Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.37.2.1
      1 /*	$NetBSD: if_iwn.c,v 1.37.2.1 2010/05/30 05:17:33 rmind Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.88 2010/04/10 08:37:36 damien Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.37.2.1 2010/05/30 05:17:33 rmind Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 /* XXX Avoid sensor code (correct option for NetBSD too?) */
     31 #undef SMALL_KERNEL
     32 
     33 #include <sys/param.h>
     34 #include <sys/sockio.h>
     35 #include <sys/sysctl.h>
     36 #include <sys/mbuf.h>
     37 #include <sys/kernel.h>
     38 #include <sys/socket.h>
     39 #include <sys/systm.h>
     40 #include <sys/malloc.h>
     41 #include <sys/mutex.h>
     42 #include <sys/conf.h>
     43 #include <sys/kauth.h>
     44 #include <sys/callout.h>
     45 
     46 #include <dev/sysmon/sysmonvar.h>
     47 
     48 #include <machine/bus.h>
     49 #include <machine/endian.h>
     50 #include <machine/intr.h>
     51 
     52 #include <dev/pci/pcireg.h>
     53 #include <dev/pci/pcivar.h>
     54 #include <dev/pci/pcidevs.h>
     55 
     56 #include <net/bpf.h>
     57 #include <net/if.h>
     58 #include <net/if_arp.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_types.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <net/if_ether.h>
     67 #include <netinet/ip.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_amrr.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #include <dev/firmload.h>
     74 
     75 #include <dev/pci/if_iwnreg.h>
     76 #include <dev/pci/if_iwnvar.h>
     77 
     78 static const pci_product_id_t iwn_devices[] = {
     79 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     80 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     81 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     82 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     83 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     84 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     85 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     86 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     87 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
     89 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
     90 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
     99 };
    100 
    101 /*
    102  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    103  */
    104 static const struct ieee80211_rateset iwn_rateset_11a =
    105 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    106 
    107 static const struct ieee80211_rateset iwn_rateset_11b =
    108 	{ 4, { 2, 4, 11, 22 } };
    109 
    110 static const struct ieee80211_rateset iwn_rateset_11g =
    111 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    112 
    113 static int	iwn_match(device_t , struct cfdata *, void *);
    114 static void	iwn_attach(device_t , device_t , void *);
    115 const struct	iwn_hal *iwn_hal_attach(struct iwn_softc *, pci_product_id_t pid);
    116 #ifndef SMALL_KERNEL
    117 static void	iwn_sensor_attach(struct iwn_softc *);
    118 #endif
    119 static void	iwn_radiotap_attach(struct iwn_softc *);
    120 static int	iwn_detach(device_t , int);
    121 #if 0
    122 static void	iwn_power(int, void *);
    123 #endif
    124 static bool	iwn_resume(device_t, const pmf_qual_t *);
    125 static int	iwn_nic_lock(struct iwn_softc *);
    126 static int	iwn_eeprom_lock(struct iwn_softc *);
    127 static int	iwn_init_otprom(struct iwn_softc *);
    128 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    129 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    130 		    void **, bus_size_t, bus_size_t);
    131 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    132 static int	iwn_alloc_sched(struct iwn_softc *);
    133 static void	iwn_free_sched(struct iwn_softc *);
    134 static int	iwn_alloc_kw(struct iwn_softc *);
    135 static void	iwn_free_kw(struct iwn_softc *);
    136 static int	iwn_alloc_ict(struct iwn_softc *);
    137 static void	iwn_free_ict(struct iwn_softc *);
    138 static int	iwn_alloc_fwmem(struct iwn_softc *);
    139 static void	iwn_free_fwmem(struct iwn_softc *);
    140 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    141 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    142 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    143 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    144 		    int);
    145 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    146 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    147 static void	iwn5000_ict_reset(struct iwn_softc *);
    148 static int	iwn_read_eeprom(struct iwn_softc *);
    149 static void	iwn4965_read_eeprom(struct iwn_softc *);
    150 #ifdef IWN_DEBUG
    151 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    152 #endif
    153 static void	iwn5000_read_eeprom(struct iwn_softc *);
    154 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    155 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    156 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    157 static void	iwn_newassoc(struct ieee80211_node *, int);
    158 static int	iwn_media_change(struct ifnet *);
    159 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    160 static void	iwn_iter_func(void *, struct ieee80211_node *);
    161 static void	iwn_calib_timeout(void *);
    162 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    163 		    struct iwn_rx_data *);
    164 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    165 		    struct iwn_rx_data *);
    166 #ifndef IEEE80211_NO_HT
    167 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    168 		    struct iwn_rx_data *);
    169 #endif
    170 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    171 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    172 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    173 		    struct iwn_rx_data *);
    174 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    175 		    struct iwn_rx_data *);
    176 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    177 		    struct iwn_rx_data *);
    178 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    179 		    uint8_t);
    180 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    181 static void	iwn_notif_intr(struct iwn_softc *);
    182 static void	iwn_wakeup_intr(struct iwn_softc *);
    183 static void	iwn_fatal_intr(struct iwn_softc *);
    184 static int	iwn_intr(void *);
    185 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    186 		    uint16_t);
    187 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    188 		    uint16_t);
    189 #ifdef notyet
    190 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    191 #endif
    192 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    193 		    struct ieee80211_node *, int);
    194 static void	iwn_start(struct ifnet *);
    195 static void	iwn_watchdog(struct ifnet *);
    196 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    197 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    198 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    199 		    int);
    200 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    201 		    int);
    202 static int	iwn_set_link_quality(struct iwn_softc *,
    203 		    struct ieee80211_node *);
    204 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    205 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    206 static int	iwn_set_critical_temp(struct iwn_softc *);
    207 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    208 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    209 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    210 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    211 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    212 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    213 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    214 static int	iwn4965_get_temperature(struct iwn_softc *);
    215 static int	iwn5000_get_temperature(struct iwn_softc *);
    216 static int	iwn_init_sensitivity(struct iwn_softc *);
    217 static void	iwn_collect_noise(struct iwn_softc *,
    218 		    const struct iwn_rx_general_stats *);
    219 static int	iwn4965_init_gains(struct iwn_softc *);
    220 static int	iwn5000_init_gains(struct iwn_softc *);
    221 static int	iwn4965_set_gains(struct iwn_softc *);
    222 static int	iwn5000_set_gains(struct iwn_softc *);
    223 static void	iwn_tune_sensitivity(struct iwn_softc *,
    224 		    const struct iwn_rx_stats *);
    225 static int	iwn_send_sensitivity(struct iwn_softc *);
    226 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    227 static int	iwn_config(struct iwn_softc *);
    228 static int	iwn_scan(struct iwn_softc *, uint16_t);
    229 static int	iwn_auth(struct iwn_softc *);
    230 static int	iwn_run(struct iwn_softc *);
    231 #ifdef IWN_HWCRYPTO
    232 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    233 		    struct ieee80211_key *);
    234 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    235 		    struct ieee80211_key *);
    236 #endif
    237 static int	iwn_wme_update(struct ieee80211com *);
    238 #ifndef IEEE80211_NO_HT
    239 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    240 		    struct ieee80211_node *, uint8_t);
    241 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    242 		    struct ieee80211_node *, uint8_t);
    243 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    244 		    struct ieee80211_node *, uint8_t);
    245 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    246 		    struct ieee80211_node *, uint8_t);
    247 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    248 		    struct ieee80211_node *, uint8_t, uint16_t);
    249 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    250 		    uint8_t, uint16_t);
    251 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    252 		    struct ieee80211_node *, uint8_t, uint16_t);
    253 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    254 		    uint8_t, uint16_t);
    255 #endif
    256 static int	iwn5000_query_calibration(struct iwn_softc *);
    257 static int	iwn5000_send_calibration(struct iwn_softc *);
    258 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    259 static int	iwn4965_post_alive(struct iwn_softc *);
    260 static int	iwn5000_post_alive(struct iwn_softc *);
    261 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    262 		    int);
    263 static int	iwn4965_load_firmware(struct iwn_softc *);
    264 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    265 		    const uint8_t *, int);
    266 static int	iwn5000_load_firmware(struct iwn_softc *);
    267 static int	iwn_read_firmware(struct iwn_softc *);
    268 static int	iwn_clock_wait(struct iwn_softc *);
    269 static int	iwn_apm_init(struct iwn_softc *);
    270 static void	iwn_apm_stop_master(struct iwn_softc *);
    271 static void	iwn_apm_stop(struct iwn_softc *);
    272 static int	iwn4965_nic_config(struct iwn_softc *);
    273 static int	iwn5000_nic_config(struct iwn_softc *);
    274 static int	iwn_hw_prepare(struct iwn_softc *);
    275 static int	iwn_hw_init(struct iwn_softc *);
    276 static void	iwn_hw_stop(struct iwn_softc *);
    277 static int	iwn_init(struct ifnet *);
    278 static void	iwn_stop(struct ifnet *, int);
    279 
    280 /* XXX MCLGETI alternative */
    281 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    282 		    struct ifnet *, u_int);
    283 #ifdef IWN_USE_RBUF
    284 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    285 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    286 static int	iwn_alloc_rpool(struct iwn_softc *);
    287 static void	iwn_free_rpool(struct iwn_softc *);
    288 #endif
    289 
    290 /* XXX needed by iwn_scan */
    291 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
    292 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
    293     const struct ieee80211_rateset *);
    294 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
    295     const struct ieee80211_rateset *);
    296 
    297 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
    298 
    299 #ifdef IWN_DEBUG
    300 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    301 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    302 int iwn_debug = 0;
    303 #else
    304 #define DPRINTF(x)
    305 #define DPRINTFN(n, x)
    306 #endif
    307 
    308 static const struct iwn_hal iwn4965_hal = {
    309 	iwn4965_load_firmware,
    310 	iwn4965_read_eeprom,
    311 	iwn4965_post_alive,
    312 	iwn4965_nic_config,
    313 	iwn4965_update_sched,
    314 	iwn4965_get_temperature,
    315 	iwn4965_get_rssi,
    316 	iwn4965_set_txpower,
    317 	iwn4965_init_gains,
    318 	iwn4965_set_gains,
    319 	iwn4965_add_node,
    320 	iwn4965_tx_done,
    321 #ifndef IEEE80211_NO_HT
    322 	iwn4965_ampdu_tx_start,
    323 	iwn4965_ampdu_tx_stop,
    324 #endif
    325 	IWN4965_NTXQUEUES,
    326 	IWN4965_NDMACHNLS,
    327 	IWN4965_ID_BROADCAST,
    328 	IWN4965_RXONSZ,
    329 	IWN4965_SCHEDSZ,
    330 	IWN4965_FW_TEXT_MAXSZ,
    331 	IWN4965_FW_DATA_MAXSZ,
    332 	IWN4965_FWSZ,
    333 	IWN4965_SCHED_TXFACT
    334 };
    335 
    336 static const struct iwn_hal iwn5000_hal = {
    337 	iwn5000_load_firmware,
    338 	iwn5000_read_eeprom,
    339 	iwn5000_post_alive,
    340 	iwn5000_nic_config,
    341 	iwn5000_update_sched,
    342 	iwn5000_get_temperature,
    343 	iwn5000_get_rssi,
    344 	iwn5000_set_txpower,
    345 	iwn5000_init_gains,
    346 	iwn5000_set_gains,
    347 	iwn5000_add_node,
    348 	iwn5000_tx_done,
    349 #ifndef IEEE80211_NO_HT
    350 	iwn5000_ampdu_tx_start,
    351 	iwn5000_ampdu_tx_stop,
    352 #endif
    353 	IWN5000_NTXQUEUES,
    354 	IWN5000_NDMACHNLS,
    355 	IWN5000_ID_BROADCAST,
    356 	IWN5000_RXONSZ,
    357 	IWN5000_SCHEDSZ,
    358 	IWN5000_FW_TEXT_MAXSZ,
    359 	IWN5000_FW_DATA_MAXSZ,
    360 	IWN5000_FWSZ,
    361 	IWN5000_SCHED_TXFACT
    362 };
    363 
    364 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    365 	iwn_detach, NULL);
    366 
    367 static int
    368 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    369 {
    370 	struct pci_attach_args *pa = aux;
    371 	size_t i;
    372 
    373 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    374 		return 0;
    375 
    376 	for (i = 0; i < __arraycount(iwn_devices); i++)
    377 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    378 			return 1;
    379 
    380 	return 0;
    381 }
    382 
    383 static void
    384 iwn_attach(device_t parent __unused, device_t self, void *aux)
    385 {
    386 	struct iwn_softc *sc = device_private(self);
    387 	struct ieee80211com *ic = &sc->sc_ic;
    388 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    389 	struct pci_attach_args *pa = aux;
    390 	const struct iwn_hal *hal;
    391 	const char *intrstr;
    392 	char devinfo[256];
    393 	pci_intr_handle_t ih;
    394 	pcireg_t memtype, reg;
    395 	int i, error;
    396 	int revision;
    397 
    398 	sc->sc_dev = self;
    399 	sc->sc_pct = pa->pa_pc;
    400 	sc->sc_pcitag = pa->pa_tag;
    401 	sc->sc_dmat = pa->pa_dmat;
    402 
    403 	callout_init(&sc->calib_to, 0);
    404 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    405 
    406 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
    407 	revision = PCI_REVISION(pa->pa_class);
    408 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
    409 
    410 	/*
    411 	 * Get the offset of the PCI Express Capability Structure in PCI
    412 	 * Configuration Space.
    413 	 */
    414 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    415 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    416 	if (error == 0) {
    417 		aprint_error(": PCIe capability structure not found!\n");
    418 		return;
    419 	}
    420 
    421 	/* Clear device-specific "PCI retry timeout" register (41h). */
    422 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    423 	reg &= ~0xff00;
    424 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
    425 
    426 	/* Enable bus-mastering and hardware bug workaround. */
    427 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    428 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    429 	reg |= PCI_COMMAND_MASTER_ENABLE;
    430 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
    431 		DPRINTF(("PCIe INTx Disable set\n"));
    432 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
    433 	}
    434 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    435 
    436 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    437 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    438 	    &sc->sc_sh, NULL, &sc->sc_sz);
    439 	if (error != 0) {
    440 		aprint_error(": can't map mem space\n");
    441 		return;
    442 	}
    443 
    444 	/* Install interrupt handler. */
    445 	if (pci_intr_map(pa, &ih) != 0) {
    446 		aprint_error(": can't map interrupt\n");
    447 		return;
    448 	}
    449 	intrstr = pci_intr_string(sc->sc_pct, ih);
    450 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
    451 	if (sc->sc_ih == NULL) {
    452 		aprint_error(": can't establish interrupt");
    453 		if (intrstr != NULL)
    454 			aprint_error(" at %s", intrstr);
    455 		aprint_error("\n");
    456 		return;
    457 	}
    458 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    459 
    460 	/* Attach Hardware Abstraction Layer. */
    461 	hal = iwn_hal_attach(sc, PCI_PRODUCT(pa->pa_id));
    462 	if (hal == NULL)
    463 		return;
    464 
    465 	if ((error = iwn_hw_prepare(sc)) != 0) {
    466 		aprint_error(": hardware not ready\n");
    467 		return;
    468 	}
    469 
    470 	/* Read MAC address, channels, etc from EEPROM. */
    471 	if ((error = iwn_read_eeprom(sc)) != 0) {
    472 		aprint_error(": could not read EEPROM\n");
    473 		return;
    474 	}
    475 
    476 	/* Allocate DMA memory for firmware transfers. */
    477 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    478 		aprint_error(": could not allocate memory for firmware\n");
    479 		return;
    480 	}
    481 
    482 	/* Allocate "Keep Warm" page. */
    483 	if ((error = iwn_alloc_kw(sc)) != 0) {
    484 		aprint_error(": could not allocate keep warm page\n");
    485 		goto fail1;
    486 	}
    487 
    488 	/* Allocate ICT table for 5000 Series. */
    489 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    490 	    (error = iwn_alloc_ict(sc)) != 0) {
    491 		aprint_error(": could not allocate ICT table\n");
    492 		goto fail2;
    493 	}
    494 
    495 	/* Allocate TX scheduler "rings". */
    496 	if ((error = iwn_alloc_sched(sc)) != 0) {
    497 		aprint_error(": could not allocate TX scheduler rings\n");
    498 		goto fail3;
    499 	}
    500 
    501 #ifdef IWN_USE_RBUF
    502 	/* Allocate RX buffers. */
    503 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    504 		aprint_error_dev(self, "could not allocate RX buffers\n");
    505 		goto fail3;
    506 	}
    507 #endif
    508 
    509 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */
    510 	for (i = 0; i < hal->ntxqs; i++) {
    511 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    512 			aprint_error(": could not allocate TX ring %d\n", i);
    513 			goto fail4;
    514 		}
    515 	}
    516 
    517 	/* Allocate RX ring. */
    518 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    519 		aprint_error(": could not allocate RX ring\n");
    520 		goto fail4;
    521 	}
    522 
    523 	/* Clear pending interrupts. */
    524 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    525 
    526 	/* Count the number of available chains. */
    527 	sc->ntxchains =
    528 	    ((sc->txchainmask >> 2) & 1) +
    529 	    ((sc->txchainmask >> 1) & 1) +
    530 	    ((sc->txchainmask >> 0) & 1);
    531 	sc->nrxchains =
    532 	    ((sc->rxchainmask >> 2) & 1) +
    533 	    ((sc->rxchainmask >> 1) & 1) +
    534 	    ((sc->rxchainmask >> 0) & 1);
    535 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    536 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    537 	    ether_sprintf(ic->ic_myaddr));
    538 
    539 	ic->ic_ifp = ifp;
    540 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    541 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    542 	ic->ic_state = IEEE80211_S_INIT;
    543 
    544 	/* Set device capabilities. */
    545 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
    546 	 * and IEEE80211_C_PMGT too. */
    547 	ic->ic_caps =
    548 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    549 	    IEEE80211_C_WPA |		/* 802.11i */
    550 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    551 	    IEEE80211_C_TXPMGT |	/* tx power management */
    552 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    553 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    554 	    IEEE80211_C_WME;		/* 802.11e */
    555 
    556 #ifndef IEEE80211_NO_HT
    557 	/* Set HT capabilities. */
    558 	ic->ic_htcaps =
    559 #if IWN_RBUF_SIZE == 8192
    560 	    IEEE80211_HTCAP_AMSDU7935 |
    561 #endif
    562 	    IEEE80211_HTCAP_CBW20_40 |
    563 	    IEEE80211_HTCAP_SGI20 |
    564 	    IEEE80211_HTCAP_SGI40;
    565 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    566 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    567 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    568 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    569 	else
    570 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    571 #endif	/* !IEEE80211_NO_HT */
    572 
    573 	/* Set supported legacy rates. */
    574 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
    575 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
    576 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    577 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
    578 	}
    579 #ifndef IEEE80211_NO_HT
    580 	/* Set supported HT rates. */
    581 	ic->ic_sup_mcs[0] = 0xff;
    582 	if (sc->nrxchains > 1)			/* MCS 0-7 */
    583 		ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    584 	if (sc->nrxchains > 2)
    585 		ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    586 #endif
    587 
    588 	/* IBSS channel undefined for now. */
    589 	ic->ic_ibss_chan = &ic->ic_channels[0];
    590 
    591 	ifp->if_softc = sc;
    592 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    593 	ifp->if_init = iwn_init;
    594 	ifp->if_ioctl = iwn_ioctl;
    595 	ifp->if_start = iwn_start;
    596 	ifp->if_watchdog = iwn_watchdog;
    597 	IFQ_SET_READY(&ifp->if_snd);
    598 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    599 
    600 	if_attach(ifp);
    601 	ieee80211_ifattach(ic);
    602 	ic->ic_node_alloc = iwn_node_alloc;
    603 	ic->ic_newassoc = iwn_newassoc;
    604 #ifdef IWN_HWCRYPTO
    605 	ic->ic_crypto.cs_key_set = iwn_set_key;
    606 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    607 #endif
    608 	ic->ic_wme.wme_update = iwn_wme_update;
    609 #ifndef IEEE80211_NO_HT
    610 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    611 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    612 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    613 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    614 #endif
    615 
    616 	/* Override 802.11 state transition machine. */
    617 	sc->sc_newstate = ic->ic_newstate;
    618 	ic->ic_newstate = iwn_newstate;
    619 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    620 
    621 	sc->amrr.amrr_min_success_threshold =  1;
    622 	sc->amrr.amrr_max_success_threshold = 15;
    623 
    624 #ifndef SMALL_KERNEL
    625 	iwn_sensor_attach(sc);
    626 #endif
    627 	iwn_radiotap_attach(sc);
    628 
    629 	/*
    630 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    631 	 * callout_init and callout_setfunc, above.
    632 	*/
    633 
    634 	if (pmf_device_register(self, NULL, iwn_resume))
    635 		pmf_class_network_register(self, ifp);
    636 	else
    637 		aprint_error_dev(self, "couldn't establish power handler\n");
    638 
    639 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    640 	ieee80211_announce(ic);
    641 
    642 	return;
    643 
    644 	/* Free allocated memory if something failed during attachment. */
    645 fail4:	while (--i >= 0)
    646 		iwn_free_tx_ring(sc, &sc->txq[i]);
    647 #ifdef IWN_USE_RBUF
    648 	iwn_free_rpool(sc);
    649 #endif
    650 	iwn_free_sched(sc);
    651 fail3:	if (sc->ict != NULL)
    652 		iwn_free_ict(sc);
    653 fail2:	iwn_free_kw(sc);
    654 fail1:	iwn_free_fwmem(sc);
    655 }
    656 
    657 const struct iwn_hal *
    658 iwn_hal_attach(struct iwn_softc *sc, pci_product_id_t pid)
    659 {
    660 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
    661 
    662 	switch (sc->hw_type) {
    663 	case IWN_HW_REV_TYPE_4965:
    664 		sc->sc_hal = &iwn4965_hal;
    665 		sc->limits = &iwn4965_sensitivity_limits;
    666 		sc->fwname = "iwlwifi-4965-2.ucode";
    667 		sc->txchainmask = IWN_ANT_AB;
    668 		sc->rxchainmask = IWN_ANT_ABC;
    669 		break;
    670 	case IWN_HW_REV_TYPE_5100:
    671 		sc->sc_hal = &iwn5000_hal;
    672 		sc->limits = &iwn5000_sensitivity_limits;
    673 		sc->fwname = "iwlwifi-5000-2.ucode";
    674 		sc->txchainmask = IWN_ANT_B;
    675 		sc->rxchainmask = IWN_ANT_AB;
    676 		break;
    677 	case IWN_HW_REV_TYPE_5150:
    678 		sc->sc_hal = &iwn5000_hal;
    679 		sc->limits = &iwn5150_sensitivity_limits;
    680 		sc->fwname = "iwlwifi-5150-2.ucode";
    681 		sc->txchainmask = IWN_ANT_A;
    682 		sc->rxchainmask = IWN_ANT_AB;
    683 		break;
    684 	case IWN_HW_REV_TYPE_5300:
    685 	case IWN_HW_REV_TYPE_5350:
    686 		sc->sc_hal = &iwn5000_hal;
    687 		sc->limits = &iwn5000_sensitivity_limits;
    688 		sc->fwname = "iwlwifi-5000-2.ucode";
    689 		sc->txchainmask = IWN_ANT_ABC;
    690 		sc->rxchainmask = IWN_ANT_ABC;
    691 		break;
    692 	case IWN_HW_REV_TYPE_1000:
    693 		sc->sc_hal = &iwn5000_hal;
    694 		sc->limits = &iwn1000_sensitivity_limits;
    695 		sc->fwname = "iwlwifi-1000-3.ucode";
    696 		sc->txchainmask = IWN_ANT_A;
    697 		sc->rxchainmask = IWN_ANT_AB;
    698 		break;
    699 	case IWN_HW_REV_TYPE_6000:
    700 		sc->sc_hal = &iwn5000_hal;
    701 		sc->limits = &iwn6000_sensitivity_limits;
    702 		sc->fwname = "iwlwifi-6000-4.ucode";
    703 		switch (pid) {
    704 		case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1:
    705 		case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2:
    706 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    707 			sc->txchainmask = IWN_ANT_BC;
    708 			sc->rxchainmask = IWN_ANT_BC;
    709 			break;
    710 		default:
    711 			sc->txchainmask = IWN_ANT_ABC;
    712 			sc->rxchainmask = IWN_ANT_ABC;
    713 			break;
    714 		}
    715 		break;
    716 	case IWN_HW_REV_TYPE_6050:
    717 		sc->sc_hal = &iwn5000_hal;
    718 		sc->limits = &iwn6000_sensitivity_limits;
    719 		sc->fwname = "iwlwifi-6050-2.ucode";
    720 		sc->txchainmask = IWN_ANT_AB;
    721 		sc->rxchainmask = IWN_ANT_AB;
    722 		break;
    723 	case IWN_HW_REV_TYPE_6005:
    724 		sc->sc_hal = &iwn5000_hal;
    725 		sc->limits = &iwn6000_sensitivity_limits;
    726 		sc->fwname = "iwlwifi-6005-2.ucode";
    727 		sc->txchainmask = IWN_ANT_AB;
    728 		sc->rxchainmask = IWN_ANT_AB;
    729 		break;
    730 	default:
    731 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    732 		return NULL;
    733 	}
    734 	return sc->sc_hal;
    735 }
    736 
    737 #ifndef SMALL_KERNEL
    738 /*
    739  * Attach the adapter on-board thermal sensor to the sensors framework.
    740  */
    741 static void
    742 iwn_sensor_attach(struct iwn_softc *sc)
    743 {
    744 	int error;
    745 
    746 	sc->sc_sensor.units = ENVSYS_STEMP;
    747 #if 0
    748 	/* XXX something like this ought to work */
    749 	sc->sc_sensor.flags = ENVSYS_FMONLIMITS | ENVSYS_FMONNOTSUPP;
    750 	sc->sc_sensor.limits.sel_critmax = IWN_CTOK(110);
    751 #endif
    752 	strlcpy((sc->sc_sensor.desc), "TEMP", sizeof(sc->sc_sensor.desc));
    753 
    754 	/* Temperature is not valid unless interface is up. */
    755 	sc->sc_sensor.value_cur = 0;
    756 	sc->sc_sensor.state = ENVSYS_SINVALID;
    757 
    758 	sc->sc_sme = sysmon_envsys_create();
    759 
    760 	/* Initialize sensor */
    761 	if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
    762 		sysmon_envsys_destroy(sc->sc_sme);
    763 		return;
    764 	}
    765 
    766 	/*
    767 	 * Hook into the System Monitor.
    768 	 */
    769 	sc->sc_sme->sme_name = device_xname(sc->sc_dev);
    770 	sc->sc_sme->sme_flags = SME_DISABLE_REFRESH;
    771 
    772 	if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) {
    773 		aprint_error_dev(sc->sc_dev,
    774 		    "unable to register with sysmon (%d)\n", error);
    775 		sysmon_envsys_destroy(sc->sc_sme);
    776 		return;
    777 	}
    778 }
    779 #endif
    780 
    781 /*
    782  * Attach the interface to 802.11 radiotap.
    783  */
    784 static void
    785 iwn_radiotap_attach(struct iwn_softc *sc)
    786 {
    787 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    788 
    789 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    790 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    791 	    &sc->sc_drvbpf);
    792 
    793 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    794 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    795 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    796 
    797 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    798 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    799 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    800 }
    801 
    802 static int
    803 iwn_detach(device_t self, int flags __unused)
    804 {
    805 	struct iwn_softc *sc = device_private(self);
    806 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    807 	int qid;
    808 
    809 	callout_stop(&sc->calib_to);
    810 
    811 	/* Uninstall interrupt handler. */
    812 	if (sc->sc_ih != NULL)
    813 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    814 
    815 	/* Free DMA resources. */
    816 	iwn_free_rx_ring(sc, &sc->rxq);
    817 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++)
    818 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    819 #ifdef IWN_USE_RBUF
    820 	iwn_free_rpool(sc);
    821 #endif
    822 	iwn_free_sched(sc);
    823 	iwn_free_kw(sc);
    824 	if (sc->ict != NULL)
    825 		iwn_free_ict(sc);
    826 	iwn_free_fwmem(sc);
    827 
    828 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    829 
    830 #ifndef SMALL_KERNEL
    831 	/* Detach the thermal sensor. */
    832 	sysmon_envsys_sensor_detach(sc->sc_sme, &sc->sc_sensor);
    833 	sysmon_envsys_destroy(sc->sc_sme);
    834 #endif
    835 
    836 	ieee80211_ifdetach(&sc->sc_ic);
    837 	if_detach(ifp);
    838 
    839 	return 0;
    840 }
    841 
    842 #if 0
    843 /*
    844  * XXX Investigate if clearing the PCI retry timeout could eliminate
    845  * the repeated scan calls.  Also the calls to if_init and if_start
    846  * are similar to the effect of adding the call to ifioctl_common .
    847  */
    848 static void
    849 iwn_power(int why, void *arg)
    850 {
    851 	struct iwn_softc *sc = arg;
    852 	struct ifnet *ifp;
    853 	pcireg_t reg;
    854 	int s;
    855 
    856 	if (why != PWR_RESUME)
    857 		return;
    858 
    859 	/* Clear device-specific "PCI retry timeout" register (41h). */
    860 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    861 	reg &= ~0xff00;
    862 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
    863 
    864 	s = splnet();
    865 	ifp = &sc->sc_ic.ic_if;
    866 	if (ifp->if_flags & IFF_UP) {
    867 		ifp->if_init(ifp);
    868 		if (ifp->if_flags & IFF_RUNNING)
    869 			ifp->if_start(ifp);
    870 	}
    871 	splx(s);
    872 }
    873 #endif
    874 
    875 static bool
    876 iwn_resume(device_t dv, const pmf_qual_t *qual)
    877 {
    878 	return true;
    879 }
    880 
    881 static int
    882 iwn_nic_lock(struct iwn_softc *sc)
    883 {
    884 	int ntries;
    885 
    886 	/* Request exclusive access to NIC. */
    887 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    888 
    889 	/* Spin until we actually get the lock. */
    890 	for (ntries = 0; ntries < 1000; ntries++) {
    891 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    892 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    893 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    894 			return 0;
    895 		DELAY(10);
    896 	}
    897 	return ETIMEDOUT;
    898 }
    899 
    900 static __inline void
    901 iwn_nic_unlock(struct iwn_softc *sc)
    902 {
    903 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    904 }
    905 
    906 static __inline uint32_t
    907 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    908 {
    909 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    910 	IWN_BARRIER_READ_WRITE(sc);
    911 	return IWN_READ(sc, IWN_PRPH_RDATA);
    912 }
    913 
    914 static __inline void
    915 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    916 {
    917 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    918 	IWN_BARRIER_WRITE(sc);
    919 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    920 }
    921 
    922 static __inline void
    923 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    924 {
    925 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    926 }
    927 
    928 static __inline void
    929 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    930 {
    931 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    932 }
    933 
    934 static __inline void
    935 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    936     const uint32_t *data, int count)
    937 {
    938 	for (; count > 0; count--, data++, addr += 4)
    939 		iwn_prph_write(sc, addr, *data);
    940 }
    941 
    942 static __inline uint32_t
    943 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    944 {
    945 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    946 	IWN_BARRIER_READ_WRITE(sc);
    947 	return IWN_READ(sc, IWN_MEM_RDATA);
    948 }
    949 
    950 static __inline void
    951 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    952 {
    953 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    954 	IWN_BARRIER_WRITE(sc);
    955 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    956 }
    957 
    958 static __inline void
    959 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
    960 {
    961 	uint32_t tmp;
    962 
    963 	tmp = iwn_mem_read(sc, addr & ~3);
    964 	if (addr & 3)
    965 		tmp = (tmp & 0x0000ffff) | data << 16;
    966 	else
    967 		tmp = (tmp & 0xffff0000) | data;
    968 	iwn_mem_write(sc, addr & ~3, tmp);
    969 }
    970 
    971 static __inline void
    972 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
    973     int count)
    974 {
    975 	for (; count > 0; count--, addr += 4)
    976 		*data++ = iwn_mem_read(sc, addr);
    977 }
    978 
    979 static __inline void
    980 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
    981     int count)
    982 {
    983 	for (; count > 0; count--, addr += 4)
    984 		iwn_mem_write(sc, addr, val);
    985 }
    986 
    987 static int
    988 iwn_eeprom_lock(struct iwn_softc *sc)
    989 {
    990 	int i, ntries;
    991 
    992 	for (i = 0; i < 100; i++) {
    993 		/* Request exclusive access to EEPROM. */
    994 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
    995 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
    996 
    997 		/* Spin until we actually get the lock. */
    998 		for (ntries = 0; ntries < 100; ntries++) {
    999 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   1000 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
   1001 				return 0;
   1002 			DELAY(10);
   1003 		}
   1004 	}
   1005 	return ETIMEDOUT;
   1006 }
   1007 
   1008 static __inline void
   1009 iwn_eeprom_unlock(struct iwn_softc *sc)
   1010 {
   1011 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1012 }
   1013 
   1014 /*
   1015  * Initialize access by host to One Time Programmable ROM.
   1016  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
   1017  */
   1018 static int
   1019 iwn_init_otprom(struct iwn_softc *sc)
   1020 {
   1021 	uint16_t prev = 0, base, next;
   1022 	int count, error;
   1023 
   1024 	/* Wait for clock stabilization before accessing prph. */
   1025 	if ((error = iwn_clock_wait(sc)) != 0)
   1026 		return error;
   1027 
   1028 	if ((error = iwn_nic_lock(sc)) != 0)
   1029 		return error;
   1030 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1031 	DELAY(5);
   1032 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1033 	iwn_nic_unlock(sc);
   1034 
   1035 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
   1036 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
   1037 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
   1038 		    IWN_RESET_LINK_PWR_MGMT_DIS);
   1039 	}
   1040 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
   1041 	/* Clear ECC status. */
   1042 	IWN_SETBITS(sc, IWN_OTP_GP,
   1043 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
   1044 
   1045 	/*
   1046 	 * Find the block before last block (contains the EEPROM image)
   1047 	 * for HW without OTP shadow RAM.
   1048 	 */
   1049 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   1050 		/* Switch to absolute addressing mode. */
   1051 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
   1052 		base = 0;
   1053 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
   1054 			error = iwn_read_prom_data(sc, base, &next, 2);
   1055 			if (error != 0)
   1056 				return error;
   1057 			if (next == 0)	/* End of linked-list. */
   1058 				break;
   1059 			prev = base;
   1060 			base = le16toh(next);
   1061 		}
   1062 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1063 			return EIO;
   1064 		/* Skip "next" word. */
   1065 		sc->prom_base = prev + 1;
   1066 	}
   1067 	return 0;
   1068 }
   1069 
   1070 static int
   1071 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1072 {
   1073 	uint8_t *out = data;
   1074 	uint32_t val, tmp;
   1075 	int ntries;
   1076 
   1077 	addr += sc->prom_base;
   1078 	for (; count > 0; count -= 2, addr++) {
   1079 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1080 		for (ntries = 0; ntries < 10; ntries++) {
   1081 			val = IWN_READ(sc, IWN_EEPROM);
   1082 			if (val & IWN_EEPROM_READ_VALID)
   1083 				break;
   1084 			DELAY(5);
   1085 		}
   1086 		if (ntries == 10) {
   1087 			aprint_error_dev(sc->sc_dev,
   1088 			    "timeout reading ROM at 0x%x\n", addr);
   1089 			return ETIMEDOUT;
   1090 		}
   1091 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1092 			/* OTPROM, check for ECC errors. */
   1093 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1094 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1095 				aprint_error_dev(sc->sc_dev,
   1096 				    "OTPROM ECC error at 0x%x\n", addr);
   1097 				return EIO;
   1098 			}
   1099 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1100 				/* Correctable ECC error, clear bit. */
   1101 				IWN_SETBITS(sc, IWN_OTP_GP,
   1102 				    IWN_OTP_GP_ECC_CORR_STTS);
   1103 			}
   1104 		}
   1105 		*out++ = val >> 16;
   1106 		if (count > 1)
   1107 			*out++ = val >> 24;
   1108 	}
   1109 	return 0;
   1110 }
   1111 
   1112 static int
   1113 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1114     bus_size_t size, bus_size_t alignment)
   1115 {
   1116 	int nsegs, error;
   1117 
   1118 	dma->tag = tag;
   1119 	dma->size = size;
   1120 
   1121 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1122 	    &dma->map);
   1123 	if (error != 0)
   1124 		goto fail;
   1125 
   1126 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1127 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1128 	if (error != 0)
   1129 		goto fail;
   1130 
   1131 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1132 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1133 	if (error != 0)
   1134 		goto fail;
   1135 
   1136 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1137 	    BUS_DMA_NOWAIT);
   1138 	if (error != 0)
   1139 		goto fail;
   1140 
   1141 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1142 	memset(dma->vaddr, 0, size);
   1143 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1144 
   1145 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1146 	if (kvap != NULL)
   1147 		*kvap = dma->vaddr;
   1148 
   1149 	return 0;
   1150 
   1151 fail:	iwn_dma_contig_free(dma);
   1152 	return error;
   1153 }
   1154 
   1155 static void
   1156 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1157 {
   1158 	if (dma->map != NULL) {
   1159 		if (dma->vaddr != NULL) {
   1160 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1161 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1162 			bus_dmamap_unload(dma->tag, dma->map);
   1163 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1164 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1165 			dma->vaddr = NULL;
   1166 		}
   1167 		bus_dmamap_destroy(dma->tag, dma->map);
   1168 		dma->map = NULL;
   1169 	}
   1170 }
   1171 
   1172 static int
   1173 iwn_alloc_sched(struct iwn_softc *sc)
   1174 {
   1175 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1176 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1177 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024);
   1178 }
   1179 
   1180 static void
   1181 iwn_free_sched(struct iwn_softc *sc)
   1182 {
   1183 	iwn_dma_contig_free(&sc->sched_dma);
   1184 }
   1185 
   1186 static int
   1187 iwn_alloc_kw(struct iwn_softc *sc)
   1188 {
   1189 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1190 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1191 	    4096);
   1192 }
   1193 
   1194 static void
   1195 iwn_free_kw(struct iwn_softc *sc)
   1196 {
   1197 	iwn_dma_contig_free(&sc->kw_dma);
   1198 }
   1199 
   1200 static int
   1201 iwn_alloc_ict(struct iwn_softc *sc)
   1202 {
   1203 	/* ICT table must be aligned on a 4KB boundary. */
   1204 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1205 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1206 }
   1207 
   1208 static void
   1209 iwn_free_ict(struct iwn_softc *sc)
   1210 {
   1211 	iwn_dma_contig_free(&sc->ict_dma);
   1212 }
   1213 
   1214 static int
   1215 iwn_alloc_fwmem(struct iwn_softc *sc)
   1216 {
   1217 	/* Must be aligned on a 16-byte boundary. */
   1218 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1219 	    sc->sc_hal->fwsz, 16);
   1220 }
   1221 
   1222 static void
   1223 iwn_free_fwmem(struct iwn_softc *sc)
   1224 {
   1225 	iwn_dma_contig_free(&sc->fw_dma);
   1226 }
   1227 
   1228 static int
   1229 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1230 {
   1231 	bus_size_t size;
   1232 	int i, error;
   1233 
   1234 	ring->cur = 0;
   1235 
   1236 	/* Allocate RX descriptors (256-byte aligned.) */
   1237 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1238 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1239 	    (void **)&ring->desc, size, 256);
   1240 	if (error != 0) {
   1241 		aprint_error_dev(sc->sc_dev,
   1242 		    "could not allocate RX ring DMA memory\n");
   1243 		goto fail;
   1244 	}
   1245 
   1246 	/* Allocate RX status area (16-byte aligned.) */
   1247 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1248 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1249 	if (error != 0) {
   1250 		aprint_error_dev(sc->sc_dev,
   1251 		    "could not allocate RX status DMA memory\n");
   1252 		goto fail;
   1253 	}
   1254 
   1255 	/*
   1256 	 * Allocate and map RX buffers.
   1257 	 */
   1258 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1259 		struct iwn_rx_data *data = &ring->data[i];
   1260 
   1261 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1262 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1263 		    &data->map);
   1264 		if (error != 0) {
   1265 			aprint_error_dev(sc->sc_dev,
   1266 			    "could not create RX buf DMA map\n");
   1267 			goto fail;
   1268 		}
   1269 
   1270 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1271 		if (data->m == NULL) {
   1272 			aprint_error_dev(sc->sc_dev,
   1273 			    "could not allocate RX mbuf\n");
   1274 			error = ENOBUFS;
   1275 			goto fail;
   1276 		}
   1277 
   1278 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1279 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1280 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1281 		if (error != 0) {
   1282 			aprint_error_dev(sc->sc_dev,
   1283 			    "can't not map mbuf (error %d)\n", error);
   1284 			goto fail;
   1285 		}
   1286 
   1287 		/* Set physical address of RX buffer (256-byte aligned.) */
   1288 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1289 	}
   1290 
   1291 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1292 	    BUS_DMASYNC_PREWRITE);
   1293 
   1294 	return 0;
   1295 
   1296 fail:	iwn_free_rx_ring(sc, ring);
   1297 	return error;
   1298 }
   1299 
   1300 static void
   1301 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1302 {
   1303 	int ntries;
   1304 
   1305 	if (iwn_nic_lock(sc) == 0) {
   1306 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1307 		for (ntries = 0; ntries < 1000; ntries++) {
   1308 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1309 			    IWN_FH_RX_STATUS_IDLE)
   1310 				break;
   1311 			DELAY(10);
   1312 		}
   1313 		iwn_nic_unlock(sc);
   1314 	}
   1315 	ring->cur = 0;
   1316 	sc->last_rx_valid = 0;
   1317 }
   1318 
   1319 static void
   1320 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1321 {
   1322 	int i;
   1323 
   1324 	iwn_dma_contig_free(&ring->desc_dma);
   1325 	iwn_dma_contig_free(&ring->stat_dma);
   1326 
   1327 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1328 		struct iwn_rx_data *data = &ring->data[i];
   1329 
   1330 		if (data->m != NULL) {
   1331 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1332 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1333 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1334 			m_freem(data->m);
   1335 		}
   1336 		if (data->map != NULL)
   1337 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1338 	}
   1339 }
   1340 
   1341 static int
   1342 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1343 {
   1344 	bus_addr_t paddr;
   1345 	bus_size_t size;
   1346 	int i, error;
   1347 
   1348 	ring->qid = qid;
   1349 	ring->queued = 0;
   1350 	ring->cur = 0;
   1351 
   1352 	/* Allocate TX descriptors (256-byte aligned.) */
   1353 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1354 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1355 	    (void **)&ring->desc, size, 256);
   1356 	if (error != 0) {
   1357 		aprint_error_dev(sc->sc_dev,
   1358 		    "could not allocate TX ring DMA memory\n");
   1359 		goto fail;
   1360 	}
   1361 	/*
   1362 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1363 	 * to allocate commands space for other rings.
   1364 	 * XXX Do we really need to allocate descriptors for other rings?
   1365 	 */
   1366 	if (qid > 4)
   1367 		return 0;
   1368 
   1369 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1370 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1371 	    (void **)&ring->cmd, size, 4);
   1372 	if (error != 0) {
   1373 		aprint_error_dev(sc->sc_dev,
   1374 		    "could not allocate TX cmd DMA memory\n");
   1375 		goto fail;
   1376 	}
   1377 
   1378 	paddr = ring->cmd_dma.paddr;
   1379 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1380 		struct iwn_tx_data *data = &ring->data[i];
   1381 
   1382 		data->cmd_paddr = paddr;
   1383 		data->scratch_paddr = paddr + 12;
   1384 		paddr += sizeof (struct iwn_tx_cmd);
   1385 
   1386 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1387 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1388 		    &data->map);
   1389 		if (error != 0) {
   1390 			aprint_error_dev(sc->sc_dev,
   1391 			    "could not create TX buf DMA map\n");
   1392 			goto fail;
   1393 		}
   1394 	}
   1395 	return 0;
   1396 
   1397 fail:	iwn_free_tx_ring(sc, ring);
   1398 	return error;
   1399 }
   1400 
   1401 static void
   1402 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1403 {
   1404 	int i;
   1405 
   1406 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1407 		struct iwn_tx_data *data = &ring->data[i];
   1408 
   1409 		if (data->m != NULL) {
   1410 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1411 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1412 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1413 			m_freem(data->m);
   1414 			data->m = NULL;
   1415 		}
   1416 	}
   1417 	/* Clear TX descriptors. */
   1418 	memset(ring->desc, 0, ring->desc_dma.size);
   1419 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1420 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1421 	sc->qfullmsk &= ~(1 << ring->qid);
   1422 	ring->queued = 0;
   1423 	ring->cur = 0;
   1424 }
   1425 
   1426 static void
   1427 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1428 {
   1429 	int i;
   1430 
   1431 	iwn_dma_contig_free(&ring->desc_dma);
   1432 	iwn_dma_contig_free(&ring->cmd_dma);
   1433 
   1434 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1435 		struct iwn_tx_data *data = &ring->data[i];
   1436 
   1437 		if (data->m != NULL) {
   1438 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1439 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1440 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1441 			m_freem(data->m);
   1442 		}
   1443 		if (data->map != NULL)
   1444 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1445 	}
   1446 }
   1447 
   1448 static void
   1449 iwn5000_ict_reset(struct iwn_softc *sc)
   1450 {
   1451 	/* Disable interrupts. */
   1452 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1453 
   1454 	/* Reset ICT table. */
   1455 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1456 	sc->ict_cur = 0;
   1457 
   1458 	/* Set physical address of ICT table (4KB aligned.) */
   1459 	DPRINTF(("enabling ICT\n"));
   1460 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1461 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1462 
   1463 	/* Enable periodic RX interrupt. */
   1464 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1465 	/* Switch to ICT interrupt mode in driver. */
   1466 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1467 
   1468 	/* Re-enable interrupts. */
   1469 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1470 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1471 }
   1472 
   1473 static int
   1474 iwn_read_eeprom(struct iwn_softc *sc)
   1475 {
   1476 	const struct iwn_hal *hal = sc->sc_hal;
   1477 	struct ieee80211com *ic = &sc->sc_ic;
   1478 	uint16_t val;
   1479 	int error;
   1480 
   1481 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1482 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1483 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1484 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1485 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1486 	    "OTPROM" : "EEPROM"));
   1487 
   1488 	/* Adapter has to be powered on for EEPROM access to work. */
   1489 	if ((error = iwn_apm_init(sc)) != 0) {
   1490 		aprint_error_dev(sc->sc_dev,
   1491 		    "could not power ON adapter\n");
   1492 		return error;
   1493 	}
   1494 
   1495 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1496 		aprint_error_dev(sc->sc_dev,
   1497 		    "bad ROM signature\n");
   1498 		return EIO;
   1499 	}
   1500 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1501 		aprint_error_dev(sc->sc_dev,
   1502 		    "could not lock ROM (error=%d)\n", error);
   1503 		return error;
   1504 	}
   1505 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1506 		if ((error = iwn_init_otprom(sc)) != 0) {
   1507 			aprint_error_dev(sc->sc_dev,
   1508 			    "could not initialize OTPROM\n");
   1509 			return error;
   1510 		}
   1511 	}
   1512 
   1513 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1514 	sc->rfcfg = le16toh(val);
   1515 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1516 
   1517 	/* Read MAC address. */
   1518 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1519 
   1520 	/* Read adapter-specific information from EEPROM. */
   1521 	hal->read_eeprom(sc);
   1522 
   1523 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1524 
   1525 	iwn_eeprom_unlock(sc);
   1526 	return 0;
   1527 }
   1528 
   1529 static void
   1530 iwn4965_read_eeprom(struct iwn_softc *sc)
   1531 {
   1532 	uint32_t addr;
   1533 	uint16_t val;
   1534 	int i;
   1535 
   1536 	/* Read regulatory domain (4 ASCII characters.) */
   1537 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1538 
   1539 	/* Read the list of authorized channels (20MHz ones only.) */
   1540 	for (i = 0; i < 5; i++) {
   1541 		addr = iwn4965_regulatory_bands[i];
   1542 		iwn_read_eeprom_channels(sc, i, addr);
   1543 	}
   1544 
   1545 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1546 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1547 	sc->maxpwr2GHz = val & 0xff;
   1548 	sc->maxpwr5GHz = val >> 8;
   1549 	/* Check that EEPROM values are within valid range. */
   1550 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1551 		sc->maxpwr5GHz = 38;
   1552 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1553 		sc->maxpwr2GHz = 38;
   1554 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1555 
   1556 	/* Read samples for each TX power group. */
   1557 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1558 	    sizeof sc->bands);
   1559 
   1560 	/* Read voltage at which samples were taken. */
   1561 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1562 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1563 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1564 
   1565 #ifdef IWN_DEBUG
   1566 	/* Print samples. */
   1567 	if (iwn_debug > 0) {
   1568 		for (i = 0; i < IWN_NBANDS; i++)
   1569 			iwn4965_print_power_group(sc, i);
   1570 	}
   1571 #endif
   1572 }
   1573 
   1574 #ifdef IWN_DEBUG
   1575 static void
   1576 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1577 {
   1578 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1579 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1580 	int j, c;
   1581 
   1582 	aprint_normal("===band %d===\n", i);
   1583 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1584 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1585 	for (c = 0; c < 2; c++) {
   1586 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1587 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1588 			    "power=%d pa_det=%d\n", c, j,
   1589 			    chans[0].samples[c][j].temp,
   1590 			    chans[0].samples[c][j].gain,
   1591 			    chans[0].samples[c][j].power,
   1592 			    chans[0].samples[c][j].pa_det);
   1593 		}
   1594 	}
   1595 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1596 	for (c = 0; c < 2; c++) {
   1597 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1598 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1599 			    "power=%d pa_det=%d\n", c, j,
   1600 			    chans[1].samples[c][j].temp,
   1601 			    chans[1].samples[c][j].gain,
   1602 			    chans[1].samples[c][j].power,
   1603 			    chans[1].samples[c][j].pa_det);
   1604 		}
   1605 	}
   1606 }
   1607 #endif
   1608 
   1609 static void
   1610 iwn5000_read_eeprom(struct iwn_softc *sc)
   1611 {
   1612 	struct iwn5000_eeprom_calib_hdr hdr;
   1613 	int32_t temp, volt;
   1614 	uint32_t base, addr;
   1615 	uint16_t val;
   1616 	int i;
   1617 
   1618 	/* Read regulatory domain (4 ASCII characters.) */
   1619 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1620 	base = le16toh(val);
   1621 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1622 	    sc->eeprom_domain, 4);
   1623 
   1624 	/* Read the list of authorized channels (20MHz ones only.) */
   1625 	for (i = 0; i < 5; i++) {
   1626 		addr = base + iwn5000_regulatory_bands[i];
   1627 		iwn_read_eeprom_channels(sc, i, addr);
   1628 	}
   1629 
   1630 	/* Read enhanced TX power information for 6000 Series. */
   1631 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1632 		iwn_read_eeprom_enhinfo(sc);
   1633 
   1634 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1635 	base = le16toh(val);
   1636 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1637 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1638 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1639 	sc->calib_ver = hdr.version;
   1640 
   1641 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1642 		/* Compute temperature offset. */
   1643 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1644 		temp = le16toh(val);
   1645 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1646 		volt = le16toh(val);
   1647 		sc->temp_off = temp - (volt / -5);
   1648 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1649 		    temp, volt, sc->temp_off));
   1650 	} else {
   1651 		/* Read crystal calibration. */
   1652 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1653 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1654 		DPRINTF(("crystal calibration 0x%08x\n",
   1655 		    le32toh(sc->eeprom_crystal)));
   1656 	}
   1657 }
   1658 
   1659 static void
   1660 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1661 {
   1662 	struct ieee80211com *ic = &sc->sc_ic;
   1663 	const struct iwn_chan_band *band = &iwn_bands[n];
   1664 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1665 	uint8_t chan;
   1666 	int i;
   1667 
   1668 	iwn_read_prom_data(sc, addr, channels,
   1669 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1670 
   1671 	for (i = 0; i < band->nchan; i++) {
   1672 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1673 			continue;
   1674 
   1675 		chan = band->chan[i];
   1676 
   1677 		if (n == 0) {	/* 2GHz band */
   1678 			ic->ic_channels[chan].ic_freq =
   1679 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1680 			ic->ic_channels[chan].ic_flags =
   1681 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1682 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1683 
   1684 		} else {	/* 5GHz band */
   1685 			/*
   1686 			 * Some adapters support channels 7, 8, 11 and 12
   1687 			 * both in the 2GHz and 4.9GHz bands.
   1688 			 * Because of limitations in our net80211 layer,
   1689 			 * we don't support them in the 4.9GHz band.
   1690 			 */
   1691 			if (chan <= 14)
   1692 				continue;
   1693 
   1694 			ic->ic_channels[chan].ic_freq =
   1695 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1696 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1697 			/* We have at least one valid 5GHz channel. */
   1698 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1699 		}
   1700 
   1701 		/* Is active scan allowed on this channel? */
   1702 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1703 			ic->ic_channels[chan].ic_flags |=
   1704 			    IEEE80211_CHAN_PASSIVE;
   1705 		}
   1706 
   1707 		/* Save maximum allowed TX power for this channel. */
   1708 		sc->maxpwr[chan] = channels[i].maxpwr;
   1709 
   1710 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1711 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1712 	}
   1713 }
   1714 
   1715 static void
   1716 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1717 {
   1718 	struct iwn_eeprom_enhinfo enhinfo[35];
   1719 	uint16_t val, base;
   1720 	int8_t maxpwr;
   1721 	int i;
   1722 
   1723 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1724 	base = le16toh(val);
   1725 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1726 	    enhinfo, sizeof enhinfo);
   1727 
   1728 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1729 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1730 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
   1731 			continue;	/* Skip invalid entries. */
   1732 
   1733 		maxpwr = 0;
   1734 		if (sc->txchainmask & IWN_ANT_A)
   1735 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1736 		if (sc->txchainmask & IWN_ANT_B)
   1737 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1738 		if (sc->txchainmask & IWN_ANT_C)
   1739 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1740 		if (sc->ntxchains == 2)
   1741 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1742 		else if (sc->ntxchains == 3)
   1743 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1744 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1745 
   1746 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1747 		sc->enh_maxpwr[i] = maxpwr;
   1748 	}
   1749 }
   1750 
   1751 static struct ieee80211_node *
   1752 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1753 {
   1754 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1755 }
   1756 
   1757 static void
   1758 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1759 {
   1760 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1761 	struct iwn_node *wn = (void *)ni;
   1762 	uint8_t rate;
   1763 	int ridx, i;
   1764 
   1765 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1766 	/* Start at lowest available bit-rate, AMRR will raise. */
   1767 	ni->ni_txrate = 0;
   1768 
   1769 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1770 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1771 		/* Map 802.11 rate to HW rate index. */
   1772 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1773 			if (iwn_rates[ridx].rate == rate)
   1774 				break;
   1775 		wn->ridx[i] = ridx;
   1776 	}
   1777 }
   1778 
   1779 static int
   1780 iwn_media_change(struct ifnet *ifp)
   1781 {
   1782 	struct iwn_softc *sc = ifp->if_softc;
   1783 	struct ieee80211com *ic = &sc->sc_ic;
   1784 	uint8_t rate, ridx;
   1785 	int error;
   1786 
   1787 	error = ieee80211_media_change(ifp);
   1788 	if (error != ENETRESET)
   1789 		return error;
   1790 
   1791 	if (ic->ic_fixed_rate != -1) {
   1792 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1793 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1794 		/* Map 802.11 rate to HW rate index. */
   1795 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1796 			if (iwn_rates[ridx].rate == rate)
   1797 				break;
   1798 		sc->fixed_ridx = ridx;
   1799 	}
   1800 
   1801 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1802 	    (IFF_UP | IFF_RUNNING)) {
   1803 		iwn_stop(ifp, 0);
   1804 		error = iwn_init(ifp);
   1805 	}
   1806 	return error;
   1807 }
   1808 
   1809 static int
   1810 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1811 {
   1812 	struct ifnet *ifp = ic->ic_ifp;
   1813 	struct iwn_softc *sc = ifp->if_softc;
   1814 	int error;
   1815 
   1816 	callout_stop(&sc->calib_to);
   1817 
   1818 	switch (nstate) {
   1819 	case IEEE80211_S_SCAN:
   1820 		/* XXX Do not abort a running scan. */
   1821 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1822 			aprint_error_dev(sc->sc_dev,
   1823 			    "scan request while scanning ignored\n");
   1824 			break;
   1825 		}
   1826 
   1827 		/* XXX Not sure if call and flags are needed. */
   1828 		ieee80211_node_table_reset(&ic->ic_scan);
   1829 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1830 		sc->sc_flags |= IWN_FLAG_SCANNING;
   1831 
   1832 		/* Make the link LED blink while we're scanning. */
   1833 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1834 
   1835 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1836 			aprint_error_dev(sc->sc_dev,
   1837 			    "could not initiate scan\n");
   1838 			return error;
   1839 		}
   1840 		ic->ic_state = nstate;
   1841 		return 0;
   1842 
   1843 	case IEEE80211_S_ASSOC:
   1844 		if (ic->ic_state != IEEE80211_S_RUN)
   1845 			break;
   1846 		/* FALLTHROUGH */
   1847 	case IEEE80211_S_AUTH:
   1848 		/* Reset state to handle reassociations correctly. */
   1849 		sc->rxon.associd = 0;
   1850 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1851 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1852 
   1853 		if ((error = iwn_auth(sc)) != 0) {
   1854 			aprint_error_dev(sc->sc_dev,
   1855 			    "could not move to auth state\n");
   1856 			return error;
   1857 		}
   1858 		break;
   1859 
   1860 	case IEEE80211_S_RUN:
   1861 		if ((error = iwn_run(sc)) != 0) {
   1862 			aprint_error_dev(sc->sc_dev,
   1863 			    "could not move to run state\n");
   1864 			return error;
   1865 		}
   1866 		break;
   1867 
   1868 	case IEEE80211_S_INIT:
   1869 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1870 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1871 		break;
   1872 	}
   1873 
   1874 	return sc->sc_newstate(ic, nstate, arg);
   1875 }
   1876 
   1877 static void
   1878 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1879 {
   1880 	struct iwn_softc *sc = arg;
   1881 	struct iwn_node *wn = (struct iwn_node *)ni;
   1882 
   1883 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1884 }
   1885 
   1886 static void
   1887 iwn_calib_timeout(void *arg)
   1888 {
   1889 	struct iwn_softc *sc = arg;
   1890 	struct ieee80211com *ic = &sc->sc_ic;
   1891 	int s;
   1892 
   1893 	s = splnet();
   1894 	if (ic->ic_fixed_rate == -1) {
   1895 		if (ic->ic_opmode == IEEE80211_M_STA)
   1896 			iwn_iter_func(sc, ic->ic_bss);
   1897 		else
   1898 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1899 	}
   1900 	/* Force automatic TX power calibration every 60 secs. */
   1901 	if (++sc->calib_cnt >= 120) {
   1902 		uint32_t flags = 0;
   1903 
   1904 		DPRINTF(("sending request for statistics\n"));
   1905 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   1906 		    sizeof flags, 1);
   1907 		sc->calib_cnt = 0;
   1908 	}
   1909 	splx(s);
   1910 
   1911 	/* Automatic rate control triggered every 500ms. */
   1912 	callout_schedule(&sc->calib_to, hz/2);
   1913 }
   1914 
   1915 /*
   1916  * Process an RX_PHY firmware notification.  This is usually immediately
   1917  * followed by an MPDU_RX_DONE notification.
   1918  */
   1919 static void
   1920 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1921     struct iwn_rx_data *data)
   1922 {
   1923 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   1924 
   1925 	DPRINTFN(2, ("received PHY stats\n"));
   1926 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   1927 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   1928 
   1929 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   1930 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   1931 	sc->last_rx_valid = 1;
   1932 }
   1933 
   1934 /*
   1935  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   1936  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   1937  */
   1938 static void
   1939 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1940     struct iwn_rx_data *data)
   1941 {
   1942 	const struct iwn_hal *hal = sc->sc_hal;
   1943 	struct ieee80211com *ic = &sc->sc_ic;
   1944 	struct ifnet *ifp = ic->ic_ifp;
   1945 	struct iwn_rx_ring *ring = &sc->rxq;
   1946 	struct ieee80211_frame *wh;
   1947 	struct ieee80211_node *ni;
   1948 	struct mbuf *m, *m1;
   1949 	struct iwn_rx_stat *stat;
   1950 	char	*head;
   1951 	uint32_t flags;
   1952 	int error, len, rssi;
   1953 
   1954 	if (desc->type == IWN_MPDU_RX_DONE) {
   1955 		/* Check for prior RX_PHY notification. */
   1956 		if (!sc->last_rx_valid) {
   1957 			DPRINTF(("missing RX_PHY\n"));
   1958 			ifp->if_ierrors++;
   1959 			return;
   1960 		}
   1961 		sc->last_rx_valid = 0;
   1962 		stat = &sc->last_rx_stat;
   1963 	} else
   1964 		stat = (struct iwn_rx_stat *)(desc + 1);
   1965 
   1966 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   1967 	    BUS_DMASYNC_POSTREAD);
   1968 
   1969 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   1970 		aprint_error_dev(sc->sc_dev,
   1971 		    "invalid RX statistic header\n");
   1972 		ifp->if_ierrors++;
   1973 		return;
   1974 	}
   1975 	if (desc->type == IWN_MPDU_RX_DONE) {
   1976 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   1977 		head = (char *)(mpdu + 1);
   1978 		len = le16toh(mpdu->len);
   1979 	} else {
   1980 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   1981 		len = le16toh(stat->len);
   1982 	}
   1983 
   1984 	flags = le32toh(*(uint32_t *)(head + len));
   1985 
   1986 	/* Discard frames with a bad FCS early. */
   1987 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   1988 		DPRINTFN(2, ("RX flags error %x\n", flags));
   1989 		ifp->if_ierrors++;
   1990 		return;
   1991 	}
   1992 	/* Discard frames that are too short. */
   1993 	if (len < sizeof (*wh)) {
   1994 		DPRINTF(("frame too short: %d\n", len));
   1995 		ic->ic_stats.is_rx_tooshort++;
   1996 		ifp->if_ierrors++;
   1997 		return;
   1998 	}
   1999 
   2000 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   2001 	if (m1 == NULL) {
   2002 		ic->ic_stats.is_rx_nobuf++;
   2003 		ifp->if_ierrors++;
   2004 		return;
   2005 	}
   2006 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2007 
   2008 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   2009 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   2010 	if (error != 0) {
   2011 		m_freem(m1);
   2012 
   2013 		/* Try to reload the old mbuf. */
   2014 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   2015 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   2016 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   2017 		if (error != 0) {
   2018 			panic("%s: could not load old RX mbuf",
   2019 			    device_xname(sc->sc_dev));
   2020 		}
   2021 		/* Physical address may have changed. */
   2022 		ring->desc[ring->cur] =
   2023 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   2024 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2025 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2026 		    BUS_DMASYNC_PREWRITE);
   2027 		ifp->if_ierrors++;
   2028 		return;
   2029 	}
   2030 
   2031 	m = data->m;
   2032 	data->m = m1;
   2033 	/* Update RX descriptor. */
   2034 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   2035 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2036 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2037 	    BUS_DMASYNC_PREWRITE);
   2038 
   2039 	/* Finalize mbuf. */
   2040 	m->m_pkthdr.rcvif = ifp;
   2041 	m->m_data = head;
   2042 	m->m_pkthdr.len = m->m_len = len;
   2043 
   2044 	/* Grab a reference to the source node. */
   2045 	wh = mtod(m, struct ieee80211_frame *);
   2046 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2047 
   2048 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2049 	/* NetBSD does decryption in ieee80211_input. */
   2050 
   2051 	rssi = hal->get_rssi(stat);
   2052 
   2053 	/* XXX Added for NetBSD: scans never stop without it */
   2054 	if (ic->ic_state == IEEE80211_S_SCAN)
   2055 		iwn_fix_channel(ic, m);
   2056 
   2057 	if (sc->sc_drvbpf != NULL) {
   2058 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2059 
   2060 		tap->wr_flags = 0;
   2061 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2062 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2063 		tap->wr_chan_freq =
   2064 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2065 		tap->wr_chan_flags =
   2066 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2067 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2068 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2069 		tap->wr_tsft = stat->tstamp;
   2070 		switch (stat->rate) {
   2071 		/* CCK rates. */
   2072 		case  10: tap->wr_rate =   2; break;
   2073 		case  20: tap->wr_rate =   4; break;
   2074 		case  55: tap->wr_rate =  11; break;
   2075 		case 110: tap->wr_rate =  22; break;
   2076 		/* OFDM rates. */
   2077 		case 0xd: tap->wr_rate =  12; break;
   2078 		case 0xf: tap->wr_rate =  18; break;
   2079 		case 0x5: tap->wr_rate =  24; break;
   2080 		case 0x7: tap->wr_rate =  36; break;
   2081 		case 0x9: tap->wr_rate =  48; break;
   2082 		case 0xb: tap->wr_rate =  72; break;
   2083 		case 0x1: tap->wr_rate =  96; break;
   2084 		case 0x3: tap->wr_rate = 108; break;
   2085 		/* Unknown rate: should not happen. */
   2086 		default:  tap->wr_rate =   0;
   2087 		}
   2088 
   2089 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   2090 	}
   2091 
   2092 	/* Send the frame to the 802.11 layer. */
   2093 	ieee80211_input(ic, m, ni, rssi, 0);
   2094 
   2095 	/* Node is no longer needed. */
   2096 	ieee80211_free_node(ni);
   2097 }
   2098 
   2099 #ifndef IEEE80211_NO_HT
   2100 /* Process an incoming Compressed BlockAck. */
   2101 static void
   2102 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2103     struct iwn_rx_data *data)
   2104 {
   2105 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2106 	struct iwn_tx_ring *txq;
   2107 
   2108 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2109 	    BUS_DMASYNC_POSTREAD);
   2110 
   2111 	txq = &sc->txq[le16toh(ba->qid)];
   2112 	/* XXX TBD */
   2113 }
   2114 #endif
   2115 
   2116 /*
   2117  * Process a CALIBRATION_RESULT notification sent by the initialization
   2118  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
   2119  */
   2120 static void
   2121 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2122     struct iwn_rx_data *data)
   2123 {
   2124 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2125 	int len, idx = -1;
   2126 
   2127 	/* Runtime firmware should not send such a notification. */
   2128 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2129 		return;
   2130 
   2131 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2132 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2133 	    BUS_DMASYNC_POSTREAD);
   2134 
   2135 	switch (calib->code) {
   2136 	case IWN5000_PHY_CALIB_DC:
   2137 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
   2138 		    sc->hw_type == IWN_HW_REV_TYPE_6050)
   2139 			idx = 0;
   2140 		break;
   2141 	case IWN5000_PHY_CALIB_LO:
   2142 		idx = 1;
   2143 		break;
   2144 	case IWN5000_PHY_CALIB_TX_IQ:
   2145 		idx = 2;
   2146 		break;
   2147 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2148 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2149 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2150 			idx = 3;
   2151 		break;
   2152 	case IWN5000_PHY_CALIB_BASE_BAND:
   2153 		idx = 4;
   2154 		break;
   2155 	}
   2156 	if (idx == -1)	/* Ignore other results. */
   2157 		return;
   2158 
   2159 	/* Save calibration result. */
   2160 	if (sc->calibcmd[idx].buf != NULL)
   2161 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2162 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2163 	if (sc->calibcmd[idx].buf == NULL) {
   2164 		DPRINTF(("not enough memory for calibration result %d\n",
   2165 		    calib->code));
   2166 		return;
   2167 	}
   2168 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2169 	    calib->code, len));
   2170 	sc->calibcmd[idx].len = len;
   2171 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2172 }
   2173 
   2174 /*
   2175  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2176  * The latter is sent by the firmware after each received beacon.
   2177  */
   2178 static void
   2179 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2180     struct iwn_rx_data *data)
   2181 {
   2182 	const struct iwn_hal *hal = sc->sc_hal;
   2183 	struct ieee80211com *ic = &sc->sc_ic;
   2184 	struct iwn_calib_state *calib = &sc->calib;
   2185 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2186 	int temp;
   2187 
   2188 	/* Ignore statistics received during a scan. */
   2189 	if (ic->ic_state != IEEE80211_S_RUN)
   2190 		return;
   2191 
   2192 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2193 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2194 
   2195 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2196 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2197 
   2198 	/* Test if temperature has changed. */
   2199 	if (stats->general.temp != sc->rawtemp) {
   2200 		/* Convert "raw" temperature to degC. */
   2201 		sc->rawtemp = stats->general.temp;
   2202 		temp = hal->get_temperature(sc);
   2203 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2204 
   2205 #ifndef SMALL_KERNEL
   2206 		/* Update temperature sensor. */
   2207 		sc->sc_sensor.value_cur = IWN_CTOMUK(temp);
   2208 		sc->sc_sensor.state = ENVSYS_SVALID;
   2209 #endif
   2210 
   2211 		/* Update TX power if need be (4965AGN only.) */
   2212 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2213 			iwn4965_power_calibration(sc, temp);
   2214 	}
   2215 
   2216 	if (desc->type != IWN_BEACON_STATISTICS)
   2217 		return;	/* Reply to a statistics request. */
   2218 
   2219 	sc->noise = iwn_get_noise(&stats->rx.general);
   2220 
   2221 	/* Test that RSSI and noise are present in stats report. */
   2222 	if (le32toh(stats->rx.general.flags) != 1) {
   2223 		DPRINTF(("received statistics without RSSI\n"));
   2224 		return;
   2225 	}
   2226 
   2227 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2228 		iwn_collect_noise(sc, &stats->rx.general);
   2229 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2230 		iwn_tune_sensitivity(sc, &stats->rx);
   2231 }
   2232 
   2233 /*
   2234  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2235  * and 5000 adapters have different incompatible TX status formats.
   2236  */
   2237 static void
   2238 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2239     struct iwn_rx_data *data)
   2240 {
   2241 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2242 
   2243 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2244 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2245 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2246 }
   2247 
   2248 static void
   2249 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2250     struct iwn_rx_data *data)
   2251 {
   2252 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2253 
   2254 #ifdef notyet
   2255 	/* Reset TX scheduler slot. */
   2256 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2257 #endif
   2258 
   2259 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2260 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2261 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2262 }
   2263 
   2264 /*
   2265  * Adapter-independent backend for TX_DONE firmware notifications.
   2266  */
   2267 static void
   2268 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2269     uint8_t status)
   2270 {
   2271 	struct ieee80211com *ic = &sc->sc_ic;
   2272 	struct ifnet *ifp = ic->ic_ifp;
   2273 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2274 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2275 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2276 
   2277 	/* Update rate control statistics. */
   2278 	wn->amn.amn_txcnt++;
   2279 	if (ackfailcnt > 0)
   2280 		wn->amn.amn_retrycnt++;
   2281 
   2282 	if (status != 1 && status != 2)
   2283 		ifp->if_oerrors++;
   2284 	else
   2285 		ifp->if_opackets++;
   2286 
   2287 	/* Unmap and free mbuf. */
   2288 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2289 	    BUS_DMASYNC_POSTWRITE);
   2290 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2291 	m_freem(data->m);
   2292 	data->m = NULL;
   2293 	ieee80211_free_node(data->ni);
   2294 	data->ni = NULL;
   2295 
   2296 	sc->sc_tx_timer = 0;
   2297 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2298 		sc->qfullmsk &= ~(1 << ring->qid);
   2299 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2300 			ifp->if_flags &= ~IFF_OACTIVE;
   2301 			(*ifp->if_start)(ifp);
   2302 		}
   2303 	}
   2304 }
   2305 
   2306 /*
   2307  * Process a "command done" firmware notification.  This is where we wakeup
   2308  * processes waiting for a synchronous command completion.
   2309  */
   2310 static void
   2311 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2312 {
   2313 	struct iwn_tx_ring *ring = &sc->txq[4];
   2314 	struct iwn_tx_data *data;
   2315 
   2316 	if ((desc->qid & 0xf) != 4)
   2317 		return;	/* Not a command ack. */
   2318 
   2319 	data = &ring->data[desc->idx];
   2320 
   2321 	/* If the command was mapped in an mbuf, free it. */
   2322 	if (data->m != NULL) {
   2323 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2324 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2325 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2326 		m_freem(data->m);
   2327 		data->m = NULL;
   2328 	}
   2329 	wakeup(&ring->desc[desc->idx]);
   2330 }
   2331 
   2332 /*
   2333  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2334  */
   2335 static void
   2336 iwn_notif_intr(struct iwn_softc *sc)
   2337 {
   2338 	struct ieee80211com *ic = &sc->sc_ic;
   2339 	struct ifnet *ifp = ic->ic_ifp;
   2340 	uint16_t hw;
   2341 
   2342 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2343 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2344 
   2345 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2346 	while (sc->rxq.cur != hw) {
   2347 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2348 		struct iwn_rx_desc *desc;
   2349 
   2350 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2351 		    BUS_DMASYNC_POSTREAD);
   2352 		desc = mtod(data->m, struct iwn_rx_desc *);
   2353 
   2354 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2355 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2356 
   2357 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2358 			iwn_cmd_done(sc, desc);
   2359 
   2360 		switch (desc->type) {
   2361 		case IWN_RX_PHY:
   2362 			iwn_rx_phy(sc, desc, data);
   2363 			break;
   2364 
   2365 		case IWN_RX_DONE:		/* 4965AGN only. */
   2366 		case IWN_MPDU_RX_DONE:
   2367 			/* An 802.11 frame has been received. */
   2368 			iwn_rx_done(sc, desc, data);
   2369 			break;
   2370 #ifndef IEEE80211_NO_HT
   2371 		case IWN_RX_COMPRESSED_BA:
   2372 			/* A Compressed BlockAck has been received. */
   2373 			iwn_rx_compressed_ba(sc, desc, data);
   2374 			break;
   2375 #endif
   2376 		case IWN_TX_DONE:
   2377 			/* An 802.11 frame has been transmitted. */
   2378 			sc->sc_hal->tx_done(sc, desc, data);
   2379 			break;
   2380 
   2381 		case IWN_RX_STATISTICS:
   2382 		case IWN_BEACON_STATISTICS:
   2383 			iwn_rx_statistics(sc, desc, data);
   2384 			break;
   2385 
   2386 		case IWN_BEACON_MISSED:
   2387 		{
   2388 			struct iwn_beacon_missed *miss =
   2389 			    (struct iwn_beacon_missed *)(desc + 1);
   2390 
   2391 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2392 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2393 			/*
   2394 			 * If more than 5 consecutive beacons are missed,
   2395 			 * reinitialize the sensitivity state machine.
   2396 			 */
   2397 			DPRINTF(("beacons missed %d/%d\n",
   2398 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2399 			if (ic->ic_state == IEEE80211_S_RUN &&
   2400 			    le32toh(miss->consecutive) > 5)
   2401 				(void)iwn_init_sensitivity(sc);
   2402 			break;
   2403 		}
   2404 		case IWN_UC_READY:
   2405 		{
   2406 			struct iwn_ucode_info *uc =
   2407 			    (struct iwn_ucode_info *)(desc + 1);
   2408 
   2409 			/* The microcontroller is ready. */
   2410 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2411 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2412 			DPRINTF(("microcode alive notification version=%d.%d "
   2413 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2414 			    uc->subtype, le32toh(uc->valid)));
   2415 
   2416 			if (le32toh(uc->valid) != 1) {
   2417 				aprint_error_dev(sc->sc_dev,
   2418 				    "microcontroller initialization "
   2419 				    "failed\n");
   2420 				break;
   2421 			}
   2422 			if (uc->subtype == IWN_UCODE_INIT) {
   2423 				/* Save microcontroller report. */
   2424 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2425 			}
   2426 			/* Save the address of the error log in SRAM. */
   2427 			sc->errptr = le32toh(uc->errptr);
   2428 			break;
   2429 		}
   2430 		case IWN_STATE_CHANGED:
   2431 		{
   2432 			uint32_t *status = (uint32_t *)(desc + 1);
   2433 
   2434 			/* Enabled/disabled notification. */
   2435 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2436 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2437 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2438 
   2439 			if (le32toh(*status) & 1) {
   2440 				/* The radio button has to be pushed. */
   2441 				aprint_error_dev(sc->sc_dev,
   2442 				    "Radio transmitter is off\n");
   2443 				/* Turn the interface down. */
   2444 				ifp->if_flags &= ~IFF_UP;
   2445 				iwn_stop(ifp, 1);
   2446 				return;	/* No further processing. */
   2447 			}
   2448 			break;
   2449 		}
   2450 		case IWN_START_SCAN:
   2451 		{
   2452 			struct iwn_start_scan *scan =
   2453 			    (struct iwn_start_scan *)(desc + 1);
   2454 
   2455 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2456 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2457 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2458 			    scan->chan, le32toh(scan->status)));
   2459 
   2460 			/* Fix current channel. */
   2461 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2462 			break;
   2463 		}
   2464 		case IWN_STOP_SCAN:
   2465 		{
   2466 			struct iwn_stop_scan *scan =
   2467 			    (struct iwn_stop_scan *)(desc + 1);
   2468 
   2469 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2470 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2471 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2472 			    scan->nchan, scan->status, scan->chan));
   2473 
   2474 			if (scan->status == 1 && scan->chan <= 14 &&
   2475 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2476 				/*
   2477 				 * We just finished scanning 2GHz channels,
   2478 				 * start scanning 5GHz ones.
   2479 				 */
   2480 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2481 					break;
   2482 			}
   2483 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2484 			ieee80211_end_scan(ic);
   2485 			break;
   2486 		}
   2487 		case IWN5000_CALIBRATION_RESULT:
   2488 			iwn5000_rx_calib_results(sc, desc, data);
   2489 			break;
   2490 
   2491 		case IWN5000_CALIBRATION_DONE:
   2492 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2493 			wakeup(sc);
   2494 			break;
   2495 		}
   2496 
   2497 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2498 	}
   2499 
   2500 	/* Tell the firmware what we have processed. */
   2501 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2502 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2503 }
   2504 
   2505 /*
   2506  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2507  * from power-down sleep mode.
   2508  */
   2509 static void
   2510 iwn_wakeup_intr(struct iwn_softc *sc)
   2511 {
   2512 	int qid;
   2513 
   2514 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2515 
   2516 	/* Wakeup RX and TX rings. */
   2517 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2518 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
   2519 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2520 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2521 	}
   2522 }
   2523 
   2524 /*
   2525  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2526  * we can't debug the firmware because it is neither open source nor free, it
   2527  * can help us to identify certain classes of problems.
   2528  */
   2529 static void
   2530 iwn_fatal_intr(struct iwn_softc *sc)
   2531 {
   2532 	const struct iwn_hal *hal = sc->sc_hal;
   2533 	struct iwn_fw_dump dump;
   2534 	int i;
   2535 
   2536 	/* Force a complete recalibration on next init. */
   2537 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2538 
   2539 	/* Check that the error log address is valid. */
   2540 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2541 	    sc->errptr + sizeof (dump) >
   2542 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
   2543 		aprint_error_dev(sc->sc_dev,
   2544 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2545 		return;
   2546 	}
   2547 	if (iwn_nic_lock(sc) != 0) {
   2548 		aprint_error_dev(sc->sc_dev,
   2549 		    "could not read firmware error log\n");
   2550 		return;
   2551 	}
   2552 	/* Read firmware error log from SRAM. */
   2553 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2554 	    sizeof (dump) / sizeof (uint32_t));
   2555 	iwn_nic_unlock(sc);
   2556 
   2557 	if (dump.valid == 0) {
   2558 		aprint_error_dev(sc->sc_dev,
   2559 		    "firmware error log is empty\n");
   2560 		return;
   2561 	}
   2562 	aprint_error("firmware error log:\n");
   2563 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2564 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2565 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2566 	    dump.id);
   2567 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2568 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2569 	aprint_error("  error data      = 0x%08X%08X\n",
   2570 	    dump.error_data[0], dump.error_data[1]);
   2571 	aprint_error("  branch link     = 0x%08X%08X\n",
   2572 	    dump.branch_link[0], dump.branch_link[1]);
   2573 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2574 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2575 	aprint_error("  time            = %u\n", dump.time[0]);
   2576 
   2577 	/* Dump driver status (TX and RX rings) while we're here. */
   2578 	aprint_error("driver status:\n");
   2579 	for (i = 0; i < hal->ntxqs; i++) {
   2580 		struct iwn_tx_ring *ring = &sc->txq[i];
   2581 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2582 		    i, ring->qid, ring->cur, ring->queued);
   2583 	}
   2584 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2585 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2586 }
   2587 
   2588 static int
   2589 iwn_intr(void *arg)
   2590 {
   2591 	struct iwn_softc *sc = arg;
   2592 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2593 	uint32_t r1, r2, tmp;
   2594 
   2595 	/* Disable interrupts. */
   2596 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2597 
   2598 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2599 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2600 		tmp = 0;
   2601 		while (sc->ict[sc->ict_cur] != 0) {
   2602 			tmp |= sc->ict[sc->ict_cur];
   2603 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2604 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2605 		}
   2606 		tmp = le32toh(tmp);
   2607 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2608 			tmp = 0;
   2609 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2610 			tmp |= 0x8000;
   2611 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2612 		r2 = 0;	/* Unused. */
   2613 	} else {
   2614 		r1 = IWN_READ(sc, IWN_INT);
   2615 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2616 			return 0;	/* Hardware gone! */
   2617 		r2 = IWN_READ(sc, IWN_FH_INT);
   2618 	}
   2619 	if (r1 == 0 && r2 == 0) {
   2620 		if (ifp->if_flags & IFF_UP)
   2621 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2622 		return 0;	/* Interrupt not for us. */
   2623 	}
   2624 
   2625 	/* Acknowledge interrupts. */
   2626 	IWN_WRITE(sc, IWN_INT, r1);
   2627 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2628 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2629 
   2630 	if (r1 & IWN_INT_RF_TOGGLED) {
   2631 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2632 		aprint_error_dev(sc->sc_dev,
   2633 		    "RF switch: radio %s\n",
   2634 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2635 	}
   2636 	if (r1 & IWN_INT_CT_REACHED) {
   2637 		aprint_error_dev(sc->sc_dev,
   2638 		    "critical temperature reached!\n");
   2639 	}
   2640 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2641 		aprint_error_dev(sc->sc_dev,
   2642 		    "fatal firmware error\n");
   2643 		/* Dump firmware error log and stop. */
   2644 		iwn_fatal_intr(sc);
   2645 		ifp->if_flags &= ~IFF_UP;
   2646 		iwn_stop(ifp, 1);
   2647 		return 1;
   2648 	}
   2649 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2650 	    (r2 & IWN_FH_INT_RX)) {
   2651 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2652 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2653 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2654 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2655 			    IWN_INT_PERIODIC_DIS);
   2656 			iwn_notif_intr(sc);
   2657 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2658 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2659 				    IWN_INT_PERIODIC_ENA);
   2660 			}
   2661 		} else
   2662 			iwn_notif_intr(sc);
   2663 	}
   2664 
   2665 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2666 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2667 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2668 		wakeup(sc);	/* FH DMA transfer completed. */
   2669 	}
   2670 
   2671 	if (r1 & IWN_INT_ALIVE)
   2672 		wakeup(sc);	/* Firmware is alive. */
   2673 
   2674 	if (r1 & IWN_INT_WAKEUP)
   2675 		iwn_wakeup_intr(sc);
   2676 
   2677 	/* Re-enable interrupts. */
   2678 	if (ifp->if_flags & IFF_UP)
   2679 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2680 
   2681 	return 1;
   2682 }
   2683 
   2684 /*
   2685  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2686  * 5000 adapters use a slightly different format.)
   2687  */
   2688 static void
   2689 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2690     uint16_t len)
   2691 {
   2692 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2693 
   2694 	*w = htole16(len + 8);
   2695 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2696 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2697 	    sizeof (uint16_t),
   2698 	    BUS_DMASYNC_PREWRITE);
   2699 	if (idx < IWN_SCHED_WINSZ) {
   2700 		*(w + IWN_TX_RING_COUNT) = *w;
   2701 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2702 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2703 		    (char *)(void *)sc->sched_dma.vaddr,
   2704 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2705 	}
   2706 }
   2707 
   2708 static void
   2709 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2710     uint16_t len)
   2711 {
   2712 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2713 
   2714 	*w = htole16(id << 12 | (len + 8));
   2715 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2716 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2717 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2718 	if (idx < IWN_SCHED_WINSZ) {
   2719 		*(w + IWN_TX_RING_COUNT) = *w;
   2720 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2721 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2722 		    (char *)(void *)sc->sched_dma.vaddr,
   2723 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2724 	}
   2725 }
   2726 
   2727 #ifdef notyet
   2728 static void
   2729 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2730 {
   2731 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2732 
   2733 	*w = (*w & htole16(0xf000)) | htole16(1);
   2734 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2735 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2736 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2737 	if (idx < IWN_SCHED_WINSZ) {
   2738 		*(w + IWN_TX_RING_COUNT) = *w;
   2739 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2740 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2741 		    (char *)(void *)sc->sched_dma.vaddr,
   2742 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2743 	}
   2744 }
   2745 #endif
   2746 
   2747 static int
   2748 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2749 {
   2750 	const struct iwn_hal *hal = sc->sc_hal;
   2751 	struct ieee80211com *ic = &sc->sc_ic;
   2752 	struct iwn_node *wn = (void *)ni;
   2753 	struct iwn_tx_ring *ring;
   2754 	struct iwn_tx_desc *desc;
   2755 	struct iwn_tx_data *data;
   2756 	struct iwn_tx_cmd *cmd;
   2757 	struct iwn_cmd_data *tx;
   2758 	const struct iwn_rate *rinfo;
   2759 	struct ieee80211_frame *wh;
   2760 	struct ieee80211_key *k = NULL;
   2761 	struct mbuf *m1;
   2762 	uint32_t flags;
   2763 	u_int hdrlen;
   2764 	bus_dma_segment_t *seg;
   2765 	uint8_t tid, ridx, txant, type;
   2766 	int i, totlen, error, pad;
   2767 
   2768 	const struct chanAccParams *cap;
   2769 	int noack;
   2770 	int hdrlen2;
   2771 
   2772 	wh = mtod(m, struct ieee80211_frame *);
   2773 	hdrlen = ieee80211_anyhdrsize(wh);
   2774 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2775 
   2776 	hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
   2777 	    sizeof (struct ieee80211_qosframe) :
   2778 	    sizeof (struct ieee80211_frame);
   2779 
   2780 	if (hdrlen != hdrlen2)
   2781 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2782 		hdrlen, hdrlen2);
   2783 
   2784 	/* XXX OpenBSD sets a different tid when using QOS */
   2785 	tid = 0;
   2786 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   2787 		cap = &ic->ic_wme.wme_chanParams;
   2788 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2789 	}
   2790 	else
   2791 		noack = 0;
   2792 
   2793 	ring = &sc->txq[ac];
   2794 	desc = &ring->desc[ring->cur];
   2795 	data = &ring->data[ring->cur];
   2796 
   2797 	/* Choose a TX rate index. */
   2798 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2799 	    type != IEEE80211_FC0_TYPE_DATA) {
   2800 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2801 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2802 	} else if (ic->ic_fixed_rate != -1) {
   2803 		ridx = sc->fixed_ridx;
   2804 	} else
   2805 		ridx = wn->ridx[ni->ni_txrate];
   2806 	rinfo = &iwn_rates[ridx];
   2807 
   2808 	/* Encrypt the frame if need be. */
   2809 	/*
   2810 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   2811 	 * in order to match old code and other drivers. Tests with
   2812 	 * tcpdump indicates that the order is irrelevant, however,
   2813 	 * as bpf produces unencrypted data for both ordering choices.
   2814 	 */
   2815 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2816 		k = ieee80211_crypto_encap(ic, ni, m);
   2817 		if (k == NULL) {
   2818 			m_freem(m);
   2819 			return ENOBUFS;
   2820 		}
   2821 		/* Packet header may have moved, reset our local pointer. */
   2822 		wh = mtod(m, struct ieee80211_frame *);
   2823 	}
   2824 	totlen = m->m_pkthdr.len;
   2825 
   2826 	if (sc->sc_drvbpf != NULL) {
   2827 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2828 
   2829 		tap->wt_flags = 0;
   2830 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2831 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2832 		tap->wt_rate = rinfo->rate;
   2833 		tap->wt_hwqueue = ac;
   2834 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2835 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2836 
   2837 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   2838 	}
   2839 
   2840 	/* Prepare TX firmware command. */
   2841 	cmd = &ring->cmd[ring->cur];
   2842 	cmd->code = IWN_CMD_TX_DATA;
   2843 	cmd->flags = 0;
   2844 	cmd->qid = ring->qid;
   2845 	cmd->idx = ring->cur;
   2846 
   2847 	tx = (struct iwn_cmd_data *)cmd->data;
   2848 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2849 	tx->scratch = 0;	/* clear "scratch" area */
   2850 
   2851 	flags = 0;
   2852 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2853 		/* Unicast frame, check if an ACK is expected. */
   2854 		if (!noack)
   2855 			flags |= IWN_TX_NEED_ACK;
   2856 	}
   2857 
   2858 #ifdef notyet
   2859 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   2860 	if ((wh->i_fc[0] &
   2861 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   2862 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   2863 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   2864 #endif
   2865 
   2866 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   2867 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   2868 
   2869 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   2870 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2871 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   2872 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   2873 			flags |= IWN_TX_NEED_RTS;
   2874 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   2875 		    ridx >= IWN_RIDX_OFDM6) {
   2876 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   2877 				flags |= IWN_TX_NEED_CTS;
   2878 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   2879 				flags |= IWN_TX_NEED_RTS;
   2880 		}
   2881 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   2882 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   2883 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   2884 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   2885 				flags |= IWN_TX_NEED_PROTECTION;
   2886 			} else
   2887 				flags |= IWN_TX_FULL_TXOP;
   2888 		}
   2889 	}
   2890 
   2891 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2892 	    type != IEEE80211_FC0_TYPE_DATA)
   2893 		tx->id = hal->broadcast_id;
   2894 	else
   2895 		tx->id = wn->id;
   2896 
   2897 	if (type == IEEE80211_FC0_TYPE_MGT) {
   2898 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2899 
   2900 #ifndef IEEE80211_STA_ONLY
   2901 		/* Tell HW to set timestamp in probe responses. */
   2902 		/* XXX NetBSD rev 1.11 added probe requests here but */
   2903 		/* probe requests do not take timestamps (from Bergamini). */
   2904 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   2905 			flags |= IWN_TX_INSERT_TSTAMP;
   2906 #endif
   2907 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   2908 		/* changes here. These are not needed (from Bergamini). */
   2909 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   2910 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   2911 			tx->timeout = htole16(3);
   2912 		else
   2913 			tx->timeout = htole16(2);
   2914 	} else
   2915 		tx->timeout = htole16(0);
   2916 
   2917 	if (hdrlen & 3) {
   2918 		/* First segment's length must be a multiple of 4. */
   2919 		flags |= IWN_TX_NEED_PADDING;
   2920 		pad = 4 - (hdrlen & 3);
   2921 	} else
   2922 		pad = 0;
   2923 
   2924 	tx->len = htole16(totlen);
   2925 	tx->tid = tid;
   2926 	tx->rts_ntries = 60;
   2927 	tx->data_ntries = 15;
   2928 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   2929 	tx->plcp = rinfo->plcp;
   2930 	tx->rflags = rinfo->flags;
   2931 	if (tx->id == hal->broadcast_id) {
   2932 		/* Group or management frame. */
   2933 		tx->linkq = 0;
   2934 		/* XXX Alternate between antenna A and B? */
   2935 		txant = IWN_LSB(sc->txchainmask);
   2936 		tx->rflags |= IWN_RFLAG_ANT(txant);
   2937 	} else {
   2938 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   2939 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   2940 	}
   2941 	/* Set physical address of "scratch area". */
   2942 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   2943 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   2944 
   2945 	/* Copy 802.11 header in TX command. */
   2946 	/* XXX NetBSD changed this in rev 1.20 */
   2947 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   2948 
   2949 	/* Trim 802.11 header. */
   2950 	m_adj(m, hdrlen);
   2951 	tx->security = 0;
   2952 	tx->flags = htole32(flags);
   2953 
   2954 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2955 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2956 	if (error != 0) {
   2957 		if (error != EFBIG) {
   2958 			aprint_error_dev(sc->sc_dev,
   2959 			    "can't map mbuf (error %d)\n", error);
   2960 			m_freem(m);
   2961 			return error;
   2962 		}
   2963 		/* Too many DMA segments, linearize mbuf. */
   2964 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   2965 		if (m1 == NULL) {
   2966 			m_freem(m);
   2967 			return ENOBUFS;
   2968 		}
   2969 		if (m->m_pkthdr.len > MHLEN) {
   2970 			MCLGET(m1, M_DONTWAIT);
   2971 			if (!(m1->m_flags & M_EXT)) {
   2972 				m_freem(m);
   2973 				m_freem(m1);
   2974 				return ENOBUFS;
   2975 			}
   2976 		}
   2977 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   2978 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   2979 		m_freem(m);
   2980 		m = m1;
   2981 
   2982 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2983 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2984 		if (error != 0) {
   2985 			aprint_error_dev(sc->sc_dev,
   2986 			    "can't map mbuf (error %d)\n", error);
   2987 			m_freem(m);
   2988 			return error;
   2989 		}
   2990 	}
   2991 
   2992 	data->m = m;
   2993 	data->ni = ni;
   2994 
   2995 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   2996 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   2997 
   2998 	/* Fill TX descriptor. */
   2999 	desc->nsegs = 1 + data->map->dm_nsegs;
   3000 	/* First DMA segment is used by the TX command. */
   3001 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   3002 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   3003 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   3004 	/* Other DMA segments are for data payload. */
   3005 	seg = data->map->dm_segs;
   3006 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   3007 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   3008 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   3009 		    seg->ds_len << 4);
   3010 		seg++;
   3011 	}
   3012 
   3013 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   3014 	    BUS_DMASYNC_PREWRITE);
   3015 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3016 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3017 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   3018 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3019 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3020 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3021 
   3022 #ifdef notyet
   3023 	/* Update TX scheduler. */
   3024 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   3025 #endif
   3026 
   3027 	/* Kick TX ring. */
   3028 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3029 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3030 
   3031 	/* Mark TX ring as full if we reach a certain threshold. */
   3032 	if (++ring->queued > IWN_TX_RING_HIMARK)
   3033 		sc->qfullmsk |= 1 << ring->qid;
   3034 
   3035 	return 0;
   3036 }
   3037 
   3038 static void
   3039 iwn_start(struct ifnet *ifp)
   3040 {
   3041 	struct iwn_softc *sc = ifp->if_softc;
   3042 	struct ieee80211com *ic = &sc->sc_ic;
   3043 	struct ieee80211_node *ni;
   3044 	struct ether_header *eh;
   3045 	struct mbuf *m;
   3046 	int ac;
   3047 
   3048 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3049 		return;
   3050 
   3051 	for (;;) {
   3052 		if (sc->qfullmsk != 0) {
   3053 			ifp->if_flags |= IFF_OACTIVE;
   3054 			break;
   3055 		}
   3056 		/* Send pending management frames first. */
   3057 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3058 		if (m != NULL) {
   3059 			ni = (void *)m->m_pkthdr.rcvif;
   3060 			ac = 0;
   3061 			goto sendit;
   3062 		}
   3063 		if (ic->ic_state != IEEE80211_S_RUN)
   3064 			break;
   3065 
   3066 		/* Encapsulate and send data frames. */
   3067 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3068 		if (m == NULL)
   3069 			break;
   3070 		if (m->m_len < sizeof (*eh) &&
   3071 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3072 			ifp->if_oerrors++;
   3073 			continue;
   3074 		}
   3075 		eh = mtod(m, struct ether_header *);
   3076 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3077 		if (ni == NULL) {
   3078 			m_freem(m);
   3079 			ifp->if_oerrors++;
   3080 			continue;
   3081 		}
   3082 		/* classify mbuf so we can find which tx ring to use */
   3083 		if (ieee80211_classify(ic, m, ni) != 0) {
   3084 			m_freem(m);
   3085 			ieee80211_free_node(ni);
   3086 			ifp->if_oerrors++;
   3087 			continue;
   3088 		}
   3089 
   3090 		/* No QoS encapsulation for EAPOL frames. */
   3091 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3092 		    M_WME_GETAC(m) : WME_AC_BE;
   3093 
   3094 		bpf_mtap(ifp, m);
   3095 
   3096 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3097 			ieee80211_free_node(ni);
   3098 			ifp->if_oerrors++;
   3099 			continue;
   3100 		}
   3101 sendit:
   3102 		bpf_mtap3(ic->ic_rawbpf, m);
   3103 
   3104 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3105 			ieee80211_free_node(ni);
   3106 			ifp->if_oerrors++;
   3107 			continue;
   3108 		}
   3109 
   3110 		sc->sc_tx_timer = 5;
   3111 		ifp->if_timer = 1;
   3112 	}
   3113 }
   3114 
   3115 static void
   3116 iwn_watchdog(struct ifnet *ifp)
   3117 {
   3118 	struct iwn_softc *sc = ifp->if_softc;
   3119 
   3120 	ifp->if_timer = 0;
   3121 
   3122 	if (sc->sc_tx_timer > 0) {
   3123 		if (--sc->sc_tx_timer == 0) {
   3124 			aprint_error_dev(sc->sc_dev,
   3125 			    "device timeout\n");
   3126 			ifp->if_flags &= ~IFF_UP;
   3127 			iwn_stop(ifp, 1);
   3128 			ifp->if_oerrors++;
   3129 			return;
   3130 		}
   3131 		ifp->if_timer = 1;
   3132 	}
   3133 
   3134 	ieee80211_watchdog(&sc->sc_ic);
   3135 }
   3136 
   3137 static int
   3138 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3139 {
   3140 	struct iwn_softc *sc = ifp->if_softc;
   3141 	struct ieee80211com *ic = &sc->sc_ic;
   3142 	struct ifaddr *ifa;
   3143 	const struct sockaddr *sa;
   3144 	int s, error = 0;
   3145 
   3146 	s = splnet();
   3147 
   3148 	switch (cmd) {
   3149 	case SIOCSIFADDR:
   3150 		ifa = (struct ifaddr *)data;
   3151 		ifp->if_flags |= IFF_UP;
   3152 #ifdef INET
   3153 		if (ifa->ifa_addr->sa_family == AF_INET)
   3154 			arp_ifinit(&ic->ic_ac, ifa);
   3155 #endif
   3156 		/* FALLTHROUGH */
   3157 	case SIOCSIFFLAGS:
   3158 		/* XXX Added as it is in every NetBSD driver */
   3159 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3160 			break;
   3161 		if (ifp->if_flags & IFF_UP) {
   3162 			if (!(ifp->if_flags & IFF_RUNNING))
   3163 				error = iwn_init(ifp);
   3164 		} else {
   3165 			if (ifp->if_flags & IFF_RUNNING)
   3166 				iwn_stop(ifp, 1);
   3167 		}
   3168 		break;
   3169 
   3170 	case SIOCADDMULTI:
   3171 	case SIOCDELMULTI:
   3172 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3173 		error = (cmd == SIOCADDMULTI) ?
   3174 		    ether_addmulti(sa, &sc->sc_ec) :
   3175 		    ether_delmulti(sa, &sc->sc_ec);
   3176 
   3177 		if (error == ENETRESET)
   3178 			error = 0;
   3179 		break;
   3180 
   3181 	default:
   3182 		error = ieee80211_ioctl(ic, cmd, data);
   3183 	}
   3184 
   3185 	if (error == ENETRESET) {
   3186 		error = 0;
   3187 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3188 		    (IFF_UP | IFF_RUNNING)) {
   3189 			iwn_stop(ifp, 0);
   3190 			error = iwn_init(ifp);
   3191 		}
   3192 	}
   3193 	splx(s);
   3194 	return error;
   3195 }
   3196 
   3197 /*
   3198  * Send a command to the firmware.
   3199  */
   3200 static int
   3201 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3202 {
   3203 	struct iwn_tx_ring *ring = &sc->txq[4];
   3204 	struct iwn_tx_desc *desc;
   3205 	struct iwn_tx_data *data;
   3206 	struct iwn_tx_cmd *cmd;
   3207 	struct mbuf *m;
   3208 	bus_addr_t paddr;
   3209 	int totlen, error;
   3210 
   3211 	desc = &ring->desc[ring->cur];
   3212 	data = &ring->data[ring->cur];
   3213 	totlen = 4 + size;
   3214 
   3215 	if (size > sizeof cmd->data) {
   3216 		/* Command is too large to fit in a descriptor. */
   3217 		if (totlen > MCLBYTES)
   3218 			return EINVAL;
   3219 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3220 		if (m == NULL)
   3221 			return ENOMEM;
   3222 		if (totlen > MHLEN) {
   3223 			MCLGET(m, M_DONTWAIT);
   3224 			if (!(m->m_flags & M_EXT)) {
   3225 				m_freem(m);
   3226 				return ENOMEM;
   3227 			}
   3228 		}
   3229 		cmd = mtod(m, struct iwn_tx_cmd *);
   3230 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3231 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3232 		if (error != 0) {
   3233 			m_freem(m);
   3234 			return error;
   3235 		}
   3236 		data->m = m;
   3237 		paddr = data->map->dm_segs[0].ds_addr;
   3238 	} else {
   3239 		cmd = &ring->cmd[ring->cur];
   3240 		paddr = data->cmd_paddr;
   3241 	}
   3242 
   3243 	cmd->code = code;
   3244 	cmd->flags = 0;
   3245 	cmd->qid = ring->qid;
   3246 	cmd->idx = ring->cur;
   3247 	memcpy(cmd->data, buf, size);
   3248 
   3249 	desc->nsegs = 1;
   3250 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3251 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3252 
   3253 	if (size > sizeof cmd->data) {
   3254 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3255 		    BUS_DMASYNC_PREWRITE);
   3256 	} else {
   3257 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3258 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3259 		    totlen, BUS_DMASYNC_PREWRITE);
   3260 	}
   3261 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3262 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3263 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3264 
   3265 #ifdef notyet
   3266 	/* Update TX scheduler. */
   3267 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3268 #endif
   3269 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3270 
   3271 	/* Kick command ring. */
   3272 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3273 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3274 
   3275 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3276 }
   3277 
   3278 static int
   3279 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3280 {
   3281 	struct iwn4965_node_info hnode;
   3282 	char *src, *dst;
   3283 
   3284 	/*
   3285 	 * We use the node structure for 5000 Series internally (it is
   3286 	 * a superset of the one for 4965AGN). We thus copy the common
   3287 	 * fields before sending the command.
   3288 	 */
   3289 	src = (char *)node;
   3290 	dst = (char *)&hnode;
   3291 	memcpy(dst, src, 48);
   3292 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3293 	memcpy(dst + 48, src + 72, 20);
   3294 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3295 }
   3296 
   3297 static int
   3298 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3299 {
   3300 	/* Direct mapping. */
   3301 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3302 }
   3303 
   3304 static int
   3305 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3306 {
   3307 	struct iwn_node *wn = (void *)ni;
   3308 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3309 	struct iwn_cmd_link_quality linkq;
   3310 	const struct iwn_rate *rinfo;
   3311 	uint8_t txant;
   3312 	int i, txrate;
   3313 
   3314 	/* Use the first valid TX antenna. */
   3315 	txant = IWN_LSB(sc->txchainmask);
   3316 
   3317 	memset(&linkq, 0, sizeof linkq);
   3318 	linkq.id = wn->id;
   3319 	linkq.antmsk_1stream = txant;
   3320 	linkq.antmsk_2stream = IWN_ANT_AB;
   3321 	linkq.ampdu_max = 31;
   3322 	linkq.ampdu_threshold = 3;
   3323 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3324 
   3325 	/* Start at highest available bit-rate. */
   3326 	txrate = rs->rs_nrates - 1;
   3327 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3328 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3329 		linkq.retry[i].plcp = rinfo->plcp;
   3330 		linkq.retry[i].rflags = rinfo->flags;
   3331 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3332 		/* Next retry at immediate lower bit-rate. */
   3333 		if (txrate > 0)
   3334 			txrate--;
   3335 	}
   3336 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3337 }
   3338 
   3339 /*
   3340  * Broadcast node is used to send group-addressed and management frames.
   3341  */
   3342 static int
   3343 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3344 {
   3345 	const struct iwn_hal *hal = sc->sc_hal;
   3346 	struct iwn_node_info node;
   3347 	struct iwn_cmd_link_quality linkq;
   3348 	const struct iwn_rate *rinfo;
   3349 	uint8_t txant;
   3350 	int i, error;
   3351 
   3352 	memset(&node, 0, sizeof node);
   3353 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3354 	node.id = hal->broadcast_id;
   3355 	DPRINTF(("adding broadcast node\n"));
   3356 	if ((error = hal->add_node(sc, &node, async)) != 0)
   3357 		return error;
   3358 
   3359 	/* Use the first valid TX antenna. */
   3360 	txant = IWN_LSB(sc->txchainmask);
   3361 
   3362 	memset(&linkq, 0, sizeof linkq);
   3363 	linkq.id = hal->broadcast_id;
   3364 	linkq.antmsk_1stream = txant;
   3365 	linkq.antmsk_2stream = IWN_ANT_AB;
   3366 	linkq.ampdu_max = 64;
   3367 	linkq.ampdu_threshold = 3;
   3368 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3369 
   3370 	/* Use lowest mandatory bit-rate. */
   3371 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3372 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3373 	linkq.retry[0].plcp = rinfo->plcp;
   3374 	linkq.retry[0].rflags = rinfo->flags;
   3375 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3376 	/* Use same bit-rate for all TX retries. */
   3377 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3378 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3379 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3380 	}
   3381 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3382 }
   3383 
   3384 static void
   3385 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3386 {
   3387 	struct iwn_cmd_led led;
   3388 
   3389 	/* Clear microcode LED ownership. */
   3390 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3391 
   3392 	led.which = which;
   3393 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3394 	led.off = off;
   3395 	led.on = on;
   3396 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3397 }
   3398 
   3399 /*
   3400  * Set the critical temperature at which the firmware will stop the radio
   3401  * and notify us.
   3402  */
   3403 static int
   3404 iwn_set_critical_temp(struct iwn_softc *sc)
   3405 {
   3406 	struct iwn_critical_temp crit;
   3407 	int32_t temp;
   3408 
   3409 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3410 
   3411 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3412 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3413 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3414 		temp = IWN_CTOK(110);
   3415 	else
   3416 		temp = 110;
   3417 	memset(&crit, 0, sizeof crit);
   3418 	crit.tempR = htole32(temp);
   3419 	DPRINTF(("setting critical temperature to %d\n", temp));
   3420 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3421 }
   3422 
   3423 static int
   3424 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3425 {
   3426 	struct iwn_cmd_timing cmd;
   3427 	uint64_t val, mod;
   3428 
   3429 	memset(&cmd, 0, sizeof cmd);
   3430 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3431 	cmd.bintval = htole16(ni->ni_intval);
   3432 	cmd.lintval = htole16(10);
   3433 
   3434 	/* Compute remaining time until next beacon. */
   3435 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3436 	mod = le64toh(cmd.tstamp) % val;
   3437 	cmd.binitval = htole32((uint32_t)(val - mod));
   3438 
   3439 	DPRINTF(("timing bintval=%u, tstamp=%zu, init=%u\n",
   3440 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3441 
   3442 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3443 }
   3444 
   3445 static void
   3446 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3447 {
   3448 	/* Adjust TX power if need be (delta >= 3 degC.) */
   3449 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3450 	if (abs(temp - sc->temp) >= 3) {
   3451 		/* Record temperature of last calibration. */
   3452 		sc->temp = temp;
   3453 		(void)iwn4965_set_txpower(sc, 1);
   3454 	}
   3455 }
   3456 
   3457 /*
   3458  * Set TX power for current channel (each rate has its own power settings).
   3459  * This function takes into account the regulatory information from EEPROM,
   3460  * the current temperature and the current voltage.
   3461  */
   3462 static int
   3463 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3464 {
   3465 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3466 #define fdivround(a, b, n)	\
   3467 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3468 /* Linear interpolation. */
   3469 #define interpolate(x, x1, y1, x2, y2, n)	\
   3470 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3471 
   3472 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3473 	struct ieee80211com *ic = &sc->sc_ic;
   3474 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3475 	struct ieee80211_channel *ch;
   3476 	struct iwn4965_cmd_txpower cmd;
   3477 	struct iwn4965_eeprom_chan_samples *chans;
   3478 	const uint8_t *rf_gain, *dsp_gain;
   3479 	int32_t vdiff, tdiff;
   3480 	int i, c, grp, maxpwr;
   3481 	uint8_t chan;
   3482 
   3483 	/* Retrieve current channel from last RXON. */
   3484 	chan = sc->rxon.chan;
   3485 	DPRINTF(("setting TX power for channel %d\n", chan));
   3486 	ch = &ic->ic_channels[chan];
   3487 
   3488 	memset(&cmd, 0, sizeof cmd);
   3489 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3490 	cmd.chan = chan;
   3491 
   3492 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3493 		maxpwr   = sc->maxpwr5GHz;
   3494 		rf_gain  = iwn4965_rf_gain_5ghz;
   3495 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3496 	} else {
   3497 		maxpwr   = sc->maxpwr2GHz;
   3498 		rf_gain  = iwn4965_rf_gain_2ghz;
   3499 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3500 	}
   3501 
   3502 	/* Compute voltage compensation. */
   3503 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3504 	if (vdiff > 0)
   3505 		vdiff *= 2;
   3506 	if (abs(vdiff) > 2)
   3507 		vdiff = 0;
   3508 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3509 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3510 
   3511 	/* Get channel attenuation group. */
   3512 	if (chan <= 20)		/* 1-20 */
   3513 		grp = 4;
   3514 	else if (chan <= 43)	/* 34-43 */
   3515 		grp = 0;
   3516 	else if (chan <= 70)	/* 44-70 */
   3517 		grp = 1;
   3518 	else if (chan <= 124)	/* 71-124 */
   3519 		grp = 2;
   3520 	else			/* 125-200 */
   3521 		grp = 3;
   3522 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3523 
   3524 	/* Get channel sub-band. */
   3525 	for (i = 0; i < IWN_NBANDS; i++)
   3526 		if (sc->bands[i].lo != 0 &&
   3527 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3528 			break;
   3529 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3530 		return EINVAL;
   3531 	chans = sc->bands[i].chans;
   3532 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3533 
   3534 	for (c = 0; c < 2; c++) {
   3535 		uint8_t power, gain, temp;
   3536 		int maxchpwr, pwr, ridx, idx;
   3537 
   3538 		power = interpolate(chan,
   3539 		    chans[0].num, chans[0].samples[c][1].power,
   3540 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3541 		gain  = interpolate(chan,
   3542 		    chans[0].num, chans[0].samples[c][1].gain,
   3543 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3544 		temp  = interpolate(chan,
   3545 		    chans[0].num, chans[0].samples[c][1].temp,
   3546 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3547 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3548 		    c, power, gain, temp));
   3549 
   3550 		/* Compute temperature compensation. */
   3551 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3552 		DPRINTF(("temperature compensation=%d (current=%d, "
   3553 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3554 
   3555 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3556 			/* Convert dBm to half-dBm. */
   3557 			maxchpwr = sc->maxpwr[chan] * 2;
   3558 			if ((ridx / 8) & 1)
   3559 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3560 
   3561 			pwr = maxpwr;
   3562 
   3563 			/* Adjust TX power based on rate. */
   3564 			if ((ridx % 8) == 5)
   3565 				pwr -= 15;	/* OFDM48: -7.5dB */
   3566 			else if ((ridx % 8) == 6)
   3567 				pwr -= 17;	/* OFDM54: -8.5dB */
   3568 			else if ((ridx % 8) == 7)
   3569 				pwr -= 20;	/* OFDM60: -10dB */
   3570 			else
   3571 				pwr -= 10;	/* Others: -5dB */
   3572 
   3573 			/* Do not exceed channel max TX power. */
   3574 			if (pwr > maxchpwr)
   3575 				pwr = maxchpwr;
   3576 
   3577 			idx = gain - (pwr - power) - tdiff - vdiff;
   3578 			if ((ridx / 8) & 1)	/* MIMO */
   3579 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3580 
   3581 			if (cmd.band == 0)
   3582 				idx += 9;	/* 5GHz */
   3583 			if (ridx == IWN_RIDX_MAX)
   3584 				idx += 5;	/* CCK */
   3585 
   3586 			/* Make sure idx stays in a valid range. */
   3587 			if (idx < 0)
   3588 				idx = 0;
   3589 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3590 				idx = IWN4965_MAX_PWR_INDEX;
   3591 
   3592 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3593 			    c, ridx, idx));
   3594 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3595 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3596 		}
   3597 	}
   3598 
   3599 	DPRINTF(("setting TX power for chan %d\n", chan));
   3600 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3601 
   3602 #undef interpolate
   3603 #undef fdivround
   3604 }
   3605 
   3606 static int
   3607 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3608 {
   3609 	struct iwn5000_cmd_txpower cmd;
   3610 
   3611 	/*
   3612 	 * TX power calibration is handled automatically by the firmware
   3613 	 * for 5000 Series.
   3614 	 */
   3615 	memset(&cmd, 0, sizeof cmd);
   3616 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3617 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3618 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3619 	DPRINTF(("setting TX power\n"));
   3620 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
   3621 }
   3622 
   3623 /*
   3624  * Retrieve the maximum RSSI (in dBm) among receivers.
   3625  */
   3626 static int
   3627 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3628 {
   3629 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3630 	uint8_t mask, agc;
   3631 	int rssi;
   3632 
   3633 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3634 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3635 
   3636 	rssi = 0;
   3637 	if (mask & IWN_ANT_A)
   3638 		rssi = MAX(rssi, phy->rssi[0]);
   3639 	if (mask & IWN_ANT_B)
   3640 		rssi = MAX(rssi, phy->rssi[2]);
   3641 	if (mask & IWN_ANT_C)
   3642 		rssi = MAX(rssi, phy->rssi[4]);
   3643 
   3644 	return rssi - agc - IWN_RSSI_TO_DBM;
   3645 }
   3646 
   3647 static int
   3648 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3649 {
   3650 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3651 	uint8_t agc;
   3652 	int rssi;
   3653 
   3654 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3655 
   3656 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3657 		   le16toh(phy->rssi[1]) & 0xff);
   3658 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3659 
   3660 	return rssi - agc - IWN_RSSI_TO_DBM;
   3661 }
   3662 
   3663 /*
   3664  * Retrieve the average noise (in dBm) among receivers.
   3665  */
   3666 static int
   3667 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3668 {
   3669 	int i, total, nbant, noise;
   3670 
   3671 	total = nbant = 0;
   3672 	for (i = 0; i < 3; i++) {
   3673 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3674 			continue;
   3675 		total += noise;
   3676 		nbant++;
   3677 	}
   3678 	/* There should be at least one antenna but check anyway. */
   3679 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3680 }
   3681 
   3682 /*
   3683  * Compute temperature (in degC) from last received statistics.
   3684  */
   3685 static int
   3686 iwn4965_get_temperature(struct iwn_softc *sc)
   3687 {
   3688 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3689 	int32_t r1, r2, r3, r4, temp;
   3690 
   3691 	r1 = le32toh(uc->temp[0].chan20MHz);
   3692 	r2 = le32toh(uc->temp[1].chan20MHz);
   3693 	r3 = le32toh(uc->temp[2].chan20MHz);
   3694 	r4 = le32toh(sc->rawtemp);
   3695 
   3696 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
   3697 		return 0;
   3698 
   3699 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3700 	r4 = (r4 << 8) >> 8;
   3701 	/* Compute temperature in Kelvin. */
   3702 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3703 	temp = (temp * 97) / 100 + 8;
   3704 
   3705 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3706 	return IWN_KTOC(temp);
   3707 }
   3708 
   3709 static int
   3710 iwn5000_get_temperature(struct iwn_softc *sc)
   3711 {
   3712 	int32_t temp;
   3713 
   3714 	/*
   3715 	 * Temperature is not used by the driver for 5000 Series because
   3716 	 * TX power calibration is handled by firmware.  We export it to
   3717 	 * users through the sensor framework though.
   3718 	 */
   3719 	temp = le32toh(sc->rawtemp);
   3720 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3721 		temp = (temp / -5) + sc->temp_off;
   3722 		temp = IWN_KTOC(temp);
   3723 	}
   3724 	return temp;
   3725 }
   3726 
   3727 /*
   3728  * Initialize sensitivity calibration state machine.
   3729  */
   3730 static int
   3731 iwn_init_sensitivity(struct iwn_softc *sc)
   3732 {
   3733 	const struct iwn_hal *hal = sc->sc_hal;
   3734 	struct iwn_calib_state *calib = &sc->calib;
   3735 	uint32_t flags;
   3736 	int error;
   3737 
   3738 	/* Reset calibration state machine. */
   3739 	memset(calib, 0, sizeof (*calib));
   3740 	calib->state = IWN_CALIB_STATE_INIT;
   3741 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3742 	/* Set initial correlation values. */
   3743 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3744 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3745 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3746 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3747 	calib->cck_x4      = 125;
   3748 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3749 	calib->energy_cck  = sc->limits->energy_cck;
   3750 
   3751 	/* Write initial sensitivity. */
   3752 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3753 		return error;
   3754 
   3755 	/* Write initial gains. */
   3756 	if ((error = hal->init_gains(sc)) != 0)
   3757 		return error;
   3758 
   3759 	/* Request statistics at each beacon interval. */
   3760 	flags = 0;
   3761 	DPRINTF(("sending request for statistics\n"));
   3762 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3763 }
   3764 
   3765 /*
   3766  * Collect noise and RSSI statistics for the first 20 beacons received
   3767  * after association and use them to determine connected antennas and
   3768  * to set differential gains.
   3769  */
   3770 static void
   3771 iwn_collect_noise(struct iwn_softc *sc,
   3772     const struct iwn_rx_general_stats *stats)
   3773 {
   3774 	const struct iwn_hal *hal = sc->sc_hal;
   3775 	struct iwn_calib_state *calib = &sc->calib;
   3776 	uint32_t val;
   3777 	int i;
   3778 
   3779 	/* Accumulate RSSI and noise for all 3 antennas. */
   3780 	for (i = 0; i < 3; i++) {
   3781 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3782 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3783 	}
   3784 	/* NB: We update differential gains only once after 20 beacons. */
   3785 	if (++calib->nbeacons < 20)
   3786 		return;
   3787 
   3788 	/* Determine highest average RSSI. */
   3789 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3790 	val = MAX(calib->rssi[2], val);
   3791 
   3792 	/* Determine which antennas are connected. */
   3793 	sc->chainmask = sc->rxchainmask;
   3794 	for (i = 0; i < 3; i++)
   3795 		if (val - calib->rssi[i] > 15 * 20)
   3796 			sc->chainmask &= ~(1 << i);
   3797 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   3798 	    sc->rxchainmask, sc->chainmask));
   3799 
   3800 	/* If none of the TX antennas are connected, keep at least one. */
   3801 	if ((sc->chainmask & sc->txchainmask) == 0)
   3802 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   3803 
   3804 	(void)hal->set_gains(sc);
   3805 	calib->state = IWN_CALIB_STATE_RUN;
   3806 
   3807 #ifdef notyet
   3808 	/* XXX Disable RX chains with no antennas connected. */
   3809 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   3810 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
   3811 #endif
   3812 
   3813 	/* Enable power-saving mode if requested by user. */
   3814 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3815 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3816 }
   3817 
   3818 static int
   3819 iwn4965_init_gains(struct iwn_softc *sc)
   3820 {
   3821 	struct iwn_phy_calib_gain cmd;
   3822 
   3823 	memset(&cmd, 0, sizeof cmd);
   3824 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3825 	/* Differential gains initially set to 0 for all 3 antennas. */
   3826 	DPRINTF(("setting initial differential gains\n"));
   3827 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3828 }
   3829 
   3830 static int
   3831 iwn5000_init_gains(struct iwn_softc *sc)
   3832 {
   3833 	struct iwn_phy_calib cmd;
   3834 
   3835 	memset(&cmd, 0, sizeof cmd);
   3836 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   3837 	cmd.ngroups = 1;
   3838 	cmd.isvalid = 1;
   3839 	DPRINTF(("setting initial differential gains\n"));
   3840 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3841 }
   3842 
   3843 static int
   3844 iwn4965_set_gains(struct iwn_softc *sc)
   3845 {
   3846 	struct iwn_calib_state *calib = &sc->calib;
   3847 	struct iwn_phy_calib_gain cmd;
   3848 	int i, delta, noise;
   3849 
   3850 	/* Get minimal noise among connected antennas. */
   3851 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   3852 	for (i = 0; i < 3; i++)
   3853 		if (sc->chainmask & (1 << i))
   3854 			noise = MIN(calib->noise[i], noise);
   3855 
   3856 	memset(&cmd, 0, sizeof cmd);
   3857 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3858 	/* Set differential gains for connected antennas. */
   3859 	for (i = 0; i < 3; i++) {
   3860 		if (sc->chainmask & (1 << i)) {
   3861 			/* Compute attenuation (in unit of 1.5dB). */
   3862 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   3863 			/* NB: delta <= 0 */
   3864 			/* Limit to [-4.5dB,0]. */
   3865 			cmd.gain[i] = MIN(abs(delta), 3);
   3866 			if (delta < 0)
   3867 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   3868 		}
   3869 	}
   3870 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   3871 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   3872 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3873 }
   3874 
   3875 static int
   3876 iwn5000_set_gains(struct iwn_softc *sc)
   3877 {
   3878 	struct iwn_calib_state *calib = &sc->calib;
   3879 	struct iwn_phy_calib_gain cmd;
   3880 	int i, ant, div, delta;
   3881 
   3882 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   3883 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   3884 
   3885 	memset(&cmd, 0, sizeof cmd);
   3886 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
   3887 	cmd.ngroups = 1;
   3888 	cmd.isvalid = 1;
   3889 	/* Get first available RX antenna as referential. */
   3890 	ant = IWN_LSB(sc->rxchainmask);
   3891 	/* Set differential gains for other antennas. */
   3892 	for (i = ant + 1; i < 3; i++) {
   3893 		if (sc->chainmask & (1 << i)) {
   3894 			/* The delta is relative to antenna "ant". */
   3895 			delta = ((int32_t)calib->noise[ant] -
   3896 			    (int32_t)calib->noise[i]) / div;
   3897 			/* Limit to [-4.5dB,+4.5dB]. */
   3898 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   3899 			if (delta < 0)
   3900 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   3901 		}
   3902 	}
   3903 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   3904 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   3905 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3906 }
   3907 
   3908 /*
   3909  * Tune RF RX sensitivity based on the number of false alarms detected
   3910  * during the last beacon period.
   3911  */
   3912 static void
   3913 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   3914 {
   3915 #define inc(val, inc, max)			\
   3916 	if ((val) < (max)) {			\
   3917 		if ((val) < (max) - (inc))	\
   3918 			(val) += (inc);		\
   3919 		else				\
   3920 			(val) = (max);		\
   3921 		needs_update = 1;		\
   3922 	}
   3923 #define dec(val, dec, min)			\
   3924 	if ((val) > (min)) {			\
   3925 		if ((val) > (min) + (dec))	\
   3926 			(val) -= (dec);		\
   3927 		else				\
   3928 			(val) = (min);		\
   3929 		needs_update = 1;		\
   3930 	}
   3931 
   3932 	const struct iwn_sensitivity_limits *limits = sc->limits;
   3933 	struct iwn_calib_state *calib = &sc->calib;
   3934 	uint32_t val, rxena, fa;
   3935 	uint32_t energy[3], energy_min;
   3936 	uint8_t noise[3], noise_ref;
   3937 	int i, needs_update = 0;
   3938 
   3939 	/* Check that we've been enabled long enough. */
   3940 	if ((rxena = le32toh(stats->general.load)) == 0)
   3941 		return;
   3942 
   3943 	/* Compute number of false alarms since last call for OFDM. */
   3944 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   3945 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   3946 	fa *= 200 * 1024;	/* 200TU */
   3947 
   3948 	/* Save counters values for next call. */
   3949 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   3950 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   3951 
   3952 	if (fa > 50 * rxena) {
   3953 		/* High false alarm count, decrease sensitivity. */
   3954 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   3955 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   3956 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   3957 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   3958 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   3959 
   3960 	} else if (fa < 5 * rxena) {
   3961 		/* Low false alarm count, increase sensitivity. */
   3962 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   3963 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   3964 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   3965 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   3966 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   3967 	}
   3968 
   3969 	/* Compute maximum noise among 3 receivers. */
   3970 	for (i = 0; i < 3; i++)
   3971 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   3972 	val = MAX(noise[0], noise[1]);
   3973 	val = MAX(noise[2], val);
   3974 	/* Insert it into our samples table. */
   3975 	calib->noise_samples[calib->cur_noise_sample] = val;
   3976 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   3977 
   3978 	/* Compute maximum noise among last 20 samples. */
   3979 	noise_ref = calib->noise_samples[0];
   3980 	for (i = 1; i < 20; i++)
   3981 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   3982 
   3983 	/* Compute maximum energy among 3 receivers. */
   3984 	for (i = 0; i < 3; i++)
   3985 		energy[i] = le32toh(stats->general.energy[i]);
   3986 	val = MIN(energy[0], energy[1]);
   3987 	val = MIN(energy[2], val);
   3988 	/* Insert it into our samples table. */
   3989 	calib->energy_samples[calib->cur_energy_sample] = val;
   3990 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   3991 
   3992 	/* Compute minimum energy among last 10 samples. */
   3993 	energy_min = calib->energy_samples[0];
   3994 	for (i = 1; i < 10; i++)
   3995 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   3996 	energy_min += 6;
   3997 
   3998 	/* Compute number of false alarms since last call for CCK. */
   3999 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   4000 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   4001 	fa *= 200 * 1024;	/* 200TU */
   4002 
   4003 	/* Save counters values for next call. */
   4004 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   4005 	calib->fa_cck = le32toh(stats->cck.fa);
   4006 
   4007 	if (fa > 50 * rxena) {
   4008 		/* High false alarm count, decrease sensitivity. */
   4009 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   4010 		calib->cck_state = IWN_CCK_STATE_HIFA;
   4011 		calib->low_fa = 0;
   4012 
   4013 		if (calib->cck_x4 > 160) {
   4014 			calib->noise_ref = noise_ref;
   4015 			if (calib->energy_cck > 2)
   4016 				dec(calib->energy_cck, 2, energy_min);
   4017 		}
   4018 		if (calib->cck_x4 < 160) {
   4019 			calib->cck_x4 = 161;
   4020 			needs_update = 1;
   4021 		} else
   4022 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   4023 
   4024 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   4025 
   4026 	} else if (fa < 5 * rxena) {
   4027 		/* Low false alarm count, increase sensitivity. */
   4028 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   4029 		calib->cck_state = IWN_CCK_STATE_LOFA;
   4030 		calib->low_fa++;
   4031 
   4032 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   4033 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   4034 		     calib->low_fa > 100)) {
   4035 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   4036 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   4037 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   4038 		}
   4039 	} else {
   4040 		/* Not worth to increase or decrease sensitivity. */
   4041 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   4042 		calib->low_fa = 0;
   4043 		calib->noise_ref = noise_ref;
   4044 
   4045 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4046 			/* Previous interval had many false alarms. */
   4047 			dec(calib->energy_cck, 8, energy_min);
   4048 		}
   4049 		calib->cck_state = IWN_CCK_STATE_INIT;
   4050 	}
   4051 
   4052 	if (needs_update)
   4053 		(void)iwn_send_sensitivity(sc);
   4054 #undef dec
   4055 #undef inc
   4056 }
   4057 
   4058 static int
   4059 iwn_send_sensitivity(struct iwn_softc *sc)
   4060 {
   4061 	struct iwn_calib_state *calib = &sc->calib;
   4062 	struct iwn_sensitivity_cmd cmd;
   4063 
   4064 	memset(&cmd, 0, sizeof cmd);
   4065 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4066 	/* OFDM modulation. */
   4067 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4068 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4069 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4070 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4071 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4072 	cmd.energy_ofdm_th   = htole16(62);
   4073 	/* CCK modulation. */
   4074 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4075 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4076 	cmd.energy_cck       = htole16(calib->energy_cck);
   4077 	/* Barker modulation: use default values. */
   4078 	cmd.corr_barker      = htole16(190);
   4079 	cmd.corr_barker_mrc  = htole16(390);
   4080 
   4081 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4082 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4083 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4084 	    calib->energy_cck));
   4085 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
   4086 }
   4087 
   4088 /*
   4089  * Set STA mode power saving level (between 0 and 5).
   4090  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4091  */
   4092 static int
   4093 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4094 {
   4095 	struct iwn_pmgt_cmd cmd;
   4096 	const struct iwn_pmgt *pmgt;
   4097 	uint32_t maxp, skip_dtim;
   4098 	pcireg_t reg;
   4099 	int i;
   4100 
   4101 	/* Select which PS parameters to use. */
   4102 	if (dtim <= 2)
   4103 		pmgt = &iwn_pmgt[0][level];
   4104 	else if (dtim <= 10)
   4105 		pmgt = &iwn_pmgt[1][level];
   4106 	else
   4107 		pmgt = &iwn_pmgt[2][level];
   4108 
   4109 	memset(&cmd, 0, sizeof cmd);
   4110 	if (level != 0)	/* not CAM */
   4111 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4112 	if (level == 5)
   4113 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4114 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4115 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4116 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   4117 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4118 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4119 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4120 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4121 
   4122 	if (dtim == 0) {
   4123 		dtim = 1;
   4124 		skip_dtim = 0;
   4125 	} else
   4126 		skip_dtim = pmgt->skip_dtim;
   4127 	if (skip_dtim != 0) {
   4128 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4129 		maxp = pmgt->intval[4];
   4130 		if (maxp == (uint32_t)-1)
   4131 			maxp = dtim * (skip_dtim + 1);
   4132 		else if (maxp > dtim)
   4133 			maxp = (maxp / dtim) * dtim;
   4134 	} else
   4135 		maxp = dtim;
   4136 	for (i = 0; i < 5; i++)
   4137 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4138 
   4139 	DPRINTF(("setting power saving level to %d\n", level));
   4140 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4141 }
   4142 
   4143 static int
   4144 iwn_config(struct iwn_softc *sc)
   4145 {
   4146 	const struct iwn_hal *hal = sc->sc_hal;
   4147 	struct ieee80211com *ic = &sc->sc_ic;
   4148 	struct ifnet *ifp = ic->ic_ifp;
   4149 	struct iwn_bluetooth bluetooth;
   4150 	uint32_t txmask;
   4151 	uint16_t rxchain;
   4152 	int error;
   4153 
   4154 	/* Configure valid TX chains for 5000 Series. */
   4155 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4156 		txmask = htole32(sc->txchainmask);
   4157 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4158 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4159 		    sizeof txmask, 0);
   4160 		if (error != 0) {
   4161 			aprint_error_dev(sc->sc_dev,
   4162 			    "could not configure valid TX chains\n");
   4163 			return error;
   4164 		}
   4165 	}
   4166 
   4167 	/* Configure bluetooth coexistence. */
   4168 	memset(&bluetooth, 0, sizeof bluetooth);
   4169 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
   4170 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4171 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4172 	DPRINTF(("configuring bluetooth coexistence\n"));
   4173 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4174 	if (error != 0) {
   4175 		aprint_error_dev(sc->sc_dev,
   4176 		    "could not configure bluetooth coexistence\n");
   4177 		return error;
   4178 	}
   4179 
   4180 	/* Set mode, channel, RX filter and enable RX. */
   4181 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4182 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4183 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4184 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4185 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4186 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4187 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4188 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4189 	switch (ic->ic_opmode) {
   4190 	case IEEE80211_M_STA:
   4191 		sc->rxon.mode = IWN_MODE_STA;
   4192 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4193 		break;
   4194 	case IEEE80211_M_MONITOR:
   4195 		sc->rxon.mode = IWN_MODE_MONITOR;
   4196 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4197 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4198 		break;
   4199 	default:
   4200 		/* Should not get there. */
   4201 		break;
   4202 	}
   4203 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4204 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4205 	sc->rxon.ht_single_mask = 0xff;
   4206 	sc->rxon.ht_dual_mask = 0xff;
   4207 	sc->rxon.ht_triple_mask = 0xff;
   4208 	rxchain =
   4209 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4210 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4211 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4212 	sc->rxon.rxchain = htole16(rxchain);
   4213 	DPRINTF(("setting configuration\n"));
   4214 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
   4215 	if (error != 0) {
   4216 		aprint_error_dev(sc->sc_dev,
   4217 		    "RXON command failed\n");
   4218 		return error;
   4219 	}
   4220 
   4221 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4222 		aprint_error_dev(sc->sc_dev,
   4223 		    "could not add broadcast node\n");
   4224 		return error;
   4225 	}
   4226 
   4227 	/* Configuration has changed, set TX power accordingly. */
   4228 	if ((error = hal->set_txpower(sc, 0)) != 0) {
   4229 		aprint_error_dev(sc->sc_dev,
   4230 		    "could not set TX power\n");
   4231 		return error;
   4232 	}
   4233 
   4234 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4235 		aprint_error_dev(sc->sc_dev,
   4236 		    "could not set critical temperature\n");
   4237 		return error;
   4238 	}
   4239 
   4240 	/* Set power saving level to CAM during initialization. */
   4241 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4242 		aprint_error_dev(sc->sc_dev,
   4243 		    "could not set power saving level\n");
   4244 		return error;
   4245 	}
   4246 	return 0;
   4247 }
   4248 
   4249 static int
   4250 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4251 {
   4252 	struct ieee80211com *ic = &sc->sc_ic;
   4253 	struct iwn_scan_hdr *hdr;
   4254 	struct iwn_cmd_data *tx;
   4255 	struct iwn_scan_essid *essid;
   4256 	struct iwn_scan_chan *chan;
   4257 	struct ieee80211_frame *wh;
   4258 	struct ieee80211_rateset *rs;
   4259 	struct ieee80211_channel *c;
   4260 	uint8_t *buf, *frm;
   4261 	uint16_t rxchain;
   4262 	uint8_t txant;
   4263 	int buflen, error;
   4264 
   4265 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4266 	if (buf == NULL) {
   4267 		aprint_error_dev(sc->sc_dev,
   4268 		    "could not allocate buffer for scan command\n");
   4269 		return ENOMEM;
   4270 	}
   4271 	hdr = (struct iwn_scan_hdr *)buf;
   4272 	/*
   4273 	 * Move to the next channel if no frames are received within 10ms
   4274 	 * after sending the probe request.
   4275 	 */
   4276 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4277 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4278 
   4279 	/* Select antennas for scanning. */
   4280 	rxchain =
   4281 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4282 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4283 	    IWN_RXCHAIN_DRIVER_FORCE;
   4284 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4285 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4286 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4287 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4288 	} else	/* Use all available RX antennas. */
   4289 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4290 	hdr->rxchain = htole16(rxchain);
   4291 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4292 
   4293 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4294 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4295 	tx->id = sc->sc_hal->broadcast_id;
   4296 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4297 
   4298 	if (flags & IEEE80211_CHAN_5GHZ) {
   4299 		hdr->crc_threshold = htole16(1);
   4300 		/* Send probe requests at 6Mbps. */
   4301 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4302 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4303 	} else {
   4304 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4305 		/* Send probe requests at 1Mbps. */
   4306 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4307 		tx->rflags = IWN_RFLAG_CCK;
   4308 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4309 	}
   4310 	/* Use the first valid TX antenna. */
   4311 	txant = IWN_LSB(sc->txchainmask);
   4312 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4313 
   4314 	essid = (struct iwn_scan_essid *)(tx + 1);
   4315 	if (ic->ic_des_esslen != 0) {
   4316 		essid[0].id = IEEE80211_ELEMID_SSID;
   4317 		essid[0].len = ic->ic_des_esslen;
   4318 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4319 	}
   4320 	/*
   4321 	 * Build a probe request frame.  Most of the following code is a
   4322 	 * copy & paste of what is done in net80211.
   4323 	 */
   4324 	wh = (struct ieee80211_frame *)(essid + 20);
   4325 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4326 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4327 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4328 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4329 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4330 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4331 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4332 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4333 
   4334 	frm = (uint8_t *)(wh + 1);
   4335 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4336 	frm = ieee80211_add_rates(frm, rs);
   4337 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4338 		frm = ieee80211_add_xrates(frm, rs);
   4339 
   4340 	/* Set length of probe request. */
   4341 	tx->len = htole16(frm - (uint8_t *)wh);
   4342 
   4343 	chan = (struct iwn_scan_chan *)frm;
   4344 	for (c  = &ic->ic_channels[1];
   4345 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4346 		if ((c->ic_flags & flags) != flags)
   4347 			continue;
   4348 
   4349 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4350 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4351 		chan->flags = 0;
   4352 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4353 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4354 		if (ic->ic_des_esslen != 0)
   4355 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4356 		chan->dsp_gain = 0x6e;
   4357 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4358 			chan->rf_gain = 0x3b;
   4359 			chan->active  = htole16(24);
   4360 			chan->passive = htole16(110);
   4361 		} else {
   4362 			chan->rf_gain = 0x28;
   4363 			chan->active  = htole16(36);
   4364 			chan->passive = htole16(120);
   4365 		}
   4366 		hdr->nchan++;
   4367 		chan++;
   4368 	}
   4369 
   4370 	buflen = (uint8_t *)chan - buf;
   4371 	hdr->len = htole16(buflen);
   4372 
   4373 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4374 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4375 	free(buf, M_DEVBUF);
   4376 	return error;
   4377 }
   4378 
   4379 static int
   4380 iwn_auth(struct iwn_softc *sc)
   4381 {
   4382 	const struct iwn_hal *hal = sc->sc_hal;
   4383 	struct ieee80211com *ic = &sc->sc_ic;
   4384 	struct ieee80211_node *ni = ic->ic_bss;
   4385 	int error;
   4386 
   4387 	/* Update adapter configuration. */
   4388 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4389 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4390 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4391 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4392 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4393 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4394 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4395 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4396 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4397 	switch (ic->ic_curmode) {
   4398 	case IEEE80211_MODE_11A:
   4399 		sc->rxon.cck_mask  = 0;
   4400 		sc->rxon.ofdm_mask = 0x15;
   4401 		break;
   4402 	case IEEE80211_MODE_11B:
   4403 		sc->rxon.cck_mask  = 0x03;
   4404 		sc->rxon.ofdm_mask = 0;
   4405 		break;
   4406 	default:	/* Assume 802.11b/g. */
   4407 		sc->rxon.cck_mask  = 0x0f;
   4408 		sc->rxon.ofdm_mask = 0x15;
   4409 	}
   4410 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4411 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4412 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
   4413 	if (error != 0) {
   4414 		aprint_error_dev(sc->sc_dev,
   4415 		    "RXON command failed\n");
   4416 		return error;
   4417 	}
   4418 
   4419 	/* Configuration has changed, set TX power accordingly. */
   4420 	if ((error = hal->set_txpower(sc, 1)) != 0) {
   4421 		aprint_error_dev(sc->sc_dev,
   4422 		    "could not set TX power\n");
   4423 		return error;
   4424 	}
   4425 	/*
   4426 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4427 	 * add the broadcast node again.
   4428 	 */
   4429 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4430 		aprint_error_dev(sc->sc_dev,
   4431 		    "could not add broadcast node\n");
   4432 		return error;
   4433 	}
   4434 	return 0;
   4435 }
   4436 
   4437 static int
   4438 iwn_run(struct iwn_softc *sc)
   4439 {
   4440 	const struct iwn_hal *hal = sc->sc_hal;
   4441 	struct ieee80211com *ic = &sc->sc_ic;
   4442 	struct ieee80211_node *ni = ic->ic_bss;
   4443 	struct iwn_node_info node;
   4444 	int error;
   4445 
   4446 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4447 		/* Link LED blinks while monitoring. */
   4448 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4449 		return 0;
   4450 	}
   4451 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4452 		aprint_error_dev(sc->sc_dev,
   4453 		    "could not set timing\n");
   4454 		return error;
   4455 	}
   4456 
   4457 	/* Update adapter configuration. */
   4458 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4459 	/* Short preamble and slot time are negotiated when associating. */
   4460 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4461 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4462 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4463 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4464 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4465 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4466 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4467 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
   4468 	if (error != 0) {
   4469 		aprint_error_dev(sc->sc_dev,
   4470 		    "could not update configuration\n");
   4471 		return error;
   4472 	}
   4473 
   4474 	/* Configuration has changed, set TX power accordingly. */
   4475 	if ((error = hal->set_txpower(sc, 1)) != 0) {
   4476 		aprint_error_dev(sc->sc_dev,
   4477 		    "could not set TX power\n");
   4478 		return error;
   4479 	}
   4480 
   4481 	/* Fake a join to initialize the TX rate. */
   4482 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4483 	iwn_newassoc(ni, 1);
   4484 
   4485 	/* Add BSS node. */
   4486 	memset(&node, 0, sizeof node);
   4487 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4488 	node.id = IWN_ID_BSS;
   4489 #ifdef notyet
   4490 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4491 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4492 #endif
   4493 	DPRINTF(("adding BSS node\n"));
   4494 	error = hal->add_node(sc, &node, 1);
   4495 	if (error != 0) {
   4496 		aprint_error_dev(sc->sc_dev,
   4497 		    "could not add BSS node\n");
   4498 		return error;
   4499 	}
   4500 	DPRINTF(("setting link quality for node %d\n", node.id));
   4501 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4502 		aprint_error_dev(sc->sc_dev,
   4503 		    "could not setup link quality for node %d\n", node.id);
   4504 		return error;
   4505 	}
   4506 
   4507 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4508 		aprint_error_dev(sc->sc_dev,
   4509 		    "could not set sensitivity\n");
   4510 		return error;
   4511 	}
   4512 	/* Start periodic calibration timer. */
   4513 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4514 	sc->calib_cnt = 0;
   4515 	callout_schedule(&sc->calib_to, hz/2);
   4516 
   4517 	/* Link LED always on while associated. */
   4518 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4519 	return 0;
   4520 }
   4521 
   4522 #ifdef IWN_HWCRYPTO
   4523 /*
   4524  * We support CCMP hardware encryption/decryption of unicast frames only.
   4525  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4526  */
   4527 static int
   4528 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4529     struct ieee80211_key *k)
   4530 {
   4531 	struct iwn_softc *sc = ic->ic_softc;
   4532 	const struct iwn_hal *hal = sc->sc_hal;
   4533 	struct iwn_node *wn = (void *)ni;
   4534 	struct iwn_node_info node;
   4535 	uint16_t kflags;
   4536 
   4537 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4538 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4539 		return ieee80211_set_key(ic, ni, k);
   4540 
   4541 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4542 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4543 		kflags |= IWN_KFLAG_GROUP;
   4544 
   4545 	memset(&node, 0, sizeof node);
   4546 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4547 	    hal->broadcast_id : wn->id;
   4548 	node.control = IWN_NODE_UPDATE;
   4549 	node.flags = IWN_FLAG_SET_KEY;
   4550 	node.kflags = htole16(kflags);
   4551 	node.kid = k->k_id;
   4552 	memcpy(node.key, k->k_key, k->k_len);
   4553 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   4554 	return hal->add_node(sc, &node, 1);
   4555 }
   4556 
   4557 static void
   4558 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4559     struct ieee80211_key *k)
   4560 {
   4561 	struct iwn_softc *sc = ic->ic_softc;
   4562 	const struct iwn_hal *hal = sc->sc_hal;
   4563 	struct iwn_node *wn = (void *)ni;
   4564 	struct iwn_node_info node;
   4565 
   4566 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4567 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   4568 		/* See comment about other ciphers above. */
   4569 		ieee80211_delete_key(ic, ni, k);
   4570 		return;
   4571 	}
   4572 	if (ic->ic_state != IEEE80211_S_RUN)
   4573 		return;	/* Nothing to do. */
   4574 	memset(&node, 0, sizeof node);
   4575 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4576 	    hal->broadcast_id : wn->id;
   4577 	node.control = IWN_NODE_UPDATE;
   4578 	node.flags = IWN_FLAG_SET_KEY;
   4579 	node.kflags = htole16(IWN_KFLAG_INVALID);
   4580 	node.kid = 0xff;
   4581 	DPRINTF(("delete keys for node %d\n", node.id));
   4582 	(void)hal->add_node(sc, &node, 1);
   4583 }
   4584 #endif
   4585 
   4586 /* XXX Added for NetBSD (copied from rev 1.39). */
   4587 
   4588 static int
   4589 iwn_wme_update(struct ieee80211com *ic)
   4590 {
   4591 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   4592 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   4593 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   4594 	const struct wmeParams *wmep;
   4595 	struct iwn_edca_params cmd;
   4596 	int ac;
   4597 
   4598 	/* don't override default WME values if WME is not actually enabled */
   4599 	if (!(ic->ic_flags & IEEE80211_F_WME))
   4600 		return 0;
   4601 	cmd.flags = 0;
   4602 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   4603 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   4604 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   4605 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   4606 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   4607 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   4608 
   4609 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   4610 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   4611 					cmd.ac[ac].cwmin,
   4612 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   4613 	}
   4614 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   4615 #undef IWN_USEC
   4616 #undef IWN_EXP2
   4617 }
   4618 
   4619 #ifndef IEEE80211_NO_HT
   4620 /*
   4621  * This function is called by upper layer when an ADDBA request is received
   4622  * from another STA and before the ADDBA response is sent.
   4623  */
   4624 static int
   4625 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4626     uint8_t tid)
   4627 {
   4628 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   4629 	struct iwn_softc *sc = ic->ic_softc;
   4630 	struct iwn_node *wn = (void *)ni;
   4631 	struct iwn_node_info node;
   4632 
   4633 	memset(&node, 0, sizeof node);
   4634 	node.id = wn->id;
   4635 	node.control = IWN_NODE_UPDATE;
   4636 	node.flags = IWN_FLAG_SET_ADDBA;
   4637 	node.addba_tid = tid;
   4638 	node.addba_ssn = htole16(ba->ba_winstart);
   4639 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   4640 	    ba->ba_winstart));
   4641 	return sc->sc_hal->add_node(sc, &node, 1);
   4642 }
   4643 
   4644 /*
   4645  * This function is called by upper layer on teardown of an HT-immediate
   4646  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
   4647  */
   4648 static void
   4649 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4650     uint8_t tid)
   4651 {
   4652 	struct iwn_softc *sc = ic->ic_softc;
   4653 	struct iwn_node *wn = (void *)ni;
   4654 	struct iwn_node_info node;
   4655 
   4656 	memset(&node, 0, sizeof node);
   4657 	node.id = wn->id;
   4658 	node.control = IWN_NODE_UPDATE;
   4659 	node.flags = IWN_FLAG_SET_DELBA;
   4660 	node.delba_tid = tid;
   4661 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   4662 	(void)sc->sc_hal->add_node(sc, &node, 1);
   4663 }
   4664 
   4665 /*
   4666  * This function is called by upper layer when an ADDBA response is received
   4667  * from another STA.
   4668  */
   4669 static int
   4670 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4671     uint8_t tid)
   4672 {
   4673 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4674 	struct iwn_softc *sc = ic->ic_softc;
   4675 	const struct iwn_hal *hal = sc->sc_hal;
   4676 	struct iwn_node *wn = (void *)ni;
   4677 	struct iwn_node_info node;
   4678 	int error;
   4679 
   4680 	/* Enable TX for the specified RA/TID. */
   4681 	wn->disable_tid &= ~(1 << tid);
   4682 	memset(&node, 0, sizeof node);
   4683 	node.id = wn->id;
   4684 	node.control = IWN_NODE_UPDATE;
   4685 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   4686 	node.disable_tid = htole16(wn->disable_tid);
   4687 	error = hal->add_node(sc, &node, 1);
   4688 	if (error != 0)
   4689 		return error;
   4690 
   4691 	if ((error = iwn_nic_lock(sc)) != 0)
   4692 		return error;
   4693 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   4694 	iwn_nic_unlock(sc);
   4695 	return 0;
   4696 }
   4697 
   4698 static void
   4699 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4700     uint8_t tid)
   4701 {
   4702 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4703 	struct iwn_softc *sc = ic->ic_softc;
   4704 
   4705 	if (iwn_nic_lock(sc) != 0)
   4706 		return;
   4707 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   4708 	iwn_nic_unlock(sc);
   4709 }
   4710 
   4711 static void
   4712 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4713     uint8_t tid, uint16_t ssn)
   4714 {
   4715 	struct iwn_node *wn = (void *)ni;
   4716 	int qid = 7 + tid;
   4717 
   4718 	/* Stop TX scheduler while we're changing its configuration. */
   4719 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4720 	    IWN4965_TXQ_STATUS_CHGACT);
   4721 
   4722 	/* Assign RA/TID translation to the queue. */
   4723 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   4724 	    wn->id << 4 | tid);
   4725 
   4726 	/* Enable chain-building mode for the queue. */
   4727 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   4728 
   4729 	/* Set starting sequence number from the ADDBA request. */
   4730 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4731 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4732 
   4733 	/* Set scheduler window size. */
   4734 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   4735 	    IWN_SCHED_WINSZ);
   4736 	/* Set scheduler frame limit. */
   4737 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4738 	    IWN_SCHED_LIMIT << 16);
   4739 
   4740 	/* Enable interrupts for the queue. */
   4741 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4742 
   4743 	/* Mark the queue as active. */
   4744 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4745 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   4746 	    iwn_tid2fifo[tid] << 1);
   4747 }
   4748 
   4749 static void
   4750 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4751 {
   4752 	int qid = 7 + tid;
   4753 
   4754 	/* Stop TX scheduler while we're changing its configuration. */
   4755 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4756 	    IWN4965_TXQ_STATUS_CHGACT);
   4757 
   4758 	/* Set starting sequence number from the ADDBA request. */
   4759 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4760 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4761 
   4762 	/* Disable interrupts for the queue. */
   4763 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4764 
   4765 	/* Mark the queue as inactive. */
   4766 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4767 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   4768 }
   4769 
   4770 static void
   4771 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4772     uint8_t tid, uint16_t ssn)
   4773 {
   4774 	struct iwn_node *wn = (void *)ni;
   4775 	int qid = 10 + tid;
   4776 
   4777 	/* Stop TX scheduler while we're changing its configuration. */
   4778 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4779 	    IWN5000_TXQ_STATUS_CHGACT);
   4780 
   4781 	/* Assign RA/TID translation to the queue. */
   4782 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   4783 	    wn->id << 4 | tid);
   4784 
   4785 	/* Enable chain-building mode for the queue. */
   4786 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   4787 
   4788 	/* Enable aggregation for the queue. */
   4789 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4790 
   4791 	/* Set starting sequence number from the ADDBA request. */
   4792 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4793 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4794 
   4795 	/* Set scheduler window size and frame limit. */
   4796 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   4797 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   4798 
   4799 	/* Enable interrupts for the queue. */
   4800 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4801 
   4802 	/* Mark the queue as active. */
   4803 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4804 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   4805 }
   4806 
   4807 static void
   4808 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4809 {
   4810 	int qid = 10 + tid;
   4811 
   4812 	/* Stop TX scheduler while we're changing its configuration. */
   4813 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4814 	    IWN5000_TXQ_STATUS_CHGACT);
   4815 
   4816 	/* Disable aggregation for the queue. */
   4817 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4818 
   4819 	/* Set starting sequence number from the ADDBA request. */
   4820 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4821 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4822 
   4823 	/* Disable interrupts for the queue. */
   4824 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4825 
   4826 	/* Mark the queue as inactive. */
   4827 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4828 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   4829 }
   4830 #endif	/* !IEEE80211_NO_HT */
   4831 
   4832 /*
   4833  * Query calibration tables from the initialization firmware.  We do this
   4834  * only once at first boot.  Called from a process context.
   4835  */
   4836 static int
   4837 iwn5000_query_calibration(struct iwn_softc *sc)
   4838 {
   4839 	struct iwn5000_calib_config cmd;
   4840 	int error;
   4841 
   4842 	memset(&cmd, 0, sizeof cmd);
   4843 	cmd.ucode.once.enable = 0xffffffff;
   4844 	cmd.ucode.once.start  = 0xffffffff;
   4845 	cmd.ucode.once.send   = 0xffffffff;
   4846 	cmd.ucode.flags       = 0xffffffff;
   4847 	DPRINTF(("sending calibration query\n"));
   4848 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   4849 	if (error != 0)
   4850 		return error;
   4851 
   4852 	/* Wait at most two seconds for calibration to complete. */
   4853 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   4854 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   4855 	return error;
   4856 }
   4857 
   4858 /*
   4859  * Send calibration results to the runtime firmware.  These results were
   4860  * obtained on first boot from the initialization firmware.
   4861  */
   4862 static int
   4863 iwn5000_send_calibration(struct iwn_softc *sc)
   4864 {
   4865 	int idx, error;
   4866 
   4867 	for (idx = 0; idx < 5; idx++) {
   4868 		if (sc->calibcmd[idx].buf == NULL)
   4869 			continue;	/* No results available. */
   4870 		DPRINTF(("send calibration result idx=%d len=%d\n",
   4871 		    idx, sc->calibcmd[idx].len));
   4872 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   4873 		    sc->calibcmd[idx].len, 0);
   4874 		if (error != 0) {
   4875 			aprint_error_dev(sc->sc_dev,
   4876 			    "could not send calibration result\n");
   4877 			return error;
   4878 		}
   4879 	}
   4880 	return 0;
   4881 }
   4882 
   4883 static int
   4884 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   4885 {
   4886 	struct iwn5000_wimax_coex wimax;
   4887 
   4888 #ifdef notyet
   4889 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   4890 		/* Enable WiMAX coexistence for combo adapters. */
   4891 		wimax.flags =
   4892 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   4893 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   4894 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   4895 		    IWN_WIMAX_COEX_ENABLE;
   4896 		memcpy(wimax.events, iwn6050_wimax_events,
   4897 		    sizeof iwn6050_wimax_events);
   4898 	} else
   4899 #endif
   4900 	{
   4901 		/* Disable WiMAX coexistence. */
   4902 		wimax.flags = 0;
   4903 		memset(wimax.events, 0, sizeof wimax.events);
   4904 	}
   4905 	DPRINTF(("Configuring WiMAX coexistence\n"));
   4906 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   4907 }
   4908 
   4909 /*
   4910  * This function is called after the runtime firmware notifies us of its
   4911  * readiness (called in a process context.)
   4912  */
   4913 static int
   4914 iwn4965_post_alive(struct iwn_softc *sc)
   4915 {
   4916 	int error, qid;
   4917 
   4918 	if ((error = iwn_nic_lock(sc)) != 0)
   4919 		return error;
   4920 
   4921 	/* Clear TX scheduler state in SRAM. */
   4922 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   4923 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   4924 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   4925 
   4926 	/* Set physical address of TX scheduler rings (1KB aligned.) */
   4927 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   4928 
   4929 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   4930 
   4931 	/* Disable chain mode for all our 16 queues. */
   4932 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   4933 
   4934 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   4935 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   4936 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   4937 
   4938 		/* Set scheduler window size. */
   4939 		iwn_mem_write(sc, sc->sched_base +
   4940 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   4941 		/* Set scheduler frame limit. */
   4942 		iwn_mem_write(sc, sc->sched_base +
   4943 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4944 		    IWN_SCHED_LIMIT << 16);
   4945 	}
   4946 
   4947 	/* Enable interrupts for all our 16 queues. */
   4948 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   4949 	/* Identify TX FIFO rings (0-7). */
   4950 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   4951 
   4952 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   4953 	for (qid = 0; qid < 7; qid++) {
   4954 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   4955 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4956 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   4957 	}
   4958 	iwn_nic_unlock(sc);
   4959 	return 0;
   4960 }
   4961 
   4962 /*
   4963  * This function is called after the initialization or runtime firmware
   4964  * notifies us of its readiness (called in a process context.)
   4965  */
   4966 static int
   4967 iwn5000_post_alive(struct iwn_softc *sc)
   4968 {
   4969 	int error, qid;
   4970 
   4971 	/* Switch to using ICT interrupt mode. */
   4972 	iwn5000_ict_reset(sc);
   4973 
   4974 	if ((error = iwn_nic_lock(sc)) != 0)
   4975 		return error;
   4976 
   4977 	/* Clear TX scheduler state in SRAM. */
   4978 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   4979 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   4980 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   4981 
   4982 	/* Set physical address of TX scheduler rings (1KB aligned.) */
   4983 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   4984 
   4985 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   4986 
   4987 	/* Enable chain mode for all queues, except command queue. */
   4988 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   4989 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   4990 
   4991 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   4992 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   4993 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   4994 
   4995 		iwn_mem_write(sc, sc->sched_base +
   4996 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   4997 		/* Set scheduler window size and frame limit. */
   4998 		iwn_mem_write(sc, sc->sched_base +
   4999 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5000 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5001 	}
   5002 
   5003 	/* Enable interrupts for all our 20 queues. */
   5004 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   5005 	/* Identify TX FIFO rings (0-7). */
   5006 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   5007 
   5008 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5009 	for (qid = 0; qid < 7; qid++) {
   5010 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   5011 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5012 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   5013 	}
   5014 	iwn_nic_unlock(sc);
   5015 
   5016 	/* Configure WiMAX coexistence for combo adapters. */
   5017 	error = iwn5000_send_wimax_coex(sc);
   5018 	if (error != 0) {
   5019 		aprint_error_dev(sc->sc_dev,
   5020 		    "could not configure WiMAX coexistence\n");
   5021 		return error;
   5022 	}
   5023 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5024 		struct iwn5000_phy_calib_crystal cmd;
   5025 
   5026 		/* Perform crystal calibration. */
   5027 		memset(&cmd, 0, sizeof cmd);
   5028 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5029 		cmd.ngroups = 1;
   5030 		cmd.isvalid = 1;
   5031 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5032 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5033 		DPRINTF(("sending crystal calibration %d, %d\n",
   5034 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5035 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5036 		if (error != 0) {
   5037 			aprint_error_dev(sc->sc_dev,
   5038 			    "crystal calibration failed\n");
   5039 			return error;
   5040 		}
   5041 	}
   5042 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5043 		/* Query calibration from the initialization firmware. */
   5044 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5045 			aprint_error_dev(sc->sc_dev,
   5046 			    "could not query calibration\n");
   5047 			return error;
   5048 		}
   5049 		/*
   5050 		 * We have the calibration results now, reboot with the
   5051 		 * runtime firmware (call ourselves recursively!)
   5052 		 */
   5053 		iwn_hw_stop(sc);
   5054 		error = iwn_hw_init(sc);
   5055 	} else {
   5056 		/* Send calibration results to runtime firmware. */
   5057 		error = iwn5000_send_calibration(sc);
   5058 	}
   5059 	return error;
   5060 }
   5061 
   5062 /*
   5063  * The firmware boot code is small and is intended to be copied directly into
   5064  * the NIC internal memory (no DMA transfer.)
   5065  */
   5066 static int
   5067 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5068 {
   5069 	int error, ntries;
   5070 
   5071 	size /= sizeof (uint32_t);
   5072 
   5073 	if ((error = iwn_nic_lock(sc)) != 0)
   5074 		return error;
   5075 
   5076 	/* Copy microcode image into NIC memory. */
   5077 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5078 	    (const uint32_t *)ucode, size);
   5079 
   5080 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5081 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5082 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5083 
   5084 	/* Start boot load now. */
   5085 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5086 
   5087 	/* Wait for transfer to complete. */
   5088 	for (ntries = 0; ntries < 1000; ntries++) {
   5089 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5090 		    IWN_BSM_WR_CTRL_START))
   5091 			break;
   5092 		DELAY(10);
   5093 	}
   5094 	if (ntries == 1000) {
   5095 		aprint_error_dev(sc->sc_dev,
   5096 		    "could not load boot firmware\n");
   5097 		iwn_nic_unlock(sc);
   5098 		return ETIMEDOUT;
   5099 	}
   5100 
   5101 	/* Enable boot after power up. */
   5102 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5103 
   5104 	iwn_nic_unlock(sc);
   5105 	return 0;
   5106 }
   5107 
   5108 static int
   5109 iwn4965_load_firmware(struct iwn_softc *sc)
   5110 {
   5111 	struct iwn_fw_info *fw = &sc->fw;
   5112 	struct iwn_dma_info *dma = &sc->fw_dma;
   5113 	int error;
   5114 
   5115 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5116 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5117 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5118 	    BUS_DMASYNC_PREWRITE);
   5119 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5120 	    fw->init.text, fw->init.textsz);
   5121 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5122 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5123 
   5124 	/* Tell adapter where to find initialization sections. */
   5125 	if ((error = iwn_nic_lock(sc)) != 0)
   5126 		return error;
   5127 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5128 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5129 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5130 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5131 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5132 	iwn_nic_unlock(sc);
   5133 
   5134 	/* Load firmware boot code. */
   5135 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5136 	if (error != 0) {
   5137 		aprint_error_dev(sc->sc_dev,
   5138 		    "could not load boot firmware\n");
   5139 		return error;
   5140 	}
   5141 	/* Now press "execute". */
   5142 	IWN_WRITE(sc, IWN_RESET, 0);
   5143 
   5144 	/* Wait at most one second for first alive notification. */
   5145 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5146 		aprint_error_dev(sc->sc_dev,
   5147 		    "timeout waiting for adapter to initialize\n");
   5148 		return error;
   5149 	}
   5150 
   5151 	/* Retrieve current temperature for initial TX power calibration. */
   5152 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5153 	sc->temp = iwn4965_get_temperature(sc);
   5154 
   5155 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5156 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5157 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5158 	    BUS_DMASYNC_PREWRITE);
   5159 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5160 	    fw->main.text, fw->main.textsz);
   5161 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5162 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5163 
   5164 	/* Tell adapter where to find runtime sections. */
   5165 	if ((error = iwn_nic_lock(sc)) != 0)
   5166 		return error;
   5167 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5168 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5169 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5170 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5171 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5172 	    IWN_FW_UPDATED | fw->main.textsz);
   5173 	iwn_nic_unlock(sc);
   5174 
   5175 	return 0;
   5176 }
   5177 
   5178 static int
   5179 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5180     const uint8_t *section, int size)
   5181 {
   5182 	struct iwn_dma_info *dma = &sc->fw_dma;
   5183 	int error;
   5184 
   5185 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5186 	memcpy(dma->vaddr, section, size);
   5187 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5188 
   5189 	if ((error = iwn_nic_lock(sc)) != 0)
   5190 		return error;
   5191 
   5192 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5193 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5194 
   5195 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5196 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5197 	    IWN_LOADDR(dma->paddr));
   5198 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5199 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5200 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5201 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5202 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5203 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5204 
   5205 	/* Kick Flow Handler to start DMA transfer. */
   5206 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5207 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5208 
   5209 	iwn_nic_unlock(sc);
   5210 
   5211 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5212 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5213 }
   5214 
   5215 static int
   5216 iwn5000_load_firmware(struct iwn_softc *sc)
   5217 {
   5218 	struct iwn_fw_part *fw;
   5219 	int error;
   5220 
   5221 	/* Load the initialization firmware on first boot only. */
   5222 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5223 	    &sc->fw.main : &sc->fw.init;
   5224 
   5225 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5226 	    fw->text, fw->textsz);
   5227 	if (error != 0) {
   5228 		aprint_error_dev(sc->sc_dev,
   5229 		    "could not load firmware %s section\n", ".text");
   5230 		return error;
   5231 	}
   5232 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5233 	    fw->data, fw->datasz);
   5234 	if (error != 0) {
   5235 		aprint_error_dev(sc->sc_dev,
   5236 		    "could not load firmware %s section\n", ".data");
   5237 		return error;
   5238 	}
   5239 
   5240 	/* Now press "execute". */
   5241 	IWN_WRITE(sc, IWN_RESET, 0);
   5242 	return 0;
   5243 }
   5244 
   5245 static int
   5246 iwn_read_firmware(struct iwn_softc *sc)
   5247 {
   5248 	const struct iwn_hal *hal = sc->sc_hal;
   5249 	struct iwn_fw_info *fw = &sc->fw;
   5250 	firmware_handle_t fwh;
   5251 	const uint32_t *ptr;
   5252 	uint32_t rev;
   5253 	size_t size;
   5254 	int error;
   5255 
   5256 	/* Initialize for error returns */
   5257 	fw->data = NULL;
   5258 	fw->datasz = 0;
   5259 
   5260 	/* Open firmware image. */
   5261 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5262 		aprint_error_dev(sc->sc_dev,
   5263 		    "could not get firmware handle %s\n", sc->fwname);
   5264 		return error;
   5265 	}
   5266 	size = firmware_get_size(fwh);
   5267 	if (size < 28) {
   5268 		aprint_error_dev(sc->sc_dev,
   5269 		    "truncated firmware header: %zu bytes\n", size);
   5270 		firmware_close(fwh);
   5271 		return EINVAL;
   5272 	}
   5273 
   5274 	/* Read the firmware. */
   5275 	fw->data = firmware_malloc(size);
   5276 	if (fw->data == NULL) {
   5277 		aprint_error_dev(sc->sc_dev,
   5278 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5279 		firmware_close(fwh);
   5280 		return ENOMEM;
   5281 	}
   5282 	error = firmware_read(fwh, 0, fw->data, size);
   5283 	firmware_close(fwh);
   5284 	fw->datasz = size;
   5285 	if (error != 0) {
   5286 		aprint_error_dev(sc->sc_dev,
   5287 		    "could not read firmware %s\n", sc->fwname);
   5288 		goto out;
   5289 	}
   5290 
   5291 	/* Process firmware header. */
   5292 	ptr = (const uint32_t *)fw->data;
   5293 	rev = le32toh(*ptr++);
   5294 	/* Check firmware API version. */
   5295 	if (IWN_FW_API(rev) <= 1) {
   5296 		aprint_error_dev(sc->sc_dev,
   5297 		    "bad firmware, need API version >=2\n");
   5298 		goto out;
   5299 	}
   5300 	if (IWN_FW_API(rev) >= 3) {
   5301 		/* Skip build number (version 2 header). */
   5302 		size -= 4;
   5303 		ptr++;
   5304 	}
   5305 	fw->main.textsz = le32toh(*ptr++);
   5306 	fw->main.datasz = le32toh(*ptr++);
   5307 	fw->init.textsz = le32toh(*ptr++);
   5308 	fw->init.datasz = le32toh(*ptr++);
   5309 	fw->boot.textsz = le32toh(*ptr++);
   5310 	size -= 24;
   5311 
   5312 	/* Sanity-check firmware header. */
   5313 	if (fw->main.textsz > hal->fw_text_maxsz ||
   5314 	    fw->main.datasz > hal->fw_data_maxsz ||
   5315 	    fw->init.textsz > hal->fw_text_maxsz ||
   5316 	    fw->init.datasz > hal->fw_data_maxsz ||
   5317 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5318 	    (fw->boot.textsz & 3) != 0) {
   5319 		aprint_error_dev(sc->sc_dev,
   5320 		    "invalid firmware header\n");
   5321 		goto out;
   5322 	}
   5323 
   5324 	/* Check that all firmware sections fit. */
   5325 	if (fw->main.textsz + fw->main.datasz + fw->init.textsz +
   5326 	    fw->init.datasz + fw->boot.textsz > size) {
   5327 		aprint_error_dev(sc->sc_dev,
   5328 		    "firmware file too short: %zu bytes\n", size);
   5329 		goto out;
   5330 	}
   5331 
   5332 	/* Get pointers to firmware sections. */
   5333 	fw->main.text = (const uint8_t *)ptr;
   5334 	fw->main.data = fw->main.text + fw->main.textsz;
   5335 	fw->init.text = fw->main.data + fw->main.datasz;
   5336 	fw->init.data = fw->init.text + fw->init.textsz;
   5337 	fw->boot.text = fw->init.data + fw->init.datasz;
   5338 
   5339 	return 0;
   5340 out:
   5341 	firmware_free(fw->data, fw->datasz);
   5342 	fw->data = NULL;
   5343 	fw->datasz = 0;
   5344 	return error ? error : EINVAL;
   5345 }
   5346 
   5347 static int
   5348 iwn_clock_wait(struct iwn_softc *sc)
   5349 {
   5350 	int ntries;
   5351 
   5352 	/* Set "initialization complete" bit. */
   5353 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5354 
   5355 	/* Wait for clock stabilization. */
   5356 	for (ntries = 0; ntries < 2500; ntries++) {
   5357 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5358 			return 0;
   5359 		DELAY(10);
   5360 	}
   5361 	aprint_error_dev(sc->sc_dev,
   5362 	    "timeout waiting for clock stabilization\n");
   5363 	return ETIMEDOUT;
   5364 }
   5365 
   5366 static int
   5367 iwn_apm_init(struct iwn_softc *sc)
   5368 {
   5369 	pcireg_t reg;
   5370 	int error;
   5371 
   5372 	/* Disable L0s exit timer (NMI bug workaround.) */
   5373 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   5374 	/* Don't wait for ICH L0s (ICH bug workaround.) */
   5375 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   5376 
   5377 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
   5378 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   5379 
   5380 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   5381 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   5382 
   5383 	/* Retrieve PCIe Active State Power Management (ASPM). */
   5384 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   5385 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   5386 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   5387 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   5388 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5389 	else
   5390 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5391 
   5392 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   5393 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   5394 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   5395 
   5396 	/* Wait for clock stabilization before accessing prph. */
   5397 	if ((error = iwn_clock_wait(sc)) != 0)
   5398 		return error;
   5399 
   5400 	if ((error = iwn_nic_lock(sc)) != 0)
   5401 		return error;
   5402 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   5403 		/* Enable DMA and BSM (Bootstrap State Machine.) */
   5404 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5405 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   5406 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   5407 	} else {
   5408 		/* Enable DMA. */
   5409 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5410 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5411 	}
   5412 	DELAY(20);
   5413 	/* Disable L1-Active. */
   5414 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   5415 	iwn_nic_unlock(sc);
   5416 
   5417 	return 0;
   5418 }
   5419 
   5420 static void
   5421 iwn_apm_stop_master(struct iwn_softc *sc)
   5422 {
   5423 	int ntries;
   5424 
   5425 	/* Stop busmaster DMA activity. */
   5426 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   5427 	for (ntries = 0; ntries < 100; ntries++) {
   5428 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   5429 			return;
   5430 		DELAY(10);
   5431 	}
   5432 	aprint_error_dev(sc->sc_dev,
   5433 	    "timeout waiting for master\n");
   5434 }
   5435 
   5436 static void
   5437 iwn_apm_stop(struct iwn_softc *sc)
   5438 {
   5439 	iwn_apm_stop_master(sc);
   5440 
   5441 	/* Reset the entire device. */
   5442 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   5443 	DELAY(10);
   5444 	/* Clear "initialization complete" bit. */
   5445 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5446 }
   5447 
   5448 static int
   5449 iwn4965_nic_config(struct iwn_softc *sc)
   5450 {
   5451 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   5452 		/*
   5453 		 * I don't believe this to be correct but this is what the
   5454 		 * vendor driver is doing. Probably the bits should not be
   5455 		 * shifted in IWN_RFCFG_*.
   5456 		 */
   5457 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5458 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5459 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5460 		    IWN_RFCFG_DASH(sc->rfcfg));
   5461 	}
   5462 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5463 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5464 	return 0;
   5465 }
   5466 
   5467 static int
   5468 iwn5000_nic_config(struct iwn_softc *sc)
   5469 {
   5470 	uint32_t tmp;
   5471 	int error;
   5472 
   5473 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   5474 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5475 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5476 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5477 		    IWN_RFCFG_DASH(sc->rfcfg));
   5478 	}
   5479 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5480 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5481 
   5482 	if ((error = iwn_nic_lock(sc)) != 0)
   5483 		return error;
   5484 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   5485 
   5486 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   5487 		/*
   5488 		 * Select first Switching Voltage Regulator (1.32V) to
   5489 		 * solve a stability issue related to noisy DC2DC line
   5490 		 * in the silicon of 1000 Series.
   5491 		 */
   5492 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   5493 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   5494 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   5495 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   5496 	}
   5497 	iwn_nic_unlock(sc);
   5498 
   5499 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   5500 		/* Use internal power amplifier only. */
   5501 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   5502 	}
   5503 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
   5504 		/* Indicate that ROM calibration version is >=6. */
   5505 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   5506 	}
   5507 	return 0;
   5508 }
   5509 
   5510 /*
   5511  * Take NIC ownership over Intel Active Management Technology (AMT).
   5512  */
   5513 static int
   5514 iwn_hw_prepare(struct iwn_softc *sc)
   5515 {
   5516 	int ntries;
   5517 
   5518 	/* Check if hardware is ready. */
   5519 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5520 	for (ntries = 0; ntries < 5; ntries++) {
   5521 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5522 		    IWN_HW_IF_CONFIG_NIC_READY)
   5523 			return 0;
   5524 		DELAY(10);
   5525 	}
   5526 
   5527 	/* Hardware not ready, force into ready state. */
   5528 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   5529 	for (ntries = 0; ntries < 15000; ntries++) {
   5530 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5531 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   5532 			break;
   5533 		DELAY(10);
   5534 	}
   5535 	if (ntries == 15000)
   5536 		return ETIMEDOUT;
   5537 
   5538 	/* Hardware should be ready now. */
   5539 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5540 	for (ntries = 0; ntries < 5; ntries++) {
   5541 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5542 		    IWN_HW_IF_CONFIG_NIC_READY)
   5543 			return 0;
   5544 		DELAY(10);
   5545 	}
   5546 	return ETIMEDOUT;
   5547 }
   5548 
   5549 static int
   5550 iwn_hw_init(struct iwn_softc *sc)
   5551 {
   5552 	const struct iwn_hal *hal = sc->sc_hal;
   5553 	int error, chnl, qid;
   5554 
   5555 	/* Clear pending interrupts. */
   5556 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5557 
   5558 	if ((error = iwn_apm_init(sc)) != 0) {
   5559 		aprint_error_dev(sc->sc_dev,
   5560 		    "could not power ON adapter\n");
   5561 		return error;
   5562 	}
   5563 
   5564 	/* Select VMAIN power source. */
   5565 	if ((error = iwn_nic_lock(sc)) != 0)
   5566 		return error;
   5567 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   5568 	iwn_nic_unlock(sc);
   5569 
   5570 	/* Perform adapter-specific initialization. */
   5571 	if ((error = hal->nic_config(sc)) != 0)
   5572 		return error;
   5573 
   5574 	/* Initialize RX ring. */
   5575 	if ((error = iwn_nic_lock(sc)) != 0)
   5576 		return error;
   5577 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   5578 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   5579 	/* Set physical address of RX ring (256-byte aligned.) */
   5580 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   5581 	/* Set physical address of RX status (16-byte aligned.) */
   5582 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   5583 	/* Enable RX. */
   5584 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   5585 	    IWN_FH_RX_CONFIG_ENA           |
   5586 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   5587 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   5588 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   5589 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   5590 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   5591 	iwn_nic_unlock(sc);
   5592 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   5593 
   5594 	if ((error = iwn_nic_lock(sc)) != 0)
   5595 		return error;
   5596 
   5597 	/* Initialize TX scheduler. */
   5598 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
   5599 
   5600 	/* Set physical address of "keep warm" page (16-byte aligned.) */
   5601 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   5602 
   5603 	/* Initialize TX rings. */
   5604 	for (qid = 0; qid < hal->ntxqs; qid++) {
   5605 		struct iwn_tx_ring *txq = &sc->txq[qid];
   5606 
   5607 		/* Set physical address of TX ring (256-byte aligned.) */
   5608 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   5609 		    txq->desc_dma.paddr >> 8);
   5610 	}
   5611 	iwn_nic_unlock(sc);
   5612 
   5613 	/* Enable DMA channels. */
   5614 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
   5615 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   5616 		    IWN_FH_TX_CONFIG_DMA_ENA |
   5617 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   5618 	}
   5619 
   5620 	/* Clear "radio off" and "commands blocked" bits. */
   5621 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5622 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   5623 
   5624 	/* Clear pending interrupts. */
   5625 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5626 	/* Enable interrupt coalescing. */
   5627 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   5628 	/* Enable interrupts. */
   5629 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   5630 
   5631 	/* _Really_ make sure "radio off" bit is cleared! */
   5632 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5633 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5634 
   5635 	if ((error = hal->load_firmware(sc)) != 0) {
   5636 		aprint_error_dev(sc->sc_dev,
   5637 		    "could not load firmware\n");
   5638 		return error;
   5639 	}
   5640 	/* Wait at most one second for firmware alive notification. */
   5641 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5642 		aprint_error_dev(sc->sc_dev,
   5643 		    "timeout waiting for adapter to initialize\n");
   5644 		return error;
   5645 	}
   5646 	/* Do post-firmware initialization. */
   5647 	return hal->post_alive(sc);
   5648 }
   5649 
   5650 static void
   5651 iwn_hw_stop(struct iwn_softc *sc)
   5652 {
   5653 	const struct iwn_hal *hal = sc->sc_hal;
   5654 	int chnl, qid, ntries;
   5655 	uint32_t tmp;
   5656 
   5657 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   5658 
   5659 	/* Disable interrupts. */
   5660 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   5661 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5662 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   5663 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5664 
   5665 	/* Make sure we no longer hold the NIC lock. */
   5666 	iwn_nic_unlock(sc);
   5667 
   5668 	/* Stop TX scheduler. */
   5669 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
   5670 
   5671 	/* Stop all DMA channels. */
   5672 	if (iwn_nic_lock(sc) == 0) {
   5673 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
   5674 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   5675 			for (ntries = 0; ntries < 200; ntries++) {
   5676 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
   5677 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
   5678 				    IWN_FH_TX_STATUS_IDLE(chnl))
   5679 					break;
   5680 				DELAY(10);
   5681 			}
   5682 		}
   5683 		iwn_nic_unlock(sc);
   5684 	}
   5685 
   5686 	/* Stop RX ring. */
   5687 	iwn_reset_rx_ring(sc, &sc->rxq);
   5688 
   5689 	/* Reset all TX rings. */
   5690 	for (qid = 0; qid < hal->ntxqs; qid++)
   5691 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   5692 
   5693 	if (iwn_nic_lock(sc) == 0) {
   5694 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   5695 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5696 		iwn_nic_unlock(sc);
   5697 	}
   5698 	DELAY(5);
   5699 	/* Power OFF adapter. */
   5700 	iwn_apm_stop(sc);
   5701 }
   5702 
   5703 static int
   5704 iwn_init(struct ifnet *ifp)
   5705 {
   5706 	struct iwn_softc *sc = ifp->if_softc;
   5707 	struct ieee80211com *ic = &sc->sc_ic;
   5708 	int error;
   5709 
   5710 	if ((error = iwn_hw_prepare(sc)) != 0) {
   5711 		aprint_error_dev(sc->sc_dev,
   5712 		    "hardware not ready\n");
   5713 		goto fail;
   5714 	}
   5715 
   5716 	/* Check that the radio is not disabled by hardware switch. */
   5717 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   5718 		aprint_error_dev(sc->sc_dev,
   5719 		    "radio is disabled by hardware switch\n");
   5720 		error = EPERM;	/* :-) */
   5721 		goto fail;
   5722 	}
   5723 
   5724 	/* Read firmware images from the filesystem. */
   5725 	if ((error = iwn_read_firmware(sc)) != 0) {
   5726 		aprint_error_dev(sc->sc_dev,
   5727 		    "could not read firmware\n");
   5728 		goto fail;
   5729 	}
   5730 
   5731 	/* Initialize interrupt mask to default value. */
   5732 	sc->int_mask = IWN_INT_MASK_DEF;
   5733 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5734 
   5735 	/* Initialize hardware and upload firmware. */
   5736 	KASSERT(sc->fw.data != NULL && sc->fw.datasz > 0);
   5737 	error = iwn_hw_init(sc);
   5738 	firmware_free(sc->fw.data, sc->fw.datasz);
   5739 	sc->fw.data = NULL;
   5740 	sc->fw.datasz = 0;
   5741 	if (error != 0) {
   5742 		aprint_error_dev(sc->sc_dev,
   5743 		    "could not initialize hardware\n");
   5744 		goto fail;
   5745 	}
   5746 
   5747 	/* Configure adapter now that it is ready. */
   5748 	if ((error = iwn_config(sc)) != 0) {
   5749 		aprint_error_dev(sc->sc_dev,
   5750 		    "could not configure device\n");
   5751 		goto fail;
   5752 	}
   5753 
   5754 	ifp->if_flags &= ~IFF_OACTIVE;
   5755 	ifp->if_flags |= IFF_RUNNING;
   5756 
   5757 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   5758 		ieee80211_begin_scan(ic, 0);
   5759 	else
   5760 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   5761 
   5762 	return 0;
   5763 
   5764 fail:	iwn_stop(ifp, 1);
   5765 	return error;
   5766 }
   5767 
   5768 static void
   5769 iwn_stop(struct ifnet *ifp, int disable)
   5770 {
   5771 	struct iwn_softc *sc = ifp->if_softc;
   5772 	struct ieee80211com *ic = &sc->sc_ic;
   5773 
   5774 	ifp->if_timer = sc->sc_tx_timer = 0;
   5775 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5776 
   5777 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   5778 
   5779 	/* Power OFF hardware. */
   5780 	iwn_hw_stop(sc);
   5781 
   5782 #ifndef SMALL_KERNEL
   5783 	/* Temperature sensor is no longer valid. */
   5784 	sc->sc_sensor.value_cur = 0;
   5785 	sc->sc_sensor.state = ENVSYS_SINVALID;
   5786 #endif
   5787 }
   5788 
   5789 /*
   5790  * XXX MCLGETI alternative
   5791  *
   5792  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   5793  * as long as there are available free buffers then it uses MEXTMALLOC.,
   5794  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   5795  * The MCLGET4K code is used for testing an alternative mbuf cache.
   5796  */
   5797 
   5798 static struct mbuf *
   5799 MCLGETIalt(struct iwn_softc *sc, int how,
   5800     struct ifnet *ifp __unused, u_int size)
   5801 {
   5802 	struct mbuf *m;
   5803 #ifdef IWN_USE_RBUF
   5804 	struct iwn_rbuf *rbuf;
   5805 #endif
   5806 
   5807 	MGETHDR(m, how, MT_DATA);
   5808 	if (m == NULL)
   5809 		return NULL;
   5810 
   5811 #ifdef IWN_USE_RBUF
   5812 	if (sc->rxq.nb_free_entries > 0 &&
   5813 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   5814 		/* Attach buffer to mbuf header. */
   5815 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   5816 		m->m_flags |= M_EXT_RW;
   5817 	}
   5818 	else {
   5819 		MEXTMALLOC(m, size, how);
   5820 		if ((m->m_flags & M_EXT) == 0) {
   5821 			m_freem(m);
   5822 			return NULL;
   5823 		}
   5824 	}
   5825 
   5826 #else
   5827 #ifdef MCLGET4K
   5828 	if (size == 4096)
   5829 		MCLGET4K(m, how);
   5830 	else
   5831 		panic("size must be 4k");
   5832 #else
   5833 	MEXTMALLOC(m, size, how);
   5834 #endif
   5835 	if ((m->m_flags & M_EXT) == 0) {
   5836 		m_freem(m);
   5837 		return NULL;
   5838 	}
   5839 #endif
   5840 
   5841 	return m;
   5842 }
   5843 
   5844 #ifdef IWN_USE_RBUF
   5845 static struct iwn_rbuf *
   5846 iwn_alloc_rbuf(struct iwn_softc *sc)
   5847 {
   5848 	struct iwn_rbuf *rbuf;
   5849 	mutex_enter(&sc->rxq.freelist_mtx);
   5850 
   5851 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   5852 	if (rbuf != NULL) {
   5853 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   5854 		sc->rxq.nb_free_entries --;
   5855 	}
   5856 	mutex_exit(&sc->rxq.freelist_mtx);
   5857 	return rbuf;
   5858 }
   5859 
   5860 /*
   5861  * This is called automatically by the network stack when the mbuf to which
   5862  * our RX buffer is attached is freed.
   5863  */
   5864 static void
   5865 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   5866 {
   5867 	struct iwn_rbuf *rbuf = arg;
   5868 	struct iwn_softc *sc = rbuf->sc;
   5869 
   5870 	/* Put the RX buffer back in the free list. */
   5871 	mutex_enter(&sc->rxq.freelist_mtx);
   5872 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   5873 	mutex_exit(&sc->rxq.freelist_mtx);
   5874 
   5875 	sc->rxq.nb_free_entries ++;
   5876 	if (__predict_true(m != NULL))
   5877 		pool_cache_put(mb_cache, m);
   5878 }
   5879 
   5880 static int
   5881 iwn_alloc_rpool(struct iwn_softc *sc)
   5882 {
   5883 	struct iwn_rx_ring *ring = &sc->rxq;
   5884 	struct iwn_rbuf *rbuf;
   5885 	int i, error;
   5886 
   5887 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   5888 
   5889 	/* Allocate a big chunk of DMA'able memory... */
   5890 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   5891 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   5892 	if (error != 0) {
   5893 		aprint_error_dev(sc->sc_dev,
   5894 		    "could not allocate RX buffers DMA memory\n");
   5895 		return error;
   5896 	}
   5897 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   5898 	SLIST_INIT(&ring->freelist);
   5899 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   5900 		rbuf = &ring->rbuf[i];
   5901 
   5902 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   5903 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   5904 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   5905 
   5906 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   5907 	}
   5908 	ring->nb_free_entries = IWN_RBUF_COUNT;
   5909 	return 0;
   5910 }
   5911 
   5912 static void
   5913 iwn_free_rpool(struct iwn_softc *sc)
   5914 {
   5915 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   5916 }
   5917 #endif
   5918 
   5919 /*
   5920  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
   5921  * Copyright (c) 2001 Atsushi Onoe
   5922  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
   5923  * Copyright (c) 2007-2009 Damien Bergamini
   5924  * All rights reserved.
   5925  */
   5926 
   5927 /*
   5928  * Add an SSID element to a frame (see 7.3.2.1).
   5929  */
   5930 static u_int8_t *
   5931 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
   5932 {
   5933 	*frm++ = IEEE80211_ELEMID_SSID;
   5934 	*frm++ = len;
   5935 	memcpy(frm, ssid, len);
   5936 	return frm + len;
   5937 }
   5938 
   5939 /*
   5940  * Add a supported rates element to a frame (see 7.3.2.2).
   5941  */
   5942 static u_int8_t *
   5943 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   5944 {
   5945 	int nrates;
   5946 
   5947 	*frm++ = IEEE80211_ELEMID_RATES;
   5948 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
   5949 	*frm++ = nrates;
   5950 	memcpy(frm, rs->rs_rates, nrates);
   5951 	return frm + nrates;
   5952 }
   5953 
   5954 /*
   5955  * Add an extended supported rates element to a frame (see 7.3.2.14).
   5956  */
   5957 static u_int8_t *
   5958 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   5959 {
   5960 	int nrates;
   5961 
   5962 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
   5963 
   5964 	*frm++ = IEEE80211_ELEMID_XRATES;
   5965 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   5966 	*frm++ = nrates;
   5967 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   5968 	return frm + nrates;
   5969 }
   5970 
   5971 /*
   5972  * XXX: Hack to set the current channel to the value advertised in beacons or
   5973  * probe responses. Only used during AP detection.
   5974  * XXX: Duplicated from if_iwi.c
   5975  */
   5976 static void
   5977 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
   5978 {
   5979 	struct ieee80211_frame *wh;
   5980 	uint8_t subtype;
   5981 	uint8_t *frm, *efrm;
   5982 
   5983 	wh = mtod(m, struct ieee80211_frame *);
   5984 
   5985 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   5986 		return;
   5987 
   5988 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   5989 
   5990 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   5991 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   5992 		return;
   5993 
   5994 	frm = (uint8_t *)(wh + 1);
   5995 	efrm = mtod(m, uint8_t *) + m->m_len;
   5996 
   5997 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   5998 	while (frm < efrm) {
   5999 		if (*frm == IEEE80211_ELEMID_DSPARMS)
   6000 #if IEEE80211_CHAN_MAX < 255
   6001 		if (frm[2] <= IEEE80211_CHAN_MAX)
   6002 #endif
   6003 			ic->ic_curchan = &ic->ic_channels[frm[2]];
   6004 
   6005 		frm += frm[1] + 2;
   6006 	}
   6007 }
   6008 
   6009