Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.41
      1 /*	$NetBSD: if_iwn.c,v 1.41 2010/04/17 15:57:22 christos Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.88 2010/04/10 08:37:36 damien Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.41 2010/04/17 15:57:22 christos Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 /* XXX Avoid sensor code (correct option for NetBSD too?) */
     31 #undef SMALL_KERNEL
     32 
     33 #include <sys/param.h>
     34 #include <sys/sockio.h>
     35 #include <sys/sysctl.h>
     36 #include <sys/mbuf.h>
     37 #include <sys/kernel.h>
     38 #include <sys/socket.h>
     39 #include <sys/systm.h>
     40 #include <sys/malloc.h>
     41 #include <sys/mutex.h>
     42 #include <sys/conf.h>
     43 #include <sys/kauth.h>
     44 #include <sys/callout.h>
     45 
     46 #include <dev/sysmon/sysmonvar.h>
     47 
     48 #include <machine/bus.h>
     49 #include <machine/endian.h>
     50 #include <machine/intr.h>
     51 
     52 #include <dev/pci/pcireg.h>
     53 #include <dev/pci/pcivar.h>
     54 #include <dev/pci/pcidevs.h>
     55 
     56 #include <net/bpf.h>
     57 #include <net/if.h>
     58 #include <net/if_arp.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_types.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <net/if_ether.h>
     67 #include <netinet/ip.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_amrr.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #include <dev/firmload.h>
     74 
     75 #include <dev/pci/if_iwnreg.h>
     76 #include <dev/pci/if_iwnvar.h>
     77 
     78 static const pci_product_id_t iwn_devices[] = {
     79 /* XXX From old NetBSD iwn driver (used by pcidevs) */
     80 	PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1,
     81 	PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2,
     82 	PCI_PRODUCT_INTEL_PRO_WL_5100AGN_1,
     83 	PCI_PRODUCT_INTEL_PRO_WL_5100AGN_2,
     84 	PCI_PRODUCT_INTEL_PRO_WL_5300AGN_1,
     85 	PCI_PRODUCT_INTEL_PRO_WL_5300AGN_2,
     86 	PCI_PRODUCT_INTEL_PRO_WL_5350AGN_1,
     87 	PCI_PRODUCT_INTEL_PRO_WL_5350AGN_2,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     89 #if 0
     90 /* XXX From new OpenBSD iwn driver (not in pcidevs) */
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     99 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
    100 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
    101 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
    102 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
    103 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
    104 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
    105 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
    106 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
    107 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
    108 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
    109 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
    110 #endif
    111 };
    112 
    113 /*
    114  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    115  */
    116 static const struct ieee80211_rateset iwn_rateset_11a =
    117 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    118 
    119 static const struct ieee80211_rateset iwn_rateset_11b =
    120 	{ 4, { 2, 4, 11, 22 } };
    121 
    122 static const struct ieee80211_rateset iwn_rateset_11g =
    123 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    124 
    125 static int	iwn_match(device_t , struct cfdata *, void *);
    126 static void	iwn_attach(device_t , device_t , void *);
    127 const struct	iwn_hal *iwn_hal_attach(struct iwn_softc *, pci_product_id_t pid);
    128 #ifndef SMALL_KERNEL
    129 static void	iwn_sensor_attach(struct iwn_softc *);
    130 #endif
    131 static void	iwn_radiotap_attach(struct iwn_softc *);
    132 static int	iwn_detach(device_t , int);
    133 #if 0
    134 static void	iwn_power(int, void *);
    135 #endif
    136 static bool	iwn_resume(device_t, const pmf_qual_t *);
    137 static int	iwn_nic_lock(struct iwn_softc *);
    138 static int	iwn_eeprom_lock(struct iwn_softc *);
    139 static int	iwn_init_otprom(struct iwn_softc *);
    140 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    141 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    142 		    void **, bus_size_t, bus_size_t);
    143 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    144 static int	iwn_alloc_sched(struct iwn_softc *);
    145 static void	iwn_free_sched(struct iwn_softc *);
    146 static int	iwn_alloc_kw(struct iwn_softc *);
    147 static void	iwn_free_kw(struct iwn_softc *);
    148 static int	iwn_alloc_ict(struct iwn_softc *);
    149 static void	iwn_free_ict(struct iwn_softc *);
    150 static int	iwn_alloc_fwmem(struct iwn_softc *);
    151 static void	iwn_free_fwmem(struct iwn_softc *);
    152 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    153 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    154 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    155 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    156 		    int);
    157 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    158 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    159 static void	iwn5000_ict_reset(struct iwn_softc *);
    160 static int	iwn_read_eeprom(struct iwn_softc *);
    161 static void	iwn4965_read_eeprom(struct iwn_softc *);
    162 #ifdef IWN_DEBUG
    163 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    164 #endif
    165 static void	iwn5000_read_eeprom(struct iwn_softc *);
    166 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    167 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    168 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    169 static void	iwn_newassoc(struct ieee80211_node *, int);
    170 static int	iwn_media_change(struct ifnet *);
    171 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    172 static void	iwn_iter_func(void *, struct ieee80211_node *);
    173 static void	iwn_calib_timeout(void *);
    174 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    175 		    struct iwn_rx_data *);
    176 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    177 		    struct iwn_rx_data *);
    178 #ifndef IEEE80211_NO_HT
    179 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    180 		    struct iwn_rx_data *);
    181 #endif
    182 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    183 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    184 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    185 		    struct iwn_rx_data *);
    186 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    187 		    struct iwn_rx_data *);
    188 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    189 		    struct iwn_rx_data *);
    190 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    191 		    uint8_t);
    192 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    193 static void	iwn_notif_intr(struct iwn_softc *);
    194 static void	iwn_wakeup_intr(struct iwn_softc *);
    195 static void	iwn_fatal_intr(struct iwn_softc *);
    196 static int	iwn_intr(void *);
    197 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    198 		    uint16_t);
    199 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    200 		    uint16_t);
    201 #ifdef notyet
    202 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    203 #endif
    204 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    205 		    struct ieee80211_node *, int);
    206 static void	iwn_start(struct ifnet *);
    207 static void	iwn_watchdog(struct ifnet *);
    208 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    209 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    210 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    211 		    int);
    212 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    213 		    int);
    214 static int	iwn_set_link_quality(struct iwn_softc *,
    215 		    struct ieee80211_node *);
    216 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    217 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    218 static int	iwn_set_critical_temp(struct iwn_softc *);
    219 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    220 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    221 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    222 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    223 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    224 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    225 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    226 static int	iwn4965_get_temperature(struct iwn_softc *);
    227 static int	iwn5000_get_temperature(struct iwn_softc *);
    228 static int	iwn_init_sensitivity(struct iwn_softc *);
    229 static void	iwn_collect_noise(struct iwn_softc *,
    230 		    const struct iwn_rx_general_stats *);
    231 static int	iwn4965_init_gains(struct iwn_softc *);
    232 static int	iwn5000_init_gains(struct iwn_softc *);
    233 static int	iwn4965_set_gains(struct iwn_softc *);
    234 static int	iwn5000_set_gains(struct iwn_softc *);
    235 static void	iwn_tune_sensitivity(struct iwn_softc *,
    236 		    const struct iwn_rx_stats *);
    237 static int	iwn_send_sensitivity(struct iwn_softc *);
    238 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    239 static int	iwn_config(struct iwn_softc *);
    240 static int	iwn_scan(struct iwn_softc *, uint16_t);
    241 static int	iwn_auth(struct iwn_softc *);
    242 static int	iwn_run(struct iwn_softc *);
    243 #ifdef IWN_HWCRYPTO
    244 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    245 		    struct ieee80211_key *);
    246 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    247 		    struct ieee80211_key *);
    248 #endif
    249 static int	iwn_wme_update(struct ieee80211com *);
    250 #ifndef IEEE80211_NO_HT
    251 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    252 		    struct ieee80211_node *, uint8_t);
    253 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    254 		    struct ieee80211_node *, uint8_t);
    255 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    256 		    struct ieee80211_node *, uint8_t);
    257 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    258 		    struct ieee80211_node *, uint8_t);
    259 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    260 		    struct ieee80211_node *, uint8_t, uint16_t);
    261 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    262 		    uint8_t, uint16_t);
    263 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    264 		    struct ieee80211_node *, uint8_t, uint16_t);
    265 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    266 		    uint8_t, uint16_t);
    267 #endif
    268 static int	iwn5000_query_calibration(struct iwn_softc *);
    269 static int	iwn5000_send_calibration(struct iwn_softc *);
    270 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    271 static int	iwn4965_post_alive(struct iwn_softc *);
    272 static int	iwn5000_post_alive(struct iwn_softc *);
    273 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    274 		    int);
    275 static int	iwn4965_load_firmware(struct iwn_softc *);
    276 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    277 		    const uint8_t *, int);
    278 static int	iwn5000_load_firmware(struct iwn_softc *);
    279 static int	iwn_read_firmware(struct iwn_softc *);
    280 static int	iwn_clock_wait(struct iwn_softc *);
    281 static int	iwn_apm_init(struct iwn_softc *);
    282 static void	iwn_apm_stop_master(struct iwn_softc *);
    283 static void	iwn_apm_stop(struct iwn_softc *);
    284 static int	iwn4965_nic_config(struct iwn_softc *);
    285 static int	iwn5000_nic_config(struct iwn_softc *);
    286 static int	iwn_hw_prepare(struct iwn_softc *);
    287 static int	iwn_hw_init(struct iwn_softc *);
    288 static void	iwn_hw_stop(struct iwn_softc *);
    289 static int	iwn_init(struct ifnet *);
    290 static void	iwn_stop(struct ifnet *, int);
    291 
    292 /* XXX MCLGETI alternative */
    293 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    294 		    struct ifnet *, u_int);
    295 #ifdef IWN_USE_RBUF
    296 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    297 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    298 static int	iwn_alloc_rpool(struct iwn_softc *);
    299 static void	iwn_free_rpool(struct iwn_softc *);
    300 #endif
    301 
    302 /* XXX needed by iwn_scan */
    303 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
    304 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
    305     const struct ieee80211_rateset *);
    306 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
    307     const struct ieee80211_rateset *);
    308 
    309 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
    310 
    311 #ifdef IWN_DEBUG
    312 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    313 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    314 int iwn_debug = 0;
    315 #else
    316 #define DPRINTF(x)
    317 #define DPRINTFN(n, x)
    318 #endif
    319 
    320 static const struct iwn_hal iwn4965_hal = {
    321 	iwn4965_load_firmware,
    322 	iwn4965_read_eeprom,
    323 	iwn4965_post_alive,
    324 	iwn4965_nic_config,
    325 	iwn4965_update_sched,
    326 	iwn4965_get_temperature,
    327 	iwn4965_get_rssi,
    328 	iwn4965_set_txpower,
    329 	iwn4965_init_gains,
    330 	iwn4965_set_gains,
    331 	iwn4965_add_node,
    332 	iwn4965_tx_done,
    333 #ifndef IEEE80211_NO_HT
    334 	iwn4965_ampdu_tx_start,
    335 	iwn4965_ampdu_tx_stop,
    336 #endif
    337 	IWN4965_NTXQUEUES,
    338 	IWN4965_NDMACHNLS,
    339 	IWN4965_ID_BROADCAST,
    340 	IWN4965_RXONSZ,
    341 	IWN4965_SCHEDSZ,
    342 	IWN4965_FW_TEXT_MAXSZ,
    343 	IWN4965_FW_DATA_MAXSZ,
    344 	IWN4965_FWSZ,
    345 	IWN4965_SCHED_TXFACT
    346 };
    347 
    348 static const struct iwn_hal iwn5000_hal = {
    349 	iwn5000_load_firmware,
    350 	iwn5000_read_eeprom,
    351 	iwn5000_post_alive,
    352 	iwn5000_nic_config,
    353 	iwn5000_update_sched,
    354 	iwn5000_get_temperature,
    355 	iwn5000_get_rssi,
    356 	iwn5000_set_txpower,
    357 	iwn5000_init_gains,
    358 	iwn5000_set_gains,
    359 	iwn5000_add_node,
    360 	iwn5000_tx_done,
    361 #ifndef IEEE80211_NO_HT
    362 	iwn5000_ampdu_tx_start,
    363 	iwn5000_ampdu_tx_stop,
    364 #endif
    365 	IWN5000_NTXQUEUES,
    366 	IWN5000_NDMACHNLS,
    367 	IWN5000_ID_BROADCAST,
    368 	IWN5000_RXONSZ,
    369 	IWN5000_SCHEDSZ,
    370 	IWN5000_FW_TEXT_MAXSZ,
    371 	IWN5000_FW_DATA_MAXSZ,
    372 	IWN5000_FWSZ,
    373 	IWN5000_SCHED_TXFACT
    374 };
    375 
    376 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    377 	iwn_detach, NULL);
    378 
    379 static int
    380 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    381 {
    382 	struct pci_attach_args *pa = aux;
    383 	size_t i;
    384 
    385 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    386 		return 0;
    387 
    388 	for (i = 0; i < __arraycount(iwn_devices); i++)
    389 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    390 			return 1;
    391 
    392 	return 0;
    393 }
    394 
    395 static void
    396 iwn_attach(device_t parent __unused, device_t self, void *aux)
    397 {
    398 	struct iwn_softc *sc = device_private(self);
    399 	struct ieee80211com *ic = &sc->sc_ic;
    400 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    401 	struct pci_attach_args *pa = aux;
    402 	const struct iwn_hal *hal;
    403 	const char *intrstr;
    404 	char devinfo[256];
    405 	pci_intr_handle_t ih;
    406 	pcireg_t memtype, reg;
    407 	int i, error;
    408 	int revision;
    409 
    410 	sc->sc_dev = self;
    411 	sc->sc_pct = pa->pa_pc;
    412 	sc->sc_pcitag = pa->pa_tag;
    413 	sc->sc_dmat = pa->pa_dmat;
    414 
    415 	callout_init(&sc->calib_to, 0);
    416 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    417 
    418 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
    419 	revision = PCI_REVISION(pa->pa_class);
    420 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
    421 
    422 	/*
    423 	 * Get the offset of the PCI Express Capability Structure in PCI
    424 	 * Configuration Space.
    425 	 */
    426 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    427 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    428 	if (error == 0) {
    429 		aprint_error(": PCIe capability structure not found!\n");
    430 		return;
    431 	}
    432 
    433 	/* Clear device-specific "PCI retry timeout" register (41h). */
    434 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    435 	reg &= ~0xff00;
    436 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
    437 
    438 	/* Enable bus-mastering and hardware bug workaround. */
    439 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    440 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    441 	reg |= PCI_COMMAND_MASTER_ENABLE;
    442 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
    443 		DPRINTF(("PCIe INTx Disable set\n"));
    444 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
    445 	}
    446 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    447 
    448 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    449 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    450 	    &sc->sc_sh, NULL, &sc->sc_sz);
    451 	if (error != 0) {
    452 		aprint_error(": can't map mem space\n");
    453 		return;
    454 	}
    455 
    456 	/* Install interrupt handler. */
    457 	if (pci_intr_map(pa, &ih) != 0) {
    458 		aprint_error(": can't map interrupt\n");
    459 		return;
    460 	}
    461 	intrstr = pci_intr_string(sc->sc_pct, ih);
    462 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
    463 	if (sc->sc_ih == NULL) {
    464 		aprint_error(": can't establish interrupt");
    465 		if (intrstr != NULL)
    466 			aprint_error(" at %s", intrstr);
    467 		aprint_error("\n");
    468 		return;
    469 	}
    470 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    471 
    472 	/* Attach Hardware Abstraction Layer. */
    473 	hal = iwn_hal_attach(sc, PCI_PRODUCT(pa->pa_id));
    474 	if (hal == NULL)
    475 		return;
    476 
    477 	if ((error = iwn_hw_prepare(sc)) != 0) {
    478 		aprint_error(": hardware not ready\n");
    479 		return;
    480 	}
    481 
    482 	/* Read MAC address, channels, etc from EEPROM. */
    483 	if ((error = iwn_read_eeprom(sc)) != 0) {
    484 		aprint_error(": could not read EEPROM\n");
    485 		return;
    486 	}
    487 
    488 	/* Allocate DMA memory for firmware transfers. */
    489 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    490 		aprint_error(": could not allocate memory for firmware\n");
    491 		return;
    492 	}
    493 
    494 	/* Allocate "Keep Warm" page. */
    495 	if ((error = iwn_alloc_kw(sc)) != 0) {
    496 		aprint_error(": could not allocate keep warm page\n");
    497 		goto fail1;
    498 	}
    499 
    500 	/* Allocate ICT table for 5000 Series. */
    501 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    502 	    (error = iwn_alloc_ict(sc)) != 0) {
    503 		aprint_error(": could not allocate ICT table\n");
    504 		goto fail2;
    505 	}
    506 
    507 	/* Allocate TX scheduler "rings". */
    508 	if ((error = iwn_alloc_sched(sc)) != 0) {
    509 		aprint_error(": could not allocate TX scheduler rings\n");
    510 		goto fail3;
    511 	}
    512 
    513 #ifdef IWN_USE_RBUF
    514 	/* Allocate RX buffers. */
    515 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    516 		aprint_error_dev(self, "could not allocate RX buffers\n");
    517 		goto fail3;
    518 	}
    519 #endif
    520 
    521 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */
    522 	for (i = 0; i < hal->ntxqs; i++) {
    523 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    524 			aprint_error(": could not allocate TX ring %d\n", i);
    525 			goto fail4;
    526 		}
    527 	}
    528 
    529 	/* Allocate RX ring. */
    530 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    531 		aprint_error(": could not allocate RX ring\n");
    532 		goto fail4;
    533 	}
    534 
    535 	/* Clear pending interrupts. */
    536 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    537 
    538 	/* Count the number of available chains. */
    539 	sc->ntxchains =
    540 	    ((sc->txchainmask >> 2) & 1) +
    541 	    ((sc->txchainmask >> 1) & 1) +
    542 	    ((sc->txchainmask >> 0) & 1);
    543 	sc->nrxchains =
    544 	    ((sc->rxchainmask >> 2) & 1) +
    545 	    ((sc->rxchainmask >> 1) & 1) +
    546 	    ((sc->rxchainmask >> 0) & 1);
    547 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    548 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    549 	    ether_sprintf(ic->ic_myaddr));
    550 
    551 	ic->ic_ifp = ifp;
    552 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    553 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    554 	ic->ic_state = IEEE80211_S_INIT;
    555 
    556 	/* Set device capabilities. */
    557 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
    558 	 * and IEEE80211_C_PMGT too. */
    559 	ic->ic_caps =
    560 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    561 	    IEEE80211_C_WPA |		/* 802.11i */
    562 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    563 	    IEEE80211_C_TXPMGT |	/* tx power management */
    564 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    565 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    566 	    IEEE80211_C_WME;		/* 802.11e */
    567 
    568 #ifndef IEEE80211_NO_HT
    569 	/* Set HT capabilities. */
    570 	ic->ic_htcaps =
    571 #if IWN_RBUF_SIZE == 8192
    572 	    IEEE80211_HTCAP_AMSDU7935 |
    573 #endif
    574 	    IEEE80211_HTCAP_CBW20_40 |
    575 	    IEEE80211_HTCAP_SGI20 |
    576 	    IEEE80211_HTCAP_SGI40;
    577 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    578 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    579 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    580 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    581 	else
    582 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    583 #endif	/* !IEEE80211_NO_HT */
    584 
    585 	/* Set supported legacy rates. */
    586 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
    587 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
    588 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    589 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
    590 	}
    591 #ifndef IEEE80211_NO_HT
    592 	/* Set supported HT rates. */
    593 	ic->ic_sup_mcs[0] = 0xff;
    594 	if (sc->nrxchains > 1)			/* MCS 0-7 */
    595 		ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    596 	if (sc->nrxchains > 2)
    597 		ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    598 #endif
    599 
    600 	/* IBSS channel undefined for now. */
    601 	ic->ic_ibss_chan = &ic->ic_channels[0];
    602 
    603 	ifp->if_softc = sc;
    604 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    605 	ifp->if_init = iwn_init;
    606 	ifp->if_ioctl = iwn_ioctl;
    607 	ifp->if_start = iwn_start;
    608 	ifp->if_watchdog = iwn_watchdog;
    609 	IFQ_SET_READY(&ifp->if_snd);
    610 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    611 
    612 	if_attach(ifp);
    613 	ieee80211_ifattach(ic);
    614 	ic->ic_node_alloc = iwn_node_alloc;
    615 	ic->ic_newassoc = iwn_newassoc;
    616 #ifdef IWN_HWCRYPTO
    617 	ic->ic_crypto.cs_key_set = iwn_set_key;
    618 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    619 #endif
    620 	ic->ic_wme.wme_update = iwn_wme_update;
    621 #ifndef IEEE80211_NO_HT
    622 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    623 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    624 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    625 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    626 #endif
    627 
    628 	/* Override 802.11 state transition machine. */
    629 	sc->sc_newstate = ic->ic_newstate;
    630 	ic->ic_newstate = iwn_newstate;
    631 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    632 
    633 	sc->amrr.amrr_min_success_threshold =  1;
    634 	sc->amrr.amrr_max_success_threshold = 15;
    635 
    636 #ifndef SMALL_KERNEL
    637 	iwn_sensor_attach(sc);
    638 #endif
    639 	iwn_radiotap_attach(sc);
    640 
    641 	/* timeout_set replaced by callout_init and callout_setfunc, above. */
    642 
    643 	if (pmf_device_register(self, NULL, iwn_resume))
    644 		pmf_class_network_register(self, ifp);
    645 	else
    646 		aprint_error_dev(self, "couldn't establish power handler\n");
    647 
    648 	ieee80211_announce(ic);
    649 
    650 	return;
    651 
    652 	/* Free allocated memory if something failed during attachment. */
    653 fail4:	while (--i >= 0)
    654 		iwn_free_tx_ring(sc, &sc->txq[i]);
    655 #ifdef IWN_USE_RBUF
    656 	iwn_free_rpool(sc);
    657 #endif
    658 	iwn_free_sched(sc);
    659 fail3:	if (sc->ict != NULL)
    660 		iwn_free_ict(sc);
    661 fail2:	iwn_free_kw(sc);
    662 fail1:	iwn_free_fwmem(sc);
    663 }
    664 
    665 const struct iwn_hal *
    666 iwn_hal_attach(struct iwn_softc *sc, pci_product_id_t pid)
    667 {
    668 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
    669 
    670 	switch (sc->hw_type) {
    671 	case IWN_HW_REV_TYPE_4965:
    672 		sc->sc_hal = &iwn4965_hal;
    673 		sc->limits = &iwn4965_sensitivity_limits;
    674 		sc->fwname = "iwlwifi-4965-2.ucode";
    675 		sc->txchainmask = IWN_ANT_AB;
    676 		sc->rxchainmask = IWN_ANT_ABC;
    677 		break;
    678 	case IWN_HW_REV_TYPE_5100:
    679 		sc->sc_hal = &iwn5000_hal;
    680 		sc->limits = &iwn5000_sensitivity_limits;
    681 		sc->fwname = "iwlwifi-5000-2.ucode";
    682 		sc->txchainmask = IWN_ANT_B;
    683 		sc->rxchainmask = IWN_ANT_AB;
    684 		break;
    685 	case IWN_HW_REV_TYPE_5150:
    686 		sc->sc_hal = &iwn5000_hal;
    687 		sc->limits = &iwn5150_sensitivity_limits;
    688 		sc->fwname = "iwlwifi-5150-2.ucode";
    689 		sc->txchainmask = IWN_ANT_A;
    690 		sc->rxchainmask = IWN_ANT_AB;
    691 		break;
    692 	case IWN_HW_REV_TYPE_5300:
    693 	case IWN_HW_REV_TYPE_5350:
    694 		sc->sc_hal = &iwn5000_hal;
    695 		sc->limits = &iwn5000_sensitivity_limits;
    696 		sc->fwname = "iwlwifi-5000-2.ucode";
    697 		sc->txchainmask = IWN_ANT_ABC;
    698 		sc->rxchainmask = IWN_ANT_ABC;
    699 		break;
    700 	case IWN_HW_REV_TYPE_1000:
    701 		sc->sc_hal = &iwn5000_hal;
    702 		sc->limits = &iwn1000_sensitivity_limits;
    703 		sc->fwname = "iwlwifi-1000-3.ucode";
    704 		sc->txchainmask = IWN_ANT_A;
    705 		sc->rxchainmask = IWN_ANT_AB;
    706 		break;
    707 	case IWN_HW_REV_TYPE_6000:
    708 		sc->sc_hal = &iwn5000_hal;
    709 		sc->limits = &iwn6000_sensitivity_limits;
    710 		sc->fwname = "iwlwifi-6000-4.ucode";
    711 		switch (pid) {
    712 /* XXX not yet defined for NetBSD (not in pcidevs) */
    713 #ifdef PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1
    714 		case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1:
    715 		case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2:
    716 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    717 			sc->txchainmask = IWN_ANT_BC;
    718 			sc->rxchainmask = IWN_ANT_BC;
    719 			break;
    720 #endif
    721 		default:
    722 			sc->txchainmask = IWN_ANT_ABC;
    723 			sc->rxchainmask = IWN_ANT_ABC;
    724 			break;
    725 		}
    726 		break;
    727 	case IWN_HW_REV_TYPE_6050:
    728 		sc->sc_hal = &iwn5000_hal;
    729 		sc->limits = &iwn6000_sensitivity_limits;
    730 		sc->fwname = "iwlwifi-6050-2.ucode";
    731 		sc->txchainmask = IWN_ANT_AB;
    732 		sc->rxchainmask = IWN_ANT_AB;
    733 		break;
    734 	case IWN_HW_REV_TYPE_6005:
    735 		sc->sc_hal = &iwn5000_hal;
    736 		sc->limits = &iwn6000_sensitivity_limits;
    737 		sc->fwname = "iwlwifi-6005-2.ucode";
    738 		sc->txchainmask = IWN_ANT_AB;
    739 		sc->rxchainmask = IWN_ANT_AB;
    740 		break;
    741 	default:
    742 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    743 		return NULL;
    744 	}
    745 	return sc->sc_hal;
    746 }
    747 
    748 #ifndef SMALL_KERNEL
    749 /*
    750  * Attach the adapter on-board thermal sensor to the sensors framework.
    751  */
    752 static void
    753 iwn_sensor_attach(struct iwn_softc *sc)
    754 {
    755 	int error;
    756 
    757 	sc->sc_sensor.units = ENVSYS_STEMP;
    758 #if 0
    759 	/* XXX something like this ought to work */
    760 	sc->sc_sensor.flags = ENVSYS_FMONLIMITS | ENVSYS_FMONNOTSUPP;
    761 	sc->sc_sensor.limits.sel_critmax = IWN_CTOK(110);
    762 #endif
    763 	strlcpy((sc->sc_sensor.desc), "TEMP", sizeof(sc->sc_sensor.desc));
    764 
    765 	/* Temperature is not valid unless interface is up. */
    766 	sc->sc_sensor.value_cur = 0;
    767 	sc->sc_sensor.state = ENVSYS_SINVALID;
    768 
    769 	sc->sc_sme = sysmon_envsys_create();
    770 
    771 	/* Initialize sensor */
    772 	if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
    773 		sysmon_envsys_destroy(sc->sc_sme);
    774 		return;
    775 	}
    776 
    777 	/*
    778 	 * Hook into the System Monitor.
    779 	 */
    780 	sc->sc_sme->sme_name = device_xname(sc->sc_dev);
    781 	sc->sc_sme->sme_flags = SME_DISABLE_REFRESH;
    782 
    783 	if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) {
    784 		aprint_error_dev(sc->sc_dev,
    785 		    "unable to register with sysmon (%d)\n", error);
    786 		sysmon_envsys_destroy(sc->sc_sme);
    787 		return;
    788 	}
    789 }
    790 #endif
    791 
    792 /*
    793  * Attach the interface to 802.11 radiotap.
    794  */
    795 static void
    796 iwn_radiotap_attach(struct iwn_softc *sc)
    797 {
    798 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    799 
    800 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    801 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    802 	    &sc->sc_drvbpf);
    803 
    804 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    805 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    806 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    807 
    808 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    809 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    810 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    811 }
    812 
    813 static int
    814 iwn_detach(device_t self, int flags __unused)
    815 {
    816 	struct iwn_softc *sc = device_private(self);
    817 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    818 	int qid;
    819 
    820 	callout_stop(&sc->calib_to);
    821 
    822 	/* Uninstall interrupt handler. */
    823 	if (sc->sc_ih != NULL)
    824 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    825 
    826 	/* Free DMA resources. */
    827 	iwn_free_rx_ring(sc, &sc->rxq);
    828 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++)
    829 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    830 #ifdef IWN_USE_RBUF
    831 	iwn_free_rpool(sc);
    832 #endif
    833 	iwn_free_sched(sc);
    834 	iwn_free_kw(sc);
    835 	if (sc->ict != NULL)
    836 		iwn_free_ict(sc);
    837 	iwn_free_fwmem(sc);
    838 
    839 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    840 
    841 #ifndef SMALL_KERNEL
    842 	/* Detach the thermal sensor. */
    843 	sysmon_envsys_sensor_detach(sc->sc_sme, &sc->sc_sensor);
    844 	sysmon_envsys_destroy(sc->sc_sme);
    845 #endif
    846 
    847 	/* XXX verify that this is needed */
    848 	if (ifp != NULL)
    849 		bpf_detach(ifp);
    850 
    851 	ieee80211_ifdetach(&sc->sc_ic);
    852 	if_detach(ifp);
    853 
    854 	return 0;
    855 }
    856 
    857 #if 0
    858 /*
    859  * XXX Investigate if clearing the PCI retry timeout could eliminate
    860  * the repeated scan calls.  Also the calls to if_init and if_start
    861  * are similar to the effect of adding the call to ifioctl_common .
    862  */
    863 static void
    864 iwn_power(int why, void *arg)
    865 {
    866 	struct iwn_softc *sc = arg;
    867 	struct ifnet *ifp;
    868 	pcireg_t reg;
    869 	int s;
    870 
    871 	if (why != PWR_RESUME)
    872 		return;
    873 
    874 	/* Clear device-specific "PCI retry timeout" register (41h). */
    875 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    876 	reg &= ~0xff00;
    877 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
    878 
    879 	s = splnet();
    880 	ifp = &sc->sc_ic.ic_if;
    881 	if (ifp->if_flags & IFF_UP) {
    882 		ifp->if_init(ifp);
    883 		if (ifp->if_flags & IFF_RUNNING)
    884 			ifp->if_start(ifp);
    885 	}
    886 	splx(s);
    887 }
    888 #endif
    889 
    890 static bool
    891 iwn_resume(device_t dv, const pmf_qual_t *qual)
    892 {
    893 	return true;
    894 }
    895 
    896 static int
    897 iwn_nic_lock(struct iwn_softc *sc)
    898 {
    899 	int ntries;
    900 
    901 	/* Request exclusive access to NIC. */
    902 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    903 
    904 	/* Spin until we actually get the lock. */
    905 	for (ntries = 0; ntries < 1000; ntries++) {
    906 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    907 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    908 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    909 			return 0;
    910 		DELAY(10);
    911 	}
    912 	return ETIMEDOUT;
    913 }
    914 
    915 static __inline void
    916 iwn_nic_unlock(struct iwn_softc *sc)
    917 {
    918 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    919 }
    920 
    921 static __inline uint32_t
    922 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    923 {
    924 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    925 	IWN_BARRIER_READ_WRITE(sc);
    926 	return IWN_READ(sc, IWN_PRPH_RDATA);
    927 }
    928 
    929 static __inline void
    930 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    931 {
    932 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    933 	IWN_BARRIER_WRITE(sc);
    934 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    935 }
    936 
    937 static __inline void
    938 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    939 {
    940 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    941 }
    942 
    943 static __inline void
    944 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    945 {
    946 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    947 }
    948 
    949 static __inline void
    950 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    951     const uint32_t *data, int count)
    952 {
    953 	for (; count > 0; count--, data++, addr += 4)
    954 		iwn_prph_write(sc, addr, *data);
    955 }
    956 
    957 static __inline uint32_t
    958 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    959 {
    960 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    961 	IWN_BARRIER_READ_WRITE(sc);
    962 	return IWN_READ(sc, IWN_MEM_RDATA);
    963 }
    964 
    965 static __inline void
    966 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    967 {
    968 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    969 	IWN_BARRIER_WRITE(sc);
    970 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    971 }
    972 
    973 static __inline void
    974 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
    975 {
    976 	uint32_t tmp;
    977 
    978 	tmp = iwn_mem_read(sc, addr & ~3);
    979 	if (addr & 3)
    980 		tmp = (tmp & 0x0000ffff) | data << 16;
    981 	else
    982 		tmp = (tmp & 0xffff0000) | data;
    983 	iwn_mem_write(sc, addr & ~3, tmp);
    984 }
    985 
    986 static __inline void
    987 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
    988     int count)
    989 {
    990 	for (; count > 0; count--, addr += 4)
    991 		*data++ = iwn_mem_read(sc, addr);
    992 }
    993 
    994 static __inline void
    995 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
    996     int count)
    997 {
    998 	for (; count > 0; count--, addr += 4)
    999 		iwn_mem_write(sc, addr, val);
   1000 }
   1001 
   1002 static int
   1003 iwn_eeprom_lock(struct iwn_softc *sc)
   1004 {
   1005 	int i, ntries;
   1006 
   1007 	for (i = 0; i < 100; i++) {
   1008 		/* Request exclusive access to EEPROM. */
   1009 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   1010 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1011 
   1012 		/* Spin until we actually get the lock. */
   1013 		for (ntries = 0; ntries < 100; ntries++) {
   1014 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   1015 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
   1016 				return 0;
   1017 			DELAY(10);
   1018 		}
   1019 	}
   1020 	return ETIMEDOUT;
   1021 }
   1022 
   1023 static __inline void
   1024 iwn_eeprom_unlock(struct iwn_softc *sc)
   1025 {
   1026 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1027 }
   1028 
   1029 /*
   1030  * Initialize access by host to One Time Programmable ROM.
   1031  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
   1032  */
   1033 static int
   1034 iwn_init_otprom(struct iwn_softc *sc)
   1035 {
   1036 	uint16_t prev = 0, base, next;
   1037 	int count, error;
   1038 
   1039 	/* Wait for clock stabilization before accessing prph. */
   1040 	if ((error = iwn_clock_wait(sc)) != 0)
   1041 		return error;
   1042 
   1043 	if ((error = iwn_nic_lock(sc)) != 0)
   1044 		return error;
   1045 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1046 	DELAY(5);
   1047 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1048 	iwn_nic_unlock(sc);
   1049 
   1050 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
   1051 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
   1052 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
   1053 		    IWN_RESET_LINK_PWR_MGMT_DIS);
   1054 	}
   1055 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
   1056 	/* Clear ECC status. */
   1057 	IWN_SETBITS(sc, IWN_OTP_GP,
   1058 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
   1059 
   1060 	/*
   1061 	 * Find the block before last block (contains the EEPROM image)
   1062 	 * for HW without OTP shadow RAM.
   1063 	 */
   1064 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   1065 		/* Switch to absolute addressing mode. */
   1066 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
   1067 		base = 0;
   1068 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
   1069 			error = iwn_read_prom_data(sc, base, &next, 2);
   1070 			if (error != 0)
   1071 				return error;
   1072 			if (next == 0)	/* End of linked-list. */
   1073 				break;
   1074 			prev = base;
   1075 			base = le16toh(next);
   1076 		}
   1077 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1078 			return EIO;
   1079 		/* Skip "next" word. */
   1080 		sc->prom_base = prev + 1;
   1081 	}
   1082 	return 0;
   1083 }
   1084 
   1085 static int
   1086 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1087 {
   1088 	uint8_t *out = data;
   1089 	uint32_t val, tmp;
   1090 	int ntries;
   1091 
   1092 	addr += sc->prom_base;
   1093 	for (; count > 0; count -= 2, addr++) {
   1094 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1095 		for (ntries = 0; ntries < 10; ntries++) {
   1096 			val = IWN_READ(sc, IWN_EEPROM);
   1097 			if (val & IWN_EEPROM_READ_VALID)
   1098 				break;
   1099 			DELAY(5);
   1100 		}
   1101 		if (ntries == 10) {
   1102 			aprint_error_dev(sc->sc_dev,
   1103 			    "timeout reading ROM at 0x%x\n", addr);
   1104 			return ETIMEDOUT;
   1105 		}
   1106 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1107 			/* OTPROM, check for ECC errors. */
   1108 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1109 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1110 				aprint_error_dev(sc->sc_dev,
   1111 				    "OTPROM ECC error at 0x%x\n", addr);
   1112 				return EIO;
   1113 			}
   1114 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1115 				/* Correctable ECC error, clear bit. */
   1116 				IWN_SETBITS(sc, IWN_OTP_GP,
   1117 				    IWN_OTP_GP_ECC_CORR_STTS);
   1118 			}
   1119 		}
   1120 		*out++ = val >> 16;
   1121 		if (count > 1)
   1122 			*out++ = val >> 24;
   1123 	}
   1124 	return 0;
   1125 }
   1126 
   1127 static int
   1128 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1129     bus_size_t size, bus_size_t alignment)
   1130 {
   1131 	int nsegs, error;
   1132 
   1133 	dma->tag = tag;
   1134 	dma->size = size;
   1135 
   1136 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1137 	    &dma->map);
   1138 	if (error != 0)
   1139 		goto fail;
   1140 
   1141 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1142 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1143 	if (error != 0)
   1144 		goto fail;
   1145 
   1146 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1147 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1148 	if (error != 0)
   1149 		goto fail;
   1150 
   1151 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1152 	    BUS_DMA_NOWAIT);
   1153 	if (error != 0)
   1154 		goto fail;
   1155 
   1156 	memset(dma->vaddr, 0, size);
   1157 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1158 
   1159 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1160 	if (kvap != NULL)
   1161 		*kvap = dma->vaddr;
   1162 
   1163 	return 0;
   1164 
   1165 fail:	iwn_dma_contig_free(dma);
   1166 	return error;
   1167 }
   1168 
   1169 static void
   1170 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1171 {
   1172 	if (dma->map != NULL) {
   1173 		if (dma->vaddr != NULL) {
   1174 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1175 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1176 			bus_dmamap_unload(dma->tag, dma->map);
   1177 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1178 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1179 			dma->vaddr = NULL;
   1180 		}
   1181 		bus_dmamap_destroy(dma->tag, dma->map);
   1182 		dma->map = NULL;
   1183 	}
   1184 }
   1185 
   1186 static int
   1187 iwn_alloc_sched(struct iwn_softc *sc)
   1188 {
   1189 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1190 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1191 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024);
   1192 }
   1193 
   1194 static void
   1195 iwn_free_sched(struct iwn_softc *sc)
   1196 {
   1197 	iwn_dma_contig_free(&sc->sched_dma);
   1198 }
   1199 
   1200 static int
   1201 iwn_alloc_kw(struct iwn_softc *sc)
   1202 {
   1203 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1204 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1205 	    4096);
   1206 }
   1207 
   1208 static void
   1209 iwn_free_kw(struct iwn_softc *sc)
   1210 {
   1211 	iwn_dma_contig_free(&sc->kw_dma);
   1212 }
   1213 
   1214 static int
   1215 iwn_alloc_ict(struct iwn_softc *sc)
   1216 {
   1217 	/* ICT table must be aligned on a 4KB boundary. */
   1218 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1219 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1220 }
   1221 
   1222 static void
   1223 iwn_free_ict(struct iwn_softc *sc)
   1224 {
   1225 	iwn_dma_contig_free(&sc->ict_dma);
   1226 }
   1227 
   1228 static int
   1229 iwn_alloc_fwmem(struct iwn_softc *sc)
   1230 {
   1231 	/* Must be aligned on a 16-byte boundary. */
   1232 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1233 	    sc->sc_hal->fwsz, 16);
   1234 }
   1235 
   1236 static void
   1237 iwn_free_fwmem(struct iwn_softc *sc)
   1238 {
   1239 	iwn_dma_contig_free(&sc->fw_dma);
   1240 }
   1241 
   1242 static int
   1243 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1244 {
   1245 	bus_size_t size;
   1246 	int i, error;
   1247 
   1248 	ring->cur = 0;
   1249 
   1250 	/* Allocate RX descriptors (256-byte aligned.) */
   1251 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1252 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1253 	    (void **)&ring->desc, size, 256);
   1254 	if (error != 0) {
   1255 		aprint_error_dev(sc->sc_dev,
   1256 		    "could not allocate RX ring DMA memory\n");
   1257 		goto fail;
   1258 	}
   1259 
   1260 	/* Allocate RX status area (16-byte aligned.) */
   1261 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1262 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1263 	if (error != 0) {
   1264 		aprint_error_dev(sc->sc_dev,
   1265 		    "could not allocate RX status DMA memory\n");
   1266 		goto fail;
   1267 	}
   1268 
   1269 	/*
   1270 	 * Allocate and map RX buffers.
   1271 	 */
   1272 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1273 		struct iwn_rx_data *data = &ring->data[i];
   1274 
   1275 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1276 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1277 		    &data->map);
   1278 		if (error != 0) {
   1279 			aprint_error_dev(sc->sc_dev,
   1280 			    "could not create RX buf DMA map\n");
   1281 			goto fail;
   1282 		}
   1283 
   1284 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1285 		if (data->m == NULL) {
   1286 			aprint_error_dev(sc->sc_dev,
   1287 			    "could not allocate RX mbuf\n");
   1288 			error = ENOBUFS;
   1289 			goto fail;
   1290 		}
   1291 
   1292 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1293 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1294 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1295 		if (error != 0) {
   1296 			aprint_error_dev(sc->sc_dev,
   1297 			    "can't not map mbuf (error %d)\n", error);
   1298 			goto fail;
   1299 		}
   1300 
   1301 		/* Set physical address of RX buffer (256-byte aligned.) */
   1302 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1303 	}
   1304 
   1305 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1306 	    BUS_DMASYNC_PREWRITE);
   1307 
   1308 	return 0;
   1309 
   1310 fail:	iwn_free_rx_ring(sc, ring);
   1311 	return error;
   1312 }
   1313 
   1314 static void
   1315 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1316 {
   1317 	int ntries;
   1318 
   1319 	if (iwn_nic_lock(sc) == 0) {
   1320 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1321 		for (ntries = 0; ntries < 1000; ntries++) {
   1322 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1323 			    IWN_FH_RX_STATUS_IDLE)
   1324 				break;
   1325 			DELAY(10);
   1326 		}
   1327 		iwn_nic_unlock(sc);
   1328 	}
   1329 	ring->cur = 0;
   1330 	sc->last_rx_valid = 0;
   1331 }
   1332 
   1333 static void
   1334 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1335 {
   1336 	int i;
   1337 
   1338 	iwn_dma_contig_free(&ring->desc_dma);
   1339 	iwn_dma_contig_free(&ring->stat_dma);
   1340 
   1341 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1342 		struct iwn_rx_data *data = &ring->data[i];
   1343 
   1344 		if (data->m != NULL) {
   1345 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1346 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1347 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1348 			m_freem(data->m);
   1349 		}
   1350 		if (data->map != NULL)
   1351 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1352 	}
   1353 }
   1354 
   1355 static int
   1356 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1357 {
   1358 	bus_addr_t paddr;
   1359 	bus_size_t size;
   1360 	int i, error;
   1361 
   1362 	ring->qid = qid;
   1363 	ring->queued = 0;
   1364 	ring->cur = 0;
   1365 
   1366 	/* Allocate TX descriptors (256-byte aligned.) */
   1367 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1368 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1369 	    (void **)&ring->desc, size, 256);
   1370 	if (error != 0) {
   1371 		aprint_error_dev(sc->sc_dev,
   1372 		    "could not allocate TX ring DMA memory\n");
   1373 		goto fail;
   1374 	}
   1375 	/*
   1376 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1377 	 * to allocate commands space for other rings.
   1378 	 * XXX Do we really need to allocate descriptors for other rings?
   1379 	 */
   1380 	if (qid > 4)
   1381 		return 0;
   1382 
   1383 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1384 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1385 	    (void **)&ring->cmd, size, 4);
   1386 	if (error != 0) {
   1387 		aprint_error_dev(sc->sc_dev,
   1388 		    "could not allocate TX cmd DMA memory\n");
   1389 		goto fail;
   1390 	}
   1391 
   1392 	paddr = ring->cmd_dma.paddr;
   1393 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1394 		struct iwn_tx_data *data = &ring->data[i];
   1395 
   1396 		data->cmd_paddr = paddr;
   1397 		data->scratch_paddr = paddr + 12;
   1398 		paddr += sizeof (struct iwn_tx_cmd);
   1399 
   1400 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1401 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1402 		    &data->map);
   1403 		if (error != 0) {
   1404 			aprint_error_dev(sc->sc_dev,
   1405 			    "could not create TX buf DMA map\n");
   1406 			goto fail;
   1407 		}
   1408 	}
   1409 	return 0;
   1410 
   1411 fail:	iwn_free_tx_ring(sc, ring);
   1412 	return error;
   1413 }
   1414 
   1415 static void
   1416 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1417 {
   1418 	int i;
   1419 
   1420 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1421 		struct iwn_tx_data *data = &ring->data[i];
   1422 
   1423 		if (data->m != NULL) {
   1424 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1425 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1426 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1427 			m_freem(data->m);
   1428 			data->m = NULL;
   1429 		}
   1430 	}
   1431 	/* Clear TX descriptors. */
   1432 	memset(ring->desc, 0, ring->desc_dma.size);
   1433 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1434 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1435 	sc->qfullmsk &= ~(1 << ring->qid);
   1436 	ring->queued = 0;
   1437 	ring->cur = 0;
   1438 }
   1439 
   1440 static void
   1441 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1442 {
   1443 	int i;
   1444 
   1445 	iwn_dma_contig_free(&ring->desc_dma);
   1446 	iwn_dma_contig_free(&ring->cmd_dma);
   1447 
   1448 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1449 		struct iwn_tx_data *data = &ring->data[i];
   1450 
   1451 		if (data->m != NULL) {
   1452 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1453 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1454 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1455 			m_freem(data->m);
   1456 		}
   1457 		if (data->map != NULL)
   1458 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1459 	}
   1460 }
   1461 
   1462 static void
   1463 iwn5000_ict_reset(struct iwn_softc *sc)
   1464 {
   1465 	/* Disable interrupts. */
   1466 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1467 
   1468 	/* Reset ICT table. */
   1469 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1470 	sc->ict_cur = 0;
   1471 
   1472 	/* Set physical address of ICT table (4KB aligned.) */
   1473 	DPRINTF(("enabling ICT\n"));
   1474 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1475 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1476 
   1477 	/* Enable periodic RX interrupt. */
   1478 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1479 	/* Switch to ICT interrupt mode in driver. */
   1480 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1481 
   1482 	/* Re-enable interrupts. */
   1483 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1484 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1485 }
   1486 
   1487 static int
   1488 iwn_read_eeprom(struct iwn_softc *sc)
   1489 {
   1490 	const struct iwn_hal *hal = sc->sc_hal;
   1491 	struct ieee80211com *ic = &sc->sc_ic;
   1492 	uint16_t val;
   1493 	int error;
   1494 
   1495 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1496 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1497 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1498 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1499 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1500 	    "OTPROM" : "EEPROM"));
   1501 
   1502 	/* Adapter has to be powered on for EEPROM access to work. */
   1503 	if ((error = iwn_apm_init(sc)) != 0) {
   1504 		aprint_error_dev(sc->sc_dev,
   1505 		    "could not power ON adapter\n");
   1506 		return error;
   1507 	}
   1508 
   1509 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1510 		aprint_error_dev(sc->sc_dev,
   1511 		    "bad ROM signature\n");
   1512 		return EIO;
   1513 	}
   1514 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1515 		aprint_error_dev(sc->sc_dev,
   1516 		    "could not lock ROM (error=%d)\n", error);
   1517 		return error;
   1518 	}
   1519 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1520 		if ((error = iwn_init_otprom(sc)) != 0) {
   1521 			aprint_error_dev(sc->sc_dev,
   1522 			    "could not initialize OTPROM\n");
   1523 			return error;
   1524 		}
   1525 	}
   1526 
   1527 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1528 	sc->rfcfg = le16toh(val);
   1529 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1530 
   1531 	/* Read MAC address. */
   1532 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1533 
   1534 	/* Read adapter-specific information from EEPROM. */
   1535 	hal->read_eeprom(sc);
   1536 
   1537 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1538 
   1539 	iwn_eeprom_unlock(sc);
   1540 	return 0;
   1541 }
   1542 
   1543 static void
   1544 iwn4965_read_eeprom(struct iwn_softc *sc)
   1545 {
   1546 	uint32_t addr;
   1547 	uint16_t val;
   1548 	int i;
   1549 
   1550 	/* Read regulatory domain (4 ASCII characters.) */
   1551 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1552 
   1553 	/* Read the list of authorized channels (20MHz ones only.) */
   1554 	for (i = 0; i < 5; i++) {
   1555 		addr = iwn4965_regulatory_bands[i];
   1556 		iwn_read_eeprom_channels(sc, i, addr);
   1557 	}
   1558 
   1559 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1560 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1561 	sc->maxpwr2GHz = val & 0xff;
   1562 	sc->maxpwr5GHz = val >> 8;
   1563 	/* Check that EEPROM values are within valid range. */
   1564 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1565 		sc->maxpwr5GHz = 38;
   1566 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1567 		sc->maxpwr2GHz = 38;
   1568 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1569 
   1570 	/* Read samples for each TX power group. */
   1571 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1572 	    sizeof sc->bands);
   1573 
   1574 	/* Read voltage at which samples were taken. */
   1575 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1576 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1577 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1578 
   1579 #ifdef IWN_DEBUG
   1580 	/* Print samples. */
   1581 	if (iwn_debug > 0) {
   1582 		for (i = 0; i < IWN_NBANDS; i++)
   1583 			iwn4965_print_power_group(sc, i);
   1584 	}
   1585 #endif
   1586 }
   1587 
   1588 #ifdef IWN_DEBUG
   1589 static void
   1590 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1591 {
   1592 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1593 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1594 	int j, c;
   1595 
   1596 	aprint_normal("===band %d===\n", i);
   1597 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1598 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1599 	for (c = 0; c < 2; c++) {
   1600 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1601 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1602 			    "power=%d pa_det=%d\n", c, j,
   1603 			    chans[0].samples[c][j].temp,
   1604 			    chans[0].samples[c][j].gain,
   1605 			    chans[0].samples[c][j].power,
   1606 			    chans[0].samples[c][j].pa_det);
   1607 		}
   1608 	}
   1609 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1610 	for (c = 0; c < 2; c++) {
   1611 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1612 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1613 			    "power=%d pa_det=%d\n", c, j,
   1614 			    chans[1].samples[c][j].temp,
   1615 			    chans[1].samples[c][j].gain,
   1616 			    chans[1].samples[c][j].power,
   1617 			    chans[1].samples[c][j].pa_det);
   1618 		}
   1619 	}
   1620 }
   1621 #endif
   1622 
   1623 static void
   1624 iwn5000_read_eeprom(struct iwn_softc *sc)
   1625 {
   1626 	struct iwn5000_eeprom_calib_hdr hdr;
   1627 	int32_t temp, volt;
   1628 	uint32_t base, addr;
   1629 	uint16_t val;
   1630 	int i;
   1631 
   1632 	/* Read regulatory domain (4 ASCII characters.) */
   1633 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1634 	base = le16toh(val);
   1635 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1636 	    sc->eeprom_domain, 4);
   1637 
   1638 	/* Read the list of authorized channels (20MHz ones only.) */
   1639 	for (i = 0; i < 5; i++) {
   1640 		addr = base + iwn5000_regulatory_bands[i];
   1641 		iwn_read_eeprom_channels(sc, i, addr);
   1642 	}
   1643 
   1644 	/* Read enhanced TX power information for 6000 Series. */
   1645 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1646 		iwn_read_eeprom_enhinfo(sc);
   1647 
   1648 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1649 	base = le16toh(val);
   1650 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1651 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1652 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1653 	sc->calib_ver = hdr.version;
   1654 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1655 		/* Compute temperature offset. */
   1656 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1657 		temp = le16toh(val);
   1658 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1659 		volt = le16toh(val);
   1660 		sc->temp_off = temp - (volt / -5);
   1661 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1662 		    temp, volt, sc->temp_off));
   1663 	} else {
   1664 		/* Read crystal calibration. */
   1665 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1666 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1667 		DPRINTF(("crystal calibration 0x%08x\n",
   1668 		    le32toh(sc->eeprom_crystal)));
   1669 	}
   1670 }
   1671 
   1672 static void
   1673 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1674 {
   1675 	struct ieee80211com *ic = &sc->sc_ic;
   1676 	const struct iwn_chan_band *band = &iwn_bands[n];
   1677 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1678 	uint8_t chan;
   1679 	int i;
   1680 
   1681 	iwn_read_prom_data(sc, addr, channels,
   1682 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1683 
   1684 	for (i = 0; i < band->nchan; i++) {
   1685 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1686 			continue;
   1687 
   1688 		chan = band->chan[i];
   1689 
   1690 		if (n == 0) {	/* 2GHz band */
   1691 			ic->ic_channels[chan].ic_freq =
   1692 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1693 			ic->ic_channels[chan].ic_flags =
   1694 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1695 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1696 
   1697 		} else {	/* 5GHz band */
   1698 			/*
   1699 			 * Some adapters support channels 7, 8, 11 and 12
   1700 			 * both in the 2GHz and 4.9GHz bands.
   1701 			 * Because of limitations in our net80211 layer,
   1702 			 * we don't support them in the 4.9GHz band.
   1703 			 */
   1704 			if (chan <= 14)
   1705 				continue;
   1706 
   1707 			ic->ic_channels[chan].ic_freq =
   1708 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1709 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1710 			/* We have at least one valid 5GHz channel. */
   1711 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1712 		}
   1713 
   1714 		/* Is active scan allowed on this channel? */
   1715 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1716 			ic->ic_channels[chan].ic_flags |=
   1717 			    IEEE80211_CHAN_PASSIVE;
   1718 		}
   1719 
   1720 		/* Save maximum allowed TX power for this channel. */
   1721 		sc->maxpwr[chan] = channels[i].maxpwr;
   1722 
   1723 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1724 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1725 	}
   1726 }
   1727 
   1728 static void
   1729 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1730 {
   1731 	struct iwn_eeprom_enhinfo enhinfo[35];
   1732 	uint16_t val, base;
   1733 	int8_t maxpwr;
   1734 	int i;
   1735 
   1736 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1737 	base = le16toh(val);
   1738 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1739 	    enhinfo, sizeof enhinfo);
   1740 
   1741 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1742 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1743 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
   1744 			continue;	/* Skip invalid entries. */
   1745 
   1746 		maxpwr = 0;
   1747 		if (sc->txchainmask & IWN_ANT_A)
   1748 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1749 		if (sc->txchainmask & IWN_ANT_B)
   1750 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1751 		if (sc->txchainmask & IWN_ANT_C)
   1752 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1753 		if (sc->ntxchains == 2)
   1754 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1755 		else if (sc->ntxchains == 3)
   1756 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1757 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1758 
   1759 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1760 		sc->enh_maxpwr[i] = maxpwr;
   1761 	}
   1762 }
   1763 
   1764 static struct ieee80211_node *
   1765 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1766 {
   1767 	return malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT | M_ZERO);
   1768 }
   1769 
   1770 static void
   1771 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1772 {
   1773 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1774 	struct iwn_node *wn = (void *)ni;
   1775 	uint8_t rate;
   1776 	int ridx, i;
   1777 
   1778 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1779 	/* Start at lowest available bit-rate, AMRR will raise. */
   1780 	ni->ni_txrate = 0;
   1781 
   1782 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1783 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1784 		/* Map 802.11 rate to HW rate index. */
   1785 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1786 			if (iwn_rates[ridx].rate == rate)
   1787 				break;
   1788 		wn->ridx[i] = ridx;
   1789 	}
   1790 }
   1791 
   1792 static int
   1793 iwn_media_change(struct ifnet *ifp)
   1794 {
   1795 	struct iwn_softc *sc = ifp->if_softc;
   1796 	struct ieee80211com *ic = &sc->sc_ic;
   1797 	uint8_t rate, ridx;
   1798 	int error;
   1799 
   1800 	error = ieee80211_media_change(ifp);
   1801 	if (error != ENETRESET)
   1802 		return error;
   1803 
   1804 	if (ic->ic_fixed_rate != -1) {
   1805 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1806 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1807 		/* Map 802.11 rate to HW rate index. */
   1808 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1809 			if (iwn_rates[ridx].rate == rate)
   1810 				break;
   1811 		sc->fixed_ridx = ridx;
   1812 	}
   1813 
   1814 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1815 	    (IFF_UP | IFF_RUNNING)) {
   1816 		iwn_stop(ifp, 0);
   1817 		error = iwn_init(ifp);
   1818 	}
   1819 	return error;
   1820 }
   1821 
   1822 static int
   1823 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1824 {
   1825 	struct ifnet *ifp = ic->ic_ifp;
   1826 	struct iwn_softc *sc = ifp->if_softc;
   1827 	int error;
   1828 
   1829 	callout_stop(&sc->calib_to);
   1830 
   1831 	switch (nstate) {
   1832 	case IEEE80211_S_SCAN:
   1833 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1834 			aprint_error_dev(sc->sc_dev,
   1835 			    "scan request while scanning ignored\n");
   1836 			break;
   1837 		}
   1838 
   1839 		ieee80211_node_table_reset(&ic->ic_scan);
   1840 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1841 		sc->sc_flags |= IWN_FLAG_SCANNING;
   1842 
   1843 		/* Make the link LED blink while we're scanning. */
   1844 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1845 
   1846 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1847 			aprint_error_dev(sc->sc_dev,
   1848 			    "could not initiate scan\n");
   1849 			return error;
   1850 		}
   1851 		ic->ic_state = nstate;
   1852 		return 0;
   1853 
   1854 	case IEEE80211_S_ASSOC:
   1855 		if (ic->ic_state != IEEE80211_S_RUN)
   1856 			break;
   1857 		/* FALLTHROUGH */
   1858 	case IEEE80211_S_AUTH:
   1859 		/* Reset state to handle reassociations correctly. */
   1860 		sc->rxon.associd = 0;
   1861 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1862 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1863 
   1864 		if ((error = iwn_auth(sc)) != 0) {
   1865 			aprint_error_dev(sc->sc_dev,
   1866 			    "could not move to auth state\n");
   1867 			return error;
   1868 		}
   1869 		break;
   1870 
   1871 	case IEEE80211_S_RUN:
   1872 		if ((error = iwn_run(sc)) != 0) {
   1873 			aprint_error_dev(sc->sc_dev,
   1874 			    "could not move to run state\n");
   1875 			return error;
   1876 		}
   1877 		break;
   1878 
   1879 	case IEEE80211_S_INIT:
   1880 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1881 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1882 		break;
   1883 	}
   1884 
   1885 	return sc->sc_newstate(ic, nstate, arg);
   1886 }
   1887 
   1888 static void
   1889 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1890 {
   1891 	struct iwn_softc *sc = arg;
   1892 	struct iwn_node *wn = (struct iwn_node *)ni;
   1893 
   1894 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1895 }
   1896 
   1897 static void
   1898 iwn_calib_timeout(void *arg)
   1899 {
   1900 	struct iwn_softc *sc = arg;
   1901 	struct ieee80211com *ic = &sc->sc_ic;
   1902 	int s;
   1903 
   1904 	s = splnet();
   1905 	if (ic->ic_fixed_rate == -1) {
   1906 		if (ic->ic_opmode == IEEE80211_M_STA)
   1907 			iwn_iter_func(sc, ic->ic_bss);
   1908 		else
   1909 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1910 	}
   1911 	/* Force automatic TX power calibration every 60 secs. */
   1912 	if (++sc->calib_cnt >= 120) {
   1913 		uint32_t flags = 0;
   1914 
   1915 		DPRINTF(("sending request for statistics\n"));
   1916 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   1917 		    sizeof flags, 1);
   1918 		sc->calib_cnt = 0;
   1919 	}
   1920 	splx(s);
   1921 
   1922 	/* Automatic rate control triggered every 500ms. */
   1923 	callout_schedule(&sc->calib_to, hz/2);
   1924 }
   1925 
   1926 /*
   1927  * Process an RX_PHY firmware notification.  This is usually immediately
   1928  * followed by an MPDU_RX_DONE notification.
   1929  */
   1930 static void
   1931 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1932     struct iwn_rx_data *data)
   1933 {
   1934 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   1935 
   1936 	DPRINTFN(2, ("received PHY stats\n"));
   1937 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   1938 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   1939 
   1940 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   1941 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   1942 	sc->last_rx_valid = 1;
   1943 }
   1944 
   1945 /*
   1946  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   1947  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   1948  */
   1949 static void
   1950 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1951     struct iwn_rx_data *data)
   1952 {
   1953 	const struct iwn_hal *hal = sc->sc_hal;
   1954 	struct ieee80211com *ic = &sc->sc_ic;
   1955 	struct ifnet *ifp = ic->ic_ifp;
   1956 	struct iwn_rx_ring *ring = &sc->rxq;
   1957 #if 0
   1958 	struct iwn_rbuf *rbuf;
   1959 #endif
   1960 	struct ieee80211_frame *wh;
   1961 	struct ieee80211_node *ni;
   1962 	struct mbuf *m, *m1;
   1963 	struct iwn_rx_stat *stat;
   1964 	char	*head;
   1965 	uint32_t flags;
   1966 	int error, len, rssi;
   1967 
   1968 	if (desc->type == IWN_MPDU_RX_DONE) {
   1969 		/* Check for prior RX_PHY notification. */
   1970 		if (!sc->last_rx_valid) {
   1971 			DPRINTF(("missing RX_PHY\n"));
   1972 			ifp->if_ierrors++;
   1973 			return;
   1974 		}
   1975 		sc->last_rx_valid = 0;
   1976 		stat = &sc->last_rx_stat;
   1977 	} else
   1978 		stat = (struct iwn_rx_stat *)(desc + 1);
   1979 
   1980 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   1981 	    BUS_DMASYNC_POSTREAD);
   1982 
   1983 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   1984 		aprint_error_dev(sc->sc_dev,
   1985 		    "invalid RX statistic header\n");
   1986 		ifp->if_ierrors++;
   1987 		return;
   1988 	}
   1989 	if (desc->type == IWN_MPDU_RX_DONE) {
   1990 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   1991 		head = (char *)(mpdu + 1);
   1992 		len = le16toh(mpdu->len);
   1993 	} else {
   1994 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   1995 		len = le16toh(stat->len);
   1996 	}
   1997 
   1998 	flags = le32toh(*(uint32_t *)(head + len));
   1999 
   2000 	/* Discard frames with a bad FCS early. */
   2001 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   2002 		DPRINTFN(2, ("RX flags error %x\n", flags));
   2003 		ifp->if_ierrors++;
   2004 		return;
   2005 	}
   2006 	/* Discard frames that are too short. */
   2007 	if (len < sizeof (*wh)) {
   2008 		DPRINTF(("frame too short: %d\n", len));
   2009 		ic->ic_stats.is_rx_tooshort++;
   2010 		ifp->if_ierrors++;
   2011 		return;
   2012 	}
   2013 
   2014 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   2015 	if (m1 == NULL) {
   2016 		ic->ic_stats.is_rx_nobuf++;
   2017 		ifp->if_ierrors++;
   2018 		return;
   2019 	}
   2020 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2021 
   2022 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   2023 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   2024 	if (error != 0) {
   2025 		m_freem(m1);
   2026 
   2027 		/* Try to reload the old mbuf. */
   2028 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   2029 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   2030 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   2031 		if (error != 0) {
   2032 			panic("%s: could not load old RX mbuf",
   2033 			    device_xname(sc->sc_dev));
   2034 		}
   2035 		/* Physical address may have changed. */
   2036 		ring->desc[ring->cur] =
   2037 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   2038 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2039 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2040 		    BUS_DMASYNC_PREWRITE);
   2041 		ifp->if_ierrors++;
   2042 		return;
   2043 	}
   2044 
   2045 	m = data->m;
   2046 	data->m = m1;
   2047 	/* Update RX descriptor. */
   2048 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   2049 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2050 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2051 	    BUS_DMASYNC_PREWRITE);
   2052 
   2053 	/* Finalize mbuf. */
   2054 	m->m_pkthdr.rcvif = ifp;
   2055 	m->m_data = head;
   2056 	m->m_pkthdr.len = m->m_len = len;
   2057 
   2058 	/* Grab a reference to the source node. */
   2059 	wh = mtod(m, struct ieee80211_frame *);
   2060 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2061 
   2062 	rssi = hal->get_rssi(stat);
   2063 
   2064 	if (ic->ic_state == IEEE80211_S_SCAN)
   2065 		iwn_fix_channel(ic, m);
   2066 
   2067 	if (sc->sc_drvbpf != NULL) {
   2068 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2069 
   2070 		tap->wr_flags = 0;
   2071 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2072 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2073 		tap->wr_chan_freq =
   2074 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2075 		tap->wr_chan_flags =
   2076 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2077 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2078 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2079 		tap->wr_tsft = stat->tstamp;
   2080 		switch (stat->rate) {
   2081 		/* CCK rates. */
   2082 		case  10: tap->wr_rate =   2; break;
   2083 		case  20: tap->wr_rate =   4; break;
   2084 		case  55: tap->wr_rate =  11; break;
   2085 		case 110: tap->wr_rate =  22; break;
   2086 		/* OFDM rates. */
   2087 		case 0xd: tap->wr_rate =  12; break;
   2088 		case 0xf: tap->wr_rate =  18; break;
   2089 		case 0x5: tap->wr_rate =  24; break;
   2090 		case 0x7: tap->wr_rate =  36; break;
   2091 		case 0x9: tap->wr_rate =  48; break;
   2092 		case 0xb: tap->wr_rate =  72; break;
   2093 		case 0x1: tap->wr_rate =  96; break;
   2094 		case 0x3: tap->wr_rate = 108; break;
   2095 		/* Unknown rate: should not happen. */
   2096 		default:  tap->wr_rate =   0;
   2097 		}
   2098 
   2099 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   2100 	}
   2101 
   2102 	/* Send the frame to the 802.11 layer. */
   2103 	ieee80211_input(ic, m, ni, rssi, 0);
   2104 
   2105 	/* Node is no longer needed. */
   2106 	ieee80211_free_node(ni);
   2107 }
   2108 
   2109 #ifndef IEEE80211_NO_HT
   2110 /* Process an incoming Compressed BlockAck. */
   2111 static void
   2112 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2113     struct iwn_rx_data *data)
   2114 {
   2115 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2116 	struct iwn_tx_ring *txq;
   2117 
   2118 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2119 	    BUS_DMASYNC_POSTREAD);
   2120 
   2121 	txq = &sc->txq[le16toh(ba->qid)];
   2122 	/* XXX TBD */
   2123 }
   2124 #endif
   2125 
   2126 /*
   2127  * Process a CALIBRATION_RESULT notification sent by the initialization
   2128  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
   2129  */
   2130 static void
   2131 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2132     struct iwn_rx_data *data)
   2133 {
   2134 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2135 	int len, idx = -1;
   2136 
   2137 	/* Runtime firmware should not send such a notification. */
   2138 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2139 		return;
   2140 
   2141 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2142 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2143 	    BUS_DMASYNC_POSTREAD);
   2144 
   2145 	switch (calib->code) {
   2146 	case IWN5000_PHY_CALIB_DC:
   2147 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
   2148 		    sc->hw_type == IWN_HW_REV_TYPE_6050)
   2149 			idx = 0;
   2150 		break;
   2151 	case IWN5000_PHY_CALIB_LO:
   2152 		idx = 1;
   2153 		break;
   2154 	case IWN5000_PHY_CALIB_TX_IQ:
   2155 		idx = 2;
   2156 		break;
   2157 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2158 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2159 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2160 			idx = 3;
   2161 		break;
   2162 	case IWN5000_PHY_CALIB_BASE_BAND:
   2163 		idx = 4;
   2164 		break;
   2165 	}
   2166 	if (idx == -1)	/* Ignore other results. */
   2167 		return;
   2168 
   2169 	/* Save calibration result. */
   2170 	if (sc->calibcmd[idx].buf != NULL)
   2171 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2172 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2173 	if (sc->calibcmd[idx].buf == NULL) {
   2174 		DPRINTF(("not enough memory for calibration result %d\n",
   2175 		    calib->code));
   2176 		return;
   2177 	}
   2178 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2179 	    calib->code, len));
   2180 	sc->calibcmd[idx].len = len;
   2181 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2182 }
   2183 
   2184 /*
   2185  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2186  * The latter is sent by the firmware after each received beacon.
   2187  */
   2188 static void
   2189 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2190     struct iwn_rx_data *data)
   2191 {
   2192 	const struct iwn_hal *hal = sc->sc_hal;
   2193 	struct ieee80211com *ic = &sc->sc_ic;
   2194 	struct iwn_calib_state *calib = &sc->calib;
   2195 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2196 	int temp;
   2197 
   2198 	/* Ignore statistics received during a scan. */
   2199 	if (ic->ic_state != IEEE80211_S_RUN)
   2200 		return;
   2201 
   2202 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2203 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2204 
   2205 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2206 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2207 
   2208 	/* Test if temperature has changed. */
   2209 	if (stats->general.temp != sc->rawtemp) {
   2210 		/* Convert "raw" temperature to degC. */
   2211 		sc->rawtemp = stats->general.temp;
   2212 		temp = hal->get_temperature(sc);
   2213 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2214 
   2215 #ifndef SMALL_KERNEL
   2216 		/* Update temperature sensor. */
   2217 		sc->sc_sensor.value_cur = IWN_CTOMUK(temp);
   2218 		sc->sc_sensor.state = ENVSYS_SVALID;
   2219 #endif
   2220 
   2221 		/* Update TX power if need be (4965AGN only.) */
   2222 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2223 			iwn4965_power_calibration(sc, temp);
   2224 	}
   2225 
   2226 	if (desc->type != IWN_BEACON_STATISTICS)
   2227 		return;	/* Reply to a statistics request. */
   2228 
   2229 	sc->noise = iwn_get_noise(&stats->rx.general);
   2230 
   2231 	/* Test that RSSI and noise are present in stats report. */
   2232 	if (le32toh(stats->rx.general.flags) != 1) {
   2233 		DPRINTF(("received statistics without RSSI\n"));
   2234 		return;
   2235 	}
   2236 
   2237 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2238 		iwn_collect_noise(sc, &stats->rx.general);
   2239 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2240 		iwn_tune_sensitivity(sc, &stats->rx);
   2241 }
   2242 
   2243 /*
   2244  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2245  * and 5000 adapters have different incompatible TX status formats.
   2246  */
   2247 static void
   2248 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2249     struct iwn_rx_data *data)
   2250 {
   2251 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2252 
   2253 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2254 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2255 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2256 }
   2257 
   2258 static void
   2259 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2260     struct iwn_rx_data *data)
   2261 {
   2262 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2263 
   2264 #ifdef notyet
   2265 	/* Reset TX scheduler slot. */
   2266 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2267 #endif
   2268 
   2269 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2270 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2271 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2272 }
   2273 
   2274 /*
   2275  * Adapter-independent backend for TX_DONE firmware notifications.
   2276  */
   2277 static void
   2278 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2279     uint8_t status)
   2280 {
   2281 	struct ieee80211com *ic = &sc->sc_ic;
   2282 	struct ifnet *ifp = ic->ic_ifp;
   2283 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2284 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2285 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2286 
   2287 	/* Update rate control statistics. */
   2288 	wn->amn.amn_txcnt++;
   2289 	if (ackfailcnt > 0)
   2290 		wn->amn.amn_retrycnt++;
   2291 
   2292 	if (status != 1 && status != 2)
   2293 		ifp->if_oerrors++;
   2294 	else
   2295 		ifp->if_opackets++;
   2296 
   2297 	/* Unmap and free mbuf. */
   2298 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2299 	    BUS_DMASYNC_POSTWRITE);
   2300 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2301 	m_freem(data->m);
   2302 	data->m = NULL;
   2303 	ieee80211_free_node(data->ni);
   2304 	data->ni = NULL;
   2305 
   2306 	sc->sc_tx_timer = 0;
   2307 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2308 		sc->qfullmsk &= ~(1 << ring->qid);
   2309 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2310 			ifp->if_flags &= ~IFF_OACTIVE;
   2311 			(*ifp->if_start)(ifp);
   2312 		}
   2313 	}
   2314 }
   2315 
   2316 /*
   2317  * Process a "command done" firmware notification.  This is where we wakeup
   2318  * processes waiting for a synchronous command completion.
   2319  */
   2320 static void
   2321 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2322 {
   2323 	struct iwn_tx_ring *ring = &sc->txq[4];
   2324 	struct iwn_tx_data *data;
   2325 
   2326 	if ((desc->qid & 0xf) != 4)
   2327 		return;	/* Not a command ack. */
   2328 
   2329 	data = &ring->data[desc->idx];
   2330 
   2331 	/* If the command was mapped in an mbuf, free it. */
   2332 	if (data->m != NULL) {
   2333 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2334 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2335 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2336 		m_freem(data->m);
   2337 		data->m = NULL;
   2338 	}
   2339 	wakeup(&ring->desc[desc->idx]);
   2340 }
   2341 
   2342 /*
   2343  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2344  */
   2345 static void
   2346 iwn_notif_intr(struct iwn_softc *sc)
   2347 {
   2348 	struct ieee80211com *ic = &sc->sc_ic;
   2349 	struct ifnet *ifp = ic->ic_ifp;
   2350 	uint16_t hw;
   2351 
   2352 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2353 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2354 
   2355 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2356 	while (sc->rxq.cur != hw) {
   2357 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2358 		struct iwn_rx_desc *desc;
   2359 
   2360 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2361 		    BUS_DMASYNC_POSTREAD);
   2362 		desc = mtod(data->m, struct iwn_rx_desc *);
   2363 
   2364 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2365 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2366 
   2367 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2368 			iwn_cmd_done(sc, desc);
   2369 
   2370 		switch (desc->type) {
   2371 		case IWN_RX_PHY:
   2372 			iwn_rx_phy(sc, desc, data);
   2373 			break;
   2374 
   2375 		case IWN_RX_DONE:		/* 4965AGN only. */
   2376 		case IWN_MPDU_RX_DONE:
   2377 			/* An 802.11 frame has been received. */
   2378 			iwn_rx_done(sc, desc, data);
   2379 			break;
   2380 #ifndef IEEE80211_NO_HT
   2381 		case IWN_RX_COMPRESSED_BA:
   2382 			/* A Compressed BlockAck has been received. */
   2383 			iwn_rx_compressed_ba(sc, desc, data);
   2384 			break;
   2385 #endif
   2386 		case IWN_TX_DONE:
   2387 			/* An 802.11 frame has been transmitted. */
   2388 			sc->sc_hal->tx_done(sc, desc, data);
   2389 			break;
   2390 
   2391 		case IWN_RX_STATISTICS:
   2392 		case IWN_BEACON_STATISTICS:
   2393 			iwn_rx_statistics(sc, desc, data);
   2394 			break;
   2395 
   2396 		case IWN_BEACON_MISSED:
   2397 		{
   2398 			struct iwn_beacon_missed *miss =
   2399 			    (struct iwn_beacon_missed *)(desc + 1);
   2400 
   2401 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2402 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2403 			/*
   2404 			 * If more than 5 consecutive beacons are missed,
   2405 			 * reinitialize the sensitivity state machine.
   2406 			 */
   2407 			DPRINTF(("beacons missed %d/%d\n",
   2408 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2409 			if (ic->ic_state == IEEE80211_S_RUN &&
   2410 			    le32toh(miss->consecutive) > 5)
   2411 				(void)iwn_init_sensitivity(sc);
   2412 			break;
   2413 		}
   2414 		case IWN_UC_READY:
   2415 		{
   2416 			struct iwn_ucode_info *uc =
   2417 			    (struct iwn_ucode_info *)(desc + 1);
   2418 
   2419 			/* The microcontroller is ready. */
   2420 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2421 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2422 			DPRINTF(("microcode alive notification version=%d.%d "
   2423 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2424 			    uc->subtype, le32toh(uc->valid)));
   2425 
   2426 			if (le32toh(uc->valid) != 1) {
   2427 				aprint_error_dev(sc->sc_dev,
   2428 				    "microcontroller initialization "
   2429 				    "failed\n");
   2430 				break;
   2431 			}
   2432 			if (uc->subtype == IWN_UCODE_INIT) {
   2433 				/* Save microcontroller report. */
   2434 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2435 			}
   2436 			/* Save the address of the error log in SRAM. */
   2437 			sc->errptr = le32toh(uc->errptr);
   2438 			break;
   2439 		}
   2440 		case IWN_STATE_CHANGED:
   2441 		{
   2442 			uint32_t *status = (uint32_t *)(desc + 1);
   2443 
   2444 			/* Enabled/disabled notification. */
   2445 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2446 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2447 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2448 
   2449 			if (le32toh(*status) & 1) {
   2450 				/* The radio button has to be pushed. */
   2451 				aprint_error_dev(sc->sc_dev,
   2452 				    "Radio transmitter is off\n");
   2453 				/* Turn the interface down. */
   2454 				ifp->if_flags &= ~IFF_UP;
   2455 				iwn_stop(ifp, 1);
   2456 				return;	/* No further processing. */
   2457 			}
   2458 			break;
   2459 		}
   2460 		case IWN_START_SCAN:
   2461 		{
   2462 			struct iwn_start_scan *scan =
   2463 			    (struct iwn_start_scan *)(desc + 1);
   2464 
   2465 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2466 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2467 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2468 			    scan->chan, le32toh(scan->status)));
   2469 
   2470 			/* Fix current channel. */
   2471 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2472 			break;
   2473 		}
   2474 		case IWN_STOP_SCAN:
   2475 		{
   2476 			struct iwn_stop_scan *scan =
   2477 			    (struct iwn_stop_scan *)(desc + 1);
   2478 
   2479 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2480 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2481 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2482 			    scan->nchan, scan->status, scan->chan));
   2483 
   2484 			if (scan->status == 1 && scan->chan <= 14 &&
   2485 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2486 				/*
   2487 				 * We just finished scanning 2GHz channels,
   2488 				 * start scanning 5GHz ones.
   2489 				 */
   2490 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2491 					break;
   2492 			}
   2493 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2494 			ieee80211_end_scan(ic);
   2495 			break;
   2496 		}
   2497 		case IWN5000_CALIBRATION_RESULT:
   2498 			iwn5000_rx_calib_results(sc, desc, data);
   2499 			break;
   2500 
   2501 		case IWN5000_CALIBRATION_DONE:
   2502 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2503 			wakeup(sc);
   2504 			break;
   2505 		}
   2506 
   2507 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2508 	}
   2509 
   2510 	/* Tell the firmware what we have processed. */
   2511 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2512 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2513 }
   2514 
   2515 /*
   2516  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2517  * from power-down sleep mode.
   2518  */
   2519 static void
   2520 iwn_wakeup_intr(struct iwn_softc *sc)
   2521 {
   2522 	int qid;
   2523 
   2524 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2525 
   2526 	/* Wakeup RX and TX rings. */
   2527 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2528 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
   2529 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2530 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2531 	}
   2532 }
   2533 
   2534 /*
   2535  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2536  * we can't debug the firmware because it is neither open source nor free, it
   2537  * can help us to identify certain classes of problems.
   2538  */
   2539 static void
   2540 iwn_fatal_intr(struct iwn_softc *sc)
   2541 {
   2542 	const struct iwn_hal *hal = sc->sc_hal;
   2543 	struct iwn_fw_dump dump;
   2544 	int i;
   2545 
   2546 	/* Force a complete recalibration on next init. */
   2547 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2548 
   2549 	/* Check that the error log address is valid. */
   2550 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2551 	    sc->errptr + sizeof (dump) >
   2552 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
   2553 		aprint_error_dev(sc->sc_dev,
   2554 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2555 		return;
   2556 	}
   2557 	if (iwn_nic_lock(sc) != 0) {
   2558 		aprint_error_dev(sc->sc_dev,
   2559 		    "could not read firmware error log\n");
   2560 		return;
   2561 	}
   2562 	/* Read firmware error log from SRAM. */
   2563 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2564 	    sizeof (dump) / sizeof (uint32_t));
   2565 	iwn_nic_unlock(sc);
   2566 
   2567 	if (dump.valid == 0) {
   2568 		aprint_error_dev(sc->sc_dev,
   2569 		    "firmware error log is empty\n");
   2570 		return;
   2571 	}
   2572 	aprint_error("firmware error log:\n");
   2573 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2574 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2575 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2576 	    dump.id);
   2577 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2578 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2579 	aprint_error("  error data      = 0x%08X%08X\n",
   2580 	    dump.error_data[0], dump.error_data[1]);
   2581 	aprint_error("  branch link     = 0x%08X%08X\n",
   2582 	    dump.branch_link[0], dump.branch_link[1]);
   2583 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2584 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2585 	aprint_error("  time            = %u\n", dump.time[0]);
   2586 
   2587 	/* Dump driver status (TX and RX rings) while we're here. */
   2588 	aprint_error("driver status:\n");
   2589 	for (i = 0; i < hal->ntxqs; i++) {
   2590 		struct iwn_tx_ring *ring = &sc->txq[i];
   2591 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2592 		    i, ring->qid, ring->cur, ring->queued);
   2593 	}
   2594 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2595 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2596 }
   2597 
   2598 static int
   2599 iwn_intr(void *arg)
   2600 {
   2601 	struct iwn_softc *sc = arg;
   2602 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2603 	uint32_t r1, r2, tmp;
   2604 
   2605 	/* Disable interrupts. */
   2606 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2607 
   2608 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2609 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2610 		tmp = 0;
   2611 		while (sc->ict[sc->ict_cur] != 0) {
   2612 			tmp |= sc->ict[sc->ict_cur];
   2613 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2614 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2615 		}
   2616 		tmp = le32toh(tmp);
   2617 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2618 			tmp = 0;
   2619 		else if (tmp & 0xc0000) /* Workaround a HW bug. */
   2620 			tmp |= 0x8000;
   2621 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2622 		r2 = 0;	/* Unused. */
   2623 	} else {
   2624 		r1 = IWN_READ(sc, IWN_INT);
   2625 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2626 			return 0;	/* Hardware gone! */
   2627 		r2 = IWN_READ(sc, IWN_FH_INT);
   2628 	}
   2629 	if (r1 == 0 && r2 == 0) {
   2630 		if (ifp->if_flags & IFF_UP)
   2631 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2632 		return 0;	/* Interrupt not for us. */
   2633 	}
   2634 
   2635 	/* Acknowledge interrupts. */
   2636 	IWN_WRITE(sc, IWN_INT, r1);
   2637 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2638 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2639 
   2640 	if (r1 & IWN_INT_RF_TOGGLED) {
   2641 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2642 		aprint_error_dev(sc->sc_dev,
   2643 		    "RF switch: radio %s\n",
   2644 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2645 	}
   2646 	if (r1 & IWN_INT_CT_REACHED) {
   2647 		aprint_error_dev(sc->sc_dev,
   2648 		    "critical temperature reached!\n");
   2649 	}
   2650 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2651 		aprint_error_dev(sc->sc_dev,
   2652 		    "fatal firmware error\n");
   2653 		/* Dump firmware error log and stop. */
   2654 		iwn_fatal_intr(sc);
   2655 		ifp->if_flags &= ~IFF_UP;
   2656 		iwn_stop(ifp, 1);
   2657 		return 1;
   2658 	}
   2659 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2660 	    (r2 & IWN_FH_INT_RX)) {
   2661 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2662 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2663 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2664 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2665 			    IWN_INT_PERIODIC_DIS);
   2666 			iwn_notif_intr(sc);
   2667 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2668 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2669 				    IWN_INT_PERIODIC_ENA);
   2670 			}
   2671 		} else
   2672 			iwn_notif_intr(sc);
   2673 	}
   2674 
   2675 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2676 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2677 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2678 		wakeup(sc);	/* FH DMA transfer completed. */
   2679 	}
   2680 
   2681 	if (r1 & IWN_INT_ALIVE)
   2682 		wakeup(sc);	/* Firmware is alive. */
   2683 
   2684 	if (r1 & IWN_INT_WAKEUP)
   2685 		iwn_wakeup_intr(sc);
   2686 
   2687 	/* Re-enable interrupts. */
   2688 	if (ifp->if_flags & IFF_UP)
   2689 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2690 
   2691 	return 1;
   2692 }
   2693 
   2694 /*
   2695  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2696  * 5000 adapters use a slightly different format.)
   2697  */
   2698 static void
   2699 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2700     uint16_t len)
   2701 {
   2702 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2703 
   2704 	*w = htole16(len + 8);
   2705 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2706 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2707 	    sizeof (uint16_t),
   2708 	    BUS_DMASYNC_PREWRITE);
   2709 	if (idx < IWN_SCHED_WINSZ) {
   2710 		*(w + IWN_TX_RING_COUNT) = *w;
   2711 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2712 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2713 		    (char *)(void *)sc->sched_dma.vaddr,
   2714 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2715 	}
   2716 }
   2717 
   2718 static void
   2719 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2720     uint16_t len)
   2721 {
   2722 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2723 
   2724 	*w = htole16(id << 12 | (len + 8));
   2725 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2726 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2727 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2728 	if (idx < IWN_SCHED_WINSZ) {
   2729 		*(w + IWN_TX_RING_COUNT) = *w;
   2730 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2731 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2732 		    (char *)(void *)sc->sched_dma.vaddr,
   2733 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2734 	}
   2735 }
   2736 
   2737 #ifdef notyet
   2738 static void
   2739 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2740 {
   2741 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2742 
   2743 	*w = (*w & htole16(0xf000)) | htole16(1);
   2744 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2745 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2746 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2747 	if (idx < IWN_SCHED_WINSZ) {
   2748 		*(w + IWN_TX_RING_COUNT) = *w;
   2749 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2750 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2751 		    (char *)(void *)sc->sched_dma.vaddr,
   2752 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2753 	}
   2754 }
   2755 #endif
   2756 
   2757 #if 0
   2758 /* XXX figure out why this (new OpenBSD) version does not work (on NetBSD! */
   2759 static int
   2760 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2761 {
   2762 	const struct iwn_hal *hal = sc->sc_hal;
   2763 	struct ieee80211com *ic = &sc->sc_ic;
   2764 	struct iwn_node *wn = (void *)ni;
   2765 	struct iwn_tx_ring *ring;
   2766 	struct iwn_tx_desc *desc;
   2767 	struct iwn_tx_data *data;
   2768 	struct iwn_tx_cmd *cmd;
   2769 	struct iwn_cmd_data *tx;
   2770 	const struct iwn_rate *rinfo;
   2771 	struct ieee80211_frame *wh;
   2772 	struct ieee80211_key *k = NULL;
   2773 	struct mbuf *m1;
   2774 	uint32_t flags;
   2775 	u_int hdrlen;
   2776 	bus_dma_segment_t *seg;
   2777 	uint8_t tid, ridx, txant, type;
   2778 	int i, totlen, error, pad;
   2779 
   2780 	const struct chanAccParams *cap;
   2781 	int noack;
   2782 	int hdrlen2;
   2783 
   2784 	wh = mtod(m, struct ieee80211_frame *);
   2785 	hdrlen2 = ieee80211_hdrsize(wh);
   2786 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2787 
   2788 	hdrlen = (IEEE80211_QOS_HAS_SEQ(wh)) ?
   2789 	    sizeof (struct ieee80211_qosframe) :
   2790 	    sizeof (struct ieee80211_frame);
   2791 
   2792 	if (hdrlen != hdrlen2)
   2793 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2794 		hdrlen, hdrlen2);
   2795 
   2796 	tid = 0;
   2797 
   2798 	/* Encrypt the frame if need be. */
   2799 	/* XXX Should this be after bpf_mtap2 call, below (see OpenBSD code)? */
   2800 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2801 		k = ieee80211_crypto_encap(ic, ni, m);
   2802 		if (k == NULL) {
   2803 			m_freem(m);
   2804 			return ENOBUFS;
   2805 		}
   2806 		/* Packet header may have moved, reset our local pointer. */
   2807 		wh = mtod(m, struct ieee80211_frame *);
   2808 	}
   2809 
   2810 	ring = &sc->txq[ac];
   2811 	desc = &ring->desc[ring->cur];
   2812 	data = &ring->data[ring->cur];
   2813 
   2814 	/* Choose a TX rate index. */
   2815 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2816 	    type != IEEE80211_FC0_TYPE_DATA) {
   2817 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2818 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2819 	} else if (ic->ic_fixed_rate != -1) {
   2820 		ridx = sc->fixed_ridx;
   2821 	} else
   2822 		ridx = wn->ridx[ni->ni_txrate];
   2823 	rinfo = &iwn_rates[ridx];
   2824 
   2825 	if (sc->sc_drvbpf != NULL) {
   2826 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2827 
   2828 		tap->wt_flags = 0;
   2829 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2830 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2831 		tap->wt_rate = rinfo->rate;
   2832 		tap->wt_hwqueue = ac;
   2833 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2834 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2835 
   2836 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   2837 	}
   2838 
   2839 	totlen = m->m_pkthdr.len;
   2840 
   2841 	/* Prepare TX firmware command. */
   2842 	cmd = &ring->cmd[ring->cur];
   2843 	cmd->code = IWN_CMD_TX_DATA;
   2844 	cmd->flags = 0;
   2845 	cmd->qid = ring->qid;
   2846 	cmd->idx = ring->cur;
   2847 
   2848 	tx = (struct iwn_cmd_data *)cmd->data;
   2849 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2850 	tx->scratch = 0;	/* clear "scratch" area */
   2851 
   2852 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   2853 		cap = &ic->ic_wme.wme_chanParams;
   2854 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2855 	}
   2856 	else
   2857 		noack = 0;
   2858 
   2859 	flags = 0;
   2860 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2861 		/* Unicast frame with an ACK expected. */
   2862 			flags |= IWN_TX_NEED_ACK;
   2863 	}
   2864 
   2865 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   2866 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   2867 
   2868 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   2869 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2870 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   2871 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   2872 			flags |= IWN_TX_NEED_RTS;
   2873 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   2874 		    ridx >= IWN_RIDX_OFDM6) {
   2875 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   2876 				flags |= IWN_TX_NEED_CTS;
   2877 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   2878 				flags |= IWN_TX_NEED_RTS;
   2879 		}
   2880 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   2881 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   2882 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   2883 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   2884 				flags |= IWN_TX_NEED_PROTECTION;
   2885 			} else
   2886 				flags |= IWN_TX_FULL_TXOP;
   2887 		}
   2888 	}
   2889 
   2890 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2891 	    type != IEEE80211_FC0_TYPE_DATA)
   2892 		tx->id = hal->broadcast_id;
   2893 	else
   2894 		tx->id = wn->id;
   2895 
   2896 	if (type == IEEE80211_FC0_TYPE_MGT) {
   2897 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2898 
   2899 #ifndef IEEE80211_STA_ONLY
   2900 		/* Tell HW to set timestamp in probe responses. */
   2901 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   2902 			flags |= IWN_TX_INSERT_TSTAMP;
   2903 #endif
   2904 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   2905 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   2906 			tx->timeout = htole16(3);
   2907 		else
   2908 			tx->timeout = htole16(2);
   2909 	} else
   2910 		tx->timeout = htole16(0);
   2911 
   2912 	if (hdrlen & 3) {
   2913 		/* First segment length must be a multiple of 4. */
   2914 		flags |= IWN_TX_NEED_PADDING;
   2915 		pad = 4 - (hdrlen & 3);
   2916 	} else
   2917 		pad = 0;
   2918 
   2919 	tx->len = htole16(totlen);
   2920 	tx->tid = tid;
   2921 	tx->rts_ntries = 60;
   2922 	tx->data_ntries = 15;
   2923 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   2924 	tx->plcp = rinfo->plcp;
   2925 	tx->rflags = rinfo->flags;
   2926 	if (tx->id == hal->broadcast_id) {
   2927 		/* Group or management frame. */
   2928 		tx->linkq = 0;
   2929 		/* XXX Alternate between antenna A and B? */
   2930 		txant = IWN_LSB(sc->txchainmask);
   2931 		tx->rflags |= IWN_RFLAG_ANT(txant);
   2932 	} else {
   2933 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   2934 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   2935 	}
   2936 	/* Set physical address of "scratch area". */
   2937 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   2938 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   2939 
   2940 	/* Copy 802.11 header in TX command. */
   2941 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   2942 
   2943 	tx->flags = htole32(flags);
   2944 
   2945 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2946 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2947 	if (error != 0) {
   2948 		if (error != EFBIG) {
   2949 			aprint_error_dev(sc->sc_dev,
   2950 			    "can't map mbuf (error %d)\n", error);
   2951 			m_freem(m);
   2952 			return error;
   2953 		}
   2954 		/* Too many DMA segments, linearize mbuf. */
   2955 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   2956 		if (m1 == NULL) {
   2957 			m_freem(m);
   2958 			return ENOBUFS;
   2959 		}
   2960 		if (m->m_pkthdr.len > MHLEN) {
   2961 			MCLGET(m1, M_DONTWAIT);
   2962 			if (!(m1->m_flags & M_EXT)) {
   2963 				m_freem(m);
   2964 				m_freem(m1);
   2965 				return ENOBUFS;
   2966 			}
   2967 		}
   2968 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, char *));
   2969 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   2970 		m_freem(m);
   2971 		m = m1;
   2972 
   2973 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2974 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2975 		if (error != 0) {
   2976 			aprint_error_dev(sc->sc_dev,
   2977 			    "can't map mbuf (error %d)\n", error);
   2978 			m_freem(m);
   2979 			return error;
   2980 		}
   2981 	}
   2982 
   2983 	data->m = m;
   2984 	data->ni = ni;
   2985 
   2986 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   2987 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   2988 
   2989 	/* Fill TX descriptor. */
   2990 	desc->nsegs = 1 + data->map->dm_nsegs;
   2991 	/* First DMA segment is used by the TX command. */
   2992 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   2993 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   2994 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   2995 	/* Other DMA segments are for data payload. */
   2996 	seg = data->map->dm_segs;
   2997 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   2998 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   2999 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   3000 		    seg->ds_len << 4);
   3001 		seg++;
   3002 	}
   3003 
   3004 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   3005 	    BUS_DMASYNC_PREWRITE);
   3006 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3007 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3008 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   3009 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3010 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3011 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3012 
   3013 #ifdef notyet
   3014 	/* Update TX scheduler. */
   3015 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   3016 #endif
   3017 
   3018 	/* Kick TX ring. */
   3019 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3020 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3021 
   3022 	/* Mark TX ring as full if we reach a certain threshold. */
   3023 	if (++ring->queued > IWN_TX_RING_HIMARK)
   3024 		sc->qfullmsk |= 1 << ring->qid;
   3025 
   3026 	return 0;
   3027 }
   3028 #else
   3029 /* This version is from the old NetBSD driver port */
   3030 static int
   3031 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   3032 {
   3033 	const struct iwn_hal *hal = sc->sc_hal;
   3034 	struct ieee80211com *ic = &sc->sc_ic;
   3035 	struct iwn_node *wn = (void *)ni;
   3036 	struct iwn_tx_ring *ring;
   3037 	struct iwn_tx_desc *desc;
   3038 	struct iwn_tx_data *data;
   3039 	struct iwn_tx_cmd *cmd;
   3040 	struct iwn_cmd_data *tx;
   3041 	const struct iwn_rate *rinfo;
   3042 	struct ieee80211_frame *wh;
   3043 	struct ieee80211_key *k = NULL;
   3044 	const struct chanAccParams *cap;
   3045 	struct mbuf *m1;
   3046 	uint32_t flags;
   3047 	u_int hdrlen;
   3048 	bus_dma_segment_t *seg;
   3049 	uint8_t ridx, txant, type;
   3050 	int i, totlen, error, pad, noack;
   3051 
   3052 	wh = mtod(m, struct ieee80211_frame *);
   3053 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   3054 
   3055 	/* JAF XXX two lines above were not in wpi. check we don't duplicate this */
   3056 
   3057 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   3058 		hdrlen = sizeof (struct ieee80211_qosframe);
   3059 		cap = &ic->ic_wme.wme_chanParams;
   3060 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   3061 	} else {
   3062 		hdrlen = sizeof (struct ieee80211_frame);
   3063 		noack = 0;
   3064 	}
   3065 
   3066 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   3067 		k = ieee80211_crypto_encap(ic, ni, m);
   3068 		if (k == NULL) {
   3069 			m_freem(m);
   3070 			return ENOBUFS;
   3071 		}
   3072 		/* packet header may have moved, reset our local pointer */
   3073 		wh = mtod(m, struct ieee80211_frame *);
   3074 	}
   3075 
   3076 	ring = &sc->txq[ac];
   3077 	desc = &ring->desc[ring->cur];
   3078 	data = &ring->data[ring->cur];
   3079 
   3080 	/* Choose a TX rate index. */
   3081 	if (type == IEEE80211_FC0_TYPE_MGT) {
   3082 		/* mgmt frames are sent at the lowest available bit-rate */
   3083 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   3084 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   3085 	} else {
   3086 		if (ic->ic_fixed_rate != -1) {
   3087 			ridx = sc->fixed_ridx;
   3088 		} else
   3089 			ridx = wn->ridx[ni->ni_txrate];
   3090 	}
   3091 	rinfo = &iwn_rates[ridx];
   3092 
   3093 	if (sc->sc_drvbpf != NULL) {
   3094 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   3095 
   3096 		tap->wt_flags = 0;
   3097 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   3098 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   3099 		tap->wt_rate = rinfo->rate;
   3100 		tap->wt_hwqueue = ac;
   3101 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   3102 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3103 
   3104 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   3105 	}
   3106 
   3107 	totlen = m->m_pkthdr.len;
   3108 
   3109 	/* Encrypt the frame if need be. */
   3110 #ifdef IEEE80211_FC1_PROTECTED
   3111 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
   3112 		/* Retrieve key for TX. */
   3113 		k = ieee80211_get_txkey(ic, wh, ni);
   3114 		if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
   3115 			/* Do software encryption. */
   3116 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
   3117 				return ENOBUFS;
   3118 			/* 802.11 header may have moved. */
   3119 			wh = mtod(m, struct ieee80211_frame *);
   3120 			totlen = m->m_pkthdr.len;
   3121 
   3122 		} else	/* HW appends CCMP MIC. */
   3123 			totlen += IEEE80211_CCMP_HDRLEN;
   3124 	}
   3125 #endif
   3126 
   3127 	/* Prepare TX firmware command. */
   3128 	cmd = &ring->cmd[ring->cur];
   3129 	cmd->code = IWN_CMD_TX_DATA;
   3130 	cmd->flags = 0;
   3131 	cmd->qid = ring->qid;
   3132 	cmd->idx = ring->cur;
   3133 
   3134 	tx = (struct iwn_cmd_data *)cmd->data;
   3135 	/* NB: No need to clear tx, all fields are reinitialized here. */
   3136 	tx->scratch = 0;	/* clear "scratch" area */
   3137 
   3138 	flags = 0;
   3139 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   3140 		flags |= IWN_TX_NEED_ACK;
   3141 	} else if (m->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   3142 		flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
   3143 
   3144 #ifdef notyet
   3145 	if ((wh->i_fc[0] &
   3146 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   3147 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   3148 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   3149 #endif
   3150 
   3151 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   3152 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   3153 
   3154 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   3155 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   3156 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   3157 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   3158 			flags |= IWN_TX_NEED_RTS;
   3159 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3160 		    ridx >= IWN_RIDX_OFDM6) {
   3161 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3162 				flags |= IWN_TX_NEED_CTS;
   3163 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3164 				flags |= IWN_TX_NEED_RTS;
   3165 		}
   3166 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   3167 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   3168 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   3169 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   3170 				flags |= IWN_TX_NEED_PROTECTION;
   3171 			} else
   3172 				flags |= IWN_TX_FULL_TXOP;
   3173 		}
   3174 	}
   3175 
   3176 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   3177 	    type != IEEE80211_FC0_TYPE_DATA)
   3178 		tx->id = hal->broadcast_id;
   3179 	else
   3180 		tx->id = wn->id;
   3181 
   3182 	if (type == IEEE80211_FC0_TYPE_MGT) {
   3183 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3184 
   3185 #ifndef IEEE80211_STA_ONLY
   3186 		/* Tell HW to set timestamp in probe responses. */
   3187 		if ((subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) ||
   3188 		    (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ))
   3189 			flags |= IWN_TX_INSERT_TSTAMP;
   3190 #endif
   3191 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   3192 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ ||
   3193 		    subtype == IEEE80211_FC0_SUBTYPE_AUTH ||
   3194 		    subtype == IEEE80211_FC0_SUBTYPE_DEAUTH) {
   3195 			flags &= ~IWN_TX_NEED_RTS;
   3196 			flags |= IWN_TX_NEED_CTS;
   3197 			tx->timeout = htole16(3);
   3198 		} else
   3199 			tx->timeout = htole16(2);
   3200 	} else
   3201 		tx->timeout = htole16(0);
   3202 
   3203 	if (hdrlen & 3) {
   3204 		/* First segment's length must be a multiple of 4. */
   3205 		flags |= IWN_TX_NEED_PADDING;
   3206 		pad = 4 - (hdrlen & 3);
   3207 	} else
   3208 		pad = 0;
   3209 
   3210 #if 0
   3211 	if (type == IEEE80211_FC0_TYPE_CTL) {
   3212 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3213 
   3214 		/* tell h/w to set timestamp in probe responses */
   3215 		if (subtype == 0x0080) /* linux says this is "back request" */
   3216 			/* linux says (1 << 6) is IMM_BA_RSP_MASK */
   3217 			flags |= (IWN_TX_NEED_ACK | (1 << 6));
   3218 	}
   3219 #endif
   3220 
   3221 	tx->len = htole16(totlen);
   3222 	tx->tid = 0/* tid */;
   3223 	tx->rts_ntries = 60;
   3224 	tx->data_ntries = 15;
   3225 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   3226 	tx->plcp = rinfo->plcp;
   3227 	tx->rflags = rinfo->flags;
   3228 	if (tx->id == hal->broadcast_id) {
   3229 		/* Group or management frame. */
   3230 		tx->linkq = 0;
   3231 		/* XXX Alternate between antenna A and B? */
   3232 		txant = IWN_LSB(sc->txchainmask);
   3233 		tx->rflags |= IWN_RFLAG_ANT(txant);
   3234 	} else {
   3235 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   3236 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   3237 	}
   3238 	/* Set physical address of "scratch area". */
   3239 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   3240 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   3241 
   3242 	/* Copy 802.11 header in TX command. */
   3243 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   3244 
   3245 	/* Trim 802.11 header. */
   3246 	m_adj(m, hdrlen);
   3247 	tx->security = 0;
   3248 
   3249 #ifdef notyet
   3250 	if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
   3251 		/* Trim 802.11 header and prepend CCMP IV. */
   3252 		m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
   3253 		ivp = mtod(m, uint8_t *);
   3254 		k->k_tsc++;
   3255 		ivp[0] = k->k_tsc;
   3256 		ivp[1] = k->k_tsc >> 8;
   3257 		ivp[2] = 0;
   3258 		ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
   3259 		ivp[4] = k->k_tsc >> 16;
   3260 		ivp[5] = k->k_tsc >> 24;
   3261 		ivp[6] = k->k_tsc >> 32;
   3262 		ivp[7] = k->k_tsc >> 40;
   3263 
   3264 		tx->security = IWN_CIPHER_CCMP;
   3265 		/* XXX flags |= IWN_TX_AMPDU_CCMP; */
   3266 		memcpy(tx->key, k->k_key, k->k_len);
   3267 
   3268 		/* TX scheduler includes CCMP MIC len w/5000 Series. */
   3269 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
   3270 			totlen += IEEE80211_CCMP_MICLEN;
   3271 	} else {
   3272 		/* Trim 802.11 header. */
   3273 		m_adj(m, hdrlen);
   3274 		tx->security = 0;
   3275 	}
   3276 #endif
   3277 	tx->flags = htole32(flags);
   3278 
   3279 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3280 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   3281 	if (error != 0 && error != EFBIG) {
   3282 		aprint_error_dev(sc->sc_dev,
   3283 		    "can't map mbuf (error %d)\n", error);
   3284 		m_freem(m);
   3285 		return error;
   3286 	}
   3287 	if (error != 0) {
   3288 		/* Too many DMA segments, linearize mbuf. */
   3289 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   3290 		if (m1 == NULL) {
   3291 			m_freem(m);
   3292 			return ENOBUFS;
   3293 		}
   3294 		if (m->m_pkthdr.len > MHLEN) {
   3295 			MCLGET(m1, M_DONTWAIT);
   3296 			if (!(m1->m_flags & M_EXT)) {
   3297 				m_freem(m);
   3298 				m_freem(m1);
   3299 				return ENOBUFS;
   3300 			}
   3301 		}
   3302 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   3303 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   3304 		m_freem(m);
   3305 		m = m1;
   3306 
   3307 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3308 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   3309 		if (error != 0) {
   3310 			aprint_error_dev(sc->sc_dev,
   3311 			    "can't map mbuf (error %d)\n", error);
   3312 			m_freem(m);
   3313 			return error;
   3314 		}
   3315 	}
   3316 
   3317 	data->m = m;
   3318 	data->ni = ni;
   3319 
   3320 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   3321 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   3322 
   3323 	/* Fill TX descriptor. */
   3324 	desc->nsegs = 1 + data->map->dm_nsegs;
   3325 	/* First DMA segment is used by the TX command. */
   3326 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   3327 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   3328 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   3329 	/* Other DMA segments are for data payload. */
   3330 	seg = data->map->dm_segs;
   3331 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   3332 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   3333 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   3334 		    seg->ds_len << 4);
   3335 		seg++;
   3336 	}
   3337 
   3338 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   3339 	    BUS_DMASYNC_PREWRITE);
   3340 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3341 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3342 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   3343 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3344 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3345 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3346 
   3347 #ifdef notyet
   3348 	/* Update TX scheduler. */
   3349 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   3350 #endif
   3351 
   3352 	/* Kick TX ring. */
   3353 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3354 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3355 
   3356 	/* Mark TX ring as full if we reach a certain threshold. */
   3357 	if (++ring->queued > IWN_TX_RING_HIMARK)
   3358 		sc->qfullmsk |= 1 << ring->qid;
   3359 
   3360 	return 0;
   3361 }
   3362 #endif
   3363 
   3364 static void
   3365 iwn_start(struct ifnet *ifp)
   3366 {
   3367 	struct iwn_softc *sc = ifp->if_softc;
   3368 	struct ieee80211com *ic = &sc->sc_ic;
   3369 	struct ieee80211_node *ni;
   3370 	struct ether_header *eh;
   3371 	struct mbuf *m;
   3372 	int ac;
   3373 
   3374 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3375 		return;
   3376 
   3377 	for (;;) {
   3378 		if (sc->qfullmsk != 0) {
   3379 			ifp->if_flags |= IFF_OACTIVE;
   3380 			break;
   3381 		}
   3382 		/* Send pending management frames first. */
   3383 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3384 		if (m != NULL) {
   3385 			ni = (void *)m->m_pkthdr.rcvif;
   3386 			ac = 0;
   3387 			goto sendit;
   3388 		}
   3389 		if (ic->ic_state != IEEE80211_S_RUN)
   3390 			break;
   3391 
   3392 		/* Encapsulate and send data frames. */
   3393 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3394 		if (m == NULL)
   3395 			break;
   3396 		if (m->m_len < sizeof (*eh) &&
   3397 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3398 			ifp->if_oerrors++;
   3399 			continue;
   3400 		}
   3401 		eh = mtod(m, struct ether_header *);
   3402 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3403 		if (ni == NULL) {
   3404 			m_freem(m);
   3405 			ifp->if_oerrors++;
   3406 			continue;
   3407 		}
   3408 		/* classify mbuf so we can find which tx ring to use */
   3409 		if (ieee80211_classify(ic, m, ni) != 0) {
   3410 			m_freem(m);
   3411 			ieee80211_free_node(ni);
   3412 			ifp->if_oerrors++;
   3413 			continue;
   3414 		}
   3415 
   3416 		/* No QoS encapsulation for EAPOL frames. */
   3417 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3418 		    M_WME_GETAC(m) : WME_AC_BE;
   3419 
   3420 		bpf_mtap(ifp, m);
   3421 
   3422 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3423 			ieee80211_free_node(ni);
   3424 			ifp->if_oerrors++;
   3425 			continue;
   3426 		}
   3427 sendit:
   3428 		bpf_mtap3(ic->ic_rawbpf, m);
   3429 
   3430 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3431 			ieee80211_free_node(ni);
   3432 			ifp->if_oerrors++;
   3433 			continue;
   3434 		}
   3435 
   3436 		sc->sc_tx_timer = 5;
   3437 		ifp->if_timer = 1;
   3438 	}
   3439 }
   3440 
   3441 static void
   3442 iwn_watchdog(struct ifnet *ifp)
   3443 {
   3444 	struct iwn_softc *sc = ifp->if_softc;
   3445 
   3446 	ifp->if_timer = 0;
   3447 
   3448 	if (sc->sc_tx_timer > 0) {
   3449 		if (--sc->sc_tx_timer == 0) {
   3450 			aprint_error_dev(sc->sc_dev,
   3451 			    "device timeout\n");
   3452 			ifp->if_flags &= ~IFF_UP;
   3453 			iwn_stop(ifp, 1);
   3454 			ifp->if_oerrors++;
   3455 			return;
   3456 		}
   3457 		ifp->if_timer = 1;
   3458 	}
   3459 
   3460 	ieee80211_watchdog(&sc->sc_ic);
   3461 }
   3462 
   3463 static int
   3464 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3465 {
   3466 	struct iwn_softc *sc = ifp->if_softc;
   3467 	struct ieee80211com *ic = &sc->sc_ic;
   3468 	struct ifaddr *ifa;
   3469 	const struct sockaddr *sa;
   3470 	int s, error = 0;
   3471 
   3472 	s = splnet();
   3473 
   3474 	switch (cmd) {
   3475 	case SIOCSIFADDR:
   3476 		ifa = (struct ifaddr *)data;
   3477 		ifp->if_flags |= IFF_UP;
   3478 #ifdef INET
   3479 		if (ifa->ifa_addr->sa_family == AF_INET)
   3480 			arp_ifinit(&ic->ic_ac, ifa);
   3481 #endif
   3482 		/* FALLTHROUGH */
   3483 	case SIOCSIFFLAGS:
   3484 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3485 			break;
   3486 		if (ifp->if_flags & IFF_UP) {
   3487 			if (!(ifp->if_flags & IFF_RUNNING))
   3488 				error = iwn_init(ifp);
   3489 		} else {
   3490 			if (ifp->if_flags & IFF_RUNNING)
   3491 				iwn_stop(ifp, 1);
   3492 		}
   3493 		break;
   3494 
   3495 	case SIOCADDMULTI:
   3496 	case SIOCDELMULTI:
   3497 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3498 		error = (cmd == SIOCADDMULTI) ?
   3499 		    ether_addmulti(sa, &sc->sc_ec) :
   3500 		    ether_delmulti(sa, &sc->sc_ec);
   3501 
   3502 		if (error == ENETRESET)
   3503 			error = 0;
   3504 		break;
   3505 
   3506 	default:
   3507 		error = ieee80211_ioctl(ic, cmd, data);
   3508 	}
   3509 
   3510 	if (error == ENETRESET) {
   3511 		error = 0;
   3512 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3513 		    (IFF_UP | IFF_RUNNING)) {
   3514 			iwn_stop(ifp, 0);
   3515 			error = iwn_init(ifp);
   3516 		}
   3517 	}
   3518 	splx(s);
   3519 	return error;
   3520 }
   3521 
   3522 /*
   3523  * Send a command to the firmware.
   3524  */
   3525 static int
   3526 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3527 {
   3528 	struct iwn_tx_ring *ring = &sc->txq[4];
   3529 	struct iwn_tx_desc *desc;
   3530 	struct iwn_tx_data *data;
   3531 	struct iwn_tx_cmd *cmd;
   3532 	struct mbuf *m;
   3533 	bus_addr_t paddr;
   3534 	int totlen, error;
   3535 
   3536 	desc = &ring->desc[ring->cur];
   3537 	data = &ring->data[ring->cur];
   3538 	totlen = 4 + size;
   3539 
   3540 	if (size > sizeof cmd->data) {
   3541 		/* Command is too large to fit in a descriptor. */
   3542 		if (totlen > MCLBYTES)
   3543 			return EINVAL;
   3544 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3545 		if (m == NULL)
   3546 			return ENOMEM;
   3547 		if (totlen > MHLEN) {
   3548 			MCLGET(m, M_DONTWAIT);
   3549 			if (!(m->m_flags & M_EXT)) {
   3550 				m_freem(m);
   3551 				return ENOMEM;
   3552 			}
   3553 		}
   3554 		cmd = mtod(m, struct iwn_tx_cmd *);
   3555 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3556 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3557 		if (error != 0) {
   3558 			m_freem(m);
   3559 			return error;
   3560 		}
   3561 		data->m = m;
   3562 		paddr = data->map->dm_segs[0].ds_addr;
   3563 	} else {
   3564 		cmd = &ring->cmd[ring->cur];
   3565 		paddr = data->cmd_paddr;
   3566 	}
   3567 
   3568 	cmd->code = code;
   3569 	cmd->flags = 0;
   3570 	cmd->qid = ring->qid;
   3571 	cmd->idx = ring->cur;
   3572 	memcpy(cmd->data, buf, size);
   3573 
   3574 	desc->nsegs = 1;
   3575 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3576 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3577 
   3578 	if (size > sizeof cmd->data) {
   3579 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3580 		    BUS_DMASYNC_PREWRITE);
   3581 	} else {
   3582 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3583 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3584 		    totlen, BUS_DMASYNC_PREWRITE);
   3585 	}
   3586 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3587 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3588 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3589 
   3590 #ifdef notyet
   3591 	/* Update TX scheduler. */
   3592 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3593 #endif
   3594 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3595 
   3596 	/* Kick command ring. */
   3597 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3598 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3599 
   3600 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3601 }
   3602 
   3603 static int
   3604 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3605 {
   3606 	struct iwn4965_node_info hnode;
   3607 	char *src, *dst;
   3608 
   3609 	/*
   3610 	 * We use the node structure for 5000 Series internally (it is
   3611 	 * a superset of the one for 4965AGN). We thus copy the common
   3612 	 * fields before sending the command.
   3613 	 */
   3614 	src = (char *)node;
   3615 	dst = (char *)&hnode;
   3616 	memcpy(dst, src, 48);
   3617 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3618 	memcpy(dst + 48, src + 72, 20);
   3619 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3620 }
   3621 
   3622 static int
   3623 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3624 {
   3625 	/* Direct mapping. */
   3626 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3627 }
   3628 
   3629 static int
   3630 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3631 {
   3632 	struct iwn_node *wn = (void *)ni;
   3633 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3634 	struct iwn_cmd_link_quality linkq;
   3635 	const struct iwn_rate *rinfo;
   3636 	uint8_t txant;
   3637 	int i, txrate;
   3638 
   3639 	/* Use the first valid TX antenna. */
   3640 	txant = IWN_LSB(sc->txchainmask);
   3641 
   3642 	memset(&linkq, 0, sizeof linkq);
   3643 	linkq.id = wn->id;
   3644 	linkq.antmsk_1stream = txant;
   3645 	linkq.antmsk_2stream = IWN_ANT_AB;
   3646 	linkq.ampdu_max = 31;
   3647 	linkq.ampdu_threshold = 3;
   3648 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3649 
   3650 	/* Start at highest available bit-rate. */
   3651 	txrate = rs->rs_nrates - 1;
   3652 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3653 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3654 		linkq.retry[i].plcp = rinfo->plcp;
   3655 		linkq.retry[i].rflags = rinfo->flags;
   3656 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3657 		/* Next retry at immediate lower bit-rate. */
   3658 		if (txrate > 0)
   3659 			txrate--;
   3660 	}
   3661 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3662 }
   3663 
   3664 /*
   3665  * Broadcast node is used to send group-addressed and management frames.
   3666  */
   3667 static int
   3668 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3669 {
   3670 	const struct iwn_hal *hal = sc->sc_hal;
   3671 	struct iwn_node_info node;
   3672 	struct iwn_cmd_link_quality linkq;
   3673 	const struct iwn_rate *rinfo;
   3674 	uint8_t txant;
   3675 	int i, error;
   3676 
   3677 	memset(&node, 0, sizeof node);
   3678 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3679 	node.id = hal->broadcast_id;
   3680 	DPRINTF(("adding broadcast node\n"));
   3681 	if ((error = hal->add_node(sc, &node, async)) != 0)
   3682 		return error;
   3683 
   3684 	/* Use the first valid TX antenna. */
   3685 	txant = IWN_LSB(sc->txchainmask);
   3686 
   3687 	memset(&linkq, 0, sizeof linkq);
   3688 	linkq.id = hal->broadcast_id;
   3689 	linkq.antmsk_1stream = txant;
   3690 	linkq.antmsk_2stream = IWN_ANT_AB;
   3691 	linkq.ampdu_max = 64;
   3692 	linkq.ampdu_threshold = 3;
   3693 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3694 
   3695 	/* Use lowest mandatory bit-rate. */
   3696 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3697 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3698 	linkq.retry[0].plcp = rinfo->plcp;
   3699 	linkq.retry[0].rflags = rinfo->flags;
   3700 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3701 	/* Use same bit-rate for all TX retries. */
   3702 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3703 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3704 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3705 	}
   3706 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3707 }
   3708 
   3709 static void
   3710 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3711 {
   3712 	struct iwn_cmd_led led;
   3713 
   3714 	/* Clear microcode LED ownership. */
   3715 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3716 
   3717 	led.which = which;
   3718 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3719 	led.off = off;
   3720 	led.on = on;
   3721 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3722 }
   3723 
   3724 /*
   3725  * Set the critical temperature at which the firmware will stop the radio
   3726  * and notify us.
   3727  */
   3728 static int
   3729 iwn_set_critical_temp(struct iwn_softc *sc)
   3730 {
   3731 	struct iwn_critical_temp crit;
   3732 	int32_t temp;
   3733 
   3734 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3735 
   3736 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3737 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3738 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3739 		temp = IWN_CTOK(110);
   3740 	else
   3741 		temp = 110;
   3742 	memset(&crit, 0, sizeof crit);
   3743 	crit.tempR = htole32(temp);
   3744 	DPRINTF(("setting critical temperature to %d\n", temp));
   3745 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3746 }
   3747 
   3748 static int
   3749 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3750 {
   3751 	struct iwn_cmd_timing cmd;
   3752 	uint64_t val, mod;
   3753 
   3754 	memset(&cmd, 0, sizeof cmd);
   3755 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3756 	cmd.bintval = htole16(ni->ni_intval);
   3757 	cmd.lintval = htole16(10);
   3758 
   3759 	/* Compute remaining time until next beacon. */
   3760 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3761 	mod = le64toh(cmd.tstamp) % val;
   3762 	cmd.binitval = htole32((uint32_t)(val - mod));
   3763 
   3764 	DPRINTF(("timing bintval=%u, tstamp=%zu, init=%u\n",
   3765 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3766 
   3767 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3768 }
   3769 
   3770 static void
   3771 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3772 {
   3773 	/* Adjust TX power if need be (delta >= 3 degC.) */
   3774 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3775 	if (abs(temp - sc->temp) >= 3) {
   3776 		/* Record temperature of last calibration. */
   3777 		sc->temp = temp;
   3778 		(void)iwn4965_set_txpower(sc, 1);
   3779 	}
   3780 }
   3781 
   3782 /*
   3783  * Set TX power for current channel (each rate has its own power settings).
   3784  * This function takes into account the regulatory information from EEPROM,
   3785  * the current temperature and the current voltage.
   3786  */
   3787 static int
   3788 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3789 {
   3790 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3791 #define fdivround(a, b, n)	\
   3792 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3793 /* Linear interpolation. */
   3794 #define interpolate(x, x1, y1, x2, y2, n)	\
   3795 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3796 
   3797 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3798 	struct ieee80211com *ic = &sc->sc_ic;
   3799 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3800 	struct ieee80211_channel *ch;
   3801 	struct iwn4965_cmd_txpower cmd;
   3802 	struct iwn4965_eeprom_chan_samples *chans;
   3803 	const uint8_t *rf_gain, *dsp_gain;
   3804 	int32_t vdiff, tdiff;
   3805 	int i, c, grp, maxpwr;
   3806 	uint8_t chan;
   3807 
   3808 	/* Retrieve current channel from last RXON. */
   3809 	chan = sc->rxon.chan;
   3810 	DPRINTF(("setting TX power for channel %d\n", chan));
   3811 	ch = &ic->ic_channels[chan];
   3812 
   3813 	memset(&cmd, 0, sizeof cmd);
   3814 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3815 	cmd.chan = chan;
   3816 
   3817 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3818 		maxpwr   = sc->maxpwr5GHz;
   3819 		rf_gain  = iwn4965_rf_gain_5ghz;
   3820 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3821 	} else {
   3822 		maxpwr   = sc->maxpwr2GHz;
   3823 		rf_gain  = iwn4965_rf_gain_2ghz;
   3824 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3825 	}
   3826 
   3827 	/* Compute voltage compensation. */
   3828 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3829 	if (vdiff > 0)
   3830 		vdiff *= 2;
   3831 	if (abs(vdiff) > 2)
   3832 		vdiff = 0;
   3833 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3834 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3835 
   3836 	/* Get channel attenuation group. */
   3837 	if (chan <= 20)		/* 1-20 */
   3838 		grp = 4;
   3839 	else if (chan <= 43)	/* 34-43 */
   3840 		grp = 0;
   3841 	else if (chan <= 70)	/* 44-70 */
   3842 		grp = 1;
   3843 	else if (chan <= 124)	/* 71-124 */
   3844 		grp = 2;
   3845 	else			/* 125-200 */
   3846 		grp = 3;
   3847 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3848 
   3849 	/* Get channel sub-band. */
   3850 	for (i = 0; i < IWN_NBANDS; i++)
   3851 		if (sc->bands[i].lo != 0 &&
   3852 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3853 			break;
   3854 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3855 		return EINVAL;
   3856 	chans = sc->bands[i].chans;
   3857 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3858 
   3859 	for (c = 0; c < 2; c++) {
   3860 		uint8_t power, gain, temp;
   3861 		int maxchpwr, pwr, ridx, idx;
   3862 
   3863 		power = interpolate(chan,
   3864 		    chans[0].num, chans[0].samples[c][1].power,
   3865 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3866 		gain  = interpolate(chan,
   3867 		    chans[0].num, chans[0].samples[c][1].gain,
   3868 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3869 		temp  = interpolate(chan,
   3870 		    chans[0].num, chans[0].samples[c][1].temp,
   3871 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3872 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3873 		    c, power, gain, temp));
   3874 
   3875 		/* Compute temperature compensation. */
   3876 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3877 		DPRINTF(("temperature compensation=%d (current=%d, "
   3878 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3879 
   3880 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3881 			/* Convert dBm to half-dBm. */
   3882 			maxchpwr = sc->maxpwr[chan] * 2;
   3883 			if ((ridx / 8) & 1)
   3884 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3885 
   3886 			pwr = maxpwr;
   3887 
   3888 			/* Adjust TX power based on rate. */
   3889 			if ((ridx % 8) == 5)
   3890 				pwr -= 15;	/* OFDM48: -7.5dB */
   3891 			else if ((ridx % 8) == 6)
   3892 				pwr -= 17;	/* OFDM54: -8.5dB */
   3893 			else if ((ridx % 8) == 7)
   3894 				pwr -= 20;	/* OFDM60: -10dB */
   3895 			else
   3896 				pwr -= 10;	/* Others: -5dB */
   3897 
   3898 			/* Do not exceed channel max TX power. */
   3899 			if (pwr > maxchpwr)
   3900 				pwr = maxchpwr;
   3901 
   3902 			idx = gain - (pwr - power) - tdiff - vdiff;
   3903 			if ((ridx / 8) & 1)	/* MIMO */
   3904 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3905 
   3906 			if (cmd.band == 0)
   3907 				idx += 9;	/* 5GHz */
   3908 			if (ridx == IWN_RIDX_MAX)
   3909 				idx += 5;	/* CCK */
   3910 
   3911 			/* Make sure idx stays in a valid range. */
   3912 			if (idx < 0)
   3913 				idx = 0;
   3914 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3915 				idx = IWN4965_MAX_PWR_INDEX;
   3916 
   3917 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3918 			    c, ridx, idx));
   3919 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3920 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3921 		}
   3922 	}
   3923 
   3924 	DPRINTF(("setting TX power for chan %d\n", chan));
   3925 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3926 
   3927 #undef interpolate
   3928 #undef fdivround
   3929 }
   3930 
   3931 static int
   3932 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3933 {
   3934 	struct iwn5000_cmd_txpower cmd;
   3935 
   3936 	/*
   3937 	 * TX power calibration is handled automatically by the firmware
   3938 	 * for 5000 Series.
   3939 	 */
   3940 	memset(&cmd, 0, sizeof cmd);
   3941 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3942 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3943 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3944 	DPRINTF(("setting TX power\n"));
   3945 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
   3946 }
   3947 
   3948 /*
   3949  * Retrieve the maximum RSSI (in dBm) among receivers.
   3950  */
   3951 static int
   3952 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3953 {
   3954 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3955 	uint8_t mask, agc;
   3956 	int rssi;
   3957 
   3958 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3959 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3960 
   3961 	rssi = 0;
   3962 	if (mask & IWN_ANT_A)
   3963 		rssi = MAX(rssi, phy->rssi[0]);
   3964 	if (mask & IWN_ANT_B)
   3965 		rssi = MAX(rssi, phy->rssi[2]);
   3966 	if (mask & IWN_ANT_C)
   3967 		rssi = MAX(rssi, phy->rssi[4]);
   3968 
   3969 	return rssi - agc - IWN_RSSI_TO_DBM;
   3970 }
   3971 
   3972 static int
   3973 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3974 {
   3975 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3976 	uint8_t agc;
   3977 	int rssi;
   3978 
   3979 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3980 
   3981 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3982 		   le16toh(phy->rssi[1]) & 0xff);
   3983 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3984 
   3985 	return rssi - agc - IWN_RSSI_TO_DBM;
   3986 }
   3987 
   3988 /*
   3989  * Retrieve the average noise (in dBm) among receivers.
   3990  */
   3991 static int
   3992 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3993 {
   3994 	int i, total, nbant, noise;
   3995 
   3996 	total = nbant = 0;
   3997 	for (i = 0; i < 3; i++) {
   3998 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3999 			continue;
   4000 		total += noise;
   4001 		nbant++;
   4002 	}
   4003 	/* There should be at least one antenna but check anyway. */
   4004 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   4005 }
   4006 
   4007 /*
   4008  * Compute temperature (in degC) from last received statistics.
   4009  */
   4010 static int
   4011 iwn4965_get_temperature(struct iwn_softc *sc)
   4012 {
   4013 	struct iwn_ucode_info *uc = &sc->ucode_info;
   4014 	int32_t r1, r2, r3, r4, temp;
   4015 
   4016 	r1 = le32toh(uc->temp[0].chan20MHz);
   4017 	r2 = le32toh(uc->temp[1].chan20MHz);
   4018 	r3 = le32toh(uc->temp[2].chan20MHz);
   4019 	r4 = le32toh(sc->rawtemp);
   4020 
   4021 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
   4022 		return 0;
   4023 
   4024 	/* Sign-extend 23-bit R4 value to 32-bit. */
   4025 	r4 = (r4 << 8) >> 8;
   4026 	/* Compute temperature in Kelvin. */
   4027 	temp = (259 * (r4 - r2)) / (r3 - r1);
   4028 	temp = (temp * 97) / 100 + 8;
   4029 
   4030 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   4031 	return IWN_KTOC(temp);
   4032 }
   4033 
   4034 static int
   4035 iwn5000_get_temperature(struct iwn_softc *sc)
   4036 {
   4037 	int32_t temp;
   4038 
   4039 	/*
   4040 	 * Temperature is not used by the driver for 5000 Series because
   4041 	 * TX power calibration is handled by firmware.  We export it to
   4042 	 * users through the sensor framework though.
   4043 	 */
   4044 	temp = le32toh(sc->rawtemp);
   4045 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   4046 		temp = (temp / -5) + sc->temp_off;
   4047 		temp = IWN_KTOC(temp);
   4048 	}
   4049 	return temp;
   4050 }
   4051 
   4052 /*
   4053  * Initialize sensitivity calibration state machine.
   4054  */
   4055 static int
   4056 iwn_init_sensitivity(struct iwn_softc *sc)
   4057 {
   4058 	const struct iwn_hal *hal = sc->sc_hal;
   4059 	struct iwn_calib_state *calib = &sc->calib;
   4060 	uint32_t flags;
   4061 	int error;
   4062 
   4063 	/* Reset calibration state machine. */
   4064 	memset(calib, 0, sizeof (*calib));
   4065 	calib->state = IWN_CALIB_STATE_INIT;
   4066 	calib->cck_state = IWN_CCK_STATE_HIFA;
   4067 	/* Set initial correlation values. */
   4068 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   4069 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   4070 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   4071 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   4072 	calib->cck_x4      = 125;
   4073 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   4074 	calib->energy_cck  = sc->limits->energy_cck;
   4075 
   4076 	/* Write initial sensitivity. */
   4077 	if ((error = iwn_send_sensitivity(sc)) != 0)
   4078 		return error;
   4079 
   4080 	/* Write initial gains. */
   4081 	if ((error = hal->init_gains(sc)) != 0)
   4082 		return error;
   4083 
   4084 	/* Request statistics at each beacon interval. */
   4085 	flags = 0;
   4086 	DPRINTF(("sending request for statistics\n"));
   4087 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   4088 }
   4089 
   4090 /*
   4091  * Collect noise and RSSI statistics for the first 20 beacons received
   4092  * after association and use them to determine connected antennas and
   4093  * to set differential gains.
   4094  */
   4095 static void
   4096 iwn_collect_noise(struct iwn_softc *sc,
   4097     const struct iwn_rx_general_stats *stats)
   4098 {
   4099 	const struct iwn_hal *hal = sc->sc_hal;
   4100 	struct iwn_calib_state *calib = &sc->calib;
   4101 	uint32_t val;
   4102 	int i;
   4103 
   4104 	/* Accumulate RSSI and noise for all 3 antennas. */
   4105 	for (i = 0; i < 3; i++) {
   4106 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   4107 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   4108 	}
   4109 	/* NB: We update differential gains only once after 20 beacons. */
   4110 	if (++calib->nbeacons < 20)
   4111 		return;
   4112 
   4113 	/* Determine highest average RSSI. */
   4114 	val = MAX(calib->rssi[0], calib->rssi[1]);
   4115 	val = MAX(calib->rssi[2], val);
   4116 
   4117 	/* Determine which antennas are connected. */
   4118 	sc->chainmask = sc->rxchainmask;
   4119 	for (i = 0; i < 3; i++)
   4120 		if (val - calib->rssi[i] > 15 * 20)
   4121 			sc->chainmask &= ~(1 << i);
   4122 		DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   4123 		    sc->rxchainmask, sc->chainmask));
   4124 	/* If none of the TX antennas are connected, keep at least one. */
   4125 	if ((sc->chainmask & sc->txchainmask) == 0)
   4126 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   4127 
   4128 	(void)hal->set_gains(sc);
   4129 	calib->state = IWN_CALIB_STATE_RUN;
   4130 
   4131 #ifdef notyet
   4132 	/* XXX Disable RX chains with no antennas connected. */
   4133 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   4134 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
   4135 #endif
   4136 
   4137 	/* Enable power-saving mode if requested by user. */
   4138 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   4139 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   4140 }
   4141 
   4142 static int
   4143 iwn4965_init_gains(struct iwn_softc *sc)
   4144 {
   4145 	struct iwn_phy_calib_gain cmd;
   4146 
   4147 	memset(&cmd, 0, sizeof cmd);
   4148 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   4149 	/* Differential gains initially set to 0 for all 3 antennas. */
   4150 	DPRINTF(("setting initial differential gains\n"));
   4151 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4152 }
   4153 
   4154 static int
   4155 iwn5000_init_gains(struct iwn_softc *sc)
   4156 {
   4157 	struct iwn_phy_calib cmd;
   4158 
   4159 	memset(&cmd, 0, sizeof cmd);
   4160 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   4161 	cmd.ngroups = 1;
   4162 	cmd.isvalid = 1;
   4163 	DPRINTF(("setting initial differential gains\n"));
   4164 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4165 }
   4166 
   4167 static int
   4168 iwn4965_set_gains(struct iwn_softc *sc)
   4169 {
   4170 	struct iwn_calib_state *calib = &sc->calib;
   4171 	struct iwn_phy_calib_gain cmd;
   4172 	int i, delta, noise;
   4173 
   4174 	/* Get minimal noise among connected antennas. */
   4175 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   4176 	for (i = 0; i < 3; i++)
   4177 		if (sc->chainmask & (1 << i))
   4178 			noise = MIN(calib->noise[i], noise);
   4179 
   4180 	memset(&cmd, 0, sizeof cmd);
   4181 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   4182 	/* Set differential gains for connected antennas. */
   4183 	for (i = 0; i < 3; i++) {
   4184 		if (sc->chainmask & (1 << i)) {
   4185 			/* Compute attenuation (in unit of 1.5dB). */
   4186 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   4187 			/* NB: delta <= 0 */
   4188 			/* Limit to [-4.5dB,0]. */
   4189 			cmd.gain[i] = MIN(abs(delta), 3);
   4190 			if (delta < 0)
   4191 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   4192 		}
   4193 	}
   4194 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   4195 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   4196 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4197 }
   4198 
   4199 static int
   4200 iwn5000_set_gains(struct iwn_softc *sc)
   4201 {
   4202 	struct iwn_calib_state *calib = &sc->calib;
   4203 	struct iwn_phy_calib_gain cmd;
   4204 	int i, ant, div, delta;
   4205 
   4206 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   4207 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   4208 
   4209 	memset(&cmd, 0, sizeof cmd);
   4210 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
   4211 	cmd.ngroups = 1;
   4212 	cmd.isvalid = 1;
   4213 	/* Get first available RX antenna as referential. */
   4214 	ant = IWN_LSB(sc->rxchainmask);
   4215 	/* Set differential gains for other antennas. */
   4216 	for (i = ant + 1; i < 3; i++) {
   4217 		if (sc->chainmask & (1 << i)) {
   4218 			/* The delta is relative to antenna "ant". */
   4219 			delta = ((int32_t)calib->noise[ant] -
   4220 			    (int32_t)calib->noise[i]) / div;
   4221 			/* Limit to [-4.5dB,+4.5dB]. */
   4222 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   4223 			if (delta < 0)
   4224 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   4225 		}
   4226 	}
   4227 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   4228 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   4229 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4230 }
   4231 
   4232 /*
   4233  * Tune RF RX sensitivity based on the number of false alarms detected
   4234  * during the last beacon period.
   4235  */
   4236 static void
   4237 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   4238 {
   4239 #define inc(val, inc, max)			\
   4240 	if ((val) < (max)) {			\
   4241 		if ((val) < (max) - (inc))	\
   4242 			(val) += (inc);		\
   4243 		else				\
   4244 			(val) = (max);		\
   4245 		needs_update = 1;		\
   4246 	}
   4247 #define dec(val, dec, min)			\
   4248 	if ((val) > (min)) {			\
   4249 		if ((val) > (min) + (dec))	\
   4250 			(val) -= (dec);		\
   4251 		else				\
   4252 			(val) = (min);		\
   4253 		needs_update = 1;		\
   4254 	}
   4255 
   4256 	const struct iwn_sensitivity_limits *limits = sc->limits;
   4257 	struct iwn_calib_state *calib = &sc->calib;
   4258 	uint32_t val, rxena, fa;
   4259 	uint32_t energy[3], energy_min;
   4260 	uint8_t noise[3], noise_ref;
   4261 	int i, needs_update = 0;
   4262 
   4263 	/* Check that we've been enabled long enough. */
   4264 	if ((rxena = le32toh(stats->general.load)) == 0)
   4265 		return;
   4266 
   4267 	/* Compute number of false alarms since last call for OFDM. */
   4268 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   4269 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   4270 	fa *= 200 * 1024;	/* 200TU */
   4271 
   4272 	/* Save counters values for next call. */
   4273 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   4274 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   4275 
   4276 	if (fa > 50 * rxena) {
   4277 		/* High false alarm count, decrease sensitivity. */
   4278 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   4279 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   4280 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   4281 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   4282 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   4283 
   4284 	} else if (fa < 5 * rxena) {
   4285 		/* Low false alarm count, increase sensitivity. */
   4286 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   4287 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   4288 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   4289 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   4290 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   4291 	}
   4292 
   4293 	/* Compute maximum noise among 3 receivers. */
   4294 	for (i = 0; i < 3; i++)
   4295 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   4296 	val = MAX(noise[0], noise[1]);
   4297 	val = MAX(noise[2], val);
   4298 	/* Insert it into our samples table. */
   4299 	calib->noise_samples[calib->cur_noise_sample] = val;
   4300 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   4301 
   4302 	/* Compute maximum noise among last 20 samples. */
   4303 	noise_ref = calib->noise_samples[0];
   4304 	for (i = 1; i < 20; i++)
   4305 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   4306 
   4307 	/* Compute maximum energy among 3 receivers. */
   4308 	for (i = 0; i < 3; i++)
   4309 		energy[i] = le32toh(stats->general.energy[i]);
   4310 	val = MIN(energy[0], energy[1]);
   4311 	val = MIN(energy[2], val);
   4312 	/* Insert it into our samples table. */
   4313 	calib->energy_samples[calib->cur_energy_sample] = val;
   4314 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   4315 
   4316 	/* Compute minimum energy among last 10 samples. */
   4317 	energy_min = calib->energy_samples[0];
   4318 	for (i = 1; i < 10; i++)
   4319 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   4320 	energy_min += 6;
   4321 
   4322 	/* Compute number of false alarms since last call for CCK. */
   4323 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   4324 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   4325 	fa *= 200 * 1024;	/* 200TU */
   4326 
   4327 	/* Save counters values for next call. */
   4328 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   4329 	calib->fa_cck = le32toh(stats->cck.fa);
   4330 
   4331 	if (fa > 50 * rxena) {
   4332 		/* High false alarm count, decrease sensitivity. */
   4333 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   4334 		calib->cck_state = IWN_CCK_STATE_HIFA;
   4335 		calib->low_fa = 0;
   4336 
   4337 		if (calib->cck_x4 > 160) {
   4338 			calib->noise_ref = noise_ref;
   4339 			if (calib->energy_cck > 2)
   4340 				dec(calib->energy_cck, 2, energy_min);
   4341 		}
   4342 		if (calib->cck_x4 < 160) {
   4343 			calib->cck_x4 = 161;
   4344 			needs_update = 1;
   4345 		} else
   4346 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   4347 
   4348 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   4349 
   4350 	} else if (fa < 5 * rxena) {
   4351 		/* Low false alarm count, increase sensitivity. */
   4352 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   4353 		calib->cck_state = IWN_CCK_STATE_LOFA;
   4354 		calib->low_fa++;
   4355 
   4356 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   4357 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   4358 		     calib->low_fa > 100)) {
   4359 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   4360 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   4361 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   4362 		}
   4363 	} else {
   4364 		/* Not worth to increase or decrease sensitivity. */
   4365 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   4366 		calib->low_fa = 0;
   4367 		calib->noise_ref = noise_ref;
   4368 
   4369 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4370 			/* Previous interval had many false alarms. */
   4371 			dec(calib->energy_cck, 8, energy_min);
   4372 		}
   4373 		calib->cck_state = IWN_CCK_STATE_INIT;
   4374 	}
   4375 
   4376 	if (needs_update)
   4377 		(void)iwn_send_sensitivity(sc);
   4378 #undef dec
   4379 #undef inc
   4380 }
   4381 
   4382 static int
   4383 iwn_send_sensitivity(struct iwn_softc *sc)
   4384 {
   4385 	struct iwn_calib_state *calib = &sc->calib;
   4386 	struct iwn_sensitivity_cmd cmd;
   4387 
   4388 	memset(&cmd, 0, sizeof cmd);
   4389 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4390 	/* OFDM modulation. */
   4391 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4392 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4393 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4394 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4395 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4396 	cmd.energy_ofdm_th   = htole16(62);
   4397 	/* CCK modulation. */
   4398 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4399 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4400 	cmd.energy_cck       = htole16(calib->energy_cck);
   4401 	/* Barker modulation: use default values. */
   4402 	cmd.corr_barker      = htole16(190);
   4403 	cmd.corr_barker_mrc  = htole16(390);
   4404 
   4405 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4406 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4407 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4408 	    calib->energy_cck));
   4409 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
   4410 }
   4411 
   4412 /*
   4413  * Set STA mode power saving level (between 0 and 5).
   4414  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4415  */
   4416 static int
   4417 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4418 {
   4419 	struct iwn_pmgt_cmd cmd;
   4420 	const struct iwn_pmgt *pmgt;
   4421 	uint32_t maxp, skip_dtim;
   4422 	pcireg_t reg;
   4423 	int i;
   4424 
   4425 	/* Select which PS parameters to use. */
   4426 	if (dtim <= 2)
   4427 		pmgt = &iwn_pmgt[0][level];
   4428 	else if (dtim <= 10)
   4429 		pmgt = &iwn_pmgt[1][level];
   4430 	else
   4431 		pmgt = &iwn_pmgt[2][level];
   4432 
   4433 	memset(&cmd, 0, sizeof cmd);
   4434 	if (level != 0)	/* not CAM */
   4435 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4436 	if (level == 5)
   4437 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4438 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4439 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4440 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   4441 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4442 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4443 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4444 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4445 
   4446 	if (dtim == 0) {
   4447 		dtim = 1;
   4448 		skip_dtim = 0;
   4449 	} else
   4450 		skip_dtim = pmgt->skip_dtim;
   4451 	if (skip_dtim != 0) {
   4452 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4453 		maxp = pmgt->intval[4];
   4454 		if (maxp == (uint32_t)-1)
   4455 			maxp = dtim * (skip_dtim + 1);
   4456 		else if (maxp > dtim)
   4457 			maxp = (maxp / dtim) * dtim;
   4458 	} else
   4459 		maxp = dtim;
   4460 	for (i = 0; i < 5; i++)
   4461 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4462 
   4463 	DPRINTF(("setting power saving level to %d\n", level));
   4464 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4465 }
   4466 
   4467 static int
   4468 iwn_config(struct iwn_softc *sc)
   4469 {
   4470 	const struct iwn_hal *hal = sc->sc_hal;
   4471 	struct ieee80211com *ic = &sc->sc_ic;
   4472 	struct ifnet *ifp = ic->ic_ifp;
   4473 	struct iwn_bluetooth bluetooth;
   4474 	uint32_t txmask;
   4475 	uint16_t rxchain;
   4476 	int error;
   4477 
   4478 	/* Configure valid TX chains for 5000 Series. */
   4479 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4480 		txmask = htole32(sc->txchainmask);
   4481 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4482 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4483 		    sizeof txmask, 0);
   4484 		if (error != 0) {
   4485 			aprint_error_dev(sc->sc_dev,
   4486 			    "could not configure valid TX chains\n");
   4487 			return error;
   4488 		}
   4489 	}
   4490 
   4491 	/* Configure bluetooth coexistence. */
   4492 	memset(&bluetooth, 0, sizeof bluetooth);
   4493 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
   4494 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4495 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4496 	DPRINTF(("configuring bluetooth coexistence\n"));
   4497 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4498 	if (error != 0) {
   4499 		aprint_error_dev(sc->sc_dev,
   4500 		    "could not configure bluetooth coexistence\n");
   4501 		return error;
   4502 	}
   4503 
   4504 	/* Set mode, channel, RX filter and enable RX. */
   4505 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4506 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4507 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4508 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4509 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4510 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4511 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4512 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4513 	switch (ic->ic_opmode) {
   4514 	case IEEE80211_M_STA:
   4515 		sc->rxon.mode = IWN_MODE_STA;
   4516 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4517 		break;
   4518 	case IEEE80211_M_MONITOR:
   4519 		sc->rxon.mode = IWN_MODE_MONITOR;
   4520 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4521 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4522 		break;
   4523 	default:
   4524 		/* Should not get there. */
   4525 		break;
   4526 	}
   4527 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4528 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4529 	sc->rxon.ht_single_mask = 0xff;
   4530 	sc->rxon.ht_dual_mask = 0xff;
   4531 	sc->rxon.ht_triple_mask = 0xff;
   4532 	rxchain =
   4533 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4534 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4535 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4536 	sc->rxon.rxchain = htole16(rxchain);
   4537 	DPRINTF(("setting configuration\n"));
   4538 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
   4539 	if (error != 0) {
   4540 		aprint_error_dev(sc->sc_dev,
   4541 		    "RXON command failed\n");
   4542 		return error;
   4543 	}
   4544 
   4545 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4546 		aprint_error_dev(sc->sc_dev,
   4547 		    "could not add broadcast node\n");
   4548 		return error;
   4549 	}
   4550 
   4551 	/* Configuration has changed, set TX power accordingly. */
   4552 	if ((error = hal->set_txpower(sc, 0)) != 0) {
   4553 		aprint_error_dev(sc->sc_dev,
   4554 		    "could not set TX power\n");
   4555 		return error;
   4556 	}
   4557 
   4558 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4559 		aprint_error_dev(sc->sc_dev,
   4560 		    "could not set critical temperature\n");
   4561 		return error;
   4562 	}
   4563 
   4564 	/* Set power saving level to CAM during initialization. */
   4565 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4566 		aprint_error_dev(sc->sc_dev,
   4567 		    "could not set power saving level\n");
   4568 		return error;
   4569 	}
   4570 	return 0;
   4571 }
   4572 
   4573 static int
   4574 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4575 {
   4576 	struct ieee80211com *ic = &sc->sc_ic;
   4577 	struct iwn_scan_hdr *hdr;
   4578 	struct iwn_cmd_data *tx;
   4579 	struct iwn_scan_essid *essid;
   4580 	struct iwn_scan_chan *chan;
   4581 	struct ieee80211_frame *wh;
   4582 	struct ieee80211_rateset *rs;
   4583 	struct ieee80211_channel *c;
   4584 	uint8_t *buf, *frm;
   4585 	uint16_t rxchain;
   4586 	uint8_t txant;
   4587 	int buflen, error;
   4588 
   4589 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4590 	if (buf == NULL) {
   4591 		aprint_error_dev(sc->sc_dev,
   4592 		    "could not allocate buffer for scan command\n");
   4593 		return ENOMEM;
   4594 	}
   4595 	hdr = (struct iwn_scan_hdr *)buf;
   4596 	/*
   4597 	 * Move to the next channel if no frames are received within 10ms
   4598 	 * after sending the probe request.
   4599 	 */
   4600 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4601 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4602 
   4603 	/* Select antennas for scanning. */
   4604 	rxchain =
   4605 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4606 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4607 	    IWN_RXCHAIN_DRIVER_FORCE;
   4608 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4609 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4610 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4611 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4612 	} else	/* Use all available RX antennas. */
   4613 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4614 	hdr->rxchain = htole16(rxchain);
   4615 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4616 
   4617 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4618 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4619 	tx->id = sc->sc_hal->broadcast_id;
   4620 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4621 
   4622 	if (flags & IEEE80211_CHAN_5GHZ) {
   4623 		hdr->crc_threshold = htole16(1);
   4624 		/* Send probe requests at 6Mbps. */
   4625 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4626 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4627 	} else {
   4628 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4629 		/* Send probe requests at 1Mbps. */
   4630 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4631 		tx->rflags = IWN_RFLAG_CCK;
   4632 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4633 	}
   4634 	/* Use the first valid TX antenna. */
   4635 	txant = IWN_LSB(sc->txchainmask);
   4636 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4637 
   4638 	essid = (struct iwn_scan_essid *)(tx + 1);
   4639 	if (ic->ic_des_esslen != 0) {
   4640 		essid[0].id = IEEE80211_ELEMID_SSID;
   4641 		essid[0].len = ic->ic_des_esslen;
   4642 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4643 	}
   4644 	/*
   4645 	 * Build a probe request frame.  Most of the following code is a
   4646 	 * copy & paste of what is done in net80211.
   4647 	 */
   4648 	wh = (struct ieee80211_frame *)(essid + 20);
   4649 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4650 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4651 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4652 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4653 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4654 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4655 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4656 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4657 
   4658 	frm = (uint8_t *)(wh + 1);
   4659 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4660 	frm = ieee80211_add_rates(frm, rs);
   4661 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4662 		frm = ieee80211_add_xrates(frm, rs);
   4663 
   4664 	/* Set length of probe request. */
   4665 	tx->len = htole16(frm - (uint8_t *)wh);
   4666 
   4667 	chan = (struct iwn_scan_chan *)frm;
   4668 	for (c  = &ic->ic_channels[1];
   4669 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4670 		if ((c->ic_flags & flags) != flags)
   4671 			continue;
   4672 
   4673 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4674 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4675 		chan->flags = 0;
   4676 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4677 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4678 		if (ic->ic_des_esslen != 0)
   4679 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4680 		chan->dsp_gain = 0x6e;
   4681 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4682 			chan->rf_gain = 0x3b;
   4683 			chan->active  = htole16(24);
   4684 			chan->passive = htole16(110);
   4685 		} else {
   4686 			chan->rf_gain = 0x28;
   4687 			chan->active  = htole16(36);
   4688 			chan->passive = htole16(120);
   4689 		}
   4690 		hdr->nchan++;
   4691 		chan++;
   4692 	}
   4693 
   4694 	buflen = (uint8_t *)chan - buf;
   4695 	hdr->len = htole16(buflen);
   4696 
   4697 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4698 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4699 	free(buf, M_DEVBUF);
   4700 	return error;
   4701 }
   4702 
   4703 static int
   4704 iwn_auth(struct iwn_softc *sc)
   4705 {
   4706 	const struct iwn_hal *hal = sc->sc_hal;
   4707 	struct ieee80211com *ic = &sc->sc_ic;
   4708 	struct ieee80211_node *ni = ic->ic_bss;
   4709 	int error;
   4710 
   4711 	/* Update adapter configuration. */
   4712 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4713 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4714 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4715 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4716 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4717 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4718 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4719 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4720 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4721 	switch (ic->ic_curmode) {
   4722 	case IEEE80211_MODE_11A:
   4723 		sc->rxon.cck_mask  = 0;
   4724 		sc->rxon.ofdm_mask = 0x15;
   4725 		break;
   4726 	case IEEE80211_MODE_11B:
   4727 		sc->rxon.cck_mask  = 0x03;
   4728 		sc->rxon.ofdm_mask = 0;
   4729 		break;
   4730 	default:	/* Assume 802.11b/g. */
   4731 		sc->rxon.cck_mask  = 0x0f;
   4732 		sc->rxon.ofdm_mask = 0x15;
   4733 	}
   4734 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4735 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4736 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
   4737 	if (error != 0) {
   4738 		aprint_error_dev(sc->sc_dev,
   4739 		    "RXON command failed\n");
   4740 		return error;
   4741 	}
   4742 
   4743 	/* Configuration has changed, set TX power accordingly. */
   4744 	if ((error = hal->set_txpower(sc, 1)) != 0) {
   4745 		aprint_error_dev(sc->sc_dev,
   4746 		    "could not set TX power\n");
   4747 		return error;
   4748 	}
   4749 	/*
   4750 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4751 	 * add the broadcast node again.
   4752 	 */
   4753 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4754 		aprint_error_dev(sc->sc_dev,
   4755 		    "could not add broadcast node\n");
   4756 		return error;
   4757 	}
   4758 	return 0;
   4759 }
   4760 
   4761 static int
   4762 iwn_run(struct iwn_softc *sc)
   4763 {
   4764 	const struct iwn_hal *hal = sc->sc_hal;
   4765 	struct ieee80211com *ic = &sc->sc_ic;
   4766 	struct ieee80211_node *ni = ic->ic_bss;
   4767 	struct iwn_node_info node;
   4768 	int error;
   4769 
   4770 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4771 		/* Link LED blinks while monitoring. */
   4772 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4773 		return 0;
   4774 	}
   4775 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4776 		aprint_error_dev(sc->sc_dev,
   4777 		    "could not set timing\n");
   4778 		return error;
   4779 	}
   4780 
   4781 	/* Update adapter configuration. */
   4782 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4783 	/* Short preamble and slot time are negotiated when associating. */
   4784 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4785 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4786 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4787 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4788 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4789 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4790 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4791 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
   4792 	if (error != 0) {
   4793 		aprint_error_dev(sc->sc_dev,
   4794 		    "could not update configuration\n");
   4795 		return error;
   4796 	}
   4797 
   4798 	/* Configuration has changed, set TX power accordingly. */
   4799 	if ((error = hal->set_txpower(sc, 1)) != 0) {
   4800 		aprint_error_dev(sc->sc_dev,
   4801 		    "could not set TX power\n");
   4802 		return error;
   4803 	}
   4804 
   4805 	/* Fake a join to initialize the TX rate. */
   4806 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4807 	iwn_newassoc(ni, 1);
   4808 
   4809 	/* Add BSS node. */
   4810 	memset(&node, 0, sizeof node);
   4811 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4812 	node.id = IWN_ID_BSS;
   4813 #ifdef notyet
   4814 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4815 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4816 #endif
   4817 	DPRINTF(("adding BSS node\n"));
   4818 	error = hal->add_node(sc, &node, 1);
   4819 	if (error != 0) {
   4820 		aprint_error_dev(sc->sc_dev,
   4821 		    "could not add BSS node\n");
   4822 		return error;
   4823 	}
   4824 	DPRINTF(("setting link quality for node %d\n", node.id));
   4825 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4826 		aprint_error_dev(sc->sc_dev,
   4827 		    "could not setup link quality for node %d\n", node.id);
   4828 		return error;
   4829 	}
   4830 
   4831 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4832 		aprint_error_dev(sc->sc_dev,
   4833 		    "could not set sensitivity\n");
   4834 		return error;
   4835 	}
   4836 	/* Start periodic calibration timer. */
   4837 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4838 	sc->calib_cnt = 0;
   4839 	callout_schedule(&sc->calib_to, hz/2);
   4840 
   4841 	/* Link LED always on while associated. */
   4842 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4843 	return 0;
   4844 }
   4845 
   4846 #ifdef IWN_HWCRYPTO
   4847 /*
   4848  * We support CCMP hardware encryption/decryption of unicast frames only.
   4849  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4850  */
   4851 static int
   4852 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4853     struct ieee80211_key *k)
   4854 {
   4855 	struct iwn_softc *sc = ic->ic_softc;
   4856 	const struct iwn_hal *hal = sc->sc_hal;
   4857 	struct iwn_node *wn = (void *)ni;
   4858 	struct iwn_node_info node;
   4859 	uint16_t kflags;
   4860 
   4861 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4862 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4863 		return ieee80211_set_key(ic, ni, k);
   4864 
   4865 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4866 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4867 		kflags |= IWN_KFLAG_GROUP;
   4868 
   4869 	memset(&node, 0, sizeof node);
   4870 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4871 	    hal->broadcast_id : wn->id;
   4872 	node.control = IWN_NODE_UPDATE;
   4873 	node.flags = IWN_FLAG_SET_KEY;
   4874 	node.kflags = htole16(kflags);
   4875 	node.kid = k->k_id;
   4876 	memcpy(node.key, k->k_key, k->k_len);
   4877 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   4878 	return hal->add_node(sc, &node, 1);
   4879 }
   4880 
   4881 static void
   4882 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4883     struct ieee80211_key *k)
   4884 {
   4885 	struct iwn_softc *sc = ic->ic_softc;
   4886 	const struct iwn_hal *hal = sc->sc_hal;
   4887 	struct iwn_node *wn = (void *)ni;
   4888 	struct iwn_node_info node;
   4889 
   4890 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4891 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   4892 		/* See comment about other ciphers above. */
   4893 		ieee80211_delete_key(ic, ni, k);
   4894 		return;
   4895 	}
   4896 	if (ic->ic_state != IEEE80211_S_RUN)
   4897 		return;	/* Nothing to do. */
   4898 	memset(&node, 0, sizeof node);
   4899 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4900 	    hal->broadcast_id : wn->id;
   4901 	node.control = IWN_NODE_UPDATE;
   4902 	node.flags = IWN_FLAG_SET_KEY;
   4903 	node.kflags = htole16(IWN_KFLAG_INVALID);
   4904 	node.kid = 0xff;
   4905 	DPRINTF(("delete keys for node %d\n", node.id));
   4906 	(void)hal->add_node(sc, &node, 1);
   4907 }
   4908 #endif
   4909 
   4910 /* XXX Added for NetBSD */
   4911 
   4912 static int
   4913 iwn_wme_update(struct ieee80211com *ic)
   4914 {
   4915 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   4916 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   4917 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   4918 	const struct wmeParams *wmep;
   4919 	struct iwn_edca_params cmd;
   4920 	int ac;
   4921 
   4922 	/* don't override default WME values if WME is not actually enabled */
   4923 	if (!(ic->ic_flags & IEEE80211_F_WME))
   4924 		return 0;
   4925 	cmd.flags = 0;
   4926 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   4927 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   4928 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   4929 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   4930 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   4931 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   4932 
   4933 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   4934 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   4935 					cmd.ac[ac].cwmin,
   4936 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   4937 	}
   4938 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   4939 #undef IWN_USEC
   4940 #undef IWN_EXP2
   4941 }
   4942 
   4943 #ifndef IEEE80211_NO_HT
   4944 /*
   4945  * This function is called by upper layer when an ADDBA request is received
   4946  * from another STA and before the ADDBA response is sent.
   4947  */
   4948 static int
   4949 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4950     uint8_t tid)
   4951 {
   4952 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   4953 	struct iwn_softc *sc = ic->ic_softc;
   4954 	struct iwn_node *wn = (void *)ni;
   4955 	struct iwn_node_info node;
   4956 
   4957 	memset(&node, 0, sizeof node);
   4958 	node.id = wn->id;
   4959 	node.control = IWN_NODE_UPDATE;
   4960 	node.flags = IWN_FLAG_SET_ADDBA;
   4961 	node.addba_tid = tid;
   4962 	node.addba_ssn = htole16(ba->ba_winstart);
   4963 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   4964 	    ba->ba_winstart));
   4965 	return sc->sc_hal->add_node(sc, &node, 1);
   4966 }
   4967 
   4968 /*
   4969  * This function is called by upper layer on teardown of an HT-immediate
   4970  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
   4971  */
   4972 static void
   4973 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4974     uint8_t tid)
   4975 {
   4976 	struct iwn_softc *sc = ic->ic_softc;
   4977 	struct iwn_node *wn = (void *)ni;
   4978 	struct iwn_node_info node;
   4979 
   4980 	memset(&node, 0, sizeof node);
   4981 	node.id = wn->id;
   4982 	node.control = IWN_NODE_UPDATE;
   4983 	node.flags = IWN_FLAG_SET_DELBA;
   4984 	node.delba_tid = tid;
   4985 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   4986 	(void)sc->sc_hal->add_node(sc, &node, 1);
   4987 }
   4988 
   4989 /*
   4990  * This function is called by upper layer when an ADDBA response is received
   4991  * from another STA.
   4992  */
   4993 static int
   4994 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4995     uint8_t tid)
   4996 {
   4997 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4998 	struct iwn_softc *sc = ic->ic_softc;
   4999 	const struct iwn_hal *hal = sc->sc_hal;
   5000 	struct iwn_node *wn = (void *)ni;
   5001 	struct iwn_node_info node;
   5002 	int error;
   5003 
   5004 	/* Enable TX for the specified RA/TID. */
   5005 	wn->disable_tid &= ~(1 << tid);
   5006 	memset(&node, 0, sizeof node);
   5007 	node.id = wn->id;
   5008 	node.control = IWN_NODE_UPDATE;
   5009 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   5010 	node.disable_tid = htole16(wn->disable_tid);
   5011 	error = hal->add_node(sc, &node, 1);
   5012 	if (error != 0)
   5013 		return error;
   5014 
   5015 	if ((error = iwn_nic_lock(sc)) != 0)
   5016 		return error;
   5017 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   5018 	iwn_nic_unlock(sc);
   5019 	return 0;
   5020 }
   5021 
   5022 static void
   5023 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   5024     uint8_t tid)
   5025 {
   5026 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5027 	struct iwn_softc *sc = ic->ic_softc;
   5028 
   5029 	if (iwn_nic_lock(sc) != 0)
   5030 		return;
   5031 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   5032 	iwn_nic_unlock(sc);
   5033 }
   5034 
   5035 static void
   5036 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5037     uint8_t tid, uint16_t ssn)
   5038 {
   5039 	struct iwn_node *wn = (void *)ni;
   5040 	int qid = 7 + tid;
   5041 
   5042 	/* Stop TX scheduler while we're changing its configuration. */
   5043 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5044 	    IWN4965_TXQ_STATUS_CHGACT);
   5045 
   5046 	/* Assign RA/TID translation to the queue. */
   5047 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   5048 	    wn->id << 4 | tid);
   5049 
   5050 	/* Enable chain-building mode for the queue. */
   5051 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   5052 
   5053 	/* Set starting sequence number from the ADDBA request. */
   5054 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5055 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5056 
   5057 	/* Set scheduler window size. */
   5058 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   5059 	    IWN_SCHED_WINSZ);
   5060 	/* Set scheduler frame limit. */
   5061 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5062 	    IWN_SCHED_LIMIT << 16);
   5063 
   5064 	/* Enable interrupts for the queue. */
   5065 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5066 
   5067 	/* Mark the queue as active. */
   5068 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5069 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   5070 	    iwn_tid2fifo[tid] << 1);
   5071 }
   5072 
   5073 static void
   5074 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5075 {
   5076 	int qid = 7 + tid;
   5077 
   5078 	/* Stop TX scheduler while we're changing its configuration. */
   5079 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5080 	    IWN4965_TXQ_STATUS_CHGACT);
   5081 
   5082 	/* Set starting sequence number from the ADDBA request. */
   5083 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5084 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5085 
   5086 	/* Disable interrupts for the queue. */
   5087 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5088 
   5089 	/* Mark the queue as inactive. */
   5090 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5091 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   5092 }
   5093 
   5094 static void
   5095 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5096     uint8_t tid, uint16_t ssn)
   5097 {
   5098 	struct iwn_node *wn = (void *)ni;
   5099 	int qid = 10 + tid;
   5100 
   5101 	/* Stop TX scheduler while we're changing its configuration. */
   5102 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5103 	    IWN5000_TXQ_STATUS_CHGACT);
   5104 
   5105 	/* Assign RA/TID translation to the queue. */
   5106 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   5107 	    wn->id << 4 | tid);
   5108 
   5109 	/* Enable chain-building mode for the queue. */
   5110 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   5111 
   5112 	/* Enable aggregation for the queue. */
   5113 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5114 
   5115 	/* Set starting sequence number from the ADDBA request. */
   5116 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5117 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5118 
   5119 	/* Set scheduler window size and frame limit. */
   5120 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5121 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5122 
   5123 	/* Enable interrupts for the queue. */
   5124 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5125 
   5126 	/* Mark the queue as active. */
   5127 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5128 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   5129 }
   5130 
   5131 static void
   5132 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5133 {
   5134 	int qid = 10 + tid;
   5135 
   5136 	/* Stop TX scheduler while we're changing its configuration. */
   5137 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5138 	    IWN5000_TXQ_STATUS_CHGACT);
   5139 
   5140 	/* Disable aggregation for the queue. */
   5141 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5142 
   5143 	/* Set starting sequence number from the ADDBA request. */
   5144 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5145 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5146 
   5147 	/* Disable interrupts for the queue. */
   5148 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5149 
   5150 	/* Mark the queue as inactive. */
   5151 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5152 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   5153 }
   5154 #endif	/* !IEEE80211_NO_HT */
   5155 
   5156 /*
   5157  * Query calibration tables from the initialization firmware.  We do this
   5158  * only once at first boot.  Called from a process context.
   5159  */
   5160 static int
   5161 iwn5000_query_calibration(struct iwn_softc *sc)
   5162 {
   5163 	struct iwn5000_calib_config cmd;
   5164 	int error;
   5165 
   5166 	memset(&cmd, 0, sizeof cmd);
   5167 	cmd.ucode.once.enable = 0xffffffff;
   5168 	cmd.ucode.once.start  = 0xffffffff;
   5169 	cmd.ucode.once.send   = 0xffffffff;
   5170 	cmd.ucode.flags       = 0xffffffff;
   5171 	DPRINTF(("sending calibration query\n"));
   5172 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   5173 	if (error != 0)
   5174 		return error;
   5175 
   5176 	/* Wait at most two seconds for calibration to complete. */
   5177 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   5178 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   5179 	return error;
   5180 }
   5181 
   5182 /*
   5183  * Send calibration results to the runtime firmware.  These results were
   5184  * obtained on first boot from the initialization firmware.
   5185  */
   5186 static int
   5187 iwn5000_send_calibration(struct iwn_softc *sc)
   5188 {
   5189 	int idx, error;
   5190 
   5191 	for (idx = 0; idx < 5; idx++) {
   5192 		if (sc->calibcmd[idx].buf == NULL)
   5193 			continue;	/* No results available. */
   5194 		DPRINTF(("send calibration result idx=%d len=%d\n",
   5195 		    idx, sc->calibcmd[idx].len));
   5196 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   5197 		    sc->calibcmd[idx].len, 0);
   5198 		if (error != 0) {
   5199 			aprint_error_dev(sc->sc_dev,
   5200 			    "could not send calibration result\n");
   5201 			return error;
   5202 		}
   5203 	}
   5204 	return 0;
   5205 }
   5206 
   5207 static int
   5208 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   5209 {
   5210 	struct iwn5000_wimax_coex wimax;
   5211 
   5212 #ifdef notyet
   5213 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   5214 		/* Enable WiMAX coexistence for combo adapters. */
   5215 		wimax.flags =
   5216 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   5217 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   5218 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   5219 		    IWN_WIMAX_COEX_ENABLE;
   5220 		memcpy(wimax.events, iwn6050_wimax_events,
   5221 		    sizeof iwn6050_wimax_events);
   5222 	} else
   5223 #endif
   5224 	{
   5225 		/* Disable WiMAX coexistence. */
   5226 		wimax.flags = 0;
   5227 		memset(wimax.events, 0, sizeof wimax.events);
   5228 	}
   5229 	DPRINTF(("Configuring WiMAX coexistence\n"));
   5230 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   5231 }
   5232 
   5233 /*
   5234  * This function is called after the runtime firmware notifies us of its
   5235  * readiness (called in a process context.)
   5236  */
   5237 static int
   5238 iwn4965_post_alive(struct iwn_softc *sc)
   5239 {
   5240 	int error, qid;
   5241 
   5242 	if ((error = iwn_nic_lock(sc)) != 0)
   5243 		return error;
   5244 
   5245 	/* Clear TX scheduler state in SRAM. */
   5246 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5247 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   5248 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   5249 
   5250 	/* Set physical address of TX scheduler rings (1KB aligned.) */
   5251 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5252 
   5253 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5254 
   5255 	/* Disable chain mode for all our 16 queues. */
   5256 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   5257 
   5258 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   5259 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   5260 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5261 
   5262 		/* Set scheduler window size. */
   5263 		iwn_mem_write(sc, sc->sched_base +
   5264 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   5265 		/* Set scheduler frame limit. */
   5266 		iwn_mem_write(sc, sc->sched_base +
   5267 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5268 		    IWN_SCHED_LIMIT << 16);
   5269 	}
   5270 
   5271 	/* Enable interrupts for all our 16 queues. */
   5272 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   5273 	/* Identify TX FIFO rings (0-7). */
   5274 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   5275 
   5276 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5277 	for (qid = 0; qid < 7; qid++) {
   5278 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   5279 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5280 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   5281 	}
   5282 	iwn_nic_unlock(sc);
   5283 	return 0;
   5284 }
   5285 
   5286 /*
   5287  * This function is called after the initialization or runtime firmware
   5288  * notifies us of its readiness (called in a process context.)
   5289  */
   5290 static int
   5291 iwn5000_post_alive(struct iwn_softc *sc)
   5292 {
   5293 	int error, qid;
   5294 
   5295 	/* Switch to using ICT interrupt mode. */
   5296 	iwn5000_ict_reset(sc);
   5297 
   5298 	if ((error = iwn_nic_lock(sc)) != 0)
   5299 		return error;
   5300 
   5301 	/* Clear TX scheduler state in SRAM. */
   5302 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5303 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   5304 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   5305 
   5306 	/* Set physical address of TX scheduler rings (1KB aligned.) */
   5307 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5308 
   5309 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5310 
   5311 	/* Enable chain mode for all queues, except command queue. */
   5312 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   5313 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   5314 
   5315 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   5316 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   5317 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5318 
   5319 		iwn_mem_write(sc, sc->sched_base +
   5320 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   5321 		/* Set scheduler window size and frame limit. */
   5322 		iwn_mem_write(sc, sc->sched_base +
   5323 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5324 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5325 	}
   5326 
   5327 	/* Enable interrupts for all our 20 queues. */
   5328 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   5329 	/* Identify TX FIFO rings (0-7). */
   5330 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   5331 
   5332 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5333 	for (qid = 0; qid < 7; qid++) {
   5334 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   5335 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5336 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   5337 	}
   5338 	iwn_nic_unlock(sc);
   5339 
   5340 	/* Configure WiMAX coexistence for combo adapters. */
   5341 	error = iwn5000_send_wimax_coex(sc);
   5342 	if (error != 0) {
   5343 		aprint_error_dev(sc->sc_dev,
   5344 		    "could not configure WiMAX coexistence\n");
   5345 		return error;
   5346 	}
   5347 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5348 		struct iwn5000_phy_calib_crystal cmd;
   5349 
   5350 		/* Perform crystal calibration. */
   5351 		memset(&cmd, 0, sizeof cmd);
   5352 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5353 		cmd.ngroups = 1;
   5354 		cmd.isvalid = 1;
   5355 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5356 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5357 		DPRINTF(("sending crystal calibration %d, %d\n",
   5358 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5359 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5360 		if (error != 0) {
   5361 			aprint_error_dev(sc->sc_dev,
   5362 			    "crystal calibration failed\n");
   5363 			return error;
   5364 		}
   5365 	}
   5366 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5367 		/* Query calibration from the initialization firmware. */
   5368 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5369 			aprint_error_dev(sc->sc_dev,
   5370 			    "could not query calibration\n");
   5371 			return error;
   5372 		}
   5373 		/*
   5374 		 * We have the calibration results now, reboot with the
   5375 		 * runtime firmware (call ourselves recursively!)
   5376 		 */
   5377 		iwn_hw_stop(sc);
   5378 		error = iwn_hw_init(sc);
   5379 	} else {
   5380 		/* Send calibration results to runtime firmware. */
   5381 		error = iwn5000_send_calibration(sc);
   5382 	}
   5383 	return error;
   5384 }
   5385 
   5386 /*
   5387  * The firmware boot code is small and is intended to be copied directly into
   5388  * the NIC internal memory (no DMA transfer.)
   5389  */
   5390 static int
   5391 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5392 {
   5393 	int error, ntries;
   5394 
   5395 	size /= sizeof (uint32_t);
   5396 
   5397 	if ((error = iwn_nic_lock(sc)) != 0)
   5398 		return error;
   5399 
   5400 	/* Copy microcode image into NIC memory. */
   5401 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5402 	    (const uint32_t *)ucode, size);
   5403 
   5404 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5405 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5406 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5407 
   5408 	/* Start boot load now. */
   5409 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5410 
   5411 	/* Wait for transfer to complete. */
   5412 	for (ntries = 0; ntries < 1000; ntries++) {
   5413 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5414 		    IWN_BSM_WR_CTRL_START))
   5415 			break;
   5416 		DELAY(10);
   5417 	}
   5418 	if (ntries == 1000) {
   5419 		aprint_error_dev(sc->sc_dev,
   5420 		    "could not load boot firmware\n");
   5421 		iwn_nic_unlock(sc);
   5422 		return ETIMEDOUT;
   5423 	}
   5424 
   5425 	/* Enable boot after power up. */
   5426 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5427 
   5428 	iwn_nic_unlock(sc);
   5429 	return 0;
   5430 }
   5431 
   5432 static int
   5433 iwn4965_load_firmware(struct iwn_softc *sc)
   5434 {
   5435 	struct iwn_fw_info *fw = &sc->fw;
   5436 	struct iwn_dma_info *dma = &sc->fw_dma;
   5437 	int error;
   5438 
   5439 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5440 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5441 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5442 	    BUS_DMASYNC_PREWRITE);
   5443 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5444 	    fw->init.text, fw->init.textsz);
   5445 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5446 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5447 
   5448 	/* Tell adapter where to find initialization sections. */
   5449 	if ((error = iwn_nic_lock(sc)) != 0)
   5450 		return error;
   5451 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5452 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5453 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5454 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5455 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5456 	iwn_nic_unlock(sc);
   5457 
   5458 	/* Load firmware boot code. */
   5459 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5460 	if (error != 0) {
   5461 		aprint_error_dev(sc->sc_dev,
   5462 		    "could not load boot firmware\n");
   5463 		return error;
   5464 	}
   5465 	/* Now press "execute". */
   5466 	IWN_WRITE(sc, IWN_RESET, 0);
   5467 
   5468 	/* Wait at most one second for first alive notification. */
   5469 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5470 		aprint_error_dev(sc->sc_dev,
   5471 		    "timeout waiting for adapter to initialize\n");
   5472 		return error;
   5473 	}
   5474 
   5475 	/* Retrieve current temperature for initial TX power calibration. */
   5476 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5477 	sc->temp = iwn4965_get_temperature(sc);
   5478 
   5479 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5480 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5481 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5482 	    BUS_DMASYNC_PREWRITE);
   5483 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5484 	    fw->main.text, fw->main.textsz);
   5485 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5486 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5487 
   5488 	/* Tell adapter where to find runtime sections. */
   5489 	if ((error = iwn_nic_lock(sc)) != 0)
   5490 		return error;
   5491 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5492 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5493 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5494 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5495 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5496 	    IWN_FW_UPDATED | fw->main.textsz);
   5497 	iwn_nic_unlock(sc);
   5498 
   5499 	return 0;
   5500 }
   5501 
   5502 static int
   5503 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5504     const uint8_t *section, int size)
   5505 {
   5506 	struct iwn_dma_info *dma = &sc->fw_dma;
   5507 	int error;
   5508 
   5509 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5510 	memcpy(dma->vaddr, section, size);
   5511 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5512 
   5513 	if ((error = iwn_nic_lock(sc)) != 0)
   5514 		return error;
   5515 
   5516 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5517 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5518 
   5519 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5520 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5521 	    IWN_LOADDR(dma->paddr));
   5522 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5523 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5524 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5525 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5526 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5527 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5528 
   5529 	/* Kick Flow Handler to start DMA transfer. */
   5530 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5531 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5532 
   5533 	iwn_nic_unlock(sc);
   5534 
   5535 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5536 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5537 }
   5538 
   5539 static int
   5540 iwn5000_load_firmware(struct iwn_softc *sc)
   5541 {
   5542 	struct iwn_fw_part *fw;
   5543 	int error;
   5544 
   5545 	/* Load the initialization firmware on first boot only. */
   5546 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5547 	    &sc->fw.main : &sc->fw.init;
   5548 
   5549 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5550 	    fw->text, fw->textsz);
   5551 	if (error != 0) {
   5552 		aprint_error_dev(sc->sc_dev,
   5553 		    "could not load firmware %s section\n", ".text");
   5554 		return error;
   5555 	}
   5556 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5557 	    fw->data, fw->datasz);
   5558 	if (error != 0) {
   5559 		aprint_error_dev(sc->sc_dev,
   5560 		    "could not load firmware %s section\n", ".data");
   5561 		return error;
   5562 	}
   5563 
   5564 	/* Now press "execute". */
   5565 	IWN_WRITE(sc, IWN_RESET, 0);
   5566 	return 0;
   5567 }
   5568 
   5569 static int
   5570 iwn_read_firmware(struct iwn_softc *sc)
   5571 {
   5572 	const struct iwn_hal *hal = sc->sc_hal;
   5573 	struct iwn_fw_info *fw = &sc->fw;
   5574 	firmware_handle_t fwh;
   5575 	const uint32_t *ptr;
   5576 	uint32_t rev;
   5577 	size_t size;
   5578 	int error;
   5579 
   5580 	/* Open firmware image. */
   5581 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5582 		aprint_error_dev(sc->sc_dev,
   5583 		    "could not get firmware handle %s\n", sc->fwname);
   5584 		return error;
   5585 	}
   5586 	size = firmware_get_size(fwh);
   5587 	if (size < 28) {
   5588 		aprint_error_dev(sc->sc_dev,
   5589 		    "truncated firmware header: %zu bytes\n", size);
   5590 		free(fw->data, M_DEVBUF);
   5591 		firmware_close(fwh);
   5592 		return EINVAL;
   5593 	}
   5594 
   5595 	/* Read the firmware. */
   5596 	fw->data = firmware_malloc(size);
   5597 	if (fw->data == NULL) {
   5598 		aprint_error_dev(sc->sc_dev,
   5599 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5600 		firmware_close(fwh);
   5601 		return ENOMEM;
   5602 	}
   5603 	if ((error = firmware_read(fwh, 0, fw->data, size)) != 0) {
   5604 		aprint_error_dev(sc->sc_dev,
   5605 		    "could not read firmware %s\n", sc->fwname);
   5606 		firmware_free(fw->data, size);
   5607 		firmware_close(fwh);
   5608 		return error;
   5609 	}
   5610 
   5611 	/* Process firmware header. */
   5612 	ptr = (const uint32_t *)fw->data;
   5613 	rev = le32toh(*ptr++);
   5614 	/* Check firmware API version. */
   5615 	if (IWN_FW_API(rev) <= 1) {
   5616 		aprint_error_dev(sc->sc_dev,
   5617 		    "bad firmware, need API version >=2\n");
   5618 		firmware_free(fw->data, size);
   5619 		firmware_close(fwh);
   5620 		return EINVAL;
   5621 	}
   5622 	if (IWN_FW_API(rev) >= 3) {
   5623 		/* Skip build number (version 2 header). */
   5624 		size -= 4;
   5625 		ptr++;
   5626 	}
   5627 	fw->main.textsz = le32toh(*ptr++);
   5628 	fw->main.datasz = le32toh(*ptr++);
   5629 	fw->init.textsz = le32toh(*ptr++);
   5630 	fw->init.datasz = le32toh(*ptr++);
   5631 	fw->boot.textsz = le32toh(*ptr++);
   5632 	size -= 24;
   5633 
   5634 	/* Sanity-check firmware header. */
   5635 	if (fw->main.textsz > hal->fw_text_maxsz ||
   5636 	    fw->main.datasz > hal->fw_data_maxsz ||
   5637 	    fw->init.textsz > hal->fw_text_maxsz ||
   5638 	    fw->init.datasz > hal->fw_data_maxsz ||
   5639 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5640 	    (fw->boot.textsz & 3) != 0) {
   5641 		aprint_error_dev(sc->sc_dev,
   5642 		    "invalid firmware header\n");
   5643 		firmware_free(fw->data, size);
   5644 		firmware_close(fwh);
   5645 		return EINVAL;
   5646 	}
   5647 
   5648 	/* Check that all firmware sections fit. */
   5649 	if (fw->main.textsz + fw->main.datasz + fw->init.textsz +
   5650 	    fw->init.datasz + fw->boot.textsz > size) {
   5651 		aprint_error_dev(sc->sc_dev,
   5652 		    "firmware file too short: %zu bytes\n", size);
   5653 		firmware_free(fw->data, size);
   5654 		firmware_close(fwh);
   5655 		return EINVAL;
   5656 	}
   5657 
   5658 	/* Get pointers to firmware sections. */
   5659 	fw->main.text = (const uint8_t *)ptr;
   5660 	fw->main.data = fw->main.text + fw->main.textsz;
   5661 	fw->init.text = fw->main.data + fw->main.datasz;
   5662 	fw->init.data = fw->init.text + fw->init.textsz;
   5663 	fw->boot.text = fw->init.data + fw->init.datasz;
   5664 
   5665 	return 0;
   5666 }
   5667 
   5668 static int
   5669 iwn_clock_wait(struct iwn_softc *sc)
   5670 {
   5671 	int ntries;
   5672 
   5673 	/* Set "initialization complete" bit. */
   5674 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5675 
   5676 	/* Wait for clock stabilization. */
   5677 	for (ntries = 0; ntries < 2500; ntries++) {
   5678 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5679 			return 0;
   5680 		DELAY(10);
   5681 	}
   5682 	aprint_error_dev(sc->sc_dev,
   5683 	    "timeout waiting for clock stabilization\n");
   5684 	return ETIMEDOUT;
   5685 }
   5686 
   5687 static int
   5688 iwn_apm_init(struct iwn_softc *sc)
   5689 {
   5690 	pcireg_t reg;
   5691 	int error;
   5692 
   5693 	/* Disable L0s exit timer (NMI bug workaround.) */
   5694 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   5695 	/* Don't wait for ICH L0s (ICH bug workaround.) */
   5696 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   5697 
   5698 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
   5699 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   5700 
   5701 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   5702 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   5703 
   5704 	/* Retrieve PCIe Active State Power Management (ASPM). */
   5705 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   5706 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   5707 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   5708 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   5709 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5710 	else
   5711 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5712 
   5713 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   5714 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   5715 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   5716 
   5717 	/* Wait for clock stabilization before accessing prph. */
   5718 	if ((error = iwn_clock_wait(sc)) != 0)
   5719 		return error;
   5720 
   5721 	if ((error = iwn_nic_lock(sc)) != 0)
   5722 		return error;
   5723 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   5724 		/* Enable DMA and BSM (Bootstrap State Machine.) */
   5725 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5726 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   5727 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   5728 	} else {
   5729 		/* Enable DMA. */
   5730 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5731 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5732 	}
   5733 	DELAY(20);
   5734 	/* Disable L1-Active. */
   5735 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   5736 	iwn_nic_unlock(sc);
   5737 
   5738 	return 0;
   5739 }
   5740 
   5741 static void
   5742 iwn_apm_stop_master(struct iwn_softc *sc)
   5743 {
   5744 	int ntries;
   5745 
   5746 	/* Stop busmaster DMA activity. */
   5747 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   5748 	for (ntries = 0; ntries < 100; ntries++) {
   5749 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   5750 			return;
   5751 		DELAY(10);
   5752 	}
   5753 	aprint_error_dev(sc->sc_dev,
   5754 	    "timeout waiting for master\n");
   5755 }
   5756 
   5757 static void
   5758 iwn_apm_stop(struct iwn_softc *sc)
   5759 {
   5760 	iwn_apm_stop_master(sc);
   5761 
   5762 	/* Reset the entire device. */
   5763 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   5764 	DELAY(10);
   5765 	/* Clear "initialization complete" bit. */
   5766 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5767 }
   5768 
   5769 static int
   5770 iwn4965_nic_config(struct iwn_softc *sc)
   5771 {
   5772 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   5773 		/*
   5774 		 * I don't believe this to be correct but this is what the
   5775 		 * vendor driver is doing. Probably the bits should not be
   5776 		 * shifted in IWN_RFCFG_*.
   5777 		 */
   5778 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5779 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5780 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5781 		    IWN_RFCFG_DASH(sc->rfcfg));
   5782 	}
   5783 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5784 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5785 	return 0;
   5786 }
   5787 
   5788 static int
   5789 iwn5000_nic_config(struct iwn_softc *sc)
   5790 {
   5791 	uint32_t tmp;
   5792 	int error;
   5793 
   5794 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   5795 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5796 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5797 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5798 		    IWN_RFCFG_DASH(sc->rfcfg));
   5799 	}
   5800 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5801 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5802 
   5803 	if ((error = iwn_nic_lock(sc)) != 0)
   5804 		return error;
   5805 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   5806 
   5807 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   5808 		/*
   5809 		 * Select first Switching Voltage Regulator (1.32V) to
   5810 		 * solve a stability issue related to noisy DC2DC line
   5811 		 * in the silicon of 1000 Series.
   5812 		 */
   5813 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   5814 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   5815 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   5816 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   5817 	}
   5818 	iwn_nic_unlock(sc);
   5819 
   5820 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   5821 		/* Use internal power amplifier only. */
   5822 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   5823 	}
   5824 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
   5825 		/* Indicate that ROM calibration version is >=6. */
   5826 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   5827 	}
   5828 	return 0;
   5829 }
   5830 
   5831 /*
   5832  * Take NIC ownership over Intel Active Management Technology (AMT).
   5833  */
   5834 static int
   5835 iwn_hw_prepare(struct iwn_softc *sc)
   5836 {
   5837 	int ntries;
   5838 
   5839 	/* Check if hardware is ready. */
   5840 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5841 	for (ntries = 0; ntries < 5; ntries++) {
   5842 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5843 		    IWN_HW_IF_CONFIG_NIC_READY)
   5844 			return 0;
   5845 		DELAY(10);
   5846 	}
   5847 
   5848 	/* Hardware not ready, force into ready state. */
   5849 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   5850 	for (ntries = 0; ntries < 15000; ntries++) {
   5851 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5852 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   5853 			break;
   5854 		DELAY(10);
   5855 	}
   5856 	if (ntries == 15000)
   5857 		return ETIMEDOUT;
   5858 
   5859 	/* Hardware should be ready now. */
   5860 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5861 	for (ntries = 0; ntries < 5; ntries++) {
   5862 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5863 		    IWN_HW_IF_CONFIG_NIC_READY)
   5864 			return 0;
   5865 		DELAY(10);
   5866 	}
   5867 	return ETIMEDOUT;
   5868 }
   5869 
   5870 static int
   5871 iwn_hw_init(struct iwn_softc *sc)
   5872 {
   5873 	const struct iwn_hal *hal = sc->sc_hal;
   5874 	int error, chnl, qid;
   5875 
   5876 	/* Clear pending interrupts. */
   5877 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5878 
   5879 	if ((error = iwn_apm_init(sc)) != 0) {
   5880 		aprint_error_dev(sc->sc_dev,
   5881 		    "could not power ON adapter\n");
   5882 		return error;
   5883 	}
   5884 
   5885 	/* Select VMAIN power source. */
   5886 	if ((error = iwn_nic_lock(sc)) != 0)
   5887 		return error;
   5888 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   5889 	iwn_nic_unlock(sc);
   5890 
   5891 	/* Perform adapter-specific initialization. */
   5892 	if ((error = hal->nic_config(sc)) != 0)
   5893 		return error;
   5894 
   5895 	/* Initialize RX ring. */
   5896 	if ((error = iwn_nic_lock(sc)) != 0)
   5897 		return error;
   5898 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   5899 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   5900 	/* Set physical address of RX ring (256-byte aligned.) */
   5901 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   5902 	/* Set physical address of RX status (16-byte aligned.) */
   5903 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   5904 	/* Enable RX. */
   5905 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   5906 	    IWN_FH_RX_CONFIG_ENA           |
   5907 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   5908 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   5909 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   5910 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   5911 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   5912 	iwn_nic_unlock(sc);
   5913 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   5914 
   5915 	if ((error = iwn_nic_lock(sc)) != 0)
   5916 		return error;
   5917 
   5918 	/* Initialize TX scheduler. */
   5919 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
   5920 
   5921 	/* Set physical address of "keep warm" page (16-byte aligned.) */
   5922 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   5923 
   5924 	/* Initialize TX rings. */
   5925 	for (qid = 0; qid < hal->ntxqs; qid++) {
   5926 		struct iwn_tx_ring *txq = &sc->txq[qid];
   5927 
   5928 		/* Set physical address of TX ring (256-byte aligned.) */
   5929 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   5930 		    txq->desc_dma.paddr >> 8);
   5931 	}
   5932 	iwn_nic_unlock(sc);
   5933 
   5934 	/* Enable DMA channels. */
   5935 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
   5936 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   5937 		    IWN_FH_TX_CONFIG_DMA_ENA |
   5938 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   5939 	}
   5940 
   5941 	/* Clear "radio off" and "commands blocked" bits. */
   5942 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5943 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   5944 
   5945 	/* Clear pending interrupts. */
   5946 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5947 	/* Enable interrupt coalescing. */
   5948 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   5949 	/* Enable interrupts. */
   5950 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   5951 
   5952 	/* _Really_ make sure "radio off" bit is cleared! */
   5953 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5954 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5955 
   5956 	if ((error = hal->load_firmware(sc)) != 0) {
   5957 		aprint_error_dev(sc->sc_dev,
   5958 		    "could not load firmware\n");
   5959 		return error;
   5960 	}
   5961 	/* Wait at most one second for firmware alive notification. */
   5962 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5963 		aprint_error_dev(sc->sc_dev,
   5964 		    "timeout waiting for adapter to initialize\n");
   5965 		return error;
   5966 	}
   5967 	/* Do post-firmware initialization. */
   5968 	return hal->post_alive(sc);
   5969 }
   5970 
   5971 static void
   5972 iwn_hw_stop(struct iwn_softc *sc)
   5973 {
   5974 	const struct iwn_hal *hal = sc->sc_hal;
   5975 	int chnl, qid, ntries;
   5976 	uint32_t tmp;
   5977 
   5978 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   5979 
   5980 	/* Disable interrupts. */
   5981 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   5982 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5983 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   5984 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5985 
   5986 	/* Make sure we no longer hold the NIC lock. */
   5987 	iwn_nic_unlock(sc);
   5988 
   5989 	/* Stop TX scheduler. */
   5990 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
   5991 
   5992 	/* Stop all DMA channels. */
   5993 	if (iwn_nic_lock(sc) == 0) {
   5994 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
   5995 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   5996 			for (ntries = 0; ntries < 200; ntries++) {
   5997 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
   5998 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
   5999 				    IWN_FH_TX_STATUS_IDLE(chnl))
   6000 					break;
   6001 				DELAY(10);
   6002 			}
   6003 		}
   6004 		iwn_nic_unlock(sc);
   6005 	}
   6006 
   6007 	/* Stop RX ring. */
   6008 	iwn_reset_rx_ring(sc, &sc->rxq);
   6009 
   6010 	/* Reset all TX rings. */
   6011 	for (qid = 0; qid < hal->ntxqs; qid++)
   6012 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   6013 
   6014 	if (iwn_nic_lock(sc) == 0) {
   6015 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   6016 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   6017 		iwn_nic_unlock(sc);
   6018 	}
   6019 	DELAY(5);
   6020 	/* Power OFF adapter. */
   6021 	iwn_apm_stop(sc);
   6022 }
   6023 
   6024 static int
   6025 iwn_init(struct ifnet *ifp)
   6026 {
   6027 	struct iwn_softc *sc = ifp->if_softc;
   6028 	struct ieee80211com *ic = &sc->sc_ic;
   6029 	int error;
   6030 
   6031 	if ((error = iwn_hw_prepare(sc)) != 0) {
   6032 		aprint_error_dev(sc->sc_dev,
   6033 		    "hardware not ready\n");
   6034 		goto fail;
   6035 	}
   6036 
   6037 	/* Check that the radio is not disabled by hardware switch. */
   6038 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   6039 		aprint_error_dev(sc->sc_dev,
   6040 		    "radio is disabled by hardware switch\n");
   6041 		error = EPERM;	/* :-) */
   6042 		goto fail;
   6043 	}
   6044 
   6045 	/* Read firmware images from the filesystem. */
   6046 	if ((error = iwn_read_firmware(sc)) != 0) {
   6047 		aprint_error_dev(sc->sc_dev,
   6048 		    "could not read firmware\n");
   6049 		goto fail;
   6050 	}
   6051 
   6052 	/* Initialize interrupt mask to default value. */
   6053 	sc->int_mask = IWN_INT_MASK_DEF;
   6054 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6055 
   6056 	/* Initialize hardware and upload firmware. */
   6057 	error = iwn_hw_init(sc);
   6058 	free(sc->fw.data, M_DEVBUF);
   6059 	if (error != 0) {
   6060 		aprint_error_dev(sc->sc_dev,
   6061 		    "could not initialize hardware\n");
   6062 		goto fail;
   6063 	}
   6064 
   6065 	/* Configure adapter now that it is ready. */
   6066 	if ((error = iwn_config(sc)) != 0) {
   6067 		aprint_error_dev(sc->sc_dev,
   6068 		    "could not configure device\n");
   6069 		goto fail;
   6070 	}
   6071 
   6072 	ifp->if_flags &= ~IFF_OACTIVE;
   6073 	ifp->if_flags |= IFF_RUNNING;
   6074 
   6075 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   6076 		ieee80211_begin_scan(ic, 0);
   6077 	else
   6078 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   6079 
   6080 	return 0;
   6081 
   6082 fail:	iwn_stop(ifp, 1);
   6083 	return error;
   6084 }
   6085 
   6086 static void
   6087 iwn_stop(struct ifnet *ifp, int disable)
   6088 {
   6089 	struct iwn_softc *sc = ifp->if_softc;
   6090 	struct ieee80211com *ic = &sc->sc_ic;
   6091 
   6092 	ifp->if_timer = sc->sc_tx_timer = 0;
   6093 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   6094 
   6095 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   6096 
   6097 	/* Power OFF hardware. */
   6098 	iwn_hw_stop(sc);
   6099 
   6100 #ifndef SMALL_KERNEL
   6101 	/* Temperature sensor is no longer valid. */
   6102 	sc->sc_sensor.value_cur = 0;
   6103 	sc->sc_sensor.state = ENVSYS_SINVALID;
   6104 #endif
   6105 }
   6106 
   6107 static struct mbuf *
   6108 MCLGETIalt(struct iwn_softc *sc, int how,
   6109     struct ifnet *ifp __unused, u_int size)
   6110 {
   6111 	struct mbuf *m;
   6112 #ifdef IWN_USE_RBUF
   6113 	struct iwn_rbuf *rbuf;
   6114 #endif
   6115 
   6116 	MGETHDR(m, how, MT_DATA);
   6117 	if (m == NULL)
   6118 		return NULL;
   6119 
   6120 #ifdef IWN_USE_RBUF
   6121 	if (sc->rxq.nb_free_entries > 0 &&
   6122 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   6123 		/* Attach buffer to mbuf header. */
   6124 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   6125 		m->m_flags |= M_EXT_RW;
   6126 	}
   6127 	else {
   6128 		MEXTMALLOC(m, size, how);
   6129 		if ((m->m_flags & M_EXT) == 0) {
   6130 			m_freem(m);
   6131 			return NULL;
   6132 		}
   6133 	}
   6134 
   6135 #else
   6136 #ifdef MCLGET4K
   6137 	if (size == 4096)
   6138 		MCLGET4K(m, how);
   6139 	else
   6140 		panic("size must be 4k");
   6141 #else
   6142 	MEXTMALLOC(m, size, how);
   6143 #endif
   6144 	if ((m->m_flags & M_EXT) == 0) {
   6145 		m_freem(m);
   6146 		return NULL;
   6147 	}
   6148 #endif
   6149 
   6150 	return m;
   6151 }
   6152 
   6153 #ifdef IWN_USE_RBUF
   6154 static struct iwn_rbuf *
   6155 iwn_alloc_rbuf(struct iwn_softc *sc)
   6156 {
   6157 	struct iwn_rbuf *rbuf;
   6158 	mutex_enter(&sc->rxq.freelist_mtx);
   6159 
   6160 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   6161 	if (rbuf != NULL) {
   6162 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   6163 		sc->rxq.nb_free_entries --;
   6164 	}
   6165 	mutex_exit(&sc->rxq.freelist_mtx);
   6166 	return rbuf;
   6167 }
   6168 
   6169 /*
   6170  * This is called automatically by the network stack when the mbuf to which
   6171  * our RX buffer is attached is freed.
   6172  */
   6173 static void
   6174 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   6175 {
   6176 	struct iwn_rbuf *rbuf = arg;
   6177 	struct iwn_softc *sc = rbuf->sc;
   6178 
   6179 	/* Put the RX buffer back in the free list. */
   6180 	mutex_enter(&sc->rxq.freelist_mtx);
   6181 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   6182 	mutex_exit(&sc->rxq.freelist_mtx);
   6183 
   6184 	sc->rxq.nb_free_entries ++;
   6185 	if (__predict_true(m != NULL))
   6186 		pool_cache_put(mb_cache, m);
   6187 }
   6188 
   6189 static int
   6190 iwn_alloc_rpool(struct iwn_softc *sc)
   6191 {
   6192 	struct iwn_rx_ring *ring = &sc->rxq;
   6193 	struct iwn_rbuf *rbuf;
   6194 	int i, error;
   6195 
   6196 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   6197 
   6198 	/* Allocate a big chunk of DMA'able memory... */
   6199 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   6200 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   6201 	if (error != 0) {
   6202 		aprint_error_dev(sc->sc_dev,
   6203 		    "could not allocate RX buffers DMA memory\n");
   6204 		return error;
   6205 	}
   6206 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   6207 	SLIST_INIT(&ring->freelist);
   6208 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   6209 		rbuf = &ring->rbuf[i];
   6210 
   6211 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   6212 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   6213 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   6214 
   6215 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   6216 	}
   6217 	ring->nb_free_entries = IWN_RBUF_COUNT;
   6218 	return 0;
   6219 }
   6220 
   6221 static void
   6222 iwn_free_rpool(struct iwn_softc *sc)
   6223 {
   6224 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   6225 }
   6226 #endif
   6227 
   6228 /*
   6229  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
   6230  * Copyright (c) 2001 Atsushi Onoe
   6231  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
   6232  * Copyright (c) 2007-2009 Damien Bergamini
   6233  * All rights reserved.
   6234  */
   6235 
   6236 /*
   6237  * Add an SSID element to a frame (see 7.3.2.1).
   6238  */
   6239 static u_int8_t *
   6240 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
   6241 {
   6242 	*frm++ = IEEE80211_ELEMID_SSID;
   6243 	*frm++ = len;
   6244 	memcpy(frm, ssid, len);
   6245 	return frm + len;
   6246 }
   6247 
   6248 /*
   6249  * Add a supported rates element to a frame (see 7.3.2.2).
   6250  */
   6251 static u_int8_t *
   6252 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6253 {
   6254 	int nrates;
   6255 
   6256 	*frm++ = IEEE80211_ELEMID_RATES;
   6257 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
   6258 	*frm++ = nrates;
   6259 	memcpy(frm, rs->rs_rates, nrates);
   6260 	return frm + nrates;
   6261 }
   6262 
   6263 /*
   6264  * Add an extended supported rates element to a frame (see 7.3.2.14).
   6265  */
   6266 static u_int8_t *
   6267 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6268 {
   6269 	int nrates;
   6270 
   6271 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
   6272 
   6273 	*frm++ = IEEE80211_ELEMID_XRATES;
   6274 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   6275 	*frm++ = nrates;
   6276 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   6277 	return frm + nrates;
   6278 }
   6279 
   6280 /*
   6281  * XXX: Hack to set the current channel to the value advertised in beacons or
   6282  * probe responses. Only used during AP detection.
   6283  * XXX: Duplicated from if_iwi.c
   6284  */
   6285 static void
   6286 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
   6287 {
   6288 	struct ieee80211_frame *wh;
   6289 	uint8_t subtype;
   6290 	uint8_t *frm, *efrm;
   6291 
   6292 	wh = mtod(m, struct ieee80211_frame *);
   6293 
   6294 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6295 		return;
   6296 
   6297 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6298 
   6299 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6300 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6301 		return;
   6302 
   6303 	frm = (uint8_t *)(wh + 1);
   6304 	efrm = mtod(m, uint8_t *) + m->m_len;
   6305 
   6306 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6307 	while (frm < efrm) {
   6308 		if (*frm == IEEE80211_ELEMID_DSPARMS)
   6309 #if IEEE80211_CHAN_MAX < 255
   6310 		if (frm[2] <= IEEE80211_CHAN_MAX)
   6311 #endif
   6312 			ic->ic_curchan = &ic->ic_channels[frm[2]];
   6313 
   6314 		frm += frm[1] + 2;
   6315 	}
   6316 }
   6317 
   6318