Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.44
      1 /*	$NetBSD: if_iwn.c,v 1.44 2010/05/02 02:06:15 christos Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.88 2010/04/10 08:37:36 damien Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.44 2010/05/02 02:06:15 christos Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 /* XXX Avoid sensor code (correct option for NetBSD too?) */
     31 #undef SMALL_KERNEL
     32 
     33 #include <sys/param.h>
     34 #include <sys/sockio.h>
     35 #include <sys/sysctl.h>
     36 #include <sys/mbuf.h>
     37 #include <sys/kernel.h>
     38 #include <sys/socket.h>
     39 #include <sys/systm.h>
     40 #include <sys/malloc.h>
     41 #include <sys/mutex.h>
     42 #include <sys/conf.h>
     43 #include <sys/kauth.h>
     44 #include <sys/callout.h>
     45 
     46 #include <dev/sysmon/sysmonvar.h>
     47 
     48 #include <machine/bus.h>
     49 #include <machine/endian.h>
     50 #include <machine/intr.h>
     51 
     52 #include <dev/pci/pcireg.h>
     53 #include <dev/pci/pcivar.h>
     54 #include <dev/pci/pcidevs.h>
     55 
     56 #include <net/bpf.h>
     57 #include <net/if.h>
     58 #include <net/if_arp.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_types.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <net/if_ether.h>
     67 #include <netinet/ip.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_amrr.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #include <dev/firmload.h>
     74 
     75 #include <dev/pci/if_iwnreg.h>
     76 #include <dev/pci/if_iwnvar.h>
     77 
     78 static const pci_product_id_t iwn_devices[] = {
     79 /* XXX From old NetBSD iwn driver (used by pcidevs) */
     80 	PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1,
     81 	PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2,
     82 	PCI_PRODUCT_INTEL_PRO_WL_5100AGN_1,
     83 	PCI_PRODUCT_INTEL_PRO_WL_5100AGN_2,
     84 	PCI_PRODUCT_INTEL_PRO_WL_5300AGN_1,
     85 	PCI_PRODUCT_INTEL_PRO_WL_5300AGN_2,
     86 	PCI_PRODUCT_INTEL_PRO_WL_5350AGN_1,
     87 	PCI_PRODUCT_INTEL_PRO_WL_5350AGN_2,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     89 #if 0
     90 /* XXX From new OpenBSD iwn driver (not in pcidevs) */
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     99 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
    100 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
    101 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
    102 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
    103 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
    104 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
    105 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
    106 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
    107 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
    108 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
    109 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
    110 #endif
    111 };
    112 
    113 /*
    114  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    115  */
    116 static const struct ieee80211_rateset iwn_rateset_11a =
    117 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    118 
    119 static const struct ieee80211_rateset iwn_rateset_11b =
    120 	{ 4, { 2, 4, 11, 22 } };
    121 
    122 static const struct ieee80211_rateset iwn_rateset_11g =
    123 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    124 
    125 static int	iwn_match(device_t , struct cfdata *, void *);
    126 static void	iwn_attach(device_t , device_t , void *);
    127 const struct	iwn_hal *iwn_hal_attach(struct iwn_softc *, pci_product_id_t pid);
    128 #ifndef SMALL_KERNEL
    129 static void	iwn_sensor_attach(struct iwn_softc *);
    130 #endif
    131 static void	iwn_radiotap_attach(struct iwn_softc *);
    132 static int	iwn_detach(device_t , int);
    133 #if 0
    134 static void	iwn_power(int, void *);
    135 #endif
    136 static bool	iwn_resume(device_t, const pmf_qual_t *);
    137 static int	iwn_nic_lock(struct iwn_softc *);
    138 static int	iwn_eeprom_lock(struct iwn_softc *);
    139 static int	iwn_init_otprom(struct iwn_softc *);
    140 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    141 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    142 		    void **, bus_size_t, bus_size_t);
    143 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    144 static int	iwn_alloc_sched(struct iwn_softc *);
    145 static void	iwn_free_sched(struct iwn_softc *);
    146 static int	iwn_alloc_kw(struct iwn_softc *);
    147 static void	iwn_free_kw(struct iwn_softc *);
    148 static int	iwn_alloc_ict(struct iwn_softc *);
    149 static void	iwn_free_ict(struct iwn_softc *);
    150 static int	iwn_alloc_fwmem(struct iwn_softc *);
    151 static void	iwn_free_fwmem(struct iwn_softc *);
    152 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    153 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    154 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    155 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    156 		    int);
    157 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    158 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    159 static void	iwn5000_ict_reset(struct iwn_softc *);
    160 static int	iwn_read_eeprom(struct iwn_softc *);
    161 static void	iwn4965_read_eeprom(struct iwn_softc *);
    162 #ifdef IWN_DEBUG
    163 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    164 #endif
    165 static void	iwn5000_read_eeprom(struct iwn_softc *);
    166 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    167 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    168 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    169 static void	iwn_newassoc(struct ieee80211_node *, int);
    170 static int	iwn_media_change(struct ifnet *);
    171 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    172 static void	iwn_iter_func(void *, struct ieee80211_node *);
    173 static void	iwn_calib_timeout(void *);
    174 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    175 		    struct iwn_rx_data *);
    176 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    177 		    struct iwn_rx_data *);
    178 #ifndef IEEE80211_NO_HT
    179 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    180 		    struct iwn_rx_data *);
    181 #endif
    182 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    183 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    184 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    185 		    struct iwn_rx_data *);
    186 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    187 		    struct iwn_rx_data *);
    188 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    189 		    struct iwn_rx_data *);
    190 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    191 		    uint8_t);
    192 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    193 static void	iwn_notif_intr(struct iwn_softc *);
    194 static void	iwn_wakeup_intr(struct iwn_softc *);
    195 static void	iwn_fatal_intr(struct iwn_softc *);
    196 static int	iwn_intr(void *);
    197 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    198 		    uint16_t);
    199 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    200 		    uint16_t);
    201 #ifdef notyet
    202 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    203 #endif
    204 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    205 		    struct ieee80211_node *, int);
    206 static void	iwn_start(struct ifnet *);
    207 static void	iwn_watchdog(struct ifnet *);
    208 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    209 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    210 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    211 		    int);
    212 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    213 		    int);
    214 static int	iwn_set_link_quality(struct iwn_softc *,
    215 		    struct ieee80211_node *);
    216 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    217 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    218 static int	iwn_set_critical_temp(struct iwn_softc *);
    219 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    220 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    221 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    222 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    223 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    224 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    225 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    226 static int	iwn4965_get_temperature(struct iwn_softc *);
    227 static int	iwn5000_get_temperature(struct iwn_softc *);
    228 static int	iwn_init_sensitivity(struct iwn_softc *);
    229 static void	iwn_collect_noise(struct iwn_softc *,
    230 		    const struct iwn_rx_general_stats *);
    231 static int	iwn4965_init_gains(struct iwn_softc *);
    232 static int	iwn5000_init_gains(struct iwn_softc *);
    233 static int	iwn4965_set_gains(struct iwn_softc *);
    234 static int	iwn5000_set_gains(struct iwn_softc *);
    235 static void	iwn_tune_sensitivity(struct iwn_softc *,
    236 		    const struct iwn_rx_stats *);
    237 static int	iwn_send_sensitivity(struct iwn_softc *);
    238 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    239 static int	iwn_config(struct iwn_softc *);
    240 static int	iwn_scan(struct iwn_softc *, uint16_t);
    241 static int	iwn_auth(struct iwn_softc *);
    242 static int	iwn_run(struct iwn_softc *);
    243 #ifdef IWN_HWCRYPTO
    244 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    245 		    struct ieee80211_key *);
    246 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    247 		    struct ieee80211_key *);
    248 #endif
    249 static int	iwn_wme_update(struct ieee80211com *);
    250 #ifndef IEEE80211_NO_HT
    251 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    252 		    struct ieee80211_node *, uint8_t);
    253 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    254 		    struct ieee80211_node *, uint8_t);
    255 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    256 		    struct ieee80211_node *, uint8_t);
    257 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    258 		    struct ieee80211_node *, uint8_t);
    259 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    260 		    struct ieee80211_node *, uint8_t, uint16_t);
    261 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    262 		    uint8_t, uint16_t);
    263 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    264 		    struct ieee80211_node *, uint8_t, uint16_t);
    265 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    266 		    uint8_t, uint16_t);
    267 #endif
    268 static int	iwn5000_query_calibration(struct iwn_softc *);
    269 static int	iwn5000_send_calibration(struct iwn_softc *);
    270 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    271 static int	iwn4965_post_alive(struct iwn_softc *);
    272 static int	iwn5000_post_alive(struct iwn_softc *);
    273 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    274 		    int);
    275 static int	iwn4965_load_firmware(struct iwn_softc *);
    276 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    277 		    const uint8_t *, int);
    278 static int	iwn5000_load_firmware(struct iwn_softc *);
    279 static int	iwn_read_firmware(struct iwn_softc *);
    280 static int	iwn_clock_wait(struct iwn_softc *);
    281 static int	iwn_apm_init(struct iwn_softc *);
    282 static void	iwn_apm_stop_master(struct iwn_softc *);
    283 static void	iwn_apm_stop(struct iwn_softc *);
    284 static int	iwn4965_nic_config(struct iwn_softc *);
    285 static int	iwn5000_nic_config(struct iwn_softc *);
    286 static int	iwn_hw_prepare(struct iwn_softc *);
    287 static int	iwn_hw_init(struct iwn_softc *);
    288 static void	iwn_hw_stop(struct iwn_softc *);
    289 static int	iwn_init(struct ifnet *);
    290 static void	iwn_stop(struct ifnet *, int);
    291 
    292 /* XXX MCLGETI alternative */
    293 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    294 		    struct ifnet *, u_int);
    295 #ifdef IWN_USE_RBUF
    296 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    297 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    298 static int	iwn_alloc_rpool(struct iwn_softc *);
    299 static void	iwn_free_rpool(struct iwn_softc *);
    300 #endif
    301 
    302 /* XXX needed by iwn_scan */
    303 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
    304 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
    305     const struct ieee80211_rateset *);
    306 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
    307     const struct ieee80211_rateset *);
    308 
    309 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
    310 
    311 #ifdef IWN_DEBUG
    312 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    313 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    314 int iwn_debug = 0;
    315 #else
    316 #define DPRINTF(x)
    317 #define DPRINTFN(n, x)
    318 #endif
    319 
    320 static const struct iwn_hal iwn4965_hal = {
    321 	iwn4965_load_firmware,
    322 	iwn4965_read_eeprom,
    323 	iwn4965_post_alive,
    324 	iwn4965_nic_config,
    325 	iwn4965_update_sched,
    326 	iwn4965_get_temperature,
    327 	iwn4965_get_rssi,
    328 	iwn4965_set_txpower,
    329 	iwn4965_init_gains,
    330 	iwn4965_set_gains,
    331 	iwn4965_add_node,
    332 	iwn4965_tx_done,
    333 #ifndef IEEE80211_NO_HT
    334 	iwn4965_ampdu_tx_start,
    335 	iwn4965_ampdu_tx_stop,
    336 #endif
    337 	IWN4965_NTXQUEUES,
    338 	IWN4965_NDMACHNLS,
    339 	IWN4965_ID_BROADCAST,
    340 	IWN4965_RXONSZ,
    341 	IWN4965_SCHEDSZ,
    342 	IWN4965_FW_TEXT_MAXSZ,
    343 	IWN4965_FW_DATA_MAXSZ,
    344 	IWN4965_FWSZ,
    345 	IWN4965_SCHED_TXFACT
    346 };
    347 
    348 static const struct iwn_hal iwn5000_hal = {
    349 	iwn5000_load_firmware,
    350 	iwn5000_read_eeprom,
    351 	iwn5000_post_alive,
    352 	iwn5000_nic_config,
    353 	iwn5000_update_sched,
    354 	iwn5000_get_temperature,
    355 	iwn5000_get_rssi,
    356 	iwn5000_set_txpower,
    357 	iwn5000_init_gains,
    358 	iwn5000_set_gains,
    359 	iwn5000_add_node,
    360 	iwn5000_tx_done,
    361 #ifndef IEEE80211_NO_HT
    362 	iwn5000_ampdu_tx_start,
    363 	iwn5000_ampdu_tx_stop,
    364 #endif
    365 	IWN5000_NTXQUEUES,
    366 	IWN5000_NDMACHNLS,
    367 	IWN5000_ID_BROADCAST,
    368 	IWN5000_RXONSZ,
    369 	IWN5000_SCHEDSZ,
    370 	IWN5000_FW_TEXT_MAXSZ,
    371 	IWN5000_FW_DATA_MAXSZ,
    372 	IWN5000_FWSZ,
    373 	IWN5000_SCHED_TXFACT
    374 };
    375 
    376 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    377 	iwn_detach, NULL);
    378 
    379 static int
    380 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    381 {
    382 	struct pci_attach_args *pa = aux;
    383 	size_t i;
    384 
    385 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    386 		return 0;
    387 
    388 	for (i = 0; i < __arraycount(iwn_devices); i++)
    389 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    390 			return 1;
    391 
    392 	return 0;
    393 }
    394 
    395 static void
    396 iwn_attach(device_t parent __unused, device_t self, void *aux)
    397 {
    398 	struct iwn_softc *sc = device_private(self);
    399 	struct ieee80211com *ic = &sc->sc_ic;
    400 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    401 	struct pci_attach_args *pa = aux;
    402 	const struct iwn_hal *hal;
    403 	const char *intrstr;
    404 	char devinfo[256];
    405 	pci_intr_handle_t ih;
    406 	pcireg_t memtype, reg;
    407 	int i, error;
    408 	int revision;
    409 
    410 	sc->sc_dev = self;
    411 	sc->sc_pct = pa->pa_pc;
    412 	sc->sc_pcitag = pa->pa_tag;
    413 	sc->sc_dmat = pa->pa_dmat;
    414 
    415 	callout_init(&sc->calib_to, 0);
    416 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    417 
    418 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
    419 	revision = PCI_REVISION(pa->pa_class);
    420 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
    421 
    422 	/*
    423 	 * Get the offset of the PCI Express Capability Structure in PCI
    424 	 * Configuration Space.
    425 	 */
    426 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    427 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    428 	if (error == 0) {
    429 		aprint_error(": PCIe capability structure not found!\n");
    430 		return;
    431 	}
    432 
    433 	/* Clear device-specific "PCI retry timeout" register (41h). */
    434 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    435 	reg &= ~0xff00;
    436 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
    437 
    438 	/* Enable bus-mastering and hardware bug workaround. */
    439 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    440 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    441 	reg |= PCI_COMMAND_MASTER_ENABLE;
    442 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
    443 		DPRINTF(("PCIe INTx Disable set\n"));
    444 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
    445 	}
    446 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    447 
    448 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    449 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    450 	    &sc->sc_sh, NULL, &sc->sc_sz);
    451 	if (error != 0) {
    452 		aprint_error(": can't map mem space\n");
    453 		return;
    454 	}
    455 
    456 	/* Install interrupt handler. */
    457 	if (pci_intr_map(pa, &ih) != 0) {
    458 		aprint_error(": can't map interrupt\n");
    459 		return;
    460 	}
    461 	intrstr = pci_intr_string(sc->sc_pct, ih);
    462 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
    463 	if (sc->sc_ih == NULL) {
    464 		aprint_error(": can't establish interrupt");
    465 		if (intrstr != NULL)
    466 			aprint_error(" at %s", intrstr);
    467 		aprint_error("\n");
    468 		return;
    469 	}
    470 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    471 
    472 	/* Attach Hardware Abstraction Layer. */
    473 	hal = iwn_hal_attach(sc, PCI_PRODUCT(pa->pa_id));
    474 	if (hal == NULL)
    475 		return;
    476 
    477 	if ((error = iwn_hw_prepare(sc)) != 0) {
    478 		aprint_error(": hardware not ready\n");
    479 		return;
    480 	}
    481 
    482 	/* Read MAC address, channels, etc from EEPROM. */
    483 	if ((error = iwn_read_eeprom(sc)) != 0) {
    484 		aprint_error(": could not read EEPROM\n");
    485 		return;
    486 	}
    487 
    488 	/* Allocate DMA memory for firmware transfers. */
    489 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    490 		aprint_error(": could not allocate memory for firmware\n");
    491 		return;
    492 	}
    493 
    494 	/* Allocate "Keep Warm" page. */
    495 	if ((error = iwn_alloc_kw(sc)) != 0) {
    496 		aprint_error(": could not allocate keep warm page\n");
    497 		goto fail1;
    498 	}
    499 
    500 	/* Allocate ICT table for 5000 Series. */
    501 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    502 	    (error = iwn_alloc_ict(sc)) != 0) {
    503 		aprint_error(": could not allocate ICT table\n");
    504 		goto fail2;
    505 	}
    506 
    507 	/* Allocate TX scheduler "rings". */
    508 	if ((error = iwn_alloc_sched(sc)) != 0) {
    509 		aprint_error(": could not allocate TX scheduler rings\n");
    510 		goto fail3;
    511 	}
    512 
    513 #ifdef IWN_USE_RBUF
    514 	/* Allocate RX buffers. */
    515 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    516 		aprint_error_dev(self, "could not allocate RX buffers\n");
    517 		goto fail3;
    518 	}
    519 #endif
    520 
    521 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */
    522 	for (i = 0; i < hal->ntxqs; i++) {
    523 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    524 			aprint_error(": could not allocate TX ring %d\n", i);
    525 			goto fail4;
    526 		}
    527 	}
    528 
    529 	/* Allocate RX ring. */
    530 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    531 		aprint_error(": could not allocate RX ring\n");
    532 		goto fail4;
    533 	}
    534 
    535 	/* Clear pending interrupts. */
    536 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    537 
    538 	/* Count the number of available chains. */
    539 	sc->ntxchains =
    540 	    ((sc->txchainmask >> 2) & 1) +
    541 	    ((sc->txchainmask >> 1) & 1) +
    542 	    ((sc->txchainmask >> 0) & 1);
    543 	sc->nrxchains =
    544 	    ((sc->rxchainmask >> 2) & 1) +
    545 	    ((sc->rxchainmask >> 1) & 1) +
    546 	    ((sc->rxchainmask >> 0) & 1);
    547 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    548 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    549 	    ether_sprintf(ic->ic_myaddr));
    550 
    551 	ic->ic_ifp = ifp;
    552 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    553 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    554 	ic->ic_state = IEEE80211_S_INIT;
    555 
    556 	/* Set device capabilities. */
    557 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
    558 	 * and IEEE80211_C_PMGT too. */
    559 	ic->ic_caps =
    560 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    561 	    IEEE80211_C_WPA |		/* 802.11i */
    562 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    563 	    IEEE80211_C_TXPMGT |	/* tx power management */
    564 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    565 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    566 	    IEEE80211_C_WME;		/* 802.11e */
    567 
    568 #ifndef IEEE80211_NO_HT
    569 	/* Set HT capabilities. */
    570 	ic->ic_htcaps =
    571 #if IWN_RBUF_SIZE == 8192
    572 	    IEEE80211_HTCAP_AMSDU7935 |
    573 #endif
    574 	    IEEE80211_HTCAP_CBW20_40 |
    575 	    IEEE80211_HTCAP_SGI20 |
    576 	    IEEE80211_HTCAP_SGI40;
    577 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    578 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    579 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    580 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    581 	else
    582 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    583 #endif	/* !IEEE80211_NO_HT */
    584 
    585 	/* Set supported legacy rates. */
    586 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
    587 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
    588 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    589 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
    590 	}
    591 #ifndef IEEE80211_NO_HT
    592 	/* Set supported HT rates. */
    593 	ic->ic_sup_mcs[0] = 0xff;
    594 	if (sc->nrxchains > 1)			/* MCS 0-7 */
    595 		ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    596 	if (sc->nrxchains > 2)
    597 		ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    598 #endif
    599 
    600 	/* IBSS channel undefined for now. */
    601 	ic->ic_ibss_chan = &ic->ic_channels[0];
    602 
    603 	ifp->if_softc = sc;
    604 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    605 	ifp->if_init = iwn_init;
    606 	ifp->if_ioctl = iwn_ioctl;
    607 	ifp->if_start = iwn_start;
    608 	ifp->if_watchdog = iwn_watchdog;
    609 	IFQ_SET_READY(&ifp->if_snd);
    610 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    611 
    612 	if_attach(ifp);
    613 	ieee80211_ifattach(ic);
    614 	ic->ic_node_alloc = iwn_node_alloc;
    615 	ic->ic_newassoc = iwn_newassoc;
    616 #ifdef IWN_HWCRYPTO
    617 	ic->ic_crypto.cs_key_set = iwn_set_key;
    618 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    619 #endif
    620 	ic->ic_wme.wme_update = iwn_wme_update;
    621 #ifndef IEEE80211_NO_HT
    622 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    623 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    624 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    625 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    626 #endif
    627 
    628 	/* Override 802.11 state transition machine. */
    629 	sc->sc_newstate = ic->ic_newstate;
    630 	ic->ic_newstate = iwn_newstate;
    631 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    632 
    633 	sc->amrr.amrr_min_success_threshold =  1;
    634 	sc->amrr.amrr_max_success_threshold = 15;
    635 
    636 #ifndef SMALL_KERNEL
    637 	iwn_sensor_attach(sc);
    638 #endif
    639 	iwn_radiotap_attach(sc);
    640 
    641 	/*
    642 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    643 	 * callout_init and callout_setfunc, above.
    644 	*/
    645 
    646 	if (pmf_device_register(self, NULL, iwn_resume))
    647 		pmf_class_network_register(self, ifp);
    648 	else
    649 		aprint_error_dev(self, "couldn't establish power handler\n");
    650 
    651 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    652 	ieee80211_announce(ic);
    653 
    654 	return;
    655 
    656 	/* Free allocated memory if something failed during attachment. */
    657 fail4:	while (--i >= 0)
    658 		iwn_free_tx_ring(sc, &sc->txq[i]);
    659 #ifdef IWN_USE_RBUF
    660 	iwn_free_rpool(sc);
    661 #endif
    662 	iwn_free_sched(sc);
    663 fail3:	if (sc->ict != NULL)
    664 		iwn_free_ict(sc);
    665 fail2:	iwn_free_kw(sc);
    666 fail1:	iwn_free_fwmem(sc);
    667 }
    668 
    669 const struct iwn_hal *
    670 iwn_hal_attach(struct iwn_softc *sc, pci_product_id_t pid)
    671 {
    672 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
    673 
    674 	switch (sc->hw_type) {
    675 	case IWN_HW_REV_TYPE_4965:
    676 		sc->sc_hal = &iwn4965_hal;
    677 		sc->limits = &iwn4965_sensitivity_limits;
    678 		sc->fwname = "iwlwifi-4965-2.ucode";
    679 		sc->txchainmask = IWN_ANT_AB;
    680 		sc->rxchainmask = IWN_ANT_ABC;
    681 		break;
    682 	case IWN_HW_REV_TYPE_5100:
    683 		sc->sc_hal = &iwn5000_hal;
    684 		sc->limits = &iwn5000_sensitivity_limits;
    685 		sc->fwname = "iwlwifi-5000-2.ucode";
    686 		sc->txchainmask = IWN_ANT_B;
    687 		sc->rxchainmask = IWN_ANT_AB;
    688 		break;
    689 	case IWN_HW_REV_TYPE_5150:
    690 		sc->sc_hal = &iwn5000_hal;
    691 		sc->limits = &iwn5150_sensitivity_limits;
    692 		sc->fwname = "iwlwifi-5150-2.ucode";
    693 		sc->txchainmask = IWN_ANT_A;
    694 		sc->rxchainmask = IWN_ANT_AB;
    695 		break;
    696 	case IWN_HW_REV_TYPE_5300:
    697 	case IWN_HW_REV_TYPE_5350:
    698 		sc->sc_hal = &iwn5000_hal;
    699 		sc->limits = &iwn5000_sensitivity_limits;
    700 		sc->fwname = "iwlwifi-5000-2.ucode";
    701 		sc->txchainmask = IWN_ANT_ABC;
    702 		sc->rxchainmask = IWN_ANT_ABC;
    703 		break;
    704 	case IWN_HW_REV_TYPE_1000:
    705 		sc->sc_hal = &iwn5000_hal;
    706 		sc->limits = &iwn1000_sensitivity_limits;
    707 		sc->fwname = "iwlwifi-1000-3.ucode";
    708 		sc->txchainmask = IWN_ANT_A;
    709 		sc->rxchainmask = IWN_ANT_AB;
    710 		break;
    711 	case IWN_HW_REV_TYPE_6000:
    712 		sc->sc_hal = &iwn5000_hal;
    713 		sc->limits = &iwn6000_sensitivity_limits;
    714 		sc->fwname = "iwlwifi-6000-4.ucode";
    715 		switch (pid) {
    716 /* XXX not yet defined for NetBSD (not in pcidevs) */
    717 #ifdef PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1
    718 		case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1:
    719 		case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2:
    720 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    721 			sc->txchainmask = IWN_ANT_BC;
    722 			sc->rxchainmask = IWN_ANT_BC;
    723 			break;
    724 #endif
    725 		default:
    726 			sc->txchainmask = IWN_ANT_ABC;
    727 			sc->rxchainmask = IWN_ANT_ABC;
    728 			break;
    729 		}
    730 		break;
    731 	case IWN_HW_REV_TYPE_6050:
    732 		sc->sc_hal = &iwn5000_hal;
    733 		sc->limits = &iwn6000_sensitivity_limits;
    734 		sc->fwname = "iwlwifi-6050-2.ucode";
    735 		sc->txchainmask = IWN_ANT_AB;
    736 		sc->rxchainmask = IWN_ANT_AB;
    737 		break;
    738 	case IWN_HW_REV_TYPE_6005:
    739 		sc->sc_hal = &iwn5000_hal;
    740 		sc->limits = &iwn6000_sensitivity_limits;
    741 		sc->fwname = "iwlwifi-6005-2.ucode";
    742 		sc->txchainmask = IWN_ANT_AB;
    743 		sc->rxchainmask = IWN_ANT_AB;
    744 		break;
    745 	default:
    746 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    747 		return NULL;
    748 	}
    749 	return sc->sc_hal;
    750 }
    751 
    752 #ifndef SMALL_KERNEL
    753 /*
    754  * Attach the adapter on-board thermal sensor to the sensors framework.
    755  */
    756 static void
    757 iwn_sensor_attach(struct iwn_softc *sc)
    758 {
    759 	int error;
    760 
    761 	sc->sc_sensor.units = ENVSYS_STEMP;
    762 #if 0
    763 	/* XXX something like this ought to work */
    764 	sc->sc_sensor.flags = ENVSYS_FMONLIMITS | ENVSYS_FMONNOTSUPP;
    765 	sc->sc_sensor.limits.sel_critmax = IWN_CTOK(110);
    766 #endif
    767 	strlcpy((sc->sc_sensor.desc), "TEMP", sizeof(sc->sc_sensor.desc));
    768 
    769 	/* Temperature is not valid unless interface is up. */
    770 	sc->sc_sensor.value_cur = 0;
    771 	sc->sc_sensor.state = ENVSYS_SINVALID;
    772 
    773 	sc->sc_sme = sysmon_envsys_create();
    774 
    775 	/* Initialize sensor */
    776 	if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
    777 		sysmon_envsys_destroy(sc->sc_sme);
    778 		return;
    779 	}
    780 
    781 	/*
    782 	 * Hook into the System Monitor.
    783 	 */
    784 	sc->sc_sme->sme_name = device_xname(sc->sc_dev);
    785 	sc->sc_sme->sme_flags = SME_DISABLE_REFRESH;
    786 
    787 	if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) {
    788 		aprint_error_dev(sc->sc_dev,
    789 		    "unable to register with sysmon (%d)\n", error);
    790 		sysmon_envsys_destroy(sc->sc_sme);
    791 		return;
    792 	}
    793 }
    794 #endif
    795 
    796 /*
    797  * Attach the interface to 802.11 radiotap.
    798  */
    799 static void
    800 iwn_radiotap_attach(struct iwn_softc *sc)
    801 {
    802 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    803 
    804 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    805 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    806 	    &sc->sc_drvbpf);
    807 
    808 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    809 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    810 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    811 
    812 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    813 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    814 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    815 }
    816 
    817 static int
    818 iwn_detach(device_t self, int flags __unused)
    819 {
    820 	struct iwn_softc *sc = device_private(self);
    821 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    822 	int qid;
    823 
    824 	callout_stop(&sc->calib_to);
    825 
    826 	/* Uninstall interrupt handler. */
    827 	if (sc->sc_ih != NULL)
    828 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    829 
    830 	/* Free DMA resources. */
    831 	iwn_free_rx_ring(sc, &sc->rxq);
    832 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++)
    833 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    834 #ifdef IWN_USE_RBUF
    835 	iwn_free_rpool(sc);
    836 #endif
    837 	iwn_free_sched(sc);
    838 	iwn_free_kw(sc);
    839 	if (sc->ict != NULL)
    840 		iwn_free_ict(sc);
    841 	iwn_free_fwmem(sc);
    842 
    843 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    844 
    845 #ifndef SMALL_KERNEL
    846 	/* Detach the thermal sensor. */
    847 	sysmon_envsys_sensor_detach(sc->sc_sme, &sc->sc_sensor);
    848 	sysmon_envsys_destroy(sc->sc_sme);
    849 #endif
    850 
    851 	ieee80211_ifdetach(&sc->sc_ic);
    852 	if_detach(ifp);
    853 
    854 	return 0;
    855 }
    856 
    857 #if 0
    858 /*
    859  * XXX Investigate if clearing the PCI retry timeout could eliminate
    860  * the repeated scan calls.  Also the calls to if_init and if_start
    861  * are similar to the effect of adding the call to ifioctl_common .
    862  */
    863 static void
    864 iwn_power(int why, void *arg)
    865 {
    866 	struct iwn_softc *sc = arg;
    867 	struct ifnet *ifp;
    868 	pcireg_t reg;
    869 	int s;
    870 
    871 	if (why != PWR_RESUME)
    872 		return;
    873 
    874 	/* Clear device-specific "PCI retry timeout" register (41h). */
    875 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    876 	reg &= ~0xff00;
    877 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
    878 
    879 	s = splnet();
    880 	ifp = &sc->sc_ic.ic_if;
    881 	if (ifp->if_flags & IFF_UP) {
    882 		ifp->if_init(ifp);
    883 		if (ifp->if_flags & IFF_RUNNING)
    884 			ifp->if_start(ifp);
    885 	}
    886 	splx(s);
    887 }
    888 #endif
    889 
    890 static bool
    891 iwn_resume(device_t dv, const pmf_qual_t *qual)
    892 {
    893 	return true;
    894 }
    895 
    896 static int
    897 iwn_nic_lock(struct iwn_softc *sc)
    898 {
    899 	int ntries;
    900 
    901 	/* Request exclusive access to NIC. */
    902 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    903 
    904 	/* Spin until we actually get the lock. */
    905 	for (ntries = 0; ntries < 1000; ntries++) {
    906 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    907 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    908 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    909 			return 0;
    910 		DELAY(10);
    911 	}
    912 	return ETIMEDOUT;
    913 }
    914 
    915 static __inline void
    916 iwn_nic_unlock(struct iwn_softc *sc)
    917 {
    918 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    919 }
    920 
    921 static __inline uint32_t
    922 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    923 {
    924 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    925 	IWN_BARRIER_READ_WRITE(sc);
    926 	return IWN_READ(sc, IWN_PRPH_RDATA);
    927 }
    928 
    929 static __inline void
    930 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    931 {
    932 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    933 	IWN_BARRIER_WRITE(sc);
    934 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    935 }
    936 
    937 static __inline void
    938 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    939 {
    940 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    941 }
    942 
    943 static __inline void
    944 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    945 {
    946 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    947 }
    948 
    949 static __inline void
    950 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    951     const uint32_t *data, int count)
    952 {
    953 	for (; count > 0; count--, data++, addr += 4)
    954 		iwn_prph_write(sc, addr, *data);
    955 }
    956 
    957 static __inline uint32_t
    958 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    959 {
    960 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    961 	IWN_BARRIER_READ_WRITE(sc);
    962 	return IWN_READ(sc, IWN_MEM_RDATA);
    963 }
    964 
    965 static __inline void
    966 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    967 {
    968 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    969 	IWN_BARRIER_WRITE(sc);
    970 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    971 }
    972 
    973 static __inline void
    974 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
    975 {
    976 	uint32_t tmp;
    977 
    978 	tmp = iwn_mem_read(sc, addr & ~3);
    979 	if (addr & 3)
    980 		tmp = (tmp & 0x0000ffff) | data << 16;
    981 	else
    982 		tmp = (tmp & 0xffff0000) | data;
    983 	iwn_mem_write(sc, addr & ~3, tmp);
    984 }
    985 
    986 static __inline void
    987 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
    988     int count)
    989 {
    990 	for (; count > 0; count--, addr += 4)
    991 		*data++ = iwn_mem_read(sc, addr);
    992 }
    993 
    994 static __inline void
    995 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
    996     int count)
    997 {
    998 	for (; count > 0; count--, addr += 4)
    999 		iwn_mem_write(sc, addr, val);
   1000 }
   1001 
   1002 static int
   1003 iwn_eeprom_lock(struct iwn_softc *sc)
   1004 {
   1005 	int i, ntries;
   1006 
   1007 	for (i = 0; i < 100; i++) {
   1008 		/* Request exclusive access to EEPROM. */
   1009 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   1010 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1011 
   1012 		/* Spin until we actually get the lock. */
   1013 		for (ntries = 0; ntries < 100; ntries++) {
   1014 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   1015 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
   1016 				return 0;
   1017 			DELAY(10);
   1018 		}
   1019 	}
   1020 	return ETIMEDOUT;
   1021 }
   1022 
   1023 static __inline void
   1024 iwn_eeprom_unlock(struct iwn_softc *sc)
   1025 {
   1026 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1027 }
   1028 
   1029 /*
   1030  * Initialize access by host to One Time Programmable ROM.
   1031  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
   1032  */
   1033 static int
   1034 iwn_init_otprom(struct iwn_softc *sc)
   1035 {
   1036 	uint16_t prev = 0, base, next;
   1037 	int count, error;
   1038 
   1039 	/* Wait for clock stabilization before accessing prph. */
   1040 	if ((error = iwn_clock_wait(sc)) != 0)
   1041 		return error;
   1042 
   1043 	if ((error = iwn_nic_lock(sc)) != 0)
   1044 		return error;
   1045 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1046 	DELAY(5);
   1047 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1048 	iwn_nic_unlock(sc);
   1049 
   1050 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
   1051 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
   1052 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
   1053 		    IWN_RESET_LINK_PWR_MGMT_DIS);
   1054 	}
   1055 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
   1056 	/* Clear ECC status. */
   1057 	IWN_SETBITS(sc, IWN_OTP_GP,
   1058 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
   1059 
   1060 	/*
   1061 	 * Find the block before last block (contains the EEPROM image)
   1062 	 * for HW without OTP shadow RAM.
   1063 	 */
   1064 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   1065 		/* Switch to absolute addressing mode. */
   1066 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
   1067 		base = 0;
   1068 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
   1069 			error = iwn_read_prom_data(sc, base, &next, 2);
   1070 			if (error != 0)
   1071 				return error;
   1072 			if (next == 0)	/* End of linked-list. */
   1073 				break;
   1074 			prev = base;
   1075 			base = le16toh(next);
   1076 		}
   1077 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1078 			return EIO;
   1079 		/* Skip "next" word. */
   1080 		sc->prom_base = prev + 1;
   1081 	}
   1082 	return 0;
   1083 }
   1084 
   1085 static int
   1086 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1087 {
   1088 	uint8_t *out = data;
   1089 	uint32_t val, tmp;
   1090 	int ntries;
   1091 
   1092 	addr += sc->prom_base;
   1093 	for (; count > 0; count -= 2, addr++) {
   1094 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1095 		for (ntries = 0; ntries < 10; ntries++) {
   1096 			val = IWN_READ(sc, IWN_EEPROM);
   1097 			if (val & IWN_EEPROM_READ_VALID)
   1098 				break;
   1099 			DELAY(5);
   1100 		}
   1101 		if (ntries == 10) {
   1102 			aprint_error_dev(sc->sc_dev,
   1103 			    "timeout reading ROM at 0x%x\n", addr);
   1104 			return ETIMEDOUT;
   1105 		}
   1106 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1107 			/* OTPROM, check for ECC errors. */
   1108 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1109 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1110 				aprint_error_dev(sc->sc_dev,
   1111 				    "OTPROM ECC error at 0x%x\n", addr);
   1112 				return EIO;
   1113 			}
   1114 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1115 				/* Correctable ECC error, clear bit. */
   1116 				IWN_SETBITS(sc, IWN_OTP_GP,
   1117 				    IWN_OTP_GP_ECC_CORR_STTS);
   1118 			}
   1119 		}
   1120 		*out++ = val >> 16;
   1121 		if (count > 1)
   1122 			*out++ = val >> 24;
   1123 	}
   1124 	return 0;
   1125 }
   1126 
   1127 static int
   1128 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1129     bus_size_t size, bus_size_t alignment)
   1130 {
   1131 	int nsegs, error;
   1132 
   1133 	dma->tag = tag;
   1134 	dma->size = size;
   1135 
   1136 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1137 	    &dma->map);
   1138 	if (error != 0)
   1139 		goto fail;
   1140 
   1141 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1142 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1143 	if (error != 0)
   1144 		goto fail;
   1145 
   1146 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1147 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1148 	if (error != 0)
   1149 		goto fail;
   1150 
   1151 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1152 	    BUS_DMA_NOWAIT);
   1153 	if (error != 0)
   1154 		goto fail;
   1155 
   1156 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1157 	memset(dma->vaddr, 0, size);
   1158 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1159 
   1160 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1161 	if (kvap != NULL)
   1162 		*kvap = dma->vaddr;
   1163 
   1164 	return 0;
   1165 
   1166 fail:	iwn_dma_contig_free(dma);
   1167 	return error;
   1168 }
   1169 
   1170 static void
   1171 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1172 {
   1173 	if (dma->map != NULL) {
   1174 		if (dma->vaddr != NULL) {
   1175 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1176 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1177 			bus_dmamap_unload(dma->tag, dma->map);
   1178 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1179 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1180 			dma->vaddr = NULL;
   1181 		}
   1182 		bus_dmamap_destroy(dma->tag, dma->map);
   1183 		dma->map = NULL;
   1184 	}
   1185 }
   1186 
   1187 static int
   1188 iwn_alloc_sched(struct iwn_softc *sc)
   1189 {
   1190 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1191 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1192 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024);
   1193 }
   1194 
   1195 static void
   1196 iwn_free_sched(struct iwn_softc *sc)
   1197 {
   1198 	iwn_dma_contig_free(&sc->sched_dma);
   1199 }
   1200 
   1201 static int
   1202 iwn_alloc_kw(struct iwn_softc *sc)
   1203 {
   1204 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1205 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1206 	    4096);
   1207 }
   1208 
   1209 static void
   1210 iwn_free_kw(struct iwn_softc *sc)
   1211 {
   1212 	iwn_dma_contig_free(&sc->kw_dma);
   1213 }
   1214 
   1215 static int
   1216 iwn_alloc_ict(struct iwn_softc *sc)
   1217 {
   1218 	/* ICT table must be aligned on a 4KB boundary. */
   1219 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1220 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1221 }
   1222 
   1223 static void
   1224 iwn_free_ict(struct iwn_softc *sc)
   1225 {
   1226 	iwn_dma_contig_free(&sc->ict_dma);
   1227 }
   1228 
   1229 static int
   1230 iwn_alloc_fwmem(struct iwn_softc *sc)
   1231 {
   1232 	/* Must be aligned on a 16-byte boundary. */
   1233 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1234 	    sc->sc_hal->fwsz, 16);
   1235 }
   1236 
   1237 static void
   1238 iwn_free_fwmem(struct iwn_softc *sc)
   1239 {
   1240 	iwn_dma_contig_free(&sc->fw_dma);
   1241 }
   1242 
   1243 static int
   1244 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1245 {
   1246 	bus_size_t size;
   1247 	int i, error;
   1248 
   1249 	ring->cur = 0;
   1250 
   1251 	/* Allocate RX descriptors (256-byte aligned.) */
   1252 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1253 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1254 	    (void **)&ring->desc, size, 256);
   1255 	if (error != 0) {
   1256 		aprint_error_dev(sc->sc_dev,
   1257 		    "could not allocate RX ring DMA memory\n");
   1258 		goto fail;
   1259 	}
   1260 
   1261 	/* Allocate RX status area (16-byte aligned.) */
   1262 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1263 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1264 	if (error != 0) {
   1265 		aprint_error_dev(sc->sc_dev,
   1266 		    "could not allocate RX status DMA memory\n");
   1267 		goto fail;
   1268 	}
   1269 
   1270 	/*
   1271 	 * Allocate and map RX buffers.
   1272 	 */
   1273 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1274 		struct iwn_rx_data *data = &ring->data[i];
   1275 
   1276 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1277 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1278 		    &data->map);
   1279 		if (error != 0) {
   1280 			aprint_error_dev(sc->sc_dev,
   1281 			    "could not create RX buf DMA map\n");
   1282 			goto fail;
   1283 		}
   1284 
   1285 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1286 		if (data->m == NULL) {
   1287 			aprint_error_dev(sc->sc_dev,
   1288 			    "could not allocate RX mbuf\n");
   1289 			error = ENOBUFS;
   1290 			goto fail;
   1291 		}
   1292 
   1293 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1294 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1295 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1296 		if (error != 0) {
   1297 			aprint_error_dev(sc->sc_dev,
   1298 			    "can't not map mbuf (error %d)\n", error);
   1299 			goto fail;
   1300 		}
   1301 
   1302 		/* Set physical address of RX buffer (256-byte aligned.) */
   1303 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1304 	}
   1305 
   1306 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1307 	    BUS_DMASYNC_PREWRITE);
   1308 
   1309 	return 0;
   1310 
   1311 fail:	iwn_free_rx_ring(sc, ring);
   1312 	return error;
   1313 }
   1314 
   1315 static void
   1316 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1317 {
   1318 	int ntries;
   1319 
   1320 	if (iwn_nic_lock(sc) == 0) {
   1321 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1322 		for (ntries = 0; ntries < 1000; ntries++) {
   1323 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1324 			    IWN_FH_RX_STATUS_IDLE)
   1325 				break;
   1326 			DELAY(10);
   1327 		}
   1328 		iwn_nic_unlock(sc);
   1329 	}
   1330 	ring->cur = 0;
   1331 	sc->last_rx_valid = 0;
   1332 }
   1333 
   1334 static void
   1335 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1336 {
   1337 	int i;
   1338 
   1339 	iwn_dma_contig_free(&ring->desc_dma);
   1340 	iwn_dma_contig_free(&ring->stat_dma);
   1341 
   1342 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1343 		struct iwn_rx_data *data = &ring->data[i];
   1344 
   1345 		if (data->m != NULL) {
   1346 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1347 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1348 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1349 			m_freem(data->m);
   1350 		}
   1351 		if (data->map != NULL)
   1352 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1353 	}
   1354 }
   1355 
   1356 static int
   1357 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1358 {
   1359 	bus_addr_t paddr;
   1360 	bus_size_t size;
   1361 	int i, error;
   1362 
   1363 	ring->qid = qid;
   1364 	ring->queued = 0;
   1365 	ring->cur = 0;
   1366 
   1367 	/* Allocate TX descriptors (256-byte aligned.) */
   1368 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1369 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1370 	    (void **)&ring->desc, size, 256);
   1371 	if (error != 0) {
   1372 		aprint_error_dev(sc->sc_dev,
   1373 		    "could not allocate TX ring DMA memory\n");
   1374 		goto fail;
   1375 	}
   1376 	/*
   1377 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1378 	 * to allocate commands space for other rings.
   1379 	 * XXX Do we really need to allocate descriptors for other rings?
   1380 	 */
   1381 	if (qid > 4)
   1382 		return 0;
   1383 
   1384 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1385 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1386 	    (void **)&ring->cmd, size, 4);
   1387 	if (error != 0) {
   1388 		aprint_error_dev(sc->sc_dev,
   1389 		    "could not allocate TX cmd DMA memory\n");
   1390 		goto fail;
   1391 	}
   1392 
   1393 	paddr = ring->cmd_dma.paddr;
   1394 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1395 		struct iwn_tx_data *data = &ring->data[i];
   1396 
   1397 		data->cmd_paddr = paddr;
   1398 		data->scratch_paddr = paddr + 12;
   1399 		paddr += sizeof (struct iwn_tx_cmd);
   1400 
   1401 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1402 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1403 		    &data->map);
   1404 		if (error != 0) {
   1405 			aprint_error_dev(sc->sc_dev,
   1406 			    "could not create TX buf DMA map\n");
   1407 			goto fail;
   1408 		}
   1409 	}
   1410 	return 0;
   1411 
   1412 fail:	iwn_free_tx_ring(sc, ring);
   1413 	return error;
   1414 }
   1415 
   1416 static void
   1417 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1418 {
   1419 	int i;
   1420 
   1421 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1422 		struct iwn_tx_data *data = &ring->data[i];
   1423 
   1424 		if (data->m != NULL) {
   1425 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1426 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1427 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1428 			m_freem(data->m);
   1429 			data->m = NULL;
   1430 		}
   1431 	}
   1432 	/* Clear TX descriptors. */
   1433 	memset(ring->desc, 0, ring->desc_dma.size);
   1434 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1435 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1436 	sc->qfullmsk &= ~(1 << ring->qid);
   1437 	ring->queued = 0;
   1438 	ring->cur = 0;
   1439 }
   1440 
   1441 static void
   1442 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1443 {
   1444 	int i;
   1445 
   1446 	iwn_dma_contig_free(&ring->desc_dma);
   1447 	iwn_dma_contig_free(&ring->cmd_dma);
   1448 
   1449 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1450 		struct iwn_tx_data *data = &ring->data[i];
   1451 
   1452 		if (data->m != NULL) {
   1453 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1454 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1455 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1456 			m_freem(data->m);
   1457 		}
   1458 		if (data->map != NULL)
   1459 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1460 	}
   1461 }
   1462 
   1463 static void
   1464 iwn5000_ict_reset(struct iwn_softc *sc)
   1465 {
   1466 	/* Disable interrupts. */
   1467 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1468 
   1469 	/* Reset ICT table. */
   1470 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1471 	sc->ict_cur = 0;
   1472 
   1473 	/* Set physical address of ICT table (4KB aligned.) */
   1474 	DPRINTF(("enabling ICT\n"));
   1475 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1476 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1477 
   1478 	/* Enable periodic RX interrupt. */
   1479 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1480 	/* Switch to ICT interrupt mode in driver. */
   1481 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1482 
   1483 	/* Re-enable interrupts. */
   1484 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1485 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1486 }
   1487 
   1488 static int
   1489 iwn_read_eeprom(struct iwn_softc *sc)
   1490 {
   1491 	const struct iwn_hal *hal = sc->sc_hal;
   1492 	struct ieee80211com *ic = &sc->sc_ic;
   1493 	uint16_t val;
   1494 	int error;
   1495 
   1496 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1497 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1498 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1499 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1500 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1501 	    "OTPROM" : "EEPROM"));
   1502 
   1503 	/* Adapter has to be powered on for EEPROM access to work. */
   1504 	if ((error = iwn_apm_init(sc)) != 0) {
   1505 		aprint_error_dev(sc->sc_dev,
   1506 		    "could not power ON adapter\n");
   1507 		return error;
   1508 	}
   1509 
   1510 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1511 		aprint_error_dev(sc->sc_dev,
   1512 		    "bad ROM signature\n");
   1513 		return EIO;
   1514 	}
   1515 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1516 		aprint_error_dev(sc->sc_dev,
   1517 		    "could not lock ROM (error=%d)\n", error);
   1518 		return error;
   1519 	}
   1520 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1521 		if ((error = iwn_init_otprom(sc)) != 0) {
   1522 			aprint_error_dev(sc->sc_dev,
   1523 			    "could not initialize OTPROM\n");
   1524 			return error;
   1525 		}
   1526 	}
   1527 
   1528 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1529 	sc->rfcfg = le16toh(val);
   1530 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1531 
   1532 	/* Read MAC address. */
   1533 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1534 
   1535 	/* Read adapter-specific information from EEPROM. */
   1536 	hal->read_eeprom(sc);
   1537 
   1538 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1539 
   1540 	iwn_eeprom_unlock(sc);
   1541 	return 0;
   1542 }
   1543 
   1544 static void
   1545 iwn4965_read_eeprom(struct iwn_softc *sc)
   1546 {
   1547 	uint32_t addr;
   1548 	uint16_t val;
   1549 	int i;
   1550 
   1551 	/* Read regulatory domain (4 ASCII characters.) */
   1552 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1553 
   1554 	/* Read the list of authorized channels (20MHz ones only.) */
   1555 	for (i = 0; i < 5; i++) {
   1556 		addr = iwn4965_regulatory_bands[i];
   1557 		iwn_read_eeprom_channels(sc, i, addr);
   1558 	}
   1559 
   1560 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1561 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1562 	sc->maxpwr2GHz = val & 0xff;
   1563 	sc->maxpwr5GHz = val >> 8;
   1564 	/* Check that EEPROM values are within valid range. */
   1565 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1566 		sc->maxpwr5GHz = 38;
   1567 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1568 		sc->maxpwr2GHz = 38;
   1569 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1570 
   1571 	/* Read samples for each TX power group. */
   1572 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1573 	    sizeof sc->bands);
   1574 
   1575 	/* Read voltage at which samples were taken. */
   1576 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1577 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1578 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1579 
   1580 #ifdef IWN_DEBUG
   1581 	/* Print samples. */
   1582 	if (iwn_debug > 0) {
   1583 		for (i = 0; i < IWN_NBANDS; i++)
   1584 			iwn4965_print_power_group(sc, i);
   1585 	}
   1586 #endif
   1587 }
   1588 
   1589 #ifdef IWN_DEBUG
   1590 static void
   1591 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1592 {
   1593 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1594 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1595 	int j, c;
   1596 
   1597 	aprint_normal("===band %d===\n", i);
   1598 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1599 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1600 	for (c = 0; c < 2; c++) {
   1601 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1602 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1603 			    "power=%d pa_det=%d\n", c, j,
   1604 			    chans[0].samples[c][j].temp,
   1605 			    chans[0].samples[c][j].gain,
   1606 			    chans[0].samples[c][j].power,
   1607 			    chans[0].samples[c][j].pa_det);
   1608 		}
   1609 	}
   1610 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1611 	for (c = 0; c < 2; c++) {
   1612 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1613 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1614 			    "power=%d pa_det=%d\n", c, j,
   1615 			    chans[1].samples[c][j].temp,
   1616 			    chans[1].samples[c][j].gain,
   1617 			    chans[1].samples[c][j].power,
   1618 			    chans[1].samples[c][j].pa_det);
   1619 		}
   1620 	}
   1621 }
   1622 #endif
   1623 
   1624 static void
   1625 iwn5000_read_eeprom(struct iwn_softc *sc)
   1626 {
   1627 	struct iwn5000_eeprom_calib_hdr hdr;
   1628 	int32_t temp, volt;
   1629 	uint32_t base, addr;
   1630 	uint16_t val;
   1631 	int i;
   1632 
   1633 	/* Read regulatory domain (4 ASCII characters.) */
   1634 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1635 	base = le16toh(val);
   1636 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1637 	    sc->eeprom_domain, 4);
   1638 
   1639 	/* Read the list of authorized channels (20MHz ones only.) */
   1640 	for (i = 0; i < 5; i++) {
   1641 		addr = base + iwn5000_regulatory_bands[i];
   1642 		iwn_read_eeprom_channels(sc, i, addr);
   1643 	}
   1644 
   1645 	/* Read enhanced TX power information for 6000 Series. */
   1646 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1647 		iwn_read_eeprom_enhinfo(sc);
   1648 
   1649 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1650 	base = le16toh(val);
   1651 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1652 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1653 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1654 	sc->calib_ver = hdr.version;
   1655 
   1656 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1657 		/* Compute temperature offset. */
   1658 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1659 		temp = le16toh(val);
   1660 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1661 		volt = le16toh(val);
   1662 		sc->temp_off = temp - (volt / -5);
   1663 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1664 		    temp, volt, sc->temp_off));
   1665 	} else {
   1666 		/* Read crystal calibration. */
   1667 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1668 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1669 		DPRINTF(("crystal calibration 0x%08x\n",
   1670 		    le32toh(sc->eeprom_crystal)));
   1671 	}
   1672 }
   1673 
   1674 static void
   1675 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1676 {
   1677 	struct ieee80211com *ic = &sc->sc_ic;
   1678 	const struct iwn_chan_band *band = &iwn_bands[n];
   1679 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1680 	uint8_t chan;
   1681 	int i;
   1682 
   1683 	iwn_read_prom_data(sc, addr, channels,
   1684 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1685 
   1686 	for (i = 0; i < band->nchan; i++) {
   1687 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1688 			continue;
   1689 
   1690 		chan = band->chan[i];
   1691 
   1692 		if (n == 0) {	/* 2GHz band */
   1693 			ic->ic_channels[chan].ic_freq =
   1694 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1695 			ic->ic_channels[chan].ic_flags =
   1696 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1697 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1698 
   1699 		} else {	/* 5GHz band */
   1700 			/*
   1701 			 * Some adapters support channels 7, 8, 11 and 12
   1702 			 * both in the 2GHz and 4.9GHz bands.
   1703 			 * Because of limitations in our net80211 layer,
   1704 			 * we don't support them in the 4.9GHz band.
   1705 			 */
   1706 			if (chan <= 14)
   1707 				continue;
   1708 
   1709 			ic->ic_channels[chan].ic_freq =
   1710 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1711 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1712 			/* We have at least one valid 5GHz channel. */
   1713 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1714 		}
   1715 
   1716 		/* Is active scan allowed on this channel? */
   1717 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1718 			ic->ic_channels[chan].ic_flags |=
   1719 			    IEEE80211_CHAN_PASSIVE;
   1720 		}
   1721 
   1722 		/* Save maximum allowed TX power for this channel. */
   1723 		sc->maxpwr[chan] = channels[i].maxpwr;
   1724 
   1725 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1726 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1727 	}
   1728 }
   1729 
   1730 static void
   1731 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1732 {
   1733 	struct iwn_eeprom_enhinfo enhinfo[35];
   1734 	uint16_t val, base;
   1735 	int8_t maxpwr;
   1736 	int i;
   1737 
   1738 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1739 	base = le16toh(val);
   1740 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1741 	    enhinfo, sizeof enhinfo);
   1742 
   1743 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1744 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1745 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
   1746 			continue;	/* Skip invalid entries. */
   1747 
   1748 		maxpwr = 0;
   1749 		if (sc->txchainmask & IWN_ANT_A)
   1750 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1751 		if (sc->txchainmask & IWN_ANT_B)
   1752 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1753 		if (sc->txchainmask & IWN_ANT_C)
   1754 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1755 		if (sc->ntxchains == 2)
   1756 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1757 		else if (sc->ntxchains == 3)
   1758 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1759 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1760 
   1761 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1762 		sc->enh_maxpwr[i] = maxpwr;
   1763 	}
   1764 }
   1765 
   1766 static struct ieee80211_node *
   1767 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1768 {
   1769 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1770 }
   1771 
   1772 static void
   1773 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1774 {
   1775 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1776 	struct iwn_node *wn = (void *)ni;
   1777 	uint8_t rate;
   1778 	int ridx, i;
   1779 
   1780 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1781 	/* Start at lowest available bit-rate, AMRR will raise. */
   1782 	ni->ni_txrate = 0;
   1783 
   1784 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1785 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1786 		/* Map 802.11 rate to HW rate index. */
   1787 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1788 			if (iwn_rates[ridx].rate == rate)
   1789 				break;
   1790 		wn->ridx[i] = ridx;
   1791 	}
   1792 }
   1793 
   1794 static int
   1795 iwn_media_change(struct ifnet *ifp)
   1796 {
   1797 	struct iwn_softc *sc = ifp->if_softc;
   1798 	struct ieee80211com *ic = &sc->sc_ic;
   1799 	uint8_t rate, ridx;
   1800 	int error;
   1801 
   1802 	error = ieee80211_media_change(ifp);
   1803 	if (error != ENETRESET)
   1804 		return error;
   1805 
   1806 	if (ic->ic_fixed_rate != -1) {
   1807 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1808 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1809 		/* Map 802.11 rate to HW rate index. */
   1810 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1811 			if (iwn_rates[ridx].rate == rate)
   1812 				break;
   1813 		sc->fixed_ridx = ridx;
   1814 	}
   1815 
   1816 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1817 	    (IFF_UP | IFF_RUNNING)) {
   1818 		iwn_stop(ifp, 0);
   1819 		error = iwn_init(ifp);
   1820 	}
   1821 	return error;
   1822 }
   1823 
   1824 static int
   1825 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1826 {
   1827 	struct ifnet *ifp = ic->ic_ifp;
   1828 	struct iwn_softc *sc = ifp->if_softc;
   1829 	int error;
   1830 
   1831 	callout_stop(&sc->calib_to);
   1832 
   1833 	switch (nstate) {
   1834 	case IEEE80211_S_SCAN:
   1835 		/* XXX Do not abort a running scan. */
   1836 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1837 			aprint_error_dev(sc->sc_dev,
   1838 			    "scan request while scanning ignored\n");
   1839 			break;
   1840 		}
   1841 
   1842 		/* XXX Not sure if call and flags are needed. */
   1843 		ieee80211_node_table_reset(&ic->ic_scan);
   1844 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1845 		sc->sc_flags |= IWN_FLAG_SCANNING;
   1846 
   1847 		/* Make the link LED blink while we're scanning. */
   1848 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1849 
   1850 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1851 			aprint_error_dev(sc->sc_dev,
   1852 			    "could not initiate scan\n");
   1853 			return error;
   1854 		}
   1855 		ic->ic_state = nstate;
   1856 		return 0;
   1857 
   1858 	case IEEE80211_S_ASSOC:
   1859 		if (ic->ic_state != IEEE80211_S_RUN)
   1860 			break;
   1861 		/* FALLTHROUGH */
   1862 	case IEEE80211_S_AUTH:
   1863 		/* Reset state to handle reassociations correctly. */
   1864 		sc->rxon.associd = 0;
   1865 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1866 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1867 
   1868 		if ((error = iwn_auth(sc)) != 0) {
   1869 			aprint_error_dev(sc->sc_dev,
   1870 			    "could not move to auth state\n");
   1871 			return error;
   1872 		}
   1873 		break;
   1874 
   1875 	case IEEE80211_S_RUN:
   1876 		if ((error = iwn_run(sc)) != 0) {
   1877 			aprint_error_dev(sc->sc_dev,
   1878 			    "could not move to run state\n");
   1879 			return error;
   1880 		}
   1881 		break;
   1882 
   1883 	case IEEE80211_S_INIT:
   1884 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1885 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1886 		break;
   1887 	}
   1888 
   1889 	return sc->sc_newstate(ic, nstate, arg);
   1890 }
   1891 
   1892 static void
   1893 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1894 {
   1895 	struct iwn_softc *sc = arg;
   1896 	struct iwn_node *wn = (struct iwn_node *)ni;
   1897 
   1898 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1899 }
   1900 
   1901 static void
   1902 iwn_calib_timeout(void *arg)
   1903 {
   1904 	struct iwn_softc *sc = arg;
   1905 	struct ieee80211com *ic = &sc->sc_ic;
   1906 	int s;
   1907 
   1908 	s = splnet();
   1909 	if (ic->ic_fixed_rate == -1) {
   1910 		if (ic->ic_opmode == IEEE80211_M_STA)
   1911 			iwn_iter_func(sc, ic->ic_bss);
   1912 		else
   1913 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1914 	}
   1915 	/* Force automatic TX power calibration every 60 secs. */
   1916 	if (++sc->calib_cnt >= 120) {
   1917 		uint32_t flags = 0;
   1918 
   1919 		DPRINTF(("sending request for statistics\n"));
   1920 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   1921 		    sizeof flags, 1);
   1922 		sc->calib_cnt = 0;
   1923 	}
   1924 	splx(s);
   1925 
   1926 	/* Automatic rate control triggered every 500ms. */
   1927 	callout_schedule(&sc->calib_to, hz/2);
   1928 }
   1929 
   1930 /*
   1931  * Process an RX_PHY firmware notification.  This is usually immediately
   1932  * followed by an MPDU_RX_DONE notification.
   1933  */
   1934 static void
   1935 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1936     struct iwn_rx_data *data)
   1937 {
   1938 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   1939 
   1940 	DPRINTFN(2, ("received PHY stats\n"));
   1941 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   1942 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   1943 
   1944 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   1945 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   1946 	sc->last_rx_valid = 1;
   1947 }
   1948 
   1949 /*
   1950  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   1951  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   1952  */
   1953 static void
   1954 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1955     struct iwn_rx_data *data)
   1956 {
   1957 	const struct iwn_hal *hal = sc->sc_hal;
   1958 	struct ieee80211com *ic = &sc->sc_ic;
   1959 	struct ifnet *ifp = ic->ic_ifp;
   1960 	struct iwn_rx_ring *ring = &sc->rxq;
   1961 	struct ieee80211_frame *wh;
   1962 	struct ieee80211_node *ni;
   1963 	struct mbuf *m, *m1;
   1964 	struct iwn_rx_stat *stat;
   1965 	char	*head;
   1966 	uint32_t flags;
   1967 	int error, len, rssi;
   1968 
   1969 	if (desc->type == IWN_MPDU_RX_DONE) {
   1970 		/* Check for prior RX_PHY notification. */
   1971 		if (!sc->last_rx_valid) {
   1972 			DPRINTF(("missing RX_PHY\n"));
   1973 			ifp->if_ierrors++;
   1974 			return;
   1975 		}
   1976 		sc->last_rx_valid = 0;
   1977 		stat = &sc->last_rx_stat;
   1978 	} else
   1979 		stat = (struct iwn_rx_stat *)(desc + 1);
   1980 
   1981 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   1982 	    BUS_DMASYNC_POSTREAD);
   1983 
   1984 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   1985 		aprint_error_dev(sc->sc_dev,
   1986 		    "invalid RX statistic header\n");
   1987 		ifp->if_ierrors++;
   1988 		return;
   1989 	}
   1990 	if (desc->type == IWN_MPDU_RX_DONE) {
   1991 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   1992 		head = (char *)(mpdu + 1);
   1993 		len = le16toh(mpdu->len);
   1994 	} else {
   1995 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   1996 		len = le16toh(stat->len);
   1997 	}
   1998 
   1999 	flags = le32toh(*(uint32_t *)(head + len));
   2000 
   2001 	/* Discard frames with a bad FCS early. */
   2002 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   2003 		DPRINTFN(2, ("RX flags error %x\n", flags));
   2004 		ifp->if_ierrors++;
   2005 		return;
   2006 	}
   2007 	/* Discard frames that are too short. */
   2008 	if (len < sizeof (*wh)) {
   2009 		DPRINTF(("frame too short: %d\n", len));
   2010 		ic->ic_stats.is_rx_tooshort++;
   2011 		ifp->if_ierrors++;
   2012 		return;
   2013 	}
   2014 
   2015 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   2016 	if (m1 == NULL) {
   2017 		ic->ic_stats.is_rx_nobuf++;
   2018 		ifp->if_ierrors++;
   2019 		return;
   2020 	}
   2021 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2022 
   2023 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   2024 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   2025 	if (error != 0) {
   2026 		m_freem(m1);
   2027 
   2028 		/* Try to reload the old mbuf. */
   2029 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   2030 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   2031 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   2032 		if (error != 0) {
   2033 			panic("%s: could not load old RX mbuf",
   2034 			    device_xname(sc->sc_dev));
   2035 		}
   2036 		/* Physical address may have changed. */
   2037 		ring->desc[ring->cur] =
   2038 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   2039 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2040 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2041 		    BUS_DMASYNC_PREWRITE);
   2042 		ifp->if_ierrors++;
   2043 		return;
   2044 	}
   2045 
   2046 	m = data->m;
   2047 	data->m = m1;
   2048 	/* Update RX descriptor. */
   2049 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   2050 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2051 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2052 	    BUS_DMASYNC_PREWRITE);
   2053 
   2054 	/* Finalize mbuf. */
   2055 	m->m_pkthdr.rcvif = ifp;
   2056 	m->m_data = head;
   2057 	m->m_pkthdr.len = m->m_len = len;
   2058 
   2059 	/* Grab a reference to the source node. */
   2060 	wh = mtod(m, struct ieee80211_frame *);
   2061 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2062 
   2063 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2064 	/* NetBSD does decryption in ieee80211_input. */
   2065 
   2066 	rssi = hal->get_rssi(stat);
   2067 
   2068 	/* XXX Added for NetBSD: scans never stop without it */
   2069 	if (ic->ic_state == IEEE80211_S_SCAN)
   2070 		iwn_fix_channel(ic, m);
   2071 
   2072 	if (sc->sc_drvbpf != NULL) {
   2073 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2074 
   2075 		tap->wr_flags = 0;
   2076 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2077 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2078 		tap->wr_chan_freq =
   2079 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2080 		tap->wr_chan_flags =
   2081 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2082 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2083 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2084 		tap->wr_tsft = stat->tstamp;
   2085 		switch (stat->rate) {
   2086 		/* CCK rates. */
   2087 		case  10: tap->wr_rate =   2; break;
   2088 		case  20: tap->wr_rate =   4; break;
   2089 		case  55: tap->wr_rate =  11; break;
   2090 		case 110: tap->wr_rate =  22; break;
   2091 		/* OFDM rates. */
   2092 		case 0xd: tap->wr_rate =  12; break;
   2093 		case 0xf: tap->wr_rate =  18; break;
   2094 		case 0x5: tap->wr_rate =  24; break;
   2095 		case 0x7: tap->wr_rate =  36; break;
   2096 		case 0x9: tap->wr_rate =  48; break;
   2097 		case 0xb: tap->wr_rate =  72; break;
   2098 		case 0x1: tap->wr_rate =  96; break;
   2099 		case 0x3: tap->wr_rate = 108; break;
   2100 		/* Unknown rate: should not happen. */
   2101 		default:  tap->wr_rate =   0;
   2102 		}
   2103 
   2104 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   2105 	}
   2106 
   2107 	/* Send the frame to the 802.11 layer. */
   2108 	ieee80211_input(ic, m, ni, rssi, 0);
   2109 
   2110 	/* Node is no longer needed. */
   2111 	ieee80211_free_node(ni);
   2112 }
   2113 
   2114 #ifndef IEEE80211_NO_HT
   2115 /* Process an incoming Compressed BlockAck. */
   2116 static void
   2117 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2118     struct iwn_rx_data *data)
   2119 {
   2120 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2121 	struct iwn_tx_ring *txq;
   2122 
   2123 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2124 	    BUS_DMASYNC_POSTREAD);
   2125 
   2126 	txq = &sc->txq[le16toh(ba->qid)];
   2127 	/* XXX TBD */
   2128 }
   2129 #endif
   2130 
   2131 /*
   2132  * Process a CALIBRATION_RESULT notification sent by the initialization
   2133  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
   2134  */
   2135 static void
   2136 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2137     struct iwn_rx_data *data)
   2138 {
   2139 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2140 	int len, idx = -1;
   2141 
   2142 	/* Runtime firmware should not send such a notification. */
   2143 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2144 		return;
   2145 
   2146 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2147 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2148 	    BUS_DMASYNC_POSTREAD);
   2149 
   2150 	switch (calib->code) {
   2151 	case IWN5000_PHY_CALIB_DC:
   2152 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
   2153 		    sc->hw_type == IWN_HW_REV_TYPE_6050)
   2154 			idx = 0;
   2155 		break;
   2156 	case IWN5000_PHY_CALIB_LO:
   2157 		idx = 1;
   2158 		break;
   2159 	case IWN5000_PHY_CALIB_TX_IQ:
   2160 		idx = 2;
   2161 		break;
   2162 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2163 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2164 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2165 			idx = 3;
   2166 		break;
   2167 	case IWN5000_PHY_CALIB_BASE_BAND:
   2168 		idx = 4;
   2169 		break;
   2170 	}
   2171 	if (idx == -1)	/* Ignore other results. */
   2172 		return;
   2173 
   2174 	/* Save calibration result. */
   2175 	if (sc->calibcmd[idx].buf != NULL)
   2176 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2177 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2178 	if (sc->calibcmd[idx].buf == NULL) {
   2179 		DPRINTF(("not enough memory for calibration result %d\n",
   2180 		    calib->code));
   2181 		return;
   2182 	}
   2183 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2184 	    calib->code, len));
   2185 	sc->calibcmd[idx].len = len;
   2186 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2187 }
   2188 
   2189 /*
   2190  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2191  * The latter is sent by the firmware after each received beacon.
   2192  */
   2193 static void
   2194 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2195     struct iwn_rx_data *data)
   2196 {
   2197 	const struct iwn_hal *hal = sc->sc_hal;
   2198 	struct ieee80211com *ic = &sc->sc_ic;
   2199 	struct iwn_calib_state *calib = &sc->calib;
   2200 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2201 	int temp;
   2202 
   2203 	/* Ignore statistics received during a scan. */
   2204 	if (ic->ic_state != IEEE80211_S_RUN)
   2205 		return;
   2206 
   2207 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2208 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2209 
   2210 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2211 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2212 
   2213 	/* Test if temperature has changed. */
   2214 	if (stats->general.temp != sc->rawtemp) {
   2215 		/* Convert "raw" temperature to degC. */
   2216 		sc->rawtemp = stats->general.temp;
   2217 		temp = hal->get_temperature(sc);
   2218 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2219 
   2220 #ifndef SMALL_KERNEL
   2221 		/* Update temperature sensor. */
   2222 		sc->sc_sensor.value_cur = IWN_CTOMUK(temp);
   2223 		sc->sc_sensor.state = ENVSYS_SVALID;
   2224 #endif
   2225 
   2226 		/* Update TX power if need be (4965AGN only.) */
   2227 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2228 			iwn4965_power_calibration(sc, temp);
   2229 	}
   2230 
   2231 	if (desc->type != IWN_BEACON_STATISTICS)
   2232 		return;	/* Reply to a statistics request. */
   2233 
   2234 	sc->noise = iwn_get_noise(&stats->rx.general);
   2235 
   2236 	/* Test that RSSI and noise are present in stats report. */
   2237 	if (le32toh(stats->rx.general.flags) != 1) {
   2238 		DPRINTF(("received statistics without RSSI\n"));
   2239 		return;
   2240 	}
   2241 
   2242 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2243 		iwn_collect_noise(sc, &stats->rx.general);
   2244 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2245 		iwn_tune_sensitivity(sc, &stats->rx);
   2246 }
   2247 
   2248 /*
   2249  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2250  * and 5000 adapters have different incompatible TX status formats.
   2251  */
   2252 static void
   2253 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2254     struct iwn_rx_data *data)
   2255 {
   2256 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2257 
   2258 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2259 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2260 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2261 }
   2262 
   2263 static void
   2264 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2265     struct iwn_rx_data *data)
   2266 {
   2267 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2268 
   2269 #ifdef notyet
   2270 	/* Reset TX scheduler slot. */
   2271 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2272 #endif
   2273 
   2274 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2275 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2276 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2277 }
   2278 
   2279 /*
   2280  * Adapter-independent backend for TX_DONE firmware notifications.
   2281  */
   2282 static void
   2283 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2284     uint8_t status)
   2285 {
   2286 	struct ieee80211com *ic = &sc->sc_ic;
   2287 	struct ifnet *ifp = ic->ic_ifp;
   2288 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2289 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2290 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2291 
   2292 	/* Update rate control statistics. */
   2293 	wn->amn.amn_txcnt++;
   2294 	if (ackfailcnt > 0)
   2295 		wn->amn.amn_retrycnt++;
   2296 
   2297 	if (status != 1 && status != 2)
   2298 		ifp->if_oerrors++;
   2299 	else
   2300 		ifp->if_opackets++;
   2301 
   2302 	/* Unmap and free mbuf. */
   2303 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2304 	    BUS_DMASYNC_POSTWRITE);
   2305 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2306 	m_freem(data->m);
   2307 	data->m = NULL;
   2308 	ieee80211_free_node(data->ni);
   2309 	data->ni = NULL;
   2310 
   2311 	sc->sc_tx_timer = 0;
   2312 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2313 		sc->qfullmsk &= ~(1 << ring->qid);
   2314 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2315 			ifp->if_flags &= ~IFF_OACTIVE;
   2316 			(*ifp->if_start)(ifp);
   2317 		}
   2318 	}
   2319 }
   2320 
   2321 /*
   2322  * Process a "command done" firmware notification.  This is where we wakeup
   2323  * processes waiting for a synchronous command completion.
   2324  */
   2325 static void
   2326 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2327 {
   2328 	struct iwn_tx_ring *ring = &sc->txq[4];
   2329 	struct iwn_tx_data *data;
   2330 
   2331 	if ((desc->qid & 0xf) != 4)
   2332 		return;	/* Not a command ack. */
   2333 
   2334 	data = &ring->data[desc->idx];
   2335 
   2336 	/* If the command was mapped in an mbuf, free it. */
   2337 	if (data->m != NULL) {
   2338 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2339 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2340 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2341 		m_freem(data->m);
   2342 		data->m = NULL;
   2343 	}
   2344 	wakeup(&ring->desc[desc->idx]);
   2345 }
   2346 
   2347 /*
   2348  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2349  */
   2350 static void
   2351 iwn_notif_intr(struct iwn_softc *sc)
   2352 {
   2353 	struct ieee80211com *ic = &sc->sc_ic;
   2354 	struct ifnet *ifp = ic->ic_ifp;
   2355 	uint16_t hw;
   2356 
   2357 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2358 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2359 
   2360 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2361 	while (sc->rxq.cur != hw) {
   2362 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2363 		struct iwn_rx_desc *desc;
   2364 
   2365 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2366 		    BUS_DMASYNC_POSTREAD);
   2367 		desc = mtod(data->m, struct iwn_rx_desc *);
   2368 
   2369 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2370 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2371 
   2372 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2373 			iwn_cmd_done(sc, desc);
   2374 
   2375 		switch (desc->type) {
   2376 		case IWN_RX_PHY:
   2377 			iwn_rx_phy(sc, desc, data);
   2378 			break;
   2379 
   2380 		case IWN_RX_DONE:		/* 4965AGN only. */
   2381 		case IWN_MPDU_RX_DONE:
   2382 			/* An 802.11 frame has been received. */
   2383 			iwn_rx_done(sc, desc, data);
   2384 			break;
   2385 #ifndef IEEE80211_NO_HT
   2386 		case IWN_RX_COMPRESSED_BA:
   2387 			/* A Compressed BlockAck has been received. */
   2388 			iwn_rx_compressed_ba(sc, desc, data);
   2389 			break;
   2390 #endif
   2391 		case IWN_TX_DONE:
   2392 			/* An 802.11 frame has been transmitted. */
   2393 			sc->sc_hal->tx_done(sc, desc, data);
   2394 			break;
   2395 
   2396 		case IWN_RX_STATISTICS:
   2397 		case IWN_BEACON_STATISTICS:
   2398 			iwn_rx_statistics(sc, desc, data);
   2399 			break;
   2400 
   2401 		case IWN_BEACON_MISSED:
   2402 		{
   2403 			struct iwn_beacon_missed *miss =
   2404 			    (struct iwn_beacon_missed *)(desc + 1);
   2405 
   2406 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2407 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2408 			/*
   2409 			 * If more than 5 consecutive beacons are missed,
   2410 			 * reinitialize the sensitivity state machine.
   2411 			 */
   2412 			DPRINTF(("beacons missed %d/%d\n",
   2413 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2414 			if (ic->ic_state == IEEE80211_S_RUN &&
   2415 			    le32toh(miss->consecutive) > 5)
   2416 				(void)iwn_init_sensitivity(sc);
   2417 			break;
   2418 		}
   2419 		case IWN_UC_READY:
   2420 		{
   2421 			struct iwn_ucode_info *uc =
   2422 			    (struct iwn_ucode_info *)(desc + 1);
   2423 
   2424 			/* The microcontroller is ready. */
   2425 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2426 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2427 			DPRINTF(("microcode alive notification version=%d.%d "
   2428 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2429 			    uc->subtype, le32toh(uc->valid)));
   2430 
   2431 			if (le32toh(uc->valid) != 1) {
   2432 				aprint_error_dev(sc->sc_dev,
   2433 				    "microcontroller initialization "
   2434 				    "failed\n");
   2435 				break;
   2436 			}
   2437 			if (uc->subtype == IWN_UCODE_INIT) {
   2438 				/* Save microcontroller report. */
   2439 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2440 			}
   2441 			/* Save the address of the error log in SRAM. */
   2442 			sc->errptr = le32toh(uc->errptr);
   2443 			break;
   2444 		}
   2445 		case IWN_STATE_CHANGED:
   2446 		{
   2447 			uint32_t *status = (uint32_t *)(desc + 1);
   2448 
   2449 			/* Enabled/disabled notification. */
   2450 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2451 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2452 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2453 
   2454 			if (le32toh(*status) & 1) {
   2455 				/* The radio button has to be pushed. */
   2456 				aprint_error_dev(sc->sc_dev,
   2457 				    "Radio transmitter is off\n");
   2458 				/* Turn the interface down. */
   2459 				ifp->if_flags &= ~IFF_UP;
   2460 				iwn_stop(ifp, 1);
   2461 				return;	/* No further processing. */
   2462 			}
   2463 			break;
   2464 		}
   2465 		case IWN_START_SCAN:
   2466 		{
   2467 			struct iwn_start_scan *scan =
   2468 			    (struct iwn_start_scan *)(desc + 1);
   2469 
   2470 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2471 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2472 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2473 			    scan->chan, le32toh(scan->status)));
   2474 
   2475 			/* Fix current channel. */
   2476 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2477 			break;
   2478 		}
   2479 		case IWN_STOP_SCAN:
   2480 		{
   2481 			struct iwn_stop_scan *scan =
   2482 			    (struct iwn_stop_scan *)(desc + 1);
   2483 
   2484 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2485 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2486 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2487 			    scan->nchan, scan->status, scan->chan));
   2488 
   2489 			if (scan->status == 1 && scan->chan <= 14 &&
   2490 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2491 				/*
   2492 				 * We just finished scanning 2GHz channels,
   2493 				 * start scanning 5GHz ones.
   2494 				 */
   2495 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2496 					break;
   2497 			}
   2498 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2499 			ieee80211_end_scan(ic);
   2500 			break;
   2501 		}
   2502 		case IWN5000_CALIBRATION_RESULT:
   2503 			iwn5000_rx_calib_results(sc, desc, data);
   2504 			break;
   2505 
   2506 		case IWN5000_CALIBRATION_DONE:
   2507 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2508 			wakeup(sc);
   2509 			break;
   2510 		}
   2511 
   2512 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2513 	}
   2514 
   2515 	/* Tell the firmware what we have processed. */
   2516 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2517 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2518 }
   2519 
   2520 /*
   2521  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2522  * from power-down sleep mode.
   2523  */
   2524 static void
   2525 iwn_wakeup_intr(struct iwn_softc *sc)
   2526 {
   2527 	int qid;
   2528 
   2529 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2530 
   2531 	/* Wakeup RX and TX rings. */
   2532 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2533 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
   2534 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2535 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2536 	}
   2537 }
   2538 
   2539 /*
   2540  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2541  * we can't debug the firmware because it is neither open source nor free, it
   2542  * can help us to identify certain classes of problems.
   2543  */
   2544 static void
   2545 iwn_fatal_intr(struct iwn_softc *sc)
   2546 {
   2547 	const struct iwn_hal *hal = sc->sc_hal;
   2548 	struct iwn_fw_dump dump;
   2549 	int i;
   2550 
   2551 	/* Force a complete recalibration on next init. */
   2552 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2553 
   2554 	/* Check that the error log address is valid. */
   2555 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2556 	    sc->errptr + sizeof (dump) >
   2557 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
   2558 		aprint_error_dev(sc->sc_dev,
   2559 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2560 		return;
   2561 	}
   2562 	if (iwn_nic_lock(sc) != 0) {
   2563 		aprint_error_dev(sc->sc_dev,
   2564 		    "could not read firmware error log\n");
   2565 		return;
   2566 	}
   2567 	/* Read firmware error log from SRAM. */
   2568 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2569 	    sizeof (dump) / sizeof (uint32_t));
   2570 	iwn_nic_unlock(sc);
   2571 
   2572 	if (dump.valid == 0) {
   2573 		aprint_error_dev(sc->sc_dev,
   2574 		    "firmware error log is empty\n");
   2575 		return;
   2576 	}
   2577 	aprint_error("firmware error log:\n");
   2578 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2579 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2580 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2581 	    dump.id);
   2582 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2583 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2584 	aprint_error("  error data      = 0x%08X%08X\n",
   2585 	    dump.error_data[0], dump.error_data[1]);
   2586 	aprint_error("  branch link     = 0x%08X%08X\n",
   2587 	    dump.branch_link[0], dump.branch_link[1]);
   2588 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2589 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2590 	aprint_error("  time            = %u\n", dump.time[0]);
   2591 
   2592 	/* Dump driver status (TX and RX rings) while we're here. */
   2593 	aprint_error("driver status:\n");
   2594 	for (i = 0; i < hal->ntxqs; i++) {
   2595 		struct iwn_tx_ring *ring = &sc->txq[i];
   2596 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2597 		    i, ring->qid, ring->cur, ring->queued);
   2598 	}
   2599 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2600 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2601 }
   2602 
   2603 static int
   2604 iwn_intr(void *arg)
   2605 {
   2606 	struct iwn_softc *sc = arg;
   2607 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2608 	uint32_t r1, r2, tmp;
   2609 
   2610 	/* Disable interrupts. */
   2611 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2612 
   2613 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2614 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2615 		tmp = 0;
   2616 		while (sc->ict[sc->ict_cur] != 0) {
   2617 			tmp |= sc->ict[sc->ict_cur];
   2618 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2619 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2620 		}
   2621 		tmp = le32toh(tmp);
   2622 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2623 			tmp = 0;
   2624 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2625 			tmp |= 0x8000;
   2626 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2627 		r2 = 0;	/* Unused. */
   2628 	} else {
   2629 		r1 = IWN_READ(sc, IWN_INT);
   2630 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2631 			return 0;	/* Hardware gone! */
   2632 		r2 = IWN_READ(sc, IWN_FH_INT);
   2633 	}
   2634 	if (r1 == 0 && r2 == 0) {
   2635 		if (ifp->if_flags & IFF_UP)
   2636 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2637 		return 0;	/* Interrupt not for us. */
   2638 	}
   2639 
   2640 	/* Acknowledge interrupts. */
   2641 	IWN_WRITE(sc, IWN_INT, r1);
   2642 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2643 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2644 
   2645 	if (r1 & IWN_INT_RF_TOGGLED) {
   2646 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2647 		aprint_error_dev(sc->sc_dev,
   2648 		    "RF switch: radio %s\n",
   2649 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2650 	}
   2651 	if (r1 & IWN_INT_CT_REACHED) {
   2652 		aprint_error_dev(sc->sc_dev,
   2653 		    "critical temperature reached!\n");
   2654 	}
   2655 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2656 		aprint_error_dev(sc->sc_dev,
   2657 		    "fatal firmware error\n");
   2658 		/* Dump firmware error log and stop. */
   2659 		iwn_fatal_intr(sc);
   2660 		ifp->if_flags &= ~IFF_UP;
   2661 		iwn_stop(ifp, 1);
   2662 		return 1;
   2663 	}
   2664 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2665 	    (r2 & IWN_FH_INT_RX)) {
   2666 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2667 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2668 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2669 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2670 			    IWN_INT_PERIODIC_DIS);
   2671 			iwn_notif_intr(sc);
   2672 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2673 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2674 				    IWN_INT_PERIODIC_ENA);
   2675 			}
   2676 		} else
   2677 			iwn_notif_intr(sc);
   2678 	}
   2679 
   2680 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2681 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2682 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2683 		wakeup(sc);	/* FH DMA transfer completed. */
   2684 	}
   2685 
   2686 	if (r1 & IWN_INT_ALIVE)
   2687 		wakeup(sc);	/* Firmware is alive. */
   2688 
   2689 	if (r1 & IWN_INT_WAKEUP)
   2690 		iwn_wakeup_intr(sc);
   2691 
   2692 	/* Re-enable interrupts. */
   2693 	if (ifp->if_flags & IFF_UP)
   2694 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2695 
   2696 	return 1;
   2697 }
   2698 
   2699 /*
   2700  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2701  * 5000 adapters use a slightly different format.)
   2702  */
   2703 static void
   2704 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2705     uint16_t len)
   2706 {
   2707 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2708 
   2709 	*w = htole16(len + 8);
   2710 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2711 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2712 	    sizeof (uint16_t),
   2713 	    BUS_DMASYNC_PREWRITE);
   2714 	if (idx < IWN_SCHED_WINSZ) {
   2715 		*(w + IWN_TX_RING_COUNT) = *w;
   2716 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2717 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2718 		    (char *)(void *)sc->sched_dma.vaddr,
   2719 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2720 	}
   2721 }
   2722 
   2723 static void
   2724 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2725     uint16_t len)
   2726 {
   2727 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2728 
   2729 	*w = htole16(id << 12 | (len + 8));
   2730 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2731 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2732 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2733 	if (idx < IWN_SCHED_WINSZ) {
   2734 		*(w + IWN_TX_RING_COUNT) = *w;
   2735 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2736 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2737 		    (char *)(void *)sc->sched_dma.vaddr,
   2738 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2739 	}
   2740 }
   2741 
   2742 #ifdef notyet
   2743 static void
   2744 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2745 {
   2746 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2747 
   2748 	*w = (*w & htole16(0xf000)) | htole16(1);
   2749 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2750 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2751 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2752 	if (idx < IWN_SCHED_WINSZ) {
   2753 		*(w + IWN_TX_RING_COUNT) = *w;
   2754 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2755 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2756 		    (char *)(void *)sc->sched_dma.vaddr,
   2757 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2758 	}
   2759 }
   2760 #endif
   2761 
   2762 static int
   2763 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2764 {
   2765 	const struct iwn_hal *hal = sc->sc_hal;
   2766 	struct ieee80211com *ic = &sc->sc_ic;
   2767 	struct iwn_node *wn = (void *)ni;
   2768 	struct iwn_tx_ring *ring;
   2769 	struct iwn_tx_desc *desc;
   2770 	struct iwn_tx_data *data;
   2771 	struct iwn_tx_cmd *cmd;
   2772 	struct iwn_cmd_data *tx;
   2773 	const struct iwn_rate *rinfo;
   2774 	struct ieee80211_frame *wh;
   2775 	struct ieee80211_key *k = NULL;
   2776 	struct mbuf *m1;
   2777 	uint32_t flags;
   2778 	u_int hdrlen;
   2779 	bus_dma_segment_t *seg;
   2780 	uint8_t tid, ridx, txant, type;
   2781 	int i, totlen, error, pad;
   2782 
   2783 	const struct chanAccParams *cap;
   2784 	int noack;
   2785 	int hdrlen2;
   2786 
   2787 	wh = mtod(m, struct ieee80211_frame *);
   2788 	hdrlen = ieee80211_anyhdrsize(wh);
   2789 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2790 
   2791 	hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
   2792 	    sizeof (struct ieee80211_qosframe) :
   2793 	    sizeof (struct ieee80211_frame);
   2794 
   2795 	if (hdrlen != hdrlen2)
   2796 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2797 		hdrlen, hdrlen2);
   2798 
   2799 	/* XXX OpenBSD sets a different tid when using QOS */
   2800 	tid = 0;
   2801 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   2802 		cap = &ic->ic_wme.wme_chanParams;
   2803 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2804 	}
   2805 	else
   2806 		noack = 0;
   2807 
   2808 	ring = &sc->txq[ac];
   2809 	desc = &ring->desc[ring->cur];
   2810 	data = &ring->data[ring->cur];
   2811 
   2812 	/* Choose a TX rate index. */
   2813 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2814 	    type != IEEE80211_FC0_TYPE_DATA) {
   2815 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2816 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2817 	} else if (ic->ic_fixed_rate != -1) {
   2818 		ridx = sc->fixed_ridx;
   2819 	} else
   2820 		ridx = wn->ridx[ni->ni_txrate];
   2821 	rinfo = &iwn_rates[ridx];
   2822 
   2823 	/* Encrypt the frame if need be. */
   2824 	/*
   2825 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   2826 	 * in order to match old code and other drivers. Tests with
   2827 	 * tcpdump indicates that the order is irrelevant, however,
   2828 	 * as bpf produces unencrypted data for both ordering choices.
   2829 	 */
   2830 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2831 		k = ieee80211_crypto_encap(ic, ni, m);
   2832 		if (k == NULL) {
   2833 			m_freem(m);
   2834 			return ENOBUFS;
   2835 		}
   2836 		/* Packet header may have moved, reset our local pointer. */
   2837 		wh = mtod(m, struct ieee80211_frame *);
   2838 	}
   2839 	totlen = m->m_pkthdr.len;
   2840 
   2841 	if (sc->sc_drvbpf != NULL) {
   2842 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2843 
   2844 		tap->wt_flags = 0;
   2845 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2846 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2847 		tap->wt_rate = rinfo->rate;
   2848 		tap->wt_hwqueue = ac;
   2849 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2850 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2851 
   2852 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   2853 	}
   2854 
   2855 	/* Prepare TX firmware command. */
   2856 	cmd = &ring->cmd[ring->cur];
   2857 	cmd->code = IWN_CMD_TX_DATA;
   2858 	cmd->flags = 0;
   2859 	cmd->qid = ring->qid;
   2860 	cmd->idx = ring->cur;
   2861 
   2862 	tx = (struct iwn_cmd_data *)cmd->data;
   2863 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2864 	tx->scratch = 0;	/* clear "scratch" area */
   2865 
   2866 	flags = 0;
   2867 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2868 		/* Unicast frame, check if an ACK is expected. */
   2869 		if (!noack)
   2870 			flags |= IWN_TX_NEED_ACK;
   2871 	}
   2872 
   2873 #ifdef notyet
   2874 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   2875 	if ((wh->i_fc[0] &
   2876 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   2877 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   2878 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   2879 #endif
   2880 
   2881 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   2882 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   2883 
   2884 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   2885 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2886 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   2887 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   2888 			flags |= IWN_TX_NEED_RTS;
   2889 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   2890 		    ridx >= IWN_RIDX_OFDM6) {
   2891 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   2892 				flags |= IWN_TX_NEED_CTS;
   2893 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   2894 				flags |= IWN_TX_NEED_RTS;
   2895 		}
   2896 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   2897 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   2898 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   2899 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   2900 				flags |= IWN_TX_NEED_PROTECTION;
   2901 			} else
   2902 				flags |= IWN_TX_FULL_TXOP;
   2903 		}
   2904 	}
   2905 
   2906 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2907 	    type != IEEE80211_FC0_TYPE_DATA)
   2908 		tx->id = hal->broadcast_id;
   2909 	else
   2910 		tx->id = wn->id;
   2911 
   2912 	if (type == IEEE80211_FC0_TYPE_MGT) {
   2913 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2914 
   2915 #ifndef IEEE80211_STA_ONLY
   2916 		/* Tell HW to set timestamp in probe responses. */
   2917 		/* XXX NetBSD rev 1.11 added probe requests here but */
   2918 		/* probe requests do not take timestamps (from Bergamini). */
   2919 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   2920 			flags |= IWN_TX_INSERT_TSTAMP;
   2921 #endif
   2922 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   2923 		/* changes here. These are not needed (from Bergamini). */
   2924 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   2925 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   2926 			tx->timeout = htole16(3);
   2927 		else
   2928 			tx->timeout = htole16(2);
   2929 	} else
   2930 		tx->timeout = htole16(0);
   2931 
   2932 	if (hdrlen & 3) {
   2933 		/* First segment's length must be a multiple of 4. */
   2934 		flags |= IWN_TX_NEED_PADDING;
   2935 		pad = 4 - (hdrlen & 3);
   2936 	} else
   2937 		pad = 0;
   2938 
   2939 	tx->len = htole16(totlen);
   2940 	tx->tid = tid;
   2941 	tx->rts_ntries = 60;
   2942 	tx->data_ntries = 15;
   2943 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   2944 	tx->plcp = rinfo->plcp;
   2945 	tx->rflags = rinfo->flags;
   2946 	if (tx->id == hal->broadcast_id) {
   2947 		/* Group or management frame. */
   2948 		tx->linkq = 0;
   2949 		/* XXX Alternate between antenna A and B? */
   2950 		txant = IWN_LSB(sc->txchainmask);
   2951 		tx->rflags |= IWN_RFLAG_ANT(txant);
   2952 	} else {
   2953 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   2954 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   2955 	}
   2956 	/* Set physical address of "scratch area". */
   2957 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   2958 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   2959 
   2960 	/* Copy 802.11 header in TX command. */
   2961 	/* XXX NetBSD changed this in rev 1.20 */
   2962 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   2963 
   2964 	/* Trim 802.11 header. */
   2965 	m_adj(m, hdrlen);
   2966 	tx->security = 0;
   2967 	tx->flags = htole32(flags);
   2968 
   2969 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2970 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2971 	if (error != 0) {
   2972 		if (error != EFBIG) {
   2973 			aprint_error_dev(sc->sc_dev,
   2974 			    "can't map mbuf (error %d)\n", error);
   2975 			m_freem(m);
   2976 			return error;
   2977 		}
   2978 		/* Too many DMA segments, linearize mbuf. */
   2979 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   2980 		if (m1 == NULL) {
   2981 			m_freem(m);
   2982 			return ENOBUFS;
   2983 		}
   2984 		if (m->m_pkthdr.len > MHLEN) {
   2985 			MCLGET(m1, M_DONTWAIT);
   2986 			if (!(m1->m_flags & M_EXT)) {
   2987 				m_freem(m);
   2988 				m_freem(m1);
   2989 				return ENOBUFS;
   2990 			}
   2991 		}
   2992 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   2993 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   2994 		m_freem(m);
   2995 		m = m1;
   2996 
   2997 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2998 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2999 		if (error != 0) {
   3000 			aprint_error_dev(sc->sc_dev,
   3001 			    "can't map mbuf (error %d)\n", error);
   3002 			m_freem(m);
   3003 			return error;
   3004 		}
   3005 	}
   3006 
   3007 	data->m = m;
   3008 	data->ni = ni;
   3009 
   3010 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   3011 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   3012 
   3013 	/* Fill TX descriptor. */
   3014 	desc->nsegs = 1 + data->map->dm_nsegs;
   3015 	/* First DMA segment is used by the TX command. */
   3016 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   3017 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   3018 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   3019 	/* Other DMA segments are for data payload. */
   3020 	seg = data->map->dm_segs;
   3021 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   3022 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   3023 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   3024 		    seg->ds_len << 4);
   3025 		seg++;
   3026 	}
   3027 
   3028 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   3029 	    BUS_DMASYNC_PREWRITE);
   3030 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3031 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3032 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   3033 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3034 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3035 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3036 
   3037 #ifdef notyet
   3038 	/* Update TX scheduler. */
   3039 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   3040 #endif
   3041 
   3042 	/* Kick TX ring. */
   3043 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3044 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3045 
   3046 	/* Mark TX ring as full if we reach a certain threshold. */
   3047 	if (++ring->queued > IWN_TX_RING_HIMARK)
   3048 		sc->qfullmsk |= 1 << ring->qid;
   3049 
   3050 	return 0;
   3051 }
   3052 
   3053 static void
   3054 iwn_start(struct ifnet *ifp)
   3055 {
   3056 	struct iwn_softc *sc = ifp->if_softc;
   3057 	struct ieee80211com *ic = &sc->sc_ic;
   3058 	struct ieee80211_node *ni;
   3059 	struct ether_header *eh;
   3060 	struct mbuf *m;
   3061 	int ac;
   3062 
   3063 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3064 		return;
   3065 
   3066 	for (;;) {
   3067 		if (sc->qfullmsk != 0) {
   3068 			ifp->if_flags |= IFF_OACTIVE;
   3069 			break;
   3070 		}
   3071 		/* Send pending management frames first. */
   3072 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3073 		if (m != NULL) {
   3074 			ni = (void *)m->m_pkthdr.rcvif;
   3075 			ac = 0;
   3076 			goto sendit;
   3077 		}
   3078 		if (ic->ic_state != IEEE80211_S_RUN)
   3079 			break;
   3080 
   3081 		/* Encapsulate and send data frames. */
   3082 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3083 		if (m == NULL)
   3084 			break;
   3085 		if (m->m_len < sizeof (*eh) &&
   3086 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3087 			ifp->if_oerrors++;
   3088 			continue;
   3089 		}
   3090 		eh = mtod(m, struct ether_header *);
   3091 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3092 		if (ni == NULL) {
   3093 			m_freem(m);
   3094 			ifp->if_oerrors++;
   3095 			continue;
   3096 		}
   3097 		/* classify mbuf so we can find which tx ring to use */
   3098 		if (ieee80211_classify(ic, m, ni) != 0) {
   3099 			m_freem(m);
   3100 			ieee80211_free_node(ni);
   3101 			ifp->if_oerrors++;
   3102 			continue;
   3103 		}
   3104 
   3105 		/* No QoS encapsulation for EAPOL frames. */
   3106 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3107 		    M_WME_GETAC(m) : WME_AC_BE;
   3108 
   3109 		bpf_mtap(ifp, m);
   3110 
   3111 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3112 			ieee80211_free_node(ni);
   3113 			ifp->if_oerrors++;
   3114 			continue;
   3115 		}
   3116 sendit:
   3117 		bpf_mtap3(ic->ic_rawbpf, m);
   3118 
   3119 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3120 			ieee80211_free_node(ni);
   3121 			ifp->if_oerrors++;
   3122 			continue;
   3123 		}
   3124 
   3125 		sc->sc_tx_timer = 5;
   3126 		ifp->if_timer = 1;
   3127 	}
   3128 }
   3129 
   3130 static void
   3131 iwn_watchdog(struct ifnet *ifp)
   3132 {
   3133 	struct iwn_softc *sc = ifp->if_softc;
   3134 
   3135 	ifp->if_timer = 0;
   3136 
   3137 	if (sc->sc_tx_timer > 0) {
   3138 		if (--sc->sc_tx_timer == 0) {
   3139 			aprint_error_dev(sc->sc_dev,
   3140 			    "device timeout\n");
   3141 			ifp->if_flags &= ~IFF_UP;
   3142 			iwn_stop(ifp, 1);
   3143 			ifp->if_oerrors++;
   3144 			return;
   3145 		}
   3146 		ifp->if_timer = 1;
   3147 	}
   3148 
   3149 	ieee80211_watchdog(&sc->sc_ic);
   3150 }
   3151 
   3152 static int
   3153 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3154 {
   3155 	struct iwn_softc *sc = ifp->if_softc;
   3156 	struct ieee80211com *ic = &sc->sc_ic;
   3157 	struct ifaddr *ifa;
   3158 	const struct sockaddr *sa;
   3159 	int s, error = 0;
   3160 
   3161 	s = splnet();
   3162 
   3163 	switch (cmd) {
   3164 	case SIOCSIFADDR:
   3165 		ifa = (struct ifaddr *)data;
   3166 		ifp->if_flags |= IFF_UP;
   3167 #ifdef INET
   3168 		if (ifa->ifa_addr->sa_family == AF_INET)
   3169 			arp_ifinit(&ic->ic_ac, ifa);
   3170 #endif
   3171 		/* FALLTHROUGH */
   3172 	case SIOCSIFFLAGS:
   3173 		/* XXX Added as it is in every NetBSD driver */
   3174 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3175 			break;
   3176 		if (ifp->if_flags & IFF_UP) {
   3177 			if (!(ifp->if_flags & IFF_RUNNING))
   3178 				error = iwn_init(ifp);
   3179 		} else {
   3180 			if (ifp->if_flags & IFF_RUNNING)
   3181 				iwn_stop(ifp, 1);
   3182 		}
   3183 		break;
   3184 
   3185 	case SIOCADDMULTI:
   3186 	case SIOCDELMULTI:
   3187 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3188 		error = (cmd == SIOCADDMULTI) ?
   3189 		    ether_addmulti(sa, &sc->sc_ec) :
   3190 		    ether_delmulti(sa, &sc->sc_ec);
   3191 
   3192 		if (error == ENETRESET)
   3193 			error = 0;
   3194 		break;
   3195 
   3196 	default:
   3197 		error = ieee80211_ioctl(ic, cmd, data);
   3198 	}
   3199 
   3200 	if (error == ENETRESET) {
   3201 		error = 0;
   3202 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3203 		    (IFF_UP | IFF_RUNNING)) {
   3204 			iwn_stop(ifp, 0);
   3205 			error = iwn_init(ifp);
   3206 		}
   3207 	}
   3208 	splx(s);
   3209 	return error;
   3210 }
   3211 
   3212 /*
   3213  * Send a command to the firmware.
   3214  */
   3215 static int
   3216 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3217 {
   3218 	struct iwn_tx_ring *ring = &sc->txq[4];
   3219 	struct iwn_tx_desc *desc;
   3220 	struct iwn_tx_data *data;
   3221 	struct iwn_tx_cmd *cmd;
   3222 	struct mbuf *m;
   3223 	bus_addr_t paddr;
   3224 	int totlen, error;
   3225 
   3226 	desc = &ring->desc[ring->cur];
   3227 	data = &ring->data[ring->cur];
   3228 	totlen = 4 + size;
   3229 
   3230 	if (size > sizeof cmd->data) {
   3231 		/* Command is too large to fit in a descriptor. */
   3232 		if (totlen > MCLBYTES)
   3233 			return EINVAL;
   3234 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3235 		if (m == NULL)
   3236 			return ENOMEM;
   3237 		if (totlen > MHLEN) {
   3238 			MCLGET(m, M_DONTWAIT);
   3239 			if (!(m->m_flags & M_EXT)) {
   3240 				m_freem(m);
   3241 				return ENOMEM;
   3242 			}
   3243 		}
   3244 		cmd = mtod(m, struct iwn_tx_cmd *);
   3245 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3246 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3247 		if (error != 0) {
   3248 			m_freem(m);
   3249 			return error;
   3250 		}
   3251 		data->m = m;
   3252 		paddr = data->map->dm_segs[0].ds_addr;
   3253 	} else {
   3254 		cmd = &ring->cmd[ring->cur];
   3255 		paddr = data->cmd_paddr;
   3256 	}
   3257 
   3258 	cmd->code = code;
   3259 	cmd->flags = 0;
   3260 	cmd->qid = ring->qid;
   3261 	cmd->idx = ring->cur;
   3262 	memcpy(cmd->data, buf, size);
   3263 
   3264 	desc->nsegs = 1;
   3265 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3266 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3267 
   3268 	if (size > sizeof cmd->data) {
   3269 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3270 		    BUS_DMASYNC_PREWRITE);
   3271 	} else {
   3272 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3273 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3274 		    totlen, BUS_DMASYNC_PREWRITE);
   3275 	}
   3276 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3277 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3278 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3279 
   3280 #ifdef notyet
   3281 	/* Update TX scheduler. */
   3282 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3283 #endif
   3284 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3285 
   3286 	/* Kick command ring. */
   3287 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3288 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3289 
   3290 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3291 }
   3292 
   3293 static int
   3294 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3295 {
   3296 	struct iwn4965_node_info hnode;
   3297 	char *src, *dst;
   3298 
   3299 	/*
   3300 	 * We use the node structure for 5000 Series internally (it is
   3301 	 * a superset of the one for 4965AGN). We thus copy the common
   3302 	 * fields before sending the command.
   3303 	 */
   3304 	src = (char *)node;
   3305 	dst = (char *)&hnode;
   3306 	memcpy(dst, src, 48);
   3307 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3308 	memcpy(dst + 48, src + 72, 20);
   3309 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3310 }
   3311 
   3312 static int
   3313 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3314 {
   3315 	/* Direct mapping. */
   3316 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3317 }
   3318 
   3319 static int
   3320 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3321 {
   3322 	struct iwn_node *wn = (void *)ni;
   3323 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3324 	struct iwn_cmd_link_quality linkq;
   3325 	const struct iwn_rate *rinfo;
   3326 	uint8_t txant;
   3327 	int i, txrate;
   3328 
   3329 	/* Use the first valid TX antenna. */
   3330 	txant = IWN_LSB(sc->txchainmask);
   3331 
   3332 	memset(&linkq, 0, sizeof linkq);
   3333 	linkq.id = wn->id;
   3334 	linkq.antmsk_1stream = txant;
   3335 	linkq.antmsk_2stream = IWN_ANT_AB;
   3336 	linkq.ampdu_max = 31;
   3337 	linkq.ampdu_threshold = 3;
   3338 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3339 
   3340 	/* Start at highest available bit-rate. */
   3341 	txrate = rs->rs_nrates - 1;
   3342 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3343 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3344 		linkq.retry[i].plcp = rinfo->plcp;
   3345 		linkq.retry[i].rflags = rinfo->flags;
   3346 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3347 		/* Next retry at immediate lower bit-rate. */
   3348 		if (txrate > 0)
   3349 			txrate--;
   3350 	}
   3351 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3352 }
   3353 
   3354 /*
   3355  * Broadcast node is used to send group-addressed and management frames.
   3356  */
   3357 static int
   3358 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3359 {
   3360 	const struct iwn_hal *hal = sc->sc_hal;
   3361 	struct iwn_node_info node;
   3362 	struct iwn_cmd_link_quality linkq;
   3363 	const struct iwn_rate *rinfo;
   3364 	uint8_t txant;
   3365 	int i, error;
   3366 
   3367 	memset(&node, 0, sizeof node);
   3368 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3369 	node.id = hal->broadcast_id;
   3370 	DPRINTF(("adding broadcast node\n"));
   3371 	if ((error = hal->add_node(sc, &node, async)) != 0)
   3372 		return error;
   3373 
   3374 	/* Use the first valid TX antenna. */
   3375 	txant = IWN_LSB(sc->txchainmask);
   3376 
   3377 	memset(&linkq, 0, sizeof linkq);
   3378 	linkq.id = hal->broadcast_id;
   3379 	linkq.antmsk_1stream = txant;
   3380 	linkq.antmsk_2stream = IWN_ANT_AB;
   3381 	linkq.ampdu_max = 64;
   3382 	linkq.ampdu_threshold = 3;
   3383 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3384 
   3385 	/* Use lowest mandatory bit-rate. */
   3386 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3387 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3388 	linkq.retry[0].plcp = rinfo->plcp;
   3389 	linkq.retry[0].rflags = rinfo->flags;
   3390 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3391 	/* Use same bit-rate for all TX retries. */
   3392 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3393 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3394 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3395 	}
   3396 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3397 }
   3398 
   3399 static void
   3400 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3401 {
   3402 	struct iwn_cmd_led led;
   3403 
   3404 	/* Clear microcode LED ownership. */
   3405 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3406 
   3407 	led.which = which;
   3408 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3409 	led.off = off;
   3410 	led.on = on;
   3411 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3412 }
   3413 
   3414 /*
   3415  * Set the critical temperature at which the firmware will stop the radio
   3416  * and notify us.
   3417  */
   3418 static int
   3419 iwn_set_critical_temp(struct iwn_softc *sc)
   3420 {
   3421 	struct iwn_critical_temp crit;
   3422 	int32_t temp;
   3423 
   3424 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3425 
   3426 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3427 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3428 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3429 		temp = IWN_CTOK(110);
   3430 	else
   3431 		temp = 110;
   3432 	memset(&crit, 0, sizeof crit);
   3433 	crit.tempR = htole32(temp);
   3434 	DPRINTF(("setting critical temperature to %d\n", temp));
   3435 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3436 }
   3437 
   3438 static int
   3439 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3440 {
   3441 	struct iwn_cmd_timing cmd;
   3442 	uint64_t val, mod;
   3443 
   3444 	memset(&cmd, 0, sizeof cmd);
   3445 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3446 	cmd.bintval = htole16(ni->ni_intval);
   3447 	cmd.lintval = htole16(10);
   3448 
   3449 	/* Compute remaining time until next beacon. */
   3450 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3451 	mod = le64toh(cmd.tstamp) % val;
   3452 	cmd.binitval = htole32((uint32_t)(val - mod));
   3453 
   3454 	DPRINTF(("timing bintval=%u, tstamp=%zu, init=%u\n",
   3455 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3456 
   3457 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3458 }
   3459 
   3460 static void
   3461 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3462 {
   3463 	/* Adjust TX power if need be (delta >= 3 degC.) */
   3464 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3465 	if (abs(temp - sc->temp) >= 3) {
   3466 		/* Record temperature of last calibration. */
   3467 		sc->temp = temp;
   3468 		(void)iwn4965_set_txpower(sc, 1);
   3469 	}
   3470 }
   3471 
   3472 /*
   3473  * Set TX power for current channel (each rate has its own power settings).
   3474  * This function takes into account the regulatory information from EEPROM,
   3475  * the current temperature and the current voltage.
   3476  */
   3477 static int
   3478 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3479 {
   3480 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3481 #define fdivround(a, b, n)	\
   3482 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3483 /* Linear interpolation. */
   3484 #define interpolate(x, x1, y1, x2, y2, n)	\
   3485 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3486 
   3487 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3488 	struct ieee80211com *ic = &sc->sc_ic;
   3489 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3490 	struct ieee80211_channel *ch;
   3491 	struct iwn4965_cmd_txpower cmd;
   3492 	struct iwn4965_eeprom_chan_samples *chans;
   3493 	const uint8_t *rf_gain, *dsp_gain;
   3494 	int32_t vdiff, tdiff;
   3495 	int i, c, grp, maxpwr;
   3496 	uint8_t chan;
   3497 
   3498 	/* Retrieve current channel from last RXON. */
   3499 	chan = sc->rxon.chan;
   3500 	DPRINTF(("setting TX power for channel %d\n", chan));
   3501 	ch = &ic->ic_channels[chan];
   3502 
   3503 	memset(&cmd, 0, sizeof cmd);
   3504 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3505 	cmd.chan = chan;
   3506 
   3507 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3508 		maxpwr   = sc->maxpwr5GHz;
   3509 		rf_gain  = iwn4965_rf_gain_5ghz;
   3510 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3511 	} else {
   3512 		maxpwr   = sc->maxpwr2GHz;
   3513 		rf_gain  = iwn4965_rf_gain_2ghz;
   3514 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3515 	}
   3516 
   3517 	/* Compute voltage compensation. */
   3518 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3519 	if (vdiff > 0)
   3520 		vdiff *= 2;
   3521 	if (abs(vdiff) > 2)
   3522 		vdiff = 0;
   3523 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3524 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3525 
   3526 	/* Get channel attenuation group. */
   3527 	if (chan <= 20)		/* 1-20 */
   3528 		grp = 4;
   3529 	else if (chan <= 43)	/* 34-43 */
   3530 		grp = 0;
   3531 	else if (chan <= 70)	/* 44-70 */
   3532 		grp = 1;
   3533 	else if (chan <= 124)	/* 71-124 */
   3534 		grp = 2;
   3535 	else			/* 125-200 */
   3536 		grp = 3;
   3537 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3538 
   3539 	/* Get channel sub-band. */
   3540 	for (i = 0; i < IWN_NBANDS; i++)
   3541 		if (sc->bands[i].lo != 0 &&
   3542 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3543 			break;
   3544 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3545 		return EINVAL;
   3546 	chans = sc->bands[i].chans;
   3547 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3548 
   3549 	for (c = 0; c < 2; c++) {
   3550 		uint8_t power, gain, temp;
   3551 		int maxchpwr, pwr, ridx, idx;
   3552 
   3553 		power = interpolate(chan,
   3554 		    chans[0].num, chans[0].samples[c][1].power,
   3555 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3556 		gain  = interpolate(chan,
   3557 		    chans[0].num, chans[0].samples[c][1].gain,
   3558 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3559 		temp  = interpolate(chan,
   3560 		    chans[0].num, chans[0].samples[c][1].temp,
   3561 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3562 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3563 		    c, power, gain, temp));
   3564 
   3565 		/* Compute temperature compensation. */
   3566 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3567 		DPRINTF(("temperature compensation=%d (current=%d, "
   3568 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3569 
   3570 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3571 			/* Convert dBm to half-dBm. */
   3572 			maxchpwr = sc->maxpwr[chan] * 2;
   3573 			if ((ridx / 8) & 1)
   3574 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3575 
   3576 			pwr = maxpwr;
   3577 
   3578 			/* Adjust TX power based on rate. */
   3579 			if ((ridx % 8) == 5)
   3580 				pwr -= 15;	/* OFDM48: -7.5dB */
   3581 			else if ((ridx % 8) == 6)
   3582 				pwr -= 17;	/* OFDM54: -8.5dB */
   3583 			else if ((ridx % 8) == 7)
   3584 				pwr -= 20;	/* OFDM60: -10dB */
   3585 			else
   3586 				pwr -= 10;	/* Others: -5dB */
   3587 
   3588 			/* Do not exceed channel max TX power. */
   3589 			if (pwr > maxchpwr)
   3590 				pwr = maxchpwr;
   3591 
   3592 			idx = gain - (pwr - power) - tdiff - vdiff;
   3593 			if ((ridx / 8) & 1)	/* MIMO */
   3594 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3595 
   3596 			if (cmd.band == 0)
   3597 				idx += 9;	/* 5GHz */
   3598 			if (ridx == IWN_RIDX_MAX)
   3599 				idx += 5;	/* CCK */
   3600 
   3601 			/* Make sure idx stays in a valid range. */
   3602 			if (idx < 0)
   3603 				idx = 0;
   3604 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3605 				idx = IWN4965_MAX_PWR_INDEX;
   3606 
   3607 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3608 			    c, ridx, idx));
   3609 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3610 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3611 		}
   3612 	}
   3613 
   3614 	DPRINTF(("setting TX power for chan %d\n", chan));
   3615 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3616 
   3617 #undef interpolate
   3618 #undef fdivround
   3619 }
   3620 
   3621 static int
   3622 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3623 {
   3624 	struct iwn5000_cmd_txpower cmd;
   3625 
   3626 	/*
   3627 	 * TX power calibration is handled automatically by the firmware
   3628 	 * for 5000 Series.
   3629 	 */
   3630 	memset(&cmd, 0, sizeof cmd);
   3631 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3632 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3633 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3634 	DPRINTF(("setting TX power\n"));
   3635 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
   3636 }
   3637 
   3638 /*
   3639  * Retrieve the maximum RSSI (in dBm) among receivers.
   3640  */
   3641 static int
   3642 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3643 {
   3644 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3645 	uint8_t mask, agc;
   3646 	int rssi;
   3647 
   3648 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3649 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3650 
   3651 	rssi = 0;
   3652 	if (mask & IWN_ANT_A)
   3653 		rssi = MAX(rssi, phy->rssi[0]);
   3654 	if (mask & IWN_ANT_B)
   3655 		rssi = MAX(rssi, phy->rssi[2]);
   3656 	if (mask & IWN_ANT_C)
   3657 		rssi = MAX(rssi, phy->rssi[4]);
   3658 
   3659 	return rssi - agc - IWN_RSSI_TO_DBM;
   3660 }
   3661 
   3662 static int
   3663 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3664 {
   3665 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3666 	uint8_t agc;
   3667 	int rssi;
   3668 
   3669 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3670 
   3671 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3672 		   le16toh(phy->rssi[1]) & 0xff);
   3673 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3674 
   3675 	return rssi - agc - IWN_RSSI_TO_DBM;
   3676 }
   3677 
   3678 /*
   3679  * Retrieve the average noise (in dBm) among receivers.
   3680  */
   3681 static int
   3682 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3683 {
   3684 	int i, total, nbant, noise;
   3685 
   3686 	total = nbant = 0;
   3687 	for (i = 0; i < 3; i++) {
   3688 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3689 			continue;
   3690 		total += noise;
   3691 		nbant++;
   3692 	}
   3693 	/* There should be at least one antenna but check anyway. */
   3694 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3695 }
   3696 
   3697 /*
   3698  * Compute temperature (in degC) from last received statistics.
   3699  */
   3700 static int
   3701 iwn4965_get_temperature(struct iwn_softc *sc)
   3702 {
   3703 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3704 	int32_t r1, r2, r3, r4, temp;
   3705 
   3706 	r1 = le32toh(uc->temp[0].chan20MHz);
   3707 	r2 = le32toh(uc->temp[1].chan20MHz);
   3708 	r3 = le32toh(uc->temp[2].chan20MHz);
   3709 	r4 = le32toh(sc->rawtemp);
   3710 
   3711 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
   3712 		return 0;
   3713 
   3714 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3715 	r4 = (r4 << 8) >> 8;
   3716 	/* Compute temperature in Kelvin. */
   3717 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3718 	temp = (temp * 97) / 100 + 8;
   3719 
   3720 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3721 	return IWN_KTOC(temp);
   3722 }
   3723 
   3724 static int
   3725 iwn5000_get_temperature(struct iwn_softc *sc)
   3726 {
   3727 	int32_t temp;
   3728 
   3729 	/*
   3730 	 * Temperature is not used by the driver for 5000 Series because
   3731 	 * TX power calibration is handled by firmware.  We export it to
   3732 	 * users through the sensor framework though.
   3733 	 */
   3734 	temp = le32toh(sc->rawtemp);
   3735 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3736 		temp = (temp / -5) + sc->temp_off;
   3737 		temp = IWN_KTOC(temp);
   3738 	}
   3739 	return temp;
   3740 }
   3741 
   3742 /*
   3743  * Initialize sensitivity calibration state machine.
   3744  */
   3745 static int
   3746 iwn_init_sensitivity(struct iwn_softc *sc)
   3747 {
   3748 	const struct iwn_hal *hal = sc->sc_hal;
   3749 	struct iwn_calib_state *calib = &sc->calib;
   3750 	uint32_t flags;
   3751 	int error;
   3752 
   3753 	/* Reset calibration state machine. */
   3754 	memset(calib, 0, sizeof (*calib));
   3755 	calib->state = IWN_CALIB_STATE_INIT;
   3756 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3757 	/* Set initial correlation values. */
   3758 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3759 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3760 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3761 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3762 	calib->cck_x4      = 125;
   3763 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3764 	calib->energy_cck  = sc->limits->energy_cck;
   3765 
   3766 	/* Write initial sensitivity. */
   3767 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3768 		return error;
   3769 
   3770 	/* Write initial gains. */
   3771 	if ((error = hal->init_gains(sc)) != 0)
   3772 		return error;
   3773 
   3774 	/* Request statistics at each beacon interval. */
   3775 	flags = 0;
   3776 	DPRINTF(("sending request for statistics\n"));
   3777 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3778 }
   3779 
   3780 /*
   3781  * Collect noise and RSSI statistics for the first 20 beacons received
   3782  * after association and use them to determine connected antennas and
   3783  * to set differential gains.
   3784  */
   3785 static void
   3786 iwn_collect_noise(struct iwn_softc *sc,
   3787     const struct iwn_rx_general_stats *stats)
   3788 {
   3789 	const struct iwn_hal *hal = sc->sc_hal;
   3790 	struct iwn_calib_state *calib = &sc->calib;
   3791 	uint32_t val;
   3792 	int i;
   3793 
   3794 	/* Accumulate RSSI and noise for all 3 antennas. */
   3795 	for (i = 0; i < 3; i++) {
   3796 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3797 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3798 	}
   3799 	/* NB: We update differential gains only once after 20 beacons. */
   3800 	if (++calib->nbeacons < 20)
   3801 		return;
   3802 
   3803 	/* Determine highest average RSSI. */
   3804 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3805 	val = MAX(calib->rssi[2], val);
   3806 
   3807 	/* Determine which antennas are connected. */
   3808 	sc->chainmask = sc->rxchainmask;
   3809 	for (i = 0; i < 3; i++)
   3810 		if (val - calib->rssi[i] > 15 * 20)
   3811 			sc->chainmask &= ~(1 << i);
   3812 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   3813 	    sc->rxchainmask, sc->chainmask));
   3814 
   3815 	/* If none of the TX antennas are connected, keep at least one. */
   3816 	if ((sc->chainmask & sc->txchainmask) == 0)
   3817 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   3818 
   3819 	(void)hal->set_gains(sc);
   3820 	calib->state = IWN_CALIB_STATE_RUN;
   3821 
   3822 #ifdef notyet
   3823 	/* XXX Disable RX chains with no antennas connected. */
   3824 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   3825 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
   3826 #endif
   3827 
   3828 	/* Enable power-saving mode if requested by user. */
   3829 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3830 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3831 }
   3832 
   3833 static int
   3834 iwn4965_init_gains(struct iwn_softc *sc)
   3835 {
   3836 	struct iwn_phy_calib_gain cmd;
   3837 
   3838 	memset(&cmd, 0, sizeof cmd);
   3839 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3840 	/* Differential gains initially set to 0 for all 3 antennas. */
   3841 	DPRINTF(("setting initial differential gains\n"));
   3842 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3843 }
   3844 
   3845 static int
   3846 iwn5000_init_gains(struct iwn_softc *sc)
   3847 {
   3848 	struct iwn_phy_calib cmd;
   3849 
   3850 	memset(&cmd, 0, sizeof cmd);
   3851 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   3852 	cmd.ngroups = 1;
   3853 	cmd.isvalid = 1;
   3854 	DPRINTF(("setting initial differential gains\n"));
   3855 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3856 }
   3857 
   3858 static int
   3859 iwn4965_set_gains(struct iwn_softc *sc)
   3860 {
   3861 	struct iwn_calib_state *calib = &sc->calib;
   3862 	struct iwn_phy_calib_gain cmd;
   3863 	int i, delta, noise;
   3864 
   3865 	/* Get minimal noise among connected antennas. */
   3866 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   3867 	for (i = 0; i < 3; i++)
   3868 		if (sc->chainmask & (1 << i))
   3869 			noise = MIN(calib->noise[i], noise);
   3870 
   3871 	memset(&cmd, 0, sizeof cmd);
   3872 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3873 	/* Set differential gains for connected antennas. */
   3874 	for (i = 0; i < 3; i++) {
   3875 		if (sc->chainmask & (1 << i)) {
   3876 			/* Compute attenuation (in unit of 1.5dB). */
   3877 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   3878 			/* NB: delta <= 0 */
   3879 			/* Limit to [-4.5dB,0]. */
   3880 			cmd.gain[i] = MIN(abs(delta), 3);
   3881 			if (delta < 0)
   3882 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   3883 		}
   3884 	}
   3885 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   3886 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   3887 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3888 }
   3889 
   3890 static int
   3891 iwn5000_set_gains(struct iwn_softc *sc)
   3892 {
   3893 	struct iwn_calib_state *calib = &sc->calib;
   3894 	struct iwn_phy_calib_gain cmd;
   3895 	int i, ant, div, delta;
   3896 
   3897 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   3898 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   3899 
   3900 	memset(&cmd, 0, sizeof cmd);
   3901 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
   3902 	cmd.ngroups = 1;
   3903 	cmd.isvalid = 1;
   3904 	/* Get first available RX antenna as referential. */
   3905 	ant = IWN_LSB(sc->rxchainmask);
   3906 	/* Set differential gains for other antennas. */
   3907 	for (i = ant + 1; i < 3; i++) {
   3908 		if (sc->chainmask & (1 << i)) {
   3909 			/* The delta is relative to antenna "ant". */
   3910 			delta = ((int32_t)calib->noise[ant] -
   3911 			    (int32_t)calib->noise[i]) / div;
   3912 			/* Limit to [-4.5dB,+4.5dB]. */
   3913 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   3914 			if (delta < 0)
   3915 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   3916 		}
   3917 	}
   3918 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   3919 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   3920 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3921 }
   3922 
   3923 /*
   3924  * Tune RF RX sensitivity based on the number of false alarms detected
   3925  * during the last beacon period.
   3926  */
   3927 static void
   3928 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   3929 {
   3930 #define inc(val, inc, max)			\
   3931 	if ((val) < (max)) {			\
   3932 		if ((val) < (max) - (inc))	\
   3933 			(val) += (inc);		\
   3934 		else				\
   3935 			(val) = (max);		\
   3936 		needs_update = 1;		\
   3937 	}
   3938 #define dec(val, dec, min)			\
   3939 	if ((val) > (min)) {			\
   3940 		if ((val) > (min) + (dec))	\
   3941 			(val) -= (dec);		\
   3942 		else				\
   3943 			(val) = (min);		\
   3944 		needs_update = 1;		\
   3945 	}
   3946 
   3947 	const struct iwn_sensitivity_limits *limits = sc->limits;
   3948 	struct iwn_calib_state *calib = &sc->calib;
   3949 	uint32_t val, rxena, fa;
   3950 	uint32_t energy[3], energy_min;
   3951 	uint8_t noise[3], noise_ref;
   3952 	int i, needs_update = 0;
   3953 
   3954 	/* Check that we've been enabled long enough. */
   3955 	if ((rxena = le32toh(stats->general.load)) == 0)
   3956 		return;
   3957 
   3958 	/* Compute number of false alarms since last call for OFDM. */
   3959 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   3960 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   3961 	fa *= 200 * 1024;	/* 200TU */
   3962 
   3963 	/* Save counters values for next call. */
   3964 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   3965 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   3966 
   3967 	if (fa > 50 * rxena) {
   3968 		/* High false alarm count, decrease sensitivity. */
   3969 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   3970 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   3971 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   3972 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   3973 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   3974 
   3975 	} else if (fa < 5 * rxena) {
   3976 		/* Low false alarm count, increase sensitivity. */
   3977 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   3978 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   3979 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   3980 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   3981 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   3982 	}
   3983 
   3984 	/* Compute maximum noise among 3 receivers. */
   3985 	for (i = 0; i < 3; i++)
   3986 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   3987 	val = MAX(noise[0], noise[1]);
   3988 	val = MAX(noise[2], val);
   3989 	/* Insert it into our samples table. */
   3990 	calib->noise_samples[calib->cur_noise_sample] = val;
   3991 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   3992 
   3993 	/* Compute maximum noise among last 20 samples. */
   3994 	noise_ref = calib->noise_samples[0];
   3995 	for (i = 1; i < 20; i++)
   3996 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   3997 
   3998 	/* Compute maximum energy among 3 receivers. */
   3999 	for (i = 0; i < 3; i++)
   4000 		energy[i] = le32toh(stats->general.energy[i]);
   4001 	val = MIN(energy[0], energy[1]);
   4002 	val = MIN(energy[2], val);
   4003 	/* Insert it into our samples table. */
   4004 	calib->energy_samples[calib->cur_energy_sample] = val;
   4005 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   4006 
   4007 	/* Compute minimum energy among last 10 samples. */
   4008 	energy_min = calib->energy_samples[0];
   4009 	for (i = 1; i < 10; i++)
   4010 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   4011 	energy_min += 6;
   4012 
   4013 	/* Compute number of false alarms since last call for CCK. */
   4014 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   4015 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   4016 	fa *= 200 * 1024;	/* 200TU */
   4017 
   4018 	/* Save counters values for next call. */
   4019 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   4020 	calib->fa_cck = le32toh(stats->cck.fa);
   4021 
   4022 	if (fa > 50 * rxena) {
   4023 		/* High false alarm count, decrease sensitivity. */
   4024 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   4025 		calib->cck_state = IWN_CCK_STATE_HIFA;
   4026 		calib->low_fa = 0;
   4027 
   4028 		if (calib->cck_x4 > 160) {
   4029 			calib->noise_ref = noise_ref;
   4030 			if (calib->energy_cck > 2)
   4031 				dec(calib->energy_cck, 2, energy_min);
   4032 		}
   4033 		if (calib->cck_x4 < 160) {
   4034 			calib->cck_x4 = 161;
   4035 			needs_update = 1;
   4036 		} else
   4037 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   4038 
   4039 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   4040 
   4041 	} else if (fa < 5 * rxena) {
   4042 		/* Low false alarm count, increase sensitivity. */
   4043 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   4044 		calib->cck_state = IWN_CCK_STATE_LOFA;
   4045 		calib->low_fa++;
   4046 
   4047 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   4048 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   4049 		     calib->low_fa > 100)) {
   4050 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   4051 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   4052 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   4053 		}
   4054 	} else {
   4055 		/* Not worth to increase or decrease sensitivity. */
   4056 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   4057 		calib->low_fa = 0;
   4058 		calib->noise_ref = noise_ref;
   4059 
   4060 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4061 			/* Previous interval had many false alarms. */
   4062 			dec(calib->energy_cck, 8, energy_min);
   4063 		}
   4064 		calib->cck_state = IWN_CCK_STATE_INIT;
   4065 	}
   4066 
   4067 	if (needs_update)
   4068 		(void)iwn_send_sensitivity(sc);
   4069 #undef dec
   4070 #undef inc
   4071 }
   4072 
   4073 static int
   4074 iwn_send_sensitivity(struct iwn_softc *sc)
   4075 {
   4076 	struct iwn_calib_state *calib = &sc->calib;
   4077 	struct iwn_sensitivity_cmd cmd;
   4078 
   4079 	memset(&cmd, 0, sizeof cmd);
   4080 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4081 	/* OFDM modulation. */
   4082 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4083 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4084 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4085 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4086 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4087 	cmd.energy_ofdm_th   = htole16(62);
   4088 	/* CCK modulation. */
   4089 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4090 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4091 	cmd.energy_cck       = htole16(calib->energy_cck);
   4092 	/* Barker modulation: use default values. */
   4093 	cmd.corr_barker      = htole16(190);
   4094 	cmd.corr_barker_mrc  = htole16(390);
   4095 
   4096 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4097 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4098 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4099 	    calib->energy_cck));
   4100 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
   4101 }
   4102 
   4103 /*
   4104  * Set STA mode power saving level (between 0 and 5).
   4105  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4106  */
   4107 static int
   4108 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4109 {
   4110 	struct iwn_pmgt_cmd cmd;
   4111 	const struct iwn_pmgt *pmgt;
   4112 	uint32_t maxp, skip_dtim;
   4113 	pcireg_t reg;
   4114 	int i;
   4115 
   4116 	/* Select which PS parameters to use. */
   4117 	if (dtim <= 2)
   4118 		pmgt = &iwn_pmgt[0][level];
   4119 	else if (dtim <= 10)
   4120 		pmgt = &iwn_pmgt[1][level];
   4121 	else
   4122 		pmgt = &iwn_pmgt[2][level];
   4123 
   4124 	memset(&cmd, 0, sizeof cmd);
   4125 	if (level != 0)	/* not CAM */
   4126 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4127 	if (level == 5)
   4128 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4129 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4130 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4131 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   4132 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4133 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4134 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4135 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4136 
   4137 	if (dtim == 0) {
   4138 		dtim = 1;
   4139 		skip_dtim = 0;
   4140 	} else
   4141 		skip_dtim = pmgt->skip_dtim;
   4142 	if (skip_dtim != 0) {
   4143 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4144 		maxp = pmgt->intval[4];
   4145 		if (maxp == (uint32_t)-1)
   4146 			maxp = dtim * (skip_dtim + 1);
   4147 		else if (maxp > dtim)
   4148 			maxp = (maxp / dtim) * dtim;
   4149 	} else
   4150 		maxp = dtim;
   4151 	for (i = 0; i < 5; i++)
   4152 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4153 
   4154 	DPRINTF(("setting power saving level to %d\n", level));
   4155 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4156 }
   4157 
   4158 static int
   4159 iwn_config(struct iwn_softc *sc)
   4160 {
   4161 	const struct iwn_hal *hal = sc->sc_hal;
   4162 	struct ieee80211com *ic = &sc->sc_ic;
   4163 	struct ifnet *ifp = ic->ic_ifp;
   4164 	struct iwn_bluetooth bluetooth;
   4165 	uint32_t txmask;
   4166 	uint16_t rxchain;
   4167 	int error;
   4168 
   4169 	/* Configure valid TX chains for 5000 Series. */
   4170 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4171 		txmask = htole32(sc->txchainmask);
   4172 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4173 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4174 		    sizeof txmask, 0);
   4175 		if (error != 0) {
   4176 			aprint_error_dev(sc->sc_dev,
   4177 			    "could not configure valid TX chains\n");
   4178 			return error;
   4179 		}
   4180 	}
   4181 
   4182 	/* Configure bluetooth coexistence. */
   4183 	memset(&bluetooth, 0, sizeof bluetooth);
   4184 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
   4185 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4186 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4187 	DPRINTF(("configuring bluetooth coexistence\n"));
   4188 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4189 	if (error != 0) {
   4190 		aprint_error_dev(sc->sc_dev,
   4191 		    "could not configure bluetooth coexistence\n");
   4192 		return error;
   4193 	}
   4194 
   4195 	/* Set mode, channel, RX filter and enable RX. */
   4196 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4197 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4198 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4199 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4200 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4201 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4202 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4203 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4204 	switch (ic->ic_opmode) {
   4205 	case IEEE80211_M_STA:
   4206 		sc->rxon.mode = IWN_MODE_STA;
   4207 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4208 		break;
   4209 	case IEEE80211_M_MONITOR:
   4210 		sc->rxon.mode = IWN_MODE_MONITOR;
   4211 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4212 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4213 		break;
   4214 	default:
   4215 		/* Should not get there. */
   4216 		break;
   4217 	}
   4218 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4219 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4220 	sc->rxon.ht_single_mask = 0xff;
   4221 	sc->rxon.ht_dual_mask = 0xff;
   4222 	sc->rxon.ht_triple_mask = 0xff;
   4223 	rxchain =
   4224 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4225 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4226 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4227 	sc->rxon.rxchain = htole16(rxchain);
   4228 	DPRINTF(("setting configuration\n"));
   4229 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
   4230 	if (error != 0) {
   4231 		aprint_error_dev(sc->sc_dev,
   4232 		    "RXON command failed\n");
   4233 		return error;
   4234 	}
   4235 
   4236 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4237 		aprint_error_dev(sc->sc_dev,
   4238 		    "could not add broadcast node\n");
   4239 		return error;
   4240 	}
   4241 
   4242 	/* Configuration has changed, set TX power accordingly. */
   4243 	if ((error = hal->set_txpower(sc, 0)) != 0) {
   4244 		aprint_error_dev(sc->sc_dev,
   4245 		    "could not set TX power\n");
   4246 		return error;
   4247 	}
   4248 
   4249 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4250 		aprint_error_dev(sc->sc_dev,
   4251 		    "could not set critical temperature\n");
   4252 		return error;
   4253 	}
   4254 
   4255 	/* Set power saving level to CAM during initialization. */
   4256 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4257 		aprint_error_dev(sc->sc_dev,
   4258 		    "could not set power saving level\n");
   4259 		return error;
   4260 	}
   4261 	return 0;
   4262 }
   4263 
   4264 static int
   4265 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4266 {
   4267 	struct ieee80211com *ic = &sc->sc_ic;
   4268 	struct iwn_scan_hdr *hdr;
   4269 	struct iwn_cmd_data *tx;
   4270 	struct iwn_scan_essid *essid;
   4271 	struct iwn_scan_chan *chan;
   4272 	struct ieee80211_frame *wh;
   4273 	struct ieee80211_rateset *rs;
   4274 	struct ieee80211_channel *c;
   4275 	uint8_t *buf, *frm;
   4276 	uint16_t rxchain;
   4277 	uint8_t txant;
   4278 	int buflen, error;
   4279 
   4280 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4281 	if (buf == NULL) {
   4282 		aprint_error_dev(sc->sc_dev,
   4283 		    "could not allocate buffer for scan command\n");
   4284 		return ENOMEM;
   4285 	}
   4286 	hdr = (struct iwn_scan_hdr *)buf;
   4287 	/*
   4288 	 * Move to the next channel if no frames are received within 10ms
   4289 	 * after sending the probe request.
   4290 	 */
   4291 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4292 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4293 
   4294 	/* Select antennas for scanning. */
   4295 	rxchain =
   4296 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4297 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4298 	    IWN_RXCHAIN_DRIVER_FORCE;
   4299 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4300 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4301 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4302 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4303 	} else	/* Use all available RX antennas. */
   4304 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4305 	hdr->rxchain = htole16(rxchain);
   4306 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4307 
   4308 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4309 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4310 	tx->id = sc->sc_hal->broadcast_id;
   4311 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4312 
   4313 	if (flags & IEEE80211_CHAN_5GHZ) {
   4314 		hdr->crc_threshold = htole16(1);
   4315 		/* Send probe requests at 6Mbps. */
   4316 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4317 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4318 	} else {
   4319 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4320 		/* Send probe requests at 1Mbps. */
   4321 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4322 		tx->rflags = IWN_RFLAG_CCK;
   4323 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4324 	}
   4325 	/* Use the first valid TX antenna. */
   4326 	txant = IWN_LSB(sc->txchainmask);
   4327 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4328 
   4329 	essid = (struct iwn_scan_essid *)(tx + 1);
   4330 	if (ic->ic_des_esslen != 0) {
   4331 		essid[0].id = IEEE80211_ELEMID_SSID;
   4332 		essid[0].len = ic->ic_des_esslen;
   4333 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4334 	}
   4335 	/*
   4336 	 * Build a probe request frame.  Most of the following code is a
   4337 	 * copy & paste of what is done in net80211.
   4338 	 */
   4339 	wh = (struct ieee80211_frame *)(essid + 20);
   4340 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4341 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4342 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4343 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4344 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4345 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4346 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4347 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4348 
   4349 	frm = (uint8_t *)(wh + 1);
   4350 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4351 	frm = ieee80211_add_rates(frm, rs);
   4352 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4353 		frm = ieee80211_add_xrates(frm, rs);
   4354 
   4355 	/* Set length of probe request. */
   4356 	tx->len = htole16(frm - (uint8_t *)wh);
   4357 
   4358 	chan = (struct iwn_scan_chan *)frm;
   4359 	for (c  = &ic->ic_channels[1];
   4360 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4361 		if ((c->ic_flags & flags) != flags)
   4362 			continue;
   4363 
   4364 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4365 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4366 		chan->flags = 0;
   4367 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4368 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4369 		if (ic->ic_des_esslen != 0)
   4370 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4371 		chan->dsp_gain = 0x6e;
   4372 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4373 			chan->rf_gain = 0x3b;
   4374 			chan->active  = htole16(24);
   4375 			chan->passive = htole16(110);
   4376 		} else {
   4377 			chan->rf_gain = 0x28;
   4378 			chan->active  = htole16(36);
   4379 			chan->passive = htole16(120);
   4380 		}
   4381 		hdr->nchan++;
   4382 		chan++;
   4383 	}
   4384 
   4385 	buflen = (uint8_t *)chan - buf;
   4386 	hdr->len = htole16(buflen);
   4387 
   4388 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4389 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4390 	free(buf, M_DEVBUF);
   4391 	return error;
   4392 }
   4393 
   4394 static int
   4395 iwn_auth(struct iwn_softc *sc)
   4396 {
   4397 	const struct iwn_hal *hal = sc->sc_hal;
   4398 	struct ieee80211com *ic = &sc->sc_ic;
   4399 	struct ieee80211_node *ni = ic->ic_bss;
   4400 	int error;
   4401 
   4402 	/* Update adapter configuration. */
   4403 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4404 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4405 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4406 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4407 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4408 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4409 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4410 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4411 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4412 	switch (ic->ic_curmode) {
   4413 	case IEEE80211_MODE_11A:
   4414 		sc->rxon.cck_mask  = 0;
   4415 		sc->rxon.ofdm_mask = 0x15;
   4416 		break;
   4417 	case IEEE80211_MODE_11B:
   4418 		sc->rxon.cck_mask  = 0x03;
   4419 		sc->rxon.ofdm_mask = 0;
   4420 		break;
   4421 	default:	/* Assume 802.11b/g. */
   4422 		sc->rxon.cck_mask  = 0x0f;
   4423 		sc->rxon.ofdm_mask = 0x15;
   4424 	}
   4425 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4426 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4427 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
   4428 	if (error != 0) {
   4429 		aprint_error_dev(sc->sc_dev,
   4430 		    "RXON command failed\n");
   4431 		return error;
   4432 	}
   4433 
   4434 	/* Configuration has changed, set TX power accordingly. */
   4435 	if ((error = hal->set_txpower(sc, 1)) != 0) {
   4436 		aprint_error_dev(sc->sc_dev,
   4437 		    "could not set TX power\n");
   4438 		return error;
   4439 	}
   4440 	/*
   4441 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4442 	 * add the broadcast node again.
   4443 	 */
   4444 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4445 		aprint_error_dev(sc->sc_dev,
   4446 		    "could not add broadcast node\n");
   4447 		return error;
   4448 	}
   4449 	return 0;
   4450 }
   4451 
   4452 static int
   4453 iwn_run(struct iwn_softc *sc)
   4454 {
   4455 	const struct iwn_hal *hal = sc->sc_hal;
   4456 	struct ieee80211com *ic = &sc->sc_ic;
   4457 	struct ieee80211_node *ni = ic->ic_bss;
   4458 	struct iwn_node_info node;
   4459 	int error;
   4460 
   4461 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4462 		/* Link LED blinks while monitoring. */
   4463 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4464 		return 0;
   4465 	}
   4466 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4467 		aprint_error_dev(sc->sc_dev,
   4468 		    "could not set timing\n");
   4469 		return error;
   4470 	}
   4471 
   4472 	/* Update adapter configuration. */
   4473 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4474 	/* Short preamble and slot time are negotiated when associating. */
   4475 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4476 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4477 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4478 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4479 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4480 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4481 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4482 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
   4483 	if (error != 0) {
   4484 		aprint_error_dev(sc->sc_dev,
   4485 		    "could not update configuration\n");
   4486 		return error;
   4487 	}
   4488 
   4489 	/* Configuration has changed, set TX power accordingly. */
   4490 	if ((error = hal->set_txpower(sc, 1)) != 0) {
   4491 		aprint_error_dev(sc->sc_dev,
   4492 		    "could not set TX power\n");
   4493 		return error;
   4494 	}
   4495 
   4496 	/* Fake a join to initialize the TX rate. */
   4497 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4498 	iwn_newassoc(ni, 1);
   4499 
   4500 	/* Add BSS node. */
   4501 	memset(&node, 0, sizeof node);
   4502 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4503 	node.id = IWN_ID_BSS;
   4504 #ifdef notyet
   4505 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4506 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4507 #endif
   4508 	DPRINTF(("adding BSS node\n"));
   4509 	error = hal->add_node(sc, &node, 1);
   4510 	if (error != 0) {
   4511 		aprint_error_dev(sc->sc_dev,
   4512 		    "could not add BSS node\n");
   4513 		return error;
   4514 	}
   4515 	DPRINTF(("setting link quality for node %d\n", node.id));
   4516 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4517 		aprint_error_dev(sc->sc_dev,
   4518 		    "could not setup link quality for node %d\n", node.id);
   4519 		return error;
   4520 	}
   4521 
   4522 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4523 		aprint_error_dev(sc->sc_dev,
   4524 		    "could not set sensitivity\n");
   4525 		return error;
   4526 	}
   4527 	/* Start periodic calibration timer. */
   4528 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4529 	sc->calib_cnt = 0;
   4530 	callout_schedule(&sc->calib_to, hz/2);
   4531 
   4532 	/* Link LED always on while associated. */
   4533 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4534 	return 0;
   4535 }
   4536 
   4537 #ifdef IWN_HWCRYPTO
   4538 /*
   4539  * We support CCMP hardware encryption/decryption of unicast frames only.
   4540  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4541  */
   4542 static int
   4543 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4544     struct ieee80211_key *k)
   4545 {
   4546 	struct iwn_softc *sc = ic->ic_softc;
   4547 	const struct iwn_hal *hal = sc->sc_hal;
   4548 	struct iwn_node *wn = (void *)ni;
   4549 	struct iwn_node_info node;
   4550 	uint16_t kflags;
   4551 
   4552 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4553 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4554 		return ieee80211_set_key(ic, ni, k);
   4555 
   4556 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4557 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4558 		kflags |= IWN_KFLAG_GROUP;
   4559 
   4560 	memset(&node, 0, sizeof node);
   4561 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4562 	    hal->broadcast_id : wn->id;
   4563 	node.control = IWN_NODE_UPDATE;
   4564 	node.flags = IWN_FLAG_SET_KEY;
   4565 	node.kflags = htole16(kflags);
   4566 	node.kid = k->k_id;
   4567 	memcpy(node.key, k->k_key, k->k_len);
   4568 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   4569 	return hal->add_node(sc, &node, 1);
   4570 }
   4571 
   4572 static void
   4573 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4574     struct ieee80211_key *k)
   4575 {
   4576 	struct iwn_softc *sc = ic->ic_softc;
   4577 	const struct iwn_hal *hal = sc->sc_hal;
   4578 	struct iwn_node *wn = (void *)ni;
   4579 	struct iwn_node_info node;
   4580 
   4581 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4582 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   4583 		/* See comment about other ciphers above. */
   4584 		ieee80211_delete_key(ic, ni, k);
   4585 		return;
   4586 	}
   4587 	if (ic->ic_state != IEEE80211_S_RUN)
   4588 		return;	/* Nothing to do. */
   4589 	memset(&node, 0, sizeof node);
   4590 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4591 	    hal->broadcast_id : wn->id;
   4592 	node.control = IWN_NODE_UPDATE;
   4593 	node.flags = IWN_FLAG_SET_KEY;
   4594 	node.kflags = htole16(IWN_KFLAG_INVALID);
   4595 	node.kid = 0xff;
   4596 	DPRINTF(("delete keys for node %d\n", node.id));
   4597 	(void)hal->add_node(sc, &node, 1);
   4598 }
   4599 #endif
   4600 
   4601 /* XXX Added for NetBSD (copied from rev 1.39). */
   4602 
   4603 static int
   4604 iwn_wme_update(struct ieee80211com *ic)
   4605 {
   4606 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   4607 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   4608 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   4609 	const struct wmeParams *wmep;
   4610 	struct iwn_edca_params cmd;
   4611 	int ac;
   4612 
   4613 	/* don't override default WME values if WME is not actually enabled */
   4614 	if (!(ic->ic_flags & IEEE80211_F_WME))
   4615 		return 0;
   4616 	cmd.flags = 0;
   4617 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   4618 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   4619 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   4620 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   4621 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   4622 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   4623 
   4624 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   4625 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   4626 					cmd.ac[ac].cwmin,
   4627 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   4628 	}
   4629 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   4630 #undef IWN_USEC
   4631 #undef IWN_EXP2
   4632 }
   4633 
   4634 #ifndef IEEE80211_NO_HT
   4635 /*
   4636  * This function is called by upper layer when an ADDBA request is received
   4637  * from another STA and before the ADDBA response is sent.
   4638  */
   4639 static int
   4640 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4641     uint8_t tid)
   4642 {
   4643 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   4644 	struct iwn_softc *sc = ic->ic_softc;
   4645 	struct iwn_node *wn = (void *)ni;
   4646 	struct iwn_node_info node;
   4647 
   4648 	memset(&node, 0, sizeof node);
   4649 	node.id = wn->id;
   4650 	node.control = IWN_NODE_UPDATE;
   4651 	node.flags = IWN_FLAG_SET_ADDBA;
   4652 	node.addba_tid = tid;
   4653 	node.addba_ssn = htole16(ba->ba_winstart);
   4654 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   4655 	    ba->ba_winstart));
   4656 	return sc->sc_hal->add_node(sc, &node, 1);
   4657 }
   4658 
   4659 /*
   4660  * This function is called by upper layer on teardown of an HT-immediate
   4661  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
   4662  */
   4663 static void
   4664 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4665     uint8_t tid)
   4666 {
   4667 	struct iwn_softc *sc = ic->ic_softc;
   4668 	struct iwn_node *wn = (void *)ni;
   4669 	struct iwn_node_info node;
   4670 
   4671 	memset(&node, 0, sizeof node);
   4672 	node.id = wn->id;
   4673 	node.control = IWN_NODE_UPDATE;
   4674 	node.flags = IWN_FLAG_SET_DELBA;
   4675 	node.delba_tid = tid;
   4676 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   4677 	(void)sc->sc_hal->add_node(sc, &node, 1);
   4678 }
   4679 
   4680 /*
   4681  * This function is called by upper layer when an ADDBA response is received
   4682  * from another STA.
   4683  */
   4684 static int
   4685 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4686     uint8_t tid)
   4687 {
   4688 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4689 	struct iwn_softc *sc = ic->ic_softc;
   4690 	const struct iwn_hal *hal = sc->sc_hal;
   4691 	struct iwn_node *wn = (void *)ni;
   4692 	struct iwn_node_info node;
   4693 	int error;
   4694 
   4695 	/* Enable TX for the specified RA/TID. */
   4696 	wn->disable_tid &= ~(1 << tid);
   4697 	memset(&node, 0, sizeof node);
   4698 	node.id = wn->id;
   4699 	node.control = IWN_NODE_UPDATE;
   4700 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   4701 	node.disable_tid = htole16(wn->disable_tid);
   4702 	error = hal->add_node(sc, &node, 1);
   4703 	if (error != 0)
   4704 		return error;
   4705 
   4706 	if ((error = iwn_nic_lock(sc)) != 0)
   4707 		return error;
   4708 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   4709 	iwn_nic_unlock(sc);
   4710 	return 0;
   4711 }
   4712 
   4713 static void
   4714 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4715     uint8_t tid)
   4716 {
   4717 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4718 	struct iwn_softc *sc = ic->ic_softc;
   4719 
   4720 	if (iwn_nic_lock(sc) != 0)
   4721 		return;
   4722 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   4723 	iwn_nic_unlock(sc);
   4724 }
   4725 
   4726 static void
   4727 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4728     uint8_t tid, uint16_t ssn)
   4729 {
   4730 	struct iwn_node *wn = (void *)ni;
   4731 	int qid = 7 + tid;
   4732 
   4733 	/* Stop TX scheduler while we're changing its configuration. */
   4734 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4735 	    IWN4965_TXQ_STATUS_CHGACT);
   4736 
   4737 	/* Assign RA/TID translation to the queue. */
   4738 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   4739 	    wn->id << 4 | tid);
   4740 
   4741 	/* Enable chain-building mode for the queue. */
   4742 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   4743 
   4744 	/* Set starting sequence number from the ADDBA request. */
   4745 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4746 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4747 
   4748 	/* Set scheduler window size. */
   4749 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   4750 	    IWN_SCHED_WINSZ);
   4751 	/* Set scheduler frame limit. */
   4752 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4753 	    IWN_SCHED_LIMIT << 16);
   4754 
   4755 	/* Enable interrupts for the queue. */
   4756 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4757 
   4758 	/* Mark the queue as active. */
   4759 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4760 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   4761 	    iwn_tid2fifo[tid] << 1);
   4762 }
   4763 
   4764 static void
   4765 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4766 {
   4767 	int qid = 7 + tid;
   4768 
   4769 	/* Stop TX scheduler while we're changing its configuration. */
   4770 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4771 	    IWN4965_TXQ_STATUS_CHGACT);
   4772 
   4773 	/* Set starting sequence number from the ADDBA request. */
   4774 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4775 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4776 
   4777 	/* Disable interrupts for the queue. */
   4778 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4779 
   4780 	/* Mark the queue as inactive. */
   4781 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4782 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   4783 }
   4784 
   4785 static void
   4786 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4787     uint8_t tid, uint16_t ssn)
   4788 {
   4789 	struct iwn_node *wn = (void *)ni;
   4790 	int qid = 10 + tid;
   4791 
   4792 	/* Stop TX scheduler while we're changing its configuration. */
   4793 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4794 	    IWN5000_TXQ_STATUS_CHGACT);
   4795 
   4796 	/* Assign RA/TID translation to the queue. */
   4797 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   4798 	    wn->id << 4 | tid);
   4799 
   4800 	/* Enable chain-building mode for the queue. */
   4801 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   4802 
   4803 	/* Enable aggregation for the queue. */
   4804 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4805 
   4806 	/* Set starting sequence number from the ADDBA request. */
   4807 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4808 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4809 
   4810 	/* Set scheduler window size and frame limit. */
   4811 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   4812 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   4813 
   4814 	/* Enable interrupts for the queue. */
   4815 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4816 
   4817 	/* Mark the queue as active. */
   4818 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4819 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   4820 }
   4821 
   4822 static void
   4823 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4824 {
   4825 	int qid = 10 + tid;
   4826 
   4827 	/* Stop TX scheduler while we're changing its configuration. */
   4828 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4829 	    IWN5000_TXQ_STATUS_CHGACT);
   4830 
   4831 	/* Disable aggregation for the queue. */
   4832 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4833 
   4834 	/* Set starting sequence number from the ADDBA request. */
   4835 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4836 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4837 
   4838 	/* Disable interrupts for the queue. */
   4839 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4840 
   4841 	/* Mark the queue as inactive. */
   4842 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4843 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   4844 }
   4845 #endif	/* !IEEE80211_NO_HT */
   4846 
   4847 /*
   4848  * Query calibration tables from the initialization firmware.  We do this
   4849  * only once at first boot.  Called from a process context.
   4850  */
   4851 static int
   4852 iwn5000_query_calibration(struct iwn_softc *sc)
   4853 {
   4854 	struct iwn5000_calib_config cmd;
   4855 	int error;
   4856 
   4857 	memset(&cmd, 0, sizeof cmd);
   4858 	cmd.ucode.once.enable = 0xffffffff;
   4859 	cmd.ucode.once.start  = 0xffffffff;
   4860 	cmd.ucode.once.send   = 0xffffffff;
   4861 	cmd.ucode.flags       = 0xffffffff;
   4862 	DPRINTF(("sending calibration query\n"));
   4863 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   4864 	if (error != 0)
   4865 		return error;
   4866 
   4867 	/* Wait at most two seconds for calibration to complete. */
   4868 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   4869 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   4870 	return error;
   4871 }
   4872 
   4873 /*
   4874  * Send calibration results to the runtime firmware.  These results were
   4875  * obtained on first boot from the initialization firmware.
   4876  */
   4877 static int
   4878 iwn5000_send_calibration(struct iwn_softc *sc)
   4879 {
   4880 	int idx, error;
   4881 
   4882 	for (idx = 0; idx < 5; idx++) {
   4883 		if (sc->calibcmd[idx].buf == NULL)
   4884 			continue;	/* No results available. */
   4885 		DPRINTF(("send calibration result idx=%d len=%d\n",
   4886 		    idx, sc->calibcmd[idx].len));
   4887 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   4888 		    sc->calibcmd[idx].len, 0);
   4889 		if (error != 0) {
   4890 			aprint_error_dev(sc->sc_dev,
   4891 			    "could not send calibration result\n");
   4892 			return error;
   4893 		}
   4894 	}
   4895 	return 0;
   4896 }
   4897 
   4898 static int
   4899 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   4900 {
   4901 	struct iwn5000_wimax_coex wimax;
   4902 
   4903 #ifdef notyet
   4904 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   4905 		/* Enable WiMAX coexistence for combo adapters. */
   4906 		wimax.flags =
   4907 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   4908 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   4909 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   4910 		    IWN_WIMAX_COEX_ENABLE;
   4911 		memcpy(wimax.events, iwn6050_wimax_events,
   4912 		    sizeof iwn6050_wimax_events);
   4913 	} else
   4914 #endif
   4915 	{
   4916 		/* Disable WiMAX coexistence. */
   4917 		wimax.flags = 0;
   4918 		memset(wimax.events, 0, sizeof wimax.events);
   4919 	}
   4920 	DPRINTF(("Configuring WiMAX coexistence\n"));
   4921 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   4922 }
   4923 
   4924 /*
   4925  * This function is called after the runtime firmware notifies us of its
   4926  * readiness (called in a process context.)
   4927  */
   4928 static int
   4929 iwn4965_post_alive(struct iwn_softc *sc)
   4930 {
   4931 	int error, qid;
   4932 
   4933 	if ((error = iwn_nic_lock(sc)) != 0)
   4934 		return error;
   4935 
   4936 	/* Clear TX scheduler state in SRAM. */
   4937 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   4938 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   4939 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   4940 
   4941 	/* Set physical address of TX scheduler rings (1KB aligned.) */
   4942 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   4943 
   4944 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   4945 
   4946 	/* Disable chain mode for all our 16 queues. */
   4947 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   4948 
   4949 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   4950 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   4951 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   4952 
   4953 		/* Set scheduler window size. */
   4954 		iwn_mem_write(sc, sc->sched_base +
   4955 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   4956 		/* Set scheduler frame limit. */
   4957 		iwn_mem_write(sc, sc->sched_base +
   4958 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4959 		    IWN_SCHED_LIMIT << 16);
   4960 	}
   4961 
   4962 	/* Enable interrupts for all our 16 queues. */
   4963 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   4964 	/* Identify TX FIFO rings (0-7). */
   4965 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   4966 
   4967 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   4968 	for (qid = 0; qid < 7; qid++) {
   4969 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   4970 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4971 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   4972 	}
   4973 	iwn_nic_unlock(sc);
   4974 	return 0;
   4975 }
   4976 
   4977 /*
   4978  * This function is called after the initialization or runtime firmware
   4979  * notifies us of its readiness (called in a process context.)
   4980  */
   4981 static int
   4982 iwn5000_post_alive(struct iwn_softc *sc)
   4983 {
   4984 	int error, qid;
   4985 
   4986 	/* Switch to using ICT interrupt mode. */
   4987 	iwn5000_ict_reset(sc);
   4988 
   4989 	if ((error = iwn_nic_lock(sc)) != 0)
   4990 		return error;
   4991 
   4992 	/* Clear TX scheduler state in SRAM. */
   4993 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   4994 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   4995 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   4996 
   4997 	/* Set physical address of TX scheduler rings (1KB aligned.) */
   4998 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   4999 
   5000 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5001 
   5002 	/* Enable chain mode for all queues, except command queue. */
   5003 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   5004 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   5005 
   5006 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   5007 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   5008 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5009 
   5010 		iwn_mem_write(sc, sc->sched_base +
   5011 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   5012 		/* Set scheduler window size and frame limit. */
   5013 		iwn_mem_write(sc, sc->sched_base +
   5014 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5015 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5016 	}
   5017 
   5018 	/* Enable interrupts for all our 20 queues. */
   5019 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   5020 	/* Identify TX FIFO rings (0-7). */
   5021 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   5022 
   5023 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5024 	for (qid = 0; qid < 7; qid++) {
   5025 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   5026 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5027 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   5028 	}
   5029 	iwn_nic_unlock(sc);
   5030 
   5031 	/* Configure WiMAX coexistence for combo adapters. */
   5032 	error = iwn5000_send_wimax_coex(sc);
   5033 	if (error != 0) {
   5034 		aprint_error_dev(sc->sc_dev,
   5035 		    "could not configure WiMAX coexistence\n");
   5036 		return error;
   5037 	}
   5038 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5039 		struct iwn5000_phy_calib_crystal cmd;
   5040 
   5041 		/* Perform crystal calibration. */
   5042 		memset(&cmd, 0, sizeof cmd);
   5043 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5044 		cmd.ngroups = 1;
   5045 		cmd.isvalid = 1;
   5046 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5047 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5048 		DPRINTF(("sending crystal calibration %d, %d\n",
   5049 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5050 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5051 		if (error != 0) {
   5052 			aprint_error_dev(sc->sc_dev,
   5053 			    "crystal calibration failed\n");
   5054 			return error;
   5055 		}
   5056 	}
   5057 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5058 		/* Query calibration from the initialization firmware. */
   5059 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5060 			aprint_error_dev(sc->sc_dev,
   5061 			    "could not query calibration\n");
   5062 			return error;
   5063 		}
   5064 		/*
   5065 		 * We have the calibration results now, reboot with the
   5066 		 * runtime firmware (call ourselves recursively!)
   5067 		 */
   5068 		iwn_hw_stop(sc);
   5069 		error = iwn_hw_init(sc);
   5070 	} else {
   5071 		/* Send calibration results to runtime firmware. */
   5072 		error = iwn5000_send_calibration(sc);
   5073 	}
   5074 	return error;
   5075 }
   5076 
   5077 /*
   5078  * The firmware boot code is small and is intended to be copied directly into
   5079  * the NIC internal memory (no DMA transfer.)
   5080  */
   5081 static int
   5082 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5083 {
   5084 	int error, ntries;
   5085 
   5086 	size /= sizeof (uint32_t);
   5087 
   5088 	if ((error = iwn_nic_lock(sc)) != 0)
   5089 		return error;
   5090 
   5091 	/* Copy microcode image into NIC memory. */
   5092 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5093 	    (const uint32_t *)ucode, size);
   5094 
   5095 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5096 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5097 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5098 
   5099 	/* Start boot load now. */
   5100 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5101 
   5102 	/* Wait for transfer to complete. */
   5103 	for (ntries = 0; ntries < 1000; ntries++) {
   5104 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5105 		    IWN_BSM_WR_CTRL_START))
   5106 			break;
   5107 		DELAY(10);
   5108 	}
   5109 	if (ntries == 1000) {
   5110 		aprint_error_dev(sc->sc_dev,
   5111 		    "could not load boot firmware\n");
   5112 		iwn_nic_unlock(sc);
   5113 		return ETIMEDOUT;
   5114 	}
   5115 
   5116 	/* Enable boot after power up. */
   5117 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5118 
   5119 	iwn_nic_unlock(sc);
   5120 	return 0;
   5121 }
   5122 
   5123 static int
   5124 iwn4965_load_firmware(struct iwn_softc *sc)
   5125 {
   5126 	struct iwn_fw_info *fw = &sc->fw;
   5127 	struct iwn_dma_info *dma = &sc->fw_dma;
   5128 	int error;
   5129 
   5130 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5131 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5132 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5133 	    BUS_DMASYNC_PREWRITE);
   5134 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5135 	    fw->init.text, fw->init.textsz);
   5136 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5137 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5138 
   5139 	/* Tell adapter where to find initialization sections. */
   5140 	if ((error = iwn_nic_lock(sc)) != 0)
   5141 		return error;
   5142 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5143 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5144 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5145 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5146 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5147 	iwn_nic_unlock(sc);
   5148 
   5149 	/* Load firmware boot code. */
   5150 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5151 	if (error != 0) {
   5152 		aprint_error_dev(sc->sc_dev,
   5153 		    "could not load boot firmware\n");
   5154 		return error;
   5155 	}
   5156 	/* Now press "execute". */
   5157 	IWN_WRITE(sc, IWN_RESET, 0);
   5158 
   5159 	/* Wait at most one second for first alive notification. */
   5160 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5161 		aprint_error_dev(sc->sc_dev,
   5162 		    "timeout waiting for adapter to initialize\n");
   5163 		return error;
   5164 	}
   5165 
   5166 	/* Retrieve current temperature for initial TX power calibration. */
   5167 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5168 	sc->temp = iwn4965_get_temperature(sc);
   5169 
   5170 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5171 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5172 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5173 	    BUS_DMASYNC_PREWRITE);
   5174 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5175 	    fw->main.text, fw->main.textsz);
   5176 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5177 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5178 
   5179 	/* Tell adapter where to find runtime sections. */
   5180 	if ((error = iwn_nic_lock(sc)) != 0)
   5181 		return error;
   5182 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5183 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5184 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5185 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5186 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5187 	    IWN_FW_UPDATED | fw->main.textsz);
   5188 	iwn_nic_unlock(sc);
   5189 
   5190 	return 0;
   5191 }
   5192 
   5193 static int
   5194 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5195     const uint8_t *section, int size)
   5196 {
   5197 	struct iwn_dma_info *dma = &sc->fw_dma;
   5198 	int error;
   5199 
   5200 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5201 	memcpy(dma->vaddr, section, size);
   5202 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5203 
   5204 	if ((error = iwn_nic_lock(sc)) != 0)
   5205 		return error;
   5206 
   5207 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5208 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5209 
   5210 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5211 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5212 	    IWN_LOADDR(dma->paddr));
   5213 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5214 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5215 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5216 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5217 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5218 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5219 
   5220 	/* Kick Flow Handler to start DMA transfer. */
   5221 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5222 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5223 
   5224 	iwn_nic_unlock(sc);
   5225 
   5226 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5227 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5228 }
   5229 
   5230 static int
   5231 iwn5000_load_firmware(struct iwn_softc *sc)
   5232 {
   5233 	struct iwn_fw_part *fw;
   5234 	int error;
   5235 
   5236 	/* Load the initialization firmware on first boot only. */
   5237 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5238 	    &sc->fw.main : &sc->fw.init;
   5239 
   5240 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5241 	    fw->text, fw->textsz);
   5242 	if (error != 0) {
   5243 		aprint_error_dev(sc->sc_dev,
   5244 		    "could not load firmware %s section\n", ".text");
   5245 		return error;
   5246 	}
   5247 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5248 	    fw->data, fw->datasz);
   5249 	if (error != 0) {
   5250 		aprint_error_dev(sc->sc_dev,
   5251 		    "could not load firmware %s section\n", ".data");
   5252 		return error;
   5253 	}
   5254 
   5255 	/* Now press "execute". */
   5256 	IWN_WRITE(sc, IWN_RESET, 0);
   5257 	return 0;
   5258 }
   5259 
   5260 static int
   5261 iwn_read_firmware(struct iwn_softc *sc)
   5262 {
   5263 	const struct iwn_hal *hal = sc->sc_hal;
   5264 	struct iwn_fw_info *fw = &sc->fw;
   5265 	firmware_handle_t fwh;
   5266 	const uint32_t *ptr;
   5267 	uint32_t rev;
   5268 	size_t size;
   5269 	int error;
   5270 
   5271 	/* Initialize for error returns */
   5272 	fw->data = NULL;
   5273 	fw->datasz = 0;
   5274 
   5275 	/* Open firmware image. */
   5276 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5277 		aprint_error_dev(sc->sc_dev,
   5278 		    "could not get firmware handle %s\n", sc->fwname);
   5279 		return error;
   5280 	}
   5281 	size = firmware_get_size(fwh);
   5282 	if (size < 28) {
   5283 		aprint_error_dev(sc->sc_dev,
   5284 		    "truncated firmware header: %zu bytes\n", size);
   5285 		firmware_close(fwh);
   5286 		return EINVAL;
   5287 	}
   5288 
   5289 	/* Read the firmware. */
   5290 	fw->data = firmware_malloc(size);
   5291 	if (fw->data == NULL) {
   5292 		aprint_error_dev(sc->sc_dev,
   5293 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5294 		firmware_close(fwh);
   5295 		return ENOMEM;
   5296 	}
   5297 	error = firmware_read(fwh, 0, fw->data, size);
   5298 	firmware_close(fwh);
   5299 	fw->datasz = size;
   5300 	if (error != 0) {
   5301 		aprint_error_dev(sc->sc_dev,
   5302 		    "could not read firmware %s\n", sc->fwname);
   5303 		goto out;
   5304 	}
   5305 
   5306 	/* Process firmware header. */
   5307 	ptr = (const uint32_t *)fw->data;
   5308 	rev = le32toh(*ptr++);
   5309 	/* Check firmware API version. */
   5310 	if (IWN_FW_API(rev) <= 1) {
   5311 		aprint_error_dev(sc->sc_dev,
   5312 		    "bad firmware, need API version >=2\n");
   5313 		goto out;
   5314 	}
   5315 	if (IWN_FW_API(rev) >= 3) {
   5316 		/* Skip build number (version 2 header). */
   5317 		size -= 4;
   5318 		ptr++;
   5319 	}
   5320 	fw->main.textsz = le32toh(*ptr++);
   5321 	fw->main.datasz = le32toh(*ptr++);
   5322 	fw->init.textsz = le32toh(*ptr++);
   5323 	fw->init.datasz = le32toh(*ptr++);
   5324 	fw->boot.textsz = le32toh(*ptr++);
   5325 	size -= 24;
   5326 
   5327 	/* Sanity-check firmware header. */
   5328 	if (fw->main.textsz > hal->fw_text_maxsz ||
   5329 	    fw->main.datasz > hal->fw_data_maxsz ||
   5330 	    fw->init.textsz > hal->fw_text_maxsz ||
   5331 	    fw->init.datasz > hal->fw_data_maxsz ||
   5332 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5333 	    (fw->boot.textsz & 3) != 0) {
   5334 		aprint_error_dev(sc->sc_dev,
   5335 		    "invalid firmware header\n");
   5336 		goto out;
   5337 	}
   5338 
   5339 	/* Check that all firmware sections fit. */
   5340 	if (fw->main.textsz + fw->main.datasz + fw->init.textsz +
   5341 	    fw->init.datasz + fw->boot.textsz > size) {
   5342 		aprint_error_dev(sc->sc_dev,
   5343 		    "firmware file too short: %zu bytes\n", size);
   5344 		goto out;
   5345 	}
   5346 
   5347 	/* Get pointers to firmware sections. */
   5348 	fw->main.text = (const uint8_t *)ptr;
   5349 	fw->main.data = fw->main.text + fw->main.textsz;
   5350 	fw->init.text = fw->main.data + fw->main.datasz;
   5351 	fw->init.data = fw->init.text + fw->init.textsz;
   5352 	fw->boot.text = fw->init.data + fw->init.datasz;
   5353 
   5354 	return 0;
   5355 out:
   5356 	firmware_free(fw->data, fw->datasz);
   5357 	fw->data = NULL;
   5358 	fw->datasz = 0;
   5359 	return error ? error : EINVAL;
   5360 }
   5361 
   5362 static int
   5363 iwn_clock_wait(struct iwn_softc *sc)
   5364 {
   5365 	int ntries;
   5366 
   5367 	/* Set "initialization complete" bit. */
   5368 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5369 
   5370 	/* Wait for clock stabilization. */
   5371 	for (ntries = 0; ntries < 2500; ntries++) {
   5372 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5373 			return 0;
   5374 		DELAY(10);
   5375 	}
   5376 	aprint_error_dev(sc->sc_dev,
   5377 	    "timeout waiting for clock stabilization\n");
   5378 	return ETIMEDOUT;
   5379 }
   5380 
   5381 static int
   5382 iwn_apm_init(struct iwn_softc *sc)
   5383 {
   5384 	pcireg_t reg;
   5385 	int error;
   5386 
   5387 	/* Disable L0s exit timer (NMI bug workaround.) */
   5388 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   5389 	/* Don't wait for ICH L0s (ICH bug workaround.) */
   5390 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   5391 
   5392 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
   5393 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   5394 
   5395 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   5396 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   5397 
   5398 	/* Retrieve PCIe Active State Power Management (ASPM). */
   5399 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   5400 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   5401 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   5402 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   5403 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5404 	else
   5405 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5406 
   5407 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   5408 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   5409 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   5410 
   5411 	/* Wait for clock stabilization before accessing prph. */
   5412 	if ((error = iwn_clock_wait(sc)) != 0)
   5413 		return error;
   5414 
   5415 	if ((error = iwn_nic_lock(sc)) != 0)
   5416 		return error;
   5417 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   5418 		/* Enable DMA and BSM (Bootstrap State Machine.) */
   5419 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5420 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   5421 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   5422 	} else {
   5423 		/* Enable DMA. */
   5424 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5425 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5426 	}
   5427 	DELAY(20);
   5428 	/* Disable L1-Active. */
   5429 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   5430 	iwn_nic_unlock(sc);
   5431 
   5432 	return 0;
   5433 }
   5434 
   5435 static void
   5436 iwn_apm_stop_master(struct iwn_softc *sc)
   5437 {
   5438 	int ntries;
   5439 
   5440 	/* Stop busmaster DMA activity. */
   5441 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   5442 	for (ntries = 0; ntries < 100; ntries++) {
   5443 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   5444 			return;
   5445 		DELAY(10);
   5446 	}
   5447 	aprint_error_dev(sc->sc_dev,
   5448 	    "timeout waiting for master\n");
   5449 }
   5450 
   5451 static void
   5452 iwn_apm_stop(struct iwn_softc *sc)
   5453 {
   5454 	iwn_apm_stop_master(sc);
   5455 
   5456 	/* Reset the entire device. */
   5457 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   5458 	DELAY(10);
   5459 	/* Clear "initialization complete" bit. */
   5460 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5461 }
   5462 
   5463 static int
   5464 iwn4965_nic_config(struct iwn_softc *sc)
   5465 {
   5466 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   5467 		/*
   5468 		 * I don't believe this to be correct but this is what the
   5469 		 * vendor driver is doing. Probably the bits should not be
   5470 		 * shifted in IWN_RFCFG_*.
   5471 		 */
   5472 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5473 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5474 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5475 		    IWN_RFCFG_DASH(sc->rfcfg));
   5476 	}
   5477 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5478 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5479 	return 0;
   5480 }
   5481 
   5482 static int
   5483 iwn5000_nic_config(struct iwn_softc *sc)
   5484 {
   5485 	uint32_t tmp;
   5486 	int error;
   5487 
   5488 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   5489 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5490 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5491 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5492 		    IWN_RFCFG_DASH(sc->rfcfg));
   5493 	}
   5494 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5495 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5496 
   5497 	if ((error = iwn_nic_lock(sc)) != 0)
   5498 		return error;
   5499 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   5500 
   5501 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   5502 		/*
   5503 		 * Select first Switching Voltage Regulator (1.32V) to
   5504 		 * solve a stability issue related to noisy DC2DC line
   5505 		 * in the silicon of 1000 Series.
   5506 		 */
   5507 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   5508 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   5509 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   5510 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   5511 	}
   5512 	iwn_nic_unlock(sc);
   5513 
   5514 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   5515 		/* Use internal power amplifier only. */
   5516 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   5517 	}
   5518 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
   5519 		/* Indicate that ROM calibration version is >=6. */
   5520 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   5521 	}
   5522 	return 0;
   5523 }
   5524 
   5525 /*
   5526  * Take NIC ownership over Intel Active Management Technology (AMT).
   5527  */
   5528 static int
   5529 iwn_hw_prepare(struct iwn_softc *sc)
   5530 {
   5531 	int ntries;
   5532 
   5533 	/* Check if hardware is ready. */
   5534 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5535 	for (ntries = 0; ntries < 5; ntries++) {
   5536 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5537 		    IWN_HW_IF_CONFIG_NIC_READY)
   5538 			return 0;
   5539 		DELAY(10);
   5540 	}
   5541 
   5542 	/* Hardware not ready, force into ready state. */
   5543 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   5544 	for (ntries = 0; ntries < 15000; ntries++) {
   5545 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5546 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   5547 			break;
   5548 		DELAY(10);
   5549 	}
   5550 	if (ntries == 15000)
   5551 		return ETIMEDOUT;
   5552 
   5553 	/* Hardware should be ready now. */
   5554 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5555 	for (ntries = 0; ntries < 5; ntries++) {
   5556 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5557 		    IWN_HW_IF_CONFIG_NIC_READY)
   5558 			return 0;
   5559 		DELAY(10);
   5560 	}
   5561 	return ETIMEDOUT;
   5562 }
   5563 
   5564 static int
   5565 iwn_hw_init(struct iwn_softc *sc)
   5566 {
   5567 	const struct iwn_hal *hal = sc->sc_hal;
   5568 	int error, chnl, qid;
   5569 
   5570 	/* Clear pending interrupts. */
   5571 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5572 
   5573 	if ((error = iwn_apm_init(sc)) != 0) {
   5574 		aprint_error_dev(sc->sc_dev,
   5575 		    "could not power ON adapter\n");
   5576 		return error;
   5577 	}
   5578 
   5579 	/* Select VMAIN power source. */
   5580 	if ((error = iwn_nic_lock(sc)) != 0)
   5581 		return error;
   5582 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   5583 	iwn_nic_unlock(sc);
   5584 
   5585 	/* Perform adapter-specific initialization. */
   5586 	if ((error = hal->nic_config(sc)) != 0)
   5587 		return error;
   5588 
   5589 	/* Initialize RX ring. */
   5590 	if ((error = iwn_nic_lock(sc)) != 0)
   5591 		return error;
   5592 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   5593 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   5594 	/* Set physical address of RX ring (256-byte aligned.) */
   5595 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   5596 	/* Set physical address of RX status (16-byte aligned.) */
   5597 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   5598 	/* Enable RX. */
   5599 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   5600 	    IWN_FH_RX_CONFIG_ENA           |
   5601 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   5602 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   5603 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   5604 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   5605 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   5606 	iwn_nic_unlock(sc);
   5607 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   5608 
   5609 	if ((error = iwn_nic_lock(sc)) != 0)
   5610 		return error;
   5611 
   5612 	/* Initialize TX scheduler. */
   5613 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
   5614 
   5615 	/* Set physical address of "keep warm" page (16-byte aligned.) */
   5616 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   5617 
   5618 	/* Initialize TX rings. */
   5619 	for (qid = 0; qid < hal->ntxqs; qid++) {
   5620 		struct iwn_tx_ring *txq = &sc->txq[qid];
   5621 
   5622 		/* Set physical address of TX ring (256-byte aligned.) */
   5623 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   5624 		    txq->desc_dma.paddr >> 8);
   5625 	}
   5626 	iwn_nic_unlock(sc);
   5627 
   5628 	/* Enable DMA channels. */
   5629 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
   5630 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   5631 		    IWN_FH_TX_CONFIG_DMA_ENA |
   5632 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   5633 	}
   5634 
   5635 	/* Clear "radio off" and "commands blocked" bits. */
   5636 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5637 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   5638 
   5639 	/* Clear pending interrupts. */
   5640 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5641 	/* Enable interrupt coalescing. */
   5642 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   5643 	/* Enable interrupts. */
   5644 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   5645 
   5646 	/* _Really_ make sure "radio off" bit is cleared! */
   5647 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5648 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5649 
   5650 	if ((error = hal->load_firmware(sc)) != 0) {
   5651 		aprint_error_dev(sc->sc_dev,
   5652 		    "could not load firmware\n");
   5653 		return error;
   5654 	}
   5655 	/* Wait at most one second for firmware alive notification. */
   5656 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5657 		aprint_error_dev(sc->sc_dev,
   5658 		    "timeout waiting for adapter to initialize\n");
   5659 		return error;
   5660 	}
   5661 	/* Do post-firmware initialization. */
   5662 	return hal->post_alive(sc);
   5663 }
   5664 
   5665 static void
   5666 iwn_hw_stop(struct iwn_softc *sc)
   5667 {
   5668 	const struct iwn_hal *hal = sc->sc_hal;
   5669 	int chnl, qid, ntries;
   5670 	uint32_t tmp;
   5671 
   5672 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   5673 
   5674 	/* Disable interrupts. */
   5675 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   5676 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5677 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   5678 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5679 
   5680 	/* Make sure we no longer hold the NIC lock. */
   5681 	iwn_nic_unlock(sc);
   5682 
   5683 	/* Stop TX scheduler. */
   5684 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
   5685 
   5686 	/* Stop all DMA channels. */
   5687 	if (iwn_nic_lock(sc) == 0) {
   5688 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
   5689 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   5690 			for (ntries = 0; ntries < 200; ntries++) {
   5691 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
   5692 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
   5693 				    IWN_FH_TX_STATUS_IDLE(chnl))
   5694 					break;
   5695 				DELAY(10);
   5696 			}
   5697 		}
   5698 		iwn_nic_unlock(sc);
   5699 	}
   5700 
   5701 	/* Stop RX ring. */
   5702 	iwn_reset_rx_ring(sc, &sc->rxq);
   5703 
   5704 	/* Reset all TX rings. */
   5705 	for (qid = 0; qid < hal->ntxqs; qid++)
   5706 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   5707 
   5708 	if (iwn_nic_lock(sc) == 0) {
   5709 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   5710 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5711 		iwn_nic_unlock(sc);
   5712 	}
   5713 	DELAY(5);
   5714 	/* Power OFF adapter. */
   5715 	iwn_apm_stop(sc);
   5716 }
   5717 
   5718 static int
   5719 iwn_init(struct ifnet *ifp)
   5720 {
   5721 	struct iwn_softc *sc = ifp->if_softc;
   5722 	struct ieee80211com *ic = &sc->sc_ic;
   5723 	int error;
   5724 
   5725 	if ((error = iwn_hw_prepare(sc)) != 0) {
   5726 		aprint_error_dev(sc->sc_dev,
   5727 		    "hardware not ready\n");
   5728 		goto fail;
   5729 	}
   5730 
   5731 	/* Check that the radio is not disabled by hardware switch. */
   5732 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   5733 		aprint_error_dev(sc->sc_dev,
   5734 		    "radio is disabled by hardware switch\n");
   5735 		error = EPERM;	/* :-) */
   5736 		goto fail;
   5737 	}
   5738 
   5739 	/* Read firmware images from the filesystem. */
   5740 	if ((error = iwn_read_firmware(sc)) != 0) {
   5741 		aprint_error_dev(sc->sc_dev,
   5742 		    "could not read firmware\n");
   5743 		goto fail;
   5744 	}
   5745 
   5746 	/* Initialize interrupt mask to default value. */
   5747 	sc->int_mask = IWN_INT_MASK_DEF;
   5748 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5749 
   5750 	/* Initialize hardware and upload firmware. */
   5751 	KASSERT(sc->fw.data != NULL && sc->fw.datasz > 0);
   5752 	error = iwn_hw_init(sc);
   5753 	firmware_free(sc->fw.data, sc->fw.datasz);
   5754 	sc->fw.data = NULL;
   5755 	sc->fw.datasz = 0;
   5756 	if (error != 0) {
   5757 		aprint_error_dev(sc->sc_dev,
   5758 		    "could not initialize hardware\n");
   5759 		goto fail;
   5760 	}
   5761 
   5762 	/* Configure adapter now that it is ready. */
   5763 	if ((error = iwn_config(sc)) != 0) {
   5764 		aprint_error_dev(sc->sc_dev,
   5765 		    "could not configure device\n");
   5766 		goto fail;
   5767 	}
   5768 
   5769 	ifp->if_flags &= ~IFF_OACTIVE;
   5770 	ifp->if_flags |= IFF_RUNNING;
   5771 
   5772 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   5773 		ieee80211_begin_scan(ic, 0);
   5774 	else
   5775 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   5776 
   5777 	return 0;
   5778 
   5779 fail:	iwn_stop(ifp, 1);
   5780 	return error;
   5781 }
   5782 
   5783 static void
   5784 iwn_stop(struct ifnet *ifp, int disable)
   5785 {
   5786 	struct iwn_softc *sc = ifp->if_softc;
   5787 	struct ieee80211com *ic = &sc->sc_ic;
   5788 
   5789 	ifp->if_timer = sc->sc_tx_timer = 0;
   5790 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5791 
   5792 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   5793 
   5794 	/* Power OFF hardware. */
   5795 	iwn_hw_stop(sc);
   5796 
   5797 #ifndef SMALL_KERNEL
   5798 	/* Temperature sensor is no longer valid. */
   5799 	sc->sc_sensor.value_cur = 0;
   5800 	sc->sc_sensor.state = ENVSYS_SINVALID;
   5801 #endif
   5802 }
   5803 
   5804 /*
   5805  * XXX MCLGETI alternative
   5806  *
   5807  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   5808  * as long as there are available free buffers then it uses MEXTMALLOC.,
   5809  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   5810  * The MCLGET4K code is used for testing an alternative mbuf cache.
   5811  */
   5812 
   5813 static struct mbuf *
   5814 MCLGETIalt(struct iwn_softc *sc, int how,
   5815     struct ifnet *ifp __unused, u_int size)
   5816 {
   5817 	struct mbuf *m;
   5818 #ifdef IWN_USE_RBUF
   5819 	struct iwn_rbuf *rbuf;
   5820 #endif
   5821 
   5822 	MGETHDR(m, how, MT_DATA);
   5823 	if (m == NULL)
   5824 		return NULL;
   5825 
   5826 #ifdef IWN_USE_RBUF
   5827 	if (sc->rxq.nb_free_entries > 0 &&
   5828 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   5829 		/* Attach buffer to mbuf header. */
   5830 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   5831 		m->m_flags |= M_EXT_RW;
   5832 	}
   5833 	else {
   5834 		MEXTMALLOC(m, size, how);
   5835 		if ((m->m_flags & M_EXT) == 0) {
   5836 			m_freem(m);
   5837 			return NULL;
   5838 		}
   5839 	}
   5840 
   5841 #else
   5842 #ifdef MCLGET4K
   5843 	if (size == 4096)
   5844 		MCLGET4K(m, how);
   5845 	else
   5846 		panic("size must be 4k");
   5847 #else
   5848 	MEXTMALLOC(m, size, how);
   5849 #endif
   5850 	if ((m->m_flags & M_EXT) == 0) {
   5851 		m_freem(m);
   5852 		return NULL;
   5853 	}
   5854 #endif
   5855 
   5856 	return m;
   5857 }
   5858 
   5859 #ifdef IWN_USE_RBUF
   5860 static struct iwn_rbuf *
   5861 iwn_alloc_rbuf(struct iwn_softc *sc)
   5862 {
   5863 	struct iwn_rbuf *rbuf;
   5864 	mutex_enter(&sc->rxq.freelist_mtx);
   5865 
   5866 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   5867 	if (rbuf != NULL) {
   5868 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   5869 		sc->rxq.nb_free_entries --;
   5870 	}
   5871 	mutex_exit(&sc->rxq.freelist_mtx);
   5872 	return rbuf;
   5873 }
   5874 
   5875 /*
   5876  * This is called automatically by the network stack when the mbuf to which
   5877  * our RX buffer is attached is freed.
   5878  */
   5879 static void
   5880 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   5881 {
   5882 	struct iwn_rbuf *rbuf = arg;
   5883 	struct iwn_softc *sc = rbuf->sc;
   5884 
   5885 	/* Put the RX buffer back in the free list. */
   5886 	mutex_enter(&sc->rxq.freelist_mtx);
   5887 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   5888 	mutex_exit(&sc->rxq.freelist_mtx);
   5889 
   5890 	sc->rxq.nb_free_entries ++;
   5891 	if (__predict_true(m != NULL))
   5892 		pool_cache_put(mb_cache, m);
   5893 }
   5894 
   5895 static int
   5896 iwn_alloc_rpool(struct iwn_softc *sc)
   5897 {
   5898 	struct iwn_rx_ring *ring = &sc->rxq;
   5899 	struct iwn_rbuf *rbuf;
   5900 	int i, error;
   5901 
   5902 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   5903 
   5904 	/* Allocate a big chunk of DMA'able memory... */
   5905 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   5906 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   5907 	if (error != 0) {
   5908 		aprint_error_dev(sc->sc_dev,
   5909 		    "could not allocate RX buffers DMA memory\n");
   5910 		return error;
   5911 	}
   5912 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   5913 	SLIST_INIT(&ring->freelist);
   5914 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   5915 		rbuf = &ring->rbuf[i];
   5916 
   5917 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   5918 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   5919 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   5920 
   5921 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   5922 	}
   5923 	ring->nb_free_entries = IWN_RBUF_COUNT;
   5924 	return 0;
   5925 }
   5926 
   5927 static void
   5928 iwn_free_rpool(struct iwn_softc *sc)
   5929 {
   5930 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   5931 }
   5932 #endif
   5933 
   5934 /*
   5935  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
   5936  * Copyright (c) 2001 Atsushi Onoe
   5937  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
   5938  * Copyright (c) 2007-2009 Damien Bergamini
   5939  * All rights reserved.
   5940  */
   5941 
   5942 /*
   5943  * Add an SSID element to a frame (see 7.3.2.1).
   5944  */
   5945 static u_int8_t *
   5946 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
   5947 {
   5948 	*frm++ = IEEE80211_ELEMID_SSID;
   5949 	*frm++ = len;
   5950 	memcpy(frm, ssid, len);
   5951 	return frm + len;
   5952 }
   5953 
   5954 /*
   5955  * Add a supported rates element to a frame (see 7.3.2.2).
   5956  */
   5957 static u_int8_t *
   5958 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   5959 {
   5960 	int nrates;
   5961 
   5962 	*frm++ = IEEE80211_ELEMID_RATES;
   5963 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
   5964 	*frm++ = nrates;
   5965 	memcpy(frm, rs->rs_rates, nrates);
   5966 	return frm + nrates;
   5967 }
   5968 
   5969 /*
   5970  * Add an extended supported rates element to a frame (see 7.3.2.14).
   5971  */
   5972 static u_int8_t *
   5973 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   5974 {
   5975 	int nrates;
   5976 
   5977 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
   5978 
   5979 	*frm++ = IEEE80211_ELEMID_XRATES;
   5980 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   5981 	*frm++ = nrates;
   5982 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   5983 	return frm + nrates;
   5984 }
   5985 
   5986 /*
   5987  * XXX: Hack to set the current channel to the value advertised in beacons or
   5988  * probe responses. Only used during AP detection.
   5989  * XXX: Duplicated from if_iwi.c
   5990  */
   5991 static void
   5992 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
   5993 {
   5994 	struct ieee80211_frame *wh;
   5995 	uint8_t subtype;
   5996 	uint8_t *frm, *efrm;
   5997 
   5998 	wh = mtod(m, struct ieee80211_frame *);
   5999 
   6000 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6001 		return;
   6002 
   6003 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6004 
   6005 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6006 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6007 		return;
   6008 
   6009 	frm = (uint8_t *)(wh + 1);
   6010 	efrm = mtod(m, uint8_t *) + m->m_len;
   6011 
   6012 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6013 	while (frm < efrm) {
   6014 		if (*frm == IEEE80211_ELEMID_DSPARMS)
   6015 #if IEEE80211_CHAN_MAX < 255
   6016 		if (frm[2] <= IEEE80211_CHAN_MAX)
   6017 #endif
   6018 			ic->ic_curchan = &ic->ic_channels[frm[2]];
   6019 
   6020 		frm += frm[1] + 2;
   6021 	}
   6022 }
   6023 
   6024