if_iwn.c revision 1.37.2.3 1 /* $NetBSD: if_iwn.c,v 1.37.2.3 2011/03/05 20:53:41 rmind Exp $ */
2 /* $OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $ */
3
4 /*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.37.2.3 2011/03/05 20:53:41 rmind Exp $");
26
27 #define IWN_USE_RBUF /* Use local storage for RX */
28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */
29
30 /* XXX Avoid sensor code (correct option for NetBSD too?) */
31 #undef SMALL_KERNEL
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/proc.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45
46 #include <dev/sysmon/sysmonvar.h>
47
48 #include <machine/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #include <dev/firmload.h>
74
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77
78 static const pci_product_id_t iwn_devices[] = {
79 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
80 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
81 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
82 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
83 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
84 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
85 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
86 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
87 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
88 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
89 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
90 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
91 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
92 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
93 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
94 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
95 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
96 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
97 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
98 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
99 #ifdef notyet
100 /*
101 * XXX NetBSD: the 6005A replaces the two 6005, above
102 * (see OpenBSD rev 1.96).
103 */
104 PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_1,
105 PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_2,
106 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_1,
107 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_2,
108 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_1,
109 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_2,
110 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_3
111 #endif
112 };
113
114 /*
115 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
116 */
117 static const struct ieee80211_rateset iwn_rateset_11a =
118 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
119
120 static const struct ieee80211_rateset iwn_rateset_11b =
121 { 4, { 2, 4, 11, 22 } };
122
123 static const struct ieee80211_rateset iwn_rateset_11g =
124 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
125
126 static int iwn_match(device_t , struct cfdata *, void *);
127 static void iwn_attach(device_t , device_t , void *);
128 const struct iwn_hal *iwn_hal_attach(struct iwn_softc *, pci_product_id_t pid);
129 #ifndef SMALL_KERNEL
130 static void iwn_sensor_attach(struct iwn_softc *);
131 #endif
132 static void iwn_radiotap_attach(struct iwn_softc *);
133 static int iwn_detach(device_t , int);
134 #if 0
135 static void iwn_power(int, void *);
136 #endif
137 static bool iwn_resume(device_t, const pmf_qual_t *);
138 static int iwn_nic_lock(struct iwn_softc *);
139 static int iwn_eeprom_lock(struct iwn_softc *);
140 static int iwn_init_otprom(struct iwn_softc *);
141 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
142 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
143 void **, bus_size_t, bus_size_t);
144 static void iwn_dma_contig_free(struct iwn_dma_info *);
145 static int iwn_alloc_sched(struct iwn_softc *);
146 static void iwn_free_sched(struct iwn_softc *);
147 static int iwn_alloc_kw(struct iwn_softc *);
148 static void iwn_free_kw(struct iwn_softc *);
149 static int iwn_alloc_ict(struct iwn_softc *);
150 static void iwn_free_ict(struct iwn_softc *);
151 static int iwn_alloc_fwmem(struct iwn_softc *);
152 static void iwn_free_fwmem(struct iwn_softc *);
153 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
154 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
155 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
156 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
157 int);
158 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
159 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
160 static void iwn5000_ict_reset(struct iwn_softc *);
161 static int iwn_read_eeprom(struct iwn_softc *);
162 static void iwn4965_read_eeprom(struct iwn_softc *);
163 #ifdef IWN_DEBUG
164 static void iwn4965_print_power_group(struct iwn_softc *, int);
165 #endif
166 static void iwn5000_read_eeprom(struct iwn_softc *);
167 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
168 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
169 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
170 static void iwn_newassoc(struct ieee80211_node *, int);
171 static int iwn_media_change(struct ifnet *);
172 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
173 static void iwn_iter_func(void *, struct ieee80211_node *);
174 static void iwn_calib_timeout(void *);
175 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
176 struct iwn_rx_data *);
177 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
178 struct iwn_rx_data *);
179 #ifndef IEEE80211_NO_HT
180 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
181 struct iwn_rx_data *);
182 #endif
183 static void iwn5000_rx_calib_results(struct iwn_softc *,
184 struct iwn_rx_desc *, struct iwn_rx_data *);
185 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
186 struct iwn_rx_data *);
187 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
188 struct iwn_rx_data *);
189 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
190 struct iwn_rx_data *);
191 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
192 uint8_t);
193 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
194 static void iwn_notif_intr(struct iwn_softc *);
195 static void iwn_wakeup_intr(struct iwn_softc *);
196 static void iwn_fatal_intr(struct iwn_softc *);
197 static int iwn_intr(void *);
198 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
199 uint16_t);
200 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
201 uint16_t);
202 #ifdef notyet
203 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
204 #endif
205 static int iwn_tx(struct iwn_softc *, struct mbuf *,
206 struct ieee80211_node *, int);
207 static void iwn_start(struct ifnet *);
208 static void iwn_watchdog(struct ifnet *);
209 static int iwn_ioctl(struct ifnet *, u_long, void *);
210 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
211 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
212 int);
213 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
214 int);
215 static int iwn_set_link_quality(struct iwn_softc *,
216 struct ieee80211_node *);
217 static int iwn_add_broadcast_node(struct iwn_softc *, int);
218 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
219 static int iwn_set_critical_temp(struct iwn_softc *);
220 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
221 static void iwn4965_power_calibration(struct iwn_softc *, int);
222 static int iwn4965_set_txpower(struct iwn_softc *, int);
223 static int iwn5000_set_txpower(struct iwn_softc *, int);
224 static int iwn4965_get_rssi(const struct iwn_rx_stat *);
225 static int iwn5000_get_rssi(const struct iwn_rx_stat *);
226 static int iwn_get_noise(const struct iwn_rx_general_stats *);
227 static int iwn4965_get_temperature(struct iwn_softc *);
228 static int iwn5000_get_temperature(struct iwn_softc *);
229 static int iwn_init_sensitivity(struct iwn_softc *);
230 static void iwn_collect_noise(struct iwn_softc *,
231 const struct iwn_rx_general_stats *);
232 static int iwn4965_init_gains(struct iwn_softc *);
233 static int iwn5000_init_gains(struct iwn_softc *);
234 static int iwn4965_set_gains(struct iwn_softc *);
235 static int iwn5000_set_gains(struct iwn_softc *);
236 static void iwn_tune_sensitivity(struct iwn_softc *,
237 const struct iwn_rx_stats *);
238 static int iwn_send_sensitivity(struct iwn_softc *);
239 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
240 static int iwn_config(struct iwn_softc *);
241 static int iwn_scan(struct iwn_softc *, uint16_t);
242 static int iwn_auth(struct iwn_softc *);
243 static int iwn_run(struct iwn_softc *);
244 #ifdef IWN_HWCRYPTO
245 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
246 struct ieee80211_key *);
247 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
248 struct ieee80211_key *);
249 #endif
250 static int iwn_wme_update(struct ieee80211com *);
251 #ifndef IEEE80211_NO_HT
252 static int iwn_ampdu_rx_start(struct ieee80211com *,
253 struct ieee80211_node *, uint8_t);
254 static void iwn_ampdu_rx_stop(struct ieee80211com *,
255 struct ieee80211_node *, uint8_t);
256 static int iwn_ampdu_tx_start(struct ieee80211com *,
257 struct ieee80211_node *, uint8_t);
258 static void iwn_ampdu_tx_stop(struct ieee80211com *,
259 struct ieee80211_node *, uint8_t);
260 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
261 struct ieee80211_node *, uint8_t, uint16_t);
262 static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
263 uint8_t, uint16_t);
264 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
265 struct ieee80211_node *, uint8_t, uint16_t);
266 static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
267 uint8_t, uint16_t);
268 #endif
269 static int iwn5000_query_calibration(struct iwn_softc *);
270 static int iwn5000_send_calibration(struct iwn_softc *);
271 static int iwn5000_send_wimax_coex(struct iwn_softc *);
272 static int iwn4965_post_alive(struct iwn_softc *);
273 static int iwn5000_post_alive(struct iwn_softc *);
274 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
275 int);
276 static int iwn4965_load_firmware(struct iwn_softc *);
277 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
278 const uint8_t *, int);
279 static int iwn_read_firmware_leg(struct iwn_softc *,
280 struct iwn_fw_info *);
281 static int iwn_read_firmware_tlv(struct iwn_softc *,
282 struct iwn_fw_info *, uint16_t);
283 static int iwn5000_load_firmware(struct iwn_softc *);
284 static int iwn_read_firmware(struct iwn_softc *);
285 static int iwn_clock_wait(struct iwn_softc *);
286 static int iwn_apm_init(struct iwn_softc *);
287 static void iwn_apm_stop_master(struct iwn_softc *);
288 static void iwn_apm_stop(struct iwn_softc *);
289 static int iwn4965_nic_config(struct iwn_softc *);
290 static int iwn5000_nic_config(struct iwn_softc *);
291 static int iwn_hw_prepare(struct iwn_softc *);
292 static int iwn_hw_init(struct iwn_softc *);
293 static void iwn_hw_stop(struct iwn_softc *);
294 static int iwn_init(struct ifnet *);
295 static void iwn_stop(struct ifnet *, int);
296
297 /* XXX MCLGETI alternative */
298 static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
299 struct ifnet *, u_int);
300 #ifdef IWN_USE_RBUF
301 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
302 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
303 static int iwn_alloc_rpool(struct iwn_softc *);
304 static void iwn_free_rpool(struct iwn_softc *);
305 #endif
306
307 /* XXX needed by iwn_scan */
308 static u_int8_t *ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
309 static u_int8_t *ieee80211_add_rates(u_int8_t *,
310 const struct ieee80211_rateset *);
311 static u_int8_t *ieee80211_add_xrates(u_int8_t *,
312 const struct ieee80211_rateset *);
313
314 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *);
315
316 #ifdef IWN_DEBUG
317 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
318 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
319 int iwn_debug = 0;
320 #else
321 #define DPRINTF(x)
322 #define DPRINTFN(n, x)
323 #endif
324
325 static const struct iwn_hal iwn4965_hal = {
326 iwn4965_load_firmware,
327 iwn4965_read_eeprom,
328 iwn4965_post_alive,
329 iwn4965_nic_config,
330 iwn4965_update_sched,
331 iwn4965_get_temperature,
332 iwn4965_get_rssi,
333 iwn4965_set_txpower,
334 iwn4965_init_gains,
335 iwn4965_set_gains,
336 iwn4965_add_node,
337 iwn4965_tx_done,
338 #ifndef IEEE80211_NO_HT
339 iwn4965_ampdu_tx_start,
340 iwn4965_ampdu_tx_stop,
341 #endif
342 IWN4965_NTXQUEUES,
343 IWN4965_NDMACHNLS,
344 IWN4965_ID_BROADCAST,
345 IWN4965_RXONSZ,
346 IWN4965_SCHEDSZ,
347 IWN4965_FW_TEXT_MAXSZ,
348 IWN4965_FW_DATA_MAXSZ,
349 IWN4965_FWSZ,
350 IWN4965_SCHED_TXFACT
351 };
352
353 static const struct iwn_hal iwn5000_hal = {
354 iwn5000_load_firmware,
355 iwn5000_read_eeprom,
356 iwn5000_post_alive,
357 iwn5000_nic_config,
358 iwn5000_update_sched,
359 iwn5000_get_temperature,
360 iwn5000_get_rssi,
361 iwn5000_set_txpower,
362 iwn5000_init_gains,
363 iwn5000_set_gains,
364 iwn5000_add_node,
365 iwn5000_tx_done,
366 #ifndef IEEE80211_NO_HT
367 iwn5000_ampdu_tx_start,
368 iwn5000_ampdu_tx_stop,
369 #endif
370 IWN5000_NTXQUEUES,
371 IWN5000_NDMACHNLS,
372 IWN5000_ID_BROADCAST,
373 IWN5000_RXONSZ,
374 IWN5000_SCHEDSZ,
375 IWN5000_FW_TEXT_MAXSZ,
376 IWN5000_FW_DATA_MAXSZ,
377 IWN5000_FWSZ,
378 IWN5000_SCHED_TXFACT
379 };
380
381 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
382 iwn_detach, NULL);
383
384 static int
385 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
386 {
387 struct pci_attach_args *pa = aux;
388 size_t i;
389
390 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
391 return 0;
392
393 for (i = 0; i < __arraycount(iwn_devices); i++)
394 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
395 return 1;
396
397 return 0;
398 }
399
400 static void
401 iwn_attach(device_t parent __unused, device_t self, void *aux)
402 {
403 struct iwn_softc *sc = device_private(self);
404 struct ieee80211com *ic = &sc->sc_ic;
405 struct ifnet *ifp = &sc->sc_ec.ec_if;
406 struct pci_attach_args *pa = aux;
407 const struct iwn_hal *hal;
408 const char *intrstr;
409 char devinfo[256];
410 pci_intr_handle_t ih;
411 pcireg_t memtype, reg;
412 int i, error;
413 int revision;
414
415 sc->sc_dev = self;
416 sc->sc_pct = pa->pa_pc;
417 sc->sc_pcitag = pa->pa_tag;
418 sc->sc_dmat = pa->pa_dmat;
419 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
420
421 callout_init(&sc->calib_to, 0);
422 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
423
424 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
425 revision = PCI_REVISION(pa->pa_class);
426 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
427
428 /*
429 * Get the offset of the PCI Express Capability Structure in PCI
430 * Configuration Space.
431 */
432 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
433 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
434 if (error == 0) {
435 aprint_error(": PCIe capability structure not found!\n");
436 return;
437 }
438
439 /* Clear device-specific "PCI retry timeout" register (41h). */
440 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
441 reg &= ~0xff00;
442 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
443
444 /* Enable bus-mastering and hardware bug workaround. */
445 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */
446 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
447 reg |= PCI_COMMAND_MASTER_ENABLE;
448 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
449 DPRINTF(("PCIe INTx Disable set\n"));
450 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
451 }
452 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
453
454 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
455 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
456 &sc->sc_sh, NULL, &sc->sc_sz);
457 if (error != 0) {
458 aprint_error(": can't map mem space\n");
459 return;
460 }
461
462 /* Install interrupt handler. */
463 if (pci_intr_map(pa, &ih) != 0) {
464 aprint_error(": can't map interrupt\n");
465 return;
466 }
467 intrstr = pci_intr_string(sc->sc_pct, ih);
468 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
469 if (sc->sc_ih == NULL) {
470 aprint_error(": can't establish interrupt");
471 if (intrstr != NULL)
472 aprint_error(" at %s", intrstr);
473 aprint_error("\n");
474 return;
475 }
476 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
477
478 /* Attach Hardware Abstraction Layer. */
479 hal = iwn_hal_attach(sc, PCI_PRODUCT(pa->pa_id));
480 if (hal == NULL)
481 return;
482
483 if ((error = iwn_hw_prepare(sc)) != 0) {
484 aprint_error(": hardware not ready\n");
485 return;
486 }
487
488 /* Read MAC address, channels, etc from EEPROM. */
489 if ((error = iwn_read_eeprom(sc)) != 0) {
490 aprint_error(": could not read EEPROM\n");
491 return;
492 }
493
494 /* Allocate DMA memory for firmware transfers. */
495 if ((error = iwn_alloc_fwmem(sc)) != 0) {
496 aprint_error(": could not allocate memory for firmware\n");
497 return;
498 }
499
500 /* Allocate "Keep Warm" page. */
501 if ((error = iwn_alloc_kw(sc)) != 0) {
502 aprint_error(": could not allocate keep warm page\n");
503 goto fail1;
504 }
505
506 /* Allocate ICT table for 5000 Series. */
507 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
508 (error = iwn_alloc_ict(sc)) != 0) {
509 aprint_error(": could not allocate ICT table\n");
510 goto fail2;
511 }
512
513 /* Allocate TX scheduler "rings". */
514 if ((error = iwn_alloc_sched(sc)) != 0) {
515 aprint_error(": could not allocate TX scheduler rings\n");
516 goto fail3;
517 }
518
519 #ifdef IWN_USE_RBUF
520 /* Allocate RX buffers. */
521 if ((error = iwn_alloc_rpool(sc)) != 0) {
522 aprint_error_dev(self, "could not allocate RX buffers\n");
523 goto fail3;
524 }
525 #endif
526
527 /* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */
528 for (i = 0; i < hal->ntxqs; i++) {
529 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
530 aprint_error(": could not allocate TX ring %d\n", i);
531 goto fail4;
532 }
533 }
534
535 /* Allocate RX ring. */
536 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
537 aprint_error(": could not allocate RX ring\n");
538 goto fail4;
539 }
540
541 /* Clear pending interrupts. */
542 IWN_WRITE(sc, IWN_INT, 0xffffffff);
543
544 /* Count the number of available chains. */
545 sc->ntxchains =
546 ((sc->txchainmask >> 2) & 1) +
547 ((sc->txchainmask >> 1) & 1) +
548 ((sc->txchainmask >> 0) & 1);
549 sc->nrxchains =
550 ((sc->rxchainmask >> 2) & 1) +
551 ((sc->rxchainmask >> 1) & 1) +
552 ((sc->rxchainmask >> 0) & 1);
553 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
554 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
555 ether_sprintf(ic->ic_myaddr));
556
557 ic->ic_ifp = ifp;
558 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
559 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
560 ic->ic_state = IEEE80211_S_INIT;
561
562 /* Set device capabilities. */
563 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
564 * and IEEE80211_C_PMGT too. */
565 ic->ic_caps =
566 IEEE80211_C_IBSS | /* IBSS mode support */
567 IEEE80211_C_WPA | /* 802.11i */
568 IEEE80211_C_MONITOR | /* monitor mode supported */
569 IEEE80211_C_TXPMGT | /* tx power management */
570 IEEE80211_C_SHSLOT | /* short slot time supported */
571 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
572 IEEE80211_C_WME; /* 802.11e */
573
574 #ifndef IEEE80211_NO_HT
575 /* Set HT capabilities. */
576 ic->ic_htcaps =
577 #if IWN_RBUF_SIZE == 8192
578 IEEE80211_HTCAP_AMSDU7935 |
579 #endif
580 IEEE80211_HTCAP_CBW20_40 |
581 IEEE80211_HTCAP_SGI20 |
582 IEEE80211_HTCAP_SGI40;
583 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
584 ic->ic_htcaps |= IEEE80211_HTCAP_GF;
585 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
586 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
587 else
588 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
589 #endif /* !IEEE80211_NO_HT */
590
591 /* Set supported legacy rates. */
592 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
593 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
594 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
595 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
596 }
597 #ifndef IEEE80211_NO_HT
598 /* Set supported HT rates. */
599 ic->ic_sup_mcs[0] = 0xff;
600 if (sc->nrxchains > 1) /* MCS 0-7 */
601 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
602 if (sc->nrxchains > 2)
603 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
604 #endif
605
606 /* IBSS channel undefined for now. */
607 ic->ic_ibss_chan = &ic->ic_channels[0];
608
609 ifp->if_softc = sc;
610 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
611 ifp->if_init = iwn_init;
612 ifp->if_ioctl = iwn_ioctl;
613 ifp->if_start = iwn_start;
614 ifp->if_stop = iwn_stop;
615 ifp->if_watchdog = iwn_watchdog;
616 IFQ_SET_READY(&ifp->if_snd);
617 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
618
619 if_attach(ifp);
620 ieee80211_ifattach(ic);
621 ic->ic_node_alloc = iwn_node_alloc;
622 ic->ic_newassoc = iwn_newassoc;
623 #ifdef IWN_HWCRYPTO
624 ic->ic_crypto.cs_key_set = iwn_set_key;
625 ic->ic_crypto.cs_key_delete = iwn_delete_key;
626 #endif
627 ic->ic_wme.wme_update = iwn_wme_update;
628 #ifndef IEEE80211_NO_HT
629 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
630 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
631 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
632 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
633 #endif
634
635 /* Override 802.11 state transition machine. */
636 sc->sc_newstate = ic->ic_newstate;
637 ic->ic_newstate = iwn_newstate;
638 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
639
640 sc->amrr.amrr_min_success_threshold = 1;
641 sc->amrr.amrr_max_success_threshold = 15;
642
643 #ifndef SMALL_KERNEL
644 iwn_sensor_attach(sc);
645 #endif
646 iwn_radiotap_attach(sc);
647
648 /*
649 * XXX for NetBSD, OpenBSD timeout_set replaced by
650 * callout_init and callout_setfunc, above.
651 */
652
653 if (pmf_device_register(self, NULL, iwn_resume))
654 pmf_class_network_register(self, ifp);
655 else
656 aprint_error_dev(self, "couldn't establish power handler\n");
657
658 /* XXX NetBSD add call to ieee80211_announce for dmesg. */
659 ieee80211_announce(ic);
660
661 return;
662
663 /* Free allocated memory if something failed during attachment. */
664 fail4: while (--i >= 0)
665 iwn_free_tx_ring(sc, &sc->txq[i]);
666 #ifdef IWN_USE_RBUF
667 iwn_free_rpool(sc);
668 #endif
669 iwn_free_sched(sc);
670 fail3: if (sc->ict != NULL)
671 iwn_free_ict(sc);
672 fail2: iwn_free_kw(sc);
673 fail1: iwn_free_fwmem(sc);
674 }
675
676 const struct iwn_hal *
677 iwn_hal_attach(struct iwn_softc *sc, pci_product_id_t pid)
678 {
679 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
680
681 switch (sc->hw_type) {
682 case IWN_HW_REV_TYPE_4965:
683 sc->sc_hal = &iwn4965_hal;
684 sc->limits = &iwn4965_sensitivity_limits;
685 sc->fwname = "iwlwifi-4965-2.ucode";
686 sc->txchainmask = IWN_ANT_AB;
687 sc->rxchainmask = IWN_ANT_ABC;
688 break;
689 case IWN_HW_REV_TYPE_5100:
690 sc->sc_hal = &iwn5000_hal;
691 sc->limits = &iwn5000_sensitivity_limits;
692 sc->fwname = "iwlwifi-5000-2.ucode";
693 sc->txchainmask = IWN_ANT_B;
694 sc->rxchainmask = IWN_ANT_AB;
695 break;
696 case IWN_HW_REV_TYPE_5150:
697 sc->sc_hal = &iwn5000_hal;
698 sc->limits = &iwn5150_sensitivity_limits;
699 sc->fwname = "iwlwifi-5150-2.ucode";
700 sc->txchainmask = IWN_ANT_A;
701 sc->rxchainmask = IWN_ANT_AB;
702 break;
703 case IWN_HW_REV_TYPE_5300:
704 case IWN_HW_REV_TYPE_5350:
705 sc->sc_hal = &iwn5000_hal;
706 sc->limits = &iwn5000_sensitivity_limits;
707 sc->fwname = "iwlwifi-5000-2.ucode";
708 sc->txchainmask = IWN_ANT_ABC;
709 sc->rxchainmask = IWN_ANT_ABC;
710 break;
711 case IWN_HW_REV_TYPE_1000:
712 sc->sc_hal = &iwn5000_hal;
713 sc->limits = &iwn1000_sensitivity_limits;
714 sc->fwname = "iwlwifi-1000-3.ucode";
715 sc->txchainmask = IWN_ANT_A;
716 sc->rxchainmask = IWN_ANT_AB;
717 break;
718 case IWN_HW_REV_TYPE_6000:
719 sc->sc_hal = &iwn5000_hal;
720 sc->limits = &iwn6000_sensitivity_limits;
721 sc->fwname = "iwlwifi-6000-4.ucode";
722 switch (pid) {
723 case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1:
724 case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2:
725 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
726 sc->txchainmask = IWN_ANT_BC;
727 sc->rxchainmask = IWN_ANT_BC;
728 break;
729 default:
730 sc->txchainmask = IWN_ANT_ABC;
731 sc->rxchainmask = IWN_ANT_ABC;
732 break;
733 }
734 break;
735 case IWN_HW_REV_TYPE_6050:
736 sc->sc_hal = &iwn5000_hal;
737 sc->limits = &iwn6000_sensitivity_limits;
738 sc->fwname = "iwlwifi-6050-2.ucode";
739 sc->txchainmask = IWN_ANT_AB;
740 sc->rxchainmask = IWN_ANT_AB;
741 break;
742 case IWN_HW_REV_TYPE_6005:
743 sc->sc_hal = &iwn5000_hal;
744 sc->limits = &iwn6000_sensitivity_limits;
745 sc->fwname = "iwlwifi-6005-2.ucode";
746 sc->txchainmask = IWN_ANT_AB;
747 sc->rxchainmask = IWN_ANT_AB;
748 break;
749 default:
750 aprint_normal(": adapter type %d not supported\n", sc->hw_type);
751 return NULL;
752 }
753 return sc->sc_hal;
754 }
755
756 #ifndef SMALL_KERNEL
757 /*
758 * Attach the adapter on-board thermal sensor to the sensors framework.
759 */
760 static void
761 iwn_sensor_attach(struct iwn_softc *sc)
762 {
763 int error;
764
765 sc->sc_sensor.units = ENVSYS_STEMP;
766 #if 0
767 /* XXX something like this ought to work */
768 sc->sc_sensor.flags = ENVSYS_FMONLIMITS | ENVSYS_FMONNOTSUPP;
769 sc->sc_sensor.limits.sel_critmax = IWN_CTOK(110);
770 #endif
771 (void)strlcpy(sc->sc_sensor.desc,
772 "temperature", sizeof(sc->sc_sensor.desc));
773
774 /* Temperature is not valid unless interface is up. */
775 sc->sc_sensor.value_cur = 0;
776 sc->sc_sensor.state = ENVSYS_SINVALID;
777
778 sc->sc_sme = sysmon_envsys_create();
779
780 /* Initialize sensor */
781 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
782 sysmon_envsys_destroy(sc->sc_sme);
783 return;
784 }
785
786 /*
787 * Hook into the System Monitor.
788 */
789 sc->sc_sme->sme_name = device_xname(sc->sc_dev);
790 sc->sc_sme->sme_flags = SME_DISABLE_REFRESH;
791
792 if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) {
793 aprint_error_dev(sc->sc_dev,
794 "unable to register with sysmon (%d)\n", error);
795 sysmon_envsys_destroy(sc->sc_sme);
796 return;
797 }
798 }
799 #endif
800
801 /*
802 * Attach the interface to 802.11 radiotap.
803 */
804 static void
805 iwn_radiotap_attach(struct iwn_softc *sc)
806 {
807 struct ifnet *ifp = sc->sc_ic.ic_ifp;
808
809 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
810 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
811 &sc->sc_drvbpf);
812
813 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
814 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
815 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
816
817 sc->sc_txtap_len = sizeof sc->sc_txtapu;
818 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
819 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
820 }
821
822 static int
823 iwn_detach(device_t self, int flags __unused)
824 {
825 struct iwn_softc *sc = device_private(self);
826 struct ifnet *ifp = sc->sc_ic.ic_ifp;
827 int qid;
828
829 callout_stop(&sc->calib_to);
830
831 /* Uninstall interrupt handler. */
832 if (sc->sc_ih != NULL)
833 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
834
835 /* Free DMA resources. */
836 iwn_free_rx_ring(sc, &sc->rxq);
837 for (qid = 0; qid < sc->sc_hal->ntxqs; qid++)
838 iwn_free_tx_ring(sc, &sc->txq[qid]);
839 #ifdef IWN_USE_RBUF
840 iwn_free_rpool(sc);
841 #endif
842 iwn_free_sched(sc);
843 iwn_free_kw(sc);
844 if (sc->ict != NULL)
845 iwn_free_ict(sc);
846 iwn_free_fwmem(sc);
847
848 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
849
850 #ifndef SMALL_KERNEL
851 /* Detach the thermal sensor. */
852 sysmon_envsys_sensor_detach(sc->sc_sme, &sc->sc_sensor);
853 sysmon_envsys_destroy(sc->sc_sme);
854 #endif
855
856 ieee80211_ifdetach(&sc->sc_ic);
857 if_detach(ifp);
858
859 return 0;
860 }
861
862 #if 0
863 /*
864 * XXX Investigate if clearing the PCI retry timeout could eliminate
865 * the repeated scan calls. Also the calls to if_init and if_start
866 * are similar to the effect of adding the call to ifioctl_common .
867 */
868 static void
869 iwn_power(int why, void *arg)
870 {
871 struct iwn_softc *sc = arg;
872 struct ifnet *ifp;
873 pcireg_t reg;
874 int s;
875
876 if (why != PWR_RESUME)
877 return;
878
879 /* Clear device-specific "PCI retry timeout" register (41h). */
880 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
881 reg &= ~0xff00;
882 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
883
884 s = splnet();
885 ifp = &sc->sc_ic.ic_if;
886 if (ifp->if_flags & IFF_UP) {
887 ifp->if_init(ifp);
888 if (ifp->if_flags & IFF_RUNNING)
889 ifp->if_start(ifp);
890 }
891 splx(s);
892 }
893 #endif
894
895 static bool
896 iwn_resume(device_t dv, const pmf_qual_t *qual)
897 {
898 return true;
899 }
900
901 static int
902 iwn_nic_lock(struct iwn_softc *sc)
903 {
904 int ntries;
905
906 /* Request exclusive access to NIC. */
907 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
908
909 /* Spin until we actually get the lock. */
910 for (ntries = 0; ntries < 1000; ntries++) {
911 if ((IWN_READ(sc, IWN_GP_CNTRL) &
912 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
913 IWN_GP_CNTRL_MAC_ACCESS_ENA)
914 return 0;
915 DELAY(10);
916 }
917 return ETIMEDOUT;
918 }
919
920 static __inline void
921 iwn_nic_unlock(struct iwn_softc *sc)
922 {
923 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
924 }
925
926 static __inline uint32_t
927 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
928 {
929 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
930 IWN_BARRIER_READ_WRITE(sc);
931 return IWN_READ(sc, IWN_PRPH_RDATA);
932 }
933
934 static __inline void
935 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
936 {
937 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
938 IWN_BARRIER_WRITE(sc);
939 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
940 }
941
942 static __inline void
943 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
944 {
945 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
946 }
947
948 static __inline void
949 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
950 {
951 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
952 }
953
954 static __inline void
955 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
956 const uint32_t *data, int count)
957 {
958 for (; count > 0; count--, data++, addr += 4)
959 iwn_prph_write(sc, addr, *data);
960 }
961
962 static __inline uint32_t
963 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
964 {
965 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
966 IWN_BARRIER_READ_WRITE(sc);
967 return IWN_READ(sc, IWN_MEM_RDATA);
968 }
969
970 static __inline void
971 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
972 {
973 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
974 IWN_BARRIER_WRITE(sc);
975 IWN_WRITE(sc, IWN_MEM_WDATA, data);
976 }
977
978 static __inline void
979 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
980 {
981 uint32_t tmp;
982
983 tmp = iwn_mem_read(sc, addr & ~3);
984 if (addr & 3)
985 tmp = (tmp & 0x0000ffff) | data << 16;
986 else
987 tmp = (tmp & 0xffff0000) | data;
988 iwn_mem_write(sc, addr & ~3, tmp);
989 }
990
991 static __inline void
992 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
993 int count)
994 {
995 for (; count > 0; count--, addr += 4)
996 *data++ = iwn_mem_read(sc, addr);
997 }
998
999 static __inline void
1000 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1001 int count)
1002 {
1003 for (; count > 0; count--, addr += 4)
1004 iwn_mem_write(sc, addr, val);
1005 }
1006
1007 static int
1008 iwn_eeprom_lock(struct iwn_softc *sc)
1009 {
1010 int i, ntries;
1011
1012 for (i = 0; i < 100; i++) {
1013 /* Request exclusive access to EEPROM. */
1014 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1015 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1016
1017 /* Spin until we actually get the lock. */
1018 for (ntries = 0; ntries < 100; ntries++) {
1019 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1020 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1021 return 0;
1022 DELAY(10);
1023 }
1024 }
1025 return ETIMEDOUT;
1026 }
1027
1028 static __inline void
1029 iwn_eeprom_unlock(struct iwn_softc *sc)
1030 {
1031 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1032 }
1033
1034 /*
1035 * Initialize access by host to One Time Programmable ROM.
1036 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1037 */
1038 static int
1039 iwn_init_otprom(struct iwn_softc *sc)
1040 {
1041 uint16_t prev = 0, base, next;
1042 int count, error;
1043
1044 /* Wait for clock stabilization before accessing prph. */
1045 if ((error = iwn_clock_wait(sc)) != 0)
1046 return error;
1047
1048 if ((error = iwn_nic_lock(sc)) != 0)
1049 return error;
1050 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1051 DELAY(5);
1052 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1053 iwn_nic_unlock(sc);
1054
1055 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1056 if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1057 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1058 IWN_RESET_LINK_PWR_MGMT_DIS);
1059 }
1060 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1061 /* Clear ECC status. */
1062 IWN_SETBITS(sc, IWN_OTP_GP,
1063 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1064
1065 /*
1066 * Find the block before last block (contains the EEPROM image)
1067 * for HW without OTP shadow RAM.
1068 */
1069 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1070 /* Switch to absolute addressing mode. */
1071 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1072 base = 0;
1073 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1074 error = iwn_read_prom_data(sc, base, &next, 2);
1075 if (error != 0)
1076 return error;
1077 if (next == 0) /* End of linked-list. */
1078 break;
1079 prev = base;
1080 base = le16toh(next);
1081 }
1082 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1083 return EIO;
1084 /* Skip "next" word. */
1085 sc->prom_base = prev + 1;
1086 }
1087 return 0;
1088 }
1089
1090 static int
1091 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1092 {
1093 uint8_t *out = data;
1094 uint32_t val, tmp;
1095 int ntries;
1096
1097 addr += sc->prom_base;
1098 for (; count > 0; count -= 2, addr++) {
1099 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1100 for (ntries = 0; ntries < 10; ntries++) {
1101 val = IWN_READ(sc, IWN_EEPROM);
1102 if (val & IWN_EEPROM_READ_VALID)
1103 break;
1104 DELAY(5);
1105 }
1106 if (ntries == 10) {
1107 aprint_error_dev(sc->sc_dev,
1108 "timeout reading ROM at 0x%x\n", addr);
1109 return ETIMEDOUT;
1110 }
1111 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1112 /* OTPROM, check for ECC errors. */
1113 tmp = IWN_READ(sc, IWN_OTP_GP);
1114 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1115 aprint_error_dev(sc->sc_dev,
1116 "OTPROM ECC error at 0x%x\n", addr);
1117 return EIO;
1118 }
1119 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1120 /* Correctable ECC error, clear bit. */
1121 IWN_SETBITS(sc, IWN_OTP_GP,
1122 IWN_OTP_GP_ECC_CORR_STTS);
1123 }
1124 }
1125 *out++ = val >> 16;
1126 if (count > 1)
1127 *out++ = val >> 24;
1128 }
1129 return 0;
1130 }
1131
1132 static int
1133 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1134 bus_size_t size, bus_size_t alignment)
1135 {
1136 int nsegs, error;
1137
1138 dma->tag = tag;
1139 dma->size = size;
1140
1141 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1142 &dma->map);
1143 if (error != 0)
1144 goto fail;
1145
1146 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1147 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1148 if (error != 0)
1149 goto fail;
1150
1151 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1152 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1153 if (error != 0)
1154 goto fail;
1155
1156 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1157 BUS_DMA_NOWAIT);
1158 if (error != 0)
1159 goto fail;
1160
1161 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1162 memset(dma->vaddr, 0, size);
1163 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1164
1165 dma->paddr = dma->map->dm_segs[0].ds_addr;
1166 if (kvap != NULL)
1167 *kvap = dma->vaddr;
1168
1169 return 0;
1170
1171 fail: iwn_dma_contig_free(dma);
1172 return error;
1173 }
1174
1175 static void
1176 iwn_dma_contig_free(struct iwn_dma_info *dma)
1177 {
1178 if (dma->map != NULL) {
1179 if (dma->vaddr != NULL) {
1180 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1181 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1182 bus_dmamap_unload(dma->tag, dma->map);
1183 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1184 bus_dmamem_free(dma->tag, &dma->seg, 1);
1185 dma->vaddr = NULL;
1186 }
1187 bus_dmamap_destroy(dma->tag, dma->map);
1188 dma->map = NULL;
1189 }
1190 }
1191
1192 static int
1193 iwn_alloc_sched(struct iwn_softc *sc)
1194 {
1195 /* TX scheduler rings must be aligned on a 1KB boundary. */
1196 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1197 (void **)&sc->sched, sc->sc_hal->schedsz, 1024);
1198 }
1199
1200 static void
1201 iwn_free_sched(struct iwn_softc *sc)
1202 {
1203 iwn_dma_contig_free(&sc->sched_dma);
1204 }
1205
1206 static int
1207 iwn_alloc_kw(struct iwn_softc *sc)
1208 {
1209 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1210 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1211 4096);
1212 }
1213
1214 static void
1215 iwn_free_kw(struct iwn_softc *sc)
1216 {
1217 iwn_dma_contig_free(&sc->kw_dma);
1218 }
1219
1220 static int
1221 iwn_alloc_ict(struct iwn_softc *sc)
1222 {
1223 /* ICT table must be aligned on a 4KB boundary. */
1224 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1225 (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1226 }
1227
1228 static void
1229 iwn_free_ict(struct iwn_softc *sc)
1230 {
1231 iwn_dma_contig_free(&sc->ict_dma);
1232 }
1233
1234 static int
1235 iwn_alloc_fwmem(struct iwn_softc *sc)
1236 {
1237 /* Must be aligned on a 16-byte boundary. */
1238 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1239 sc->sc_hal->fwsz, 16);
1240 }
1241
1242 static void
1243 iwn_free_fwmem(struct iwn_softc *sc)
1244 {
1245 iwn_dma_contig_free(&sc->fw_dma);
1246 }
1247
1248 static int
1249 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1250 {
1251 bus_size_t size;
1252 int i, error;
1253
1254 ring->cur = 0;
1255
1256 /* Allocate RX descriptors (256-byte aligned.) */
1257 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1258 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1259 (void **)&ring->desc, size, 256);
1260 if (error != 0) {
1261 aprint_error_dev(sc->sc_dev,
1262 "could not allocate RX ring DMA memory\n");
1263 goto fail;
1264 }
1265
1266 /* Allocate RX status area (16-byte aligned.) */
1267 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1268 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1269 if (error != 0) {
1270 aprint_error_dev(sc->sc_dev,
1271 "could not allocate RX status DMA memory\n");
1272 goto fail;
1273 }
1274
1275 /*
1276 * Allocate and map RX buffers.
1277 */
1278 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1279 struct iwn_rx_data *data = &ring->data[i];
1280
1281 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1282 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1283 &data->map);
1284 if (error != 0) {
1285 aprint_error_dev(sc->sc_dev,
1286 "could not create RX buf DMA map\n");
1287 goto fail;
1288 }
1289
1290 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1291 if (data->m == NULL) {
1292 aprint_error_dev(sc->sc_dev,
1293 "could not allocate RX mbuf\n");
1294 error = ENOBUFS;
1295 goto fail;
1296 }
1297
1298 error = bus_dmamap_load(sc->sc_dmat, data->map,
1299 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1300 BUS_DMA_NOWAIT | BUS_DMA_READ);
1301 if (error != 0) {
1302 aprint_error_dev(sc->sc_dev,
1303 "can't not map mbuf (error %d)\n", error);
1304 goto fail;
1305 }
1306
1307 /* Set physical address of RX buffer (256-byte aligned.) */
1308 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1309 }
1310
1311 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1312 BUS_DMASYNC_PREWRITE);
1313
1314 return 0;
1315
1316 fail: iwn_free_rx_ring(sc, ring);
1317 return error;
1318 }
1319
1320 static void
1321 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1322 {
1323 int ntries;
1324
1325 if (iwn_nic_lock(sc) == 0) {
1326 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1327 for (ntries = 0; ntries < 1000; ntries++) {
1328 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1329 IWN_FH_RX_STATUS_IDLE)
1330 break;
1331 DELAY(10);
1332 }
1333 iwn_nic_unlock(sc);
1334 }
1335 ring->cur = 0;
1336 sc->last_rx_valid = 0;
1337 }
1338
1339 static void
1340 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1341 {
1342 int i;
1343
1344 iwn_dma_contig_free(&ring->desc_dma);
1345 iwn_dma_contig_free(&ring->stat_dma);
1346
1347 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1348 struct iwn_rx_data *data = &ring->data[i];
1349
1350 if (data->m != NULL) {
1351 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1352 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1353 bus_dmamap_unload(sc->sc_dmat, data->map);
1354 m_freem(data->m);
1355 }
1356 if (data->map != NULL)
1357 bus_dmamap_destroy(sc->sc_dmat, data->map);
1358 }
1359 }
1360
1361 static int
1362 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1363 {
1364 bus_addr_t paddr;
1365 bus_size_t size;
1366 int i, error;
1367
1368 ring->qid = qid;
1369 ring->queued = 0;
1370 ring->cur = 0;
1371
1372 /* Allocate TX descriptors (256-byte aligned.) */
1373 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1374 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1375 (void **)&ring->desc, size, 256);
1376 if (error != 0) {
1377 aprint_error_dev(sc->sc_dev,
1378 "could not allocate TX ring DMA memory\n");
1379 goto fail;
1380 }
1381 /*
1382 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1383 * to allocate commands space for other rings.
1384 * XXX Do we really need to allocate descriptors for other rings?
1385 */
1386 if (qid > 4)
1387 return 0;
1388
1389 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1390 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1391 (void **)&ring->cmd, size, 4);
1392 if (error != 0) {
1393 aprint_error_dev(sc->sc_dev,
1394 "could not allocate TX cmd DMA memory\n");
1395 goto fail;
1396 }
1397
1398 paddr = ring->cmd_dma.paddr;
1399 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1400 struct iwn_tx_data *data = &ring->data[i];
1401
1402 data->cmd_paddr = paddr;
1403 data->scratch_paddr = paddr + 12;
1404 paddr += sizeof (struct iwn_tx_cmd);
1405
1406 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1407 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1408 &data->map);
1409 if (error != 0) {
1410 aprint_error_dev(sc->sc_dev,
1411 "could not create TX buf DMA map\n");
1412 goto fail;
1413 }
1414 }
1415 return 0;
1416
1417 fail: iwn_free_tx_ring(sc, ring);
1418 return error;
1419 }
1420
1421 static void
1422 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1423 {
1424 int i;
1425
1426 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1427 struct iwn_tx_data *data = &ring->data[i];
1428
1429 if (data->m != NULL) {
1430 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1431 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1432 bus_dmamap_unload(sc->sc_dmat, data->map);
1433 m_freem(data->m);
1434 data->m = NULL;
1435 }
1436 }
1437 /* Clear TX descriptors. */
1438 memset(ring->desc, 0, ring->desc_dma.size);
1439 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1440 ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1441 sc->qfullmsk &= ~(1 << ring->qid);
1442 ring->queued = 0;
1443 ring->cur = 0;
1444 }
1445
1446 static void
1447 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1448 {
1449 int i;
1450
1451 iwn_dma_contig_free(&ring->desc_dma);
1452 iwn_dma_contig_free(&ring->cmd_dma);
1453
1454 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1455 struct iwn_tx_data *data = &ring->data[i];
1456
1457 if (data->m != NULL) {
1458 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1459 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1460 bus_dmamap_unload(sc->sc_dmat, data->map);
1461 m_freem(data->m);
1462 }
1463 if (data->map != NULL)
1464 bus_dmamap_destroy(sc->sc_dmat, data->map);
1465 }
1466 }
1467
1468 static void
1469 iwn5000_ict_reset(struct iwn_softc *sc)
1470 {
1471 /* Disable interrupts. */
1472 IWN_WRITE(sc, IWN_INT_MASK, 0);
1473
1474 /* Reset ICT table. */
1475 memset(sc->ict, 0, IWN_ICT_SIZE);
1476 sc->ict_cur = 0;
1477
1478 /* Set physical address of ICT table (4KB aligned.) */
1479 DPRINTF(("enabling ICT\n"));
1480 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1481 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1482
1483 /* Enable periodic RX interrupt. */
1484 sc->int_mask |= IWN_INT_RX_PERIODIC;
1485 /* Switch to ICT interrupt mode in driver. */
1486 sc->sc_flags |= IWN_FLAG_USE_ICT;
1487
1488 /* Re-enable interrupts. */
1489 IWN_WRITE(sc, IWN_INT, 0xffffffff);
1490 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1491 }
1492
1493 static int
1494 iwn_read_eeprom(struct iwn_softc *sc)
1495 {
1496 const struct iwn_hal *hal = sc->sc_hal;
1497 struct ieee80211com *ic = &sc->sc_ic;
1498 uint16_t val;
1499 int error;
1500
1501 /* Check whether adapter has an EEPROM or an OTPROM. */
1502 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1503 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1504 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1505 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1506 "OTPROM" : "EEPROM"));
1507
1508 /* Adapter has to be powered on for EEPROM access to work. */
1509 if ((error = iwn_apm_init(sc)) != 0) {
1510 aprint_error_dev(sc->sc_dev,
1511 "could not power ON adapter\n");
1512 return error;
1513 }
1514
1515 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1516 aprint_error_dev(sc->sc_dev,
1517 "bad ROM signature\n");
1518 return EIO;
1519 }
1520 if ((error = iwn_eeprom_lock(sc)) != 0) {
1521 aprint_error_dev(sc->sc_dev,
1522 "could not lock ROM (error=%d)\n", error);
1523 return error;
1524 }
1525 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1526 if ((error = iwn_init_otprom(sc)) != 0) {
1527 aprint_error_dev(sc->sc_dev,
1528 "could not initialize OTPROM\n");
1529 return error;
1530 }
1531 }
1532
1533 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1534 sc->rfcfg = le16toh(val);
1535 DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1536
1537 /* Read MAC address. */
1538 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1539
1540 /* Read adapter-specific information from EEPROM. */
1541 hal->read_eeprom(sc);
1542
1543 iwn_apm_stop(sc); /* Power OFF adapter. */
1544
1545 iwn_eeprom_unlock(sc);
1546 return 0;
1547 }
1548
1549 static void
1550 iwn4965_read_eeprom(struct iwn_softc *sc)
1551 {
1552 uint32_t addr;
1553 uint16_t val;
1554 int i;
1555
1556 /* Read regulatory domain (4 ASCII characters.) */
1557 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1558
1559 /* Read the list of authorized channels (20MHz ones only.) */
1560 for (i = 0; i < 5; i++) {
1561 addr = iwn4965_regulatory_bands[i];
1562 iwn_read_eeprom_channels(sc, i, addr);
1563 }
1564
1565 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1566 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1567 sc->maxpwr2GHz = val & 0xff;
1568 sc->maxpwr5GHz = val >> 8;
1569 /* Check that EEPROM values are within valid range. */
1570 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1571 sc->maxpwr5GHz = 38;
1572 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1573 sc->maxpwr2GHz = 38;
1574 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1575
1576 /* Read samples for each TX power group. */
1577 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1578 sizeof sc->bands);
1579
1580 /* Read voltage at which samples were taken. */
1581 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1582 sc->eeprom_voltage = (int16_t)le16toh(val);
1583 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1584
1585 #ifdef IWN_DEBUG
1586 /* Print samples. */
1587 if (iwn_debug > 0) {
1588 for (i = 0; i < IWN_NBANDS; i++)
1589 iwn4965_print_power_group(sc, i);
1590 }
1591 #endif
1592 }
1593
1594 #ifdef IWN_DEBUG
1595 static void
1596 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1597 {
1598 struct iwn4965_eeprom_band *band = &sc->bands[i];
1599 struct iwn4965_eeprom_chan_samples *chans = band->chans;
1600 int j, c;
1601
1602 aprint_normal("===band %d===\n", i);
1603 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1604 aprint_normal("chan1 num=%d\n", chans[0].num);
1605 for (c = 0; c < 2; c++) {
1606 for (j = 0; j < IWN_NSAMPLES; j++) {
1607 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1608 "power=%d pa_det=%d\n", c, j,
1609 chans[0].samples[c][j].temp,
1610 chans[0].samples[c][j].gain,
1611 chans[0].samples[c][j].power,
1612 chans[0].samples[c][j].pa_det);
1613 }
1614 }
1615 aprint_normal("chan2 num=%d\n", chans[1].num);
1616 for (c = 0; c < 2; c++) {
1617 for (j = 0; j < IWN_NSAMPLES; j++) {
1618 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1619 "power=%d pa_det=%d\n", c, j,
1620 chans[1].samples[c][j].temp,
1621 chans[1].samples[c][j].gain,
1622 chans[1].samples[c][j].power,
1623 chans[1].samples[c][j].pa_det);
1624 }
1625 }
1626 }
1627 #endif
1628
1629 static void
1630 iwn5000_read_eeprom(struct iwn_softc *sc)
1631 {
1632 struct iwn5000_eeprom_calib_hdr hdr;
1633 int32_t temp, volt;
1634 uint32_t base, addr;
1635 uint16_t val;
1636 int i;
1637
1638 /* Read regulatory domain (4 ASCII characters.) */
1639 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1640 base = le16toh(val);
1641 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1642 sc->eeprom_domain, 4);
1643
1644 /* Read the list of authorized channels (20MHz ones only.) */
1645 for (i = 0; i < 5; i++) {
1646 addr = base + iwn5000_regulatory_bands[i];
1647 iwn_read_eeprom_channels(sc, i, addr);
1648 }
1649
1650 /* Read enhanced TX power information for 6000 Series. */
1651 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1652 iwn_read_eeprom_enhinfo(sc);
1653
1654 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1655 base = le16toh(val);
1656 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1657 DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1658 hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1659 sc->calib_ver = hdr.version;
1660
1661 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1662 /* Compute temperature offset. */
1663 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1664 temp = le16toh(val);
1665 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1666 volt = le16toh(val);
1667 sc->temp_off = temp - (volt / -5);
1668 DPRINTF(("temp=%d volt=%d offset=%dK\n",
1669 temp, volt, sc->temp_off));
1670 } else {
1671 /* Read crystal calibration. */
1672 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1673 &sc->eeprom_crystal, sizeof (uint32_t));
1674 DPRINTF(("crystal calibration 0x%08x\n",
1675 le32toh(sc->eeprom_crystal)));
1676 }
1677 }
1678
1679 static void
1680 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1681 {
1682 struct ieee80211com *ic = &sc->sc_ic;
1683 const struct iwn_chan_band *band = &iwn_bands[n];
1684 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1685 uint8_t chan;
1686 int i;
1687
1688 iwn_read_prom_data(sc, addr, channels,
1689 band->nchan * sizeof (struct iwn_eeprom_chan));
1690
1691 for (i = 0; i < band->nchan; i++) {
1692 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1693 continue;
1694
1695 chan = band->chan[i];
1696
1697 if (n == 0) { /* 2GHz band */
1698 ic->ic_channels[chan].ic_freq =
1699 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1700 ic->ic_channels[chan].ic_flags =
1701 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1702 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1703
1704 } else { /* 5GHz band */
1705 /*
1706 * Some adapters support channels 7, 8, 11 and 12
1707 * both in the 2GHz and 4.9GHz bands.
1708 * Because of limitations in our net80211 layer,
1709 * we don't support them in the 4.9GHz band.
1710 */
1711 if (chan <= 14)
1712 continue;
1713
1714 ic->ic_channels[chan].ic_freq =
1715 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1716 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1717 /* We have at least one valid 5GHz channel. */
1718 sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1719 }
1720
1721 /* Is active scan allowed on this channel? */
1722 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1723 ic->ic_channels[chan].ic_flags |=
1724 IEEE80211_CHAN_PASSIVE;
1725 }
1726
1727 /* Save maximum allowed TX power for this channel. */
1728 sc->maxpwr[chan] = channels[i].maxpwr;
1729
1730 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1731 chan, channels[i].flags, sc->maxpwr[chan]));
1732 }
1733 }
1734
1735 static void
1736 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1737 {
1738 struct iwn_eeprom_enhinfo enhinfo[35];
1739 uint16_t val, base;
1740 int8_t maxpwr;
1741 int i;
1742
1743 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1744 base = le16toh(val);
1745 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1746 enhinfo, sizeof enhinfo);
1747
1748 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1749 for (i = 0; i < __arraycount(enhinfo); i++) {
1750 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1751 continue; /* Skip invalid entries. */
1752
1753 maxpwr = 0;
1754 if (sc->txchainmask & IWN_ANT_A)
1755 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1756 if (sc->txchainmask & IWN_ANT_B)
1757 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1758 if (sc->txchainmask & IWN_ANT_C)
1759 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1760 if (sc->ntxchains == 2)
1761 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1762 else if (sc->ntxchains == 3)
1763 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1764 maxpwr /= 2; /* Convert half-dBm to dBm. */
1765
1766 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1767 sc->enh_maxpwr[i] = maxpwr;
1768 }
1769 }
1770
1771 static struct ieee80211_node *
1772 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1773 {
1774 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1775 }
1776
1777 static void
1778 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1779 {
1780 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1781 struct iwn_node *wn = (void *)ni;
1782 uint8_t rate;
1783 int ridx, i;
1784
1785 ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1786 /* Start at lowest available bit-rate, AMRR will raise. */
1787 ni->ni_txrate = 0;
1788
1789 for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1790 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1791 /* Map 802.11 rate to HW rate index. */
1792 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1793 if (iwn_rates[ridx].rate == rate)
1794 break;
1795 wn->ridx[i] = ridx;
1796 }
1797 }
1798
1799 static int
1800 iwn_media_change(struct ifnet *ifp)
1801 {
1802 struct iwn_softc *sc = ifp->if_softc;
1803 struct ieee80211com *ic = &sc->sc_ic;
1804 uint8_t rate, ridx;
1805 int error;
1806
1807 error = ieee80211_media_change(ifp);
1808 if (error != ENETRESET)
1809 return error;
1810
1811 if (ic->ic_fixed_rate != -1) {
1812 rate = ic->ic_sup_rates[ic->ic_curmode].
1813 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1814 /* Map 802.11 rate to HW rate index. */
1815 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1816 if (iwn_rates[ridx].rate == rate)
1817 break;
1818 sc->fixed_ridx = ridx;
1819 }
1820
1821 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1822 (IFF_UP | IFF_RUNNING)) {
1823 iwn_stop(ifp, 0);
1824 error = iwn_init(ifp);
1825 }
1826 return error;
1827 }
1828
1829 static int
1830 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1831 {
1832 struct ifnet *ifp = ic->ic_ifp;
1833 struct iwn_softc *sc = ifp->if_softc;
1834 int error;
1835
1836 callout_stop(&sc->calib_to);
1837
1838 switch (nstate) {
1839 case IEEE80211_S_SCAN:
1840 /* XXX Do not abort a running scan. */
1841 if (sc->sc_flags & IWN_FLAG_SCANNING) {
1842 if (ic->ic_state != nstate)
1843 aprint_error_dev(sc->sc_dev, "scan request(%d) "
1844 "while scanning(%d) ignored\n", nstate,
1845 ic->ic_state);
1846 break;
1847 }
1848
1849 /* XXX Not sure if call and flags are needed. */
1850 ieee80211_node_table_reset(&ic->ic_scan);
1851 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1852 sc->sc_flags |= IWN_FLAG_SCANNING;
1853
1854 /* Make the link LED blink while we're scanning. */
1855 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1856
1857 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1858 aprint_error_dev(sc->sc_dev,
1859 "could not initiate scan\n");
1860 return error;
1861 }
1862 ic->ic_state = nstate;
1863 return 0;
1864
1865 case IEEE80211_S_ASSOC:
1866 if (ic->ic_state != IEEE80211_S_RUN)
1867 break;
1868 /* FALLTHROUGH */
1869 case IEEE80211_S_AUTH:
1870 /* Reset state to handle reassociations correctly. */
1871 sc->rxon.associd = 0;
1872 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1873 sc->calib.state = IWN_CALIB_STATE_INIT;
1874
1875 if ((error = iwn_auth(sc)) != 0) {
1876 aprint_error_dev(sc->sc_dev,
1877 "could not move to auth state\n");
1878 return error;
1879 }
1880 break;
1881
1882 case IEEE80211_S_RUN:
1883 if ((error = iwn_run(sc)) != 0) {
1884 aprint_error_dev(sc->sc_dev,
1885 "could not move to run state\n");
1886 return error;
1887 }
1888 break;
1889
1890 case IEEE80211_S_INIT:
1891 sc->sc_flags &= ~IWN_FLAG_SCANNING;
1892 sc->calib.state = IWN_CALIB_STATE_INIT;
1893 break;
1894 }
1895
1896 return sc->sc_newstate(ic, nstate, arg);
1897 }
1898
1899 static void
1900 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1901 {
1902 struct iwn_softc *sc = arg;
1903 struct iwn_node *wn = (struct iwn_node *)ni;
1904
1905 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1906 }
1907
1908 static void
1909 iwn_calib_timeout(void *arg)
1910 {
1911 struct iwn_softc *sc = arg;
1912 struct ieee80211com *ic = &sc->sc_ic;
1913 int s;
1914
1915 s = splnet();
1916 if (ic->ic_fixed_rate == -1) {
1917 if (ic->ic_opmode == IEEE80211_M_STA)
1918 iwn_iter_func(sc, ic->ic_bss);
1919 else
1920 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1921 }
1922 /* Force automatic TX power calibration every 60 secs. */
1923 if (++sc->calib_cnt >= 120) {
1924 uint32_t flags = 0;
1925
1926 DPRINTF(("sending request for statistics\n"));
1927 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1928 sizeof flags, 1);
1929 sc->calib_cnt = 0;
1930 }
1931 splx(s);
1932
1933 /* Automatic rate control triggered every 500ms. */
1934 callout_schedule(&sc->calib_to, hz/2);
1935 }
1936
1937 /*
1938 * Process an RX_PHY firmware notification. This is usually immediately
1939 * followed by an MPDU_RX_DONE notification.
1940 */
1941 static void
1942 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1943 struct iwn_rx_data *data)
1944 {
1945 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1946
1947 DPRINTFN(2, ("received PHY stats\n"));
1948 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1949 sizeof (*stat), BUS_DMASYNC_POSTREAD);
1950
1951 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
1952 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1953 sc->last_rx_valid = 1;
1954 }
1955
1956 /*
1957 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1958 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1959 */
1960 static void
1961 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1962 struct iwn_rx_data *data)
1963 {
1964 const struct iwn_hal *hal = sc->sc_hal;
1965 struct ieee80211com *ic = &sc->sc_ic;
1966 struct ifnet *ifp = ic->ic_ifp;
1967 struct iwn_rx_ring *ring = &sc->rxq;
1968 struct ieee80211_frame *wh;
1969 struct ieee80211_node *ni;
1970 struct mbuf *m, *m1;
1971 struct iwn_rx_stat *stat;
1972 char *head;
1973 uint32_t flags;
1974 int error, len, rssi;
1975
1976 if (desc->type == IWN_MPDU_RX_DONE) {
1977 /* Check for prior RX_PHY notification. */
1978 if (!sc->last_rx_valid) {
1979 DPRINTF(("missing RX_PHY\n"));
1980 ifp->if_ierrors++;
1981 return;
1982 }
1983 sc->last_rx_valid = 0;
1984 stat = &sc->last_rx_stat;
1985 } else
1986 stat = (struct iwn_rx_stat *)(desc + 1);
1987
1988 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1989 BUS_DMASYNC_POSTREAD);
1990
1991 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1992 aprint_error_dev(sc->sc_dev,
1993 "invalid RX statistic header\n");
1994 ifp->if_ierrors++;
1995 return;
1996 }
1997 if (desc->type == IWN_MPDU_RX_DONE) {
1998 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1999 head = (char *)(mpdu + 1);
2000 len = le16toh(mpdu->len);
2001 } else {
2002 head = (char *)(stat + 1) + stat->cfg_phy_len;
2003 len = le16toh(stat->len);
2004 }
2005
2006 flags = le32toh(*(uint32_t *)(head + len));
2007
2008 /* Discard frames with a bad FCS early. */
2009 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2010 DPRINTFN(2, ("RX flags error %x\n", flags));
2011 ifp->if_ierrors++;
2012 return;
2013 }
2014 /* Discard frames that are too short. */
2015 if (len < sizeof (*wh)) {
2016 DPRINTF(("frame too short: %d\n", len));
2017 ic->ic_stats.is_rx_tooshort++;
2018 ifp->if_ierrors++;
2019 return;
2020 }
2021
2022 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2023 if (m1 == NULL) {
2024 ic->ic_stats.is_rx_nobuf++;
2025 ifp->if_ierrors++;
2026 return;
2027 }
2028 bus_dmamap_unload(sc->sc_dmat, data->map);
2029
2030 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2031 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2032 if (error != 0) {
2033 m_freem(m1);
2034
2035 /* Try to reload the old mbuf. */
2036 error = bus_dmamap_load(sc->sc_dmat, data->map,
2037 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2038 BUS_DMA_NOWAIT | BUS_DMA_READ);
2039 if (error != 0) {
2040 panic("%s: could not load old RX mbuf",
2041 device_xname(sc->sc_dev));
2042 }
2043 /* Physical address may have changed. */
2044 ring->desc[ring->cur] =
2045 htole32(data->map->dm_segs[0].ds_addr >> 8);
2046 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2047 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2048 BUS_DMASYNC_PREWRITE);
2049 ifp->if_ierrors++;
2050 return;
2051 }
2052
2053 m = data->m;
2054 data->m = m1;
2055 /* Update RX descriptor. */
2056 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2057 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2058 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2059 BUS_DMASYNC_PREWRITE);
2060
2061 /* Finalize mbuf. */
2062 m->m_pkthdr.rcvif = ifp;
2063 m->m_data = head;
2064 m->m_pkthdr.len = m->m_len = len;
2065
2066 /* Grab a reference to the source node. */
2067 wh = mtod(m, struct ieee80211_frame *);
2068 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2069
2070 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2071 /* NetBSD does decryption in ieee80211_input. */
2072
2073 rssi = hal->get_rssi(stat);
2074
2075 /* XXX Added for NetBSD: scans never stop without it */
2076 if (ic->ic_state == IEEE80211_S_SCAN)
2077 iwn_fix_channel(ic, m);
2078
2079 if (sc->sc_drvbpf != NULL) {
2080 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2081
2082 tap->wr_flags = 0;
2083 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2084 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2085 tap->wr_chan_freq =
2086 htole16(ic->ic_channels[stat->chan].ic_freq);
2087 tap->wr_chan_flags =
2088 htole16(ic->ic_channels[stat->chan].ic_flags);
2089 tap->wr_dbm_antsignal = (int8_t)rssi;
2090 tap->wr_dbm_antnoise = (int8_t)sc->noise;
2091 tap->wr_tsft = stat->tstamp;
2092 switch (stat->rate) {
2093 /* CCK rates. */
2094 case 10: tap->wr_rate = 2; break;
2095 case 20: tap->wr_rate = 4; break;
2096 case 55: tap->wr_rate = 11; break;
2097 case 110: tap->wr_rate = 22; break;
2098 /* OFDM rates. */
2099 case 0xd: tap->wr_rate = 12; break;
2100 case 0xf: tap->wr_rate = 18; break;
2101 case 0x5: tap->wr_rate = 24; break;
2102 case 0x7: tap->wr_rate = 36; break;
2103 case 0x9: tap->wr_rate = 48; break;
2104 case 0xb: tap->wr_rate = 72; break;
2105 case 0x1: tap->wr_rate = 96; break;
2106 case 0x3: tap->wr_rate = 108; break;
2107 /* Unknown rate: should not happen. */
2108 default: tap->wr_rate = 0;
2109 }
2110
2111 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2112 }
2113
2114 /* Send the frame to the 802.11 layer. */
2115 ieee80211_input(ic, m, ni, rssi, 0);
2116
2117 /* Node is no longer needed. */
2118 ieee80211_free_node(ni);
2119 }
2120
2121 #ifndef IEEE80211_NO_HT
2122 /* Process an incoming Compressed BlockAck. */
2123 static void
2124 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2125 struct iwn_rx_data *data)
2126 {
2127 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2128 struct iwn_tx_ring *txq;
2129
2130 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2131 BUS_DMASYNC_POSTREAD);
2132
2133 txq = &sc->txq[le16toh(ba->qid)];
2134 /* XXX TBD */
2135 }
2136 #endif
2137
2138 /*
2139 * Process a CALIBRATION_RESULT notification sent by the initialization
2140 * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2141 */
2142 static void
2143 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2144 struct iwn_rx_data *data)
2145 {
2146 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2147 int len, idx = -1;
2148
2149 /* Runtime firmware should not send such a notification. */
2150 if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2151 return;
2152
2153 len = (le32toh(desc->len) & 0x3fff) - 4;
2154 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2155 BUS_DMASYNC_POSTREAD);
2156
2157 switch (calib->code) {
2158 case IWN5000_PHY_CALIB_DC:
2159 if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2160 sc->hw_type == IWN_HW_REV_TYPE_6050)
2161 idx = 0;
2162 break;
2163 case IWN5000_PHY_CALIB_LO:
2164 idx = 1;
2165 break;
2166 case IWN5000_PHY_CALIB_TX_IQ:
2167 idx = 2;
2168 break;
2169 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2170 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2171 sc->hw_type != IWN_HW_REV_TYPE_5150)
2172 idx = 3;
2173 break;
2174 case IWN5000_PHY_CALIB_BASE_BAND:
2175 idx = 4;
2176 break;
2177 }
2178 if (idx == -1) /* Ignore other results. */
2179 return;
2180
2181 /* Save calibration result. */
2182 if (sc->calibcmd[idx].buf != NULL)
2183 free(sc->calibcmd[idx].buf, M_DEVBUF);
2184 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2185 if (sc->calibcmd[idx].buf == NULL) {
2186 DPRINTF(("not enough memory for calibration result %d\n",
2187 calib->code));
2188 return;
2189 }
2190 DPRINTF(("saving calibration result code=%d len=%d\n",
2191 calib->code, len));
2192 sc->calibcmd[idx].len = len;
2193 memcpy(sc->calibcmd[idx].buf, calib, len);
2194 }
2195
2196 /*
2197 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2198 * The latter is sent by the firmware after each received beacon.
2199 */
2200 static void
2201 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2202 struct iwn_rx_data *data)
2203 {
2204 const struct iwn_hal *hal = sc->sc_hal;
2205 struct ieee80211com *ic = &sc->sc_ic;
2206 struct iwn_calib_state *calib = &sc->calib;
2207 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2208 int temp;
2209
2210 /* Ignore statistics received during a scan. */
2211 if (ic->ic_state != IEEE80211_S_RUN)
2212 return;
2213
2214 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2215 sizeof (*stats), BUS_DMASYNC_POSTREAD);
2216
2217 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2218 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2219
2220 /* Test if temperature has changed. */
2221 if (stats->general.temp != sc->rawtemp) {
2222 /* Convert "raw" temperature to degC. */
2223 sc->rawtemp = stats->general.temp;
2224 temp = hal->get_temperature(sc);
2225 DPRINTFN(2, ("temperature=%dC\n", temp));
2226
2227 #ifndef SMALL_KERNEL
2228 /* Update temperature sensor. */
2229 sc->sc_sensor.value_cur = IWN_CTOMUK(temp);
2230 sc->sc_sensor.state = ENVSYS_SVALID;
2231 #endif
2232
2233 /* Update TX power if need be (4965AGN only.) */
2234 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2235 iwn4965_power_calibration(sc, temp);
2236 }
2237
2238 if (desc->type != IWN_BEACON_STATISTICS)
2239 return; /* Reply to a statistics request. */
2240
2241 sc->noise = iwn_get_noise(&stats->rx.general);
2242
2243 /* Test that RSSI and noise are present in stats report. */
2244 if (le32toh(stats->rx.general.flags) != 1) {
2245 DPRINTF(("received statistics without RSSI\n"));
2246 return;
2247 }
2248
2249 if (calib->state == IWN_CALIB_STATE_ASSOC)
2250 iwn_collect_noise(sc, &stats->rx.general);
2251 else if (calib->state == IWN_CALIB_STATE_RUN)
2252 iwn_tune_sensitivity(sc, &stats->rx);
2253 }
2254
2255 /*
2256 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2257 * and 5000 adapters have different incompatible TX status formats.
2258 */
2259 static void
2260 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2261 struct iwn_rx_data *data)
2262 {
2263 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2264
2265 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2266 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2267 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2268 }
2269
2270 static void
2271 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2272 struct iwn_rx_data *data)
2273 {
2274 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2275
2276 #ifdef notyet
2277 /* Reset TX scheduler slot. */
2278 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2279 #endif
2280
2281 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2282 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2283 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2284 }
2285
2286 /*
2287 * Adapter-independent backend for TX_DONE firmware notifications.
2288 */
2289 static void
2290 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2291 uint8_t status)
2292 {
2293 struct ieee80211com *ic = &sc->sc_ic;
2294 struct ifnet *ifp = ic->ic_ifp;
2295 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2296 struct iwn_tx_data *data = &ring->data[desc->idx];
2297 struct iwn_node *wn = (struct iwn_node *)data->ni;
2298
2299 /* Update rate control statistics. */
2300 wn->amn.amn_txcnt++;
2301 if (ackfailcnt > 0)
2302 wn->amn.amn_retrycnt++;
2303
2304 if (status != 1 && status != 2)
2305 ifp->if_oerrors++;
2306 else
2307 ifp->if_opackets++;
2308
2309 /* Unmap and free mbuf. */
2310 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2311 BUS_DMASYNC_POSTWRITE);
2312 bus_dmamap_unload(sc->sc_dmat, data->map);
2313 m_freem(data->m);
2314 data->m = NULL;
2315 ieee80211_free_node(data->ni);
2316 data->ni = NULL;
2317
2318 sc->sc_tx_timer = 0;
2319 if (--ring->queued < IWN_TX_RING_LOMARK) {
2320 sc->qfullmsk &= ~(1 << ring->qid);
2321 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2322 ifp->if_flags &= ~IFF_OACTIVE;
2323 (*ifp->if_start)(ifp);
2324 }
2325 }
2326 }
2327
2328 /*
2329 * Process a "command done" firmware notification. This is where we wakeup
2330 * processes waiting for a synchronous command completion.
2331 */
2332 static void
2333 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2334 {
2335 struct iwn_tx_ring *ring = &sc->txq[4];
2336 struct iwn_tx_data *data;
2337
2338 if ((desc->qid & 0xf) != 4)
2339 return; /* Not a command ack. */
2340
2341 data = &ring->data[desc->idx];
2342
2343 /* If the command was mapped in an mbuf, free it. */
2344 if (data->m != NULL) {
2345 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2346 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2347 bus_dmamap_unload(sc->sc_dmat, data->map);
2348 m_freem(data->m);
2349 data->m = NULL;
2350 }
2351 wakeup(&ring->desc[desc->idx]);
2352 }
2353
2354 /*
2355 * Process an INT_FH_RX or INT_SW_RX interrupt.
2356 */
2357 static void
2358 iwn_notif_intr(struct iwn_softc *sc)
2359 {
2360 struct ieee80211com *ic = &sc->sc_ic;
2361 struct ifnet *ifp = ic->ic_ifp;
2362 uint16_t hw;
2363
2364 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2365 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2366
2367 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2368 while (sc->rxq.cur != hw) {
2369 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2370 struct iwn_rx_desc *desc;
2371
2372 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2373 BUS_DMASYNC_POSTREAD);
2374 desc = mtod(data->m, struct iwn_rx_desc *);
2375
2376 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2377 desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2378
2379 if (!(desc->qid & 0x80)) /* Reply to a command. */
2380 iwn_cmd_done(sc, desc);
2381
2382 switch (desc->type) {
2383 case IWN_RX_PHY:
2384 iwn_rx_phy(sc, desc, data);
2385 break;
2386
2387 case IWN_RX_DONE: /* 4965AGN only. */
2388 case IWN_MPDU_RX_DONE:
2389 /* An 802.11 frame has been received. */
2390 iwn_rx_done(sc, desc, data);
2391 break;
2392 #ifndef IEEE80211_NO_HT
2393 case IWN_RX_COMPRESSED_BA:
2394 /* A Compressed BlockAck has been received. */
2395 iwn_rx_compressed_ba(sc, desc, data);
2396 break;
2397 #endif
2398 case IWN_TX_DONE:
2399 /* An 802.11 frame has been transmitted. */
2400 sc->sc_hal->tx_done(sc, desc, data);
2401 break;
2402
2403 case IWN_RX_STATISTICS:
2404 case IWN_BEACON_STATISTICS:
2405 iwn_rx_statistics(sc, desc, data);
2406 break;
2407
2408 case IWN_BEACON_MISSED:
2409 {
2410 struct iwn_beacon_missed *miss =
2411 (struct iwn_beacon_missed *)(desc + 1);
2412
2413 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2414 sizeof (*miss), BUS_DMASYNC_POSTREAD);
2415 /*
2416 * If more than 5 consecutive beacons are missed,
2417 * reinitialize the sensitivity state machine.
2418 */
2419 DPRINTF(("beacons missed %d/%d\n",
2420 le32toh(miss->consecutive), le32toh(miss->total)));
2421 if (ic->ic_state == IEEE80211_S_RUN &&
2422 le32toh(miss->consecutive) > 5)
2423 (void)iwn_init_sensitivity(sc);
2424 break;
2425 }
2426 case IWN_UC_READY:
2427 {
2428 struct iwn_ucode_info *uc =
2429 (struct iwn_ucode_info *)(desc + 1);
2430
2431 /* The microcontroller is ready. */
2432 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2433 sizeof (*uc), BUS_DMASYNC_POSTREAD);
2434 DPRINTF(("microcode alive notification version=%d.%d "
2435 "subtype=%x alive=%x\n", uc->major, uc->minor,
2436 uc->subtype, le32toh(uc->valid)));
2437
2438 if (le32toh(uc->valid) != 1) {
2439 aprint_error_dev(sc->sc_dev,
2440 "microcontroller initialization "
2441 "failed\n");
2442 break;
2443 }
2444 if (uc->subtype == IWN_UCODE_INIT) {
2445 /* Save microcontroller report. */
2446 memcpy(&sc->ucode_info, uc, sizeof (*uc));
2447 }
2448 /* Save the address of the error log in SRAM. */
2449 sc->errptr = le32toh(uc->errptr);
2450 break;
2451 }
2452 case IWN_STATE_CHANGED:
2453 {
2454 uint32_t *status = (uint32_t *)(desc + 1);
2455
2456 /* Enabled/disabled notification. */
2457 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2458 sizeof (*status), BUS_DMASYNC_POSTREAD);
2459 DPRINTF(("state changed to %x\n", le32toh(*status)));
2460
2461 if (le32toh(*status) & 1) {
2462 /* The radio button has to be pushed. */
2463 aprint_error_dev(sc->sc_dev,
2464 "Radio transmitter is off\n");
2465 /* Turn the interface down. */
2466 ifp->if_flags &= ~IFF_UP;
2467 iwn_stop(ifp, 1);
2468 return; /* No further processing. */
2469 }
2470 break;
2471 }
2472 case IWN_START_SCAN:
2473 {
2474 struct iwn_start_scan *scan =
2475 (struct iwn_start_scan *)(desc + 1);
2476
2477 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2478 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2479 DPRINTFN(2, ("scanning channel %d status %x\n",
2480 scan->chan, le32toh(scan->status)));
2481
2482 /* Fix current channel. */
2483 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2484 break;
2485 }
2486 case IWN_STOP_SCAN:
2487 {
2488 struct iwn_stop_scan *scan =
2489 (struct iwn_stop_scan *)(desc + 1);
2490
2491 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2492 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2493 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2494 scan->nchan, scan->status, scan->chan));
2495
2496 if (scan->status == 1 && scan->chan <= 14 &&
2497 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2498 /*
2499 * We just finished scanning 2GHz channels,
2500 * start scanning 5GHz ones.
2501 */
2502 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2503 break;
2504 }
2505 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2506 ieee80211_end_scan(ic);
2507 break;
2508 }
2509 case IWN5000_CALIBRATION_RESULT:
2510 iwn5000_rx_calib_results(sc, desc, data);
2511 break;
2512
2513 case IWN5000_CALIBRATION_DONE:
2514 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2515 wakeup(sc);
2516 break;
2517 }
2518
2519 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2520 }
2521
2522 /* Tell the firmware what we have processed. */
2523 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2524 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2525 }
2526
2527 /*
2528 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2529 * from power-down sleep mode.
2530 */
2531 static void
2532 iwn_wakeup_intr(struct iwn_softc *sc)
2533 {
2534 int qid;
2535
2536 DPRINTF(("ucode wakeup from power-down sleep\n"));
2537
2538 /* Wakeup RX and TX rings. */
2539 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2540 for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
2541 struct iwn_tx_ring *ring = &sc->txq[qid];
2542 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2543 }
2544 }
2545
2546 /*
2547 * Dump the error log of the firmware when a firmware panic occurs. Although
2548 * we can't debug the firmware because it is neither open source nor free, it
2549 * can help us to identify certain classes of problems.
2550 */
2551 static void
2552 iwn_fatal_intr(struct iwn_softc *sc)
2553 {
2554 const struct iwn_hal *hal = sc->sc_hal;
2555 struct iwn_fw_dump dump;
2556 int i;
2557
2558 /* Force a complete recalibration on next init. */
2559 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2560
2561 /* Check that the error log address is valid. */
2562 if (sc->errptr < IWN_FW_DATA_BASE ||
2563 sc->errptr + sizeof (dump) >
2564 IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2565 aprint_error_dev(sc->sc_dev,
2566 "bad firmware error log address 0x%08x\n", sc->errptr);
2567 return;
2568 }
2569 if (iwn_nic_lock(sc) != 0) {
2570 aprint_error_dev(sc->sc_dev,
2571 "could not read firmware error log\n");
2572 return;
2573 }
2574 /* Read firmware error log from SRAM. */
2575 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2576 sizeof (dump) / sizeof (uint32_t));
2577 iwn_nic_unlock(sc);
2578
2579 if (dump.valid == 0) {
2580 aprint_error_dev(sc->sc_dev,
2581 "firmware error log is empty\n");
2582 return;
2583 }
2584 aprint_error("firmware error log:\n");
2585 aprint_error(" error type = \"%s\" (0x%08X)\n",
2586 (dump.id < __arraycount(iwn_fw_errmsg)) ?
2587 iwn_fw_errmsg[dump.id] : "UNKNOWN",
2588 dump.id);
2589 aprint_error(" program counter = 0x%08X\n", dump.pc);
2590 aprint_error(" source line = 0x%08X\n", dump.src_line);
2591 aprint_error(" error data = 0x%08X%08X\n",
2592 dump.error_data[0], dump.error_data[1]);
2593 aprint_error(" branch link = 0x%08X%08X\n",
2594 dump.branch_link[0], dump.branch_link[1]);
2595 aprint_error(" interrupt link = 0x%08X%08X\n",
2596 dump.interrupt_link[0], dump.interrupt_link[1]);
2597 aprint_error(" time = %u\n", dump.time[0]);
2598
2599 /* Dump driver status (TX and RX rings) while we're here. */
2600 aprint_error("driver status:\n");
2601 for (i = 0; i < hal->ntxqs; i++) {
2602 struct iwn_tx_ring *ring = &sc->txq[i];
2603 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2604 i, ring->qid, ring->cur, ring->queued);
2605 }
2606 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
2607 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
2608 }
2609
2610 static int
2611 iwn_intr(void *arg)
2612 {
2613 struct iwn_softc *sc = arg;
2614 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2615 uint32_t r1, r2, tmp;
2616
2617 /* Disable interrupts. */
2618 IWN_WRITE(sc, IWN_INT_MASK, 0);
2619
2620 /* Read interrupts from ICT (fast) or from registers (slow). */
2621 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2622 tmp = 0;
2623 while (sc->ict[sc->ict_cur] != 0) {
2624 tmp |= sc->ict[sc->ict_cur];
2625 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2626 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2627 }
2628 tmp = le32toh(tmp);
2629 if (tmp == 0xffffffff) /* Shouldn't happen. */
2630 tmp = 0;
2631 else if (tmp & 0xc0000) /* Workaround a HW bug. */
2632 tmp |= 0x8000;
2633 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2634 r2 = 0; /* Unused. */
2635 } else {
2636 r1 = IWN_READ(sc, IWN_INT);
2637 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2638 return 0; /* Hardware gone! */
2639 r2 = IWN_READ(sc, IWN_FH_INT);
2640 }
2641 if (r1 == 0 && r2 == 0) {
2642 if (ifp->if_flags & IFF_UP)
2643 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2644 return 0; /* Interrupt not for us. */
2645 }
2646
2647 /* Acknowledge interrupts. */
2648 IWN_WRITE(sc, IWN_INT, r1);
2649 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2650 IWN_WRITE(sc, IWN_FH_INT, r2);
2651
2652 if (r1 & IWN_INT_RF_TOGGLED) {
2653 tmp = IWN_READ(sc, IWN_GP_CNTRL);
2654 aprint_error_dev(sc->sc_dev,
2655 "RF switch: radio %s\n",
2656 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2657 }
2658 if (r1 & IWN_INT_CT_REACHED) {
2659 aprint_error_dev(sc->sc_dev,
2660 "critical temperature reached!\n");
2661 }
2662 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2663 aprint_error_dev(sc->sc_dev,
2664 "fatal firmware error\n");
2665 /* Dump firmware error log and stop. */
2666 iwn_fatal_intr(sc);
2667 ifp->if_flags &= ~IFF_UP;
2668 iwn_stop(ifp, 1);
2669 return 1;
2670 }
2671 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2672 (r2 & IWN_FH_INT_RX)) {
2673 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2674 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2675 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2676 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2677 IWN_INT_PERIODIC_DIS);
2678 iwn_notif_intr(sc);
2679 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2680 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2681 IWN_INT_PERIODIC_ENA);
2682 }
2683 } else
2684 iwn_notif_intr(sc);
2685 }
2686
2687 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2688 if (sc->sc_flags & IWN_FLAG_USE_ICT)
2689 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2690 wakeup(sc); /* FH DMA transfer completed. */
2691 }
2692
2693 if (r1 & IWN_INT_ALIVE)
2694 wakeup(sc); /* Firmware is alive. */
2695
2696 if (r1 & IWN_INT_WAKEUP)
2697 iwn_wakeup_intr(sc);
2698
2699 /* Re-enable interrupts. */
2700 if (ifp->if_flags & IFF_UP)
2701 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2702
2703 return 1;
2704 }
2705
2706 /*
2707 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2708 * 5000 adapters use a slightly different format.)
2709 */
2710 static void
2711 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2712 uint16_t len)
2713 {
2714 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2715
2716 *w = htole16(len + 8);
2717 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2718 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2719 sizeof (uint16_t),
2720 BUS_DMASYNC_PREWRITE);
2721 if (idx < IWN_SCHED_WINSZ) {
2722 *(w + IWN_TX_RING_COUNT) = *w;
2723 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2724 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2725 (char *)(void *)sc->sched_dma.vaddr,
2726 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2727 }
2728 }
2729
2730 static void
2731 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2732 uint16_t len)
2733 {
2734 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2735
2736 *w = htole16(id << 12 | (len + 8));
2737 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2738 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2739 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2740 if (idx < IWN_SCHED_WINSZ) {
2741 *(w + IWN_TX_RING_COUNT) = *w;
2742 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2743 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2744 (char *)(void *)sc->sched_dma.vaddr,
2745 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2746 }
2747 }
2748
2749 #ifdef notyet
2750 static void
2751 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2752 {
2753 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2754
2755 *w = (*w & htole16(0xf000)) | htole16(1);
2756 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2757 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2758 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2759 if (idx < IWN_SCHED_WINSZ) {
2760 *(w + IWN_TX_RING_COUNT) = *w;
2761 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2762 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2763 (char *)(void *)sc->sched_dma.vaddr,
2764 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2765 }
2766 }
2767 #endif
2768
2769 static int
2770 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2771 {
2772 const struct iwn_hal *hal = sc->sc_hal;
2773 struct ieee80211com *ic = &sc->sc_ic;
2774 struct iwn_node *wn = (void *)ni;
2775 struct iwn_tx_ring *ring;
2776 struct iwn_tx_desc *desc;
2777 struct iwn_tx_data *data;
2778 struct iwn_tx_cmd *cmd;
2779 struct iwn_cmd_data *tx;
2780 const struct iwn_rate *rinfo;
2781 struct ieee80211_frame *wh;
2782 struct ieee80211_key *k = NULL;
2783 struct mbuf *m1;
2784 uint32_t flags;
2785 u_int hdrlen;
2786 bus_dma_segment_t *seg;
2787 uint8_t tid, ridx, txant, type;
2788 int i, totlen, error, pad;
2789
2790 const struct chanAccParams *cap;
2791 int noack;
2792 int hdrlen2;
2793
2794 wh = mtod(m, struct ieee80211_frame *);
2795 hdrlen = ieee80211_anyhdrsize(wh);
2796 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2797
2798 hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
2799 sizeof (struct ieee80211_qosframe) :
2800 sizeof (struct ieee80211_frame);
2801
2802 if (hdrlen != hdrlen2)
2803 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2804 hdrlen, hdrlen2);
2805
2806 /* XXX OpenBSD sets a different tid when using QOS */
2807 tid = 0;
2808 if (IEEE80211_QOS_HAS_SEQ(wh)) {
2809 cap = &ic->ic_wme.wme_chanParams;
2810 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2811 }
2812 else
2813 noack = 0;
2814
2815 ring = &sc->txq[ac];
2816 desc = &ring->desc[ring->cur];
2817 data = &ring->data[ring->cur];
2818
2819 /* Choose a TX rate index. */
2820 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2821 type != IEEE80211_FC0_TYPE_DATA) {
2822 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2823 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2824 } else if (ic->ic_fixed_rate != -1) {
2825 ridx = sc->fixed_ridx;
2826 } else
2827 ridx = wn->ridx[ni->ni_txrate];
2828 rinfo = &iwn_rates[ridx];
2829
2830 /* Encrypt the frame if need be. */
2831 /*
2832 * XXX For now, NetBSD swaps the encryption and bpf sections
2833 * in order to match old code and other drivers. Tests with
2834 * tcpdump indicates that the order is irrelevant, however,
2835 * as bpf produces unencrypted data for both ordering choices.
2836 */
2837 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2838 k = ieee80211_crypto_encap(ic, ni, m);
2839 if (k == NULL) {
2840 m_freem(m);
2841 return ENOBUFS;
2842 }
2843 /* Packet header may have moved, reset our local pointer. */
2844 wh = mtod(m, struct ieee80211_frame *);
2845 }
2846 totlen = m->m_pkthdr.len;
2847
2848 if (sc->sc_drvbpf != NULL) {
2849 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2850
2851 tap->wt_flags = 0;
2852 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2853 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2854 tap->wt_rate = rinfo->rate;
2855 tap->wt_hwqueue = ac;
2856 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2857 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2858
2859 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2860 }
2861
2862 /* Prepare TX firmware command. */
2863 cmd = &ring->cmd[ring->cur];
2864 cmd->code = IWN_CMD_TX_DATA;
2865 cmd->flags = 0;
2866 cmd->qid = ring->qid;
2867 cmd->idx = ring->cur;
2868
2869 tx = (struct iwn_cmd_data *)cmd->data;
2870 /* NB: No need to clear tx, all fields are reinitialized here. */
2871 tx->scratch = 0; /* clear "scratch" area */
2872
2873 flags = 0;
2874 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2875 /* Unicast frame, check if an ACK is expected. */
2876 if (!noack)
2877 flags |= IWN_TX_NEED_ACK;
2878 }
2879
2880 #ifdef notyet
2881 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2882 if ((wh->i_fc[0] &
2883 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2884 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2885 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
2886 #endif
2887
2888 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2889 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
2890
2891 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2892 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2893 /* NB: Group frames are sent using CCK in 802.11b/g. */
2894 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2895 flags |= IWN_TX_NEED_RTS;
2896 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2897 ridx >= IWN_RIDX_OFDM6) {
2898 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2899 flags |= IWN_TX_NEED_CTS;
2900 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2901 flags |= IWN_TX_NEED_RTS;
2902 }
2903 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2904 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2905 /* 5000 autoselects RTS/CTS or CTS-to-self. */
2906 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2907 flags |= IWN_TX_NEED_PROTECTION;
2908 } else
2909 flags |= IWN_TX_FULL_TXOP;
2910 }
2911 }
2912
2913 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2914 type != IEEE80211_FC0_TYPE_DATA)
2915 tx->id = hal->broadcast_id;
2916 else
2917 tx->id = wn->id;
2918
2919 if (type == IEEE80211_FC0_TYPE_MGT) {
2920 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2921
2922 #ifndef IEEE80211_STA_ONLY
2923 /* Tell HW to set timestamp in probe responses. */
2924 /* XXX NetBSD rev 1.11 added probe requests here but */
2925 /* probe requests do not take timestamps (from Bergamini). */
2926 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2927 flags |= IWN_TX_INSERT_TSTAMP;
2928 #endif
2929 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2930 /* changes here. These are not needed (from Bergamini). */
2931 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2932 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2933 tx->timeout = htole16(3);
2934 else
2935 tx->timeout = htole16(2);
2936 } else
2937 tx->timeout = htole16(0);
2938
2939 if (hdrlen & 3) {
2940 /* First segment's length must be a multiple of 4. */
2941 flags |= IWN_TX_NEED_PADDING;
2942 pad = 4 - (hdrlen & 3);
2943 } else
2944 pad = 0;
2945
2946 tx->len = htole16(totlen);
2947 tx->tid = tid;
2948 tx->rts_ntries = 60;
2949 tx->data_ntries = 15;
2950 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2951 tx->plcp = rinfo->plcp;
2952 tx->rflags = rinfo->flags;
2953 if (tx->id == hal->broadcast_id) {
2954 /* Group or management frame. */
2955 tx->linkq = 0;
2956 /* XXX Alternate between antenna A and B? */
2957 txant = IWN_LSB(sc->txchainmask);
2958 tx->rflags |= IWN_RFLAG_ANT(txant);
2959 } else {
2960 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2961 flags |= IWN_TX_LINKQ; /* enable MRR */
2962 }
2963 /* Set physical address of "scratch area". */
2964 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2965 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2966
2967 /* Copy 802.11 header in TX command. */
2968 /* XXX NetBSD changed this in rev 1.20 */
2969 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2970
2971 /* Trim 802.11 header. */
2972 m_adj(m, hdrlen);
2973 tx->security = 0;
2974 tx->flags = htole32(flags);
2975
2976 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2977 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2978 if (error != 0) {
2979 if (error != EFBIG) {
2980 aprint_error_dev(sc->sc_dev,
2981 "can't map mbuf (error %d)\n", error);
2982 m_freem(m);
2983 return error;
2984 }
2985 /* Too many DMA segments, linearize mbuf. */
2986 MGETHDR(m1, M_DONTWAIT, MT_DATA);
2987 if (m1 == NULL) {
2988 m_freem(m);
2989 return ENOBUFS;
2990 }
2991 if (m->m_pkthdr.len > MHLEN) {
2992 MCLGET(m1, M_DONTWAIT);
2993 if (!(m1->m_flags & M_EXT)) {
2994 m_freem(m);
2995 m_freem(m1);
2996 return ENOBUFS;
2997 }
2998 }
2999 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3000 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3001 m_freem(m);
3002 m = m1;
3003
3004 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3005 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3006 if (error != 0) {
3007 aprint_error_dev(sc->sc_dev,
3008 "can't map mbuf (error %d)\n", error);
3009 m_freem(m);
3010 return error;
3011 }
3012 }
3013
3014 data->m = m;
3015 data->ni = ni;
3016
3017 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3018 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3019
3020 /* Fill TX descriptor. */
3021 desc->nsegs = 1 + data->map->dm_nsegs;
3022 /* First DMA segment is used by the TX command. */
3023 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3024 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
3025 (4 + sizeof (*tx) + hdrlen + pad) << 4);
3026 /* Other DMA segments are for data payload. */
3027 seg = data->map->dm_segs;
3028 for (i = 1; i <= data->map->dm_nsegs; i++) {
3029 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3030 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
3031 seg->ds_len << 4);
3032 seg++;
3033 }
3034
3035 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3036 BUS_DMASYNC_PREWRITE);
3037 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3038 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3039 sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3040 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3041 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3042 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3043
3044 #ifdef notyet
3045 /* Update TX scheduler. */
3046 hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3047 #endif
3048
3049 /* Kick TX ring. */
3050 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3051 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3052
3053 /* Mark TX ring as full if we reach a certain threshold. */
3054 if (++ring->queued > IWN_TX_RING_HIMARK)
3055 sc->qfullmsk |= 1 << ring->qid;
3056
3057 return 0;
3058 }
3059
3060 static void
3061 iwn_start(struct ifnet *ifp)
3062 {
3063 struct iwn_softc *sc = ifp->if_softc;
3064 struct ieee80211com *ic = &sc->sc_ic;
3065 struct ieee80211_node *ni;
3066 struct ether_header *eh;
3067 struct mbuf *m;
3068 int ac;
3069
3070 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3071 return;
3072
3073 for (;;) {
3074 if (sc->qfullmsk != 0) {
3075 ifp->if_flags |= IFF_OACTIVE;
3076 break;
3077 }
3078 /* Send pending management frames first. */
3079 IF_DEQUEUE(&ic->ic_mgtq, m);
3080 if (m != NULL) {
3081 ni = (void *)m->m_pkthdr.rcvif;
3082 ac = 0;
3083 goto sendit;
3084 }
3085 if (ic->ic_state != IEEE80211_S_RUN)
3086 break;
3087
3088 /* Encapsulate and send data frames. */
3089 IFQ_DEQUEUE(&ifp->if_snd, m);
3090 if (m == NULL)
3091 break;
3092 if (m->m_len < sizeof (*eh) &&
3093 (m = m_pullup(m, sizeof (*eh))) == NULL) {
3094 ifp->if_oerrors++;
3095 continue;
3096 }
3097 eh = mtod(m, struct ether_header *);
3098 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3099 if (ni == NULL) {
3100 m_freem(m);
3101 ifp->if_oerrors++;
3102 continue;
3103 }
3104 /* classify mbuf so we can find which tx ring to use */
3105 if (ieee80211_classify(ic, m, ni) != 0) {
3106 m_freem(m);
3107 ieee80211_free_node(ni);
3108 ifp->if_oerrors++;
3109 continue;
3110 }
3111
3112 /* No QoS encapsulation for EAPOL frames. */
3113 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3114 M_WME_GETAC(m) : WME_AC_BE;
3115
3116 bpf_mtap(ifp, m);
3117
3118 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3119 ieee80211_free_node(ni);
3120 ifp->if_oerrors++;
3121 continue;
3122 }
3123 sendit:
3124 bpf_mtap3(ic->ic_rawbpf, m);
3125
3126 if (iwn_tx(sc, m, ni, ac) != 0) {
3127 ieee80211_free_node(ni);
3128 ifp->if_oerrors++;
3129 continue;
3130 }
3131
3132 sc->sc_tx_timer = 5;
3133 ifp->if_timer = 1;
3134 }
3135 }
3136
3137 static void
3138 iwn_watchdog(struct ifnet *ifp)
3139 {
3140 struct iwn_softc *sc = ifp->if_softc;
3141
3142 ifp->if_timer = 0;
3143
3144 if (sc->sc_tx_timer > 0) {
3145 if (--sc->sc_tx_timer == 0) {
3146 aprint_error_dev(sc->sc_dev,
3147 "device timeout\n");
3148 ifp->if_flags &= ~IFF_UP;
3149 iwn_stop(ifp, 1);
3150 ifp->if_oerrors++;
3151 return;
3152 }
3153 ifp->if_timer = 1;
3154 }
3155
3156 ieee80211_watchdog(&sc->sc_ic);
3157 }
3158
3159 static int
3160 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3161 {
3162 struct iwn_softc *sc = ifp->if_softc;
3163 struct ieee80211com *ic = &sc->sc_ic;
3164 struct ifaddr *ifa;
3165 const struct sockaddr *sa;
3166 int s, error = 0;
3167
3168 s = splnet();
3169
3170 switch (cmd) {
3171 case SIOCSIFADDR:
3172 ifa = (struct ifaddr *)data;
3173 ifp->if_flags |= IFF_UP;
3174 #ifdef INET
3175 if (ifa->ifa_addr->sa_family == AF_INET)
3176 arp_ifinit(&ic->ic_ac, ifa);
3177 #endif
3178 /* FALLTHROUGH */
3179 case SIOCSIFFLAGS:
3180 /* XXX Added as it is in every NetBSD driver */
3181 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3182 break;
3183 if (ifp->if_flags & IFF_UP) {
3184 if (!(ifp->if_flags & IFF_RUNNING))
3185 error = iwn_init(ifp);
3186 } else {
3187 if (ifp->if_flags & IFF_RUNNING)
3188 iwn_stop(ifp, 1);
3189 }
3190 break;
3191
3192 case SIOCADDMULTI:
3193 case SIOCDELMULTI:
3194 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3195 error = (cmd == SIOCADDMULTI) ?
3196 ether_addmulti(sa, &sc->sc_ec) :
3197 ether_delmulti(sa, &sc->sc_ec);
3198
3199 if (error == ENETRESET)
3200 error = 0;
3201 break;
3202
3203 default:
3204 error = ieee80211_ioctl(ic, cmd, data);
3205 }
3206
3207 if (error == ENETRESET) {
3208 error = 0;
3209 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3210 (IFF_UP | IFF_RUNNING)) {
3211 iwn_stop(ifp, 0);
3212 error = iwn_init(ifp);
3213 }
3214 }
3215
3216 splx(s);
3217 return error;
3218 }
3219
3220 /*
3221 * Send a command to the firmware.
3222 */
3223 static int
3224 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3225 {
3226 struct iwn_tx_ring *ring = &sc->txq[4];
3227 struct iwn_tx_desc *desc;
3228 struct iwn_tx_data *data;
3229 struct iwn_tx_cmd *cmd;
3230 struct mbuf *m;
3231 bus_addr_t paddr;
3232 int totlen, error;
3233
3234 desc = &ring->desc[ring->cur];
3235 data = &ring->data[ring->cur];
3236 totlen = 4 + size;
3237
3238 if (size > sizeof cmd->data) {
3239 /* Command is too large to fit in a descriptor. */
3240 if (totlen > MCLBYTES)
3241 return EINVAL;
3242 MGETHDR(m, M_DONTWAIT, MT_DATA);
3243 if (m == NULL)
3244 return ENOMEM;
3245 if (totlen > MHLEN) {
3246 MCLGET(m, M_DONTWAIT);
3247 if (!(m->m_flags & M_EXT)) {
3248 m_freem(m);
3249 return ENOMEM;
3250 }
3251 }
3252 cmd = mtod(m, struct iwn_tx_cmd *);
3253 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3254 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3255 if (error != 0) {
3256 m_freem(m);
3257 return error;
3258 }
3259 data->m = m;
3260 paddr = data->map->dm_segs[0].ds_addr;
3261 } else {
3262 cmd = &ring->cmd[ring->cur];
3263 paddr = data->cmd_paddr;
3264 }
3265
3266 cmd->code = code;
3267 cmd->flags = 0;
3268 cmd->qid = ring->qid;
3269 cmd->idx = ring->cur;
3270 memcpy(cmd->data, buf, size);
3271
3272 desc->nsegs = 1;
3273 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3274 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3275
3276 if (size > sizeof cmd->data) {
3277 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3278 BUS_DMASYNC_PREWRITE);
3279 } else {
3280 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3281 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3282 totlen, BUS_DMASYNC_PREWRITE);
3283 }
3284 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3285 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3286 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3287
3288 #ifdef notyet
3289 /* Update TX scheduler. */
3290 sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3291 #endif
3292 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3293
3294 /* Kick command ring. */
3295 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3296 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3297
3298 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3299 }
3300
3301 static int
3302 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3303 {
3304 struct iwn4965_node_info hnode;
3305 char *src, *dst;
3306
3307 /*
3308 * We use the node structure for 5000 Series internally (it is
3309 * a superset of the one for 4965AGN). We thus copy the common
3310 * fields before sending the command.
3311 */
3312 src = (char *)node;
3313 dst = (char *)&hnode;
3314 memcpy(dst, src, 48);
3315 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3316 memcpy(dst + 48, src + 72, 20);
3317 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3318 }
3319
3320 static int
3321 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3322 {
3323 /* Direct mapping. */
3324 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3325 }
3326
3327 static int
3328 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3329 {
3330 struct iwn_node *wn = (void *)ni;
3331 struct ieee80211_rateset *rs = &ni->ni_rates;
3332 struct iwn_cmd_link_quality linkq;
3333 const struct iwn_rate *rinfo;
3334 uint8_t txant;
3335 int i, txrate;
3336
3337 /* Use the first valid TX antenna. */
3338 txant = IWN_LSB(sc->txchainmask);
3339
3340 memset(&linkq, 0, sizeof linkq);
3341 linkq.id = wn->id;
3342 linkq.antmsk_1stream = txant;
3343 linkq.antmsk_2stream = IWN_ANT_AB;
3344 linkq.ampdu_max = 31;
3345 linkq.ampdu_threshold = 3;
3346 linkq.ampdu_limit = htole16(4000); /* 4ms */
3347
3348 /* Start at highest available bit-rate. */
3349 txrate = rs->rs_nrates - 1;
3350 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3351 rinfo = &iwn_rates[wn->ridx[txrate]];
3352 linkq.retry[i].plcp = rinfo->plcp;
3353 linkq.retry[i].rflags = rinfo->flags;
3354 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3355 /* Next retry at immediate lower bit-rate. */
3356 if (txrate > 0)
3357 txrate--;
3358 }
3359 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3360 }
3361
3362 /*
3363 * Broadcast node is used to send group-addressed and management frames.
3364 */
3365 static int
3366 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3367 {
3368 const struct iwn_hal *hal = sc->sc_hal;
3369 struct iwn_node_info node;
3370 struct iwn_cmd_link_quality linkq;
3371 const struct iwn_rate *rinfo;
3372 uint8_t txant;
3373 int i, error;
3374
3375 memset(&node, 0, sizeof node);
3376 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3377 node.id = hal->broadcast_id;
3378 DPRINTF(("adding broadcast node\n"));
3379 if ((error = hal->add_node(sc, &node, async)) != 0)
3380 return error;
3381
3382 /* Use the first valid TX antenna. */
3383 txant = IWN_LSB(sc->txchainmask);
3384
3385 memset(&linkq, 0, sizeof linkq);
3386 linkq.id = hal->broadcast_id;
3387 linkq.antmsk_1stream = txant;
3388 linkq.antmsk_2stream = IWN_ANT_AB;
3389 linkq.ampdu_max = 64;
3390 linkq.ampdu_threshold = 3;
3391 linkq.ampdu_limit = htole16(4000); /* 4ms */
3392
3393 /* Use lowest mandatory bit-rate. */
3394 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3395 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3396 linkq.retry[0].plcp = rinfo->plcp;
3397 linkq.retry[0].rflags = rinfo->flags;
3398 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3399 /* Use same bit-rate for all TX retries. */
3400 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3401 linkq.retry[i].plcp = linkq.retry[0].plcp;
3402 linkq.retry[i].rflags = linkq.retry[0].rflags;
3403 }
3404 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3405 }
3406
3407 static void
3408 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3409 {
3410 struct iwn_cmd_led led;
3411
3412 /* Clear microcode LED ownership. */
3413 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3414
3415 led.which = which;
3416 led.unit = htole32(10000); /* on/off in unit of 100ms */
3417 led.off = off;
3418 led.on = on;
3419 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3420 }
3421
3422 /*
3423 * Set the critical temperature at which the firmware will stop the radio
3424 * and notify us.
3425 */
3426 static int
3427 iwn_set_critical_temp(struct iwn_softc *sc)
3428 {
3429 struct iwn_critical_temp crit;
3430 int32_t temp;
3431
3432 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3433
3434 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3435 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3436 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3437 temp = IWN_CTOK(110);
3438 else
3439 temp = 110;
3440 memset(&crit, 0, sizeof crit);
3441 crit.tempR = htole32(temp);
3442 DPRINTF(("setting critical temperature to %d\n", temp));
3443 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3444 }
3445
3446 static int
3447 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3448 {
3449 struct iwn_cmd_timing cmd;
3450 uint64_t val, mod;
3451
3452 memset(&cmd, 0, sizeof cmd);
3453 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3454 cmd.bintval = htole16(ni->ni_intval);
3455 cmd.lintval = htole16(10);
3456
3457 /* Compute remaining time until next beacon. */
3458 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
3459 mod = le64toh(cmd.tstamp) % val;
3460 cmd.binitval = htole32((uint32_t)(val - mod));
3461
3462 DPRINTF(("timing bintval=%u, tstamp=%zu, init=%u\n",
3463 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3464
3465 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3466 }
3467
3468 static void
3469 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3470 {
3471 /* Adjust TX power if need be (delta >= 3 degC.) */
3472 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3473 if (abs(temp - sc->temp) >= 3) {
3474 /* Record temperature of last calibration. */
3475 sc->temp = temp;
3476 (void)iwn4965_set_txpower(sc, 1);
3477 }
3478 }
3479
3480 /*
3481 * Set TX power for current channel (each rate has its own power settings).
3482 * This function takes into account the regulatory information from EEPROM,
3483 * the current temperature and the current voltage.
3484 */
3485 static int
3486 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3487 {
3488 /* Fixed-point arithmetic division using a n-bit fractional part. */
3489 #define fdivround(a, b, n) \
3490 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3491 /* Linear interpolation. */
3492 #define interpolate(x, x1, y1, x2, y2, n) \
3493 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3494
3495 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3496 struct ieee80211com *ic = &sc->sc_ic;
3497 struct iwn_ucode_info *uc = &sc->ucode_info;
3498 struct ieee80211_channel *ch;
3499 struct iwn4965_cmd_txpower cmd;
3500 struct iwn4965_eeprom_chan_samples *chans;
3501 const uint8_t *rf_gain, *dsp_gain;
3502 int32_t vdiff, tdiff;
3503 int i, c, grp, maxpwr;
3504 uint8_t chan;
3505
3506 /* Retrieve current channel from last RXON. */
3507 chan = sc->rxon.chan;
3508 DPRINTF(("setting TX power for channel %d\n", chan));
3509 ch = &ic->ic_channels[chan];
3510
3511 memset(&cmd, 0, sizeof cmd);
3512 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3513 cmd.chan = chan;
3514
3515 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3516 maxpwr = sc->maxpwr5GHz;
3517 rf_gain = iwn4965_rf_gain_5ghz;
3518 dsp_gain = iwn4965_dsp_gain_5ghz;
3519 } else {
3520 maxpwr = sc->maxpwr2GHz;
3521 rf_gain = iwn4965_rf_gain_2ghz;
3522 dsp_gain = iwn4965_dsp_gain_2ghz;
3523 }
3524
3525 /* Compute voltage compensation. */
3526 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3527 if (vdiff > 0)
3528 vdiff *= 2;
3529 if (abs(vdiff) > 2)
3530 vdiff = 0;
3531 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3532 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3533
3534 /* Get channel attenuation group. */
3535 if (chan <= 20) /* 1-20 */
3536 grp = 4;
3537 else if (chan <= 43) /* 34-43 */
3538 grp = 0;
3539 else if (chan <= 70) /* 44-70 */
3540 grp = 1;
3541 else if (chan <= 124) /* 71-124 */
3542 grp = 2;
3543 else /* 125-200 */
3544 grp = 3;
3545 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3546
3547 /* Get channel sub-band. */
3548 for (i = 0; i < IWN_NBANDS; i++)
3549 if (sc->bands[i].lo != 0 &&
3550 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3551 break;
3552 if (i == IWN_NBANDS) /* Can't happen in real-life. */
3553 return EINVAL;
3554 chans = sc->bands[i].chans;
3555 DPRINTF(("chan %d sub-band=%d\n", chan, i));
3556
3557 for (c = 0; c < 2; c++) {
3558 uint8_t power, gain, temp;
3559 int maxchpwr, pwr, ridx, idx;
3560
3561 power = interpolate(chan,
3562 chans[0].num, chans[0].samples[c][1].power,
3563 chans[1].num, chans[1].samples[c][1].power, 1);
3564 gain = interpolate(chan,
3565 chans[0].num, chans[0].samples[c][1].gain,
3566 chans[1].num, chans[1].samples[c][1].gain, 1);
3567 temp = interpolate(chan,
3568 chans[0].num, chans[0].samples[c][1].temp,
3569 chans[1].num, chans[1].samples[c][1].temp, 1);
3570 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3571 c, power, gain, temp));
3572
3573 /* Compute temperature compensation. */
3574 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3575 DPRINTF(("temperature compensation=%d (current=%d, "
3576 "EEPROM=%d)\n", tdiff, sc->temp, temp));
3577
3578 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3579 /* Convert dBm to half-dBm. */
3580 maxchpwr = sc->maxpwr[chan] * 2;
3581 if ((ridx / 8) & 1)
3582 maxchpwr -= 6; /* MIMO 2T: -3dB */
3583
3584 pwr = maxpwr;
3585
3586 /* Adjust TX power based on rate. */
3587 if ((ridx % 8) == 5)
3588 pwr -= 15; /* OFDM48: -7.5dB */
3589 else if ((ridx % 8) == 6)
3590 pwr -= 17; /* OFDM54: -8.5dB */
3591 else if ((ridx % 8) == 7)
3592 pwr -= 20; /* OFDM60: -10dB */
3593 else
3594 pwr -= 10; /* Others: -5dB */
3595
3596 /* Do not exceed channel max TX power. */
3597 if (pwr > maxchpwr)
3598 pwr = maxchpwr;
3599
3600 idx = gain - (pwr - power) - tdiff - vdiff;
3601 if ((ridx / 8) & 1) /* MIMO */
3602 idx += (int32_t)le32toh(uc->atten[grp][c]);
3603
3604 if (cmd.band == 0)
3605 idx += 9; /* 5GHz */
3606 if (ridx == IWN_RIDX_MAX)
3607 idx += 5; /* CCK */
3608
3609 /* Make sure idx stays in a valid range. */
3610 if (idx < 0)
3611 idx = 0;
3612 else if (idx > IWN4965_MAX_PWR_INDEX)
3613 idx = IWN4965_MAX_PWR_INDEX;
3614
3615 DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3616 c, ridx, idx));
3617 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3618 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3619 }
3620 }
3621
3622 DPRINTF(("setting TX power for chan %d\n", chan));
3623 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3624
3625 #undef interpolate
3626 #undef fdivround
3627 }
3628
3629 static int
3630 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3631 {
3632 struct iwn5000_cmd_txpower cmd;
3633
3634 /*
3635 * TX power calibration is handled automatically by the firmware
3636 * for 5000 Series.
3637 */
3638 memset(&cmd, 0, sizeof cmd);
3639 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3640 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3641 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3642 DPRINTF(("setting TX power\n"));
3643 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3644 }
3645
3646 /*
3647 * Retrieve the maximum RSSI (in dBm) among receivers.
3648 */
3649 static int
3650 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3651 {
3652 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3653 uint8_t mask, agc;
3654 int rssi;
3655
3656 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3657 agc = (le16toh(phy->agc) >> 7) & 0x7f;
3658
3659 rssi = 0;
3660 if (mask & IWN_ANT_A)
3661 rssi = MAX(rssi, phy->rssi[0]);
3662 if (mask & IWN_ANT_B)
3663 rssi = MAX(rssi, phy->rssi[2]);
3664 if (mask & IWN_ANT_C)
3665 rssi = MAX(rssi, phy->rssi[4]);
3666
3667 return rssi - agc - IWN_RSSI_TO_DBM;
3668 }
3669
3670 static int
3671 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3672 {
3673 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3674 uint8_t agc;
3675 int rssi;
3676
3677 agc = (le32toh(phy->agc) >> 9) & 0x7f;
3678
3679 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3680 le16toh(phy->rssi[1]) & 0xff);
3681 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3682
3683 return rssi - agc - IWN_RSSI_TO_DBM;
3684 }
3685
3686 /*
3687 * Retrieve the average noise (in dBm) among receivers.
3688 */
3689 static int
3690 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3691 {
3692 int i, total, nbant, noise;
3693
3694 total = nbant = 0;
3695 for (i = 0; i < 3; i++) {
3696 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3697 continue;
3698 total += noise;
3699 nbant++;
3700 }
3701 /* There should be at least one antenna but check anyway. */
3702 return (nbant == 0) ? -127 : (total / nbant) - 107;
3703 }
3704
3705 /*
3706 * Compute temperature (in degC) from last received statistics.
3707 */
3708 static int
3709 iwn4965_get_temperature(struct iwn_softc *sc)
3710 {
3711 struct iwn_ucode_info *uc = &sc->ucode_info;
3712 int32_t r1, r2, r3, r4, temp;
3713
3714 r1 = le32toh(uc->temp[0].chan20MHz);
3715 r2 = le32toh(uc->temp[1].chan20MHz);
3716 r3 = le32toh(uc->temp[2].chan20MHz);
3717 r4 = le32toh(sc->rawtemp);
3718
3719 if (r1 == r3) /* Prevents division by 0 (should not happen.) */
3720 return 0;
3721
3722 /* Sign-extend 23-bit R4 value to 32-bit. */
3723 r4 = (r4 << 8) >> 8;
3724 /* Compute temperature in Kelvin. */
3725 temp = (259 * (r4 - r2)) / (r3 - r1);
3726 temp = (temp * 97) / 100 + 8;
3727
3728 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3729 return IWN_KTOC(temp);
3730 }
3731
3732 static int
3733 iwn5000_get_temperature(struct iwn_softc *sc)
3734 {
3735 int32_t temp;
3736
3737 /*
3738 * Temperature is not used by the driver for 5000 Series because
3739 * TX power calibration is handled by firmware. We export it to
3740 * users through the sensor framework though.
3741 */
3742 temp = le32toh(sc->rawtemp);
3743 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3744 temp = (temp / -5) + sc->temp_off;
3745 temp = IWN_KTOC(temp);
3746 }
3747 return temp;
3748 }
3749
3750 /*
3751 * Initialize sensitivity calibration state machine.
3752 */
3753 static int
3754 iwn_init_sensitivity(struct iwn_softc *sc)
3755 {
3756 const struct iwn_hal *hal = sc->sc_hal;
3757 struct iwn_calib_state *calib = &sc->calib;
3758 uint32_t flags;
3759 int error;
3760
3761 /* Reset calibration state machine. */
3762 memset(calib, 0, sizeof (*calib));
3763 calib->state = IWN_CALIB_STATE_INIT;
3764 calib->cck_state = IWN_CCK_STATE_HIFA;
3765 /* Set initial correlation values. */
3766 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3767 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3768 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3769 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3770 calib->cck_x4 = 125;
3771 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3772 calib->energy_cck = sc->limits->energy_cck;
3773
3774 /* Write initial sensitivity. */
3775 if ((error = iwn_send_sensitivity(sc)) != 0)
3776 return error;
3777
3778 /* Write initial gains. */
3779 if ((error = hal->init_gains(sc)) != 0)
3780 return error;
3781
3782 /* Request statistics at each beacon interval. */
3783 flags = 0;
3784 DPRINTF(("sending request for statistics\n"));
3785 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3786 }
3787
3788 /*
3789 * Collect noise and RSSI statistics for the first 20 beacons received
3790 * after association and use them to determine connected antennas and
3791 * to set differential gains.
3792 */
3793 static void
3794 iwn_collect_noise(struct iwn_softc *sc,
3795 const struct iwn_rx_general_stats *stats)
3796 {
3797 const struct iwn_hal *hal = sc->sc_hal;
3798 struct iwn_calib_state *calib = &sc->calib;
3799 uint32_t val;
3800 int i;
3801
3802 /* Accumulate RSSI and noise for all 3 antennas. */
3803 for (i = 0; i < 3; i++) {
3804 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3805 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3806 }
3807 /* NB: We update differential gains only once after 20 beacons. */
3808 if (++calib->nbeacons < 20)
3809 return;
3810
3811 /* Determine highest average RSSI. */
3812 val = MAX(calib->rssi[0], calib->rssi[1]);
3813 val = MAX(calib->rssi[2], val);
3814
3815 /* Determine which antennas are connected. */
3816 sc->chainmask = sc->rxchainmask;
3817 for (i = 0; i < 3; i++)
3818 if (val - calib->rssi[i] > 15 * 20)
3819 sc->chainmask &= ~(1 << i);
3820 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3821 sc->rxchainmask, sc->chainmask));
3822
3823 /* If none of the TX antennas are connected, keep at least one. */
3824 if ((sc->chainmask & sc->txchainmask) == 0)
3825 sc->chainmask |= IWN_LSB(sc->txchainmask);
3826
3827 (void)hal->set_gains(sc);
3828 calib->state = IWN_CALIB_STATE_RUN;
3829
3830 #ifdef notyet
3831 /* XXX Disable RX chains with no antennas connected. */
3832 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3833 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
3834 #endif
3835
3836 /* Enable power-saving mode if requested by user. */
3837 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3838 (void)iwn_set_pslevel(sc, 0, 3, 1);
3839 }
3840
3841 static int
3842 iwn4965_init_gains(struct iwn_softc *sc)
3843 {
3844 struct iwn_phy_calib_gain cmd;
3845
3846 memset(&cmd, 0, sizeof cmd);
3847 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3848 /* Differential gains initially set to 0 for all 3 antennas. */
3849 DPRINTF(("setting initial differential gains\n"));
3850 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3851 }
3852
3853 static int
3854 iwn5000_init_gains(struct iwn_softc *sc)
3855 {
3856 struct iwn_phy_calib cmd;
3857
3858 memset(&cmd, 0, sizeof cmd);
3859 cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3860 cmd.ngroups = 1;
3861 cmd.isvalid = 1;
3862 DPRINTF(("setting initial differential gains\n"));
3863 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3864 }
3865
3866 static int
3867 iwn4965_set_gains(struct iwn_softc *sc)
3868 {
3869 struct iwn_calib_state *calib = &sc->calib;
3870 struct iwn_phy_calib_gain cmd;
3871 int i, delta, noise;
3872
3873 /* Get minimal noise among connected antennas. */
3874 noise = INT_MAX; /* NB: There's at least one antenna. */
3875 for (i = 0; i < 3; i++)
3876 if (sc->chainmask & (1 << i))
3877 noise = MIN(calib->noise[i], noise);
3878
3879 memset(&cmd, 0, sizeof cmd);
3880 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3881 /* Set differential gains for connected antennas. */
3882 for (i = 0; i < 3; i++) {
3883 if (sc->chainmask & (1 << i)) {
3884 /* Compute attenuation (in unit of 1.5dB). */
3885 delta = (noise - (int32_t)calib->noise[i]) / 30;
3886 /* NB: delta <= 0 */
3887 /* Limit to [-4.5dB,0]. */
3888 cmd.gain[i] = MIN(abs(delta), 3);
3889 if (delta < 0)
3890 cmd.gain[i] |= 1 << 2; /* sign bit */
3891 }
3892 }
3893 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3894 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3895 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3896 }
3897
3898 static int
3899 iwn5000_set_gains(struct iwn_softc *sc)
3900 {
3901 struct iwn_calib_state *calib = &sc->calib;
3902 struct iwn_phy_calib_gain cmd;
3903 int i, ant, div, delta;
3904
3905 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
3906 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3907
3908 memset(&cmd, 0, sizeof cmd);
3909 cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3910 cmd.ngroups = 1;
3911 cmd.isvalid = 1;
3912 /* Get first available RX antenna as referential. */
3913 ant = IWN_LSB(sc->rxchainmask);
3914 /* Set differential gains for other antennas. */
3915 for (i = ant + 1; i < 3; i++) {
3916 if (sc->chainmask & (1 << i)) {
3917 /* The delta is relative to antenna "ant". */
3918 delta = ((int32_t)calib->noise[ant] -
3919 (int32_t)calib->noise[i]) / div;
3920 /* Limit to [-4.5dB,+4.5dB]. */
3921 cmd.gain[i - 1] = MIN(abs(delta), 3);
3922 if (delta < 0)
3923 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
3924 }
3925 }
3926 DPRINTF(("setting differential gains: %x/%x (%x)\n",
3927 cmd.gain[0], cmd.gain[1], sc->chainmask));
3928 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3929 }
3930
3931 /*
3932 * Tune RF RX sensitivity based on the number of false alarms detected
3933 * during the last beacon period.
3934 */
3935 static void
3936 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3937 {
3938 #define inc(val, inc, max) \
3939 if ((val) < (max)) { \
3940 if ((val) < (max) - (inc)) \
3941 (val) += (inc); \
3942 else \
3943 (val) = (max); \
3944 needs_update = 1; \
3945 }
3946 #define dec(val, dec, min) \
3947 if ((val) > (min)) { \
3948 if ((val) > (min) + (dec)) \
3949 (val) -= (dec); \
3950 else \
3951 (val) = (min); \
3952 needs_update = 1; \
3953 }
3954
3955 const struct iwn_sensitivity_limits *limits = sc->limits;
3956 struct iwn_calib_state *calib = &sc->calib;
3957 uint32_t val, rxena, fa;
3958 uint32_t energy[3], energy_min;
3959 uint8_t noise[3], noise_ref;
3960 int i, needs_update = 0;
3961
3962 /* Check that we've been enabled long enough. */
3963 if ((rxena = le32toh(stats->general.load)) == 0)
3964 return;
3965
3966 /* Compute number of false alarms since last call for OFDM. */
3967 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3968 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3969 fa *= 200 * 1024; /* 200TU */
3970
3971 /* Save counters values for next call. */
3972 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3973 calib->fa_ofdm = le32toh(stats->ofdm.fa);
3974
3975 if (fa > 50 * rxena) {
3976 /* High false alarm count, decrease sensitivity. */
3977 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3978 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
3979 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3980 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
3981 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3982
3983 } else if (fa < 5 * rxena) {
3984 /* Low false alarm count, increase sensitivity. */
3985 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3986 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
3987 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3988 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
3989 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3990 }
3991
3992 /* Compute maximum noise among 3 receivers. */
3993 for (i = 0; i < 3; i++)
3994 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3995 val = MAX(noise[0], noise[1]);
3996 val = MAX(noise[2], val);
3997 /* Insert it into our samples table. */
3998 calib->noise_samples[calib->cur_noise_sample] = val;
3999 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4000
4001 /* Compute maximum noise among last 20 samples. */
4002 noise_ref = calib->noise_samples[0];
4003 for (i = 1; i < 20; i++)
4004 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4005
4006 /* Compute maximum energy among 3 receivers. */
4007 for (i = 0; i < 3; i++)
4008 energy[i] = le32toh(stats->general.energy[i]);
4009 val = MIN(energy[0], energy[1]);
4010 val = MIN(energy[2], val);
4011 /* Insert it into our samples table. */
4012 calib->energy_samples[calib->cur_energy_sample] = val;
4013 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4014
4015 /* Compute minimum energy among last 10 samples. */
4016 energy_min = calib->energy_samples[0];
4017 for (i = 1; i < 10; i++)
4018 energy_min = MAX(energy_min, calib->energy_samples[i]);
4019 energy_min += 6;
4020
4021 /* Compute number of false alarms since last call for CCK. */
4022 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4023 fa += le32toh(stats->cck.fa) - calib->fa_cck;
4024 fa *= 200 * 1024; /* 200TU */
4025
4026 /* Save counters values for next call. */
4027 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4028 calib->fa_cck = le32toh(stats->cck.fa);
4029
4030 if (fa > 50 * rxena) {
4031 /* High false alarm count, decrease sensitivity. */
4032 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4033 calib->cck_state = IWN_CCK_STATE_HIFA;
4034 calib->low_fa = 0;
4035
4036 if (calib->cck_x4 > 160) {
4037 calib->noise_ref = noise_ref;
4038 if (calib->energy_cck > 2)
4039 dec(calib->energy_cck, 2, energy_min);
4040 }
4041 if (calib->cck_x4 < 160) {
4042 calib->cck_x4 = 161;
4043 needs_update = 1;
4044 } else
4045 inc(calib->cck_x4, 3, limits->max_cck_x4);
4046
4047 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4048
4049 } else if (fa < 5 * rxena) {
4050 /* Low false alarm count, increase sensitivity. */
4051 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4052 calib->cck_state = IWN_CCK_STATE_LOFA;
4053 calib->low_fa++;
4054
4055 if (calib->cck_state != IWN_CCK_STATE_INIT &&
4056 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4057 calib->low_fa > 100)) {
4058 inc(calib->energy_cck, 2, limits->min_energy_cck);
4059 dec(calib->cck_x4, 3, limits->min_cck_x4);
4060 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4061 }
4062 } else {
4063 /* Not worth to increase or decrease sensitivity. */
4064 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4065 calib->low_fa = 0;
4066 calib->noise_ref = noise_ref;
4067
4068 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4069 /* Previous interval had many false alarms. */
4070 dec(calib->energy_cck, 8, energy_min);
4071 }
4072 calib->cck_state = IWN_CCK_STATE_INIT;
4073 }
4074
4075 if (needs_update)
4076 (void)iwn_send_sensitivity(sc);
4077 #undef dec
4078 #undef inc
4079 }
4080
4081 static int
4082 iwn_send_sensitivity(struct iwn_softc *sc)
4083 {
4084 struct iwn_calib_state *calib = &sc->calib;
4085 struct iwn_sensitivity_cmd cmd;
4086
4087 memset(&cmd, 0, sizeof cmd);
4088 cmd.which = IWN_SENSITIVITY_WORKTBL;
4089 /* OFDM modulation. */
4090 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4091 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4092 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4093 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4094 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4095 cmd.energy_ofdm_th = htole16(62);
4096 /* CCK modulation. */
4097 cmd.corr_cck_x4 = htole16(calib->cck_x4);
4098 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4099 cmd.energy_cck = htole16(calib->energy_cck);
4100 /* Barker modulation: use default values. */
4101 cmd.corr_barker = htole16(190);
4102 cmd.corr_barker_mrc = htole16(390);
4103
4104 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4105 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4106 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4107 calib->energy_cck));
4108 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4109 }
4110
4111 /*
4112 * Set STA mode power saving level (between 0 and 5).
4113 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4114 */
4115 static int
4116 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4117 {
4118 struct iwn_pmgt_cmd cmd;
4119 const struct iwn_pmgt *pmgt;
4120 uint32_t maxp, skip_dtim;
4121 pcireg_t reg;
4122 int i;
4123
4124 /* Select which PS parameters to use. */
4125 if (dtim <= 2)
4126 pmgt = &iwn_pmgt[0][level];
4127 else if (dtim <= 10)
4128 pmgt = &iwn_pmgt[1][level];
4129 else
4130 pmgt = &iwn_pmgt[2][level];
4131
4132 memset(&cmd, 0, sizeof cmd);
4133 if (level != 0) /* not CAM */
4134 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4135 if (level == 5)
4136 cmd.flags |= htole16(IWN_PS_FAST_PD);
4137 /* Retrieve PCIe Active State Power Management (ASPM). */
4138 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4139 sc->sc_cap_off + PCI_PCIE_LCSR);
4140 if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4141 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4142 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4143 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4144
4145 if (dtim == 0) {
4146 dtim = 1;
4147 skip_dtim = 0;
4148 } else
4149 skip_dtim = pmgt->skip_dtim;
4150 if (skip_dtim != 0) {
4151 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4152 maxp = pmgt->intval[4];
4153 if (maxp == (uint32_t)-1)
4154 maxp = dtim * (skip_dtim + 1);
4155 else if (maxp > dtim)
4156 maxp = (maxp / dtim) * dtim;
4157 } else
4158 maxp = dtim;
4159 for (i = 0; i < 5; i++)
4160 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4161
4162 DPRINTF(("setting power saving level to %d\n", level));
4163 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4164 }
4165
4166 static int
4167 iwn_config(struct iwn_softc *sc)
4168 {
4169 const struct iwn_hal *hal = sc->sc_hal;
4170 struct ieee80211com *ic = &sc->sc_ic;
4171 struct ifnet *ifp = ic->ic_ifp;
4172 struct iwn_bluetooth bluetooth;
4173 uint32_t txmask;
4174 uint16_t rxchain;
4175 int error;
4176
4177 /* Configure valid TX chains for 5000 Series. */
4178 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4179 txmask = htole32(sc->txchainmask);
4180 DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4181 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4182 sizeof txmask, 0);
4183 if (error != 0) {
4184 aprint_error_dev(sc->sc_dev,
4185 "could not configure valid TX chains\n");
4186 return error;
4187 }
4188 }
4189
4190 /* Configure bluetooth coexistence. */
4191 memset(&bluetooth, 0, sizeof bluetooth);
4192 bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4193 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4194 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4195 DPRINTF(("configuring bluetooth coexistence\n"));
4196 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4197 if (error != 0) {
4198 aprint_error_dev(sc->sc_dev,
4199 "could not configure bluetooth coexistence\n");
4200 return error;
4201 }
4202
4203 /* Set mode, channel, RX filter and enable RX. */
4204 memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4205 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4206 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4207 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4208 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4209 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4210 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4211 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4212 switch (ic->ic_opmode) {
4213 case IEEE80211_M_STA:
4214 sc->rxon.mode = IWN_MODE_STA;
4215 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4216 break;
4217 case IEEE80211_M_MONITOR:
4218 sc->rxon.mode = IWN_MODE_MONITOR;
4219 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4220 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4221 break;
4222 default:
4223 /* Should not get there. */
4224 break;
4225 }
4226 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4227 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4228 sc->rxon.ht_single_mask = 0xff;
4229 sc->rxon.ht_dual_mask = 0xff;
4230 sc->rxon.ht_triple_mask = 0xff;
4231 rxchain =
4232 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4233 IWN_RXCHAIN_MIMO_COUNT(2) |
4234 IWN_RXCHAIN_IDLE_COUNT(2);
4235 sc->rxon.rxchain = htole16(rxchain);
4236 DPRINTF(("setting configuration\n"));
4237 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
4238 if (error != 0) {
4239 aprint_error_dev(sc->sc_dev,
4240 "RXON command failed\n");
4241 return error;
4242 }
4243
4244 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4245 aprint_error_dev(sc->sc_dev,
4246 "could not add broadcast node\n");
4247 return error;
4248 }
4249
4250 /* Configuration has changed, set TX power accordingly. */
4251 if ((error = hal->set_txpower(sc, 0)) != 0) {
4252 aprint_error_dev(sc->sc_dev,
4253 "could not set TX power\n");
4254 return error;
4255 }
4256
4257 if ((error = iwn_set_critical_temp(sc)) != 0) {
4258 aprint_error_dev(sc->sc_dev,
4259 "could not set critical temperature\n");
4260 return error;
4261 }
4262
4263 /* Set power saving level to CAM during initialization. */
4264 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4265 aprint_error_dev(sc->sc_dev,
4266 "could not set power saving level\n");
4267 return error;
4268 }
4269 return 0;
4270 }
4271
4272 static int
4273 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4274 {
4275 struct ieee80211com *ic = &sc->sc_ic;
4276 struct iwn_scan_hdr *hdr;
4277 struct iwn_cmd_data *tx;
4278 struct iwn_scan_essid *essid;
4279 struct iwn_scan_chan *chan;
4280 struct ieee80211_frame *wh;
4281 struct ieee80211_rateset *rs;
4282 struct ieee80211_channel *c;
4283 uint8_t *buf, *frm;
4284 uint16_t rxchain;
4285 uint8_t txant;
4286 int buflen, error;
4287
4288 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4289 if (buf == NULL) {
4290 aprint_error_dev(sc->sc_dev,
4291 "could not allocate buffer for scan command\n");
4292 return ENOMEM;
4293 }
4294 hdr = (struct iwn_scan_hdr *)buf;
4295 /*
4296 * Move to the next channel if no frames are received within 10ms
4297 * after sending the probe request.
4298 */
4299 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4300 hdr->quiet_threshold = htole16(1); /* min # of packets */
4301
4302 /* Select antennas for scanning. */
4303 rxchain =
4304 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4305 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4306 IWN_RXCHAIN_DRIVER_FORCE;
4307 if ((flags & IEEE80211_CHAN_5GHZ) &&
4308 sc->hw_type == IWN_HW_REV_TYPE_4965) {
4309 /* Ant A must be avoided in 5GHz because of an HW bug. */
4310 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4311 } else /* Use all available RX antennas. */
4312 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4313 hdr->rxchain = htole16(rxchain);
4314 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4315
4316 tx = (struct iwn_cmd_data *)(hdr + 1);
4317 tx->flags = htole32(IWN_TX_AUTO_SEQ);
4318 tx->id = sc->sc_hal->broadcast_id;
4319 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4320
4321 if (flags & IEEE80211_CHAN_5GHZ) {
4322 hdr->crc_threshold = 0xffff;
4323 /* Send probe requests at 6Mbps. */
4324 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4325 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4326 } else {
4327 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4328 /* Send probe requests at 1Mbps. */
4329 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4330 tx->rflags = IWN_RFLAG_CCK;
4331 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4332 }
4333 /* Use the first valid TX antenna. */
4334 txant = IWN_LSB(sc->txchainmask);
4335 tx->rflags |= IWN_RFLAG_ANT(txant);
4336
4337 essid = (struct iwn_scan_essid *)(tx + 1);
4338 if (ic->ic_des_esslen != 0) {
4339 essid[0].id = IEEE80211_ELEMID_SSID;
4340 essid[0].len = ic->ic_des_esslen;
4341 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4342 }
4343 /*
4344 * Build a probe request frame. Most of the following code is a
4345 * copy & paste of what is done in net80211.
4346 */
4347 wh = (struct ieee80211_frame *)(essid + 20);
4348 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4349 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4350 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4351 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4352 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4353 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4354 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4355 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4356
4357 frm = (uint8_t *)(wh + 1);
4358 frm = ieee80211_add_ssid(frm, NULL, 0);
4359 frm = ieee80211_add_rates(frm, rs);
4360 #ifndef IEEE80211_NO_HT
4361 if (ic->ic_flags & IEEE80211_F_HTON)
4362 frm = ieee80211_add_htcaps(frm, ic);
4363 #endif
4364 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4365 frm = ieee80211_add_xrates(frm, rs);
4366
4367 /* Set length of probe request. */
4368 tx->len = htole16(frm - (uint8_t *)wh);
4369
4370 chan = (struct iwn_scan_chan *)frm;
4371 for (c = &ic->ic_channels[1];
4372 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4373 if ((c->ic_flags & flags) != flags)
4374 continue;
4375
4376 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4377 DPRINTFN(2, ("adding channel %d\n", chan->chan));
4378 chan->flags = 0;
4379 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4380 chan->flags |= htole32(IWN_CHAN_ACTIVE);
4381 if (ic->ic_des_esslen != 0)
4382 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4383 chan->dsp_gain = 0x6e;
4384 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4385 chan->rf_gain = 0x3b;
4386 chan->active = htole16(24);
4387 chan->passive = htole16(110);
4388 } else {
4389 chan->rf_gain = 0x28;
4390 chan->active = htole16(36);
4391 chan->passive = htole16(120);
4392 }
4393 hdr->nchan++;
4394 chan++;
4395 }
4396
4397 buflen = (uint8_t *)chan - buf;
4398 hdr->len = htole16(buflen);
4399
4400 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4401 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4402 free(buf, M_DEVBUF);
4403 return error;
4404 }
4405
4406 static int
4407 iwn_auth(struct iwn_softc *sc)
4408 {
4409 const struct iwn_hal *hal = sc->sc_hal;
4410 struct ieee80211com *ic = &sc->sc_ic;
4411 struct ieee80211_node *ni = ic->ic_bss;
4412 int error;
4413
4414 /* Update adapter configuration. */
4415 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4416 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4417 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4418 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4419 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4420 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4421 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4422 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4423 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4424 switch (ic->ic_curmode) {
4425 case IEEE80211_MODE_11A:
4426 sc->rxon.cck_mask = 0;
4427 sc->rxon.ofdm_mask = 0x15;
4428 break;
4429 case IEEE80211_MODE_11B:
4430 sc->rxon.cck_mask = 0x03;
4431 sc->rxon.ofdm_mask = 0;
4432 break;
4433 default: /* Assume 802.11b/g. */
4434 sc->rxon.cck_mask = 0x0f;
4435 sc->rxon.ofdm_mask = 0x15;
4436 }
4437 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4438 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4439 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4440 if (error != 0) {
4441 aprint_error_dev(sc->sc_dev,
4442 "RXON command failed\n");
4443 return error;
4444 }
4445
4446 /* Configuration has changed, set TX power accordingly. */
4447 if ((error = hal->set_txpower(sc, 1)) != 0) {
4448 aprint_error_dev(sc->sc_dev,
4449 "could not set TX power\n");
4450 return error;
4451 }
4452 /*
4453 * Reconfiguring RXON clears the firmware nodes table so we must
4454 * add the broadcast node again.
4455 */
4456 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4457 aprint_error_dev(sc->sc_dev,
4458 "could not add broadcast node\n");
4459 return error;
4460 }
4461 return 0;
4462 }
4463
4464 static int
4465 iwn_run(struct iwn_softc *sc)
4466 {
4467 const struct iwn_hal *hal = sc->sc_hal;
4468 struct ieee80211com *ic = &sc->sc_ic;
4469 struct ieee80211_node *ni = ic->ic_bss;
4470 struct iwn_node_info node;
4471 int error;
4472
4473 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4474 /* Link LED blinks while monitoring. */
4475 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4476 return 0;
4477 }
4478 if ((error = iwn_set_timing(sc, ni)) != 0) {
4479 aprint_error_dev(sc->sc_dev,
4480 "could not set timing\n");
4481 return error;
4482 }
4483
4484 /* Update adapter configuration. */
4485 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4486 /* Short preamble and slot time are negotiated when associating. */
4487 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4488 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4489 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4490 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4491 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4492 sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4493 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4494 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4495 if (error != 0) {
4496 aprint_error_dev(sc->sc_dev,
4497 "could not update configuration\n");
4498 return error;
4499 }
4500
4501 /* Configuration has changed, set TX power accordingly. */
4502 if ((error = hal->set_txpower(sc, 1)) != 0) {
4503 aprint_error_dev(sc->sc_dev,
4504 "could not set TX power\n");
4505 return error;
4506 }
4507
4508 /* Fake a join to initialize the TX rate. */
4509 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
4510 iwn_newassoc(ni, 1);
4511
4512 /* Add BSS node. */
4513 memset(&node, 0, sizeof node);
4514 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4515 node.id = IWN_ID_BSS;
4516 #ifdef notyet
4517 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4518 IWN_AMDPU_DENSITY(5)); /* 2us */
4519 #endif
4520 DPRINTF(("adding BSS node\n"));
4521 error = hal->add_node(sc, &node, 1);
4522 if (error != 0) {
4523 aprint_error_dev(sc->sc_dev,
4524 "could not add BSS node\n");
4525 return error;
4526 }
4527 DPRINTF(("setting link quality for node %d\n", node.id));
4528 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4529 aprint_error_dev(sc->sc_dev,
4530 "could not setup link quality for node %d\n", node.id);
4531 return error;
4532 }
4533
4534 if ((error = iwn_init_sensitivity(sc)) != 0) {
4535 aprint_error_dev(sc->sc_dev,
4536 "could not set sensitivity\n");
4537 return error;
4538 }
4539 /* Start periodic calibration timer. */
4540 sc->calib.state = IWN_CALIB_STATE_ASSOC;
4541 sc->calib_cnt = 0;
4542 callout_schedule(&sc->calib_to, hz/2);
4543
4544 /* Link LED always on while associated. */
4545 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4546 return 0;
4547 }
4548
4549 #ifdef IWN_HWCRYPTO
4550 /*
4551 * We support CCMP hardware encryption/decryption of unicast frames only.
4552 * HW support for TKIP really sucks. We should let TKIP die anyway.
4553 */
4554 static int
4555 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4556 struct ieee80211_key *k)
4557 {
4558 struct iwn_softc *sc = ic->ic_softc;
4559 const struct iwn_hal *hal = sc->sc_hal;
4560 struct iwn_node *wn = (void *)ni;
4561 struct iwn_node_info node;
4562 uint16_t kflags;
4563
4564 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4565 k->k_cipher != IEEE80211_CIPHER_CCMP)
4566 return ieee80211_set_key(ic, ni, k);
4567
4568 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4569 if (k->k_flags & IEEE80211_KEY_GROUP)
4570 kflags |= IWN_KFLAG_GROUP;
4571
4572 memset(&node, 0, sizeof node);
4573 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4574 hal->broadcast_id : wn->id;
4575 node.control = IWN_NODE_UPDATE;
4576 node.flags = IWN_FLAG_SET_KEY;
4577 node.kflags = htole16(kflags);
4578 node.kid = k->k_id;
4579 memcpy(node.key, k->k_key, k->k_len);
4580 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4581 return hal->add_node(sc, &node, 1);
4582 }
4583
4584 static void
4585 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4586 struct ieee80211_key *k)
4587 {
4588 struct iwn_softc *sc = ic->ic_softc;
4589 const struct iwn_hal *hal = sc->sc_hal;
4590 struct iwn_node *wn = (void *)ni;
4591 struct iwn_node_info node;
4592
4593 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4594 k->k_cipher != IEEE80211_CIPHER_CCMP) {
4595 /* See comment about other ciphers above. */
4596 ieee80211_delete_key(ic, ni, k);
4597 return;
4598 }
4599 if (ic->ic_state != IEEE80211_S_RUN)
4600 return; /* Nothing to do. */
4601 memset(&node, 0, sizeof node);
4602 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4603 hal->broadcast_id : wn->id;
4604 node.control = IWN_NODE_UPDATE;
4605 node.flags = IWN_FLAG_SET_KEY;
4606 node.kflags = htole16(IWN_KFLAG_INVALID);
4607 node.kid = 0xff;
4608 DPRINTF(("delete keys for node %d\n", node.id));
4609 (void)hal->add_node(sc, &node, 1);
4610 }
4611 #endif
4612
4613 /* XXX Added for NetBSD (copied from rev 1.39). */
4614
4615 static int
4616 iwn_wme_update(struct ieee80211com *ic)
4617 {
4618 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
4619 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
4620 struct iwn_softc *sc = ic->ic_ifp->if_softc;
4621 const struct wmeParams *wmep;
4622 struct iwn_edca_params cmd;
4623 int ac;
4624
4625 /* don't override default WME values if WME is not actually enabled */
4626 if (!(ic->ic_flags & IEEE80211_F_WME))
4627 return 0;
4628 cmd.flags = 0;
4629 for (ac = 0; ac < WME_NUM_AC; ac++) {
4630 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4631 cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4632 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4633 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4634 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
4635
4636 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4637 "txop=%d\n", ac, cmd.ac[ac].aifsn,
4638 cmd.ac[ac].cwmin,
4639 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4640 }
4641 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4642 #undef IWN_USEC
4643 #undef IWN_EXP2
4644 }
4645
4646 #ifndef IEEE80211_NO_HT
4647 /*
4648 * This function is called by upper layer when an ADDBA request is received
4649 * from another STA and before the ADDBA response is sent.
4650 */
4651 static int
4652 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4653 uint8_t tid)
4654 {
4655 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4656 struct iwn_softc *sc = ic->ic_softc;
4657 struct iwn_node *wn = (void *)ni;
4658 struct iwn_node_info node;
4659
4660 memset(&node, 0, sizeof node);
4661 node.id = wn->id;
4662 node.control = IWN_NODE_UPDATE;
4663 node.flags = IWN_FLAG_SET_ADDBA;
4664 node.addba_tid = tid;
4665 node.addba_ssn = htole16(ba->ba_winstart);
4666 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4667 ba->ba_winstart));
4668 return sc->sc_hal->add_node(sc, &node, 1);
4669 }
4670
4671 /*
4672 * This function is called by upper layer on teardown of an HT-immediate
4673 * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
4674 */
4675 static void
4676 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4677 uint8_t tid)
4678 {
4679 struct iwn_softc *sc = ic->ic_softc;
4680 struct iwn_node *wn = (void *)ni;
4681 struct iwn_node_info node;
4682
4683 memset(&node, 0, sizeof node);
4684 node.id = wn->id;
4685 node.control = IWN_NODE_UPDATE;
4686 node.flags = IWN_FLAG_SET_DELBA;
4687 node.delba_tid = tid;
4688 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4689 (void)sc->sc_hal->add_node(sc, &node, 1);
4690 }
4691
4692 /*
4693 * This function is called by upper layer when an ADDBA response is received
4694 * from another STA.
4695 */
4696 static int
4697 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4698 uint8_t tid)
4699 {
4700 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4701 struct iwn_softc *sc = ic->ic_softc;
4702 const struct iwn_hal *hal = sc->sc_hal;
4703 struct iwn_node *wn = (void *)ni;
4704 struct iwn_node_info node;
4705 int error;
4706
4707 /* Enable TX for the specified RA/TID. */
4708 wn->disable_tid &= ~(1 << tid);
4709 memset(&node, 0, sizeof node);
4710 node.id = wn->id;
4711 node.control = IWN_NODE_UPDATE;
4712 node.flags = IWN_FLAG_SET_DISABLE_TID;
4713 node.disable_tid = htole16(wn->disable_tid);
4714 error = hal->add_node(sc, &node, 1);
4715 if (error != 0)
4716 return error;
4717
4718 if ((error = iwn_nic_lock(sc)) != 0)
4719 return error;
4720 hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4721 iwn_nic_unlock(sc);
4722 return 0;
4723 }
4724
4725 static void
4726 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4727 uint8_t tid)
4728 {
4729 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4730 struct iwn_softc *sc = ic->ic_softc;
4731
4732 if (iwn_nic_lock(sc) != 0)
4733 return;
4734 sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4735 iwn_nic_unlock(sc);
4736 }
4737
4738 static void
4739 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4740 uint8_t tid, uint16_t ssn)
4741 {
4742 struct iwn_node *wn = (void *)ni;
4743 int qid = 7 + tid;
4744
4745 /* Stop TX scheduler while we're changing its configuration. */
4746 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4747 IWN4965_TXQ_STATUS_CHGACT);
4748
4749 /* Assign RA/TID translation to the queue. */
4750 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4751 wn->id << 4 | tid);
4752
4753 /* Enable chain-building mode for the queue. */
4754 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4755
4756 /* Set starting sequence number from the ADDBA request. */
4757 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4758 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4759
4760 /* Set scheduler window size. */
4761 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4762 IWN_SCHED_WINSZ);
4763 /* Set scheduler frame limit. */
4764 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4765 IWN_SCHED_LIMIT << 16);
4766
4767 /* Enable interrupts for the queue. */
4768 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4769
4770 /* Mark the queue as active. */
4771 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4772 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4773 iwn_tid2fifo[tid] << 1);
4774 }
4775
4776 static void
4777 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4778 {
4779 int qid = 7 + tid;
4780
4781 /* Stop TX scheduler while we're changing its configuration. */
4782 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4783 IWN4965_TXQ_STATUS_CHGACT);
4784
4785 /* Set starting sequence number from the ADDBA request. */
4786 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4787 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4788
4789 /* Disable interrupts for the queue. */
4790 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4791
4792 /* Mark the queue as inactive. */
4793 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4794 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4795 }
4796
4797 static void
4798 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4799 uint8_t tid, uint16_t ssn)
4800 {
4801 struct iwn_node *wn = (void *)ni;
4802 int qid = 10 + tid;
4803
4804 /* Stop TX scheduler while we're changing its configuration. */
4805 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4806 IWN5000_TXQ_STATUS_CHGACT);
4807
4808 /* Assign RA/TID translation to the queue. */
4809 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4810 wn->id << 4 | tid);
4811
4812 /* Enable chain-building mode for the queue. */
4813 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4814
4815 /* Enable aggregation for the queue. */
4816 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4817
4818 /* Set starting sequence number from the ADDBA request. */
4819 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4820 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4821
4822 /* Set scheduler window size and frame limit. */
4823 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4824 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4825
4826 /* Enable interrupts for the queue. */
4827 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4828
4829 /* Mark the queue as active. */
4830 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4831 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4832 }
4833
4834 static void
4835 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4836 {
4837 int qid = 10 + tid;
4838
4839 /* Stop TX scheduler while we're changing its configuration. */
4840 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4841 IWN5000_TXQ_STATUS_CHGACT);
4842
4843 /* Disable aggregation for the queue. */
4844 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4845
4846 /* Set starting sequence number from the ADDBA request. */
4847 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4848 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4849
4850 /* Disable interrupts for the queue. */
4851 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4852
4853 /* Mark the queue as inactive. */
4854 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4855 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4856 }
4857 #endif /* !IEEE80211_NO_HT */
4858
4859 /*
4860 * Query calibration tables from the initialization firmware. We do this
4861 * only once at first boot. Called from a process context.
4862 */
4863 static int
4864 iwn5000_query_calibration(struct iwn_softc *sc)
4865 {
4866 struct iwn5000_calib_config cmd;
4867 int error;
4868
4869 memset(&cmd, 0, sizeof cmd);
4870 cmd.ucode.once.enable = 0xffffffff;
4871 cmd.ucode.once.start = 0xffffffff;
4872 cmd.ucode.once.send = 0xffffffff;
4873 cmd.ucode.flags = 0xffffffff;
4874 DPRINTF(("sending calibration query\n"));
4875 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4876 if (error != 0)
4877 return error;
4878
4879 /* Wait at most two seconds for calibration to complete. */
4880 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4881 error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4882 return error;
4883 }
4884
4885 /*
4886 * Send calibration results to the runtime firmware. These results were
4887 * obtained on first boot from the initialization firmware.
4888 */
4889 static int
4890 iwn5000_send_calibration(struct iwn_softc *sc)
4891 {
4892 int idx, error;
4893
4894 for (idx = 0; idx < 5; idx++) {
4895 if (sc->calibcmd[idx].buf == NULL)
4896 continue; /* No results available. */
4897 DPRINTF(("send calibration result idx=%d len=%d\n",
4898 idx, sc->calibcmd[idx].len));
4899 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4900 sc->calibcmd[idx].len, 0);
4901 if (error != 0) {
4902 aprint_error_dev(sc->sc_dev,
4903 "could not send calibration result\n");
4904 return error;
4905 }
4906 }
4907 return 0;
4908 }
4909
4910 static int
4911 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4912 {
4913 struct iwn5000_wimax_coex wimax;
4914
4915 #ifdef notyet
4916 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4917 /* Enable WiMAX coexistence for combo adapters. */
4918 wimax.flags =
4919 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4920 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4921 IWN_WIMAX_COEX_STA_TABLE_VALID |
4922 IWN_WIMAX_COEX_ENABLE;
4923 memcpy(wimax.events, iwn6050_wimax_events,
4924 sizeof iwn6050_wimax_events);
4925 } else
4926 #endif
4927 {
4928 /* Disable WiMAX coexistence. */
4929 wimax.flags = 0;
4930 memset(wimax.events, 0, sizeof wimax.events);
4931 }
4932 DPRINTF(("Configuring WiMAX coexistence\n"));
4933 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4934 }
4935
4936 /*
4937 * This function is called after the runtime firmware notifies us of its
4938 * readiness (called in a process context.)
4939 */
4940 static int
4941 iwn4965_post_alive(struct iwn_softc *sc)
4942 {
4943 int error, qid;
4944
4945 if ((error = iwn_nic_lock(sc)) != 0)
4946 return error;
4947
4948 /* Clear TX scheduler state in SRAM. */
4949 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4950 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
4951 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
4952
4953 /* Set physical address of TX scheduler rings (1KB aligned.) */
4954 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4955
4956 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4957
4958 /* Disable chain mode for all our 16 queues. */
4959 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
4960
4961 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
4962 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
4963 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4964
4965 /* Set scheduler window size. */
4966 iwn_mem_write(sc, sc->sched_base +
4967 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
4968 /* Set scheduler frame limit. */
4969 iwn_mem_write(sc, sc->sched_base +
4970 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4971 IWN_SCHED_LIMIT << 16);
4972 }
4973
4974 /* Enable interrupts for all our 16 queues. */
4975 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
4976 /* Identify TX FIFO rings (0-7). */
4977 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
4978
4979 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4980 for (qid = 0; qid < 7; qid++) {
4981 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
4982 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4983 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
4984 }
4985 iwn_nic_unlock(sc);
4986 return 0;
4987 }
4988
4989 /*
4990 * This function is called after the initialization or runtime firmware
4991 * notifies us of its readiness (called in a process context.)
4992 */
4993 static int
4994 iwn5000_post_alive(struct iwn_softc *sc)
4995 {
4996 int error, qid;
4997
4998 /* Switch to using ICT interrupt mode. */
4999 iwn5000_ict_reset(sc);
5000
5001 if ((error = iwn_nic_lock(sc)) != 0)
5002 return error;
5003
5004 /* Clear TX scheduler state in SRAM. */
5005 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5006 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5007 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5008
5009 /* Set physical address of TX scheduler rings (1KB aligned.) */
5010 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5011
5012 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5013
5014 /* Enable chain mode for all queues, except command queue. */
5015 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5016 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5017
5018 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5019 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5020 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5021
5022 iwn_mem_write(sc, sc->sched_base +
5023 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5024 /* Set scheduler window size and frame limit. */
5025 iwn_mem_write(sc, sc->sched_base +
5026 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5027 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5028 }
5029
5030 /* Enable interrupts for all our 20 queues. */
5031 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5032 /* Identify TX FIFO rings (0-7). */
5033 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5034
5035 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5036 for (qid = 0; qid < 7; qid++) {
5037 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5038 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5039 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5040 }
5041 iwn_nic_unlock(sc);
5042
5043 /* Configure WiMAX coexistence for combo adapters. */
5044 error = iwn5000_send_wimax_coex(sc);
5045 if (error != 0) {
5046 aprint_error_dev(sc->sc_dev,
5047 "could not configure WiMAX coexistence\n");
5048 return error;
5049 }
5050 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5051 struct iwn5000_phy_calib_crystal cmd;
5052
5053 /* Perform crystal calibration. */
5054 memset(&cmd, 0, sizeof cmd);
5055 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5056 cmd.ngroups = 1;
5057 cmd.isvalid = 1;
5058 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5059 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5060 DPRINTF(("sending crystal calibration %d, %d\n",
5061 cmd.cap_pin[0], cmd.cap_pin[1]));
5062 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5063 if (error != 0) {
5064 aprint_error_dev(sc->sc_dev,
5065 "crystal calibration failed\n");
5066 return error;
5067 }
5068 }
5069 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5070 /* Query calibration from the initialization firmware. */
5071 if ((error = iwn5000_query_calibration(sc)) != 0) {
5072 aprint_error_dev(sc->sc_dev,
5073 "could not query calibration\n");
5074 return error;
5075 }
5076 /*
5077 * We have the calibration results now, reboot with the
5078 * runtime firmware (call ourselves recursively!)
5079 */
5080 iwn_hw_stop(sc);
5081 error = iwn_hw_init(sc);
5082 } else {
5083 /* Send calibration results to runtime firmware. */
5084 error = iwn5000_send_calibration(sc);
5085 }
5086 return error;
5087 }
5088
5089 /*
5090 * The firmware boot code is small and is intended to be copied directly into
5091 * the NIC internal memory (no DMA transfer.)
5092 */
5093 static int
5094 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5095 {
5096 int error, ntries;
5097
5098 size /= sizeof (uint32_t);
5099
5100 if ((error = iwn_nic_lock(sc)) != 0)
5101 return error;
5102
5103 /* Copy microcode image into NIC memory. */
5104 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5105 (const uint32_t *)ucode, size);
5106
5107 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5108 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5109 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5110
5111 /* Start boot load now. */
5112 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5113
5114 /* Wait for transfer to complete. */
5115 for (ntries = 0; ntries < 1000; ntries++) {
5116 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5117 IWN_BSM_WR_CTRL_START))
5118 break;
5119 DELAY(10);
5120 }
5121 if (ntries == 1000) {
5122 aprint_error_dev(sc->sc_dev,
5123 "could not load boot firmware\n");
5124 iwn_nic_unlock(sc);
5125 return ETIMEDOUT;
5126 }
5127
5128 /* Enable boot after power up. */
5129 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5130
5131 iwn_nic_unlock(sc);
5132 return 0;
5133 }
5134
5135 static int
5136 iwn4965_load_firmware(struct iwn_softc *sc)
5137 {
5138 struct iwn_fw_info *fw = &sc->fw;
5139 struct iwn_dma_info *dma = &sc->fw_dma;
5140 int error;
5141
5142 /* Copy initialization sections into pre-allocated DMA-safe memory. */
5143 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5144 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5145 BUS_DMASYNC_PREWRITE);
5146 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5147 fw->init.text, fw->init.textsz);
5148 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5149 fw->init.textsz, BUS_DMASYNC_PREWRITE);
5150
5151 /* Tell adapter where to find initialization sections. */
5152 if ((error = iwn_nic_lock(sc)) != 0)
5153 return error;
5154 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5155 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5156 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5157 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5158 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5159 iwn_nic_unlock(sc);
5160
5161 /* Load firmware boot code. */
5162 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5163 if (error != 0) {
5164 aprint_error_dev(sc->sc_dev,
5165 "could not load boot firmware\n");
5166 return error;
5167 }
5168 /* Now press "execute". */
5169 IWN_WRITE(sc, IWN_RESET, 0);
5170
5171 /* Wait at most one second for first alive notification. */
5172 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5173 aprint_error_dev(sc->sc_dev,
5174 "timeout waiting for adapter to initialize\n");
5175 return error;
5176 }
5177
5178 /* Retrieve current temperature for initial TX power calibration. */
5179 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5180 sc->temp = iwn4965_get_temperature(sc);
5181
5182 /* Copy runtime sections into pre-allocated DMA-safe memory. */
5183 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5184 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5185 BUS_DMASYNC_PREWRITE);
5186 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5187 fw->main.text, fw->main.textsz);
5188 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5189 fw->main.textsz, BUS_DMASYNC_PREWRITE);
5190
5191 /* Tell adapter where to find runtime sections. */
5192 if ((error = iwn_nic_lock(sc)) != 0)
5193 return error;
5194 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5195 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5196 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5197 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5198 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5199 IWN_FW_UPDATED | fw->main.textsz);
5200 iwn_nic_unlock(sc);
5201
5202 return 0;
5203 }
5204
5205 static int
5206 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5207 const uint8_t *section, int size)
5208 {
5209 struct iwn_dma_info *dma = &sc->fw_dma;
5210 int error;
5211
5212 /* Copy firmware section into pre-allocated DMA-safe memory. */
5213 memcpy(dma->vaddr, section, size);
5214 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5215
5216 if ((error = iwn_nic_lock(sc)) != 0)
5217 return error;
5218
5219 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5220 IWN_FH_TX_CONFIG_DMA_PAUSE);
5221
5222 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5223 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5224 IWN_LOADDR(dma->paddr));
5225 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5226 IWN_HIADDR(dma->paddr) << 28 | size);
5227 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5228 IWN_FH_TXBUF_STATUS_TBNUM(1) |
5229 IWN_FH_TXBUF_STATUS_TBIDX(1) |
5230 IWN_FH_TXBUF_STATUS_TFBD_VALID);
5231
5232 /* Kick Flow Handler to start DMA transfer. */
5233 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5234 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5235
5236 iwn_nic_unlock(sc);
5237
5238 /* Wait at most five seconds for FH DMA transfer to complete. */
5239 return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5240 }
5241
5242 static int
5243 iwn5000_load_firmware(struct iwn_softc *sc)
5244 {
5245 struct iwn_fw_part *fw;
5246 int error;
5247
5248 /* Load the initialization firmware on first boot only. */
5249 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5250 &sc->fw.main : &sc->fw.init;
5251
5252 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5253 fw->text, fw->textsz);
5254 if (error != 0) {
5255 aprint_error_dev(sc->sc_dev,
5256 "could not load firmware %s section\n", ".text");
5257 return error;
5258 }
5259 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5260 fw->data, fw->datasz);
5261 if (error != 0) {
5262 aprint_error_dev(sc->sc_dev,
5263 "could not load firmware %s section\n", ".data");
5264 return error;
5265 }
5266
5267 /* Now press "execute". */
5268 IWN_WRITE(sc, IWN_RESET, 0);
5269 return 0;
5270 }
5271
5272 /*
5273 * Extract text and data sections from a legacy firmware image.
5274 */
5275 static int
5276 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5277 {
5278 const uint32_t *ptr;
5279 size_t hdrlen = 24;
5280 uint32_t rev;
5281
5282 ptr = (const uint32_t *)fw->data;
5283 rev = le32toh(*ptr++);
5284
5285 /* Check firmware API version. */
5286 if (IWN_FW_API(rev) <= 1) {
5287 aprint_error_dev(sc->sc_dev,
5288 "bad firmware, need API version >=2\n");
5289 return EINVAL;
5290 }
5291 if (IWN_FW_API(rev) >= 3) {
5292 /* Skip build number (version 2 header). */
5293 hdrlen += 4;
5294 ptr++;
5295 }
5296 if (fw->size < hdrlen) {
5297 aprint_error_dev(sc->sc_dev,
5298 "firmware too short: %zd bytes\n", fw->size);
5299 return EINVAL;
5300 }
5301 fw->main.textsz = le32toh(*ptr++);
5302 fw->main.datasz = le32toh(*ptr++);
5303 fw->init.textsz = le32toh(*ptr++);
5304 fw->init.datasz = le32toh(*ptr++);
5305 fw->boot.textsz = le32toh(*ptr++);
5306
5307 /* Check that all firmware sections fit. */
5308 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5309 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5310 aprint_error_dev(sc->sc_dev,
5311 "firmware too short: %zd bytes\n", fw->size);
5312 return EINVAL;
5313 }
5314
5315 /* Get pointers to firmware sections. */
5316 fw->main.text = (const uint8_t *)ptr;
5317 fw->main.data = fw->main.text + fw->main.textsz;
5318 fw->init.text = fw->main.data + fw->main.datasz;
5319 fw->init.data = fw->init.text + fw->init.textsz;
5320 fw->boot.text = fw->init.data + fw->init.datasz;
5321 return 0;
5322 }
5323
5324 /*
5325 * Extract text and data sections from a TLV firmware image.
5326 */
5327 static int
5328 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5329 uint16_t alt)
5330 {
5331 const struct iwn_fw_tlv_hdr *hdr;
5332 const struct iwn_fw_tlv *tlv;
5333 const uint8_t *ptr, *end;
5334 uint64_t altmask;
5335 uint32_t len;
5336
5337 if (fw->size < sizeof (*hdr)) {
5338 aprint_error_dev(sc->sc_dev,
5339 "firmware too short: %zd bytes\n", fw->size);
5340 return EINVAL;
5341 }
5342 hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5343 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5344 aprint_error_dev(sc->sc_dev,
5345 "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5346 return EINVAL;
5347 }
5348 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5349 le32toh(hdr->build)));
5350
5351 /*
5352 * Select the closest supported alternative that is less than
5353 * or equal to the specified one.
5354 */
5355 altmask = le64toh(hdr->altmask);
5356 while (alt > 0 && !(altmask & (1ULL << alt)))
5357 alt--; /* Downgrade. */
5358 DPRINTF(("using alternative %d\n", alt));
5359
5360 ptr = (const uint8_t *)(hdr + 1);
5361 end = (const uint8_t *)(fw->data + fw->size);
5362
5363 /* Parse type-length-value fields. */
5364 while (ptr + sizeof (*tlv) <= end) {
5365 tlv = (const struct iwn_fw_tlv *)ptr;
5366 len = le32toh(tlv->len);
5367
5368 ptr += sizeof (*tlv);
5369 if (ptr + len > end) {
5370 aprint_error_dev(sc->sc_dev,
5371 "firmware too short: %zd bytes\n", fw->size);
5372 return EINVAL;
5373 }
5374 /* Skip other alternatives. */
5375 if (tlv->alt != 0 && tlv->alt != htole16(alt))
5376 goto next;
5377
5378 switch (le16toh(tlv->type)) {
5379 case IWN_FW_TLV_MAIN_TEXT:
5380 fw->main.text = ptr;
5381 fw->main.textsz = len;
5382 break;
5383 case IWN_FW_TLV_MAIN_DATA:
5384 fw->main.data = ptr;
5385 fw->main.datasz = len;
5386 break;
5387 case IWN_FW_TLV_INIT_TEXT:
5388 fw->init.text = ptr;
5389 fw->init.textsz = len;
5390 break;
5391 case IWN_FW_TLV_INIT_DATA:
5392 fw->init.data = ptr;
5393 fw->init.datasz = len;
5394 break;
5395 case IWN_FW_TLV_BOOT_TEXT:
5396 fw->boot.text = ptr;
5397 fw->boot.textsz = len;
5398 break;
5399 default:
5400 DPRINTF(("TLV type %d not handled\n",
5401 le16toh(tlv->type)));
5402 break;
5403 }
5404 next: /* TLV fields are 32-bit aligned. */
5405 ptr += (len + 3) & ~3;
5406 }
5407 return 0;
5408 }
5409
5410 static int
5411 iwn_read_firmware(struct iwn_softc *sc)
5412 {
5413 const struct iwn_hal *hal = sc->sc_hal;
5414 struct iwn_fw_info *fw = &sc->fw;
5415 firmware_handle_t fwh;
5416 int error;
5417
5418 /* Initialize for error returns */
5419 fw->data = NULL;
5420 fw->size = 0;
5421
5422 /* Open firmware image. */
5423 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5424 aprint_error_dev(sc->sc_dev,
5425 "could not get firmware handle %s\n", sc->fwname);
5426 return error;
5427 }
5428 fw->size = firmware_get_size(fwh);
5429 if (fw->size < sizeof (uint32_t)) {
5430 aprint_error_dev(sc->sc_dev,
5431 "firmware too short: %zd bytes\n", fw->size);
5432 firmware_close(fwh);
5433 return EINVAL;
5434 }
5435
5436 /* Read the firmware. */
5437 fw->data = firmware_malloc(fw->size);
5438 if (fw->data == NULL) {
5439 aprint_error_dev(sc->sc_dev,
5440 "not enough memory to stock firmware %s\n", sc->fwname);
5441 firmware_close(fwh);
5442 return ENOMEM;
5443 }
5444 error = firmware_read(fwh, 0, fw->data, fw->size);
5445 firmware_close(fwh);
5446 if (error != 0) {
5447 aprint_error_dev(sc->sc_dev,
5448 "could not read firmware %s\n", sc->fwname);
5449 goto out;
5450 }
5451
5452 /* Retrieve text and data sections. */
5453 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
5454 error = iwn_read_firmware_leg(sc, fw);
5455 else
5456 error = iwn_read_firmware_tlv(sc, fw, 1);
5457 if (error != 0) {
5458 aprint_error_dev(sc->sc_dev,
5459 "could not read firmware sections\n");
5460 goto out;
5461 }
5462
5463 /* Make sure text and data sections fit in hardware memory. */
5464 if (fw->main.textsz > hal->fw_text_maxsz ||
5465 fw->main.datasz > hal->fw_data_maxsz ||
5466 fw->init.textsz > hal->fw_text_maxsz ||
5467 fw->init.datasz > hal->fw_data_maxsz ||
5468 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5469 (fw->boot.textsz & 3) != 0) {
5470 aprint_error_dev(sc->sc_dev,
5471 "firmware sections too large\n");
5472 goto out;
5473 }
5474
5475 /* We can proceed with loading the firmware. */
5476 return 0;
5477 out:
5478 firmware_free(fw->data, fw->size);
5479 fw->data = NULL;
5480 fw->size = 0;
5481 return error ? error : EINVAL;
5482 }
5483
5484 static int
5485 iwn_clock_wait(struct iwn_softc *sc)
5486 {
5487 int ntries;
5488
5489 /* Set "initialization complete" bit. */
5490 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5491
5492 /* Wait for clock stabilization. */
5493 for (ntries = 0; ntries < 2500; ntries++) {
5494 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5495 return 0;
5496 DELAY(10);
5497 }
5498 aprint_error_dev(sc->sc_dev,
5499 "timeout waiting for clock stabilization\n");
5500 return ETIMEDOUT;
5501 }
5502
5503 static int
5504 iwn_apm_init(struct iwn_softc *sc)
5505 {
5506 pcireg_t reg;
5507 int error;
5508
5509 /* Disable L0s exit timer (NMI bug workaround.) */
5510 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5511 /* Don't wait for ICH L0s (ICH bug workaround.) */
5512 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5513
5514 /* Set FH wait threshold to max (HW bug under stress workaround.) */
5515 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5516
5517 /* Enable HAP INTA to move adapter from L1a to L0s. */
5518 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5519
5520 /* Retrieve PCIe Active State Power Management (ASPM). */
5521 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5522 sc->sc_cap_off + PCI_PCIE_LCSR);
5523 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5524 if (reg & PCI_PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
5525 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5526 else
5527 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5528
5529 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5530 sc->hw_type <= IWN_HW_REV_TYPE_1000)
5531 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5532
5533 /* Wait for clock stabilization before accessing prph. */
5534 if ((error = iwn_clock_wait(sc)) != 0)
5535 return error;
5536
5537 if ((error = iwn_nic_lock(sc)) != 0)
5538 return error;
5539 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5540 /* Enable DMA and BSM (Bootstrap State Machine.) */
5541 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5542 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5543 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5544 } else {
5545 /* Enable DMA. */
5546 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5547 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5548 }
5549 DELAY(20);
5550 /* Disable L1-Active. */
5551 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5552 iwn_nic_unlock(sc);
5553
5554 return 0;
5555 }
5556
5557 static void
5558 iwn_apm_stop_master(struct iwn_softc *sc)
5559 {
5560 int ntries;
5561
5562 /* Stop busmaster DMA activity. */
5563 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5564 for (ntries = 0; ntries < 100; ntries++) {
5565 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5566 return;
5567 DELAY(10);
5568 }
5569 aprint_error_dev(sc->sc_dev,
5570 "timeout waiting for master\n");
5571 }
5572
5573 static void
5574 iwn_apm_stop(struct iwn_softc *sc)
5575 {
5576 iwn_apm_stop_master(sc);
5577
5578 /* Reset the entire device. */
5579 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5580 DELAY(10);
5581 /* Clear "initialization complete" bit. */
5582 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5583 }
5584
5585 static int
5586 iwn4965_nic_config(struct iwn_softc *sc)
5587 {
5588 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5589 /*
5590 * I don't believe this to be correct but this is what the
5591 * vendor driver is doing. Probably the bits should not be
5592 * shifted in IWN_RFCFG_*.
5593 */
5594 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5595 IWN_RFCFG_TYPE(sc->rfcfg) |
5596 IWN_RFCFG_STEP(sc->rfcfg) |
5597 IWN_RFCFG_DASH(sc->rfcfg));
5598 }
5599 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5600 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5601 return 0;
5602 }
5603
5604 static int
5605 iwn5000_nic_config(struct iwn_softc *sc)
5606 {
5607 uint32_t tmp;
5608 int error;
5609
5610 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5611 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5612 IWN_RFCFG_TYPE(sc->rfcfg) |
5613 IWN_RFCFG_STEP(sc->rfcfg) |
5614 IWN_RFCFG_DASH(sc->rfcfg));
5615 }
5616 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5617 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5618
5619 if ((error = iwn_nic_lock(sc)) != 0)
5620 return error;
5621 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5622
5623 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5624 /*
5625 * Select first Switching Voltage Regulator (1.32V) to
5626 * solve a stability issue related to noisy DC2DC line
5627 * in the silicon of 1000 Series.
5628 */
5629 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5630 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5631 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5632 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5633 }
5634 iwn_nic_unlock(sc);
5635
5636 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5637 /* Use internal power amplifier only. */
5638 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5639 }
5640 if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
5641 /* Indicate that ROM calibration version is >=6. */
5642 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5643 }
5644 return 0;
5645 }
5646
5647 /*
5648 * Take NIC ownership over Intel Active Management Technology (AMT).
5649 */
5650 static int
5651 iwn_hw_prepare(struct iwn_softc *sc)
5652 {
5653 int ntries;
5654
5655 /* Check if hardware is ready. */
5656 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5657 for (ntries = 0; ntries < 5; ntries++) {
5658 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5659 IWN_HW_IF_CONFIG_NIC_READY)
5660 return 0;
5661 DELAY(10);
5662 }
5663
5664 /* Hardware not ready, force into ready state. */
5665 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5666 for (ntries = 0; ntries < 15000; ntries++) {
5667 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5668 IWN_HW_IF_CONFIG_PREPARE_DONE))
5669 break;
5670 DELAY(10);
5671 }
5672 if (ntries == 15000)
5673 return ETIMEDOUT;
5674
5675 /* Hardware should be ready now. */
5676 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5677 for (ntries = 0; ntries < 5; ntries++) {
5678 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5679 IWN_HW_IF_CONFIG_NIC_READY)
5680 return 0;
5681 DELAY(10);
5682 }
5683 return ETIMEDOUT;
5684 }
5685
5686 static int
5687 iwn_hw_init(struct iwn_softc *sc)
5688 {
5689 const struct iwn_hal *hal = sc->sc_hal;
5690 int error, chnl, qid;
5691
5692 /* Clear pending interrupts. */
5693 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5694
5695 if ((error = iwn_apm_init(sc)) != 0) {
5696 aprint_error_dev(sc->sc_dev,
5697 "could not power ON adapter\n");
5698 return error;
5699 }
5700
5701 /* Select VMAIN power source. */
5702 if ((error = iwn_nic_lock(sc)) != 0)
5703 return error;
5704 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5705 iwn_nic_unlock(sc);
5706
5707 /* Perform adapter-specific initialization. */
5708 if ((error = hal->nic_config(sc)) != 0)
5709 return error;
5710
5711 /* Initialize RX ring. */
5712 if ((error = iwn_nic_lock(sc)) != 0)
5713 return error;
5714 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5715 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5716 /* Set physical address of RX ring (256-byte aligned.) */
5717 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5718 /* Set physical address of RX status (16-byte aligned.) */
5719 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5720 /* Enable RX. */
5721 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5722 IWN_FH_RX_CONFIG_ENA |
5723 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
5724 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
5725 IWN_FH_RX_CONFIG_SINGLE_FRAME |
5726 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5727 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5728 iwn_nic_unlock(sc);
5729 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5730
5731 if ((error = iwn_nic_lock(sc)) != 0)
5732 return error;
5733
5734 /* Initialize TX scheduler. */
5735 iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5736
5737 /* Set physical address of "keep warm" page (16-byte aligned.) */
5738 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5739
5740 /* Initialize TX rings. */
5741 for (qid = 0; qid < hal->ntxqs; qid++) {
5742 struct iwn_tx_ring *txq = &sc->txq[qid];
5743
5744 /* Set physical address of TX ring (256-byte aligned.) */
5745 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5746 txq->desc_dma.paddr >> 8);
5747 }
5748 iwn_nic_unlock(sc);
5749
5750 /* Enable DMA channels. */
5751 for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5752 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5753 IWN_FH_TX_CONFIG_DMA_ENA |
5754 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5755 }
5756
5757 /* Clear "radio off" and "commands blocked" bits. */
5758 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5759 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5760
5761 /* Clear pending interrupts. */
5762 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5763 /* Enable interrupt coalescing. */
5764 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5765 /* Enable interrupts. */
5766 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5767
5768 /* _Really_ make sure "radio off" bit is cleared! */
5769 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5770 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5771
5772 if ((error = hal->load_firmware(sc)) != 0) {
5773 aprint_error_dev(sc->sc_dev,
5774 "could not load firmware\n");
5775 return error;
5776 }
5777 /* Wait at most one second for firmware alive notification. */
5778 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5779 aprint_error_dev(sc->sc_dev,
5780 "timeout waiting for adapter to initialize\n");
5781 return error;
5782 }
5783 /* Do post-firmware initialization. */
5784 return hal->post_alive(sc);
5785 }
5786
5787 static void
5788 iwn_hw_stop(struct iwn_softc *sc)
5789 {
5790 const struct iwn_hal *hal = sc->sc_hal;
5791 int chnl, qid, ntries;
5792 uint32_t tmp;
5793
5794 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5795
5796 /* Disable interrupts. */
5797 IWN_WRITE(sc, IWN_INT_MASK, 0);
5798 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5799 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5800 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5801
5802 /* Make sure we no longer hold the NIC lock. */
5803 iwn_nic_unlock(sc);
5804
5805 /* Stop TX scheduler. */
5806 iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5807
5808 /* Stop all DMA channels. */
5809 if (iwn_nic_lock(sc) == 0) {
5810 for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5811 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5812 for (ntries = 0; ntries < 200; ntries++) {
5813 tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
5814 if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
5815 IWN_FH_TX_STATUS_IDLE(chnl))
5816 break;
5817 DELAY(10);
5818 }
5819 }
5820 iwn_nic_unlock(sc);
5821 }
5822
5823 /* Stop RX ring. */
5824 iwn_reset_rx_ring(sc, &sc->rxq);
5825
5826 /* Reset all TX rings. */
5827 for (qid = 0; qid < hal->ntxqs; qid++)
5828 iwn_reset_tx_ring(sc, &sc->txq[qid]);
5829
5830 if (iwn_nic_lock(sc) == 0) {
5831 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5832 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5833 iwn_nic_unlock(sc);
5834 }
5835 DELAY(5);
5836 /* Power OFF adapter. */
5837 iwn_apm_stop(sc);
5838 }
5839
5840 static int
5841 iwn_init(struct ifnet *ifp)
5842 {
5843 struct iwn_softc *sc = ifp->if_softc;
5844 struct ieee80211com *ic = &sc->sc_ic;
5845 int error;
5846
5847 mutex_enter(&sc->sc_mtx);
5848 if (sc->sc_flags & IWN_FLAG_HW_INITED)
5849 goto out;
5850 if ((error = iwn_hw_prepare(sc)) != 0) {
5851 aprint_error_dev(sc->sc_dev,
5852 "hardware not ready\n");
5853 goto fail;
5854 }
5855
5856 /* Check that the radio is not disabled by hardware switch. */
5857 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5858 aprint_error_dev(sc->sc_dev,
5859 "radio is disabled by hardware switch\n");
5860 error = EPERM; /* :-) */
5861 goto fail;
5862 }
5863
5864 /* Read firmware images from the filesystem. */
5865 if ((error = iwn_read_firmware(sc)) != 0) {
5866 aprint_error_dev(sc->sc_dev,
5867 "could not read firmware\n");
5868 goto fail;
5869 }
5870
5871 /* Initialize interrupt mask to default value. */
5872 sc->int_mask = IWN_INT_MASK_DEF;
5873 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5874
5875 /* Initialize hardware and upload firmware. */
5876 KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
5877 error = iwn_hw_init(sc);
5878 firmware_free(sc->fw.data, sc->fw.size);
5879 sc->fw.data = NULL;
5880 sc->fw.size = 0;
5881 if (error != 0) {
5882 aprint_error_dev(sc->sc_dev,
5883 "could not initialize hardware\n");
5884 goto fail;
5885 }
5886
5887 /* Configure adapter now that it is ready. */
5888 if ((error = iwn_config(sc)) != 0) {
5889 aprint_error_dev(sc->sc_dev,
5890 "could not configure device\n");
5891 goto fail;
5892 }
5893
5894 ifp->if_flags &= ~IFF_OACTIVE;
5895 ifp->if_flags |= IFF_RUNNING;
5896
5897 if (ic->ic_opmode != IEEE80211_M_MONITOR)
5898 ieee80211_begin_scan(ic, 0);
5899 else
5900 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5901
5902 sc->sc_flags |= IWN_FLAG_HW_INITED;
5903 out:
5904 mutex_exit(&sc->sc_mtx);
5905 return 0;
5906
5907 fail: mutex_exit(&sc->sc_mtx);
5908 iwn_stop(ifp, 1);
5909 return error;
5910 }
5911
5912 static void
5913 iwn_stop(struct ifnet *ifp, int disable)
5914 {
5915 struct iwn_softc *sc = ifp->if_softc;
5916 struct ieee80211com *ic = &sc->sc_ic;
5917
5918 if (!disable)
5919 mutex_enter(&sc->sc_mtx);
5920 sc->sc_flags &= ~IWN_FLAG_HW_INITED;
5921 ifp->if_timer = sc->sc_tx_timer = 0;
5922 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5923
5924 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5925
5926 /* Power OFF hardware. */
5927 iwn_hw_stop(sc);
5928
5929 #ifndef SMALL_KERNEL
5930 /* Temperature sensor is no longer valid. */
5931 sc->sc_sensor.value_cur = 0;
5932 sc->sc_sensor.state = ENVSYS_SINVALID;
5933 #endif
5934 if (!disable)
5935 mutex_exit(&sc->sc_mtx);
5936 }
5937
5938 /*
5939 * XXX MCLGETI alternative
5940 *
5941 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
5942 * as long as there are available free buffers then it uses MEXTMALLOC.,
5943 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
5944 * The MCLGET4K code is used for testing an alternative mbuf cache.
5945 */
5946
5947 static struct mbuf *
5948 MCLGETIalt(struct iwn_softc *sc, int how,
5949 struct ifnet *ifp __unused, u_int size)
5950 {
5951 struct mbuf *m;
5952 #ifdef IWN_USE_RBUF
5953 struct iwn_rbuf *rbuf;
5954 #endif
5955
5956 MGETHDR(m, how, MT_DATA);
5957 if (m == NULL)
5958 return NULL;
5959
5960 #ifdef IWN_USE_RBUF
5961 if (sc->rxq.nb_free_entries > 0 &&
5962 (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
5963 /* Attach buffer to mbuf header. */
5964 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
5965 m->m_flags |= M_EXT_RW;
5966 }
5967 else {
5968 MEXTMALLOC(m, size, how);
5969 if ((m->m_flags & M_EXT) == 0) {
5970 m_freem(m);
5971 return NULL;
5972 }
5973 }
5974
5975 #else
5976 #ifdef MCLGET4K
5977 if (size == 4096)
5978 MCLGET4K(m, how);
5979 else
5980 panic("size must be 4k");
5981 #else
5982 MEXTMALLOC(m, size, how);
5983 #endif
5984 if ((m->m_flags & M_EXT) == 0) {
5985 m_freem(m);
5986 return NULL;
5987 }
5988 #endif
5989
5990 return m;
5991 }
5992
5993 #ifdef IWN_USE_RBUF
5994 static struct iwn_rbuf *
5995 iwn_alloc_rbuf(struct iwn_softc *sc)
5996 {
5997 struct iwn_rbuf *rbuf;
5998 mutex_enter(&sc->rxq.freelist_mtx);
5999
6000 rbuf = SLIST_FIRST(&sc->rxq.freelist);
6001 if (rbuf != NULL) {
6002 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6003 sc->rxq.nb_free_entries --;
6004 }
6005 mutex_exit(&sc->rxq.freelist_mtx);
6006 return rbuf;
6007 }
6008
6009 /*
6010 * This is called automatically by the network stack when the mbuf to which
6011 * our RX buffer is attached is freed.
6012 */
6013 static void
6014 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
6015 {
6016 struct iwn_rbuf *rbuf = arg;
6017 struct iwn_softc *sc = rbuf->sc;
6018
6019 /* Put the RX buffer back in the free list. */
6020 mutex_enter(&sc->rxq.freelist_mtx);
6021 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6022 mutex_exit(&sc->rxq.freelist_mtx);
6023
6024 sc->rxq.nb_free_entries ++;
6025 if (__predict_true(m != NULL))
6026 pool_cache_put(mb_cache, m);
6027 }
6028
6029 static int
6030 iwn_alloc_rpool(struct iwn_softc *sc)
6031 {
6032 struct iwn_rx_ring *ring = &sc->rxq;
6033 struct iwn_rbuf *rbuf;
6034 int i, error;
6035
6036 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6037
6038 /* Allocate a big chunk of DMA'able memory... */
6039 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6040 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6041 if (error != 0) {
6042 aprint_error_dev(sc->sc_dev,
6043 "could not allocate RX buffers DMA memory\n");
6044 return error;
6045 }
6046 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6047 SLIST_INIT(&ring->freelist);
6048 for (i = 0; i < IWN_RBUF_COUNT; i++) {
6049 rbuf = &ring->rbuf[i];
6050
6051 rbuf->sc = sc; /* Backpointer for callbacks. */
6052 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6053 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6054
6055 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6056 }
6057 ring->nb_free_entries = IWN_RBUF_COUNT;
6058 return 0;
6059 }
6060
6061 static void
6062 iwn_free_rpool(struct iwn_softc *sc)
6063 {
6064 iwn_dma_contig_free(&sc->rxq.buf_dma);
6065 }
6066 #endif
6067
6068 /*
6069 * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6070 * Copyright (c) 2001 Atsushi Onoe
6071 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6072 * Copyright (c) 2007-2009 Damien Bergamini
6073 * All rights reserved.
6074 */
6075
6076 /*
6077 * Add an SSID element to a frame (see 7.3.2.1).
6078 */
6079 static u_int8_t *
6080 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6081 {
6082 *frm++ = IEEE80211_ELEMID_SSID;
6083 *frm++ = len;
6084 memcpy(frm, ssid, len);
6085 return frm + len;
6086 }
6087
6088 /*
6089 * Add a supported rates element to a frame (see 7.3.2.2).
6090 */
6091 static u_int8_t *
6092 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6093 {
6094 int nrates;
6095
6096 *frm++ = IEEE80211_ELEMID_RATES;
6097 nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6098 *frm++ = nrates;
6099 memcpy(frm, rs->rs_rates, nrates);
6100 return frm + nrates;
6101 }
6102
6103 /*
6104 * Add an extended supported rates element to a frame (see 7.3.2.14).
6105 */
6106 static u_int8_t *
6107 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6108 {
6109 int nrates;
6110
6111 KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6112
6113 *frm++ = IEEE80211_ELEMID_XRATES;
6114 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6115 *frm++ = nrates;
6116 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6117 return frm + nrates;
6118 }
6119
6120 /*
6121 * XXX: Hack to set the current channel to the value advertised in beacons or
6122 * probe responses. Only used during AP detection.
6123 * XXX: Duplicated from if_iwi.c
6124 */
6125 static void
6126 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6127 {
6128 struct ieee80211_frame *wh;
6129 uint8_t subtype;
6130 uint8_t *frm, *efrm;
6131
6132 wh = mtod(m, struct ieee80211_frame *);
6133
6134 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6135 return;
6136
6137 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6138
6139 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6140 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6141 return;
6142
6143 frm = (uint8_t *)(wh + 1);
6144 efrm = mtod(m, uint8_t *) + m->m_len;
6145
6146 frm += 12; /* skip tstamp, bintval and capinfo fields */
6147 while (frm < efrm) {
6148 if (*frm == IEEE80211_ELEMID_DSPARMS)
6149 #if IEEE80211_CHAN_MAX < 255
6150 if (frm[2] <= IEEE80211_CHAN_MAX)
6151 #endif
6152 ic->ic_curchan = &ic->ic_channels[frm[2]];
6153
6154 frm += frm[1] + 2;
6155 }
6156 }
6157
6158