
   1078 static void
   1079 iwn_free_kw(struct iwn_softc *sc)
   1080 {
   1081 	iwn_dma_contig_free(&sc->kw_dma);
   1082 }
   1083 
   1084 static int
   1085 iwn_alloc_fwmem(struct iwn_softc *sc)
   1086 {
   1087 	int error;
   1088 	/* Must be aligned on a 16-byte boundary. */
   1089 	error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1090 	    sc->sc_hal->fwsz, 16, BUS_DMA_NOWAIT);
   1091 	if (error != 0) {
   1092 		aprint_error_dev(sc->sc_dev,
   1093 		    "could not allocate firmware transfer area DMA memory\n");
   1094 	}
   1095 	return error;
   1096 }
   1097 
   1098 static void
   1099 iwn_free_fwmem(struct iwn_softc *sc)
   1100 {
   1101 	iwn_dma_contig_free(&sc->fw_dma);
   1102 }
   1103 
   1104 static struct iwn_rbuf *
   1105 iwn_alloc_rbuf(struct iwn_softc *sc)
   1106 {
   1107 	struct iwn_rbuf *rbuf;
   1108 	mutex_enter(&sc->rxq.freelist_mtx);
   1109 
   1110 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   1111 	if (rbuf != NULL) {
   1112 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   1113 		sc->rxq.nb_free_entries --;
   1114 	}
   1115 	mutex_exit(&sc->rxq.freelist_mtx);
   1116 	return rbuf;
   1117 }
   1118 
   1119 /*
   1120  * This is called automatically by the network stack when the mbuf to which
   1121  * our RX buffer is attached is freed.
   1122  */
   1123 static void
   1124 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   1125 {
   1126 	struct iwn_rbuf *rbuf = arg;
   1127 	struct iwn_softc *sc = rbuf->sc;
   1128 
   1129 	/* Put the RX buffer back in the free list. */
   1130 	mutex_enter(&sc->rxq.freelist_mtx);
   1131 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   1132 	mutex_exit(&sc->rxq.freelist_mtx);
   1133 
   1134 	sc->rxq.nb_free_entries ++;
   1135 	if (__predict_true(m != NULL))
   1136 		pool_cache_put(mb_cache, m);
   1137 }
   1138 
   1139 static int
   1140 iwn_alloc_rpool(struct iwn_softc *sc)
   1141 {
   1142 	struct iwn_rx_ring *ring = &sc->rxq;
   1143 	struct iwn_rbuf *rbuf;
   1144 	int i, error;
   1145 
   1146 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   1147 
   1148 	/* Allocate a big chunk of DMA'able memory... */
   1149 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   1150 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
   1151 	if (error != 0) {
   1152 		aprint_error_dev(sc->sc_dev,
   1153 		    "could not allocate RX buffers DMA memory\n");
   1154 		return error;
   1155 	}
   1156 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   1157 	SLIST_INIT(&ring->freelist);
   1158 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   1159 		rbuf = &ring->rbuf[i];
   1160 
   1161 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   1162 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   1163 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   1164 
   1165 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   1166 	}
   1167 	ring->nb_free_entries = IWN_RBUF_COUNT;
   1168 	return 0;
   1169 }
   1170 
   1171 static void
   1172 iwn_free_rpool(struct iwn_softc *sc)
   1173 {
   1174 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   1175 }
   1176 
   1177 static int
   1178 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1179 {
   1180 	struct iwn_rx_data *data;
   1181 	bus_size_t size;
   1182 	struct iwn_rbuf *rbuf;
   1183 	int i, error;
   1184 
   1185 	ring->cur = 0;
   1186 
   1187 	/* Allocate RX descriptors (256-byte aligned.) */
   1188 	size = IWN_RX_RING_COUNT * sizeof (struct iwn_rx_desc);
   1189 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1190 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
   1191 	if (error != 0) {
   1192 		aprint_error_dev(sc->sc_dev,
   1193 		    "could not allocate RX ring DMA memory\n");
   1194 		goto fail;
   1195 	}
   1196 
   1197 	/* Allocate RX status area (16-byte aligned.) */
   1198 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1199 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16,
   1200 	    BUS_DMA_NOWAIT);
   1201 	if (error != 0) {
   1202 		aprint_error_dev(sc->sc_dev,
   1203 		    "could not allocate RX status DMA memory\n");
   1204 		goto fail;
   1205 	}
   1206 
   1207 	/*
   1208 	 * Allocate and map RX buffers.
   1209 	 */
   1210 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1211 		data = &ring->data[i];
   1212 
   1213 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1214 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
   1215 		if (error != 0) {
   1216 			aprint_error_dev(sc->sc_dev,
   1217 			    "could not create RX buf DMA map\n");
   1218 			goto fail;
   1219 		}
   1220 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   1221 		if (data->m == NULL) {
   1222 			aprint_error_dev(sc->sc_dev,
   1223 			    "could not allocate RX mbuf\n");
   1224 			error = ENOMEM;
   1225 			goto fail;
   1226 		}
   1227 		if ((rbuf = iwn_alloc_rbuf(sc)) == NULL) {
   1228 			m_freem(data->m);
   1229 			data->m = NULL;
   1230 			aprint_error_dev(sc->sc_dev,
   1231 			   "could not allocate RX buffer\n");
   1232 			error = ENOMEM;
   1233 			goto fail;
   1234 		}
   1235 		/* Attach RX buffer to mbuf header. */
   1236 		MEXTADD(data->m, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
   1237 		    rbuf);
   1238 		data->m->m_flags |= M_EXT_RW;
   1239 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1240 		    data->m->m_ext.ext_buf, IWN_RBUF_SIZE, NULL,
   1241 		    BUS_DMA_NOWAIT);
   1242 		if (error != 0) {
   1243 			aprint_error_dev(sc->sc_dev, "can't not map mbuf"
   1244 			" (error %d)\n", error);
   1245 			goto fail;
   1246 		}
   1247 
   1248 		/* Set physical address of RX buffer (256-byte aligned.) */
   1249 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1250 	}
   1251 
   1252 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   1253 	    0, ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1254 
   1255 	return 0;
   1256 
   1257 fail:	iwn_free_rx_ring(sc, ring);
   1258 	return error;
   1259 }
   1260 
   1261 static void
   1262 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1263 {
   1264 	int ntries;
   1265 
   1266 	if (iwn_nic_lock(sc) == 0) {
   1267 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1268 		for (ntries = 0; ntries < 1000; ntries++) {
   1269 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1270 			    IWN_FH_RX_STATUS_IDLE)
   1271 				break;
   1272 			DELAY(10);
   1273 		}
   1274 		iwn_nic_unlock(sc);
   1275 	}
   1276 	ring->cur = 0;
   1277 	sc->last_rx_valid = 0;
   1278 }
   1279 
   1280 static void
   1281 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1282 {
   1283 	int i;
   1284 
   1285 	iwn_dma_contig_free(&ring->desc_dma);
   1286 	iwn_dma_contig_free(&ring->stat_dma);
   1287 
   1288 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1289 		struct iwn_rx_data *data = &ring->data[i];
   1290 
   1291 		if (data->m != NULL) {
   1292 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1293 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1294 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1295 			m_freem(data->m);
   1296 		}
   1297 		if (data->map != NULL)
   1298 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1299 	}
   1300 }
   1301 
   1302 static int
   1303 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int count,
   1304     int qid)
   1305 {
   1306 	bus_addr_t paddr;
   1307 	struct iwn_tx_data *data;
   1308 	int i, error, size;
   1309 
   1310 	ring->qid = qid;
   1311 	ring->count = count;
   1312 	ring->queued = 0;
   1313 	ring->cur = 0;
   1314 
   1315 	/* Allocate TX descriptors (256-byte aligned.) */
   1316 	size = count * sizeof (struct iwn_tx_desc);
   1317 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1318 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
   1319 	if (error != 0) {
   1320 		aprint_error_dev(sc->sc_dev,
   1321 		    "could not allocate TX ring DMA memory\n");
   1322 		goto fail;
   1323 	}
   1324 	/*
   1325 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1326 	 * to allocate commands space for other rings.
   1327 	 * XXX Do we really need to allocate descriptors for other rings?
   1328 	 */
   1329 	if (qid > 4)
   1330 		return 0;
   1331 
   1332 	size = count * sizeof (struct iwn_tx_cmd);
   1333 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1334 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
   1335 	if (error != 0) {
   1336 		aprint_error_dev(sc->sc_dev,
   1337 		    "could not allocate TX cmd DMA memory\n");
   1338 		goto fail;
   1339 	}
   1340 
   1341 	paddr = ring->cmd_dma.paddr;
   1342 
   1343 	for (i = 0; i < count; i++) {
   1344 		data = &ring->data[i];
   1345 
   1346 		data->cmd_paddr = paddr;
   1347 		data->scratch_paddr = paddr + 12;
   1348 		paddr += sizeof (struct iwn_tx_cmd);
   1349 
   1350 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1351 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1352 		    &data->map);
   1353 		if (error != 0) {
   1354 			aprint_error_dev(sc->sc_dev,
   1355 			    "could not create TX buf DMA map\n");
   1356 			goto fail;
   1357 		}
   1358 	}
   1359 	return 0;
   1360 
   1361 fail:	iwn_free_tx_ring(sc, ring);
   1362 	return error;
   1363 }
   1364 
   1365 static void
   1366 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1367 {
   1368 	struct iwn_tx_data *data;
   1369 	uint32_t tmp;
   1370 	int i, ntries;
   1371 
   1372 	if (iwn_nic_lock(sc) == 0) {
   1373 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(ring->qid), 0);
   1374 		for (ntries = 0; ntries < 200; ntries++) {
   1375 			tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
   1376 			if ((tmp & IWN_FH_TX_STATUS_IDLE(ring->qid)) ==
   1377 			    IWN_FH_TX_STATUS_IDLE(ring->qid))
   1378 				break;
   1379 			DELAY(10);
   1380 		}
   1381 		iwn_nic_unlock(sc);
   1382 	}
   1383 	for (i = 0; i < ring->count; i++) {
   1384 		data = &ring->data[i];
   1385 
   1386 		if (data->m != NULL) {
   1387 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1388 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1389 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1390 			m_freem(data->m);
   1391 			data->m = NULL;
   1392 		}
   1393 	}
   1394 	/* Clear TX descriptors. */
   1395 	memset(ring->desc, 0, ring->desc_dma.size);
   1396 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1397 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1398 	sc->qfullmsk &= ~(1 << ring->qid);
   1399 	ring->queued = 0;
   1400 	ring->cur = 0;
   1401 }
   1402 
   1403 static void
   1404 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1405 {
   1406 	struct iwn_tx_data *data;
   1407 	int i;
   1408 
   1409 	iwn_dma_contig_free(&ring->desc_dma);
   1410 	iwn_dma_contig_free(&ring->cmd_dma);
   1411 
   1412 	if (ring->data != NULL) {
   1413 		for (i = 0; i < ring->count; i++) {
   1414 			data = &ring->data[i];
   1415 
   1416 			if (data->m != NULL) {
   1417 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1418 				    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1419 				bus_dmamap_unload(sc->sc_dmat, data->map);
   1420 				m_freem(data->m);
   1421 			}
   1422 			if (data->map != NULL)
   1423 				bus_dmamap_destroy(sc->sc_dmat, data->map);
   1424 		}
   1425 		free(ring->data, M_DEVBUF);
   1426 	}
   1427 }
   1428 
   1429 static int
   1430 iwn_read_eeprom(struct iwn_softc *sc)
   1431 {
   1432 	const struct iwn_hal *hal = sc->sc_hal;
   1433 	struct ieee80211com *ic = &sc->sc_ic;
   1434 	uint16_t val;
   1435 	int error;
   1436 
   1437 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x6) == 0) {
   1438 		aprint_error_dev(sc->sc_dev, "bad EEPROM signature\n");
   1439 		return EIO;
   1440 	}
   1441 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1442 		aprint_error_dev(sc->sc_dev,
   1443 		    "could not lock EEPROM (error=%d)\n", error);
   1444 		return error;
   1445 	}
   1446 
   1447 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1448 	sc->rfcfg = le16toh(val);
   1449 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1450 
   1451 	/* Read MAC address. */
   1452 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1453 
   1454 	/* Read adapter-specific information from EEPROM. */
   1455 	hal->read_eeprom(sc);
   1456 
   1457 	iwn_eeprom_unlock(sc);
   1458 	return 0;
   1459 }
   1460 
   1461 static void
   1462 iwn4965_read_eeprom(struct iwn_softc *sc)
   1463 {
   1464 	uint32_t addr;
   1465 	uint16_t val;
   1466 	int i;
   1467 
   1468 	/* Read regulatory domain (4 ASCII characters.) */
   1469 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1470 
   1471 	/* Read the list of authorized channels (20MHz ones only.) */
   1472 	for (i = 0; i < 5; i++) {
   1473 		addr = iwn4965_regulatory_bands[i];
   1474 		iwn_read_eeprom_channels(sc, i, addr);
   1475 	}
   1476 
   1477 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1478 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1479 	sc->maxpwr2GHz = val & 0xff;
   1480 	sc->maxpwr5GHz = val >> 8;
   1481 	/* Check that EEPROM values are within valid range. */
   1482 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1483 		sc->maxpwr5GHz = 38;
   1484 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1485 		sc->maxpwr2GHz = 38;
   1486 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1487 
   1488 	/* Read samples for each TX power group. */
   1489 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1490 	    sizeof sc->bands);
   1491 
   1492 	/* Read voltage at which samples were taken. */
   1493 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1494 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1495 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1496 
   1497 #ifdef IWN_DEBUG
   1498 	/* Print samples. */
   1499 	if (iwn_debug > 0) {
   1500 		for (i = 0; i < IWN_NBANDS; i++)
   1501 			iwn4965_print_power_group(sc, i);
   1502 	}
   1503 #endif
   1504 }
   1505 
   1506 #ifdef IWN_DEBUG
   1507 static void
   1508 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1509 {
   1510 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1511 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1512 	int j, c;
   1513 
   1514 	printf("===band %d===\n", i);
   1515 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1516 	printf("chan1 num=%d\n", chans[0].num);
   1517 	for (c = 0; c < 2; c++) {
   1518 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1519 			printf("chain %d, sample %d: temp=%d gain=%d "
   1520 			    "power=%d pa_det=%d\n", c, j,
   1521 			    chans[0].samples[c][j].temp,
   1522 			    chans[0].samples[c][j].gain,
   1523 			    chans[0].samples[c][j].power,
   1524 			    chans[0].samples[c][j].pa_det);
   1525 		}
   1526 	}
   1527 	printf("chan2 num=%d\n", chans[1].num);
   1528 	for (c = 0; c < 2; c++) {
   1529 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1530 			printf("chain %d, sample %d: temp=%d gain=%d "
   1531 			    "power=%d pa_det=%d\n", c, j,
   1532 			    chans[1].samples[c][j].temp,
   1533 			    chans[1].samples[c][j].gain,
   1534 			    chans[1].samples[c][j].power,
   1535 			    chans[1].samples[c][j].pa_det);
   1536 		}
   1537 	}
   1538 }
   1539 #endif
   1540 
   1541 static void
   1542 iwn5000_read_eeprom(struct iwn_softc *sc)
   1543 {
   1544 	int32_t temp, volt, delta;
   1545 	uint32_t base, addr;
   1546 	uint16_t val;
   1547 	int i;
   1548 
   1549 	/* Read regulatory domain (4 ASCII characters.) */
   1550 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1551 	base = le16toh(val);
   1552 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1553 	    sc->eeprom_domain, 4);
   1554 
   1555 	/* Read the list of authorized channels (20MHz ones only.) */
   1556 	for (i = 0; i < 5; i++) {
   1557 		addr = base + iwn5000_regulatory_bands[i];
   1558 		iwn_read_eeprom_channels(sc, i, addr);
   1559 	}
   1560 
   1561 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1562 	base = le16toh(val);
   1563 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1564 		/* Compute critical temperature (in Kelvin.) */
   1565 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1566 		temp = le16toh(val);
   1567 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1568 		volt = le16toh(val);
   1569 		delta = temp - (volt / -5);
   1570 		sc->critical_temp = (IWN_CTOK(110) - delta) * -5;
   1571 		DPRINTF(("temp=%d volt=%d delta=%dK\n",
   1572 		    temp, volt, delta));
   1573 	} else {
   1574 		/* Read crystal calibration. */
   1575 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1576 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1577 		DPRINTF(("crystal calibration 0x%08x\n",
   1578 		    le32toh(sc->eeprom_crystal)));
   1579 	}
   1580 }
   1581 
   1582 static void
   1583 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1584 {
   1585 	struct ieee80211com *ic = &sc->sc_ic;
   1586 	const struct iwn_chan_band *band = &iwn_bands[n];
   1587 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1588 	uint8_t chan;
   1589 	int i;
   1590 
   1591 	iwn_read_prom_data(sc, addr, channels,
   1592 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1593 
   1594 	for (i = 0; i < band->nchan; i++) {
   1595 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1596 			continue;
   1597 
   1598 		chan = band->chan[i];
   1599 
   1600 		if (n == 0) {	/* 2GHz band */
   1601 			ic->ic_channels[chan].ic_freq =
   1602 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1603 			ic->ic_channels[chan].ic_flags =
   1604 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1605 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1606 
   1607 		} else {	/* 5GHz band */
   1608 			/*
   1609 			 * Some adapters support channels 7, 8, 11 and 12
   1610 			 * both in the 2GHz and 4.9GHz bands.
   1611 			 * Because of limitations in our net80211 layer,
   1612 			 * we don't support them in the 4.9GHz band.
   1613 			 */
   1614 			if (chan <= 14)
   1615 				continue;
   1616 
   1617 			ic->ic_channels[chan].ic_freq =
   1618 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1619 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1620 			/* We have at least one valid 5GHz channel. */
   1621 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1622 		}
   1623 
   1624 		/* Is active scan allowed on this channel? */
   1625 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1626 			ic->ic_channels[chan].ic_flags |=
   1627 			    IEEE80211_CHAN_PASSIVE;
   1628 		}
   1629 
   1630 		/* Save maximum allowed TX power for this channel. */
   1631 		sc->maxpwr[chan] = channels[i].maxpwr;
   1632 
   1633 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1634 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1635 	}
   1636 }
   1637 
   1638 /*ARGUSED*/
   1639 static struct ieee80211_node *
   1640 iwn_node_alloc(struct ieee80211_node_table *nt __unused)
   1641 {
   1642 	struct iwn_node *wn;
   1643 
   1644 	wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1645 	return (struct ieee80211_node *)wn;
   1646 }
   1647 
   1648 static void
   1649 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1650 {
   1651 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1652 	struct iwn_node *wn = (void *)ni;
   1653 	uint8_t rate;
   1654 	int ridx, i;
   1655 
   1656 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1657 
   1658 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1659 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1660 		/* Map 802.11 rate to HW rate index. */
   1661 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1662 			if (iwn_rates[ridx].rate == rate)
   1663 				break;
   1664 		wn->ridx[i] = ridx;
   1665 		/* Initial TX rate <= 24Mbps. */
   1666 		if (rate <= 48)
   1667 			ni->ni_txrate = i;
   1668 	}
   1669 }
   1670 
   1671 static int
   1672 iwn_media_change(struct ifnet *ifp)
   1673 {
   1674 	struct iwn_softc *sc = ifp->if_softc;
   1675 	struct ieee80211com *ic = &sc->sc_ic;
   1676 	uint8_t rate, ridx;
   1677 	int error;
   1678 
   1679 	error = ieee80211_media_change(ifp);
   1680 	if (error != ENETRESET)
   1681 		return error;
   1682 
   1683 	if (ic->ic_fixed_rate != -1) {
   1684 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1685 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1686 		/* Map 802.11 rate to HW rate index. */
   1687 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1688 			if (iwn_rates[ridx].rate == rate)
   1689 				break;
   1690 		sc->fixed_ridx = ridx;
   1691 	}
   1692 
   1693 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1694 	    (IFF_UP | IFF_RUNNING)) {
   1695 		iwn_stop(ifp, 0);
   1696 		error = iwn_init(ifp);
   1697 	}
   1698 	return error;
   1699 }
   1700 
   1701 static int
   1702 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1703 {
   1704 	struct ifnet *ifp = ic->ic_ifp;
   1705 	struct iwn_softc *sc = ifp->if_softc;
   1706 	int error;
   1707 
   1708 	callout_stop(&sc->calib_to);
   1709 
   1710 	switch (nstate) {
   1711 	case IEEE80211_S_SCAN:
   1712 		if (sc->is_scanning)
   1713 			break;
   1714 
   1715 		sc->is_scanning = true;
   1716 		ieee80211_node_table_reset(&ic->ic_scan);
   1717 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1718 
   1719 		/* Make the link LED blink while we're scanning. */
   1720 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1721 
   1722 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1723 			aprint_error_dev(sc->sc_dev,
   1724 			    "could not initiate scan\n");
   1725 			return error;
   1726 		}
   1727 		ic->ic_state = nstate;
   1728 		return 0;
   1729 
   1730 	case IEEE80211_S_ASSOC:
   1731 		if (ic->ic_state != IEEE80211_S_RUN)
   1732 			break;
   1733 		/* FALLTHROUGH */
   1734 	case IEEE80211_S_AUTH:
   1735 		/* Reset state to handle reassociations correctly. */
   1736 		sc->rxon.associd = 0;
   1737 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1738 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1739 
   1740 		if ((error = iwn_auth(sc)) != 0) {
   1741 			aprint_error_dev(sc->sc_dev,
   1742 			    "could not move to auth state\n");
   1743 			return error;
   1744 		}
   1745 		break;
   1746 
   1747 	case IEEE80211_S_RUN:
   1748 		if ((error = iwn_run(sc)) != 0) {
   1749 			aprint_error_dev(sc->sc_dev,
   1750 			    "could not move to run state\n");
   1751 			return error;
   1752 		}
   1753 		break;
   1754 
   1755 	case IEEE80211_S_INIT:
   1756 		sc->is_scanning = false;
   1757 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1758 		break;
   1759 	}
   1760 
   1761 	return sc->sc_newstate(ic, nstate, arg);
   1762 }
   1763 
   1764 static void
   1765 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1766 {
   1767 	struct iwn_softc *sc = arg;
   1768 	struct iwn_node *wn = (struct iwn_node *)ni;
   1769 
   1770 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1771 }
   1772 
   1773 static void
   1774 iwn_calib_timeout(void *arg)
   1775 {
   1776 	struct iwn_softc *sc = arg;
   1777 	struct ieee80211com *ic = &sc->sc_ic;
   1778 	int s;
   1779 
   1780 	if (ic->ic_fixed_rate == -1) {
   1781 		s = splnet();
   1782 		if (ic->ic_opmode == IEEE80211_M_STA)
   1783 			iwn_iter_func(sc, ic->ic_bss);
   1784 		else
   1785 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1786 		splx(s);
   1787 	}
   1788 	/* Force automatic TX power calibration every 60 secs. */
   1789 	if (++sc->calib_cnt >= 120) {
   1790 		uint32_t flags = 0;
   1791 
   1792 		DPRINTF(("sending request for statistics\n"));
   1793 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   1794 		    sizeof flags, 1);
   1795 		sc->calib_cnt = 0;
   1796 	}
   1797 	/* Automatic rate control triggered every 500ms. */
   1798 	callout_schedule(&sc->calib_to, hz/2);
   1799 }
   1800 
   1801 #if 0
   1802 static int
   1803 iwn_ccmp_decap(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_key *k)
   1804 {
   1805 	struct ieee80211_frame *wh;
   1806 	uint64_t pn, *prsc;
   1807 	uint8_t *ivp;
   1808 	uint8_t tid;
   1809 	int hdrlen;
   1810 
   1811 	wh = mtod(m, struct ieee80211_frame *);
   1812 	hdrlen = ieee80211_get_hdrlen(wh);
   1813 	ivp = (uint8_t *)wh + hdrlen;
   1814 
   1815 	/* Check that ExtIV bit is be set. */
   1816 	if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
   1817 		DPRINTF(("CCMP decap ExtIV not set\n"));
   1818 		return 1;
   1819 	}
   1820 	tid = ieee80211_has_qos(wh) ?
   1821 	    ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
   1822 	prsc = &k->k_rsc[tid];
   1823 
   1824 	/* Extract the 48-bit PN from the CCMP header. */
   1825 	pn = (uint64_t)ivp[0]       |
   1826 	     (uint64_t)ivp[1] <<  8 |
   1827 	     (uint64_t)ivp[4] << 16 |
   1828 	     (uint64_t)ivp[5] << 24 |
   1829 	     (uint64_t)ivp[6] << 32 |
   1830 	     (uint64_t)ivp[7] << 40;
   1831 	if (pn <= *prsc) {
   1832 		/*
   1833 		 * Not necessarily a replayed frame since we did not check
   1834 		 * the sequence number of the 802.11 header yet.
   1835 		 */
   1836 		DPRINTF(("CCMP replayed\n"));
   1837 		return 1;
   1838 	}
   1839 	/* Update last seen packet number. */
   1840 	*prsc = pn;
   1841 
   1842 	/* Clear Protected bit and strip IV. */
   1843 	wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
   1844 	memmove(mtod(m, char *) + IEEE80211_CCMP_HDRLEN, wh, hdrlen);
   1845 	m_adj(m, IEEE80211_CCMP_HDRLEN);
   1846 	/* Strip MIC. */
   1847 	m_adj(m, -IEEE80211_CCMP_MICLEN);
   1848 	return 0;
   1849 }
   1850 #endif
   1851 
   1852 /*
   1853  * Process an RX_PHY firmware notification.  This is usually immediately
   1854  * followed by an MPDU_RX_DONE notification.
   1855  */
   1856 void
   1857 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   1858 {
   1859 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   1860 
   1861 	DPRINTFN(2, ("received PHY stats\n"));
   1862 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.buf_dma.map,
   1863 	    (vaddr_t)stat - (vaddr_t)sc->rxq.buf_dma.vaddr, sizeof (*stat),
   1864 	    BUS_DMASYNC_POSTREAD);
   1865 
   1866 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   1867 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   1868 	sc->last_rx_valid = 1;
   1869 }
   1870 
   1871 /*
   1872  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   1873  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   1874  */
   1875 void
   1876 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1877     struct iwn_rx_data *data)
   1878 {
   1879 	const struct iwn_hal *hal = sc->sc_hal;
   1880 	struct ieee80211com *ic = &sc->sc_ic;
   1881 	struct ifnet *ifp = ic->ic_ifp;
   1882 	struct iwn_rx_ring *ring = &sc->rxq;
   1883 	struct iwn_rbuf *rbuf;
   1884 	struct ieee80211_frame *wh;
   1885 	struct ieee80211_node *ni;
   1886 	struct mbuf *m, *m1;
   1887 	struct iwn_rx_stat *stat;
   1888 	char * head;
   1889 	uint32_t flags;
   1890 	int len, rssi, error;
   1891 
   1892 	if (desc->type == IWN_MPDU_RX_DONE) {
   1893 		/* Check for prior RX_PHY notification. */
   1894 		if (!sc->last_rx_valid) {
   1895 			DPRINTF(("missing RX_PHY\n"));
   1896 			ifp->if_ierrors++;
   1897 			return;
   1898 		}
   1899 		sc->last_rx_valid = 0;
   1900 		stat = &sc->last_rx_stat;
   1901 	} else
   1902 		stat = (struct iwn_rx_stat *)(desc + 1);
   1903 
   1904 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   1905 	    BUS_DMASYNC_POSTREAD);
   1906 
   1907 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   1908 		aprint_error_dev(sc->sc_dev, "invalid RX statistic header\n");
   1909 		ifp->if_ierrors++;
   1910 		return;
   1911 	}
   1912 	if (desc->type == IWN_MPDU_RX_DONE) {
   1913 		struct iwn_rx_mpdu *mpdu =
   1914 		    (struct iwn_rx_mpdu *)(desc + 1);
   1915 		head = (char *)(mpdu + 1);
   1916 		len = le16toh(mpdu->len);
   1917 	} else {
   1918 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   1919 		len = le16toh(stat->len);
   1920 	}
   1921 
   1922 	flags = le32toh(*(uint32_t *)(head + len));
   1923 
   1924 	/* Discard frames with a bad FCS early. */
   1925 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   1926 		DPRINTFN(2, ("RX flags error %x\n", flags));
   1927 		ifp->if_ierrors++;
   1928 		return;
   1929 	}
   1930 	/* Discard frames that are too short. */
   1931 	if (len < sizeof (struct ieee80211_frame)) {
   1932 		DPRINTF(("frame too short: %d\n", len));
   1933 		ic->ic_stats.is_rx_tooshort++;
   1934 		ifp->if_ierrors++;
   1935 		return;
   1936 	}
   1937 
   1938 	/*
   1939 	 * See comment in if_wpi.c:wpi_rx_intr() about locking
   1940 	 * nb_free_entries here.  In short:  it's not required.
   1941 	 */
   1942 	MGETHDR(m1, M_DONTWAIT, MT_DATA);
   1943 	if (m1 == NULL) {
   1944 		ic->ic_stats.is_rx_nobuf++;
   1945 		ifp->if_ierrors++;
   1946 		return;
   1947 	}
   1948 	if (sc->rxq.nb_free_entries <= 0) {
   1949 		ic->ic_stats.is_rx_nobuf++;
   1950 		ifp->if_ierrors++;
   1951 		m_freem(m1);
   1952 		return;
   1953 	}
   1954 	rbuf = iwn_alloc_rbuf(sc);
   1955 	/* Attach RX buffer to mbuf header. */
   1956 	MEXTADD(m1, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
   1957 	    rbuf);
   1958 	m1->m_flags |= M_EXT_RW;
   1959 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1960 
   1961 	error = bus_dmamap_load(sc->sc_dmat, data->map, m1->m_ext.ext_buf,
   1962 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT);
   1963 	if (error != 0) {
   1964 		m_freem(m1);
   1965 
   1966 		/* Try to reload the old mbuf. */
   1967 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1968 		    data->m->m_ext.ext_buf, IWN_RBUF_SIZE, NULL,
   1969 		    BUS_DMA_NOWAIT);
   1970 		if (error != 0) {
   1971 			panic("%s: could not load old RX mbuf",
   1972 			    device_xname(sc->sc_dev));
   1973 		}
   1974 		/* Physical address may have changed. */
   1975 		ring->desc[ring->cur] =
   1976 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   1977 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   1978 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   1979 		    BUS_DMASYNC_PREWRITE);
   1980 		ifp->if_ierrors++;
   1981 		return;
   1982 	}
   1983 	m = data->m;
   1984 	data->m = m1;
   1985 
   1986 	/* Update RX descriptor. */
   1987 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1988 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   1989 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   1990 	    BUS_DMASYNC_PREWRITE);
   1991 
   1992 	/* Finalize mbuf. */
   1993 	m->m_pkthdr.rcvif = ifp;
   1994 	m->m_data = head;
   1995 	m->m_pkthdr.len = m->m_len = len;
   1996 
   1997 	/* Grab a reference to the source node. */
   1998 	wh = mtod(m, struct ieee80211_frame *);
   1999 	ni = ieee80211_find_rxnode(ic,(struct ieee80211_frame_min *)wh);
   2000 
   2001 #if 0
   2002 	rxi.rxi_flags = 0;
   2003 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
   2004 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
   2005 	    (ni->ni_flags & IEEE80211_NODE_RXPROT) &&
   2006 	    ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
   2007 		if ((flags & IWN_RX_CIPHER_MASK) != IWN_RX_CIPHER_CCMP) {
   2008 			ic->ic_stats.is_ccmp_dec_errs++;
   2009 			ifp->if_ierrors++;
   2010 			return;
   2011 		}
   2012 		/* Check whether decryption was successful or not. */
   2013 		if ((desc->type == IWN_MPDU_RX_DONE &&
   2014 		     (flags & (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) !=
   2015 		      (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) ||
   2016 		    (desc->type != IWN_MPDU_RX_DONE &&
   2017 		     (flags & IWN_RX_DECRYPT_MASK) != IWN_RX_DECRYPT_OK)) {
   2018 			DPRINTF(("CCMP decryption failed 0x%x\n", flags));
   2019 			ic->ic_stats.is_ccmp_dec_errs++;
   2020 			ifp->if_ierrors++;
   2021 			return;
   2022 		}
   2023 		if (iwn_ccmp_decap(sc, m, &ni->ni_pairwise_key) != 0) {
   2024 			ifp->if_ierrors++;
   2025 			return;
   2026 		}
   2027 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
   2028 	}
   2029 #endif
   2030 
   2031 	rssi = hal->get_rssi(stat);
   2032 	if (ic->ic_state == IEEE80211_S_SCAN)
   2033 		iwn_fix_channel(ic, m);
   2034 
   2035 #if NBPFILTER > 0
   2036 	if (sc->sc_drvbpf != NULL) {
   2037 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2038 
   2039 		tap->wr_flags = 0;
   2040 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2041 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2042 		tap->wr_chan_freq =
   2043 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2044 		tap->wr_chan_flags =
   2045 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2046 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2047 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2048 		tap->wr_tsft = stat->tstamp;
   2049 		switch (stat->rate) {
   2050 		/* CCK rates. */
   2051 		case  10: tap->wr_rate =   2; break;
   2052 		case  20: tap->wr_rate =   4; break;
   2053 		case  55: tap->wr_rate =  11; break;
   2054 		case 110: tap->wr_rate =  22; break;
   2055 		/* OFDM rates. */
   2056 		case 0xd: tap->wr_rate =  12; break;
   2057 		case 0xf: tap->wr_rate =  18; break;
   2058 		case 0x5: tap->wr_rate =  24; break;
   2059 		case 0x7: tap->wr_rate =  36; break;
   2060 		case 0x9: tap->wr_rate =  48; break;
   2061 		case 0xb: tap->wr_rate =  72; break;
   2062 		case 0x1: tap->wr_rate =  96; break;
   2063 		case 0x3: tap->wr_rate = 108; break;
   2064 		/* Unknown rate: should not happen. */
   2065 		default:  tap->wr_rate =   0;
   2066 		}
   2067 
   2068 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   2069 	}
   2070 #endif
   2071 
   2072 	/* Send the frame to the 802.11 layer. */
   2073 	ieee80211_input(ic, m, ni, rssi, 0);
   2074 
   2075 	/* Node is no longer needed. */
   2076 	ieee80211_free_node(ni);
   2077 }
   2078 
   2079 /*
   2080  * Process a CALIBRATION_RESULT notification sent by the initialization
   2081  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
   2082  */
   2083 void
   2084 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2085     struct iwn_rx_data *data)
   2086 {
   2087 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2088 	int len, idx = -1;
   2089 
   2090 	/* Runtime firmware should not send such a notification. */
   2091 	if (!(sc->sc_flags & IWN_FLAG_FIRST_BOOT))
   2092 		return;
   2093 
   2094 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2095 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2096 	    BUS_DMASYNC_POSTREAD);
   2097 
   2098 	switch (calib->code) {
   2099 	case IWN5000_PHY_CALIB_DC:
   2100 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   2101 			idx = 0;
   2102 		break;
   2103 	case IWN5000_PHY_CALIB_LO:
   2104 		idx = 1;
   2105 		break;
   2106 	case IWN5000_PHY_CALIB_TX_IQ:
   2107 		idx = 2;
   2108 		break;
   2109 	case IWN5000_PHY_CALIB_TX_IQ_PERD:
   2110 		if (sc->hw_type != IWN_HW_REV_TYPE_5150)
   2111 			idx = 3;
   2112 		break;
   2113 	case IWN5000_PHY_CALIB_BASE_BAND:
   2114 		idx = 4;
   2115 		break;
   2116 	}
   2117 	if (idx == -1)	/* Ignore other results. */
   2118 		return;
   2119 
   2120 	/* Save calibration result. */
   2121 	if (sc->calibcmd[idx].buf != NULL)
   2122 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2123 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2124 	if (sc->calibcmd[idx].buf == NULL) {
   2125 		DPRINTF(("not enough memory for calibration result %d\n",
   2126 		    calib->code));
   2127 		return;
   2128 	}
   2129 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2130 	    calib->code, len));
   2131 	sc->calibcmd[idx].len = len;
   2132 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2133 }
   2134 
   2135 
   2136 /*
   2137  * XXX: Hack to set the current channel to the value advertised in beacons or
   2138  * probe responses. Only used during AP detection.
   2139  * XXX: Duplicated from if_iwi.c
   2140  */
   2141 static void
   2142 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
   2143 {
   2144 	struct ieee80211_frame *wh;
   2145 	uint8_t subtype;
   2146 	uint8_t *frm, *efrm;
   2147 
   2148 	wh = mtod(m, struct ieee80211_frame *);
   2149 
   2150 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   2151 		return;
   2152 
   2153 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2154 
   2155 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   2156 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   2157 		return;
   2158 
   2159 	frm = (uint8_t *)(wh + 1);
   2160 	efrm = mtod(m, uint8_t *) + m->m_len;
   2161 
   2162 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   2163 	while (frm < efrm) {
   2164 		if (*frm == IEEE80211_ELEMID_DSPARMS)
   2165 #if IEEE80211_CHAN_MAX < 255
   2166 		if (frm[2] <= IEEE80211_CHAN_MAX)
   2167 #endif
   2168 			ic->ic_curchan = &ic->ic_channels[frm[2]];
   2169 
   2170 		frm += frm[1] + 2;
   2171 	}
   2172 }
   2173 
   2174 
   2175 /*
   2176  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2177  * The latter is sent by the firmware after each received beacon.
   2178  */
   2179 static void
   2180 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2181     struct iwn_rx_data *data)
   2182 {
   2183 	struct ieee80211com *ic = &sc->sc_ic;
   2184 	struct iwn_calib_state *calib = &sc->calib;
   2185 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2186 
   2187 	/* Ignore statistics received during a scan. */
   2188 	if (ic->ic_state != IEEE80211_S_RUN)
   2189 		return;
   2190 
   2191 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2192 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2193 
   2194 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2195 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2196 
   2197 #if 0
   2198 	/* Test if temperature has changed. */
   2199 	if (stats->general.temp != sc->rawtemp) {
   2200 		/* Convert "raw" temperature to degC. */
   2201 		sc->rawtemp = stats->general.temp;
   2202 		temp = hal->get_temperature(sc);
   2203 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2204 
   2205 		/* Update temperature sensor. */
   2206 		sc->sensor.value = IWN_CTOMUK(temp);
   2207 		sc->sensor.flags &= ~SENSOR_FINVALID;
   2208 
   2209 		/* Update TX power if need be (4965AGN only.) */
   2210 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2211 			iwn4965_power_calibration(sc, temp);
   2212 	}
   2213 #endif
   2214 
   2215 	if (desc->type != IWN_BEACON_STATISTICS)
   2216 		return;	/* Reply to a statistics request. */
   2217 
   2218 	sc->noise = iwn_get_noise(&stats->rx.general);
   2219 
   2220 	/* Test that RSSI and noise are present in stats report. */
   2221 	if (le32toh(stats->rx.general.flags) != 1) {
   2222 		DPRINTF(("received statistics without RSSI\n"));
   2223 		return;
   2224 	}
   2225 
   2226 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2227 		iwn_collect_noise(sc, &stats->rx.general);
   2228 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2229 		iwn_tune_sensitivity(sc, &stats->rx);
   2230 }
   2231 
   2232 /*
   2233  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2234  * and 5000 adapters have different incompatible TX status formats.
   2235  */
   2236 static void
   2237 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2238     struct iwn_rx_data *data)
   2239 {
   2240 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2241 
   2242 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2243 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2244 	iwn_tx_done(sc, desc, stat->retrycnt, le32toh(stat->status) & 0xff);
   2245 }
   2246 
   2247 static void
   2248 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2249     struct iwn_rx_data *data)
   2250 {
   2251 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2252 
   2253 	/* Reset TX scheduler slot. */
   2254 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2255 
   2256 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2257 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2258 	iwn_tx_done(sc, desc, stat->retrycnt, le16toh(stat->status) & 0xff);
   2259 }
   2260 
   2261 /*
   2262  * Adapter-independent backend for TX_DONE firmware notifications.
   2263  */
   2264 static void
   2265 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int retrycnt,
   2266     uint8_t status)
   2267 {
   2268 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2269 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2270 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2271 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2272 
   2273 	/* Update rate control statistics. */
   2274 	wn->amn.amn_txcnt++;
   2275 	if (retrycnt > 0)
   2276 		wn->amn.amn_retrycnt++;
   2277 
   2278 	if (status != 1 && status != 2)
   2279 		ifp->if_oerrors++;
   2280 	else
   2281 		ifp->if_opackets++;
   2282 
   2283 	/* Unmap and free mbuf. */
   2284 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2285 	    BUS_DMASYNC_POSTWRITE);
   2286 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2287 	m_freem(data->m);
   2288 	data->m = NULL;
   2289 	ieee80211_free_node(data->ni);
   2290 	data->ni = NULL;
   2291 
   2292 	sc->sc_tx_timer = 0;
   2293 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2294 		sc->qfullmsk &= ~(1 << ring->qid);
   2295 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2296 			ifp->if_flags &= ~IFF_OACTIVE;
   2297 			iwn_start(ifp);
   2298 		}
   2299 	}
   2300 }
   2301 
   2302 /*
   2303  * Process a "command done" firmware notification.  This is where we wakeup
   2304  * processes waiting for a synchronous command completion.
   2305  */
   2306 static void
   2307 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2308 {
   2309 	struct iwn_tx_ring *ring = &sc->txq[4];
   2310 	struct iwn_tx_data *data;
   2311 
   2312 	if ((desc->qid & 0xf) != 4)
   2313 		return;	/* Not a command ack. */
   2314 
   2315 	data = &ring->data[desc->idx];
   2316 
   2317 	/* If the command was mapped in an mbuf, free it. */
   2318 	if (data->m != NULL) {
   2319 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2320 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2321 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2322 		m_freem(data->m);
   2323 		data->m = NULL;
   2324 	}
   2325 	wakeup(&ring->desc[desc->idx]);
   2326 }
   2327 
   2328 /*
   2329  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2330  */
   2331 static void
   2332 iwn_microcode_ready(struct iwn_softc *sc, struct iwn_ucode_info *uc)
   2333 {
   2334 
   2335 	/* The microcontroller is ready */
   2336 	DPRINTF(("microcode alive notification version=%d.%d "
   2337 		 "subtype=%x alive=%x\n", uc->major, uc->minor,
   2338 		 uc->subtype, le32toh(uc->valid)));
   2339 
   2340 
   2341 	if (le32toh(uc->valid) != 1) {
   2342 		aprint_error_dev(sc->sc_dev, "microcontroller initialization "
   2343 				 "failed\n");
   2344 		return;
   2345 	}
   2346 	if (uc->subtype == IWN_UCODE_INIT) {
   2347 		/* save microcontroller's report */
   2348 		memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2349 	}
   2350 	/* Save the address of the error log in SRAM. */
   2351 	sc->errptr = le32toh(uc->errptr);
   2352 }
   2353 
   2354 static void
   2355 iwn_notif_intr(struct iwn_softc *sc)
   2356 {
   2357 	struct ieee80211com *ic = &sc->sc_ic;
   2358 	struct ifnet *ifp = ic->ic_ifp;
   2359 	struct iwn_rx_data *data;
   2360 	struct iwn_rx_desc *desc;
   2361 	uint16_t hw;
   2362 
   2363 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2364 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2365 
   2366 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2367 
   2368 	/*
   2369 	 * If the radio is disabled then down the interface and stop
   2370 	 * processing - scan the queue for a microcode load command
   2371 	 * result.  It is the only thing that we can do with the radio
   2372 	 * off.
   2373 	 */
   2374 	if (!sc->sc_radio) {
   2375 		while (sc->rxq.cur != hw) {
   2376 			data = &sc->rxq.data[sc->rxq.cur];
   2377 			desc = (void *)data->m->m_ext.ext_buf;
   2378 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2379 			    sizeof(*desc), BUS_DMASYNC_POSTREAD);
   2380 			if (desc->type == IWN_UC_READY) {
   2381 				iwn_microcode_ready(sc,
   2382 				    (struct iwn_ucode_info *)(desc + 1));
   2383 			} else if (desc->type == IWN_STATE_CHANGED) {
   2384 				uint32_t *status = (uint32_t *)(desc + 1);
   2385 
   2386 				/* enabled/disabled notification */
   2387 				DPRINTF(("state changed to %x\n",
   2388 					 le32toh(*status)));
   2389 
   2390 				sc->sc_radio = !(le32toh(*status) & 1);
   2391 			}
   2392 
   2393 			sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2394 		}
   2395 
   2396 		if (!sc->sc_radio) {
   2397 			iwn_stop(ifp, 1);
   2398 		}
   2399 
   2400 		return;
   2401 	}
   2402 
   2403 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2404 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2405 
   2406 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2407 	while (sc->rxq.cur != hw) {
   2408 		data = &sc->rxq.data[sc->rxq.cur];
   2409 		desc = (void *)data->m->m_ext.ext_buf;
   2410 
   2411 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2412 		    BUS_DMASYNC_POSTREAD);
   2413 
   2414 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2415 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2416 
   2417 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2418 			iwn_cmd_done(sc, desc);
   2419 
   2420 		switch (desc->type) {
   2421 		case IWN_RX_PHY:
   2422 			iwn_rx_phy(sc, desc);
   2423 			break;
   2424 
   2425 		case IWN_RX_DONE:		/* 4965AGN only. */
   2426 		case IWN_MPDU_RX_DONE:
   2427 			/* An 802.11 frame has been received. */
   2428 			iwn_rx_done(sc, desc, data);
   2429 			break;
   2430 
   2431 		case IWN_TX_DONE:
   2432 			/* An 802.11 frame has been transmitted. */
   2433 			sc->sc_hal->tx_done(sc, desc, data);
   2434 			break;
   2435 
   2436 		case IWN_RX_STATISTICS:
   2437 		case IWN_BEACON_STATISTICS:
   2438 			iwn_rx_statistics(sc, desc, data);
   2439 			break;
   2440 
   2441 		case IWN_BEACON_MISSED:
   2442 		{
   2443 			struct iwn_beacon_missed *miss =
   2444 			    (struct iwn_beacon_missed *)(desc + 1);
   2445 
   2446 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2447 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2448 			/*
   2449 			 * If more than 5 consecutive beacons are missed,
   2450 			 * reinitialize the sensitivity state machine.
   2451 			 */
   2452 			DPRINTF(("beacons missed %d/%d\n",
   2453 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2454 			if (ic->ic_state == IEEE80211_S_RUN &&
   2455 			    le32toh(miss->consecutive) > 5)
   2456 				(void)iwn_init_sensitivity(sc);
   2457 			break;
   2458 		}
   2459 		case IWN_UC_READY:
   2460 		{
   2461 			iwn_microcode_ready(sc,
   2462 			    (struct iwn_ucode_info *)(desc + 1));
   2463 			break;
   2464 		}
   2465 		case IWN_STATE_CHANGED:
   2466 		{
   2467 			uint32_t *status = (uint32_t *)(desc + 1);
   2468 
   2469 			/* Enabled/disabled notification. */
   2470 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2471 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2472 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2473 
   2474 			sc->sc_radio = !(le32toh(*status) & 1);
   2475 
   2476 			if (le32toh(*status) & 1) {
   2477 				/* The radio button has to be pushed. */
   2478 				aprint_error_dev(sc->sc_dev,
   2479 				    "Radio transmitter is off\n");
   2480 				/* Turn the interface down. */
   2481 				iwn_stop(ifp, 1);
   2482 				return;	/* No further processing. */
   2483 			}
   2484 			break;
   2485 		}
   2486 		case IWN_START_SCAN:
   2487 		{
   2488 			struct iwn_start_scan *scan =
   2489 			    (struct iwn_start_scan *)(desc + 1);
   2490 
   2491 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2492 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2493 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2494 			    scan->chan, le32toh(scan->status)));
   2495 
   2496 			/* Fix current channel. */
   2497 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2498 			break;
   2499 		}
   2500 		case IWN_STOP_SCAN:
   2501 		{
   2502 			struct iwn_stop_scan *scan =
   2503 			    (struct iwn_stop_scan *)(desc + 1);
   2504 
   2505 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2506 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2507 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2508 			    scan->nchan, scan->status, scan->chan));
   2509 
   2510 			if (scan->status == 1 && scan->chan <= 14 &&
   2511 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2512 				/*
   2513 				 * We just finished scanning 2GHz channels,
   2514 				 * start scanning 5GHz ones.
   2515 				 */
   2516 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2517 					break;
   2518 			}
   2519 			sc->is_scanning = false;
   2520 			ieee80211_end_scan(ic);
   2521 			break;
   2522 		}
   2523 		case IWN5000_CALIBRATION_RESULT:
   2524 			iwn5000_rx_calib_results(sc, desc, data);
   2525 			break;
   2526 
   2527 		case IWN5000_CALIBRATION_DONE:
   2528 			wakeup(sc);
   2529 			break;
   2530 		}
   2531 
   2532 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2533 	}
   2534 
   2535 	/* Tell the firmware what we have processed. */
   2536 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2537 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2538 }
   2539 
   2540 /*
   2541  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2542  * from power-down sleep mode.
   2543  */
   2544 static void
   2545 iwn_wakeup_intr(struct iwn_softc *sc)
   2546 {
   2547 	int qid;
   2548 
   2549 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2550 
   2551 	/* Wakeup RX and TX rings. */
   2552 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2553 	for (qid = 0; qid < 6; qid++) {
   2554 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2555 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2556 	}
   2557 }
   2558 
   2559 /*
   2560  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2561  * we can't debug the firmware because it is neither open source nor free, it
   2562  * can help us to identify certain classes of problems.
   2563  */
   2564 void
   2565 iwn_fatal_intr(struct iwn_softc *sc)
   2566 {
   2567 	const struct iwn_hal *hal = sc->sc_hal;
   2568 	struct iwn_fw_dump dump;
   2569 	int i;
   2570 
   2571 	/* Check that the error log address is valid. */
   2572 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2573 	    sc->errptr + sizeof (dump) >
   2574 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
   2575 		aprint_error_dev(sc->sc_dev,
   2576 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2577 		return;
   2578 	}
   2579 	if (iwn_nic_lock(sc) != 0) {
   2580 		aprint_error_dev(sc->sc_dev,
   2581 		    "could not read firmware error log\n");
   2582 		return;
   2583 	}
   2584 	/* Read firmware error log from SRAM. */
   2585 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2586 	    sizeof (dump) / sizeof (uint32_t));
   2587 	iwn_nic_unlock(sc);
   2588 
   2589 	if (dump.valid == 0) {
   2590 		aprint_error_dev(sc->sc_dev, "firmware error log is empty\n");
   2591 		return;
   2592 	}
   2593 	printf("firmware error log:\n");
   2594 #if 0
   2595 	printf("  error type      = \"%s\" (0x%08X)\n",
   2596 	    (dump.id < nitems(iwn_fw_errmsg)) ?
   2597 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2598 	    dump.id);
   2599 #endif
   2600 	printf("  program counter = 0x%08X\n", dump.pc);
   2601 	printf("  source line     = 0x%08X\n", dump.src_line);
   2602 	printf("  error data      = 0x%08X%08X\n",
   2603 	    dump.error_data[0], dump.error_data[1]);
   2604 	printf("  branch link     = 0x%08X%08X\n",
   2605 	    dump.branch_link[0], dump.branch_link[1]);
   2606 	printf("  interrupt link  = 0x%08X%08X\n",
   2607 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2608 	printf("  time	    = %u\n", dump.time[0]);
   2609 
   2610 	/* Dump driver status (TX and RX rings) while we're here. */
   2611 	printf("driver status:\n");
   2612 	for (i = 0; i < hal->ntxqs; i++) {
   2613 		struct iwn_tx_ring *ring = &sc->txq[i];
   2614 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2615 		    i, ring->qid, ring->cur, ring->queued);
   2616 	}
   2617 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
   2618 	printf("  802.11 state %d\n", sc->sc_ic.ic_state);
   2619 }
   2620 
   2621 static int
   2622 iwn_intr(void *arg)
   2623 {
   2624 	struct iwn_softc *sc = arg;
   2625 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2626 	uint32_t r1, r2;
   2627 
   2628 	/* Disable interrupts. */
   2629 	IWN_WRITE(sc, IWN_MASK, 0);
   2630 
   2631 	r1 = IWN_READ(sc, IWN_INT);
   2632 	r2 = IWN_READ(sc, IWN_FH_INT);
   2633 
   2634 	if (r1 == 0 && r2 == 0) {
   2635 		if (ifp->if_flags & IFF_UP)
   2636 			IWN_WRITE(sc, IWN_MASK, IWN_INT_MASK);
   2637 		return 0;	/* Interrupt not for us. */
   2638 	}
   2639 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2640 		return 0;	/* Hardware gone! */
   2641 
   2642 	/* Acknowledge interrupts. */
   2643 	IWN_WRITE(sc, IWN_INT, r1);
   2644 	IWN_WRITE(sc, IWN_FH_INT, r2);
   2645 
   2646 	if (r1 & IWN_INT_RF_TOGGLED) {
   2647 		uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2648 		aprint_error_dev(sc->sc_dev, "RF switch: radio %s\n",
   2649 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2650 		sc->sc_radio = (tmp & IWN_GP_CNTRL_RFKILL);
   2651 	}
   2652 	if (r1 & IWN_INT_CT_REACHED) {
   2653 		aprint_error_dev(sc->sc_dev, "critical temperature reached!\n");
   2654 		/* XXX Reduce TX power? */
   2655 	}
   2656 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2657 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   2658 		/* Dump firmware error log and stop. */
   2659 		iwn_fatal_intr(sc);
   2660 		iwn_stop(sc->sc_ic.ic_ifp, 1);
   2661 		return 1;
   2662 	}
   2663 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) ||
   2664 	    (r2 & IWN_FH_INT_RX))
   2665 		iwn_notif_intr(sc);
   2666 
   2667 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX))
   2668 		wakeup(sc);	/* FH DMA transfer completed. */
   2669 
   2670 	if (r1 & IWN_INT_ALIVE)
   2671 		wakeup(sc);	/* Firmware is alive. */
   2672 
   2673 	if (r1 & IWN_INT_WAKEUP)
   2674 		iwn_wakeup_intr(sc);
   2675 
   2676 	/* Re-enable interrupts. */
   2677 	if (ifp->if_flags & IFF_UP)
   2678 		IWN_WRITE(sc, IWN_MASK, IWN_INT_MASK);
   2679 
   2680 	return 1;
   2681 }
   2682 
   2683 /*
   2684  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2685  * 5000 adapters use a slightly different format.)
   2686  */
   2687 static void
   2688 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2689     uint16_t len)
   2690 {
   2691 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2692 
   2693 	*w = htole16(len + 8);
   2694 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2695 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2696 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2697 	if (idx < IWN_SCHED_WINSZ) {
   2698 		*(w + IWN_TX_RING_COUNT) = *w;
   2699 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2700 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2701 		    (char *)(void *)sc->sched_dma.vaddr,
   2702 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2703 	}
   2704 }
   2705 
   2706 static void
   2707 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2708     uint16_t len)
   2709 {
   2710 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2711 
   2712 	*w = htole16(id << 12 | (len + 8));
   2713 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2714 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2715 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2716 	if (idx < IWN_SCHED_WINSZ) {
   2717 		*(w + IWN_TX_RING_COUNT) = *w;
   2718 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2719 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2720 		    (char *)(void *)sc->sched_dma.vaddr,
   2721 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2722 	}
   2723 }
   2724 
   2725 static void
   2726 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2727 {
   2728 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2729 
   2730 	*w = (*w & htole16(0xf000)) | htole16(1);
   2731 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2732 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2733 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2734 	if (idx < IWN_SCHED_WINSZ) {
   2735 		*(w + IWN_TX_RING_COUNT) = *w;
   2736 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2737 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2738 		    (char *)(void *)sc->sched_dma.vaddr,
   2739 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2740 	}
   2741 }
   2742 
   2743 static int
   2744 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2745 {
   2746 	const struct iwn_hal *hal = sc->sc_hal;
   2747 	struct ieee80211com *ic = &sc->sc_ic;
   2748 	struct iwn_node *wn = (void *)ni;
   2749 	struct iwn_tx_ring *ring;
   2750 	struct iwn_tx_desc *desc;
   2751 	struct iwn_tx_data *data;
   2752 	struct iwn_tx_cmd *cmd;
   2753 	struct iwn_cmd_data *tx;
   2754 	const struct iwn_rate *rinfo;
   2755 	struct ieee80211_frame *wh;
   2756 	struct ieee80211_key *k = NULL;
   2757 	const struct chanAccParams *cap;
   2758 	struct mbuf *m1;
   2759 	uint32_t flags;
   2760 	u_int hdrlen;
   2761 	bus_dma_segment_t *seg;
   2762 	uint8_t ridx, txant, type;
   2763 	int i, totlen, error, pad, noack;
   2764 
   2765 	wh = mtod(m, struct ieee80211_frame *);
   2766 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2767 
   2768 	/* JAF XXX two lines above were not in wpi. check we don't duplicate this */
   2769 
   2770 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   2771 		hdrlen = sizeof (struct ieee80211_qosframe);
   2772 		cap = &ic->ic_wme.wme_chanParams;
   2773 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2774 	} else {
   2775 		hdrlen = sizeof (struct ieee80211_frame);
   2776 		noack = 0;
   2777 	}
   2778 
   2779 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2780 		k = ieee80211_crypto_encap(ic, ni, m);
   2781 		if (k == NULL) {
   2782 			m_freem(m);
   2783 			return ENOBUFS;
   2784 		}
   2785 		/* packet header may have moved, reset our local pointer */
   2786 		wh = mtod(m, struct ieee80211_frame *);
   2787 	}
   2788 
   2789 	ring = &sc->txq[ac];
   2790 	desc = &ring->desc[ring->cur];
   2791 	data = &ring->data[ring->cur];
   2792 
   2793 	/* Choose a TX rate index. */
   2794 	if (type == IEEE80211_FC0_TYPE_MGT) {
   2795 		/* mgmt frames are sent at the lowest available bit-rate */
   2796 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2797 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2798 	} else {
   2799 		if (ic->ic_fixed_rate != -1) {
   2800 			ridx = sc->fixed_ridx;
   2801 		} else
   2802 			ridx = wn->ridx[ni->ni_txrate];
   2803 	}
   2804 	rinfo = &iwn_rates[ridx];
   2805 
   2806 #if NBPFILTER > 0
   2807 	if (sc->sc_drvbpf != NULL) {
   2808 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2809 
   2810 		tap->wt_flags = 0;
   2811 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2812 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2813 		tap->wt_rate = rinfo->rate;
   2814 		tap->wt_hwqueue = ac;
   2815 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2816 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2817 
   2818 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   2819 	}
   2820 #endif
   2821 
   2822 	totlen = m->m_pkthdr.len;
   2823 
   2824 	/* Encrypt the frame if need be. */
   2825 #ifdef IEEE80211_FC1_PROTECTED
   2826 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
   2827 		/* Retrieve key for TX. */
   2828 		k = ieee80211_get_txkey(ic, wh, ni);
   2829 		if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
   2830 			/* Do software encryption. */
   2831 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
   2832 				return ENOBUFS;
   2833 			/* 802.11 header may have moved. */
   2834 			wh = mtod(m, struct ieee80211_frame *);
   2835 			totlen = m->m_pkthdr.len;
   2836 
   2837 		} else	/* HW appends CCMP MIC. */
   2838 			totlen += IEEE80211_CCMP_HDRLEN;
   2839 	}
   2840 #endif
   2841 
   2842 	/* Prepare TX firmware command. */
   2843 	cmd = &ring->cmd[ring->cur];
   2844 	cmd->code = IWN_CMD_TX_DATA;
   2845 	cmd->flags = 0;
   2846 	cmd->qid = ring->qid;
   2847 	cmd->idx = ring->cur;
   2848 
   2849 	tx = (struct iwn_cmd_data *)cmd->data;
   2850 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2851 	tx->scratch = 0;	/* clear "scratch" area */
   2852 
   2853 	flags = 0;
   2854 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2855 		flags |= IWN_TX_NEED_ACK;
   2856 	} else if (m->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   2857 		flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
   2858 
   2859 #ifdef notyet
   2860 	if ((wh->i_fc[0] &
   2861 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   2862 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   2863 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   2864 #endif
   2865 
   2866 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   2867 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   2868 
   2869 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   2870 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2871 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   2872 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   2873 			flags |= IWN_TX_NEED_RTS;
   2874 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   2875 		    ridx >= IWN_RIDX_OFDM6) {
   2876 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   2877 				flags |= IWN_TX_NEED_CTS;
   2878 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   2879 				flags |= IWN_TX_NEED_RTS;
   2880 		}
   2881 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   2882 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   2883 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   2884 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   2885 				flags |= IWN_TX_NEED_PROTECTION;
   2886 			} else
   2887 				flags |= IWN_TX_FULL_TXOP;
   2888 		}
   2889 	}
   2890 
   2891 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2892 	    type != IEEE80211_FC0_TYPE_DATA)
   2893 		tx->id = hal->broadcast_id;
   2894 	else
   2895 		tx->id = wn->id;
   2896 
   2897 	if (type == IEEE80211_FC0_TYPE_MGT) {
   2898 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2899 
   2900 #ifndef IEEE80211_STA_ONLY
   2901 		/* Tell HW to set timestamp in probe responses. */
   2902 		if ((subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) ||
   2903 		    (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ))
   2904 			flags |= IWN_TX_INSERT_TSTAMP;
   2905 #endif
   2906 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   2907 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ ||
   2908 		    subtype == IEEE80211_FC0_SUBTYPE_AUTH ||
   2909 		    subtype == IEEE80211_FC0_SUBTYPE_DEAUTH) {
   2910 			flags &= ~IWN_TX_NEED_RTS;
   2911 			flags |= IWN_TX_NEED_CTS;
   2912 			tx->timeout = htole16(3);
   2913 		} else
   2914 			tx->timeout = htole16(2);
   2915 	} else
   2916 		tx->timeout = htole16(0);
   2917 
   2918 	if (hdrlen & 3) {
   2919 		/* First segment's length must be a multiple of 4. */
   2920 		flags |= IWN_TX_NEED_PADDING;
   2921 		pad = 4 - (hdrlen & 3);
   2922 	} else
   2923 		pad = 0;
   2924 
   2925 #if 0
   2926 	if (type == IEEE80211_FC0_TYPE_CTL) {
   2927 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2928 
   2929 		/* tell h/w to set timestamp in probe responses */
   2930 		if (subtype == 0x0080) /* linux says this is "back request" */
   2931 			/* linux says (1 << 6) is IMM_BA_RSP_MASK */
   2932 			flags |= (IWN_TX_NEED_ACK | (1 << 6));
   2933 	}
   2934 #endif
   2935 
   2936 	tx->len = htole16(totlen);
   2937 	tx->tid = 0/* tid */;
   2938 	tx->rts_ntries = 60;
   2939 	tx->data_ntries = 15;
   2940 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   2941 	tx->plcp = rinfo->plcp;
   2942 	tx->rflags = rinfo->flags;
   2943 	if (tx->id == hal->broadcast_id) {
   2944 		/* Group or management frame. */
   2945 		tx->linkq = 0;
   2946 		/* XXX Alternate between antenna A and B? */
   2947 		txant = IWN_LSB(sc->txantmsk);
   2948 		tx->rflags |= IWN_RFLAG_ANT(txant);
   2949 	} else {
   2950 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   2951 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   2952 	}
   2953 	/* Set physical address of "scratch area". */
   2954 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   2955 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   2956 
   2957 	/* Copy 802.11 header in TX command. */
   2958 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   2959 
   2960 	/* Trim 802.11 header. */
   2961 	m_adj(m, hdrlen);
   2962 	tx->security = 0;
   2963 
   2964 #ifdef notyet
   2965 	if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
   2966 		/* Trim 802.11 header and prepend CCMP IV. */
   2967 		m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
   2968 		ivp = mtod(m, uint8_t *);
   2969 		k->k_tsc++;
   2970 		ivp[0] = k->k_tsc;
   2971 		ivp[1] = k->k_tsc >> 8;
   2972 		ivp[2] = 0;
   2973 		ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
   2974 		ivp[4] = k->k_tsc >> 16;
   2975 		ivp[5] = k->k_tsc >> 24;
   2976 		ivp[6] = k->k_tsc >> 32;
   2977 		ivp[7] = k->k_tsc >> 40;
   2978 
   2979 		tx->security = IWN_CIPHER_CCMP;
   2980 		/* XXX flags |= IWN_TX_AMPDU_CCMP; */
   2981 		memcpy(tx->key, k->k_key, k->k_len);
   2982 
   2983 		/* TX scheduler includes CCMP MIC len w/5000 Series. */
   2984 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
   2985 			totlen += IEEE80211_CCMP_MICLEN;
   2986 	} else {
   2987 		/* Trim 802.11 header. */
   2988 		m_adj(m, hdrlen);
   2989 		tx->security = 0;
   2990 	}
   2991 #endif
   2992 	tx->flags = htole32(flags);
   2993 
   2994 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2995 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2996 	if (error != 0 && error != EFBIG) {
   2997 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   2998 		    error);
   2999 		m_freem(m);
   3000 		return error;
   3001 	}
   3002 	if (error != 0) {
   3003 		/* Too many DMA segments, linearize mbuf. */
   3004 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   3005 		if (m1 == NULL) {
   3006 			m_freem(m);
   3007 			return ENOBUFS;
   3008 		}
   3009 		if (m->m_pkthdr.len > MHLEN) {
   3010 			MCLGET(m1, M_DONTWAIT);
   3011 			if (!(m1->m_flags & M_EXT)) {
   3012 				m_freem(m);
   3013 				m_freem(m1);
   3014 				return ENOBUFS;
   3015 			}
   3016 		}
   3017 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   3018 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   3019 		m_freem(m);
   3020 		m = m1;
   3021 
   3022 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3023 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   3024 		if (error != 0) {
   3025 			aprint_error_dev(sc->sc_dev,
   3026 			    "could not map mbuf (error %d)\n", error);
   3027 			m_freem(m);
   3028 			return error;
   3029 		}
   3030 	}
   3031 
   3032 	data->m = m;
   3033 	data->ni = ni;
   3034 
   3035 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   3036 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   3037 
   3038 	/* Fill TX descriptor. */
   3039 	desc->nsegs = 1 + data->map->dm_nsegs;
   3040 	/* First DMA segment is used by the TX command. */
   3041 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   3042 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   3043 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   3044 	/* Other DMA segments are for data payload. */
   3045 	seg = data->map->dm_segs;
   3046 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   3047 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   3048 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   3049 		    seg->ds_len << 4);
   3050 		seg++;
   3051 	}
   3052 
   3053 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   3054 	    BUS_DMASYNC_PREWRITE);
   3055 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3056 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3057 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   3058 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3059 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3060 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3061 
   3062 	/* Update TX scheduler. */
   3063 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   3064 
   3065 	/* Kick TX ring. */
   3066 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3067 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3068 
   3069 	/* Mark TX ring as full if we reach a certain threshold. */
   3070 	if (++ring->queued > IWN_TX_RING_HIMARK)
   3071 		sc->qfullmsk |= 1 << ring->qid;
   3072 
   3073 	return 0;
   3074 }
   3075 
   3076 static void
   3077 iwn_start(struct ifnet *ifp)
   3078 {
   3079 	struct iwn_softc *sc = ifp->if_softc;
   3080 	struct ieee80211com *ic = &sc->sc_ic;
   3081 	struct ieee80211_node *ni;
   3082 	struct ether_header *eh;
   3083 	struct mbuf *m;
   3084 	int ac;
   3085 
   3086 	DPRINTFN(5, ("iwn_start enter\n"));
   3087 
   3088 	/*
   3089 	 * net80211 may still try to send management frames even if the
   3090 	 * IFF_RUNNING flag is not set... Also, don't bother if the radio
   3091 	 * is not enabled.
   3092 	 */
   3093 	if (((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) ||
   3094 	    !sc->sc_radio)
   3095 		return;
   3096 
   3097 	for (;;) {
   3098 		if (sc->qfullmsk != 0) {
   3099 			ifp->if_flags |= IFF_OACTIVE;
   3100 			break;
   3101 		}
   3102 		/* Send pending management frames first. */
   3103 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3104 		if (m != NULL) {
   3105 			ni = (void *)m->m_pkthdr.rcvif;
   3106 			ac = 0;
   3107 			goto sendit;
   3108 		}
   3109 		if (ic->ic_state != IEEE80211_S_RUN)
   3110 			break;
   3111 
   3112 		/* Encapsulate and send data frames. */
   3113 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3114 		if (m == NULL)
   3115 			break;
   3116 		if (m->m_len < sizeof (*eh) &&
   3117 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3118 			ifp->if_oerrors++;
   3119 			continue;
   3120 		}
   3121 		eh = mtod(m, struct ether_header *);
   3122 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3123 		if (ni == NULL) {
   3124 			m_freem(m);
   3125 			ifp->if_oerrors++;
   3126 			continue;
   3127 		}
   3128 		/* classify mbuf so we can find which tx ring to use */
   3129 		if (ieee80211_classify(ic, m, ni) != 0) {
   3130 			m_freem(m);
   3131 			ieee80211_free_node(ni);
   3132 			ifp->if_oerrors++;
   3133 			continue;
   3134 		}
   3135 
   3136 		/* no QoS encapsulation for EAPOL frames */
   3137 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3138 		    M_WME_GETAC(m) : WME_AC_BE;
   3139 #if NBPFILTER > 0
   3140 		if (ifp->if_bpf != NULL)
   3141 			bpf_mtap(ifp->if_bpf, m);
   3142 #endif
   3143 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3144 			ieee80211_free_node(ni);
   3145 			ifp->if_oerrors++;
   3146 			continue;
   3147 		}
   3148 sendit:
   3149 #if NBPFILTER > 0
   3150 		if (ic->ic_rawbpf != NULL)
   3151 			bpf_mtap(ic->ic_rawbpf, m);
   3152 #endif
   3153 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3154 			ieee80211_free_node(ni);
   3155 			ifp->if_oerrors++;
   3156 			continue;
   3157 		}
   3158 
   3159 		sc->sc_tx_timer = 5;
   3160 		ifp->if_timer = 1;
   3161 	}
   3162 }
   3163 
   3164 static void
   3165 iwn_watchdog(struct ifnet *ifp)
   3166 {
   3167 	struct iwn_softc *sc = ifp->if_softc;
   3168 
   3169 	ifp->if_timer = 0;
   3170 
   3171 	if (sc->sc_tx_timer > 0) {
   3172 		if (--sc->sc_tx_timer == 0) {
   3173 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   3174 			iwn_stop(ifp, 1);
   3175 			ifp->if_oerrors++;
   3176 			return;
   3177 		}
   3178 		ifp->if_timer = 1;
   3179 	}
   3180 
   3181 	ieee80211_watchdog(&sc->sc_ic);
   3182 }
   3183 
   3184 static int
   3185 iwn_ioctl(struct ifnet *ifp, u_long cmd, void* data)
   3186 {
   3187 #define IS_RUNNING(ifp) \
   3188 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   3189 
   3190 	struct iwn_softc *sc = ifp->if_softc;
   3191 	struct ieee80211com *ic = &sc->sc_ic;
   3192 	int s, error = 0;
   3193 
   3194 	s = splnet();
   3195 
   3196 	switch (cmd) {
   3197 	case SIOCSIFADDR:
   3198 		/* FALLTHROUGH */
   3199 	case SIOCSIFFLAGS:
   3200 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3201 			break;
   3202 		if (ifp->if_flags & IFF_UP) {
   3203 			/*
   3204 			 * resync the radio state just in case we missed
   3205 			 * and event.
   3206 			 */
   3207 			sc->sc_radio =
   3208 			    (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL);
   3209 
   3210 			if (!sc->sc_radio) {
   3211 				error = EBUSY; /* XXX not really but same as els
   3212 ewhere in driver */
   3213 				if (ifp->if_flags & IFF_RUNNING)
   3214 					iwn_stop(ifp, 1);
   3215 			} else if (!(ifp->if_flags & IFF_RUNNING))
   3216 				error = iwn_init(ifp);
   3217 		} else {
   3218 			if (ifp->if_flags & IFF_RUNNING)
   3219 				iwn_stop(ifp, 1);
   3220 		}
   3221 		break;
   3222 
   3223 	case SIOCADDMULTI:
   3224 	case SIOCDELMULTI:
   3225 		/* XXX no h/w multicast filter? --dyoung */
   3226 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   3227 			 /* setup multicast filter, etc */
   3228 			error = 0;
   3229 		}
   3230 		break;
   3231 
   3232 #if 0
   3233 	case SIOCS80211POWER:
   3234 		error = ieee80211_ioctl(ifp, cmd, data);
   3235 		if (error != ENETRESET)
   3236 			break;
   3237 		if (ic->ic_state == IEEE80211_S_RUN &&
   3238 		    sc->calib.state == IWN_CALIB_STATE_RUN) {
   3239 			if (ic->ic_flags & IEEE80211_F_PMGTON)
   3240 				error = iwn_set_pslevel(sc, 0, 3, 0);
   3241 			else	/* back to CAM */
   3242 				error = iwn_set_pslevel(sc, 0, 0, 0);
   3243 		} else {
   3244 			/* Defer until transition to IWN_CALIB_STATE_RUN. */
   3245 			error = 0;
   3246 		}
   3247 		break;
   3248 #endif
   3249 
   3250 	default:
   3251 		error = ieee80211_ioctl(ic, cmd, data);
   3252 	}
   3253 
   3254 	if (error == ENETRESET) {
   3255 		error = 0;
   3256 		if (IS_RUNNING(ifp) &&
   3257 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) {
   3258 			iwn_stop(ifp, 0);
   3259 			error = iwn_init(ifp);
   3260 		}
   3261 	}
   3262 	splx(s);
   3263 	return error;
   3264 #undef IS_RUNNING
   3265 }
   3266 
   3267 /*
   3268  * Send a command to the firmware.
   3269  */
   3270 static int
   3271 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3272 {
   3273 	const struct iwn_hal *hal = sc->sc_hal;
   3274 	struct iwn_tx_ring *ring = &sc->txq[4];
   3275 	struct iwn_tx_desc *desc;
   3276 	struct iwn_tx_data *data;
   3277 	struct iwn_tx_cmd *cmd;
   3278 	struct mbuf *m;
   3279 	bus_addr_t paddr;
   3280 	int totlen, error;
   3281 
   3282 	desc = &ring->desc[ring->cur];
   3283 	data = &ring->data[ring->cur];
   3284 	totlen = 4 + size;
   3285 
   3286 	if (size > sizeof cmd->data) {
   3287 		/* Command is too large to fit in a descriptor. */
   3288 		if (totlen > MCLBYTES)
   3289 			return EINVAL;
   3290 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3291 		if (m == NULL)
   3292 			return ENOMEM;
   3293 		if (totlen > MHLEN) {
   3294 			MCLGET(m, M_DONTWAIT);
   3295 			if (!(m->m_flags & M_EXT)) {
   3296 				m_freem(m);
   3297 				return ENOMEM;
   3298 			}
   3299 		}
   3300 		cmd = mtod(m, struct iwn_tx_cmd *);
   3301 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3302 		    NULL, BUS_DMA_NOWAIT);
   3303 		if (error != 0) {
   3304 			m_freem(m);
   3305 			return error;
   3306 		}
   3307 		data->m = m;
   3308 		paddr = data->map->dm_segs[0].ds_addr;
   3309 	} else {
   3310 		cmd = &ring->cmd[ring->cur];
   3311 		paddr = data->cmd_paddr;
   3312 	}
   3313 
   3314 	cmd->code = code;
   3315 	cmd->flags = 0;
   3316 	cmd->qid = ring->qid;
   3317 	cmd->idx = ring->cur;
   3318 	memcpy(cmd->data, buf, size);
   3319 
   3320 	desc->nsegs = 1;
   3321 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3322 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3323 
   3324 	if (size > sizeof cmd->data) {
   3325 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3326 		    BUS_DMASYNC_PREWRITE);
   3327 	} else {
   3328 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3329 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3330 		    totlen, BUS_DMASYNC_PREWRITE);
   3331 	}
   3332 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3333 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3334 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3335 
   3336 	/* Update TX scheduler. */
   3337 	hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3338 
   3339 	/* Kick command ring. */
   3340 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3341 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3342 
   3343 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3344 }
   3345 
   3346 static int
   3347 iwn_add_node(struct iwn_softc *sc, struct ieee80211_node *ni, bool broadcast,
   3348     bool async, uint32_t htflags)
   3349 {
   3350 	const struct iwn_hal *hal = sc->sc_hal;
   3351 	struct iwn_node_info node;
   3352 	int error;
   3353 
   3354 	error = 0;
   3355 
   3356 	memset(&node, 0, sizeof node);
   3357 	if (broadcast == true) {
   3358 		IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3359 		node.id = hal->broadcast_id;
   3360 		DPRINTF(("adding broadcast node\n"));
   3361 	} else {
   3362 		IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   3363 		node.id = IWN_ID_BSS;
   3364 		node.htflags = htole32(htflags);
   3365 		DPRINTF(("adding BSS node\n"));
   3366 	}
   3367 	if ((error = hal->add_node(sc, &node, async)) != 0) {
   3368 		aprint_error_dev(sc->sc_dev, "could not add %s node\n",
   3369 		    (broadcast == 1)? "broadcast" : "BSS");
   3370 		return error;
   3371 	}
   3372 	DPRINTF(("setting link quality for node %d\n", node.id));
   3373 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   3374 		aprint_error_dev(sc->sc_dev,
   3375 				 "could not setup MRR for %s node\n",
   3376 				 (broadcast == 1)? "broadcast" : "BSS");
   3377 		return error;
   3378 	}
   3379 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   3380 		aprint_error_dev(sc->sc_dev, "could not set sensitivity\n");
   3381 		return error;
   3382 	}
   3383 
   3384 	return error;
   3385 }
   3386 
   3387 
   3388 static int
   3389 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3390 {
   3391 	struct iwn4965_node_info hnode;
   3392 	char *src, *dst;
   3393 
   3394 	/*
   3395 	 * We use the node structure for 5000 Series internally (it is
   3396 	 * a superset of the one for 4965AGN). We thus copy the common
   3397 	 * fields before sending the command.
   3398 	 */
   3399 	src = (char *)node;
   3400 	dst = (char *)&hnode;
   3401 	memcpy(dst, src, 48);
   3402 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3403 	memcpy(dst + 48, src + 72, 20);
   3404 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3405 }
   3406 
   3407 static int
   3408 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3409 {
   3410 	/* Direct mapping. */
   3411 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3412 }
   3413 
   3414 static int
   3415 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3416 {
   3417 	struct iwn_node *wn = (void *)ni;
   3418 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3419 	struct iwn_cmd_link_quality linkq;
   3420 	const struct iwn_rate *rinfo;
   3421 	uint8_t txant;
   3422 	int i, txrate;
   3423 
   3424 	/* Use the first valid TX antenna. */
   3425 	txant = IWN_LSB(sc->txantmsk);
   3426 
   3427 	memset(&linkq, 0, sizeof linkq);
   3428 	linkq.id = wn->id;
   3429 	linkq.antmsk_1stream = txant;
   3430 	linkq.antmsk_2stream = IWN_ANT_A | IWN_ANT_B;
   3431 	linkq.ampdu_max = 64;
   3432 	linkq.ampdu_threshold = 3;
   3433 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3434 
   3435 	/* Start at highest available bit-rate. */
   3436 	txrate = rs->rs_nrates - 1;
   3437 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3438 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3439 		linkq.retry[i].plcp = rinfo->plcp;
   3440 		linkq.retry[i].rflags = rinfo->flags;
   3441 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3442 		/* Next retry at immediate lower bit-rate. */
   3443 		if (txrate > 0)
   3444 			txrate--;
   3445 	}
   3446 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3447 }
   3448 
   3449 /*
   3450  * Broadcast node is used to send group-addressed and management frames.
   3451  */
   3452 static int
   3453 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3454 {
   3455 	const struct iwn_hal *hal = sc->sc_hal;
   3456 	struct iwn_node_info node;
   3457 	struct iwn_cmd_link_quality linkq;
   3458 	const struct iwn_rate *rinfo;
   3459 	uint8_t txant;
   3460 	int i, error;
   3461 
   3462 	memset(&node, 0, sizeof node);
   3463 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3464 	node.id = hal->broadcast_id;
   3465 	DPRINTF(("adding broadcast node\n"));
   3466 	if ((error = hal->add_node(sc, &node, async)) != 0)
   3467 		return error;
   3468 
   3469 	/* Use the first valid TX antenna. */
   3470 	txant = IWN_LSB(sc->txantmsk);
   3471 
   3472 	memset(&linkq, 0, sizeof linkq);
   3473 	linkq.id = hal->broadcast_id;
   3474 	linkq.antmsk_1stream = txant;
   3475 	linkq.antmsk_2stream = IWN_ANT_A | IWN_ANT_B;
   3476 	linkq.ampdu_max = 64;
   3477 	linkq.ampdu_threshold = 3;
   3478 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3479 
   3480 	/* Use lowest mandatory bit-rate. */
   3481 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3482 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3483 	linkq.retry[0].plcp = rinfo->plcp;
   3484 	linkq.retry[0].rflags = rinfo->flags;
   3485 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3486 	/* Use same bit-rate for all TX retries. */
   3487 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3488 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3489 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3490 	}
   3491 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3492 }
   3493 
   3494 #ifdef notyet
   3495 static void
   3496 iwn_updateedca(struct ieee80211com *ic)
   3497 {
   3498 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
   3499 	struct iwn_softc *sc = ic->ic_softc;
   3500 	struct iwn_edca_params cmd;
   3501 	int aci;
   3502 
   3503 	memset(&cmd, 0, sizeof cmd);
   3504 	cmd.flags = htole32(IWN_EDCA_UPDATE);
   3505 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
   3506 		const struct ieee80211_edca_ac_params *ac =
   3507 		    &ic->ic_edca_ac[aci];
   3508 		cmd.ac[aci].aifsn = ac->ac_aifsn;
   3509 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->ac_ecwmin));
   3510 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->ac_ecwmax));
   3511 		cmd.ac[aci].txoplimit =
   3512 		    htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit));
   3513 	}
   3514 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   3515 #undef IWN_EXP2
   3516 }
   3517 #endif
   3518 
   3519 static void
   3520 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3521 {
   3522 	struct iwn_cmd_led led;
   3523 
   3524 	/* Clear microcode LED ownership. */
   3525 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3526 
   3527 	led.which = which;
   3528 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3529 	led.off = off;
   3530 	led.on = on;
   3531 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3532 }
   3533 
   3534 /*
   3535  * Set the critical temperature at which the firmware will notify us.
   3536  */
   3537 static int
   3538 iwn_set_critical_temp(struct iwn_softc *sc)
   3539 {
   3540 	struct iwn_critical_temp crit;
   3541 
   3542 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3543 
   3544 	memset(&crit, 0, sizeof crit);
   3545 	crit.tempR = htole32(sc->critical_temp);
   3546 	DPRINTF(("setting critical temperature to %u\n", sc->critical_temp));
   3547 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3548 }
   3549 
   3550 static int
   3551 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3552 {
   3553 	struct iwn_cmd_timing cmd;
   3554 	uint64_t val, mod;
   3555 
   3556 	memset(&cmd, 0, sizeof cmd);
   3557 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3558 	cmd.bintval = htole16(ni->ni_intval);
   3559 	cmd.lintval = htole16(10);
   3560 
   3561 	/* Compute remaining time until next beacon. */
   3562 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3563 	mod = le64toh(cmd.tstamp) % val;
   3564 	cmd.binitval = htole32((uint32_t)(val - mod));
   3565 
   3566 	DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n",
   3567 	    ni->ni_intval, (unsigned long long)le64toh(cmd.tstamp),
   3568 	    (uint32_t)(val - mod)));
   3569 
   3570 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3571 }
   3572 
   3573 #if 0
   3574 static void
   3575 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3576 {
   3577 	/* Adjust TX power if need be (delta >= 3 degC.) */
   3578 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3579 	if (abs(temp - sc->temp) >= 3) {
   3580 		/* Record temperature of last calibration. */
   3581 		sc->temp = temp;
   3582 		(void)iwn4965_set_txpower(sc, 1);
   3583 	}
   3584 }
   3585 #endif
   3586 
   3587 /*
   3588  * Set TX power for current channel (each rate has its own power settings).
   3589  * This function takes into account the regulatory information from EEPROM,
   3590  * the current temperature and the current voltage.
   3591  */
   3592 static int
   3593 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3594 {
   3595 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3596 #define fdivround(a, b, n)	\
   3597 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3598 /* Linear interpolation. */
   3599 #define interpolate(x, x1, y1, x2, y2, n)	\
   3600 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3601 
   3602 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3603 	struct ieee80211com *ic = &sc->sc_ic;
   3604 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3605 	struct ieee80211_channel *ch;
   3606 	struct iwn4965_cmd_txpower cmd;
   3607 	struct iwn4965_eeprom_chan_samples *chans;
   3608 	const uint8_t *rf_gain, *dsp_gain;
   3609 	int32_t vdiff, tdiff;
   3610 	int i, c, grp, maxpwr;
   3611 	uint8_t chan;
   3612 
   3613 	/* Retrieve current channel from last RXON. */
   3614 	chan = sc->rxon.chan;
   3615 	DPRINTF(("setting TX power for channel %d\n", chan));
   3616 	ch = &ic->ic_channels[chan];
   3617 
   3618 	memset(&cmd, 0, sizeof cmd);
   3619 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3620 	cmd.chan = chan;
   3621 
   3622 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3623 		maxpwr   = sc->maxpwr5GHz;
   3624 		rf_gain  = iwn4965_rf_gain_5ghz;
   3625 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3626 	} else {
   3627 		maxpwr   = sc->maxpwr2GHz;
   3628 		rf_gain  = iwn4965_rf_gain_2ghz;
   3629 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3630 	}
   3631 
   3632 	/* Compute voltage compensation. */
   3633 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3634 	if (vdiff > 0)
   3635 		vdiff *= 2;
   3636 	if (abs(vdiff) > 2)
   3637 		vdiff = 0;
   3638 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3639 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3640 
   3641 	/* Get channel's attenuation group. */
   3642 	if (chan <= 20)		/* 1-20 */
   3643 		grp = 4;
   3644 	else if (chan <= 43)	/* 34-43 */
   3645 		grp = 0;
   3646 	else if (chan <= 70)	/* 44-70 */
   3647 		grp = 1;
   3648 	else if (chan <= 124)	/* 71-124 */
   3649 		grp = 2;
   3650 	else			/* 125-200 */
   3651 		grp = 3;
   3652 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3653 
   3654 	/* Get channel's sub-band. */
   3655 	for (i = 0; i < IWN_NBANDS; i++)
   3656 		if (sc->bands[i].lo != 0 &&
   3657 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3658 			break;
   3659 	chans = sc->bands[i].chans;
   3660 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3661 
   3662 	for (c = 0; c < 2; c++) {
   3663 		uint8_t power, gain, temp;
   3664 		int maxchpwr, pwr, ridx, idx;
   3665 
   3666 		power = interpolate(chan,
   3667 		    chans[0].num, chans[0].samples[c][1].power,
   3668 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3669 		gain  = interpolate(chan,
   3670 		    chans[0].num, chans[0].samples[c][1].gain,
   3671 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3672 		temp  = interpolate(chan,
   3673 		    chans[0].num, chans[0].samples[c][1].temp,
   3674 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3675 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3676 		    c, power, gain, temp));
   3677 
   3678 		/* Compute temperature compensation. */
   3679 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3680 		DPRINTF(("temperature compensation=%d (current=%d, "
   3681 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3682 
   3683 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3684 			maxchpwr = sc->maxpwr[chan] * 2;
   3685 			if ((ridx / 8) & 1)
   3686 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3687 
   3688 			pwr = maxpwr;
   3689 
   3690 			/* Adjust TX power based on rate. */
   3691 			if ((ridx % 8) == 5)
   3692 				pwr -= 15;	/* OFDM48: -7.5dB */
   3693 			else if ((ridx % 8) == 6)
   3694 				pwr -= 17;	/* OFDM54: -8.5dB */
   3695 			else if ((ridx % 8) == 7)
   3696 				pwr -= 20;	/* OFDM60: -10dB */
   3697 			else
   3698 				pwr -= 10;	/* Others: -5dB */
   3699 
   3700 			/* Do not exceed channel's max TX power. */
   3701 			if (pwr > maxchpwr)
   3702 				pwr = maxchpwr;
   3703 
   3704 			idx = gain - (pwr - power) - tdiff - vdiff;
   3705 			if ((ridx / 8) & 1)	/* MIMO */
   3706 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3707 
   3708 			if (cmd.band == 0)
   3709 				idx += 9;	/* 5GHz */
   3710 			if (ridx == IWN_RIDX_MAX)
   3711 				idx += 5;	/* CCK */
   3712 
   3713 			/* Make sure idx stays in a valid range. */
   3714 			if (idx < 0)
   3715 				idx = 0;
   3716 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3717 				idx = IWN4965_MAX_PWR_INDEX;
   3718 
   3719 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3720 			    c, ridx, idx));
   3721 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3722 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3723 		}
   3724 	}
   3725 
   3726 	DPRINTF(("setting TX power for chan %d\n", chan));
   3727 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3728 
   3729 #undef interpolate
   3730 #undef fdivround
   3731 }
   3732 
   3733 static int
   3734 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3735 {
   3736 	struct iwn5000_cmd_txpower cmd;
   3737 
   3738 	/*
   3739 	 * TX power calibration is handled automatically by the firmware
   3740 	 * for 5000 Series.
   3741 	 */
   3742 	memset(&cmd, 0, sizeof cmd);
   3743 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3744 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3745 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3746 	DPRINTF(("setting TX power\n"));
   3747 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
   3748 }
   3749 
   3750 /*
   3751  * Retrieve the maximum RSSI (in dBm) among receivers.
   3752  */
   3753 static int
   3754 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3755 {
   3756 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3757 	uint8_t mask, agc;
   3758 	int rssi;
   3759 
   3760 	mask = (le16toh(phy->antenna) >> 4) & 0x7;
   3761 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3762 
   3763 	rssi = 0;
   3764 	if (mask & IWN_ANT_A)
   3765 		rssi = MAX(rssi, phy->rssi[0]);
   3766 	if (mask & IWN_ANT_B)
   3767 		rssi = MAX(rssi, phy->rssi[2]);
   3768 	if (mask & IWN_ANT_C)
   3769 		rssi = MAX(rssi, phy->rssi[4]);
   3770 
   3771 	return rssi - agc - IWN_RSSI_TO_DBM;
   3772 }
   3773 
   3774 static int
   3775 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3776 {
   3777 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3778 	uint8_t agc;
   3779 	int rssi;
   3780 
   3781 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3782 
   3783 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3784 		   le16toh(phy->rssi[1]) & 0xff);
   3785 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3786 
   3787 	return rssi - agc - IWN_RSSI_TO_DBM;
   3788 }
   3789 
   3790 /*
   3791  * Retrieve the average noise (in dBm) among receivers.
   3792  */
   3793 static int
   3794 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3795 {
   3796 	int i, total, nbant, noise;
   3797 
   3798 	total = nbant = 0;
   3799 	for (i = 0; i < 3; i++) {
   3800 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3801 			continue;
   3802 		total += noise;
   3803 		nbant++;
   3804 	}
   3805 	/* There should be at least one antenna but check anyway. */
   3806 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3807 }
   3808 
   3809 /*
   3810  * Compute temperature (in degC) from last received statistics.
   3811  */
   3812 static int
   3813 iwn4965_get_temperature(struct iwn_softc *sc)
   3814 {
   3815 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3816 	int32_t r1, r2, r3, r4, temp;
   3817 
   3818 	r1 = le32toh(uc->temp[0].chan20MHz);
   3819 	r2 = le32toh(uc->temp[1].chan20MHz);
   3820 	r3 = le32toh(uc->temp[2].chan20MHz);
   3821 	r4 = le32toh(sc->rawtemp);
   3822 
   3823 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
   3824 		return 0;
   3825 
   3826 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3827 	r4 = (r4 << 8) >> 8;
   3828 	/* Compute temperature in Kelvin. */
   3829 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3830 	temp = (temp * 97) / 100 + 8;
   3831 
   3832 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3833 	return IWN_KTOC(temp);
   3834 }
   3835 
   3836 static int
   3837 iwn5000_get_temperature(struct iwn_softc *sc)
   3838 {
   3839 	/*
   3840 	 * Temperature is not used by the driver for 5000 Series because
   3841 	 * TX power calibration is handled by firmware.  We export it to
   3842 	 * users through the sensor framework though.
   3843 	 */
   3844 	return le32toh(sc->rawtemp);
   3845 }
   3846 
   3847 /*
   3848  * Initialize sensitivity calibration state machine.
   3849  */
   3850 static int
   3851 iwn_init_sensitivity(struct iwn_softc *sc)
   3852 {
   3853 	const struct iwn_hal *hal = sc->sc_hal;
   3854 	struct iwn_calib_state *calib = &sc->calib;
   3855 	uint32_t flags;
   3856 	int error;
   3857 
   3858 	/* Reset calibration state machine. */
   3859 	memset(calib, 0, sizeof (*calib));
   3860 	calib->state = IWN_CALIB_STATE_INIT;
   3861 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3862 	/* Set initial correlation values. */
   3863 	calib->ofdm_x1     = hal->limits->min_ofdm_x1;
   3864 	calib->ofdm_mrc_x1 = hal->limits->min_ofdm_mrc_x1;
   3865 	calib->ofdm_x4     = 90;
   3866 	calib->ofdm_mrc_x4 = hal->limits->min_ofdm_mrc_x4;
   3867 	calib->cck_x4      = 125;
   3868 	calib->cck_mrc_x4  = hal->limits->min_cck_mrc_x4;
   3869 	calib->energy_cck  = hal->limits->energy_cck;
   3870 
   3871 	/* Write initial sensitivity. */
   3872 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3873 		return error;
   3874 
   3875 	/* Write initial gains. */
   3876 	if ((error = hal->init_gains(sc)) != 0)
   3877 		return error;
   3878 
   3879 	/* Request statistics at each beacon interval. */
   3880 	flags = 0;
   3881 	DPRINTF(("sending request for statistics\n"));
   3882 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3883 }
   3884 
   3885 /*
   3886  * Collect noise and RSSI statistics for the first 20 beacons received
   3887  * after association and use them to determine connected antennas and
   3888  * to set differential gains.
   3889  */
   3890 static void
   3891 iwn_collect_noise(struct iwn_softc *sc,
   3892     const struct iwn_rx_general_stats *stats)
   3893 {
   3894 	const struct iwn_hal *hal = sc->sc_hal;
   3895 	struct iwn_calib_state *calib = &sc->calib;
   3896 	uint32_t val;
   3897 	int i;
   3898 
   3899 	/* Accumulate RSSI and noise for all 3 antennas. */
   3900 	for (i = 0; i < 3; i++) {
   3901 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3902 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3903 	}
   3904 	/* NB: We update differential gains only once after 20 beacons. */
   3905 	if (++calib->nbeacons < 20)
   3906 		return;
   3907 
   3908 	/* Determine highest average RSSI. */
   3909 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3910 	val = MAX(calib->rssi[2], val);
   3911 
   3912 	/* Determine which antennas are connected. */
   3913 	sc->antmsk = 0;
   3914 	for (i = 0; i < 3; i++)
   3915 		if (val - calib->rssi[i] <= 15 * 20)
   3916 			sc->antmsk |= 1 << i;
   3917 	/* If none of the TX antennas are connected, keep at least one. */
   3918 	if ((sc->antmsk & sc->txantmsk) == 0)
   3919 		sc->antmsk |= IWN_LSB(sc->txantmsk);
   3920 
   3921 	(void)hal->set_gains(sc);
   3922 	calib->state = IWN_CALIB_STATE_RUN;
   3923 
   3924 #ifdef notyet
   3925 	/* XXX Disable RX chains with no antennas connected. */
   3926 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->antmsk));
   3927 	(void)iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1);
   3928 
   3929 	/* Enable power-saving mode if requested by user. */
   3930 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3931 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3932 #endif
   3933 }
   3934 
   3935 static int
   3936 iwn4965_init_gains(struct iwn_softc *sc)
   3937 {
   3938 	struct iwn_phy_calib_gain cmd;
   3939 
   3940 	memset(&cmd, 0, sizeof cmd);
   3941 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3942 	/* Differential gains initially set to 0 for all 3 antennas. */
   3943 	DPRINTF(("setting initial differential gains\n"));
   3944 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3945 }
   3946 
   3947 static int
   3948 iwn5000_init_gains(struct iwn_softc *sc)
   3949 {
   3950 	struct iwn_phy_calib cmd;
   3951 
   3952 	if (sc->hw_type == IWN_HW_REV_TYPE_6000 ||
   3953 	    sc->hw_type == IWN_HW_REV_TYPE_6050)
   3954 		return 0;
   3955 
   3956 	memset(&cmd, 0, sizeof cmd);
   3957 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   3958 	cmd.ngroups = 1;
   3959 	cmd.isvalid = 1;
   3960 	DPRINTF(("setting initial differential gains\n"));
   3961 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3962 }
   3963 
   3964 static int
   3965 iwn4965_set_gains(struct iwn_softc *sc)
   3966 {
   3967 	struct iwn_calib_state *calib = &sc->calib;
   3968 	struct iwn_phy_calib_gain cmd;
   3969 	int i, delta, noise;
   3970 
   3971 	/* Get minimal noise among connected antennas. */
   3972 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   3973 	for (i = 0; i < 3; i++)
   3974 		if (sc->antmsk & (1 << i))
   3975 			noise = MIN(calib->noise[i], noise);
   3976 
   3977 	memset(&cmd, 0, sizeof cmd);
   3978 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3979 	/* Set differential gains for connected antennas. */
   3980 	for (i = 0; i < 3; i++) {
   3981 		if (sc->antmsk & (1 << i)) {
   3982 			/* Compute attenuation (in unit of 1.5dB). */
   3983 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   3984 			/* NB: delta <= 0 */
   3985 			/* Limit to [-4.5dB,0]. */
   3986 			cmd.gain[i] = MIN(abs(delta), 3);
   3987 			if (delta < 0)
   3988 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   3989 		}
   3990 	}
   3991 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   3992 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk));
   3993 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3994 }
   3995 
   3996 static int
   3997 iwn5000_set_gains(struct iwn_softc *sc)
   3998 {
   3999 	struct iwn_calib_state *calib = &sc->calib;
   4000 	struct iwn_phy_calib_gain cmd;
   4001 	int i, delta;
   4002 
   4003 	if (sc->hw_type == IWN_HW_REV_TYPE_6000 ||
   4004 	    sc->hw_type == IWN_HW_REV_TYPE_6050)
   4005 		return 0;
   4006 
   4007 	memset(&cmd, 0, sizeof cmd);
   4008 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
   4009 	cmd.ngroups = 1;
   4010 	cmd.isvalid = 1;
   4011 	/* Set differential gains for antennas B and C. */
   4012 	for (i = 1; i < 3; i++) {
   4013 		if (sc->antmsk & (1 << i)) {
   4014 			/* The delta is relative to antenna A. */
   4015 			delta = ((int32_t)calib->noise[0] -
   4016 			    (int32_t)calib->noise[i]) / 30;
   4017 			/* Limit to [-4.5dB,+4.5dB]. */
   4018 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   4019 			if (delta < 0)
   4020 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   4021 		}
   4022 	}
   4023 	DPRINTF(("setting differential gains Ant B/C: %x/%x (%x)\n",
   4024 	    cmd.gain[0], cmd.gain[1], sc->antmsk));
   4025 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4026 }
   4027 
   4028 /*
   4029  * Tune RF RX sensitivity based on the number of false alarms detected
   4030  * during the last beacon period.
   4031  */
   4032 static void
   4033 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   4034 {
   4035 #define inc(val, inc, max)			\
   4036 	if ((val) < (max)) {			\
   4037 		if ((val) < (max) - (inc))	\
   4038 			(val) += (inc);		\
   4039 		else				\
   4040 			(val) = (max);		\
   4041 		needs_update = 1;		\
   4042 	}
   4043 #define dec(val, dec, min)			\
   4044 	if ((val) > (min)) {			\
   4045 		if ((val) > (min) + (dec))	\
   4046 			(val) -= (dec);		\
   4047 		else				\
   4048 			(val) = (min);		\
   4049 		needs_update = 1;		\
   4050 	}
   4051 
   4052 	const struct iwn_hal *hal = sc->sc_hal;
   4053 	const struct iwn_sensitivity_limits *limits = hal->limits;
   4054 	struct iwn_calib_state *calib = &sc->calib;
   4055 	uint32_t val, rxena, fa;
   4056 	uint32_t energy[3], energy_min;
   4057 	uint8_t noise[3], noise_ref;
   4058 	int i, needs_update = 0;
   4059 
   4060 	/* Check that we've been enabled long enough. */
   4061 	if ((rxena = le32toh(stats->general.load)) == 0)
   4062 		return;
   4063 
   4064 	/* Compute number of false alarms since last call for OFDM. */
   4065 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   4066 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   4067 	fa *= 200 * 1024;	/* 200TU */
   4068 
   4069 	/* Save counters values for next call. */
   4070 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   4071 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   4072 
   4073 	if (fa > 50 * rxena) {
   4074 		/* High false alarm count, decrease sensitivity. */
   4075 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   4076 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   4077 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   4078 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   4079 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   4080 
   4081 	} else if (fa < 5 * rxena) {
   4082 		/* Low false alarm count, increase sensitivity. */
   4083 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   4084 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   4085 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   4086 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   4087 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   4088 	}
   4089 
   4090 	/* Compute maximum noise among 3 receivers. */
   4091 	for (i = 0; i < 3; i++)
   4092 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   4093 	val = MAX(noise[0], noise[1]);
   4094 	val = MAX(noise[2], val);
   4095 	/* Insert it into our samples table. */
   4096 	calib->noise_samples[calib->cur_noise_sample] = val;
   4097 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   4098 
   4099 	/* Compute maximum noise among last 20 samples. */
   4100 	noise_ref = calib->noise_samples[0];
   4101 	for (i = 1; i < 20; i++)
   4102 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   4103 
   4104 	/* Compute maximum energy among 3 receivers. */
   4105 	for (i = 0; i < 3; i++)
   4106 		energy[i] = le32toh(stats->general.energy[i]);
   4107 	val = MIN(energy[0], energy[1]);
   4108 	val = MIN(energy[2], val);
   4109 	/* Insert it into our samples table. */
   4110 	calib->energy_samples[calib->cur_energy_sample] = val;
   4111 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   4112 
   4113 	/* Compute minimum energy among last 10 samples. */
   4114 	energy_min = calib->energy_samples[0];
   4115 	for (i = 1; i < 10; i++)
   4116 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   4117 	energy_min += 6;
   4118 
   4119 	/* Compute number of false alarms since last call for CCK. */
   4120 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   4121 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   4122 	fa *= 200 * 1024;	/* 200TU */
   4123 
   4124 	/* Save counters values for next call. */
   4125 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   4126 	calib->fa_cck = le32toh(stats->cck.fa);
   4127 
   4128 	if (fa > 50 * rxena) {
   4129 		/* High false alarm count, decrease sensitivity. */
   4130 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   4131 		calib->cck_state = IWN_CCK_STATE_HIFA;
   4132 		calib->low_fa = 0;
   4133 
   4134 		if (calib->cck_x4 > 160) {
   4135 			calib->noise_ref = noise_ref;
   4136 			if (calib->energy_cck > 2)
   4137 				dec(calib->energy_cck, 2, energy_min);
   4138 		}
   4139 		if (calib->cck_x4 < 160) {
   4140 			calib->cck_x4 = 161;
   4141 			needs_update = 1;
   4142 		} else
   4143 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   4144 
   4145 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   4146 
   4147 	} else if (fa < 5 * rxena) {
   4148 		/* Low false alarm count, increase sensitivity. */
   4149 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   4150 		calib->cck_state = IWN_CCK_STATE_LOFA;
   4151 		calib->low_fa++;
   4152 
   4153 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   4154 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   4155 		     calib->low_fa > 100)) {
   4156 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   4157 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   4158 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   4159 		}
   4160 	} else {
   4161 		/* Not worth to increase or decrease sensitivity. */
   4162 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   4163 		calib->low_fa = 0;
   4164 		calib->noise_ref = noise_ref;
   4165 
   4166 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4167 			/* Previous interval had many false alarms. */
   4168 			dec(calib->energy_cck, 8, energy_min);
   4169 		}
   4170 		calib->cck_state = IWN_CCK_STATE_INIT;
   4171 	}
   4172 
   4173 	if (needs_update)
   4174 		(void)iwn_send_sensitivity(sc);
   4175 #undef dec
   4176 #undef inc
   4177 }
   4178 
   4179 static int
   4180 iwn_send_sensitivity(struct iwn_softc *sc)
   4181 {
   4182 	const struct iwn_hal *hal = sc->sc_hal;
   4183 	struct iwn_calib_state *calib = &sc->calib;
   4184 	struct iwn_sensitivity_cmd cmd;
   4185 
   4186 	memset(&cmd, 0, sizeof cmd);
   4187 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4188 	/* OFDM modulation. */
   4189 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4190 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4191 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4192 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4193 	cmd.energy_ofdm      = htole16(hal->limits->energy_ofdm);
   4194 	cmd.energy_ofdm_th   = htole16(62);
   4195 	/* CCK modulation. */
   4196 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4197 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4198 	cmd.energy_cck       = htole16(calib->energy_cck);
   4199 	/* Barker modulation: use default values. */
   4200 	cmd.corr_barker      = htole16(190);
   4201 	cmd.corr_barker_mrc  = htole16(390);
   4202 
   4203 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4204 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4205 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4206 	    calib->energy_cck));
   4207 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
   4208 }
   4209 
   4210 #if 0
   4211 /*
   4212  * Set STA mode power saving level (between 0 and 5).
   4213  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4214  */
   4215 static int
   4216 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4217 {
   4218 	struct iwn_pmgt_cmd cmd;
   4219 	const struct iwn_pmgt *pmgt;
   4220 	uint32_t umax, skip_dtim;
   4221 	pcireg_t reg;
   4222 	int i;
   4223 
   4224 	/* Select which PS parameters to use. */
   4225 	if (dtim <= 2)
   4226 		pmgt = &iwn_pmgt[0][level];
   4227 	else if (dtim <= 10)
   4228 		pmgt = &iwn_pmgt[1][level];
   4229 	else
   4230 		pmgt = &iwn_pmgt[2][level];
   4231 
   4232 	memset(&cmd, 0, sizeof cmd);
   4233 	if (level != 0)	/* not CAM */
   4234 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4235 	if (level == 5)
   4236 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4237 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4238 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4239 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   4240 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4241 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4242 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4243 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4244 
   4245 	if (dtim == 0) {
   4246 		dtim = 1;
   4247 		skip_dtim = 0;
   4248 	} else
   4249 		skip_dtim = pmgt->skip_dtim;
   4250 	if (skip_dtim != 0) {
   4251 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4252 		umax = pmgt->intval[4];
   4253 		if (umax == (uint32_t)-1)
   4254 			umax = dtim * (skip_dtim + 1);
   4255 		else if (umax > dtim)
   4256 			umax = (umax / dtim) * dtim;
   4257 	} else
   4258 		umax = dtim;
   4259 	for (i = 0; i < 5; i++)
   4260 		cmd.intval[i] = htole32(MIN(umax, pmgt->intval[i]));
   4261 
   4262 	DPRINTF(("setting power saving level to %d\n", level));
   4263 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4264 }
   4265 #endif
   4266 
   4267 static int
   4268 iwn_config(struct iwn_softc *sc)
   4269 {
   4270 	const struct iwn_hal *hal = sc->sc_hal;
   4271 	struct ieee80211com *ic = &sc->sc_ic;
   4272 	struct ifnet *ifp = ic->ic_ifp;
   4273 	struct iwn_bluetooth bluetooth;
   4274 	uint16_t rxchain;
   4275 	int error;
   4276 	struct iwn_pmgt_cmd power;
   4277 
   4278 
   4279 #if 0
   4280 	/* Set power saving level to CAM during initialization. */
   4281 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4282 		aprint_error_dev(sc->sc_dev,
   4283 		    "could not set power saving level\n");
   4284 		return error;
   4285 	}
   4286 #else
   4287 	/* set power mode */
   4288 	memset(&power, 0, sizeof power);
   4289 	power.flags = htole16(/*IWN_POWER_CAM*/0 | 0x8);
   4290 	DPRINTF(("setting power mode\n"));
   4291 	error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   4292 	if (error != 0) {
   4293 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   4294 		return error;
   4295 	}
   4296 #endif
   4297 
   4298 	/* Configure bluetooth coexistence. */
   4299 	memset(&bluetooth, 0, sizeof bluetooth);
   4300 	bluetooth.flags = 3;
   4301 	bluetooth.lead = 0xaa;
   4302 	bluetooth.kill = 1;
   4303 	DPRINTF(("configuring bluetooth coexistence\n"));
   4304 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4305 	if (error != 0) {
   4306 		aprint_error_dev(sc->sc_dev,
   4307 		    "could not configure bluetooth coexistence\n");
   4308 		return error;
   4309 	}
   4310 
   4311 	/* Configure adapter. */
   4312 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4313 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4314 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4315 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4316 	/* Set default channel. */
   4317 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
   4318 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4319 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4320 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4321 	switch (ic->ic_opmode) {
   4322 	case IEEE80211_M_STA:
   4323 		sc->rxon.mode = IWN_MODE_STA;
   4324 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4325 		break;
   4326 	case IEEE80211_M_MONITOR:
   4327 		sc->rxon.mode = IWN_MODE_MONITOR;
   4328 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4329 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4330 		break;
   4331 	default:
   4332 		/* Should not get there. */
   4333 		break;
   4334 	}
   4335 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4336 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4337 	sc->rxon.ht_single_mask = 0xff;
   4338 	sc->rxon.ht_dual_mask = 0xff;
   4339 	rxchain = IWN_RXCHAIN_VALID(IWN_ANT_ABC) | IWN_RXCHAIN_IDLE_COUNT(2) |
   4340 	    IWN_RXCHAIN_MIMO_COUNT(2);
   4341 	sc->rxon.rxchain = htole16(rxchain);
   4342 	DPRINTF(("setting configuration\n"));
   4343 #ifdef notdef
   4344 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4345 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4346 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4347 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4348 	sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   4349 #endif
   4350 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4351 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4352 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 0);
   4353 	if (error != 0) {
   4354 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   4355 		return error;
   4356 	}
   4357 
   4358 	/* Configuration has changed, set TX power accordingly. */
   4359 	if ((error = hal->set_txpower(sc, 0)) != 0) {
   4360 		aprint_error_dev(sc->sc_dev, "could not set TX power\n");
   4361 		return error;
   4362 	}
   4363 
   4364 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4365 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   4366 		return error;
   4367 	}
   4368 
   4369 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4370 		aprint_error_dev(sc->sc_dev,
   4371 		    "could not set critical temperature\n");
   4372 		return error;
   4373 	}
   4374 	return 0;
   4375 }
   4376 
   4377 static int
   4378 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4379 {
   4380 	struct ieee80211com *ic = &sc->sc_ic;
   4381 	struct iwn_scan_hdr *hdr;
   4382 	struct iwn_cmd_data *tx;
   4383 	struct iwn_scan_chan *chan;
   4384 	struct ieee80211_frame *wh;
   4385 	struct ieee80211_rateset *rs;
   4386 	struct ieee80211_channel *c;
   4387 	enum ieee80211_phymode mode;
   4388 	uint8_t *buf, *frm;
   4389 	uint16_t rxchain;
   4390 	uint8_t txant;
   4391 	int buflen, error, nrates;
   4392 
   4393 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4394 	if (buf == NULL) {
   4395 		aprint_error_dev(sc->sc_dev,
   4396 		    "could not allocate buffer for scan command\n");
   4397 		return ENOMEM;
   4398 	}
   4399 	hdr = (struct iwn_scan_hdr *)buf;
   4400 	/*
   4401 	 * Move to the next channel if no frames are received within 10ms
   4402 	 * after sending the probe request.
   4403 	 */
   4404 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4405 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4406 
   4407 	/* Select antennas for scanning. */
   4408 	rxchain = IWN_RXCHAIN_FORCE | IWN_RXCHAIN_VALID(IWN_ANT_ABC) |
   4409 	    IWN_RXCHAIN_MIMO(IWN_ANT_ABC);
   4410 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4411 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4412 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4413 		rxchain |= IWN_RXCHAIN_SEL(IWN_ANT_B | IWN_ANT_C);
   4414 	} else	/* Use all available RX antennas. */
   4415 		rxchain |= IWN_RXCHAIN_SEL(IWN_ANT_ABC);
   4416 	hdr->rxchain = htole16(rxchain);
   4417 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4418 
   4419 	tx = &(hdr->tx_cmd);
   4420 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4421 	tx->id = sc->sc_hal->broadcast_id;
   4422 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4423 
   4424 	if (flags & IEEE80211_CHAN_5GHZ) {
   4425 		hdr->crc_threshold = htole16(1);
   4426 		/* Send probe requests at 6Mbps. */
   4427 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4428 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4429 	} else {
   4430 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4431 		/* Send probe requests at 1Mbps. */
   4432 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4433 		tx->rflags = IWN_RFLAG_CCK;
   4434 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4435 	}
   4436 	/* Use the first valid TX antenna. */
   4437 	txant = IWN_LSB(sc->txantmsk);
   4438 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4439 
   4440 	if (ic->ic_des_esslen != 0) {
   4441 		hdr->scan_essid[0].id = IEEE80211_ELEMID_SSID;
   4442 		hdr->scan_essid[0].len = ic->ic_des_esslen;
   4443 		memcpy(hdr->scan_essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4444 	}
   4445 	/*
   4446 	 * Build a probe request frame.  Most of the following code is a
   4447 	 * copy & paste of what is done in net80211.
   4448 	 */
   4449 	wh = &(hdr->wh);
   4450 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4451 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4452 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4453 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4454 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4455 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4456 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4457 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4458 
   4459 	frm = &(hdr->data[0]);
   4460 	/* add empty SSID IE */
   4461 	*frm++ = IEEE80211_ELEMID_SSID;
   4462 	*frm++ = 0;
   4463 
   4464 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
   4465 	rs = &ic->ic_sup_rates[mode];
   4466 
   4467 	/* add supported rates IE */
   4468 	*frm++ = IEEE80211_ELEMID_RATES;
   4469 	nrates = rs->rs_nrates;
   4470 	if (nrates > IEEE80211_RATE_SIZE)
   4471 		nrates = IEEE80211_RATE_SIZE;
   4472 	*frm++ = nrates;
   4473 	memcpy(frm, rs->rs_rates, nrates);
   4474 	frm += nrates;
   4475 
   4476 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   4477 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   4478 		*frm++ = IEEE80211_ELEMID_XRATES;
   4479 		*frm++ = nrates;
   4480 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   4481 		frm += nrates;
   4482 	}
   4483 
   4484 	/* Set length of probe request. */
   4485 	tx->len = htole16(frm - (uint8_t *)wh);
   4486 
   4487 	chan = (struct iwn_scan_chan *)frm;
   4488 	for (c  = &ic->ic_channels[1];
   4489 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4490 		if ((c->ic_flags & flags) != flags)
   4491 			continue;
   4492 
   4493 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4494 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4495 		chan->flags = 0;
   4496 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4497 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4498 		if (ic->ic_des_esslen != 0)
   4499 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4500 		chan->dsp_gain = 0x6e;
   4501 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4502 			chan->rf_gain = 0x3b;
   4503 			chan->active  = htole16(24);
   4504 			chan->passive = htole16(110);
   4505 		} else {
   4506 			chan->rf_gain = 0x28;
   4507 			chan->active  = htole16(36);
   4508 			chan->passive = htole16(120);
   4509 		}
   4510 		hdr->nchan++;
   4511 		chan++;
   4512 	}
   4513 
   4514 	buflen = (uint8_t *)chan - buf;
   4515 	hdr->len = htole16(buflen);
   4516 
   4517 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4518 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4519 	free(buf, M_DEVBUF);
   4520 	return error;
   4521 }
   4522 
   4523 static int
   4524 iwn_auth(struct iwn_softc *sc)
   4525 {
   4526 	const struct iwn_hal *hal = sc->sc_hal;
   4527 	struct ieee80211com *ic = &sc->sc_ic;
   4528 	struct ieee80211_node *ni = ic->ic_bss;
   4529 	int error;
   4530 
   4531 	sc->calib.state = IWN_CALIB_STATE_INIT;
   4532 
   4533 	/* Update adapter's configuration. */
   4534 	sc->rxon.associd = 0;
   4535 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4536 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
   4537 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4538 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4539 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4540 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4541 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4542 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4543 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4544 	switch (ic->ic_curmode) {
   4545 	case IEEE80211_MODE_11A:
   4546 		sc->rxon.cck_mask  = 0;
   4547 		sc->rxon.ofdm_mask = 0x15;
   4548 		break;
   4549 	case IEEE80211_MODE_11B:
   4550 		sc->rxon.cck_mask  = 0x03;
   4551 		sc->rxon.ofdm_mask = 0;
   4552 		break;
   4553 	default:	/* Assume 802.11b/g. */
   4554 		sc->rxon.cck_mask  = 0x0f;
   4555 		sc->rxon.ofdm_mask = 0x15;
   4556 		break;
   4557 	}
   4558 #if 1
   4559 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4560 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4561 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1);
   4562 	if (error != 0) {
   4563 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   4564 		return error;
   4565 	}
   4566 
   4567 	/* Configuration has changed, set TX power accordingly. */
   4568 	if ((error = hal->set_txpower(sc, 1)) != 0) {
   4569 		aprint_error_dev(sc->sc_dev, "could not set TX power\n");
   4570 		return error;
   4571 	}
   4572 	/*
   4573 	 * Reconfiguring RXON clears the firmware's nodes table so we must
   4574 	 * add the broadcast node again.
   4575 	 */
   4576 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4577 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   4578 		return error;
   4579 	}
   4580 #else
   4581 /*	iwn_enable_tsf(sc, ni);*/
   4582 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4583 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4584 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4585 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4586 	sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   4587 
   4588 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4589 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4590 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1);
   4591 	if (error != 0) {
   4592 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   4593 		return error;
   4594 	}
   4595 
   4596 	/* Configuration has changed, set TX power accordingly. */
   4597 	if ((error = hal->set_txpower(sc, 1)) != 0) {
   4598 		aprint_error_dev(sc->sc_dev, "could not set TX power\n");
   4599 		return error;
   4600 	}
   4601 	/*
   4602 	 * Reconfiguring RXON clears the firmware's nodes table so we must
   4603 	 * add the broadcast node again.
   4604 	 */
   4605 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4606 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   4607 		return error;
   4608 	}
   4609 	/* add BSS node */
   4610 	DPRINTF(("adding BSS node from auth\n"));
   4611 	if ((error = iwn_add_node(sc, ni, false, true, 0)) != 0)
   4612 		return error;
   4613 
   4614 	if (ic->ic_opmode == IEEE80211_M_STA) {
   4615 		/* fake a join to init the tx rate */
   4616 		iwn_newassoc(ni, 1);
   4617 	}
   4618 
   4619 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4620 		aprint_error_dev(sc->sc_dev, "could not set sensitivity\n");
   4621 		return error;
   4622 	}
   4623 #endif
   4624 	return 0;
   4625 }
   4626 
   4627 static int
   4628 iwn_run(struct iwn_softc *sc)
   4629 {
   4630 	const struct iwn_hal *hal = sc->sc_hal;
   4631 	struct ieee80211com *ic = &sc->sc_ic;
   4632 	struct ieee80211_node *ni = ic->ic_bss;
   4633 	int error;
   4634 
   4635 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4636 		/* Link LED blinks while monitoring. */
   4637 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4638 		return 0;
   4639 	}
   4640 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4641 		aprint_error_dev(sc->sc_dev, "could not set timing\n");
   4642 		return error;
   4643 	}
   4644 
   4645 	/* Update adapter's configuration. */
   4646 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4647 	/* Short preamble and slot time are negotiated when associating. */
   4648 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4649 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4650 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4651 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4652 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4653 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4654 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4655 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1);
   4656 	if (error != 0) {
   4657 		aprint_error_dev(sc->sc_dev,
   4658 		    "could not update configuration\n");
   4659 		return error;
   4660 	}
   4661 
   4662 	/* Configuration has changed, set TX power accordingly. */
   4663 	if ((error = hal->set_txpower(sc, 1)) != 0) {
   4664 		aprint_error_dev(sc->sc_dev, "could not set TX power\n");
   4665 		return error;
   4666 	}
   4667 
   4668 	/* Fake a join to initialize the TX rate. */
   4669 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4670 	iwn_newassoc(ni, 1);
   4671 
   4672 	/* Add BSS node. */
   4673 	iwn_add_node(sc, ni, false, true, 0);
   4674 	/* Start periodic calibration timer. */
   4675 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4676 	sc->calib_cnt = 0;
   4677 	callout_schedule(&sc->calib_to, hz / 2);
   4678 
   4679 	/* Link LED always on while associated. */
   4680 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4681 	return 0;
   4682 }
   4683 
   4684 static int
   4685 iwn_wme_update(struct ieee80211com *ic)
   4686 {
   4687 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   4688 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   4689 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   4690 	const struct wmeParams *wmep;
   4691 	struct iwn_edca_params cmd;
   4692 	int ac;
   4693 
   4694 	/* don't override default WME values if WME is not actually enabled */
   4695 	if (!(ic->ic_flags & IEEE80211_F_WME))
   4696 		return 0;
   4697 	cmd.flags = 0;
   4698 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   4699 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   4700 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   4701 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   4702 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   4703 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   4704 
   4705 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   4706 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   4707 					cmd.ac[ac].cwmin,
   4708 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   4709 	}
   4710 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   4711 #undef IWN_USEC
   4712 #undef IWN_EXP2
   4713 }
   4714 
   4715 #if 0
   4716 /*
   4717  * We support CCMP hardware encryption/decryption of unicast frames only.
   4718  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4719  */
   4720 static int
   4721 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4722     struct ieee80211_key *k)
   4723 {
   4724 	struct iwn_softc *sc = ic->ic_softc;
   4725 	const struct iwn_hal *hal = sc->sc_hal;
   4726 	struct iwn_node *wn = (void *)ni;
   4727 	struct iwn_node_info node;
   4728 	uint16_t kflags;
   4729 
   4730 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4731 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4732 		return ieee80211_set_key(ic, ni, k);
   4733 
   4734 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4735 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4736 		kflags |= IWN_KFLAG_GROUP;
   4737 
   4738 	memset(&node, 0, sizeof node);
   4739 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4740 	    hal->broadcast_id : wn->id;
   4741 	node.control = IWN_NODE_UPDATE;
   4742 	node.flags = IWN_FLAG_SET_KEY;
   4743 	node.kflags = htole16(kflags);
   4744 	node.kid = k->k_id;
   4745 	memcpy(node.key, k->k_key, k->k_len);
   4746 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   4747 	return hal->add_node(sc, &node, 1);
   4748 }
   4749 
   4750 static void
   4751 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4752     struct ieee80211_key *k)
   4753 {
   4754 	struct iwn_softc *sc = ic->ic_softc;
   4755 	const struct iwn_hal *hal = sc->sc_hal;
   4756 	struct iwn_node *wn = (void *)ni;
   4757 	struct iwn_node_info node;
   4758 
   4759 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4760 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   4761 		/* See comment about other ciphers above. */
   4762 		ieee80211_delete_key(ic, ni, k);
   4763 		return;
   4764 	}
   4765 	if (ic->ic_state != IEEE80211_S_RUN)
   4766 		return;	/* Nothing to do. */
   4767 	memset(&node, 0, sizeof node);
   4768 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4769 	    hal->broadcast_id : wn->id;
   4770 	node.control = IWN_NODE_UPDATE;
   4771 	node.flags = IWN_FLAG_SET_KEY;
   4772 	node.kflags = htole16(IWN_KFLAG_INVALID);
   4773 	node.kid = 0xff;
   4774 	DPRINTF(("delete keys for node %d\n", node.id));
   4775 	(void)hal->add_node(sc, &node, 1);
   4776 }
   4777 #endif
   4778 
   4779 #ifndef IEEE80211_NO_HT
   4780 /*
   4781  * This function is called by upper layer when a ADDBA request is received
   4782  * from another STA and before the ADDBA response is sent.
   4783  */
   4784 static int
   4785 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4786     uint8_t tid, uint16_t ssn)
   4787 {
   4788 	struct iwn_softc *sc = ic->ic_softc;
   4789 	struct iwn_node *wn = (void *)ni;
   4790 	struct iwn_node_info node;
   4791 
   4792 	memset(&node, 0, sizeof node);
   4793 	node.id = wn->id;
   4794 	node.control = IWN_NODE_UPDATE;
   4795 	node.flags = IWN_FLAG_SET_ADDBA;
   4796 	node.addba_tid = tid;
   4797 	node.addba_ssn = htole16(ssn);
   4798 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, ssn));
   4799 	return sc->sc_hal->add_node(sc, &node, 1);
   4800 }
   4801 
   4802 /*
   4803  * This function is called by upper layer on teardown of an HT-immediate
   4804  * Block Ack (eg. uppon receipt of a DELBA frame.)
   4805  */
   4806 static void
   4807 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4808     uint8_t tid, uint16_t ssn)
   4809 {
   4810 	struct iwn_softc *sc = ic->ic_softc;
   4811 	struct iwn_node *wn = (void *)ni;
   4812 	struct iwn_node_info node;
   4813 
   4814 	memset(&node, 0, sizeof node);
   4815 	node.id = wn->id;
   4816 	node.control = IWN_NODE_UPDATE;
   4817 	node.flags = IWN_FLAG_SET_DELBA;
   4818 	node.delba_tid = tid;
   4819 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   4820 	(void)sc->sc_hal->add_node(sc, &node, 1);
   4821 }
   4822 
   4823 /*
   4824  * This function is called by upper layer when a ADDBA response is received
   4825  * from another STA.
   4826  */
   4827 static int
   4828 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4829     uint8_t tid, uint16_t ssn)
   4830 {
   4831 	struct iwn_softc *sc = ic->ic_softc;
   4832 	const struct iwn_hal *hal = sc->sc_hal;
   4833 	struct iwn_node *wn = (void *)ni;
   4834 	struct iwn_node_info node;
   4835 	int error;
   4836 
   4837 	/* Enable TX for the specified RA/TID. */
   4838 	wn->disable_tid &= ~(1 << tid);
   4839 	memset(&node, 0, sizeof node);
   4840 	node.id = wn->id;
   4841 	node.control = IWN_NODE_UPDATE;
   4842 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   4843 	node.disable_tid = htole16(wn->disable_tid);
   4844 	error = hal->add_node(sc, &node, 1);
   4845 	if (error != 0)
   4846 		return error;
   4847 
   4848 	if ((error = iwn_nic_lock(sc)) != 0)
   4849 		return error;
   4850 	hal->ampdu_tx_start(sc, ni, tid, ssn);
   4851 	iwn_nic_unlock(sc);
   4852 	return 0;
   4853 }
   4854 
   4855 static void
   4856 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4857     uint8_t tid, uint16_t ssn)
   4858 {
   4859 	struct iwn_softc *sc = ic->ic_softc;
   4860 
   4861 	if (iwn_nic_lock(sc) != 0)
   4862 		return;
   4863 	sc->sc_hal->ampdu_tx_stop(sc, tid, ssn);
   4864 	iwn_nic_unlock(sc);
   4865 }
   4866 
   4867 static void
   4868 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4869     uint8_t tid, uint16_t ssn)
   4870 {
   4871 	struct iwn_node *wn = (void *)ni;
   4872 	int qid = 7 + tid;
   4873 
   4874 	/* Stop TX scheduler while we're changing its configuration. */
   4875 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4876 	    IWN4965_TXQ_STATUS_CHGACT);
   4877 
   4878 	/* Assign RA/TID translation to the queue. */
   4879 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   4880 	    wn->id << 4 | tid);
   4881 
   4882 	/* Enable chain mode for the queue. */
   4883 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   4884 
   4885 	/* Set starting sequence number from the ADDBA request. */
   4886 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn);
   4887 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4888 
   4889 	/* Set scheduler window size. */
   4890 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   4891 	    IWN_SCHED_WINSZ);
   4892 	/* Set scheduler frame limit. */
   4893 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4894 	    IWN_SCHED_LIMIT << 16);
   4895 
   4896 	/* Enable interrupts for the queue. */
   4897 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4898 
   4899 	/* Mark the queue as active. */
   4900 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4901 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   4902 	    iwn_tid2fifo[tid] << 1);
   4903 }
   4904 
   4905 static void
   4906 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4907 {
   4908 	int qid = 7 + tid;
   4909 
   4910 	/* Stop TX scheduler while we're changing its configuration. */
   4911 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4912 	    IWN4965_TXQ_STATUS_CHGACT);
   4913 
   4914 	/* Set starting sequence number from the ADDBA request. */
   4915 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn);
   4916 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4917 
   4918 	/* Disable interrupts for the queue. */
   4919 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4920 
   4921 	/* Mark the queue as inactive. */
   4922 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4923 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   4924 }
   4925 
   4926 static void
   4927 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4928     uint8_t tid, uint16_t ssn)
   4929 {
   4930 	struct iwn_node *wn = (void *)ni;
   4931 	int qid = 10 + tid;
   4932 
   4933 	/* Stop TX scheduler while we're changing its configuration. */
   4934 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4935 	    IWN5000_TXQ_STATUS_CHGACT);
   4936 
   4937 	/* Assign RA/TID translation to the queue. */
   4938 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   4939 	    wn->id << 4 | tid);
   4940 
   4941 	/* Enable chain mode for the queue. */
   4942 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   4943 
   4944 	/* Enable aggregation for the queue. */
   4945 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4946 
   4947 	/* Set starting sequence number from the ADDBA request. */
   4948 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn);
   4949 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4950 
   4951 	/* Set scheduler window size and frame limit. */
   4952 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   4953 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   4954 
   4955 	/* Enable interrupts for the queue. */
   4956 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4957 
   4958 	/* Mark the queue as active. */
   4959 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4960 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   4961 }
   4962 
   4963 static void
   4964 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4965 {
   4966 	int qid = 10 + tid;
   4967 
   4968 	/* Stop TX scheduler while we're changing its configuration. */
   4969 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4970 	    IWN5000_TXQ_STATUS_CHGACT);
   4971 
   4972 	/* Disable aggregation for the queue. */
   4973 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4974 
   4975 	/* Set starting sequence number from the ADDBA request. */
   4976 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn);
   4977 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4978 
   4979 	/* Disable interrupts for the queue. */
   4980 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4981 
   4982 	/* Mark the queue as inactive. */
   4983 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4984 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   4985 }
   4986 #endif /* 0 */
   4987 
   4988 /*
   4989  * Query calibration tables from the initialization firmware.  We do this
   4990  * only once at first boot.  Called from a process context.
   4991  */
   4992 static int
   4993 iwn5000_query_calibration(struct iwn_softc *sc)
   4994 {
   4995 	struct iwn5000_calib_config cmd;
   4996 	int error;
   4997 
   4998 	memset(&cmd, 0, sizeof cmd);
   4999 	cmd.ucode.once.enable = 0xffffffff;
   5000 	cmd.ucode.once.start  = 0xffffffff;
   5001 	cmd.ucode.once.send   = 0xffffffff;
   5002 	cmd.ucode.flags       = 0xffffffff;
   5003 	DPRINTF(("sending calibration query\n"));
   5004 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   5005 	if (error != 0)
   5006 		return error;
   5007 
   5008 	/* Wait at most two seconds for calibration to complete. */
   5009 	return tsleep(sc, PCATCH, "iwncal", 2 * hz);
   5010 }
   5011 
   5012 /*
   5013  * Send calibration results to the runtime firmware.  These results were
   5014  * obtained on first boot from the initialization firmware.
   5015  */
   5016 static int
   5017 iwn5000_send_calibration(struct iwn_softc *sc)
   5018 {
   5019 	int idx, error;
   5020 
   5021 	for (idx = 0; idx < 5; idx++) {
   5022 		if (sc->calibcmd[idx].buf == NULL)
   5023 			continue;	/* No results available. */
   5024 		DPRINTF(("send calibration result idx=%d len=%d\n",
   5025 		    idx, sc->calibcmd[idx].len));
   5026 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   5027 		    sc->calibcmd[idx].len, 0);
   5028 		if (error != 0) {
   5029 			aprint_error_dev(sc->sc_dev,
   5030 			    "could not send calibration result\n");
   5031 			return error;
   5032 		}
   5033 	}
   5034 	return 0;
   5035 }
   5036 
   5037 /*
   5038  * This function is called after the runtime firmware notifies us of its
   5039  * readiness (called in a process context.)
   5040  */
   5041 static int
   5042 iwn4965_post_alive(struct iwn_softc *sc)
   5043 {
   5044 	int error, qid;
   5045 
   5046 	if ((error = iwn_nic_lock(sc)) != 0)
   5047 		return error;
   5048 
   5049 	/* Clear TX scheduler's state in SRAM. */
   5050 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5051 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   5052 	    IWN4965_SCHED_CTX_LEN);
   5053 
   5054 	/* Set physical address of TX scheduler rings (1KB aligned.) */
   5055 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5056 
   5057 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5058 
   5059 	/* Disable chain mode for all our 16 queues. */
   5060 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   5061 
   5062 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   5063 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   5064 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5065 
   5066 		/* Set scheduler window size. */
   5067 		iwn_mem_write(sc, sc->sched_base +
   5068 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   5069 		/* Set scheduler frame limit. */
   5070 		iwn_mem_write(sc, sc->sched_base +
   5071 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5072 		    IWN_SCHED_LIMIT << 16);
   5073 	}
   5074 
   5075 	/* Enable interrupts for all our 16 queues. */
   5076 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   5077 	/* Identify TX FIFO rings (0-7). */
   5078 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   5079 
   5080 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5081 	for (qid = 0; qid < 7; qid++) {
   5082 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   5083 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5084 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   5085 	}
   5086 	iwn_nic_unlock(sc);
   5087 	return 0;
   5088 }
   5089 
   5090 /*
   5091  * This function is called after the initialization or runtime firmware
   5092  * notifies us of its readiness (called in a process context.)
   5093  */
   5094 static int
   5095 iwn5000_post_alive(struct iwn_softc *sc)
   5096 {
   5097 	struct iwn5000_wimax_coex wimax;
   5098 	int error, qid;
   5099 
   5100 	if ((error = iwn_nic_lock(sc)) != 0)
   5101 		return error;
   5102 
   5103 	/* Clear TX scheduler's state in SRAM. */
   5104 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5105 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   5106 	    IWN5000_SCHED_CTX_LEN);
   5107 
   5108 	/* Set physical address of TX scheduler rings (1KB aligned.) */
   5109 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5110 
   5111 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5112 
   5113 	/* Enable chain mode for all our 20 queues. */
   5114 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffff);
   5115 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   5116 
   5117 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   5118 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   5119 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5120 
   5121 		iwn_mem_write(sc, sc->sched_base +
   5122 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   5123 		/* Set scheduler window size and frame limit. */
   5124 		iwn_mem_write(sc, sc->sched_base +
   5125 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5126 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5127 	}
   5128 
   5129 	/* Enable interrupts for all our 20 queues. */
   5130 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   5131 	/* Identify TX FIFO rings (0-7). */
   5132 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   5133 
   5134 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5135 	for (qid = 0; qid < 7; qid++) {
   5136 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   5137 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5138 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   5139 	}
   5140 	iwn_nic_unlock(sc);
   5141 
   5142 	/* Configure WiMAX (IEEE 802.16e) coexistence. */
   5143 	memset(&wimax, 0, sizeof wimax);
   5144 	DPRINTF(("Configuring WiMAX coexistence\n"));
   5145 	error = iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   5146 	if (error != 0) {
   5147 		aprint_error_dev(sc->sc_dev,
   5148 		    "could not configure WiMAX coexistence\n");
   5149 		return error;
   5150 	}
   5151 
   5152 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5153 		struct iwn5000_phy_calib_crystal cmd;
   5154 
   5155 		/* Perform crystal calibration. */
   5156 		memset(&cmd, 0, sizeof cmd);
   5157 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5158 		cmd.ngroups = 1;
   5159 		cmd.isvalid = 1;
   5160 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5161 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5162 		DPRINTF(("sending crystal calibration %d, %d\n",
   5163 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5164 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5165 		if (error != 0) {
   5166 			aprint_error_dev(sc->sc_dev,
   5167 			    "crystal calibration failed\n");
   5168 			return error;
   5169 		}
   5170 	}
   5171 	if (sc->sc_flags & IWN_FLAG_FIRST_BOOT) {
   5172 		/* Query calibration from the initialization firmware. */
   5173 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5174 			aprint_error_dev(sc->sc_dev,
   5175 			    "could not query calibration\n");
   5176 			return error;
   5177 		}
   5178 		/*
   5179 		 * We have the calibration results now so we can skip
   5180 		 * loading the initialization firmware next time.
   5181 		 */
   5182 		sc->sc_flags &= ~IWN_FLAG_FIRST_BOOT;
   5183 
   5184 		/* Reboot (call ourselves recursively!) */
   5185 		iwn_hw_stop(sc);
   5186 		error = iwn_hw_init(sc);
   5187 	} else {
   5188 		/* Send calibration results to runtime firmware. */
   5189 		error = iwn5000_send_calibration(sc);
   5190 	}
   5191 	return error;
   5192 }
   5193 
   5194 /*
   5195  * The firmware boot code is small and is intended to be copied directly into
   5196  * the NIC internal memory (no DMA transfer.)
   5197  */
   5198 static int
   5199 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5200 {
   5201 	int error, ntries;
   5202 
   5203 	size /= sizeof (uint32_t);
   5204 
   5205 	if ((error = iwn_nic_lock(sc)) != 0)
   5206 		return error;
   5207 
   5208 	/* Copy microcode image into NIC memory. */
   5209 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5210 	    (const uint32_t *)ucode, size);
   5211 
   5212 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5213 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5214 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5215 
   5216 	/* Start boot load now. */
   5217 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5218 
   5219 	/* Wait for transfer to complete. */
   5220 	for (ntries = 0; ntries < 1000; ntries++) {
   5221 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5222 		    IWN_BSM_WR_CTRL_START))
   5223 			break;
   5224 		DELAY(10);
   5225 	}
   5226 	if (ntries == 1000) {
   5227 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   5228 		iwn_nic_unlock(sc);
   5229 		return ETIMEDOUT;
   5230 	}
   5231 
   5232 	/* Enable boot after power up. */
   5233 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5234 
   5235 	iwn_nic_unlock(sc);
   5236 	return 0;
   5237 }
   5238 
   5239 static int
   5240 iwn4965_load_firmware(struct iwn_softc *sc)
   5241 {
   5242 	struct iwn_fw_info *fw = &sc->fw;
   5243 	struct iwn_dma_info *dma = &sc->fw_dma;
   5244 	int error;
   5245 
   5246 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5247 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5248 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5249 	    BUS_DMASYNC_PREWRITE);
   5250 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5251 	    fw->init.text, fw->init.textsz);
   5252 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5253 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5254 
   5255 	/* Tell adapter where to find initialization sections. */
   5256 	if ((error = iwn_nic_lock(sc)) != 0)
   5257 		return error;
   5258 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5259 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5260 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5261 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5262 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5263 	iwn_nic_unlock(sc);
   5264 
   5265 	/* Load firmware boot code. */
   5266 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5267 	if (error != 0) {
   5268 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   5269 		return error;
   5270 	}
   5271 	/* Now press "execute". */
   5272 	IWN_WRITE(sc, IWN_RESET, 0);
   5273 
   5274 	/* Wait at most one second for first alive notification. */
   5275 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5276 		aprint_error_dev(sc->sc_dev,
   5277 		    "timeout waiting for adapter to initialize %d\n", error);
   5278 		return error;
   5279 	}
   5280 
   5281 	/* Retrieve current temperature for initial TX power calibration. */
   5282 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5283 	sc->temp = iwn4965_get_temperature(sc);
   5284 
   5285 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5286 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5287 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5288 	    BUS_DMASYNC_PREWRITE);
   5289 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5290 	    fw->main.text, fw->main.textsz);
   5291 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5292 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5293 
   5294 	/* Tell adapter where to find runtime sections. */
   5295 	if ((error = iwn_nic_lock(sc)) != 0)
   5296 		return error;
   5297 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5298 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5299 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5300 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5301 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5302 	    IWN_FW_UPDATED | fw->main.textsz);
   5303 	iwn_nic_unlock(sc);
   5304 
   5305 	return 0;
   5306 }
   5307 
   5308 static int
   5309 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5310     const uint8_t *section, int size)
   5311 {
   5312 	struct iwn_dma_info *dma = &sc->fw_dma;
   5313 	int error;
   5314 
   5315 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5316 	memcpy(dma->vaddr, section, size);
   5317 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5318 
   5319 	if ((error = iwn_nic_lock(sc)) != 0)
   5320 		return error;
   5321 
   5322 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_CHNL),
   5323 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5324 
   5325 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_CHNL), dst);
   5326 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_CHNL),
   5327 	    IWN_LOADDR(dma->paddr));
   5328 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_CHNL),
   5329 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5330 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_CHNL),
   5331 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5332 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5333 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5334 
   5335 	/* Kick Flow Handler to start DMA transfer. */
   5336 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_CHNL),
   5337 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5338 
   5339 	iwn_nic_unlock(sc);
   5340 
   5341 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5342 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5343 }
   5344 
   5345 static int
   5346 iwn5000_load_firmware(struct iwn_softc *sc)
   5347 {
   5348 	struct iwn_fw_part *fw;
   5349 	int error;
   5350 
   5351 	/* Load the initialization firmware on first boot only. */
   5352 	fw = (sc->sc_flags & IWN_FLAG_FIRST_BOOT) ?
   5353 	    &sc->fw.init : &sc->fw.main;
   5354 
   5355 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5356 	    fw->text, fw->textsz);
   5357 	if (error != 0) {
   5358 		aprint_error_dev(sc->sc_dev,
   5359 		    "could not load firmware %s section\n",
   5360 		    ".text");
   5361 		return error;
   5362 	}
   5363 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5364 	    fw->data, fw->datasz);
   5365 	if (error != 0) {
   5366 		aprint_error_dev(sc->sc_dev,
   5367 		    "could not load firmware %s section\n",
   5368 		    ".data");
   5369 		return error;
   5370 	}
   5371 
   5372 	/* Now press "execute". */
   5373 	IWN_WRITE(sc, IWN_RESET, 0);
   5374 	return 0;
   5375 }
   5376 
   5377 static int
   5378 iwn_read_firmware(struct iwn_softc *sc)
   5379 {
   5380 	const struct iwn_hal *hal = sc->sc_hal;
   5381 	struct iwn_fw_info *fw = &sc->fw;
   5382 	struct iwn_firmware_hdr hdr;
   5383 	firmware_handle_t fwh;
   5384 	size_t size;
   5385 	int error;
   5386 
   5387 	/* Read firmware image from filesystem. */
   5388 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5389 		aprint_error_dev(sc->sc_dev,
   5390 		    "could not read firmware file %s\n", sc->fwname);
   5391 		return error;
   5392 	}
   5393 	size = firmware_get_size(fwh);
   5394 	if (size < sizeof (hdr)) {
   5395 		aprint_error_dev(sc->sc_dev,
   5396 		    "truncated firmware header: %zu bytes\n", size);
   5397 		error = EINVAL;
   5398 		goto fail2;
   5399 	}
   5400 	/* Extract firmware header information. */
   5401 	if ((error = firmware_read(fwh, 0, &hdr,
   5402 	    sizeof (struct iwn_firmware_hdr))) != 0) {
   5403 		aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
   5404 		goto fail2;
   5405 	}
   5406 	fw->main.textsz = le32toh(hdr.main_textsz);
   5407 	fw->main.datasz = le32toh(hdr.main_datasz);
   5408 	fw->init.textsz = le32toh(hdr.init_textsz);
   5409 	fw->init.datasz = le32toh(hdr.init_datasz);
   5410 	fw->boot.textsz = le32toh(hdr.boot_textsz);
   5411 	fw->boot.datasz = 0;
   5412 
   5413 	/* Sanity-check firmware header. */
   5414 	if (fw->main.textsz > hal->fw_text_maxsz ||
   5415 	    fw->main.datasz > hal->fw_data_maxsz ||
   5416 	    fw->init.textsz > hal->fw_text_maxsz ||
   5417 	    fw->init.datasz > hal->fw_data_maxsz ||
   5418 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5419 	    (fw->boot.textsz & 3) != 0) {
   5420 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   5421 		error = EINVAL;
   5422 		goto fail2;
   5423 	}
   5424 
   5425 	/* Check that all firmware sections fit. */
   5426 	if (size < sizeof (hdr) + fw->main.textsz + fw->main.datasz +
   5427 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
   5428 		aprint_error_dev(sc->sc_dev,
   5429 		    "firmware file too short: %zu bytes\n", size);
   5430 		error = EINVAL;
   5431 		goto fail2;
   5432 	}
   5433 	fw->data = firmware_malloc(size);
   5434 	if (fw->data == NULL) {
   5435 		aprint_error_dev(sc->sc_dev,
   5436 		    "not enough memory to stock firmware\n");
   5437 		error = ENOMEM;
   5438 		goto fail2;
   5439 	}
   5440 	if ((error = firmware_read(fwh, 0, fw->data, size)) != 0) {
   5441 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
   5442 		goto fail3;
   5443 	}
   5444 
   5445 	/* Get pointers to firmware sections. */
   5446 	fw->main.text = fw->data + sizeof (struct iwn_firmware_hdr);
   5447 	fw->main.data = fw->main.text + fw->main.textsz;
   5448 	fw->init.text = fw->main.data + fw->main.datasz;
   5449 	fw->init.data = fw->init.text + fw->init.textsz;
   5450 	fw->boot.text = fw->init.data + fw->init.datasz;
   5451 
   5452 	return 0;
   5453 fail3:	firmware_free(fw->data, size);
   5454 fail2:	firmware_close(fwh);
   5455 	return error;
   5456 }
   5457 
   5458 static int
   5459 iwn_clock_wait(struct iwn_softc *sc)
   5460 {
   5461 	int ntries;
   5462 
   5463 	/* Set "initialization complete" bit. */
   5464 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5465 
   5466 	/* Wait for clock stabilization. */
   5467 	for (ntries = 0; ntries < 25000; ntries++) {
   5468 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5469 			return 0;
   5470 		DELAY(100);
   5471 	}
   5472 	aprint_error_dev(sc->sc_dev,
   5473 	    "timeout waiting for clock stabilization\n");
   5474 	return ETIMEDOUT;
   5475 }
   5476 
   5477 static int
   5478 iwn4965_apm_init(struct iwn_softc *sc)
   5479 {
   5480 	int error;
   5481 
   5482 	/* Disable L0s. */
   5483 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   5484 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   5485 
   5486 	if ((error = iwn_clock_wait(sc)) != 0)
   5487 		return error;
   5488 
   5489 	if ((error = iwn_nic_lock(sc)) != 0)
   5490 		return error;
   5491 	/* Enable DMA. */
   5492 	iwn_prph_write(sc, IWN_APMG_CLK_CTRL,
   5493 	    IWN_APMG_CLK_CTRL_DMA_CLK_RQT | IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   5494 	DELAY(20);
   5495 	/* Disable L1. */
   5496 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   5497 	iwn_nic_unlock(sc);
   5498 
   5499 	return 0;
   5500 }
   5501 
   5502 static int
   5503 iwn5000_apm_init(struct iwn_softc *sc)
   5504 {
   5505 	int error;
   5506 
   5507 	/* Disable L0s. */
   5508 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   5509 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   5510 
   5511 	/* Set Flow Handler wait threshold to the maximum. */
   5512 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   5513 
   5514 	/* Enable HAP to move adapter from L1a to L0s. */
   5515 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   5516 
   5517 	if (sc->hw_type != IWN_HW_REV_TYPE_6000 &&
   5518 	    sc->hw_type != IWN_HW_REV_TYPE_6050)
   5519 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   5520 
   5521 	if ((error = iwn_clock_wait(sc)) != 0)
   5522 	return error;
   5523 
   5524 	if ((error = iwn_nic_lock(sc)) != 0)
   5525 		return error;
   5526 	/* Enable DMA. */
   5527 	iwn_prph_write(sc, IWN_APMG_CLK_CTRL, IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5528 	DELAY(20);
   5529 	/* Disable L1. */
   5530 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   5531 	iwn_nic_unlock(sc);
   5532 
   5533 	return 0;
   5534 }
   5535 
   5536 static void
   5537 iwn_apm_stop_master(struct iwn_softc *sc)
   5538 {
   5539 	int ntries;
   5540 
   5541 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   5542 	for (ntries = 0; ntries < 100; ntries++) {
   5543 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   5544 			return;
   5545 		DELAY(10);
   5546 	}
   5547 	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   5548 }
   5549 
   5550 static void
   5551 iwn_apm_stop(struct iwn_softc *sc)
   5552 {
   5553 	iwn_apm_stop_master(sc);
   5554 
   5555 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   5556 	DELAY(10);
   5557 	/* Clear "initialization complete" bit. */
   5558 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5559 }
   5560 
   5561 static int
   5562 iwn4965_nic_config(struct iwn_softc *sc)
   5563 {
   5564 	pcireg_t reg;
   5565 
   5566 	/* Retrieve PCIe Active State Power Management (ASPM). */
   5567 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   5568 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   5569 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   5570 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5571 	else
   5572 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5573 
   5574 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   5575 		/*
   5576 		 * I don't believe this to be correct but this is what the
   5577 		 * vendor driver is doing. Probably the bits should not be
   5578 		 * shifted in IWN_RFCFG_*.
   5579 		 */
   5580 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5581 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5582 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5583 		    IWN_RFCFG_DASH(sc->rfcfg));
   5584 	}
   5585 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5586 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5587 	return 0;
   5588 }
   5589 
   5590 static int
   5591 iwn5000_nic_config(struct iwn_softc *sc)
   5592 {
   5593 	int error;
   5594 	pcireg_t reg;
   5595 
   5596 	/* Retrieve PCIe Active State Power Management (ASPM). */
   5597 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   5598 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   5599 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   5600 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5601 	else
   5602 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5603 
   5604 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   5605 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5606 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5607 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5608 		    IWN_RFCFG_DASH(sc->rfcfg));
   5609 	}
   5610 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5611 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5612 
   5613 	if ((error = iwn_nic_lock(sc)) != 0)
   5614 		return error;
   5615 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   5616 	iwn_nic_unlock(sc);
   5617 	return 0;
   5618 }
   5619 
   5620 static int
   5621 iwn_hw_init(struct iwn_softc *sc)
   5622 {
   5623 	const struct iwn_hal *hal = sc->sc_hal;
   5624 	int error, qid;
   5625 
   5626 	/* Clear pending interrupts. */
   5627 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5628 
   5629 	if ((error = hal->apm_init(sc)) != 0) {
   5630 		aprint_error_dev(sc->sc_dev, "could not power ON adapter\n");
   5631 		return error;
   5632 	}
   5633 
   5634 	/* Select VMAIN power source. */
   5635 	if ((error = iwn_nic_lock(sc)) != 0)
   5636 		return error;
   5637 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   5638 	iwn_nic_unlock(sc);
   5639 
   5640 	/* Perform adapter-specific initialization. */
   5641 	if ((error = hal->nic_config(sc)) != 0)
   5642 		return error;
   5643 
   5644 	/* Initialize RX ring. */
   5645 	if ((error = iwn_nic_lock(sc)) != 0)
   5646 		return error;
   5647 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   5648 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   5649 	/* Set physical address of RX ring (256-byte aligned.) */
   5650 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   5651 	/* Set physical address of RX status (16-byte aligned.) */
   5652 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   5653 	/* Enable RX. */
   5654 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   5655 	    IWN_FH_RX_CONFIG_ENA	   |
   5656 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   5657 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   5658 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   5659 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   5660 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   5661 	iwn_nic_unlock(sc);
   5662 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   5663 
   5664 	if ((error = iwn_nic_lock(sc)) != 0)
   5665 		return error;
   5666 
   5667 	/* Initialize TX scheduler. */
   5668 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
   5669 
   5670 	/* Set physical address of "keep warm" page (16-byte aligned.) */
   5671 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   5672 
   5673 	/* Initialize TX rings. */
   5674 	for (qid = 0; qid < hal->ntxqs; qid++) {
   5675 		struct iwn_tx_ring *txq = &sc->txq[qid];
   5676 
   5677 		/* Set physical address of TX ring (256-byte aligned.) */
   5678 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   5679 		    txq->desc_dma.paddr >> 8);
   5680 		/* Enable TX for this ring. */
   5681 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(qid),
   5682 		    IWN_FH_TX_CONFIG_DMA_ENA |
   5683 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   5684 	}
   5685 	iwn_nic_unlock(sc);
   5686 
   5687 	/* Clear "radio off" and "commands blocked" bits. */
   5688 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5689 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   5690 
   5691 	/* Clear pending interrupts. */
   5692 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5693 	/* Enable interrupt coalescing. */
   5694 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   5695 	/* Enable interrupts. */
   5696 	IWN_WRITE(sc, IWN_MASK, IWN_INT_MASK);
   5697 
   5698 	/* _Really_ make sure "radio off" bit is cleared! */
   5699 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5700 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5701 
   5702 	if ((error = hal->load_firmware(sc)) != 0) {
   5703 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
   5704 		return error;
   5705 	}
   5706 	/* Wait at most one second for firmware alive notification. */
   5707 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5708 		aprint_error_dev(sc->sc_dev,
   5709 		    "timeout waiting for adapter to initialize %d\n" ,error);
   5710 		return error;
   5711 	}
   5712 	/* Do post-firmware initialization. */
   5713 	return hal->post_alive(sc);
   5714 }
   5715 
   5716 static void
   5717 iwn_hw_stop(struct iwn_softc *sc)
   5718 {
   5719 	const struct iwn_hal *hal = sc->sc_hal;
   5720 	int qid;
   5721 
   5722 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   5723 
   5724 	/* Disable interrupts. */
   5725 	IWN_WRITE(sc, IWN_MASK, 0);
   5726 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5727 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   5728 
   5729 	/* Make sure we no longer hold the NIC lock. */
   5730 	iwn_nic_unlock(sc);
   5731 
   5732 	/* Stop TX scheduler. */
   5733 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
   5734 
   5735 	/* Stop all TX rings. */
   5736 	for (qid = 0; qid < hal->ntxqs; qid++)
   5737 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   5738 
   5739 	/* Stop RX ring. */
   5740 	iwn_reset_rx_ring(sc, &sc->rxq);
   5741 
   5742 	if (iwn_nic_lock(sc) == 0) {
   5743 		iwn_prph_write(sc, IWN_APMG_CLK_DIS, IWN_APMG_CLK_DMA_RQT);
   5744 		iwn_nic_unlock(sc);
   5745 	}
   5746 	DELAY(5);
   5747 	/* Power OFF adapter. */
   5748 	iwn_apm_stop(sc);
   5749 }
   5750 
   5751 static int
   5752 iwn_init(struct ifnet *ifp)
   5753 {
   5754 	struct iwn_softc *sc = ifp->if_softc;
   5755 	struct ieee80211com *ic = &sc->sc_ic;
   5756 	int error;
   5757 
   5758 	/* Check that the radio is not disabled by hardware switch. */
   5759 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   5760 		aprint_error_dev(sc->sc_dev,
   5761 		    "radio is disabled by hardware switch\n");
   5762 		sc->sc_radio = false;
   5763 		error = EPERM;	/* :-) */
   5764 		goto fail;
   5765 	}
   5766 	sc->sc_radio = true;
   5767 
   5768 	/* Read firmware images from the filesystem. */
   5769 	if ((error = iwn_read_firmware(sc)) != 0) {
   5770 		aprint_error_dev(sc->sc_dev, "could not read firmware\n");
   5771 		goto fail;
   5772 	}
   5773 
   5774 	/* Initialize hardware and upload firmware. */
   5775 	error = iwn_hw_init(sc);
   5776 	free(sc->fw.data, M_DEVBUF);
   5777 	if (error != 0) {
   5778 		aprint_error_dev(sc->sc_dev, "could not initialize hardware\n");
   5779 		goto fail;
   5780 	}
   5781 
   5782 	/* Configure adapter now that it is ready. */
   5783 	if ((error = iwn_config(sc)) != 0) {
   5784 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   5785 		goto fail;
   5786 	}
   5787 
   5788 	ifp->if_flags &= ~IFF_OACTIVE;
   5789 	ifp->if_flags |= IFF_RUNNING;
   5790 
   5791 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   5792 		if (ic->ic_opmode != IEEE80211_ROAMING_MANUAL)
   5793 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   5794 	} else
   5795 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   5796 
   5797 	return 0;
   5798 
   5799 fail:	iwn_stop(ifp, 1);
   5800 	return error;
   5801 }
   5802 
   5803 static void
   5804 iwn_stop(struct ifnet *ifp, int disable)
   5805 {
   5806 	struct iwn_softc *sc = ifp->if_softc;
   5807 	struct ieee80211com *ic = &sc->sc_ic;
   5808 
   5809 	ifp->if_timer = sc->sc_tx_timer = 0;
   5810 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5811 
   5812 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   5813 
   5814 	/* Power OFF hardware. */
   5815 	iwn_hw_stop(sc);
   5816 
   5817 #if 0
   5818 	/* Temperature sensor is no longer valid. */
   5819 	sc->sensor.value = 0;
   5820 	sc->sensor.flags |= SENSOR_FINVALID;
   5821 #endif
   5822 }
   5823 
   5824 static bool
   5825 iwn_resume(device_t dv, pmf_qual_t qual)
   5826 {
   5827 #if 0
   5828 	struct iwn_softc *sc = device_private(dv);
   5829 
   5830 	(void)iwn_reset(sc);
   5831 #endif
   5832 
   5833 	return true;
   5834 }
   5835