if_iwn.c revision 1.44 1 /* $NetBSD: if_iwn.c,v 1.44 2010/05/02 02:06:15 christos Exp $ */
2 /* $OpenBSD: if_iwn.c,v 1.88 2010/04/10 08:37:36 damien Exp $ */
3
4 /*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.44 2010/05/02 02:06:15 christos Exp $");
26
27 #define IWN_USE_RBUF /* Use local storage for RX */
28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */
29
30 /* XXX Avoid sensor code (correct option for NetBSD too?) */
31 #undef SMALL_KERNEL
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45
46 #include <dev/sysmon/sysmonvar.h>
47
48 #include <machine/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #include <dev/firmload.h>
74
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77
78 static const pci_product_id_t iwn_devices[] = {
79 /* XXX From old NetBSD iwn driver (used by pcidevs) */
80 PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1,
81 PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2,
82 PCI_PRODUCT_INTEL_PRO_WL_5100AGN_1,
83 PCI_PRODUCT_INTEL_PRO_WL_5100AGN_2,
84 PCI_PRODUCT_INTEL_PRO_WL_5300AGN_1,
85 PCI_PRODUCT_INTEL_PRO_WL_5300AGN_2,
86 PCI_PRODUCT_INTEL_PRO_WL_5350AGN_1,
87 PCI_PRODUCT_INTEL_PRO_WL_5350AGN_2,
88 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
89 #if 0
90 /* XXX From new OpenBSD iwn driver (not in pcidevs) */
91 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
92 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
93 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
94 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
95 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
96 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
97 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
98 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
99 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
100 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
101 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
102 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
103 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
104 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
105 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
106 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
107 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
108 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
109 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
110 #endif
111 };
112
113 /*
114 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
115 */
116 static const struct ieee80211_rateset iwn_rateset_11a =
117 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
118
119 static const struct ieee80211_rateset iwn_rateset_11b =
120 { 4, { 2, 4, 11, 22 } };
121
122 static const struct ieee80211_rateset iwn_rateset_11g =
123 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
124
125 static int iwn_match(device_t , struct cfdata *, void *);
126 static void iwn_attach(device_t , device_t , void *);
127 const struct iwn_hal *iwn_hal_attach(struct iwn_softc *, pci_product_id_t pid);
128 #ifndef SMALL_KERNEL
129 static void iwn_sensor_attach(struct iwn_softc *);
130 #endif
131 static void iwn_radiotap_attach(struct iwn_softc *);
132 static int iwn_detach(device_t , int);
133 #if 0
134 static void iwn_power(int, void *);
135 #endif
136 static bool iwn_resume(device_t, const pmf_qual_t *);
137 static int iwn_nic_lock(struct iwn_softc *);
138 static int iwn_eeprom_lock(struct iwn_softc *);
139 static int iwn_init_otprom(struct iwn_softc *);
140 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
141 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
142 void **, bus_size_t, bus_size_t);
143 static void iwn_dma_contig_free(struct iwn_dma_info *);
144 static int iwn_alloc_sched(struct iwn_softc *);
145 static void iwn_free_sched(struct iwn_softc *);
146 static int iwn_alloc_kw(struct iwn_softc *);
147 static void iwn_free_kw(struct iwn_softc *);
148 static int iwn_alloc_ict(struct iwn_softc *);
149 static void iwn_free_ict(struct iwn_softc *);
150 static int iwn_alloc_fwmem(struct iwn_softc *);
151 static void iwn_free_fwmem(struct iwn_softc *);
152 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
153 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
154 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
155 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
156 int);
157 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
158 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
159 static void iwn5000_ict_reset(struct iwn_softc *);
160 static int iwn_read_eeprom(struct iwn_softc *);
161 static void iwn4965_read_eeprom(struct iwn_softc *);
162 #ifdef IWN_DEBUG
163 static void iwn4965_print_power_group(struct iwn_softc *, int);
164 #endif
165 static void iwn5000_read_eeprom(struct iwn_softc *);
166 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
167 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
168 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
169 static void iwn_newassoc(struct ieee80211_node *, int);
170 static int iwn_media_change(struct ifnet *);
171 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
172 static void iwn_iter_func(void *, struct ieee80211_node *);
173 static void iwn_calib_timeout(void *);
174 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
175 struct iwn_rx_data *);
176 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
177 struct iwn_rx_data *);
178 #ifndef IEEE80211_NO_HT
179 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
180 struct iwn_rx_data *);
181 #endif
182 static void iwn5000_rx_calib_results(struct iwn_softc *,
183 struct iwn_rx_desc *, struct iwn_rx_data *);
184 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
185 struct iwn_rx_data *);
186 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
187 struct iwn_rx_data *);
188 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
189 struct iwn_rx_data *);
190 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
191 uint8_t);
192 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
193 static void iwn_notif_intr(struct iwn_softc *);
194 static void iwn_wakeup_intr(struct iwn_softc *);
195 static void iwn_fatal_intr(struct iwn_softc *);
196 static int iwn_intr(void *);
197 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
198 uint16_t);
199 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
200 uint16_t);
201 #ifdef notyet
202 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
203 #endif
204 static int iwn_tx(struct iwn_softc *, struct mbuf *,
205 struct ieee80211_node *, int);
206 static void iwn_start(struct ifnet *);
207 static void iwn_watchdog(struct ifnet *);
208 static int iwn_ioctl(struct ifnet *, u_long, void *);
209 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
210 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
211 int);
212 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
213 int);
214 static int iwn_set_link_quality(struct iwn_softc *,
215 struct ieee80211_node *);
216 static int iwn_add_broadcast_node(struct iwn_softc *, int);
217 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
218 static int iwn_set_critical_temp(struct iwn_softc *);
219 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
220 static void iwn4965_power_calibration(struct iwn_softc *, int);
221 static int iwn4965_set_txpower(struct iwn_softc *, int);
222 static int iwn5000_set_txpower(struct iwn_softc *, int);
223 static int iwn4965_get_rssi(const struct iwn_rx_stat *);
224 static int iwn5000_get_rssi(const struct iwn_rx_stat *);
225 static int iwn_get_noise(const struct iwn_rx_general_stats *);
226 static int iwn4965_get_temperature(struct iwn_softc *);
227 static int iwn5000_get_temperature(struct iwn_softc *);
228 static int iwn_init_sensitivity(struct iwn_softc *);
229 static void iwn_collect_noise(struct iwn_softc *,
230 const struct iwn_rx_general_stats *);
231 static int iwn4965_init_gains(struct iwn_softc *);
232 static int iwn5000_init_gains(struct iwn_softc *);
233 static int iwn4965_set_gains(struct iwn_softc *);
234 static int iwn5000_set_gains(struct iwn_softc *);
235 static void iwn_tune_sensitivity(struct iwn_softc *,
236 const struct iwn_rx_stats *);
237 static int iwn_send_sensitivity(struct iwn_softc *);
238 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
239 static int iwn_config(struct iwn_softc *);
240 static int iwn_scan(struct iwn_softc *, uint16_t);
241 static int iwn_auth(struct iwn_softc *);
242 static int iwn_run(struct iwn_softc *);
243 #ifdef IWN_HWCRYPTO
244 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
245 struct ieee80211_key *);
246 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
247 struct ieee80211_key *);
248 #endif
249 static int iwn_wme_update(struct ieee80211com *);
250 #ifndef IEEE80211_NO_HT
251 static int iwn_ampdu_rx_start(struct ieee80211com *,
252 struct ieee80211_node *, uint8_t);
253 static void iwn_ampdu_rx_stop(struct ieee80211com *,
254 struct ieee80211_node *, uint8_t);
255 static int iwn_ampdu_tx_start(struct ieee80211com *,
256 struct ieee80211_node *, uint8_t);
257 static void iwn_ampdu_tx_stop(struct ieee80211com *,
258 struct ieee80211_node *, uint8_t);
259 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
260 struct ieee80211_node *, uint8_t, uint16_t);
261 static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
262 uint8_t, uint16_t);
263 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
264 struct ieee80211_node *, uint8_t, uint16_t);
265 static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
266 uint8_t, uint16_t);
267 #endif
268 static int iwn5000_query_calibration(struct iwn_softc *);
269 static int iwn5000_send_calibration(struct iwn_softc *);
270 static int iwn5000_send_wimax_coex(struct iwn_softc *);
271 static int iwn4965_post_alive(struct iwn_softc *);
272 static int iwn5000_post_alive(struct iwn_softc *);
273 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
274 int);
275 static int iwn4965_load_firmware(struct iwn_softc *);
276 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
277 const uint8_t *, int);
278 static int iwn5000_load_firmware(struct iwn_softc *);
279 static int iwn_read_firmware(struct iwn_softc *);
280 static int iwn_clock_wait(struct iwn_softc *);
281 static int iwn_apm_init(struct iwn_softc *);
282 static void iwn_apm_stop_master(struct iwn_softc *);
283 static void iwn_apm_stop(struct iwn_softc *);
284 static int iwn4965_nic_config(struct iwn_softc *);
285 static int iwn5000_nic_config(struct iwn_softc *);
286 static int iwn_hw_prepare(struct iwn_softc *);
287 static int iwn_hw_init(struct iwn_softc *);
288 static void iwn_hw_stop(struct iwn_softc *);
289 static int iwn_init(struct ifnet *);
290 static void iwn_stop(struct ifnet *, int);
291
292 /* XXX MCLGETI alternative */
293 static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
294 struct ifnet *, u_int);
295 #ifdef IWN_USE_RBUF
296 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
297 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
298 static int iwn_alloc_rpool(struct iwn_softc *);
299 static void iwn_free_rpool(struct iwn_softc *);
300 #endif
301
302 /* XXX needed by iwn_scan */
303 static u_int8_t *ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
304 static u_int8_t *ieee80211_add_rates(u_int8_t *,
305 const struct ieee80211_rateset *);
306 static u_int8_t *ieee80211_add_xrates(u_int8_t *,
307 const struct ieee80211_rateset *);
308
309 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *);
310
311 #ifdef IWN_DEBUG
312 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
313 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
314 int iwn_debug = 0;
315 #else
316 #define DPRINTF(x)
317 #define DPRINTFN(n, x)
318 #endif
319
320 static const struct iwn_hal iwn4965_hal = {
321 iwn4965_load_firmware,
322 iwn4965_read_eeprom,
323 iwn4965_post_alive,
324 iwn4965_nic_config,
325 iwn4965_update_sched,
326 iwn4965_get_temperature,
327 iwn4965_get_rssi,
328 iwn4965_set_txpower,
329 iwn4965_init_gains,
330 iwn4965_set_gains,
331 iwn4965_add_node,
332 iwn4965_tx_done,
333 #ifndef IEEE80211_NO_HT
334 iwn4965_ampdu_tx_start,
335 iwn4965_ampdu_tx_stop,
336 #endif
337 IWN4965_NTXQUEUES,
338 IWN4965_NDMACHNLS,
339 IWN4965_ID_BROADCAST,
340 IWN4965_RXONSZ,
341 IWN4965_SCHEDSZ,
342 IWN4965_FW_TEXT_MAXSZ,
343 IWN4965_FW_DATA_MAXSZ,
344 IWN4965_FWSZ,
345 IWN4965_SCHED_TXFACT
346 };
347
348 static const struct iwn_hal iwn5000_hal = {
349 iwn5000_load_firmware,
350 iwn5000_read_eeprom,
351 iwn5000_post_alive,
352 iwn5000_nic_config,
353 iwn5000_update_sched,
354 iwn5000_get_temperature,
355 iwn5000_get_rssi,
356 iwn5000_set_txpower,
357 iwn5000_init_gains,
358 iwn5000_set_gains,
359 iwn5000_add_node,
360 iwn5000_tx_done,
361 #ifndef IEEE80211_NO_HT
362 iwn5000_ampdu_tx_start,
363 iwn5000_ampdu_tx_stop,
364 #endif
365 IWN5000_NTXQUEUES,
366 IWN5000_NDMACHNLS,
367 IWN5000_ID_BROADCAST,
368 IWN5000_RXONSZ,
369 IWN5000_SCHEDSZ,
370 IWN5000_FW_TEXT_MAXSZ,
371 IWN5000_FW_DATA_MAXSZ,
372 IWN5000_FWSZ,
373 IWN5000_SCHED_TXFACT
374 };
375
376 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
377 iwn_detach, NULL);
378
379 static int
380 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
381 {
382 struct pci_attach_args *pa = aux;
383 size_t i;
384
385 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
386 return 0;
387
388 for (i = 0; i < __arraycount(iwn_devices); i++)
389 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
390 return 1;
391
392 return 0;
393 }
394
395 static void
396 iwn_attach(device_t parent __unused, device_t self, void *aux)
397 {
398 struct iwn_softc *sc = device_private(self);
399 struct ieee80211com *ic = &sc->sc_ic;
400 struct ifnet *ifp = &sc->sc_ec.ec_if;
401 struct pci_attach_args *pa = aux;
402 const struct iwn_hal *hal;
403 const char *intrstr;
404 char devinfo[256];
405 pci_intr_handle_t ih;
406 pcireg_t memtype, reg;
407 int i, error;
408 int revision;
409
410 sc->sc_dev = self;
411 sc->sc_pct = pa->pa_pc;
412 sc->sc_pcitag = pa->pa_tag;
413 sc->sc_dmat = pa->pa_dmat;
414
415 callout_init(&sc->calib_to, 0);
416 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
417
418 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
419 revision = PCI_REVISION(pa->pa_class);
420 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
421
422 /*
423 * Get the offset of the PCI Express Capability Structure in PCI
424 * Configuration Space.
425 */
426 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
427 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
428 if (error == 0) {
429 aprint_error(": PCIe capability structure not found!\n");
430 return;
431 }
432
433 /* Clear device-specific "PCI retry timeout" register (41h). */
434 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
435 reg &= ~0xff00;
436 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
437
438 /* Enable bus-mastering and hardware bug workaround. */
439 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */
440 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
441 reg |= PCI_COMMAND_MASTER_ENABLE;
442 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
443 DPRINTF(("PCIe INTx Disable set\n"));
444 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
445 }
446 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
447
448 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
449 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
450 &sc->sc_sh, NULL, &sc->sc_sz);
451 if (error != 0) {
452 aprint_error(": can't map mem space\n");
453 return;
454 }
455
456 /* Install interrupt handler. */
457 if (pci_intr_map(pa, &ih) != 0) {
458 aprint_error(": can't map interrupt\n");
459 return;
460 }
461 intrstr = pci_intr_string(sc->sc_pct, ih);
462 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
463 if (sc->sc_ih == NULL) {
464 aprint_error(": can't establish interrupt");
465 if (intrstr != NULL)
466 aprint_error(" at %s", intrstr);
467 aprint_error("\n");
468 return;
469 }
470 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
471
472 /* Attach Hardware Abstraction Layer. */
473 hal = iwn_hal_attach(sc, PCI_PRODUCT(pa->pa_id));
474 if (hal == NULL)
475 return;
476
477 if ((error = iwn_hw_prepare(sc)) != 0) {
478 aprint_error(": hardware not ready\n");
479 return;
480 }
481
482 /* Read MAC address, channels, etc from EEPROM. */
483 if ((error = iwn_read_eeprom(sc)) != 0) {
484 aprint_error(": could not read EEPROM\n");
485 return;
486 }
487
488 /* Allocate DMA memory for firmware transfers. */
489 if ((error = iwn_alloc_fwmem(sc)) != 0) {
490 aprint_error(": could not allocate memory for firmware\n");
491 return;
492 }
493
494 /* Allocate "Keep Warm" page. */
495 if ((error = iwn_alloc_kw(sc)) != 0) {
496 aprint_error(": could not allocate keep warm page\n");
497 goto fail1;
498 }
499
500 /* Allocate ICT table for 5000 Series. */
501 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
502 (error = iwn_alloc_ict(sc)) != 0) {
503 aprint_error(": could not allocate ICT table\n");
504 goto fail2;
505 }
506
507 /* Allocate TX scheduler "rings". */
508 if ((error = iwn_alloc_sched(sc)) != 0) {
509 aprint_error(": could not allocate TX scheduler rings\n");
510 goto fail3;
511 }
512
513 #ifdef IWN_USE_RBUF
514 /* Allocate RX buffers. */
515 if ((error = iwn_alloc_rpool(sc)) != 0) {
516 aprint_error_dev(self, "could not allocate RX buffers\n");
517 goto fail3;
518 }
519 #endif
520
521 /* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */
522 for (i = 0; i < hal->ntxqs; i++) {
523 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
524 aprint_error(": could not allocate TX ring %d\n", i);
525 goto fail4;
526 }
527 }
528
529 /* Allocate RX ring. */
530 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
531 aprint_error(": could not allocate RX ring\n");
532 goto fail4;
533 }
534
535 /* Clear pending interrupts. */
536 IWN_WRITE(sc, IWN_INT, 0xffffffff);
537
538 /* Count the number of available chains. */
539 sc->ntxchains =
540 ((sc->txchainmask >> 2) & 1) +
541 ((sc->txchainmask >> 1) & 1) +
542 ((sc->txchainmask >> 0) & 1);
543 sc->nrxchains =
544 ((sc->rxchainmask >> 2) & 1) +
545 ((sc->rxchainmask >> 1) & 1) +
546 ((sc->rxchainmask >> 0) & 1);
547 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
548 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
549 ether_sprintf(ic->ic_myaddr));
550
551 ic->ic_ifp = ifp;
552 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
553 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
554 ic->ic_state = IEEE80211_S_INIT;
555
556 /* Set device capabilities. */
557 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
558 * and IEEE80211_C_PMGT too. */
559 ic->ic_caps =
560 IEEE80211_C_IBSS | /* IBSS mode support */
561 IEEE80211_C_WPA | /* 802.11i */
562 IEEE80211_C_MONITOR | /* monitor mode supported */
563 IEEE80211_C_TXPMGT | /* tx power management */
564 IEEE80211_C_SHSLOT | /* short slot time supported */
565 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
566 IEEE80211_C_WME; /* 802.11e */
567
568 #ifndef IEEE80211_NO_HT
569 /* Set HT capabilities. */
570 ic->ic_htcaps =
571 #if IWN_RBUF_SIZE == 8192
572 IEEE80211_HTCAP_AMSDU7935 |
573 #endif
574 IEEE80211_HTCAP_CBW20_40 |
575 IEEE80211_HTCAP_SGI20 |
576 IEEE80211_HTCAP_SGI40;
577 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
578 ic->ic_htcaps |= IEEE80211_HTCAP_GF;
579 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
580 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
581 else
582 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
583 #endif /* !IEEE80211_NO_HT */
584
585 /* Set supported legacy rates. */
586 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
587 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
588 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
589 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
590 }
591 #ifndef IEEE80211_NO_HT
592 /* Set supported HT rates. */
593 ic->ic_sup_mcs[0] = 0xff;
594 if (sc->nrxchains > 1) /* MCS 0-7 */
595 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
596 if (sc->nrxchains > 2)
597 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
598 #endif
599
600 /* IBSS channel undefined for now. */
601 ic->ic_ibss_chan = &ic->ic_channels[0];
602
603 ifp->if_softc = sc;
604 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
605 ifp->if_init = iwn_init;
606 ifp->if_ioctl = iwn_ioctl;
607 ifp->if_start = iwn_start;
608 ifp->if_watchdog = iwn_watchdog;
609 IFQ_SET_READY(&ifp->if_snd);
610 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
611
612 if_attach(ifp);
613 ieee80211_ifattach(ic);
614 ic->ic_node_alloc = iwn_node_alloc;
615 ic->ic_newassoc = iwn_newassoc;
616 #ifdef IWN_HWCRYPTO
617 ic->ic_crypto.cs_key_set = iwn_set_key;
618 ic->ic_crypto.cs_key_delete = iwn_delete_key;
619 #endif
620 ic->ic_wme.wme_update = iwn_wme_update;
621 #ifndef IEEE80211_NO_HT
622 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
623 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
624 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
625 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
626 #endif
627
628 /* Override 802.11 state transition machine. */
629 sc->sc_newstate = ic->ic_newstate;
630 ic->ic_newstate = iwn_newstate;
631 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
632
633 sc->amrr.amrr_min_success_threshold = 1;
634 sc->amrr.amrr_max_success_threshold = 15;
635
636 #ifndef SMALL_KERNEL
637 iwn_sensor_attach(sc);
638 #endif
639 iwn_radiotap_attach(sc);
640
641 /*
642 * XXX for NetBSD, OpenBSD timeout_set replaced by
643 * callout_init and callout_setfunc, above.
644 */
645
646 if (pmf_device_register(self, NULL, iwn_resume))
647 pmf_class_network_register(self, ifp);
648 else
649 aprint_error_dev(self, "couldn't establish power handler\n");
650
651 /* XXX NetBSD add call to ieee80211_announce for dmesg. */
652 ieee80211_announce(ic);
653
654 return;
655
656 /* Free allocated memory if something failed during attachment. */
657 fail4: while (--i >= 0)
658 iwn_free_tx_ring(sc, &sc->txq[i]);
659 #ifdef IWN_USE_RBUF
660 iwn_free_rpool(sc);
661 #endif
662 iwn_free_sched(sc);
663 fail3: if (sc->ict != NULL)
664 iwn_free_ict(sc);
665 fail2: iwn_free_kw(sc);
666 fail1: iwn_free_fwmem(sc);
667 }
668
669 const struct iwn_hal *
670 iwn_hal_attach(struct iwn_softc *sc, pci_product_id_t pid)
671 {
672 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
673
674 switch (sc->hw_type) {
675 case IWN_HW_REV_TYPE_4965:
676 sc->sc_hal = &iwn4965_hal;
677 sc->limits = &iwn4965_sensitivity_limits;
678 sc->fwname = "iwlwifi-4965-2.ucode";
679 sc->txchainmask = IWN_ANT_AB;
680 sc->rxchainmask = IWN_ANT_ABC;
681 break;
682 case IWN_HW_REV_TYPE_5100:
683 sc->sc_hal = &iwn5000_hal;
684 sc->limits = &iwn5000_sensitivity_limits;
685 sc->fwname = "iwlwifi-5000-2.ucode";
686 sc->txchainmask = IWN_ANT_B;
687 sc->rxchainmask = IWN_ANT_AB;
688 break;
689 case IWN_HW_REV_TYPE_5150:
690 sc->sc_hal = &iwn5000_hal;
691 sc->limits = &iwn5150_sensitivity_limits;
692 sc->fwname = "iwlwifi-5150-2.ucode";
693 sc->txchainmask = IWN_ANT_A;
694 sc->rxchainmask = IWN_ANT_AB;
695 break;
696 case IWN_HW_REV_TYPE_5300:
697 case IWN_HW_REV_TYPE_5350:
698 sc->sc_hal = &iwn5000_hal;
699 sc->limits = &iwn5000_sensitivity_limits;
700 sc->fwname = "iwlwifi-5000-2.ucode";
701 sc->txchainmask = IWN_ANT_ABC;
702 sc->rxchainmask = IWN_ANT_ABC;
703 break;
704 case IWN_HW_REV_TYPE_1000:
705 sc->sc_hal = &iwn5000_hal;
706 sc->limits = &iwn1000_sensitivity_limits;
707 sc->fwname = "iwlwifi-1000-3.ucode";
708 sc->txchainmask = IWN_ANT_A;
709 sc->rxchainmask = IWN_ANT_AB;
710 break;
711 case IWN_HW_REV_TYPE_6000:
712 sc->sc_hal = &iwn5000_hal;
713 sc->limits = &iwn6000_sensitivity_limits;
714 sc->fwname = "iwlwifi-6000-4.ucode";
715 switch (pid) {
716 /* XXX not yet defined for NetBSD (not in pcidevs) */
717 #ifdef PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1
718 case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1:
719 case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2:
720 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
721 sc->txchainmask = IWN_ANT_BC;
722 sc->rxchainmask = IWN_ANT_BC;
723 break;
724 #endif
725 default:
726 sc->txchainmask = IWN_ANT_ABC;
727 sc->rxchainmask = IWN_ANT_ABC;
728 break;
729 }
730 break;
731 case IWN_HW_REV_TYPE_6050:
732 sc->sc_hal = &iwn5000_hal;
733 sc->limits = &iwn6000_sensitivity_limits;
734 sc->fwname = "iwlwifi-6050-2.ucode";
735 sc->txchainmask = IWN_ANT_AB;
736 sc->rxchainmask = IWN_ANT_AB;
737 break;
738 case IWN_HW_REV_TYPE_6005:
739 sc->sc_hal = &iwn5000_hal;
740 sc->limits = &iwn6000_sensitivity_limits;
741 sc->fwname = "iwlwifi-6005-2.ucode";
742 sc->txchainmask = IWN_ANT_AB;
743 sc->rxchainmask = IWN_ANT_AB;
744 break;
745 default:
746 aprint_normal(": adapter type %d not supported\n", sc->hw_type);
747 return NULL;
748 }
749 return sc->sc_hal;
750 }
751
752 #ifndef SMALL_KERNEL
753 /*
754 * Attach the adapter on-board thermal sensor to the sensors framework.
755 */
756 static void
757 iwn_sensor_attach(struct iwn_softc *sc)
758 {
759 int error;
760
761 sc->sc_sensor.units = ENVSYS_STEMP;
762 #if 0
763 /* XXX something like this ought to work */
764 sc->sc_sensor.flags = ENVSYS_FMONLIMITS | ENVSYS_FMONNOTSUPP;
765 sc->sc_sensor.limits.sel_critmax = IWN_CTOK(110);
766 #endif
767 strlcpy((sc->sc_sensor.desc), "TEMP", sizeof(sc->sc_sensor.desc));
768
769 /* Temperature is not valid unless interface is up. */
770 sc->sc_sensor.value_cur = 0;
771 sc->sc_sensor.state = ENVSYS_SINVALID;
772
773 sc->sc_sme = sysmon_envsys_create();
774
775 /* Initialize sensor */
776 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
777 sysmon_envsys_destroy(sc->sc_sme);
778 return;
779 }
780
781 /*
782 * Hook into the System Monitor.
783 */
784 sc->sc_sme->sme_name = device_xname(sc->sc_dev);
785 sc->sc_sme->sme_flags = SME_DISABLE_REFRESH;
786
787 if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) {
788 aprint_error_dev(sc->sc_dev,
789 "unable to register with sysmon (%d)\n", error);
790 sysmon_envsys_destroy(sc->sc_sme);
791 return;
792 }
793 }
794 #endif
795
796 /*
797 * Attach the interface to 802.11 radiotap.
798 */
799 static void
800 iwn_radiotap_attach(struct iwn_softc *sc)
801 {
802 struct ifnet *ifp = sc->sc_ic.ic_ifp;
803
804 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
805 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
806 &sc->sc_drvbpf);
807
808 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
809 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
810 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
811
812 sc->sc_txtap_len = sizeof sc->sc_txtapu;
813 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
814 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
815 }
816
817 static int
818 iwn_detach(device_t self, int flags __unused)
819 {
820 struct iwn_softc *sc = device_private(self);
821 struct ifnet *ifp = sc->sc_ic.ic_ifp;
822 int qid;
823
824 callout_stop(&sc->calib_to);
825
826 /* Uninstall interrupt handler. */
827 if (sc->sc_ih != NULL)
828 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
829
830 /* Free DMA resources. */
831 iwn_free_rx_ring(sc, &sc->rxq);
832 for (qid = 0; qid < sc->sc_hal->ntxqs; qid++)
833 iwn_free_tx_ring(sc, &sc->txq[qid]);
834 #ifdef IWN_USE_RBUF
835 iwn_free_rpool(sc);
836 #endif
837 iwn_free_sched(sc);
838 iwn_free_kw(sc);
839 if (sc->ict != NULL)
840 iwn_free_ict(sc);
841 iwn_free_fwmem(sc);
842
843 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
844
845 #ifndef SMALL_KERNEL
846 /* Detach the thermal sensor. */
847 sysmon_envsys_sensor_detach(sc->sc_sme, &sc->sc_sensor);
848 sysmon_envsys_destroy(sc->sc_sme);
849 #endif
850
851 ieee80211_ifdetach(&sc->sc_ic);
852 if_detach(ifp);
853
854 return 0;
855 }
856
857 #if 0
858 /*
859 * XXX Investigate if clearing the PCI retry timeout could eliminate
860 * the repeated scan calls. Also the calls to if_init and if_start
861 * are similar to the effect of adding the call to ifioctl_common .
862 */
863 static void
864 iwn_power(int why, void *arg)
865 {
866 struct iwn_softc *sc = arg;
867 struct ifnet *ifp;
868 pcireg_t reg;
869 int s;
870
871 if (why != PWR_RESUME)
872 return;
873
874 /* Clear device-specific "PCI retry timeout" register (41h). */
875 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
876 reg &= ~0xff00;
877 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
878
879 s = splnet();
880 ifp = &sc->sc_ic.ic_if;
881 if (ifp->if_flags & IFF_UP) {
882 ifp->if_init(ifp);
883 if (ifp->if_flags & IFF_RUNNING)
884 ifp->if_start(ifp);
885 }
886 splx(s);
887 }
888 #endif
889
890 static bool
891 iwn_resume(device_t dv, const pmf_qual_t *qual)
892 {
893 return true;
894 }
895
896 static int
897 iwn_nic_lock(struct iwn_softc *sc)
898 {
899 int ntries;
900
901 /* Request exclusive access to NIC. */
902 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
903
904 /* Spin until we actually get the lock. */
905 for (ntries = 0; ntries < 1000; ntries++) {
906 if ((IWN_READ(sc, IWN_GP_CNTRL) &
907 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
908 IWN_GP_CNTRL_MAC_ACCESS_ENA)
909 return 0;
910 DELAY(10);
911 }
912 return ETIMEDOUT;
913 }
914
915 static __inline void
916 iwn_nic_unlock(struct iwn_softc *sc)
917 {
918 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
919 }
920
921 static __inline uint32_t
922 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
923 {
924 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
925 IWN_BARRIER_READ_WRITE(sc);
926 return IWN_READ(sc, IWN_PRPH_RDATA);
927 }
928
929 static __inline void
930 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
931 {
932 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
933 IWN_BARRIER_WRITE(sc);
934 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
935 }
936
937 static __inline void
938 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
939 {
940 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
941 }
942
943 static __inline void
944 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
945 {
946 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
947 }
948
949 static __inline void
950 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
951 const uint32_t *data, int count)
952 {
953 for (; count > 0; count--, data++, addr += 4)
954 iwn_prph_write(sc, addr, *data);
955 }
956
957 static __inline uint32_t
958 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
959 {
960 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
961 IWN_BARRIER_READ_WRITE(sc);
962 return IWN_READ(sc, IWN_MEM_RDATA);
963 }
964
965 static __inline void
966 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
967 {
968 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
969 IWN_BARRIER_WRITE(sc);
970 IWN_WRITE(sc, IWN_MEM_WDATA, data);
971 }
972
973 static __inline void
974 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
975 {
976 uint32_t tmp;
977
978 tmp = iwn_mem_read(sc, addr & ~3);
979 if (addr & 3)
980 tmp = (tmp & 0x0000ffff) | data << 16;
981 else
982 tmp = (tmp & 0xffff0000) | data;
983 iwn_mem_write(sc, addr & ~3, tmp);
984 }
985
986 static __inline void
987 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
988 int count)
989 {
990 for (; count > 0; count--, addr += 4)
991 *data++ = iwn_mem_read(sc, addr);
992 }
993
994 static __inline void
995 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
996 int count)
997 {
998 for (; count > 0; count--, addr += 4)
999 iwn_mem_write(sc, addr, val);
1000 }
1001
1002 static int
1003 iwn_eeprom_lock(struct iwn_softc *sc)
1004 {
1005 int i, ntries;
1006
1007 for (i = 0; i < 100; i++) {
1008 /* Request exclusive access to EEPROM. */
1009 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1010 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1011
1012 /* Spin until we actually get the lock. */
1013 for (ntries = 0; ntries < 100; ntries++) {
1014 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1015 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1016 return 0;
1017 DELAY(10);
1018 }
1019 }
1020 return ETIMEDOUT;
1021 }
1022
1023 static __inline void
1024 iwn_eeprom_unlock(struct iwn_softc *sc)
1025 {
1026 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1027 }
1028
1029 /*
1030 * Initialize access by host to One Time Programmable ROM.
1031 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1032 */
1033 static int
1034 iwn_init_otprom(struct iwn_softc *sc)
1035 {
1036 uint16_t prev = 0, base, next;
1037 int count, error;
1038
1039 /* Wait for clock stabilization before accessing prph. */
1040 if ((error = iwn_clock_wait(sc)) != 0)
1041 return error;
1042
1043 if ((error = iwn_nic_lock(sc)) != 0)
1044 return error;
1045 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1046 DELAY(5);
1047 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1048 iwn_nic_unlock(sc);
1049
1050 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1051 if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1052 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1053 IWN_RESET_LINK_PWR_MGMT_DIS);
1054 }
1055 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1056 /* Clear ECC status. */
1057 IWN_SETBITS(sc, IWN_OTP_GP,
1058 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1059
1060 /*
1061 * Find the block before last block (contains the EEPROM image)
1062 * for HW without OTP shadow RAM.
1063 */
1064 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1065 /* Switch to absolute addressing mode. */
1066 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1067 base = 0;
1068 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1069 error = iwn_read_prom_data(sc, base, &next, 2);
1070 if (error != 0)
1071 return error;
1072 if (next == 0) /* End of linked-list. */
1073 break;
1074 prev = base;
1075 base = le16toh(next);
1076 }
1077 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1078 return EIO;
1079 /* Skip "next" word. */
1080 sc->prom_base = prev + 1;
1081 }
1082 return 0;
1083 }
1084
1085 static int
1086 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1087 {
1088 uint8_t *out = data;
1089 uint32_t val, tmp;
1090 int ntries;
1091
1092 addr += sc->prom_base;
1093 for (; count > 0; count -= 2, addr++) {
1094 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1095 for (ntries = 0; ntries < 10; ntries++) {
1096 val = IWN_READ(sc, IWN_EEPROM);
1097 if (val & IWN_EEPROM_READ_VALID)
1098 break;
1099 DELAY(5);
1100 }
1101 if (ntries == 10) {
1102 aprint_error_dev(sc->sc_dev,
1103 "timeout reading ROM at 0x%x\n", addr);
1104 return ETIMEDOUT;
1105 }
1106 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1107 /* OTPROM, check for ECC errors. */
1108 tmp = IWN_READ(sc, IWN_OTP_GP);
1109 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1110 aprint_error_dev(sc->sc_dev,
1111 "OTPROM ECC error at 0x%x\n", addr);
1112 return EIO;
1113 }
1114 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1115 /* Correctable ECC error, clear bit. */
1116 IWN_SETBITS(sc, IWN_OTP_GP,
1117 IWN_OTP_GP_ECC_CORR_STTS);
1118 }
1119 }
1120 *out++ = val >> 16;
1121 if (count > 1)
1122 *out++ = val >> 24;
1123 }
1124 return 0;
1125 }
1126
1127 static int
1128 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1129 bus_size_t size, bus_size_t alignment)
1130 {
1131 int nsegs, error;
1132
1133 dma->tag = tag;
1134 dma->size = size;
1135
1136 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1137 &dma->map);
1138 if (error != 0)
1139 goto fail;
1140
1141 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1142 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1143 if (error != 0)
1144 goto fail;
1145
1146 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1147 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1148 if (error != 0)
1149 goto fail;
1150
1151 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1152 BUS_DMA_NOWAIT);
1153 if (error != 0)
1154 goto fail;
1155
1156 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1157 memset(dma->vaddr, 0, size);
1158 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1159
1160 dma->paddr = dma->map->dm_segs[0].ds_addr;
1161 if (kvap != NULL)
1162 *kvap = dma->vaddr;
1163
1164 return 0;
1165
1166 fail: iwn_dma_contig_free(dma);
1167 return error;
1168 }
1169
1170 static void
1171 iwn_dma_contig_free(struct iwn_dma_info *dma)
1172 {
1173 if (dma->map != NULL) {
1174 if (dma->vaddr != NULL) {
1175 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1176 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1177 bus_dmamap_unload(dma->tag, dma->map);
1178 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1179 bus_dmamem_free(dma->tag, &dma->seg, 1);
1180 dma->vaddr = NULL;
1181 }
1182 bus_dmamap_destroy(dma->tag, dma->map);
1183 dma->map = NULL;
1184 }
1185 }
1186
1187 static int
1188 iwn_alloc_sched(struct iwn_softc *sc)
1189 {
1190 /* TX scheduler rings must be aligned on a 1KB boundary. */
1191 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1192 (void **)&sc->sched, sc->sc_hal->schedsz, 1024);
1193 }
1194
1195 static void
1196 iwn_free_sched(struct iwn_softc *sc)
1197 {
1198 iwn_dma_contig_free(&sc->sched_dma);
1199 }
1200
1201 static int
1202 iwn_alloc_kw(struct iwn_softc *sc)
1203 {
1204 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1205 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1206 4096);
1207 }
1208
1209 static void
1210 iwn_free_kw(struct iwn_softc *sc)
1211 {
1212 iwn_dma_contig_free(&sc->kw_dma);
1213 }
1214
1215 static int
1216 iwn_alloc_ict(struct iwn_softc *sc)
1217 {
1218 /* ICT table must be aligned on a 4KB boundary. */
1219 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1220 (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1221 }
1222
1223 static void
1224 iwn_free_ict(struct iwn_softc *sc)
1225 {
1226 iwn_dma_contig_free(&sc->ict_dma);
1227 }
1228
1229 static int
1230 iwn_alloc_fwmem(struct iwn_softc *sc)
1231 {
1232 /* Must be aligned on a 16-byte boundary. */
1233 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1234 sc->sc_hal->fwsz, 16);
1235 }
1236
1237 static void
1238 iwn_free_fwmem(struct iwn_softc *sc)
1239 {
1240 iwn_dma_contig_free(&sc->fw_dma);
1241 }
1242
1243 static int
1244 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1245 {
1246 bus_size_t size;
1247 int i, error;
1248
1249 ring->cur = 0;
1250
1251 /* Allocate RX descriptors (256-byte aligned.) */
1252 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1253 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1254 (void **)&ring->desc, size, 256);
1255 if (error != 0) {
1256 aprint_error_dev(sc->sc_dev,
1257 "could not allocate RX ring DMA memory\n");
1258 goto fail;
1259 }
1260
1261 /* Allocate RX status area (16-byte aligned.) */
1262 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1263 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1264 if (error != 0) {
1265 aprint_error_dev(sc->sc_dev,
1266 "could not allocate RX status DMA memory\n");
1267 goto fail;
1268 }
1269
1270 /*
1271 * Allocate and map RX buffers.
1272 */
1273 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1274 struct iwn_rx_data *data = &ring->data[i];
1275
1276 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1277 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1278 &data->map);
1279 if (error != 0) {
1280 aprint_error_dev(sc->sc_dev,
1281 "could not create RX buf DMA map\n");
1282 goto fail;
1283 }
1284
1285 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1286 if (data->m == NULL) {
1287 aprint_error_dev(sc->sc_dev,
1288 "could not allocate RX mbuf\n");
1289 error = ENOBUFS;
1290 goto fail;
1291 }
1292
1293 error = bus_dmamap_load(sc->sc_dmat, data->map,
1294 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1295 BUS_DMA_NOWAIT | BUS_DMA_READ);
1296 if (error != 0) {
1297 aprint_error_dev(sc->sc_dev,
1298 "can't not map mbuf (error %d)\n", error);
1299 goto fail;
1300 }
1301
1302 /* Set physical address of RX buffer (256-byte aligned.) */
1303 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1304 }
1305
1306 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1307 BUS_DMASYNC_PREWRITE);
1308
1309 return 0;
1310
1311 fail: iwn_free_rx_ring(sc, ring);
1312 return error;
1313 }
1314
1315 static void
1316 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1317 {
1318 int ntries;
1319
1320 if (iwn_nic_lock(sc) == 0) {
1321 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1322 for (ntries = 0; ntries < 1000; ntries++) {
1323 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1324 IWN_FH_RX_STATUS_IDLE)
1325 break;
1326 DELAY(10);
1327 }
1328 iwn_nic_unlock(sc);
1329 }
1330 ring->cur = 0;
1331 sc->last_rx_valid = 0;
1332 }
1333
1334 static void
1335 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1336 {
1337 int i;
1338
1339 iwn_dma_contig_free(&ring->desc_dma);
1340 iwn_dma_contig_free(&ring->stat_dma);
1341
1342 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1343 struct iwn_rx_data *data = &ring->data[i];
1344
1345 if (data->m != NULL) {
1346 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1347 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1348 bus_dmamap_unload(sc->sc_dmat, data->map);
1349 m_freem(data->m);
1350 }
1351 if (data->map != NULL)
1352 bus_dmamap_destroy(sc->sc_dmat, data->map);
1353 }
1354 }
1355
1356 static int
1357 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1358 {
1359 bus_addr_t paddr;
1360 bus_size_t size;
1361 int i, error;
1362
1363 ring->qid = qid;
1364 ring->queued = 0;
1365 ring->cur = 0;
1366
1367 /* Allocate TX descriptors (256-byte aligned.) */
1368 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1369 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1370 (void **)&ring->desc, size, 256);
1371 if (error != 0) {
1372 aprint_error_dev(sc->sc_dev,
1373 "could not allocate TX ring DMA memory\n");
1374 goto fail;
1375 }
1376 /*
1377 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1378 * to allocate commands space for other rings.
1379 * XXX Do we really need to allocate descriptors for other rings?
1380 */
1381 if (qid > 4)
1382 return 0;
1383
1384 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1385 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1386 (void **)&ring->cmd, size, 4);
1387 if (error != 0) {
1388 aprint_error_dev(sc->sc_dev,
1389 "could not allocate TX cmd DMA memory\n");
1390 goto fail;
1391 }
1392
1393 paddr = ring->cmd_dma.paddr;
1394 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1395 struct iwn_tx_data *data = &ring->data[i];
1396
1397 data->cmd_paddr = paddr;
1398 data->scratch_paddr = paddr + 12;
1399 paddr += sizeof (struct iwn_tx_cmd);
1400
1401 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1402 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1403 &data->map);
1404 if (error != 0) {
1405 aprint_error_dev(sc->sc_dev,
1406 "could not create TX buf DMA map\n");
1407 goto fail;
1408 }
1409 }
1410 return 0;
1411
1412 fail: iwn_free_tx_ring(sc, ring);
1413 return error;
1414 }
1415
1416 static void
1417 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1418 {
1419 int i;
1420
1421 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1422 struct iwn_tx_data *data = &ring->data[i];
1423
1424 if (data->m != NULL) {
1425 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1426 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1427 bus_dmamap_unload(sc->sc_dmat, data->map);
1428 m_freem(data->m);
1429 data->m = NULL;
1430 }
1431 }
1432 /* Clear TX descriptors. */
1433 memset(ring->desc, 0, ring->desc_dma.size);
1434 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1435 ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1436 sc->qfullmsk &= ~(1 << ring->qid);
1437 ring->queued = 0;
1438 ring->cur = 0;
1439 }
1440
1441 static void
1442 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1443 {
1444 int i;
1445
1446 iwn_dma_contig_free(&ring->desc_dma);
1447 iwn_dma_contig_free(&ring->cmd_dma);
1448
1449 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1450 struct iwn_tx_data *data = &ring->data[i];
1451
1452 if (data->m != NULL) {
1453 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1454 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1455 bus_dmamap_unload(sc->sc_dmat, data->map);
1456 m_freem(data->m);
1457 }
1458 if (data->map != NULL)
1459 bus_dmamap_destroy(sc->sc_dmat, data->map);
1460 }
1461 }
1462
1463 static void
1464 iwn5000_ict_reset(struct iwn_softc *sc)
1465 {
1466 /* Disable interrupts. */
1467 IWN_WRITE(sc, IWN_INT_MASK, 0);
1468
1469 /* Reset ICT table. */
1470 memset(sc->ict, 0, IWN_ICT_SIZE);
1471 sc->ict_cur = 0;
1472
1473 /* Set physical address of ICT table (4KB aligned.) */
1474 DPRINTF(("enabling ICT\n"));
1475 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1476 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1477
1478 /* Enable periodic RX interrupt. */
1479 sc->int_mask |= IWN_INT_RX_PERIODIC;
1480 /* Switch to ICT interrupt mode in driver. */
1481 sc->sc_flags |= IWN_FLAG_USE_ICT;
1482
1483 /* Re-enable interrupts. */
1484 IWN_WRITE(sc, IWN_INT, 0xffffffff);
1485 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1486 }
1487
1488 static int
1489 iwn_read_eeprom(struct iwn_softc *sc)
1490 {
1491 const struct iwn_hal *hal = sc->sc_hal;
1492 struct ieee80211com *ic = &sc->sc_ic;
1493 uint16_t val;
1494 int error;
1495
1496 /* Check whether adapter has an EEPROM or an OTPROM. */
1497 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1498 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1499 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1500 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1501 "OTPROM" : "EEPROM"));
1502
1503 /* Adapter has to be powered on for EEPROM access to work. */
1504 if ((error = iwn_apm_init(sc)) != 0) {
1505 aprint_error_dev(sc->sc_dev,
1506 "could not power ON adapter\n");
1507 return error;
1508 }
1509
1510 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1511 aprint_error_dev(sc->sc_dev,
1512 "bad ROM signature\n");
1513 return EIO;
1514 }
1515 if ((error = iwn_eeprom_lock(sc)) != 0) {
1516 aprint_error_dev(sc->sc_dev,
1517 "could not lock ROM (error=%d)\n", error);
1518 return error;
1519 }
1520 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1521 if ((error = iwn_init_otprom(sc)) != 0) {
1522 aprint_error_dev(sc->sc_dev,
1523 "could not initialize OTPROM\n");
1524 return error;
1525 }
1526 }
1527
1528 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1529 sc->rfcfg = le16toh(val);
1530 DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1531
1532 /* Read MAC address. */
1533 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1534
1535 /* Read adapter-specific information from EEPROM. */
1536 hal->read_eeprom(sc);
1537
1538 iwn_apm_stop(sc); /* Power OFF adapter. */
1539
1540 iwn_eeprom_unlock(sc);
1541 return 0;
1542 }
1543
1544 static void
1545 iwn4965_read_eeprom(struct iwn_softc *sc)
1546 {
1547 uint32_t addr;
1548 uint16_t val;
1549 int i;
1550
1551 /* Read regulatory domain (4 ASCII characters.) */
1552 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1553
1554 /* Read the list of authorized channels (20MHz ones only.) */
1555 for (i = 0; i < 5; i++) {
1556 addr = iwn4965_regulatory_bands[i];
1557 iwn_read_eeprom_channels(sc, i, addr);
1558 }
1559
1560 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1561 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1562 sc->maxpwr2GHz = val & 0xff;
1563 sc->maxpwr5GHz = val >> 8;
1564 /* Check that EEPROM values are within valid range. */
1565 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1566 sc->maxpwr5GHz = 38;
1567 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1568 sc->maxpwr2GHz = 38;
1569 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1570
1571 /* Read samples for each TX power group. */
1572 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1573 sizeof sc->bands);
1574
1575 /* Read voltage at which samples were taken. */
1576 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1577 sc->eeprom_voltage = (int16_t)le16toh(val);
1578 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1579
1580 #ifdef IWN_DEBUG
1581 /* Print samples. */
1582 if (iwn_debug > 0) {
1583 for (i = 0; i < IWN_NBANDS; i++)
1584 iwn4965_print_power_group(sc, i);
1585 }
1586 #endif
1587 }
1588
1589 #ifdef IWN_DEBUG
1590 static void
1591 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1592 {
1593 struct iwn4965_eeprom_band *band = &sc->bands[i];
1594 struct iwn4965_eeprom_chan_samples *chans = band->chans;
1595 int j, c;
1596
1597 aprint_normal("===band %d===\n", i);
1598 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1599 aprint_normal("chan1 num=%d\n", chans[0].num);
1600 for (c = 0; c < 2; c++) {
1601 for (j = 0; j < IWN_NSAMPLES; j++) {
1602 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1603 "power=%d pa_det=%d\n", c, j,
1604 chans[0].samples[c][j].temp,
1605 chans[0].samples[c][j].gain,
1606 chans[0].samples[c][j].power,
1607 chans[0].samples[c][j].pa_det);
1608 }
1609 }
1610 aprint_normal("chan2 num=%d\n", chans[1].num);
1611 for (c = 0; c < 2; c++) {
1612 for (j = 0; j < IWN_NSAMPLES; j++) {
1613 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1614 "power=%d pa_det=%d\n", c, j,
1615 chans[1].samples[c][j].temp,
1616 chans[1].samples[c][j].gain,
1617 chans[1].samples[c][j].power,
1618 chans[1].samples[c][j].pa_det);
1619 }
1620 }
1621 }
1622 #endif
1623
1624 static void
1625 iwn5000_read_eeprom(struct iwn_softc *sc)
1626 {
1627 struct iwn5000_eeprom_calib_hdr hdr;
1628 int32_t temp, volt;
1629 uint32_t base, addr;
1630 uint16_t val;
1631 int i;
1632
1633 /* Read regulatory domain (4 ASCII characters.) */
1634 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1635 base = le16toh(val);
1636 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1637 sc->eeprom_domain, 4);
1638
1639 /* Read the list of authorized channels (20MHz ones only.) */
1640 for (i = 0; i < 5; i++) {
1641 addr = base + iwn5000_regulatory_bands[i];
1642 iwn_read_eeprom_channels(sc, i, addr);
1643 }
1644
1645 /* Read enhanced TX power information for 6000 Series. */
1646 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1647 iwn_read_eeprom_enhinfo(sc);
1648
1649 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1650 base = le16toh(val);
1651 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1652 DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1653 hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1654 sc->calib_ver = hdr.version;
1655
1656 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1657 /* Compute temperature offset. */
1658 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1659 temp = le16toh(val);
1660 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1661 volt = le16toh(val);
1662 sc->temp_off = temp - (volt / -5);
1663 DPRINTF(("temp=%d volt=%d offset=%dK\n",
1664 temp, volt, sc->temp_off));
1665 } else {
1666 /* Read crystal calibration. */
1667 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1668 &sc->eeprom_crystal, sizeof (uint32_t));
1669 DPRINTF(("crystal calibration 0x%08x\n",
1670 le32toh(sc->eeprom_crystal)));
1671 }
1672 }
1673
1674 static void
1675 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1676 {
1677 struct ieee80211com *ic = &sc->sc_ic;
1678 const struct iwn_chan_band *band = &iwn_bands[n];
1679 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1680 uint8_t chan;
1681 int i;
1682
1683 iwn_read_prom_data(sc, addr, channels,
1684 band->nchan * sizeof (struct iwn_eeprom_chan));
1685
1686 for (i = 0; i < band->nchan; i++) {
1687 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1688 continue;
1689
1690 chan = band->chan[i];
1691
1692 if (n == 0) { /* 2GHz band */
1693 ic->ic_channels[chan].ic_freq =
1694 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1695 ic->ic_channels[chan].ic_flags =
1696 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1697 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1698
1699 } else { /* 5GHz band */
1700 /*
1701 * Some adapters support channels 7, 8, 11 and 12
1702 * both in the 2GHz and 4.9GHz bands.
1703 * Because of limitations in our net80211 layer,
1704 * we don't support them in the 4.9GHz band.
1705 */
1706 if (chan <= 14)
1707 continue;
1708
1709 ic->ic_channels[chan].ic_freq =
1710 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1711 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1712 /* We have at least one valid 5GHz channel. */
1713 sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1714 }
1715
1716 /* Is active scan allowed on this channel? */
1717 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1718 ic->ic_channels[chan].ic_flags |=
1719 IEEE80211_CHAN_PASSIVE;
1720 }
1721
1722 /* Save maximum allowed TX power for this channel. */
1723 sc->maxpwr[chan] = channels[i].maxpwr;
1724
1725 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1726 chan, channels[i].flags, sc->maxpwr[chan]));
1727 }
1728 }
1729
1730 static void
1731 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1732 {
1733 struct iwn_eeprom_enhinfo enhinfo[35];
1734 uint16_t val, base;
1735 int8_t maxpwr;
1736 int i;
1737
1738 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1739 base = le16toh(val);
1740 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1741 enhinfo, sizeof enhinfo);
1742
1743 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1744 for (i = 0; i < __arraycount(enhinfo); i++) {
1745 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1746 continue; /* Skip invalid entries. */
1747
1748 maxpwr = 0;
1749 if (sc->txchainmask & IWN_ANT_A)
1750 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1751 if (sc->txchainmask & IWN_ANT_B)
1752 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1753 if (sc->txchainmask & IWN_ANT_C)
1754 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1755 if (sc->ntxchains == 2)
1756 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1757 else if (sc->ntxchains == 3)
1758 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1759 maxpwr /= 2; /* Convert half-dBm to dBm. */
1760
1761 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1762 sc->enh_maxpwr[i] = maxpwr;
1763 }
1764 }
1765
1766 static struct ieee80211_node *
1767 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1768 {
1769 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1770 }
1771
1772 static void
1773 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1774 {
1775 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1776 struct iwn_node *wn = (void *)ni;
1777 uint8_t rate;
1778 int ridx, i;
1779
1780 ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1781 /* Start at lowest available bit-rate, AMRR will raise. */
1782 ni->ni_txrate = 0;
1783
1784 for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1785 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1786 /* Map 802.11 rate to HW rate index. */
1787 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1788 if (iwn_rates[ridx].rate == rate)
1789 break;
1790 wn->ridx[i] = ridx;
1791 }
1792 }
1793
1794 static int
1795 iwn_media_change(struct ifnet *ifp)
1796 {
1797 struct iwn_softc *sc = ifp->if_softc;
1798 struct ieee80211com *ic = &sc->sc_ic;
1799 uint8_t rate, ridx;
1800 int error;
1801
1802 error = ieee80211_media_change(ifp);
1803 if (error != ENETRESET)
1804 return error;
1805
1806 if (ic->ic_fixed_rate != -1) {
1807 rate = ic->ic_sup_rates[ic->ic_curmode].
1808 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1809 /* Map 802.11 rate to HW rate index. */
1810 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1811 if (iwn_rates[ridx].rate == rate)
1812 break;
1813 sc->fixed_ridx = ridx;
1814 }
1815
1816 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1817 (IFF_UP | IFF_RUNNING)) {
1818 iwn_stop(ifp, 0);
1819 error = iwn_init(ifp);
1820 }
1821 return error;
1822 }
1823
1824 static int
1825 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1826 {
1827 struct ifnet *ifp = ic->ic_ifp;
1828 struct iwn_softc *sc = ifp->if_softc;
1829 int error;
1830
1831 callout_stop(&sc->calib_to);
1832
1833 switch (nstate) {
1834 case IEEE80211_S_SCAN:
1835 /* XXX Do not abort a running scan. */
1836 if (sc->sc_flags & IWN_FLAG_SCANNING) {
1837 aprint_error_dev(sc->sc_dev,
1838 "scan request while scanning ignored\n");
1839 break;
1840 }
1841
1842 /* XXX Not sure if call and flags are needed. */
1843 ieee80211_node_table_reset(&ic->ic_scan);
1844 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1845 sc->sc_flags |= IWN_FLAG_SCANNING;
1846
1847 /* Make the link LED blink while we're scanning. */
1848 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1849
1850 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1851 aprint_error_dev(sc->sc_dev,
1852 "could not initiate scan\n");
1853 return error;
1854 }
1855 ic->ic_state = nstate;
1856 return 0;
1857
1858 case IEEE80211_S_ASSOC:
1859 if (ic->ic_state != IEEE80211_S_RUN)
1860 break;
1861 /* FALLTHROUGH */
1862 case IEEE80211_S_AUTH:
1863 /* Reset state to handle reassociations correctly. */
1864 sc->rxon.associd = 0;
1865 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1866 sc->calib.state = IWN_CALIB_STATE_INIT;
1867
1868 if ((error = iwn_auth(sc)) != 0) {
1869 aprint_error_dev(sc->sc_dev,
1870 "could not move to auth state\n");
1871 return error;
1872 }
1873 break;
1874
1875 case IEEE80211_S_RUN:
1876 if ((error = iwn_run(sc)) != 0) {
1877 aprint_error_dev(sc->sc_dev,
1878 "could not move to run state\n");
1879 return error;
1880 }
1881 break;
1882
1883 case IEEE80211_S_INIT:
1884 sc->sc_flags &= ~IWN_FLAG_SCANNING;
1885 sc->calib.state = IWN_CALIB_STATE_INIT;
1886 break;
1887 }
1888
1889 return sc->sc_newstate(ic, nstate, arg);
1890 }
1891
1892 static void
1893 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1894 {
1895 struct iwn_softc *sc = arg;
1896 struct iwn_node *wn = (struct iwn_node *)ni;
1897
1898 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1899 }
1900
1901 static void
1902 iwn_calib_timeout(void *arg)
1903 {
1904 struct iwn_softc *sc = arg;
1905 struct ieee80211com *ic = &sc->sc_ic;
1906 int s;
1907
1908 s = splnet();
1909 if (ic->ic_fixed_rate == -1) {
1910 if (ic->ic_opmode == IEEE80211_M_STA)
1911 iwn_iter_func(sc, ic->ic_bss);
1912 else
1913 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1914 }
1915 /* Force automatic TX power calibration every 60 secs. */
1916 if (++sc->calib_cnt >= 120) {
1917 uint32_t flags = 0;
1918
1919 DPRINTF(("sending request for statistics\n"));
1920 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1921 sizeof flags, 1);
1922 sc->calib_cnt = 0;
1923 }
1924 splx(s);
1925
1926 /* Automatic rate control triggered every 500ms. */
1927 callout_schedule(&sc->calib_to, hz/2);
1928 }
1929
1930 /*
1931 * Process an RX_PHY firmware notification. This is usually immediately
1932 * followed by an MPDU_RX_DONE notification.
1933 */
1934 static void
1935 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1936 struct iwn_rx_data *data)
1937 {
1938 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1939
1940 DPRINTFN(2, ("received PHY stats\n"));
1941 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1942 sizeof (*stat), BUS_DMASYNC_POSTREAD);
1943
1944 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
1945 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1946 sc->last_rx_valid = 1;
1947 }
1948
1949 /*
1950 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1951 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1952 */
1953 static void
1954 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1955 struct iwn_rx_data *data)
1956 {
1957 const struct iwn_hal *hal = sc->sc_hal;
1958 struct ieee80211com *ic = &sc->sc_ic;
1959 struct ifnet *ifp = ic->ic_ifp;
1960 struct iwn_rx_ring *ring = &sc->rxq;
1961 struct ieee80211_frame *wh;
1962 struct ieee80211_node *ni;
1963 struct mbuf *m, *m1;
1964 struct iwn_rx_stat *stat;
1965 char *head;
1966 uint32_t flags;
1967 int error, len, rssi;
1968
1969 if (desc->type == IWN_MPDU_RX_DONE) {
1970 /* Check for prior RX_PHY notification. */
1971 if (!sc->last_rx_valid) {
1972 DPRINTF(("missing RX_PHY\n"));
1973 ifp->if_ierrors++;
1974 return;
1975 }
1976 sc->last_rx_valid = 0;
1977 stat = &sc->last_rx_stat;
1978 } else
1979 stat = (struct iwn_rx_stat *)(desc + 1);
1980
1981 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1982 BUS_DMASYNC_POSTREAD);
1983
1984 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1985 aprint_error_dev(sc->sc_dev,
1986 "invalid RX statistic header\n");
1987 ifp->if_ierrors++;
1988 return;
1989 }
1990 if (desc->type == IWN_MPDU_RX_DONE) {
1991 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1992 head = (char *)(mpdu + 1);
1993 len = le16toh(mpdu->len);
1994 } else {
1995 head = (char *)(stat + 1) + stat->cfg_phy_len;
1996 len = le16toh(stat->len);
1997 }
1998
1999 flags = le32toh(*(uint32_t *)(head + len));
2000
2001 /* Discard frames with a bad FCS early. */
2002 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2003 DPRINTFN(2, ("RX flags error %x\n", flags));
2004 ifp->if_ierrors++;
2005 return;
2006 }
2007 /* Discard frames that are too short. */
2008 if (len < sizeof (*wh)) {
2009 DPRINTF(("frame too short: %d\n", len));
2010 ic->ic_stats.is_rx_tooshort++;
2011 ifp->if_ierrors++;
2012 return;
2013 }
2014
2015 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2016 if (m1 == NULL) {
2017 ic->ic_stats.is_rx_nobuf++;
2018 ifp->if_ierrors++;
2019 return;
2020 }
2021 bus_dmamap_unload(sc->sc_dmat, data->map);
2022
2023 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2024 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2025 if (error != 0) {
2026 m_freem(m1);
2027
2028 /* Try to reload the old mbuf. */
2029 error = bus_dmamap_load(sc->sc_dmat, data->map,
2030 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2031 BUS_DMA_NOWAIT | BUS_DMA_READ);
2032 if (error != 0) {
2033 panic("%s: could not load old RX mbuf",
2034 device_xname(sc->sc_dev));
2035 }
2036 /* Physical address may have changed. */
2037 ring->desc[ring->cur] =
2038 htole32(data->map->dm_segs[0].ds_addr >> 8);
2039 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2040 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2041 BUS_DMASYNC_PREWRITE);
2042 ifp->if_ierrors++;
2043 return;
2044 }
2045
2046 m = data->m;
2047 data->m = m1;
2048 /* Update RX descriptor. */
2049 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2050 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2051 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2052 BUS_DMASYNC_PREWRITE);
2053
2054 /* Finalize mbuf. */
2055 m->m_pkthdr.rcvif = ifp;
2056 m->m_data = head;
2057 m->m_pkthdr.len = m->m_len = len;
2058
2059 /* Grab a reference to the source node. */
2060 wh = mtod(m, struct ieee80211_frame *);
2061 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2062
2063 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2064 /* NetBSD does decryption in ieee80211_input. */
2065
2066 rssi = hal->get_rssi(stat);
2067
2068 /* XXX Added for NetBSD: scans never stop without it */
2069 if (ic->ic_state == IEEE80211_S_SCAN)
2070 iwn_fix_channel(ic, m);
2071
2072 if (sc->sc_drvbpf != NULL) {
2073 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2074
2075 tap->wr_flags = 0;
2076 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2077 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2078 tap->wr_chan_freq =
2079 htole16(ic->ic_channels[stat->chan].ic_freq);
2080 tap->wr_chan_flags =
2081 htole16(ic->ic_channels[stat->chan].ic_flags);
2082 tap->wr_dbm_antsignal = (int8_t)rssi;
2083 tap->wr_dbm_antnoise = (int8_t)sc->noise;
2084 tap->wr_tsft = stat->tstamp;
2085 switch (stat->rate) {
2086 /* CCK rates. */
2087 case 10: tap->wr_rate = 2; break;
2088 case 20: tap->wr_rate = 4; break;
2089 case 55: tap->wr_rate = 11; break;
2090 case 110: tap->wr_rate = 22; break;
2091 /* OFDM rates. */
2092 case 0xd: tap->wr_rate = 12; break;
2093 case 0xf: tap->wr_rate = 18; break;
2094 case 0x5: tap->wr_rate = 24; break;
2095 case 0x7: tap->wr_rate = 36; break;
2096 case 0x9: tap->wr_rate = 48; break;
2097 case 0xb: tap->wr_rate = 72; break;
2098 case 0x1: tap->wr_rate = 96; break;
2099 case 0x3: tap->wr_rate = 108; break;
2100 /* Unknown rate: should not happen. */
2101 default: tap->wr_rate = 0;
2102 }
2103
2104 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2105 }
2106
2107 /* Send the frame to the 802.11 layer. */
2108 ieee80211_input(ic, m, ni, rssi, 0);
2109
2110 /* Node is no longer needed. */
2111 ieee80211_free_node(ni);
2112 }
2113
2114 #ifndef IEEE80211_NO_HT
2115 /* Process an incoming Compressed BlockAck. */
2116 static void
2117 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2118 struct iwn_rx_data *data)
2119 {
2120 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2121 struct iwn_tx_ring *txq;
2122
2123 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2124 BUS_DMASYNC_POSTREAD);
2125
2126 txq = &sc->txq[le16toh(ba->qid)];
2127 /* XXX TBD */
2128 }
2129 #endif
2130
2131 /*
2132 * Process a CALIBRATION_RESULT notification sent by the initialization
2133 * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2134 */
2135 static void
2136 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2137 struct iwn_rx_data *data)
2138 {
2139 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2140 int len, idx = -1;
2141
2142 /* Runtime firmware should not send such a notification. */
2143 if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2144 return;
2145
2146 len = (le32toh(desc->len) & 0x3fff) - 4;
2147 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2148 BUS_DMASYNC_POSTREAD);
2149
2150 switch (calib->code) {
2151 case IWN5000_PHY_CALIB_DC:
2152 if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2153 sc->hw_type == IWN_HW_REV_TYPE_6050)
2154 idx = 0;
2155 break;
2156 case IWN5000_PHY_CALIB_LO:
2157 idx = 1;
2158 break;
2159 case IWN5000_PHY_CALIB_TX_IQ:
2160 idx = 2;
2161 break;
2162 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2163 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2164 sc->hw_type != IWN_HW_REV_TYPE_5150)
2165 idx = 3;
2166 break;
2167 case IWN5000_PHY_CALIB_BASE_BAND:
2168 idx = 4;
2169 break;
2170 }
2171 if (idx == -1) /* Ignore other results. */
2172 return;
2173
2174 /* Save calibration result. */
2175 if (sc->calibcmd[idx].buf != NULL)
2176 free(sc->calibcmd[idx].buf, M_DEVBUF);
2177 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2178 if (sc->calibcmd[idx].buf == NULL) {
2179 DPRINTF(("not enough memory for calibration result %d\n",
2180 calib->code));
2181 return;
2182 }
2183 DPRINTF(("saving calibration result code=%d len=%d\n",
2184 calib->code, len));
2185 sc->calibcmd[idx].len = len;
2186 memcpy(sc->calibcmd[idx].buf, calib, len);
2187 }
2188
2189 /*
2190 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2191 * The latter is sent by the firmware after each received beacon.
2192 */
2193 static void
2194 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2195 struct iwn_rx_data *data)
2196 {
2197 const struct iwn_hal *hal = sc->sc_hal;
2198 struct ieee80211com *ic = &sc->sc_ic;
2199 struct iwn_calib_state *calib = &sc->calib;
2200 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2201 int temp;
2202
2203 /* Ignore statistics received during a scan. */
2204 if (ic->ic_state != IEEE80211_S_RUN)
2205 return;
2206
2207 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2208 sizeof (*stats), BUS_DMASYNC_POSTREAD);
2209
2210 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2211 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2212
2213 /* Test if temperature has changed. */
2214 if (stats->general.temp != sc->rawtemp) {
2215 /* Convert "raw" temperature to degC. */
2216 sc->rawtemp = stats->general.temp;
2217 temp = hal->get_temperature(sc);
2218 DPRINTFN(2, ("temperature=%dC\n", temp));
2219
2220 #ifndef SMALL_KERNEL
2221 /* Update temperature sensor. */
2222 sc->sc_sensor.value_cur = IWN_CTOMUK(temp);
2223 sc->sc_sensor.state = ENVSYS_SVALID;
2224 #endif
2225
2226 /* Update TX power if need be (4965AGN only.) */
2227 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2228 iwn4965_power_calibration(sc, temp);
2229 }
2230
2231 if (desc->type != IWN_BEACON_STATISTICS)
2232 return; /* Reply to a statistics request. */
2233
2234 sc->noise = iwn_get_noise(&stats->rx.general);
2235
2236 /* Test that RSSI and noise are present in stats report. */
2237 if (le32toh(stats->rx.general.flags) != 1) {
2238 DPRINTF(("received statistics without RSSI\n"));
2239 return;
2240 }
2241
2242 if (calib->state == IWN_CALIB_STATE_ASSOC)
2243 iwn_collect_noise(sc, &stats->rx.general);
2244 else if (calib->state == IWN_CALIB_STATE_RUN)
2245 iwn_tune_sensitivity(sc, &stats->rx);
2246 }
2247
2248 /*
2249 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2250 * and 5000 adapters have different incompatible TX status formats.
2251 */
2252 static void
2253 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2254 struct iwn_rx_data *data)
2255 {
2256 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2257
2258 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2259 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2260 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2261 }
2262
2263 static void
2264 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2265 struct iwn_rx_data *data)
2266 {
2267 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2268
2269 #ifdef notyet
2270 /* Reset TX scheduler slot. */
2271 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2272 #endif
2273
2274 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2275 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2276 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2277 }
2278
2279 /*
2280 * Adapter-independent backend for TX_DONE firmware notifications.
2281 */
2282 static void
2283 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2284 uint8_t status)
2285 {
2286 struct ieee80211com *ic = &sc->sc_ic;
2287 struct ifnet *ifp = ic->ic_ifp;
2288 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2289 struct iwn_tx_data *data = &ring->data[desc->idx];
2290 struct iwn_node *wn = (struct iwn_node *)data->ni;
2291
2292 /* Update rate control statistics. */
2293 wn->amn.amn_txcnt++;
2294 if (ackfailcnt > 0)
2295 wn->amn.amn_retrycnt++;
2296
2297 if (status != 1 && status != 2)
2298 ifp->if_oerrors++;
2299 else
2300 ifp->if_opackets++;
2301
2302 /* Unmap and free mbuf. */
2303 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2304 BUS_DMASYNC_POSTWRITE);
2305 bus_dmamap_unload(sc->sc_dmat, data->map);
2306 m_freem(data->m);
2307 data->m = NULL;
2308 ieee80211_free_node(data->ni);
2309 data->ni = NULL;
2310
2311 sc->sc_tx_timer = 0;
2312 if (--ring->queued < IWN_TX_RING_LOMARK) {
2313 sc->qfullmsk &= ~(1 << ring->qid);
2314 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2315 ifp->if_flags &= ~IFF_OACTIVE;
2316 (*ifp->if_start)(ifp);
2317 }
2318 }
2319 }
2320
2321 /*
2322 * Process a "command done" firmware notification. This is where we wakeup
2323 * processes waiting for a synchronous command completion.
2324 */
2325 static void
2326 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2327 {
2328 struct iwn_tx_ring *ring = &sc->txq[4];
2329 struct iwn_tx_data *data;
2330
2331 if ((desc->qid & 0xf) != 4)
2332 return; /* Not a command ack. */
2333
2334 data = &ring->data[desc->idx];
2335
2336 /* If the command was mapped in an mbuf, free it. */
2337 if (data->m != NULL) {
2338 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2339 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2340 bus_dmamap_unload(sc->sc_dmat, data->map);
2341 m_freem(data->m);
2342 data->m = NULL;
2343 }
2344 wakeup(&ring->desc[desc->idx]);
2345 }
2346
2347 /*
2348 * Process an INT_FH_RX or INT_SW_RX interrupt.
2349 */
2350 static void
2351 iwn_notif_intr(struct iwn_softc *sc)
2352 {
2353 struct ieee80211com *ic = &sc->sc_ic;
2354 struct ifnet *ifp = ic->ic_ifp;
2355 uint16_t hw;
2356
2357 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2358 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2359
2360 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2361 while (sc->rxq.cur != hw) {
2362 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2363 struct iwn_rx_desc *desc;
2364
2365 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2366 BUS_DMASYNC_POSTREAD);
2367 desc = mtod(data->m, struct iwn_rx_desc *);
2368
2369 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2370 desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2371
2372 if (!(desc->qid & 0x80)) /* Reply to a command. */
2373 iwn_cmd_done(sc, desc);
2374
2375 switch (desc->type) {
2376 case IWN_RX_PHY:
2377 iwn_rx_phy(sc, desc, data);
2378 break;
2379
2380 case IWN_RX_DONE: /* 4965AGN only. */
2381 case IWN_MPDU_RX_DONE:
2382 /* An 802.11 frame has been received. */
2383 iwn_rx_done(sc, desc, data);
2384 break;
2385 #ifndef IEEE80211_NO_HT
2386 case IWN_RX_COMPRESSED_BA:
2387 /* A Compressed BlockAck has been received. */
2388 iwn_rx_compressed_ba(sc, desc, data);
2389 break;
2390 #endif
2391 case IWN_TX_DONE:
2392 /* An 802.11 frame has been transmitted. */
2393 sc->sc_hal->tx_done(sc, desc, data);
2394 break;
2395
2396 case IWN_RX_STATISTICS:
2397 case IWN_BEACON_STATISTICS:
2398 iwn_rx_statistics(sc, desc, data);
2399 break;
2400
2401 case IWN_BEACON_MISSED:
2402 {
2403 struct iwn_beacon_missed *miss =
2404 (struct iwn_beacon_missed *)(desc + 1);
2405
2406 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2407 sizeof (*miss), BUS_DMASYNC_POSTREAD);
2408 /*
2409 * If more than 5 consecutive beacons are missed,
2410 * reinitialize the sensitivity state machine.
2411 */
2412 DPRINTF(("beacons missed %d/%d\n",
2413 le32toh(miss->consecutive), le32toh(miss->total)));
2414 if (ic->ic_state == IEEE80211_S_RUN &&
2415 le32toh(miss->consecutive) > 5)
2416 (void)iwn_init_sensitivity(sc);
2417 break;
2418 }
2419 case IWN_UC_READY:
2420 {
2421 struct iwn_ucode_info *uc =
2422 (struct iwn_ucode_info *)(desc + 1);
2423
2424 /* The microcontroller is ready. */
2425 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2426 sizeof (*uc), BUS_DMASYNC_POSTREAD);
2427 DPRINTF(("microcode alive notification version=%d.%d "
2428 "subtype=%x alive=%x\n", uc->major, uc->minor,
2429 uc->subtype, le32toh(uc->valid)));
2430
2431 if (le32toh(uc->valid) != 1) {
2432 aprint_error_dev(sc->sc_dev,
2433 "microcontroller initialization "
2434 "failed\n");
2435 break;
2436 }
2437 if (uc->subtype == IWN_UCODE_INIT) {
2438 /* Save microcontroller report. */
2439 memcpy(&sc->ucode_info, uc, sizeof (*uc));
2440 }
2441 /* Save the address of the error log in SRAM. */
2442 sc->errptr = le32toh(uc->errptr);
2443 break;
2444 }
2445 case IWN_STATE_CHANGED:
2446 {
2447 uint32_t *status = (uint32_t *)(desc + 1);
2448
2449 /* Enabled/disabled notification. */
2450 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2451 sizeof (*status), BUS_DMASYNC_POSTREAD);
2452 DPRINTF(("state changed to %x\n", le32toh(*status)));
2453
2454 if (le32toh(*status) & 1) {
2455 /* The radio button has to be pushed. */
2456 aprint_error_dev(sc->sc_dev,
2457 "Radio transmitter is off\n");
2458 /* Turn the interface down. */
2459 ifp->if_flags &= ~IFF_UP;
2460 iwn_stop(ifp, 1);
2461 return; /* No further processing. */
2462 }
2463 break;
2464 }
2465 case IWN_START_SCAN:
2466 {
2467 struct iwn_start_scan *scan =
2468 (struct iwn_start_scan *)(desc + 1);
2469
2470 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2471 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2472 DPRINTFN(2, ("scanning channel %d status %x\n",
2473 scan->chan, le32toh(scan->status)));
2474
2475 /* Fix current channel. */
2476 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2477 break;
2478 }
2479 case IWN_STOP_SCAN:
2480 {
2481 struct iwn_stop_scan *scan =
2482 (struct iwn_stop_scan *)(desc + 1);
2483
2484 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2485 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2486 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2487 scan->nchan, scan->status, scan->chan));
2488
2489 if (scan->status == 1 && scan->chan <= 14 &&
2490 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2491 /*
2492 * We just finished scanning 2GHz channels,
2493 * start scanning 5GHz ones.
2494 */
2495 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2496 break;
2497 }
2498 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2499 ieee80211_end_scan(ic);
2500 break;
2501 }
2502 case IWN5000_CALIBRATION_RESULT:
2503 iwn5000_rx_calib_results(sc, desc, data);
2504 break;
2505
2506 case IWN5000_CALIBRATION_DONE:
2507 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2508 wakeup(sc);
2509 break;
2510 }
2511
2512 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2513 }
2514
2515 /* Tell the firmware what we have processed. */
2516 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2517 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2518 }
2519
2520 /*
2521 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2522 * from power-down sleep mode.
2523 */
2524 static void
2525 iwn_wakeup_intr(struct iwn_softc *sc)
2526 {
2527 int qid;
2528
2529 DPRINTF(("ucode wakeup from power-down sleep\n"));
2530
2531 /* Wakeup RX and TX rings. */
2532 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2533 for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
2534 struct iwn_tx_ring *ring = &sc->txq[qid];
2535 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2536 }
2537 }
2538
2539 /*
2540 * Dump the error log of the firmware when a firmware panic occurs. Although
2541 * we can't debug the firmware because it is neither open source nor free, it
2542 * can help us to identify certain classes of problems.
2543 */
2544 static void
2545 iwn_fatal_intr(struct iwn_softc *sc)
2546 {
2547 const struct iwn_hal *hal = sc->sc_hal;
2548 struct iwn_fw_dump dump;
2549 int i;
2550
2551 /* Force a complete recalibration on next init. */
2552 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2553
2554 /* Check that the error log address is valid. */
2555 if (sc->errptr < IWN_FW_DATA_BASE ||
2556 sc->errptr + sizeof (dump) >
2557 IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2558 aprint_error_dev(sc->sc_dev,
2559 "bad firmware error log address 0x%08x\n", sc->errptr);
2560 return;
2561 }
2562 if (iwn_nic_lock(sc) != 0) {
2563 aprint_error_dev(sc->sc_dev,
2564 "could not read firmware error log\n");
2565 return;
2566 }
2567 /* Read firmware error log from SRAM. */
2568 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2569 sizeof (dump) / sizeof (uint32_t));
2570 iwn_nic_unlock(sc);
2571
2572 if (dump.valid == 0) {
2573 aprint_error_dev(sc->sc_dev,
2574 "firmware error log is empty\n");
2575 return;
2576 }
2577 aprint_error("firmware error log:\n");
2578 aprint_error(" error type = \"%s\" (0x%08X)\n",
2579 (dump.id < __arraycount(iwn_fw_errmsg)) ?
2580 iwn_fw_errmsg[dump.id] : "UNKNOWN",
2581 dump.id);
2582 aprint_error(" program counter = 0x%08X\n", dump.pc);
2583 aprint_error(" source line = 0x%08X\n", dump.src_line);
2584 aprint_error(" error data = 0x%08X%08X\n",
2585 dump.error_data[0], dump.error_data[1]);
2586 aprint_error(" branch link = 0x%08X%08X\n",
2587 dump.branch_link[0], dump.branch_link[1]);
2588 aprint_error(" interrupt link = 0x%08X%08X\n",
2589 dump.interrupt_link[0], dump.interrupt_link[1]);
2590 aprint_error(" time = %u\n", dump.time[0]);
2591
2592 /* Dump driver status (TX and RX rings) while we're here. */
2593 aprint_error("driver status:\n");
2594 for (i = 0; i < hal->ntxqs; i++) {
2595 struct iwn_tx_ring *ring = &sc->txq[i];
2596 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2597 i, ring->qid, ring->cur, ring->queued);
2598 }
2599 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
2600 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
2601 }
2602
2603 static int
2604 iwn_intr(void *arg)
2605 {
2606 struct iwn_softc *sc = arg;
2607 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2608 uint32_t r1, r2, tmp;
2609
2610 /* Disable interrupts. */
2611 IWN_WRITE(sc, IWN_INT_MASK, 0);
2612
2613 /* Read interrupts from ICT (fast) or from registers (slow). */
2614 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2615 tmp = 0;
2616 while (sc->ict[sc->ict_cur] != 0) {
2617 tmp |= sc->ict[sc->ict_cur];
2618 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2619 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2620 }
2621 tmp = le32toh(tmp);
2622 if (tmp == 0xffffffff) /* Shouldn't happen. */
2623 tmp = 0;
2624 else if (tmp & 0xc0000) /* Workaround a HW bug. */
2625 tmp |= 0x8000;
2626 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2627 r2 = 0; /* Unused. */
2628 } else {
2629 r1 = IWN_READ(sc, IWN_INT);
2630 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2631 return 0; /* Hardware gone! */
2632 r2 = IWN_READ(sc, IWN_FH_INT);
2633 }
2634 if (r1 == 0 && r2 == 0) {
2635 if (ifp->if_flags & IFF_UP)
2636 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2637 return 0; /* Interrupt not for us. */
2638 }
2639
2640 /* Acknowledge interrupts. */
2641 IWN_WRITE(sc, IWN_INT, r1);
2642 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2643 IWN_WRITE(sc, IWN_FH_INT, r2);
2644
2645 if (r1 & IWN_INT_RF_TOGGLED) {
2646 tmp = IWN_READ(sc, IWN_GP_CNTRL);
2647 aprint_error_dev(sc->sc_dev,
2648 "RF switch: radio %s\n",
2649 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2650 }
2651 if (r1 & IWN_INT_CT_REACHED) {
2652 aprint_error_dev(sc->sc_dev,
2653 "critical temperature reached!\n");
2654 }
2655 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2656 aprint_error_dev(sc->sc_dev,
2657 "fatal firmware error\n");
2658 /* Dump firmware error log and stop. */
2659 iwn_fatal_intr(sc);
2660 ifp->if_flags &= ~IFF_UP;
2661 iwn_stop(ifp, 1);
2662 return 1;
2663 }
2664 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2665 (r2 & IWN_FH_INT_RX)) {
2666 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2667 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2668 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2669 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2670 IWN_INT_PERIODIC_DIS);
2671 iwn_notif_intr(sc);
2672 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2673 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2674 IWN_INT_PERIODIC_ENA);
2675 }
2676 } else
2677 iwn_notif_intr(sc);
2678 }
2679
2680 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2681 if (sc->sc_flags & IWN_FLAG_USE_ICT)
2682 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2683 wakeup(sc); /* FH DMA transfer completed. */
2684 }
2685
2686 if (r1 & IWN_INT_ALIVE)
2687 wakeup(sc); /* Firmware is alive. */
2688
2689 if (r1 & IWN_INT_WAKEUP)
2690 iwn_wakeup_intr(sc);
2691
2692 /* Re-enable interrupts. */
2693 if (ifp->if_flags & IFF_UP)
2694 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2695
2696 return 1;
2697 }
2698
2699 /*
2700 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2701 * 5000 adapters use a slightly different format.)
2702 */
2703 static void
2704 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2705 uint16_t len)
2706 {
2707 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2708
2709 *w = htole16(len + 8);
2710 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2711 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2712 sizeof (uint16_t),
2713 BUS_DMASYNC_PREWRITE);
2714 if (idx < IWN_SCHED_WINSZ) {
2715 *(w + IWN_TX_RING_COUNT) = *w;
2716 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2717 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2718 (char *)(void *)sc->sched_dma.vaddr,
2719 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2720 }
2721 }
2722
2723 static void
2724 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2725 uint16_t len)
2726 {
2727 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2728
2729 *w = htole16(id << 12 | (len + 8));
2730 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2731 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2732 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2733 if (idx < IWN_SCHED_WINSZ) {
2734 *(w + IWN_TX_RING_COUNT) = *w;
2735 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2736 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2737 (char *)(void *)sc->sched_dma.vaddr,
2738 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2739 }
2740 }
2741
2742 #ifdef notyet
2743 static void
2744 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2745 {
2746 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2747
2748 *w = (*w & htole16(0xf000)) | htole16(1);
2749 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2750 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2751 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2752 if (idx < IWN_SCHED_WINSZ) {
2753 *(w + IWN_TX_RING_COUNT) = *w;
2754 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2755 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2756 (char *)(void *)sc->sched_dma.vaddr,
2757 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2758 }
2759 }
2760 #endif
2761
2762 static int
2763 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2764 {
2765 const struct iwn_hal *hal = sc->sc_hal;
2766 struct ieee80211com *ic = &sc->sc_ic;
2767 struct iwn_node *wn = (void *)ni;
2768 struct iwn_tx_ring *ring;
2769 struct iwn_tx_desc *desc;
2770 struct iwn_tx_data *data;
2771 struct iwn_tx_cmd *cmd;
2772 struct iwn_cmd_data *tx;
2773 const struct iwn_rate *rinfo;
2774 struct ieee80211_frame *wh;
2775 struct ieee80211_key *k = NULL;
2776 struct mbuf *m1;
2777 uint32_t flags;
2778 u_int hdrlen;
2779 bus_dma_segment_t *seg;
2780 uint8_t tid, ridx, txant, type;
2781 int i, totlen, error, pad;
2782
2783 const struct chanAccParams *cap;
2784 int noack;
2785 int hdrlen2;
2786
2787 wh = mtod(m, struct ieee80211_frame *);
2788 hdrlen = ieee80211_anyhdrsize(wh);
2789 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2790
2791 hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
2792 sizeof (struct ieee80211_qosframe) :
2793 sizeof (struct ieee80211_frame);
2794
2795 if (hdrlen != hdrlen2)
2796 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2797 hdrlen, hdrlen2);
2798
2799 /* XXX OpenBSD sets a different tid when using QOS */
2800 tid = 0;
2801 if (IEEE80211_QOS_HAS_SEQ(wh)) {
2802 cap = &ic->ic_wme.wme_chanParams;
2803 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2804 }
2805 else
2806 noack = 0;
2807
2808 ring = &sc->txq[ac];
2809 desc = &ring->desc[ring->cur];
2810 data = &ring->data[ring->cur];
2811
2812 /* Choose a TX rate index. */
2813 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2814 type != IEEE80211_FC0_TYPE_DATA) {
2815 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2816 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2817 } else if (ic->ic_fixed_rate != -1) {
2818 ridx = sc->fixed_ridx;
2819 } else
2820 ridx = wn->ridx[ni->ni_txrate];
2821 rinfo = &iwn_rates[ridx];
2822
2823 /* Encrypt the frame if need be. */
2824 /*
2825 * XXX For now, NetBSD swaps the encryption and bpf sections
2826 * in order to match old code and other drivers. Tests with
2827 * tcpdump indicates that the order is irrelevant, however,
2828 * as bpf produces unencrypted data for both ordering choices.
2829 */
2830 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2831 k = ieee80211_crypto_encap(ic, ni, m);
2832 if (k == NULL) {
2833 m_freem(m);
2834 return ENOBUFS;
2835 }
2836 /* Packet header may have moved, reset our local pointer. */
2837 wh = mtod(m, struct ieee80211_frame *);
2838 }
2839 totlen = m->m_pkthdr.len;
2840
2841 if (sc->sc_drvbpf != NULL) {
2842 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2843
2844 tap->wt_flags = 0;
2845 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2846 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2847 tap->wt_rate = rinfo->rate;
2848 tap->wt_hwqueue = ac;
2849 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2850 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2851
2852 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2853 }
2854
2855 /* Prepare TX firmware command. */
2856 cmd = &ring->cmd[ring->cur];
2857 cmd->code = IWN_CMD_TX_DATA;
2858 cmd->flags = 0;
2859 cmd->qid = ring->qid;
2860 cmd->idx = ring->cur;
2861
2862 tx = (struct iwn_cmd_data *)cmd->data;
2863 /* NB: No need to clear tx, all fields are reinitialized here. */
2864 tx->scratch = 0; /* clear "scratch" area */
2865
2866 flags = 0;
2867 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2868 /* Unicast frame, check if an ACK is expected. */
2869 if (!noack)
2870 flags |= IWN_TX_NEED_ACK;
2871 }
2872
2873 #ifdef notyet
2874 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2875 if ((wh->i_fc[0] &
2876 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2877 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2878 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
2879 #endif
2880
2881 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2882 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
2883
2884 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2885 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2886 /* NB: Group frames are sent using CCK in 802.11b/g. */
2887 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2888 flags |= IWN_TX_NEED_RTS;
2889 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2890 ridx >= IWN_RIDX_OFDM6) {
2891 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2892 flags |= IWN_TX_NEED_CTS;
2893 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2894 flags |= IWN_TX_NEED_RTS;
2895 }
2896 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2897 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2898 /* 5000 autoselects RTS/CTS or CTS-to-self. */
2899 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2900 flags |= IWN_TX_NEED_PROTECTION;
2901 } else
2902 flags |= IWN_TX_FULL_TXOP;
2903 }
2904 }
2905
2906 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2907 type != IEEE80211_FC0_TYPE_DATA)
2908 tx->id = hal->broadcast_id;
2909 else
2910 tx->id = wn->id;
2911
2912 if (type == IEEE80211_FC0_TYPE_MGT) {
2913 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2914
2915 #ifndef IEEE80211_STA_ONLY
2916 /* Tell HW to set timestamp in probe responses. */
2917 /* XXX NetBSD rev 1.11 added probe requests here but */
2918 /* probe requests do not take timestamps (from Bergamini). */
2919 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2920 flags |= IWN_TX_INSERT_TSTAMP;
2921 #endif
2922 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2923 /* changes here. These are not needed (from Bergamini). */
2924 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2925 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2926 tx->timeout = htole16(3);
2927 else
2928 tx->timeout = htole16(2);
2929 } else
2930 tx->timeout = htole16(0);
2931
2932 if (hdrlen & 3) {
2933 /* First segment's length must be a multiple of 4. */
2934 flags |= IWN_TX_NEED_PADDING;
2935 pad = 4 - (hdrlen & 3);
2936 } else
2937 pad = 0;
2938
2939 tx->len = htole16(totlen);
2940 tx->tid = tid;
2941 tx->rts_ntries = 60;
2942 tx->data_ntries = 15;
2943 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2944 tx->plcp = rinfo->plcp;
2945 tx->rflags = rinfo->flags;
2946 if (tx->id == hal->broadcast_id) {
2947 /* Group or management frame. */
2948 tx->linkq = 0;
2949 /* XXX Alternate between antenna A and B? */
2950 txant = IWN_LSB(sc->txchainmask);
2951 tx->rflags |= IWN_RFLAG_ANT(txant);
2952 } else {
2953 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2954 flags |= IWN_TX_LINKQ; /* enable MRR */
2955 }
2956 /* Set physical address of "scratch area". */
2957 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2958 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2959
2960 /* Copy 802.11 header in TX command. */
2961 /* XXX NetBSD changed this in rev 1.20 */
2962 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2963
2964 /* Trim 802.11 header. */
2965 m_adj(m, hdrlen);
2966 tx->security = 0;
2967 tx->flags = htole32(flags);
2968
2969 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2970 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2971 if (error != 0) {
2972 if (error != EFBIG) {
2973 aprint_error_dev(sc->sc_dev,
2974 "can't map mbuf (error %d)\n", error);
2975 m_freem(m);
2976 return error;
2977 }
2978 /* Too many DMA segments, linearize mbuf. */
2979 MGETHDR(m1, M_DONTWAIT, MT_DATA);
2980 if (m1 == NULL) {
2981 m_freem(m);
2982 return ENOBUFS;
2983 }
2984 if (m->m_pkthdr.len > MHLEN) {
2985 MCLGET(m1, M_DONTWAIT);
2986 if (!(m1->m_flags & M_EXT)) {
2987 m_freem(m);
2988 m_freem(m1);
2989 return ENOBUFS;
2990 }
2991 }
2992 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2993 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2994 m_freem(m);
2995 m = m1;
2996
2997 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2998 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2999 if (error != 0) {
3000 aprint_error_dev(sc->sc_dev,
3001 "can't map mbuf (error %d)\n", error);
3002 m_freem(m);
3003 return error;
3004 }
3005 }
3006
3007 data->m = m;
3008 data->ni = ni;
3009
3010 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3011 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3012
3013 /* Fill TX descriptor. */
3014 desc->nsegs = 1 + data->map->dm_nsegs;
3015 /* First DMA segment is used by the TX command. */
3016 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3017 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
3018 (4 + sizeof (*tx) + hdrlen + pad) << 4);
3019 /* Other DMA segments are for data payload. */
3020 seg = data->map->dm_segs;
3021 for (i = 1; i <= data->map->dm_nsegs; i++) {
3022 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3023 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
3024 seg->ds_len << 4);
3025 seg++;
3026 }
3027
3028 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3029 BUS_DMASYNC_PREWRITE);
3030 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3031 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3032 sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3033 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3034 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3035 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3036
3037 #ifdef notyet
3038 /* Update TX scheduler. */
3039 hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3040 #endif
3041
3042 /* Kick TX ring. */
3043 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3044 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3045
3046 /* Mark TX ring as full if we reach a certain threshold. */
3047 if (++ring->queued > IWN_TX_RING_HIMARK)
3048 sc->qfullmsk |= 1 << ring->qid;
3049
3050 return 0;
3051 }
3052
3053 static void
3054 iwn_start(struct ifnet *ifp)
3055 {
3056 struct iwn_softc *sc = ifp->if_softc;
3057 struct ieee80211com *ic = &sc->sc_ic;
3058 struct ieee80211_node *ni;
3059 struct ether_header *eh;
3060 struct mbuf *m;
3061 int ac;
3062
3063 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3064 return;
3065
3066 for (;;) {
3067 if (sc->qfullmsk != 0) {
3068 ifp->if_flags |= IFF_OACTIVE;
3069 break;
3070 }
3071 /* Send pending management frames first. */
3072 IF_DEQUEUE(&ic->ic_mgtq, m);
3073 if (m != NULL) {
3074 ni = (void *)m->m_pkthdr.rcvif;
3075 ac = 0;
3076 goto sendit;
3077 }
3078 if (ic->ic_state != IEEE80211_S_RUN)
3079 break;
3080
3081 /* Encapsulate and send data frames. */
3082 IFQ_DEQUEUE(&ifp->if_snd, m);
3083 if (m == NULL)
3084 break;
3085 if (m->m_len < sizeof (*eh) &&
3086 (m = m_pullup(m, sizeof (*eh))) == NULL) {
3087 ifp->if_oerrors++;
3088 continue;
3089 }
3090 eh = mtod(m, struct ether_header *);
3091 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3092 if (ni == NULL) {
3093 m_freem(m);
3094 ifp->if_oerrors++;
3095 continue;
3096 }
3097 /* classify mbuf so we can find which tx ring to use */
3098 if (ieee80211_classify(ic, m, ni) != 0) {
3099 m_freem(m);
3100 ieee80211_free_node(ni);
3101 ifp->if_oerrors++;
3102 continue;
3103 }
3104
3105 /* No QoS encapsulation for EAPOL frames. */
3106 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3107 M_WME_GETAC(m) : WME_AC_BE;
3108
3109 bpf_mtap(ifp, m);
3110
3111 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3112 ieee80211_free_node(ni);
3113 ifp->if_oerrors++;
3114 continue;
3115 }
3116 sendit:
3117 bpf_mtap3(ic->ic_rawbpf, m);
3118
3119 if (iwn_tx(sc, m, ni, ac) != 0) {
3120 ieee80211_free_node(ni);
3121 ifp->if_oerrors++;
3122 continue;
3123 }
3124
3125 sc->sc_tx_timer = 5;
3126 ifp->if_timer = 1;
3127 }
3128 }
3129
3130 static void
3131 iwn_watchdog(struct ifnet *ifp)
3132 {
3133 struct iwn_softc *sc = ifp->if_softc;
3134
3135 ifp->if_timer = 0;
3136
3137 if (sc->sc_tx_timer > 0) {
3138 if (--sc->sc_tx_timer == 0) {
3139 aprint_error_dev(sc->sc_dev,
3140 "device timeout\n");
3141 ifp->if_flags &= ~IFF_UP;
3142 iwn_stop(ifp, 1);
3143 ifp->if_oerrors++;
3144 return;
3145 }
3146 ifp->if_timer = 1;
3147 }
3148
3149 ieee80211_watchdog(&sc->sc_ic);
3150 }
3151
3152 static int
3153 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3154 {
3155 struct iwn_softc *sc = ifp->if_softc;
3156 struct ieee80211com *ic = &sc->sc_ic;
3157 struct ifaddr *ifa;
3158 const struct sockaddr *sa;
3159 int s, error = 0;
3160
3161 s = splnet();
3162
3163 switch (cmd) {
3164 case SIOCSIFADDR:
3165 ifa = (struct ifaddr *)data;
3166 ifp->if_flags |= IFF_UP;
3167 #ifdef INET
3168 if (ifa->ifa_addr->sa_family == AF_INET)
3169 arp_ifinit(&ic->ic_ac, ifa);
3170 #endif
3171 /* FALLTHROUGH */
3172 case SIOCSIFFLAGS:
3173 /* XXX Added as it is in every NetBSD driver */
3174 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3175 break;
3176 if (ifp->if_flags & IFF_UP) {
3177 if (!(ifp->if_flags & IFF_RUNNING))
3178 error = iwn_init(ifp);
3179 } else {
3180 if (ifp->if_flags & IFF_RUNNING)
3181 iwn_stop(ifp, 1);
3182 }
3183 break;
3184
3185 case SIOCADDMULTI:
3186 case SIOCDELMULTI:
3187 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3188 error = (cmd == SIOCADDMULTI) ?
3189 ether_addmulti(sa, &sc->sc_ec) :
3190 ether_delmulti(sa, &sc->sc_ec);
3191
3192 if (error == ENETRESET)
3193 error = 0;
3194 break;
3195
3196 default:
3197 error = ieee80211_ioctl(ic, cmd, data);
3198 }
3199
3200 if (error == ENETRESET) {
3201 error = 0;
3202 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3203 (IFF_UP | IFF_RUNNING)) {
3204 iwn_stop(ifp, 0);
3205 error = iwn_init(ifp);
3206 }
3207 }
3208 splx(s);
3209 return error;
3210 }
3211
3212 /*
3213 * Send a command to the firmware.
3214 */
3215 static int
3216 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3217 {
3218 struct iwn_tx_ring *ring = &sc->txq[4];
3219 struct iwn_tx_desc *desc;
3220 struct iwn_tx_data *data;
3221 struct iwn_tx_cmd *cmd;
3222 struct mbuf *m;
3223 bus_addr_t paddr;
3224 int totlen, error;
3225
3226 desc = &ring->desc[ring->cur];
3227 data = &ring->data[ring->cur];
3228 totlen = 4 + size;
3229
3230 if (size > sizeof cmd->data) {
3231 /* Command is too large to fit in a descriptor. */
3232 if (totlen > MCLBYTES)
3233 return EINVAL;
3234 MGETHDR(m, M_DONTWAIT, MT_DATA);
3235 if (m == NULL)
3236 return ENOMEM;
3237 if (totlen > MHLEN) {
3238 MCLGET(m, M_DONTWAIT);
3239 if (!(m->m_flags & M_EXT)) {
3240 m_freem(m);
3241 return ENOMEM;
3242 }
3243 }
3244 cmd = mtod(m, struct iwn_tx_cmd *);
3245 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3246 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3247 if (error != 0) {
3248 m_freem(m);
3249 return error;
3250 }
3251 data->m = m;
3252 paddr = data->map->dm_segs[0].ds_addr;
3253 } else {
3254 cmd = &ring->cmd[ring->cur];
3255 paddr = data->cmd_paddr;
3256 }
3257
3258 cmd->code = code;
3259 cmd->flags = 0;
3260 cmd->qid = ring->qid;
3261 cmd->idx = ring->cur;
3262 memcpy(cmd->data, buf, size);
3263
3264 desc->nsegs = 1;
3265 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3266 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3267
3268 if (size > sizeof cmd->data) {
3269 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3270 BUS_DMASYNC_PREWRITE);
3271 } else {
3272 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3273 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3274 totlen, BUS_DMASYNC_PREWRITE);
3275 }
3276 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3277 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3278 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3279
3280 #ifdef notyet
3281 /* Update TX scheduler. */
3282 sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3283 #endif
3284 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3285
3286 /* Kick command ring. */
3287 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3288 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3289
3290 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3291 }
3292
3293 static int
3294 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3295 {
3296 struct iwn4965_node_info hnode;
3297 char *src, *dst;
3298
3299 /*
3300 * We use the node structure for 5000 Series internally (it is
3301 * a superset of the one for 4965AGN). We thus copy the common
3302 * fields before sending the command.
3303 */
3304 src = (char *)node;
3305 dst = (char *)&hnode;
3306 memcpy(dst, src, 48);
3307 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3308 memcpy(dst + 48, src + 72, 20);
3309 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3310 }
3311
3312 static int
3313 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3314 {
3315 /* Direct mapping. */
3316 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3317 }
3318
3319 static int
3320 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3321 {
3322 struct iwn_node *wn = (void *)ni;
3323 struct ieee80211_rateset *rs = &ni->ni_rates;
3324 struct iwn_cmd_link_quality linkq;
3325 const struct iwn_rate *rinfo;
3326 uint8_t txant;
3327 int i, txrate;
3328
3329 /* Use the first valid TX antenna. */
3330 txant = IWN_LSB(sc->txchainmask);
3331
3332 memset(&linkq, 0, sizeof linkq);
3333 linkq.id = wn->id;
3334 linkq.antmsk_1stream = txant;
3335 linkq.antmsk_2stream = IWN_ANT_AB;
3336 linkq.ampdu_max = 31;
3337 linkq.ampdu_threshold = 3;
3338 linkq.ampdu_limit = htole16(4000); /* 4ms */
3339
3340 /* Start at highest available bit-rate. */
3341 txrate = rs->rs_nrates - 1;
3342 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3343 rinfo = &iwn_rates[wn->ridx[txrate]];
3344 linkq.retry[i].plcp = rinfo->plcp;
3345 linkq.retry[i].rflags = rinfo->flags;
3346 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3347 /* Next retry at immediate lower bit-rate. */
3348 if (txrate > 0)
3349 txrate--;
3350 }
3351 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3352 }
3353
3354 /*
3355 * Broadcast node is used to send group-addressed and management frames.
3356 */
3357 static int
3358 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3359 {
3360 const struct iwn_hal *hal = sc->sc_hal;
3361 struct iwn_node_info node;
3362 struct iwn_cmd_link_quality linkq;
3363 const struct iwn_rate *rinfo;
3364 uint8_t txant;
3365 int i, error;
3366
3367 memset(&node, 0, sizeof node);
3368 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3369 node.id = hal->broadcast_id;
3370 DPRINTF(("adding broadcast node\n"));
3371 if ((error = hal->add_node(sc, &node, async)) != 0)
3372 return error;
3373
3374 /* Use the first valid TX antenna. */
3375 txant = IWN_LSB(sc->txchainmask);
3376
3377 memset(&linkq, 0, sizeof linkq);
3378 linkq.id = hal->broadcast_id;
3379 linkq.antmsk_1stream = txant;
3380 linkq.antmsk_2stream = IWN_ANT_AB;
3381 linkq.ampdu_max = 64;
3382 linkq.ampdu_threshold = 3;
3383 linkq.ampdu_limit = htole16(4000); /* 4ms */
3384
3385 /* Use lowest mandatory bit-rate. */
3386 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3387 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3388 linkq.retry[0].plcp = rinfo->plcp;
3389 linkq.retry[0].rflags = rinfo->flags;
3390 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3391 /* Use same bit-rate for all TX retries. */
3392 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3393 linkq.retry[i].plcp = linkq.retry[0].plcp;
3394 linkq.retry[i].rflags = linkq.retry[0].rflags;
3395 }
3396 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3397 }
3398
3399 static void
3400 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3401 {
3402 struct iwn_cmd_led led;
3403
3404 /* Clear microcode LED ownership. */
3405 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3406
3407 led.which = which;
3408 led.unit = htole32(10000); /* on/off in unit of 100ms */
3409 led.off = off;
3410 led.on = on;
3411 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3412 }
3413
3414 /*
3415 * Set the critical temperature at which the firmware will stop the radio
3416 * and notify us.
3417 */
3418 static int
3419 iwn_set_critical_temp(struct iwn_softc *sc)
3420 {
3421 struct iwn_critical_temp crit;
3422 int32_t temp;
3423
3424 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3425
3426 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3427 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3428 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3429 temp = IWN_CTOK(110);
3430 else
3431 temp = 110;
3432 memset(&crit, 0, sizeof crit);
3433 crit.tempR = htole32(temp);
3434 DPRINTF(("setting critical temperature to %d\n", temp));
3435 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3436 }
3437
3438 static int
3439 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3440 {
3441 struct iwn_cmd_timing cmd;
3442 uint64_t val, mod;
3443
3444 memset(&cmd, 0, sizeof cmd);
3445 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3446 cmd.bintval = htole16(ni->ni_intval);
3447 cmd.lintval = htole16(10);
3448
3449 /* Compute remaining time until next beacon. */
3450 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
3451 mod = le64toh(cmd.tstamp) % val;
3452 cmd.binitval = htole32((uint32_t)(val - mod));
3453
3454 DPRINTF(("timing bintval=%u, tstamp=%zu, init=%u\n",
3455 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3456
3457 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3458 }
3459
3460 static void
3461 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3462 {
3463 /* Adjust TX power if need be (delta >= 3 degC.) */
3464 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3465 if (abs(temp - sc->temp) >= 3) {
3466 /* Record temperature of last calibration. */
3467 sc->temp = temp;
3468 (void)iwn4965_set_txpower(sc, 1);
3469 }
3470 }
3471
3472 /*
3473 * Set TX power for current channel (each rate has its own power settings).
3474 * This function takes into account the regulatory information from EEPROM,
3475 * the current temperature and the current voltage.
3476 */
3477 static int
3478 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3479 {
3480 /* Fixed-point arithmetic division using a n-bit fractional part. */
3481 #define fdivround(a, b, n) \
3482 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3483 /* Linear interpolation. */
3484 #define interpolate(x, x1, y1, x2, y2, n) \
3485 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3486
3487 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3488 struct ieee80211com *ic = &sc->sc_ic;
3489 struct iwn_ucode_info *uc = &sc->ucode_info;
3490 struct ieee80211_channel *ch;
3491 struct iwn4965_cmd_txpower cmd;
3492 struct iwn4965_eeprom_chan_samples *chans;
3493 const uint8_t *rf_gain, *dsp_gain;
3494 int32_t vdiff, tdiff;
3495 int i, c, grp, maxpwr;
3496 uint8_t chan;
3497
3498 /* Retrieve current channel from last RXON. */
3499 chan = sc->rxon.chan;
3500 DPRINTF(("setting TX power for channel %d\n", chan));
3501 ch = &ic->ic_channels[chan];
3502
3503 memset(&cmd, 0, sizeof cmd);
3504 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3505 cmd.chan = chan;
3506
3507 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3508 maxpwr = sc->maxpwr5GHz;
3509 rf_gain = iwn4965_rf_gain_5ghz;
3510 dsp_gain = iwn4965_dsp_gain_5ghz;
3511 } else {
3512 maxpwr = sc->maxpwr2GHz;
3513 rf_gain = iwn4965_rf_gain_2ghz;
3514 dsp_gain = iwn4965_dsp_gain_2ghz;
3515 }
3516
3517 /* Compute voltage compensation. */
3518 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3519 if (vdiff > 0)
3520 vdiff *= 2;
3521 if (abs(vdiff) > 2)
3522 vdiff = 0;
3523 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3524 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3525
3526 /* Get channel attenuation group. */
3527 if (chan <= 20) /* 1-20 */
3528 grp = 4;
3529 else if (chan <= 43) /* 34-43 */
3530 grp = 0;
3531 else if (chan <= 70) /* 44-70 */
3532 grp = 1;
3533 else if (chan <= 124) /* 71-124 */
3534 grp = 2;
3535 else /* 125-200 */
3536 grp = 3;
3537 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3538
3539 /* Get channel sub-band. */
3540 for (i = 0; i < IWN_NBANDS; i++)
3541 if (sc->bands[i].lo != 0 &&
3542 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3543 break;
3544 if (i == IWN_NBANDS) /* Can't happen in real-life. */
3545 return EINVAL;
3546 chans = sc->bands[i].chans;
3547 DPRINTF(("chan %d sub-band=%d\n", chan, i));
3548
3549 for (c = 0; c < 2; c++) {
3550 uint8_t power, gain, temp;
3551 int maxchpwr, pwr, ridx, idx;
3552
3553 power = interpolate(chan,
3554 chans[0].num, chans[0].samples[c][1].power,
3555 chans[1].num, chans[1].samples[c][1].power, 1);
3556 gain = interpolate(chan,
3557 chans[0].num, chans[0].samples[c][1].gain,
3558 chans[1].num, chans[1].samples[c][1].gain, 1);
3559 temp = interpolate(chan,
3560 chans[0].num, chans[0].samples[c][1].temp,
3561 chans[1].num, chans[1].samples[c][1].temp, 1);
3562 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3563 c, power, gain, temp));
3564
3565 /* Compute temperature compensation. */
3566 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3567 DPRINTF(("temperature compensation=%d (current=%d, "
3568 "EEPROM=%d)\n", tdiff, sc->temp, temp));
3569
3570 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3571 /* Convert dBm to half-dBm. */
3572 maxchpwr = sc->maxpwr[chan] * 2;
3573 if ((ridx / 8) & 1)
3574 maxchpwr -= 6; /* MIMO 2T: -3dB */
3575
3576 pwr = maxpwr;
3577
3578 /* Adjust TX power based on rate. */
3579 if ((ridx % 8) == 5)
3580 pwr -= 15; /* OFDM48: -7.5dB */
3581 else if ((ridx % 8) == 6)
3582 pwr -= 17; /* OFDM54: -8.5dB */
3583 else if ((ridx % 8) == 7)
3584 pwr -= 20; /* OFDM60: -10dB */
3585 else
3586 pwr -= 10; /* Others: -5dB */
3587
3588 /* Do not exceed channel max TX power. */
3589 if (pwr > maxchpwr)
3590 pwr = maxchpwr;
3591
3592 idx = gain - (pwr - power) - tdiff - vdiff;
3593 if ((ridx / 8) & 1) /* MIMO */
3594 idx += (int32_t)le32toh(uc->atten[grp][c]);
3595
3596 if (cmd.band == 0)
3597 idx += 9; /* 5GHz */
3598 if (ridx == IWN_RIDX_MAX)
3599 idx += 5; /* CCK */
3600
3601 /* Make sure idx stays in a valid range. */
3602 if (idx < 0)
3603 idx = 0;
3604 else if (idx > IWN4965_MAX_PWR_INDEX)
3605 idx = IWN4965_MAX_PWR_INDEX;
3606
3607 DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3608 c, ridx, idx));
3609 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3610 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3611 }
3612 }
3613
3614 DPRINTF(("setting TX power for chan %d\n", chan));
3615 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3616
3617 #undef interpolate
3618 #undef fdivround
3619 }
3620
3621 static int
3622 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3623 {
3624 struct iwn5000_cmd_txpower cmd;
3625
3626 /*
3627 * TX power calibration is handled automatically by the firmware
3628 * for 5000 Series.
3629 */
3630 memset(&cmd, 0, sizeof cmd);
3631 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3632 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3633 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3634 DPRINTF(("setting TX power\n"));
3635 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3636 }
3637
3638 /*
3639 * Retrieve the maximum RSSI (in dBm) among receivers.
3640 */
3641 static int
3642 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3643 {
3644 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3645 uint8_t mask, agc;
3646 int rssi;
3647
3648 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3649 agc = (le16toh(phy->agc) >> 7) & 0x7f;
3650
3651 rssi = 0;
3652 if (mask & IWN_ANT_A)
3653 rssi = MAX(rssi, phy->rssi[0]);
3654 if (mask & IWN_ANT_B)
3655 rssi = MAX(rssi, phy->rssi[2]);
3656 if (mask & IWN_ANT_C)
3657 rssi = MAX(rssi, phy->rssi[4]);
3658
3659 return rssi - agc - IWN_RSSI_TO_DBM;
3660 }
3661
3662 static int
3663 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3664 {
3665 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3666 uint8_t agc;
3667 int rssi;
3668
3669 agc = (le32toh(phy->agc) >> 9) & 0x7f;
3670
3671 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3672 le16toh(phy->rssi[1]) & 0xff);
3673 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3674
3675 return rssi - agc - IWN_RSSI_TO_DBM;
3676 }
3677
3678 /*
3679 * Retrieve the average noise (in dBm) among receivers.
3680 */
3681 static int
3682 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3683 {
3684 int i, total, nbant, noise;
3685
3686 total = nbant = 0;
3687 for (i = 0; i < 3; i++) {
3688 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3689 continue;
3690 total += noise;
3691 nbant++;
3692 }
3693 /* There should be at least one antenna but check anyway. */
3694 return (nbant == 0) ? -127 : (total / nbant) - 107;
3695 }
3696
3697 /*
3698 * Compute temperature (in degC) from last received statistics.
3699 */
3700 static int
3701 iwn4965_get_temperature(struct iwn_softc *sc)
3702 {
3703 struct iwn_ucode_info *uc = &sc->ucode_info;
3704 int32_t r1, r2, r3, r4, temp;
3705
3706 r1 = le32toh(uc->temp[0].chan20MHz);
3707 r2 = le32toh(uc->temp[1].chan20MHz);
3708 r3 = le32toh(uc->temp[2].chan20MHz);
3709 r4 = le32toh(sc->rawtemp);
3710
3711 if (r1 == r3) /* Prevents division by 0 (should not happen.) */
3712 return 0;
3713
3714 /* Sign-extend 23-bit R4 value to 32-bit. */
3715 r4 = (r4 << 8) >> 8;
3716 /* Compute temperature in Kelvin. */
3717 temp = (259 * (r4 - r2)) / (r3 - r1);
3718 temp = (temp * 97) / 100 + 8;
3719
3720 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3721 return IWN_KTOC(temp);
3722 }
3723
3724 static int
3725 iwn5000_get_temperature(struct iwn_softc *sc)
3726 {
3727 int32_t temp;
3728
3729 /*
3730 * Temperature is not used by the driver for 5000 Series because
3731 * TX power calibration is handled by firmware. We export it to
3732 * users through the sensor framework though.
3733 */
3734 temp = le32toh(sc->rawtemp);
3735 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3736 temp = (temp / -5) + sc->temp_off;
3737 temp = IWN_KTOC(temp);
3738 }
3739 return temp;
3740 }
3741
3742 /*
3743 * Initialize sensitivity calibration state machine.
3744 */
3745 static int
3746 iwn_init_sensitivity(struct iwn_softc *sc)
3747 {
3748 const struct iwn_hal *hal = sc->sc_hal;
3749 struct iwn_calib_state *calib = &sc->calib;
3750 uint32_t flags;
3751 int error;
3752
3753 /* Reset calibration state machine. */
3754 memset(calib, 0, sizeof (*calib));
3755 calib->state = IWN_CALIB_STATE_INIT;
3756 calib->cck_state = IWN_CCK_STATE_HIFA;
3757 /* Set initial correlation values. */
3758 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3759 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3760 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3761 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3762 calib->cck_x4 = 125;
3763 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3764 calib->energy_cck = sc->limits->energy_cck;
3765
3766 /* Write initial sensitivity. */
3767 if ((error = iwn_send_sensitivity(sc)) != 0)
3768 return error;
3769
3770 /* Write initial gains. */
3771 if ((error = hal->init_gains(sc)) != 0)
3772 return error;
3773
3774 /* Request statistics at each beacon interval. */
3775 flags = 0;
3776 DPRINTF(("sending request for statistics\n"));
3777 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3778 }
3779
3780 /*
3781 * Collect noise and RSSI statistics for the first 20 beacons received
3782 * after association and use them to determine connected antennas and
3783 * to set differential gains.
3784 */
3785 static void
3786 iwn_collect_noise(struct iwn_softc *sc,
3787 const struct iwn_rx_general_stats *stats)
3788 {
3789 const struct iwn_hal *hal = sc->sc_hal;
3790 struct iwn_calib_state *calib = &sc->calib;
3791 uint32_t val;
3792 int i;
3793
3794 /* Accumulate RSSI and noise for all 3 antennas. */
3795 for (i = 0; i < 3; i++) {
3796 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3797 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3798 }
3799 /* NB: We update differential gains only once after 20 beacons. */
3800 if (++calib->nbeacons < 20)
3801 return;
3802
3803 /* Determine highest average RSSI. */
3804 val = MAX(calib->rssi[0], calib->rssi[1]);
3805 val = MAX(calib->rssi[2], val);
3806
3807 /* Determine which antennas are connected. */
3808 sc->chainmask = sc->rxchainmask;
3809 for (i = 0; i < 3; i++)
3810 if (val - calib->rssi[i] > 15 * 20)
3811 sc->chainmask &= ~(1 << i);
3812 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3813 sc->rxchainmask, sc->chainmask));
3814
3815 /* If none of the TX antennas are connected, keep at least one. */
3816 if ((sc->chainmask & sc->txchainmask) == 0)
3817 sc->chainmask |= IWN_LSB(sc->txchainmask);
3818
3819 (void)hal->set_gains(sc);
3820 calib->state = IWN_CALIB_STATE_RUN;
3821
3822 #ifdef notyet
3823 /* XXX Disable RX chains with no antennas connected. */
3824 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3825 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
3826 #endif
3827
3828 /* Enable power-saving mode if requested by user. */
3829 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3830 (void)iwn_set_pslevel(sc, 0, 3, 1);
3831 }
3832
3833 static int
3834 iwn4965_init_gains(struct iwn_softc *sc)
3835 {
3836 struct iwn_phy_calib_gain cmd;
3837
3838 memset(&cmd, 0, sizeof cmd);
3839 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3840 /* Differential gains initially set to 0 for all 3 antennas. */
3841 DPRINTF(("setting initial differential gains\n"));
3842 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3843 }
3844
3845 static int
3846 iwn5000_init_gains(struct iwn_softc *sc)
3847 {
3848 struct iwn_phy_calib cmd;
3849
3850 memset(&cmd, 0, sizeof cmd);
3851 cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3852 cmd.ngroups = 1;
3853 cmd.isvalid = 1;
3854 DPRINTF(("setting initial differential gains\n"));
3855 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3856 }
3857
3858 static int
3859 iwn4965_set_gains(struct iwn_softc *sc)
3860 {
3861 struct iwn_calib_state *calib = &sc->calib;
3862 struct iwn_phy_calib_gain cmd;
3863 int i, delta, noise;
3864
3865 /* Get minimal noise among connected antennas. */
3866 noise = INT_MAX; /* NB: There's at least one antenna. */
3867 for (i = 0; i < 3; i++)
3868 if (sc->chainmask & (1 << i))
3869 noise = MIN(calib->noise[i], noise);
3870
3871 memset(&cmd, 0, sizeof cmd);
3872 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3873 /* Set differential gains for connected antennas. */
3874 for (i = 0; i < 3; i++) {
3875 if (sc->chainmask & (1 << i)) {
3876 /* Compute attenuation (in unit of 1.5dB). */
3877 delta = (noise - (int32_t)calib->noise[i]) / 30;
3878 /* NB: delta <= 0 */
3879 /* Limit to [-4.5dB,0]. */
3880 cmd.gain[i] = MIN(abs(delta), 3);
3881 if (delta < 0)
3882 cmd.gain[i] |= 1 << 2; /* sign bit */
3883 }
3884 }
3885 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3886 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3887 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3888 }
3889
3890 static int
3891 iwn5000_set_gains(struct iwn_softc *sc)
3892 {
3893 struct iwn_calib_state *calib = &sc->calib;
3894 struct iwn_phy_calib_gain cmd;
3895 int i, ant, div, delta;
3896
3897 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
3898 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3899
3900 memset(&cmd, 0, sizeof cmd);
3901 cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3902 cmd.ngroups = 1;
3903 cmd.isvalid = 1;
3904 /* Get first available RX antenna as referential. */
3905 ant = IWN_LSB(sc->rxchainmask);
3906 /* Set differential gains for other antennas. */
3907 for (i = ant + 1; i < 3; i++) {
3908 if (sc->chainmask & (1 << i)) {
3909 /* The delta is relative to antenna "ant". */
3910 delta = ((int32_t)calib->noise[ant] -
3911 (int32_t)calib->noise[i]) / div;
3912 /* Limit to [-4.5dB,+4.5dB]. */
3913 cmd.gain[i - 1] = MIN(abs(delta), 3);
3914 if (delta < 0)
3915 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
3916 }
3917 }
3918 DPRINTF(("setting differential gains: %x/%x (%x)\n",
3919 cmd.gain[0], cmd.gain[1], sc->chainmask));
3920 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3921 }
3922
3923 /*
3924 * Tune RF RX sensitivity based on the number of false alarms detected
3925 * during the last beacon period.
3926 */
3927 static void
3928 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3929 {
3930 #define inc(val, inc, max) \
3931 if ((val) < (max)) { \
3932 if ((val) < (max) - (inc)) \
3933 (val) += (inc); \
3934 else \
3935 (val) = (max); \
3936 needs_update = 1; \
3937 }
3938 #define dec(val, dec, min) \
3939 if ((val) > (min)) { \
3940 if ((val) > (min) + (dec)) \
3941 (val) -= (dec); \
3942 else \
3943 (val) = (min); \
3944 needs_update = 1; \
3945 }
3946
3947 const struct iwn_sensitivity_limits *limits = sc->limits;
3948 struct iwn_calib_state *calib = &sc->calib;
3949 uint32_t val, rxena, fa;
3950 uint32_t energy[3], energy_min;
3951 uint8_t noise[3], noise_ref;
3952 int i, needs_update = 0;
3953
3954 /* Check that we've been enabled long enough. */
3955 if ((rxena = le32toh(stats->general.load)) == 0)
3956 return;
3957
3958 /* Compute number of false alarms since last call for OFDM. */
3959 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3960 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3961 fa *= 200 * 1024; /* 200TU */
3962
3963 /* Save counters values for next call. */
3964 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3965 calib->fa_ofdm = le32toh(stats->ofdm.fa);
3966
3967 if (fa > 50 * rxena) {
3968 /* High false alarm count, decrease sensitivity. */
3969 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3970 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
3971 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3972 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
3973 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3974
3975 } else if (fa < 5 * rxena) {
3976 /* Low false alarm count, increase sensitivity. */
3977 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3978 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
3979 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3980 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
3981 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3982 }
3983
3984 /* Compute maximum noise among 3 receivers. */
3985 for (i = 0; i < 3; i++)
3986 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3987 val = MAX(noise[0], noise[1]);
3988 val = MAX(noise[2], val);
3989 /* Insert it into our samples table. */
3990 calib->noise_samples[calib->cur_noise_sample] = val;
3991 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3992
3993 /* Compute maximum noise among last 20 samples. */
3994 noise_ref = calib->noise_samples[0];
3995 for (i = 1; i < 20; i++)
3996 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
3997
3998 /* Compute maximum energy among 3 receivers. */
3999 for (i = 0; i < 3; i++)
4000 energy[i] = le32toh(stats->general.energy[i]);
4001 val = MIN(energy[0], energy[1]);
4002 val = MIN(energy[2], val);
4003 /* Insert it into our samples table. */
4004 calib->energy_samples[calib->cur_energy_sample] = val;
4005 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4006
4007 /* Compute minimum energy among last 10 samples. */
4008 energy_min = calib->energy_samples[0];
4009 for (i = 1; i < 10; i++)
4010 energy_min = MAX(energy_min, calib->energy_samples[i]);
4011 energy_min += 6;
4012
4013 /* Compute number of false alarms since last call for CCK. */
4014 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4015 fa += le32toh(stats->cck.fa) - calib->fa_cck;
4016 fa *= 200 * 1024; /* 200TU */
4017
4018 /* Save counters values for next call. */
4019 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4020 calib->fa_cck = le32toh(stats->cck.fa);
4021
4022 if (fa > 50 * rxena) {
4023 /* High false alarm count, decrease sensitivity. */
4024 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4025 calib->cck_state = IWN_CCK_STATE_HIFA;
4026 calib->low_fa = 0;
4027
4028 if (calib->cck_x4 > 160) {
4029 calib->noise_ref = noise_ref;
4030 if (calib->energy_cck > 2)
4031 dec(calib->energy_cck, 2, energy_min);
4032 }
4033 if (calib->cck_x4 < 160) {
4034 calib->cck_x4 = 161;
4035 needs_update = 1;
4036 } else
4037 inc(calib->cck_x4, 3, limits->max_cck_x4);
4038
4039 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4040
4041 } else if (fa < 5 * rxena) {
4042 /* Low false alarm count, increase sensitivity. */
4043 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4044 calib->cck_state = IWN_CCK_STATE_LOFA;
4045 calib->low_fa++;
4046
4047 if (calib->cck_state != IWN_CCK_STATE_INIT &&
4048 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4049 calib->low_fa > 100)) {
4050 inc(calib->energy_cck, 2, limits->min_energy_cck);
4051 dec(calib->cck_x4, 3, limits->min_cck_x4);
4052 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4053 }
4054 } else {
4055 /* Not worth to increase or decrease sensitivity. */
4056 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4057 calib->low_fa = 0;
4058 calib->noise_ref = noise_ref;
4059
4060 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4061 /* Previous interval had many false alarms. */
4062 dec(calib->energy_cck, 8, energy_min);
4063 }
4064 calib->cck_state = IWN_CCK_STATE_INIT;
4065 }
4066
4067 if (needs_update)
4068 (void)iwn_send_sensitivity(sc);
4069 #undef dec
4070 #undef inc
4071 }
4072
4073 static int
4074 iwn_send_sensitivity(struct iwn_softc *sc)
4075 {
4076 struct iwn_calib_state *calib = &sc->calib;
4077 struct iwn_sensitivity_cmd cmd;
4078
4079 memset(&cmd, 0, sizeof cmd);
4080 cmd.which = IWN_SENSITIVITY_WORKTBL;
4081 /* OFDM modulation. */
4082 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4083 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4084 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4085 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4086 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4087 cmd.energy_ofdm_th = htole16(62);
4088 /* CCK modulation. */
4089 cmd.corr_cck_x4 = htole16(calib->cck_x4);
4090 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4091 cmd.energy_cck = htole16(calib->energy_cck);
4092 /* Barker modulation: use default values. */
4093 cmd.corr_barker = htole16(190);
4094 cmd.corr_barker_mrc = htole16(390);
4095
4096 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4097 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4098 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4099 calib->energy_cck));
4100 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4101 }
4102
4103 /*
4104 * Set STA mode power saving level (between 0 and 5).
4105 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4106 */
4107 static int
4108 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4109 {
4110 struct iwn_pmgt_cmd cmd;
4111 const struct iwn_pmgt *pmgt;
4112 uint32_t maxp, skip_dtim;
4113 pcireg_t reg;
4114 int i;
4115
4116 /* Select which PS parameters to use. */
4117 if (dtim <= 2)
4118 pmgt = &iwn_pmgt[0][level];
4119 else if (dtim <= 10)
4120 pmgt = &iwn_pmgt[1][level];
4121 else
4122 pmgt = &iwn_pmgt[2][level];
4123
4124 memset(&cmd, 0, sizeof cmd);
4125 if (level != 0) /* not CAM */
4126 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4127 if (level == 5)
4128 cmd.flags |= htole16(IWN_PS_FAST_PD);
4129 /* Retrieve PCIe Active State Power Management (ASPM). */
4130 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4131 sc->sc_cap_off + PCI_PCIE_LCSR);
4132 if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4133 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4134 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4135 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4136
4137 if (dtim == 0) {
4138 dtim = 1;
4139 skip_dtim = 0;
4140 } else
4141 skip_dtim = pmgt->skip_dtim;
4142 if (skip_dtim != 0) {
4143 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4144 maxp = pmgt->intval[4];
4145 if (maxp == (uint32_t)-1)
4146 maxp = dtim * (skip_dtim + 1);
4147 else if (maxp > dtim)
4148 maxp = (maxp / dtim) * dtim;
4149 } else
4150 maxp = dtim;
4151 for (i = 0; i < 5; i++)
4152 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4153
4154 DPRINTF(("setting power saving level to %d\n", level));
4155 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4156 }
4157
4158 static int
4159 iwn_config(struct iwn_softc *sc)
4160 {
4161 const struct iwn_hal *hal = sc->sc_hal;
4162 struct ieee80211com *ic = &sc->sc_ic;
4163 struct ifnet *ifp = ic->ic_ifp;
4164 struct iwn_bluetooth bluetooth;
4165 uint32_t txmask;
4166 uint16_t rxchain;
4167 int error;
4168
4169 /* Configure valid TX chains for 5000 Series. */
4170 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4171 txmask = htole32(sc->txchainmask);
4172 DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4173 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4174 sizeof txmask, 0);
4175 if (error != 0) {
4176 aprint_error_dev(sc->sc_dev,
4177 "could not configure valid TX chains\n");
4178 return error;
4179 }
4180 }
4181
4182 /* Configure bluetooth coexistence. */
4183 memset(&bluetooth, 0, sizeof bluetooth);
4184 bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4185 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4186 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4187 DPRINTF(("configuring bluetooth coexistence\n"));
4188 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4189 if (error != 0) {
4190 aprint_error_dev(sc->sc_dev,
4191 "could not configure bluetooth coexistence\n");
4192 return error;
4193 }
4194
4195 /* Set mode, channel, RX filter and enable RX. */
4196 memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4197 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4198 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4199 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4200 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4201 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4202 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4203 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4204 switch (ic->ic_opmode) {
4205 case IEEE80211_M_STA:
4206 sc->rxon.mode = IWN_MODE_STA;
4207 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4208 break;
4209 case IEEE80211_M_MONITOR:
4210 sc->rxon.mode = IWN_MODE_MONITOR;
4211 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4212 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4213 break;
4214 default:
4215 /* Should not get there. */
4216 break;
4217 }
4218 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4219 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4220 sc->rxon.ht_single_mask = 0xff;
4221 sc->rxon.ht_dual_mask = 0xff;
4222 sc->rxon.ht_triple_mask = 0xff;
4223 rxchain =
4224 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4225 IWN_RXCHAIN_MIMO_COUNT(2) |
4226 IWN_RXCHAIN_IDLE_COUNT(2);
4227 sc->rxon.rxchain = htole16(rxchain);
4228 DPRINTF(("setting configuration\n"));
4229 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
4230 if (error != 0) {
4231 aprint_error_dev(sc->sc_dev,
4232 "RXON command failed\n");
4233 return error;
4234 }
4235
4236 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4237 aprint_error_dev(sc->sc_dev,
4238 "could not add broadcast node\n");
4239 return error;
4240 }
4241
4242 /* Configuration has changed, set TX power accordingly. */
4243 if ((error = hal->set_txpower(sc, 0)) != 0) {
4244 aprint_error_dev(sc->sc_dev,
4245 "could not set TX power\n");
4246 return error;
4247 }
4248
4249 if ((error = iwn_set_critical_temp(sc)) != 0) {
4250 aprint_error_dev(sc->sc_dev,
4251 "could not set critical temperature\n");
4252 return error;
4253 }
4254
4255 /* Set power saving level to CAM during initialization. */
4256 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4257 aprint_error_dev(sc->sc_dev,
4258 "could not set power saving level\n");
4259 return error;
4260 }
4261 return 0;
4262 }
4263
4264 static int
4265 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4266 {
4267 struct ieee80211com *ic = &sc->sc_ic;
4268 struct iwn_scan_hdr *hdr;
4269 struct iwn_cmd_data *tx;
4270 struct iwn_scan_essid *essid;
4271 struct iwn_scan_chan *chan;
4272 struct ieee80211_frame *wh;
4273 struct ieee80211_rateset *rs;
4274 struct ieee80211_channel *c;
4275 uint8_t *buf, *frm;
4276 uint16_t rxchain;
4277 uint8_t txant;
4278 int buflen, error;
4279
4280 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4281 if (buf == NULL) {
4282 aprint_error_dev(sc->sc_dev,
4283 "could not allocate buffer for scan command\n");
4284 return ENOMEM;
4285 }
4286 hdr = (struct iwn_scan_hdr *)buf;
4287 /*
4288 * Move to the next channel if no frames are received within 10ms
4289 * after sending the probe request.
4290 */
4291 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4292 hdr->quiet_threshold = htole16(1); /* min # of packets */
4293
4294 /* Select antennas for scanning. */
4295 rxchain =
4296 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4297 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4298 IWN_RXCHAIN_DRIVER_FORCE;
4299 if ((flags & IEEE80211_CHAN_5GHZ) &&
4300 sc->hw_type == IWN_HW_REV_TYPE_4965) {
4301 /* Ant A must be avoided in 5GHz because of an HW bug. */
4302 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4303 } else /* Use all available RX antennas. */
4304 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4305 hdr->rxchain = htole16(rxchain);
4306 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4307
4308 tx = (struct iwn_cmd_data *)(hdr + 1);
4309 tx->flags = htole32(IWN_TX_AUTO_SEQ);
4310 tx->id = sc->sc_hal->broadcast_id;
4311 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4312
4313 if (flags & IEEE80211_CHAN_5GHZ) {
4314 hdr->crc_threshold = htole16(1);
4315 /* Send probe requests at 6Mbps. */
4316 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4317 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4318 } else {
4319 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4320 /* Send probe requests at 1Mbps. */
4321 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4322 tx->rflags = IWN_RFLAG_CCK;
4323 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4324 }
4325 /* Use the first valid TX antenna. */
4326 txant = IWN_LSB(sc->txchainmask);
4327 tx->rflags |= IWN_RFLAG_ANT(txant);
4328
4329 essid = (struct iwn_scan_essid *)(tx + 1);
4330 if (ic->ic_des_esslen != 0) {
4331 essid[0].id = IEEE80211_ELEMID_SSID;
4332 essid[0].len = ic->ic_des_esslen;
4333 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4334 }
4335 /*
4336 * Build a probe request frame. Most of the following code is a
4337 * copy & paste of what is done in net80211.
4338 */
4339 wh = (struct ieee80211_frame *)(essid + 20);
4340 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4341 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4342 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4343 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4344 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4345 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4346 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4347 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4348
4349 frm = (uint8_t *)(wh + 1);
4350 frm = ieee80211_add_ssid(frm, NULL, 0);
4351 frm = ieee80211_add_rates(frm, rs);
4352 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4353 frm = ieee80211_add_xrates(frm, rs);
4354
4355 /* Set length of probe request. */
4356 tx->len = htole16(frm - (uint8_t *)wh);
4357
4358 chan = (struct iwn_scan_chan *)frm;
4359 for (c = &ic->ic_channels[1];
4360 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4361 if ((c->ic_flags & flags) != flags)
4362 continue;
4363
4364 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4365 DPRINTFN(2, ("adding channel %d\n", chan->chan));
4366 chan->flags = 0;
4367 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4368 chan->flags |= htole32(IWN_CHAN_ACTIVE);
4369 if (ic->ic_des_esslen != 0)
4370 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4371 chan->dsp_gain = 0x6e;
4372 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4373 chan->rf_gain = 0x3b;
4374 chan->active = htole16(24);
4375 chan->passive = htole16(110);
4376 } else {
4377 chan->rf_gain = 0x28;
4378 chan->active = htole16(36);
4379 chan->passive = htole16(120);
4380 }
4381 hdr->nchan++;
4382 chan++;
4383 }
4384
4385 buflen = (uint8_t *)chan - buf;
4386 hdr->len = htole16(buflen);
4387
4388 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4389 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4390 free(buf, M_DEVBUF);
4391 return error;
4392 }
4393
4394 static int
4395 iwn_auth(struct iwn_softc *sc)
4396 {
4397 const struct iwn_hal *hal = sc->sc_hal;
4398 struct ieee80211com *ic = &sc->sc_ic;
4399 struct ieee80211_node *ni = ic->ic_bss;
4400 int error;
4401
4402 /* Update adapter configuration. */
4403 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4404 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4405 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4406 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4407 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4408 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4409 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4410 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4411 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4412 switch (ic->ic_curmode) {
4413 case IEEE80211_MODE_11A:
4414 sc->rxon.cck_mask = 0;
4415 sc->rxon.ofdm_mask = 0x15;
4416 break;
4417 case IEEE80211_MODE_11B:
4418 sc->rxon.cck_mask = 0x03;
4419 sc->rxon.ofdm_mask = 0;
4420 break;
4421 default: /* Assume 802.11b/g. */
4422 sc->rxon.cck_mask = 0x0f;
4423 sc->rxon.ofdm_mask = 0x15;
4424 }
4425 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4426 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4427 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4428 if (error != 0) {
4429 aprint_error_dev(sc->sc_dev,
4430 "RXON command failed\n");
4431 return error;
4432 }
4433
4434 /* Configuration has changed, set TX power accordingly. */
4435 if ((error = hal->set_txpower(sc, 1)) != 0) {
4436 aprint_error_dev(sc->sc_dev,
4437 "could not set TX power\n");
4438 return error;
4439 }
4440 /*
4441 * Reconfiguring RXON clears the firmware nodes table so we must
4442 * add the broadcast node again.
4443 */
4444 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4445 aprint_error_dev(sc->sc_dev,
4446 "could not add broadcast node\n");
4447 return error;
4448 }
4449 return 0;
4450 }
4451
4452 static int
4453 iwn_run(struct iwn_softc *sc)
4454 {
4455 const struct iwn_hal *hal = sc->sc_hal;
4456 struct ieee80211com *ic = &sc->sc_ic;
4457 struct ieee80211_node *ni = ic->ic_bss;
4458 struct iwn_node_info node;
4459 int error;
4460
4461 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4462 /* Link LED blinks while monitoring. */
4463 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4464 return 0;
4465 }
4466 if ((error = iwn_set_timing(sc, ni)) != 0) {
4467 aprint_error_dev(sc->sc_dev,
4468 "could not set timing\n");
4469 return error;
4470 }
4471
4472 /* Update adapter configuration. */
4473 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4474 /* Short preamble and slot time are negotiated when associating. */
4475 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4476 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4477 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4478 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4479 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4480 sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4481 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4482 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4483 if (error != 0) {
4484 aprint_error_dev(sc->sc_dev,
4485 "could not update configuration\n");
4486 return error;
4487 }
4488
4489 /* Configuration has changed, set TX power accordingly. */
4490 if ((error = hal->set_txpower(sc, 1)) != 0) {
4491 aprint_error_dev(sc->sc_dev,
4492 "could not set TX power\n");
4493 return error;
4494 }
4495
4496 /* Fake a join to initialize the TX rate. */
4497 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
4498 iwn_newassoc(ni, 1);
4499
4500 /* Add BSS node. */
4501 memset(&node, 0, sizeof node);
4502 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4503 node.id = IWN_ID_BSS;
4504 #ifdef notyet
4505 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4506 IWN_AMDPU_DENSITY(5)); /* 2us */
4507 #endif
4508 DPRINTF(("adding BSS node\n"));
4509 error = hal->add_node(sc, &node, 1);
4510 if (error != 0) {
4511 aprint_error_dev(sc->sc_dev,
4512 "could not add BSS node\n");
4513 return error;
4514 }
4515 DPRINTF(("setting link quality for node %d\n", node.id));
4516 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4517 aprint_error_dev(sc->sc_dev,
4518 "could not setup link quality for node %d\n", node.id);
4519 return error;
4520 }
4521
4522 if ((error = iwn_init_sensitivity(sc)) != 0) {
4523 aprint_error_dev(sc->sc_dev,
4524 "could not set sensitivity\n");
4525 return error;
4526 }
4527 /* Start periodic calibration timer. */
4528 sc->calib.state = IWN_CALIB_STATE_ASSOC;
4529 sc->calib_cnt = 0;
4530 callout_schedule(&sc->calib_to, hz/2);
4531
4532 /* Link LED always on while associated. */
4533 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4534 return 0;
4535 }
4536
4537 #ifdef IWN_HWCRYPTO
4538 /*
4539 * We support CCMP hardware encryption/decryption of unicast frames only.
4540 * HW support for TKIP really sucks. We should let TKIP die anyway.
4541 */
4542 static int
4543 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4544 struct ieee80211_key *k)
4545 {
4546 struct iwn_softc *sc = ic->ic_softc;
4547 const struct iwn_hal *hal = sc->sc_hal;
4548 struct iwn_node *wn = (void *)ni;
4549 struct iwn_node_info node;
4550 uint16_t kflags;
4551
4552 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4553 k->k_cipher != IEEE80211_CIPHER_CCMP)
4554 return ieee80211_set_key(ic, ni, k);
4555
4556 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4557 if (k->k_flags & IEEE80211_KEY_GROUP)
4558 kflags |= IWN_KFLAG_GROUP;
4559
4560 memset(&node, 0, sizeof node);
4561 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4562 hal->broadcast_id : wn->id;
4563 node.control = IWN_NODE_UPDATE;
4564 node.flags = IWN_FLAG_SET_KEY;
4565 node.kflags = htole16(kflags);
4566 node.kid = k->k_id;
4567 memcpy(node.key, k->k_key, k->k_len);
4568 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4569 return hal->add_node(sc, &node, 1);
4570 }
4571
4572 static void
4573 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4574 struct ieee80211_key *k)
4575 {
4576 struct iwn_softc *sc = ic->ic_softc;
4577 const struct iwn_hal *hal = sc->sc_hal;
4578 struct iwn_node *wn = (void *)ni;
4579 struct iwn_node_info node;
4580
4581 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4582 k->k_cipher != IEEE80211_CIPHER_CCMP) {
4583 /* See comment about other ciphers above. */
4584 ieee80211_delete_key(ic, ni, k);
4585 return;
4586 }
4587 if (ic->ic_state != IEEE80211_S_RUN)
4588 return; /* Nothing to do. */
4589 memset(&node, 0, sizeof node);
4590 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4591 hal->broadcast_id : wn->id;
4592 node.control = IWN_NODE_UPDATE;
4593 node.flags = IWN_FLAG_SET_KEY;
4594 node.kflags = htole16(IWN_KFLAG_INVALID);
4595 node.kid = 0xff;
4596 DPRINTF(("delete keys for node %d\n", node.id));
4597 (void)hal->add_node(sc, &node, 1);
4598 }
4599 #endif
4600
4601 /* XXX Added for NetBSD (copied from rev 1.39). */
4602
4603 static int
4604 iwn_wme_update(struct ieee80211com *ic)
4605 {
4606 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
4607 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
4608 struct iwn_softc *sc = ic->ic_ifp->if_softc;
4609 const struct wmeParams *wmep;
4610 struct iwn_edca_params cmd;
4611 int ac;
4612
4613 /* don't override default WME values if WME is not actually enabled */
4614 if (!(ic->ic_flags & IEEE80211_F_WME))
4615 return 0;
4616 cmd.flags = 0;
4617 for (ac = 0; ac < WME_NUM_AC; ac++) {
4618 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4619 cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4620 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4621 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4622 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
4623
4624 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4625 "txop=%d\n", ac, cmd.ac[ac].aifsn,
4626 cmd.ac[ac].cwmin,
4627 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4628 }
4629 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4630 #undef IWN_USEC
4631 #undef IWN_EXP2
4632 }
4633
4634 #ifndef IEEE80211_NO_HT
4635 /*
4636 * This function is called by upper layer when an ADDBA request is received
4637 * from another STA and before the ADDBA response is sent.
4638 */
4639 static int
4640 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4641 uint8_t tid)
4642 {
4643 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4644 struct iwn_softc *sc = ic->ic_softc;
4645 struct iwn_node *wn = (void *)ni;
4646 struct iwn_node_info node;
4647
4648 memset(&node, 0, sizeof node);
4649 node.id = wn->id;
4650 node.control = IWN_NODE_UPDATE;
4651 node.flags = IWN_FLAG_SET_ADDBA;
4652 node.addba_tid = tid;
4653 node.addba_ssn = htole16(ba->ba_winstart);
4654 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4655 ba->ba_winstart));
4656 return sc->sc_hal->add_node(sc, &node, 1);
4657 }
4658
4659 /*
4660 * This function is called by upper layer on teardown of an HT-immediate
4661 * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
4662 */
4663 static void
4664 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4665 uint8_t tid)
4666 {
4667 struct iwn_softc *sc = ic->ic_softc;
4668 struct iwn_node *wn = (void *)ni;
4669 struct iwn_node_info node;
4670
4671 memset(&node, 0, sizeof node);
4672 node.id = wn->id;
4673 node.control = IWN_NODE_UPDATE;
4674 node.flags = IWN_FLAG_SET_DELBA;
4675 node.delba_tid = tid;
4676 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4677 (void)sc->sc_hal->add_node(sc, &node, 1);
4678 }
4679
4680 /*
4681 * This function is called by upper layer when an ADDBA response is received
4682 * from another STA.
4683 */
4684 static int
4685 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4686 uint8_t tid)
4687 {
4688 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4689 struct iwn_softc *sc = ic->ic_softc;
4690 const struct iwn_hal *hal = sc->sc_hal;
4691 struct iwn_node *wn = (void *)ni;
4692 struct iwn_node_info node;
4693 int error;
4694
4695 /* Enable TX for the specified RA/TID. */
4696 wn->disable_tid &= ~(1 << tid);
4697 memset(&node, 0, sizeof node);
4698 node.id = wn->id;
4699 node.control = IWN_NODE_UPDATE;
4700 node.flags = IWN_FLAG_SET_DISABLE_TID;
4701 node.disable_tid = htole16(wn->disable_tid);
4702 error = hal->add_node(sc, &node, 1);
4703 if (error != 0)
4704 return error;
4705
4706 if ((error = iwn_nic_lock(sc)) != 0)
4707 return error;
4708 hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4709 iwn_nic_unlock(sc);
4710 return 0;
4711 }
4712
4713 static void
4714 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4715 uint8_t tid)
4716 {
4717 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4718 struct iwn_softc *sc = ic->ic_softc;
4719
4720 if (iwn_nic_lock(sc) != 0)
4721 return;
4722 sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4723 iwn_nic_unlock(sc);
4724 }
4725
4726 static void
4727 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4728 uint8_t tid, uint16_t ssn)
4729 {
4730 struct iwn_node *wn = (void *)ni;
4731 int qid = 7 + tid;
4732
4733 /* Stop TX scheduler while we're changing its configuration. */
4734 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4735 IWN4965_TXQ_STATUS_CHGACT);
4736
4737 /* Assign RA/TID translation to the queue. */
4738 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4739 wn->id << 4 | tid);
4740
4741 /* Enable chain-building mode for the queue. */
4742 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4743
4744 /* Set starting sequence number from the ADDBA request. */
4745 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4746 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4747
4748 /* Set scheduler window size. */
4749 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4750 IWN_SCHED_WINSZ);
4751 /* Set scheduler frame limit. */
4752 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4753 IWN_SCHED_LIMIT << 16);
4754
4755 /* Enable interrupts for the queue. */
4756 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4757
4758 /* Mark the queue as active. */
4759 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4760 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4761 iwn_tid2fifo[tid] << 1);
4762 }
4763
4764 static void
4765 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4766 {
4767 int qid = 7 + tid;
4768
4769 /* Stop TX scheduler while we're changing its configuration. */
4770 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4771 IWN4965_TXQ_STATUS_CHGACT);
4772
4773 /* Set starting sequence number from the ADDBA request. */
4774 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4775 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4776
4777 /* Disable interrupts for the queue. */
4778 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4779
4780 /* Mark the queue as inactive. */
4781 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4782 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4783 }
4784
4785 static void
4786 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4787 uint8_t tid, uint16_t ssn)
4788 {
4789 struct iwn_node *wn = (void *)ni;
4790 int qid = 10 + tid;
4791
4792 /* Stop TX scheduler while we're changing its configuration. */
4793 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4794 IWN5000_TXQ_STATUS_CHGACT);
4795
4796 /* Assign RA/TID translation to the queue. */
4797 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4798 wn->id << 4 | tid);
4799
4800 /* Enable chain-building mode for the queue. */
4801 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4802
4803 /* Enable aggregation for the queue. */
4804 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4805
4806 /* Set starting sequence number from the ADDBA request. */
4807 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4808 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4809
4810 /* Set scheduler window size and frame limit. */
4811 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4812 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4813
4814 /* Enable interrupts for the queue. */
4815 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4816
4817 /* Mark the queue as active. */
4818 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4819 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4820 }
4821
4822 static void
4823 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4824 {
4825 int qid = 10 + tid;
4826
4827 /* Stop TX scheduler while we're changing its configuration. */
4828 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4829 IWN5000_TXQ_STATUS_CHGACT);
4830
4831 /* Disable aggregation for the queue. */
4832 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4833
4834 /* Set starting sequence number from the ADDBA request. */
4835 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4836 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4837
4838 /* Disable interrupts for the queue. */
4839 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4840
4841 /* Mark the queue as inactive. */
4842 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4843 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4844 }
4845 #endif /* !IEEE80211_NO_HT */
4846
4847 /*
4848 * Query calibration tables from the initialization firmware. We do this
4849 * only once at first boot. Called from a process context.
4850 */
4851 static int
4852 iwn5000_query_calibration(struct iwn_softc *sc)
4853 {
4854 struct iwn5000_calib_config cmd;
4855 int error;
4856
4857 memset(&cmd, 0, sizeof cmd);
4858 cmd.ucode.once.enable = 0xffffffff;
4859 cmd.ucode.once.start = 0xffffffff;
4860 cmd.ucode.once.send = 0xffffffff;
4861 cmd.ucode.flags = 0xffffffff;
4862 DPRINTF(("sending calibration query\n"));
4863 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4864 if (error != 0)
4865 return error;
4866
4867 /* Wait at most two seconds for calibration to complete. */
4868 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4869 error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4870 return error;
4871 }
4872
4873 /*
4874 * Send calibration results to the runtime firmware. These results were
4875 * obtained on first boot from the initialization firmware.
4876 */
4877 static int
4878 iwn5000_send_calibration(struct iwn_softc *sc)
4879 {
4880 int idx, error;
4881
4882 for (idx = 0; idx < 5; idx++) {
4883 if (sc->calibcmd[idx].buf == NULL)
4884 continue; /* No results available. */
4885 DPRINTF(("send calibration result idx=%d len=%d\n",
4886 idx, sc->calibcmd[idx].len));
4887 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4888 sc->calibcmd[idx].len, 0);
4889 if (error != 0) {
4890 aprint_error_dev(sc->sc_dev,
4891 "could not send calibration result\n");
4892 return error;
4893 }
4894 }
4895 return 0;
4896 }
4897
4898 static int
4899 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4900 {
4901 struct iwn5000_wimax_coex wimax;
4902
4903 #ifdef notyet
4904 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4905 /* Enable WiMAX coexistence for combo adapters. */
4906 wimax.flags =
4907 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4908 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4909 IWN_WIMAX_COEX_STA_TABLE_VALID |
4910 IWN_WIMAX_COEX_ENABLE;
4911 memcpy(wimax.events, iwn6050_wimax_events,
4912 sizeof iwn6050_wimax_events);
4913 } else
4914 #endif
4915 {
4916 /* Disable WiMAX coexistence. */
4917 wimax.flags = 0;
4918 memset(wimax.events, 0, sizeof wimax.events);
4919 }
4920 DPRINTF(("Configuring WiMAX coexistence\n"));
4921 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4922 }
4923
4924 /*
4925 * This function is called after the runtime firmware notifies us of its
4926 * readiness (called in a process context.)
4927 */
4928 static int
4929 iwn4965_post_alive(struct iwn_softc *sc)
4930 {
4931 int error, qid;
4932
4933 if ((error = iwn_nic_lock(sc)) != 0)
4934 return error;
4935
4936 /* Clear TX scheduler state in SRAM. */
4937 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4938 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
4939 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
4940
4941 /* Set physical address of TX scheduler rings (1KB aligned.) */
4942 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4943
4944 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4945
4946 /* Disable chain mode for all our 16 queues. */
4947 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
4948
4949 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
4950 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
4951 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4952
4953 /* Set scheduler window size. */
4954 iwn_mem_write(sc, sc->sched_base +
4955 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
4956 /* Set scheduler frame limit. */
4957 iwn_mem_write(sc, sc->sched_base +
4958 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4959 IWN_SCHED_LIMIT << 16);
4960 }
4961
4962 /* Enable interrupts for all our 16 queues. */
4963 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
4964 /* Identify TX FIFO rings (0-7). */
4965 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
4966
4967 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4968 for (qid = 0; qid < 7; qid++) {
4969 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
4970 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4971 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
4972 }
4973 iwn_nic_unlock(sc);
4974 return 0;
4975 }
4976
4977 /*
4978 * This function is called after the initialization or runtime firmware
4979 * notifies us of its readiness (called in a process context.)
4980 */
4981 static int
4982 iwn5000_post_alive(struct iwn_softc *sc)
4983 {
4984 int error, qid;
4985
4986 /* Switch to using ICT interrupt mode. */
4987 iwn5000_ict_reset(sc);
4988
4989 if ((error = iwn_nic_lock(sc)) != 0)
4990 return error;
4991
4992 /* Clear TX scheduler state in SRAM. */
4993 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4994 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
4995 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
4996
4997 /* Set physical address of TX scheduler rings (1KB aligned.) */
4998 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4999
5000 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5001
5002 /* Enable chain mode for all queues, except command queue. */
5003 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5004 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5005
5006 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5007 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5008 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5009
5010 iwn_mem_write(sc, sc->sched_base +
5011 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5012 /* Set scheduler window size and frame limit. */
5013 iwn_mem_write(sc, sc->sched_base +
5014 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5015 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5016 }
5017
5018 /* Enable interrupts for all our 20 queues. */
5019 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5020 /* Identify TX FIFO rings (0-7). */
5021 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5022
5023 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5024 for (qid = 0; qid < 7; qid++) {
5025 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5026 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5027 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5028 }
5029 iwn_nic_unlock(sc);
5030
5031 /* Configure WiMAX coexistence for combo adapters. */
5032 error = iwn5000_send_wimax_coex(sc);
5033 if (error != 0) {
5034 aprint_error_dev(sc->sc_dev,
5035 "could not configure WiMAX coexistence\n");
5036 return error;
5037 }
5038 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5039 struct iwn5000_phy_calib_crystal cmd;
5040
5041 /* Perform crystal calibration. */
5042 memset(&cmd, 0, sizeof cmd);
5043 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5044 cmd.ngroups = 1;
5045 cmd.isvalid = 1;
5046 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5047 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5048 DPRINTF(("sending crystal calibration %d, %d\n",
5049 cmd.cap_pin[0], cmd.cap_pin[1]));
5050 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5051 if (error != 0) {
5052 aprint_error_dev(sc->sc_dev,
5053 "crystal calibration failed\n");
5054 return error;
5055 }
5056 }
5057 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5058 /* Query calibration from the initialization firmware. */
5059 if ((error = iwn5000_query_calibration(sc)) != 0) {
5060 aprint_error_dev(sc->sc_dev,
5061 "could not query calibration\n");
5062 return error;
5063 }
5064 /*
5065 * We have the calibration results now, reboot with the
5066 * runtime firmware (call ourselves recursively!)
5067 */
5068 iwn_hw_stop(sc);
5069 error = iwn_hw_init(sc);
5070 } else {
5071 /* Send calibration results to runtime firmware. */
5072 error = iwn5000_send_calibration(sc);
5073 }
5074 return error;
5075 }
5076
5077 /*
5078 * The firmware boot code is small and is intended to be copied directly into
5079 * the NIC internal memory (no DMA transfer.)
5080 */
5081 static int
5082 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5083 {
5084 int error, ntries;
5085
5086 size /= sizeof (uint32_t);
5087
5088 if ((error = iwn_nic_lock(sc)) != 0)
5089 return error;
5090
5091 /* Copy microcode image into NIC memory. */
5092 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5093 (const uint32_t *)ucode, size);
5094
5095 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5096 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5097 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5098
5099 /* Start boot load now. */
5100 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5101
5102 /* Wait for transfer to complete. */
5103 for (ntries = 0; ntries < 1000; ntries++) {
5104 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5105 IWN_BSM_WR_CTRL_START))
5106 break;
5107 DELAY(10);
5108 }
5109 if (ntries == 1000) {
5110 aprint_error_dev(sc->sc_dev,
5111 "could not load boot firmware\n");
5112 iwn_nic_unlock(sc);
5113 return ETIMEDOUT;
5114 }
5115
5116 /* Enable boot after power up. */
5117 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5118
5119 iwn_nic_unlock(sc);
5120 return 0;
5121 }
5122
5123 static int
5124 iwn4965_load_firmware(struct iwn_softc *sc)
5125 {
5126 struct iwn_fw_info *fw = &sc->fw;
5127 struct iwn_dma_info *dma = &sc->fw_dma;
5128 int error;
5129
5130 /* Copy initialization sections into pre-allocated DMA-safe memory. */
5131 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5132 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5133 BUS_DMASYNC_PREWRITE);
5134 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5135 fw->init.text, fw->init.textsz);
5136 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5137 fw->init.textsz, BUS_DMASYNC_PREWRITE);
5138
5139 /* Tell adapter where to find initialization sections. */
5140 if ((error = iwn_nic_lock(sc)) != 0)
5141 return error;
5142 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5143 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5144 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5145 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5146 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5147 iwn_nic_unlock(sc);
5148
5149 /* Load firmware boot code. */
5150 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5151 if (error != 0) {
5152 aprint_error_dev(sc->sc_dev,
5153 "could not load boot firmware\n");
5154 return error;
5155 }
5156 /* Now press "execute". */
5157 IWN_WRITE(sc, IWN_RESET, 0);
5158
5159 /* Wait at most one second for first alive notification. */
5160 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5161 aprint_error_dev(sc->sc_dev,
5162 "timeout waiting for adapter to initialize\n");
5163 return error;
5164 }
5165
5166 /* Retrieve current temperature for initial TX power calibration. */
5167 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5168 sc->temp = iwn4965_get_temperature(sc);
5169
5170 /* Copy runtime sections into pre-allocated DMA-safe memory. */
5171 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5172 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5173 BUS_DMASYNC_PREWRITE);
5174 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5175 fw->main.text, fw->main.textsz);
5176 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5177 fw->main.textsz, BUS_DMASYNC_PREWRITE);
5178
5179 /* Tell adapter where to find runtime sections. */
5180 if ((error = iwn_nic_lock(sc)) != 0)
5181 return error;
5182 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5183 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5184 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5185 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5186 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5187 IWN_FW_UPDATED | fw->main.textsz);
5188 iwn_nic_unlock(sc);
5189
5190 return 0;
5191 }
5192
5193 static int
5194 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5195 const uint8_t *section, int size)
5196 {
5197 struct iwn_dma_info *dma = &sc->fw_dma;
5198 int error;
5199
5200 /* Copy firmware section into pre-allocated DMA-safe memory. */
5201 memcpy(dma->vaddr, section, size);
5202 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5203
5204 if ((error = iwn_nic_lock(sc)) != 0)
5205 return error;
5206
5207 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5208 IWN_FH_TX_CONFIG_DMA_PAUSE);
5209
5210 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5211 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5212 IWN_LOADDR(dma->paddr));
5213 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5214 IWN_HIADDR(dma->paddr) << 28 | size);
5215 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5216 IWN_FH_TXBUF_STATUS_TBNUM(1) |
5217 IWN_FH_TXBUF_STATUS_TBIDX(1) |
5218 IWN_FH_TXBUF_STATUS_TFBD_VALID);
5219
5220 /* Kick Flow Handler to start DMA transfer. */
5221 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5222 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5223
5224 iwn_nic_unlock(sc);
5225
5226 /* Wait at most five seconds for FH DMA transfer to complete. */
5227 return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5228 }
5229
5230 static int
5231 iwn5000_load_firmware(struct iwn_softc *sc)
5232 {
5233 struct iwn_fw_part *fw;
5234 int error;
5235
5236 /* Load the initialization firmware on first boot only. */
5237 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5238 &sc->fw.main : &sc->fw.init;
5239
5240 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5241 fw->text, fw->textsz);
5242 if (error != 0) {
5243 aprint_error_dev(sc->sc_dev,
5244 "could not load firmware %s section\n", ".text");
5245 return error;
5246 }
5247 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5248 fw->data, fw->datasz);
5249 if (error != 0) {
5250 aprint_error_dev(sc->sc_dev,
5251 "could not load firmware %s section\n", ".data");
5252 return error;
5253 }
5254
5255 /* Now press "execute". */
5256 IWN_WRITE(sc, IWN_RESET, 0);
5257 return 0;
5258 }
5259
5260 static int
5261 iwn_read_firmware(struct iwn_softc *sc)
5262 {
5263 const struct iwn_hal *hal = sc->sc_hal;
5264 struct iwn_fw_info *fw = &sc->fw;
5265 firmware_handle_t fwh;
5266 const uint32_t *ptr;
5267 uint32_t rev;
5268 size_t size;
5269 int error;
5270
5271 /* Initialize for error returns */
5272 fw->data = NULL;
5273 fw->datasz = 0;
5274
5275 /* Open firmware image. */
5276 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5277 aprint_error_dev(sc->sc_dev,
5278 "could not get firmware handle %s\n", sc->fwname);
5279 return error;
5280 }
5281 size = firmware_get_size(fwh);
5282 if (size < 28) {
5283 aprint_error_dev(sc->sc_dev,
5284 "truncated firmware header: %zu bytes\n", size);
5285 firmware_close(fwh);
5286 return EINVAL;
5287 }
5288
5289 /* Read the firmware. */
5290 fw->data = firmware_malloc(size);
5291 if (fw->data == NULL) {
5292 aprint_error_dev(sc->sc_dev,
5293 "not enough memory to stock firmware %s\n", sc->fwname);
5294 firmware_close(fwh);
5295 return ENOMEM;
5296 }
5297 error = firmware_read(fwh, 0, fw->data, size);
5298 firmware_close(fwh);
5299 fw->datasz = size;
5300 if (error != 0) {
5301 aprint_error_dev(sc->sc_dev,
5302 "could not read firmware %s\n", sc->fwname);
5303 goto out;
5304 }
5305
5306 /* Process firmware header. */
5307 ptr = (const uint32_t *)fw->data;
5308 rev = le32toh(*ptr++);
5309 /* Check firmware API version. */
5310 if (IWN_FW_API(rev) <= 1) {
5311 aprint_error_dev(sc->sc_dev,
5312 "bad firmware, need API version >=2\n");
5313 goto out;
5314 }
5315 if (IWN_FW_API(rev) >= 3) {
5316 /* Skip build number (version 2 header). */
5317 size -= 4;
5318 ptr++;
5319 }
5320 fw->main.textsz = le32toh(*ptr++);
5321 fw->main.datasz = le32toh(*ptr++);
5322 fw->init.textsz = le32toh(*ptr++);
5323 fw->init.datasz = le32toh(*ptr++);
5324 fw->boot.textsz = le32toh(*ptr++);
5325 size -= 24;
5326
5327 /* Sanity-check firmware header. */
5328 if (fw->main.textsz > hal->fw_text_maxsz ||
5329 fw->main.datasz > hal->fw_data_maxsz ||
5330 fw->init.textsz > hal->fw_text_maxsz ||
5331 fw->init.datasz > hal->fw_data_maxsz ||
5332 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5333 (fw->boot.textsz & 3) != 0) {
5334 aprint_error_dev(sc->sc_dev,
5335 "invalid firmware header\n");
5336 goto out;
5337 }
5338
5339 /* Check that all firmware sections fit. */
5340 if (fw->main.textsz + fw->main.datasz + fw->init.textsz +
5341 fw->init.datasz + fw->boot.textsz > size) {
5342 aprint_error_dev(sc->sc_dev,
5343 "firmware file too short: %zu bytes\n", size);
5344 goto out;
5345 }
5346
5347 /* Get pointers to firmware sections. */
5348 fw->main.text = (const uint8_t *)ptr;
5349 fw->main.data = fw->main.text + fw->main.textsz;
5350 fw->init.text = fw->main.data + fw->main.datasz;
5351 fw->init.data = fw->init.text + fw->init.textsz;
5352 fw->boot.text = fw->init.data + fw->init.datasz;
5353
5354 return 0;
5355 out:
5356 firmware_free(fw->data, fw->datasz);
5357 fw->data = NULL;
5358 fw->datasz = 0;
5359 return error ? error : EINVAL;
5360 }
5361
5362 static int
5363 iwn_clock_wait(struct iwn_softc *sc)
5364 {
5365 int ntries;
5366
5367 /* Set "initialization complete" bit. */
5368 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5369
5370 /* Wait for clock stabilization. */
5371 for (ntries = 0; ntries < 2500; ntries++) {
5372 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5373 return 0;
5374 DELAY(10);
5375 }
5376 aprint_error_dev(sc->sc_dev,
5377 "timeout waiting for clock stabilization\n");
5378 return ETIMEDOUT;
5379 }
5380
5381 static int
5382 iwn_apm_init(struct iwn_softc *sc)
5383 {
5384 pcireg_t reg;
5385 int error;
5386
5387 /* Disable L0s exit timer (NMI bug workaround.) */
5388 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5389 /* Don't wait for ICH L0s (ICH bug workaround.) */
5390 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5391
5392 /* Set FH wait threshold to max (HW bug under stress workaround.) */
5393 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5394
5395 /* Enable HAP INTA to move adapter from L1a to L0s. */
5396 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5397
5398 /* Retrieve PCIe Active State Power Management (ASPM). */
5399 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5400 sc->sc_cap_off + PCI_PCIE_LCSR);
5401 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5402 if (reg & PCI_PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
5403 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5404 else
5405 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5406
5407 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5408 sc->hw_type <= IWN_HW_REV_TYPE_1000)
5409 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5410
5411 /* Wait for clock stabilization before accessing prph. */
5412 if ((error = iwn_clock_wait(sc)) != 0)
5413 return error;
5414
5415 if ((error = iwn_nic_lock(sc)) != 0)
5416 return error;
5417 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5418 /* Enable DMA and BSM (Bootstrap State Machine.) */
5419 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5420 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5421 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5422 } else {
5423 /* Enable DMA. */
5424 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5425 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5426 }
5427 DELAY(20);
5428 /* Disable L1-Active. */
5429 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5430 iwn_nic_unlock(sc);
5431
5432 return 0;
5433 }
5434
5435 static void
5436 iwn_apm_stop_master(struct iwn_softc *sc)
5437 {
5438 int ntries;
5439
5440 /* Stop busmaster DMA activity. */
5441 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5442 for (ntries = 0; ntries < 100; ntries++) {
5443 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5444 return;
5445 DELAY(10);
5446 }
5447 aprint_error_dev(sc->sc_dev,
5448 "timeout waiting for master\n");
5449 }
5450
5451 static void
5452 iwn_apm_stop(struct iwn_softc *sc)
5453 {
5454 iwn_apm_stop_master(sc);
5455
5456 /* Reset the entire device. */
5457 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5458 DELAY(10);
5459 /* Clear "initialization complete" bit. */
5460 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5461 }
5462
5463 static int
5464 iwn4965_nic_config(struct iwn_softc *sc)
5465 {
5466 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5467 /*
5468 * I don't believe this to be correct but this is what the
5469 * vendor driver is doing. Probably the bits should not be
5470 * shifted in IWN_RFCFG_*.
5471 */
5472 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5473 IWN_RFCFG_TYPE(sc->rfcfg) |
5474 IWN_RFCFG_STEP(sc->rfcfg) |
5475 IWN_RFCFG_DASH(sc->rfcfg));
5476 }
5477 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5478 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5479 return 0;
5480 }
5481
5482 static int
5483 iwn5000_nic_config(struct iwn_softc *sc)
5484 {
5485 uint32_t tmp;
5486 int error;
5487
5488 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5489 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5490 IWN_RFCFG_TYPE(sc->rfcfg) |
5491 IWN_RFCFG_STEP(sc->rfcfg) |
5492 IWN_RFCFG_DASH(sc->rfcfg));
5493 }
5494 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5495 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5496
5497 if ((error = iwn_nic_lock(sc)) != 0)
5498 return error;
5499 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5500
5501 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5502 /*
5503 * Select first Switching Voltage Regulator (1.32V) to
5504 * solve a stability issue related to noisy DC2DC line
5505 * in the silicon of 1000 Series.
5506 */
5507 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5508 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5509 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5510 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5511 }
5512 iwn_nic_unlock(sc);
5513
5514 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5515 /* Use internal power amplifier only. */
5516 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5517 }
5518 if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
5519 /* Indicate that ROM calibration version is >=6. */
5520 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5521 }
5522 return 0;
5523 }
5524
5525 /*
5526 * Take NIC ownership over Intel Active Management Technology (AMT).
5527 */
5528 static int
5529 iwn_hw_prepare(struct iwn_softc *sc)
5530 {
5531 int ntries;
5532
5533 /* Check if hardware is ready. */
5534 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5535 for (ntries = 0; ntries < 5; ntries++) {
5536 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5537 IWN_HW_IF_CONFIG_NIC_READY)
5538 return 0;
5539 DELAY(10);
5540 }
5541
5542 /* Hardware not ready, force into ready state. */
5543 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5544 for (ntries = 0; ntries < 15000; ntries++) {
5545 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5546 IWN_HW_IF_CONFIG_PREPARE_DONE))
5547 break;
5548 DELAY(10);
5549 }
5550 if (ntries == 15000)
5551 return ETIMEDOUT;
5552
5553 /* Hardware should be ready now. */
5554 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5555 for (ntries = 0; ntries < 5; ntries++) {
5556 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5557 IWN_HW_IF_CONFIG_NIC_READY)
5558 return 0;
5559 DELAY(10);
5560 }
5561 return ETIMEDOUT;
5562 }
5563
5564 static int
5565 iwn_hw_init(struct iwn_softc *sc)
5566 {
5567 const struct iwn_hal *hal = sc->sc_hal;
5568 int error, chnl, qid;
5569
5570 /* Clear pending interrupts. */
5571 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5572
5573 if ((error = iwn_apm_init(sc)) != 0) {
5574 aprint_error_dev(sc->sc_dev,
5575 "could not power ON adapter\n");
5576 return error;
5577 }
5578
5579 /* Select VMAIN power source. */
5580 if ((error = iwn_nic_lock(sc)) != 0)
5581 return error;
5582 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5583 iwn_nic_unlock(sc);
5584
5585 /* Perform adapter-specific initialization. */
5586 if ((error = hal->nic_config(sc)) != 0)
5587 return error;
5588
5589 /* Initialize RX ring. */
5590 if ((error = iwn_nic_lock(sc)) != 0)
5591 return error;
5592 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5593 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5594 /* Set physical address of RX ring (256-byte aligned.) */
5595 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5596 /* Set physical address of RX status (16-byte aligned.) */
5597 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5598 /* Enable RX. */
5599 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5600 IWN_FH_RX_CONFIG_ENA |
5601 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
5602 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
5603 IWN_FH_RX_CONFIG_SINGLE_FRAME |
5604 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5605 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5606 iwn_nic_unlock(sc);
5607 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5608
5609 if ((error = iwn_nic_lock(sc)) != 0)
5610 return error;
5611
5612 /* Initialize TX scheduler. */
5613 iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5614
5615 /* Set physical address of "keep warm" page (16-byte aligned.) */
5616 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5617
5618 /* Initialize TX rings. */
5619 for (qid = 0; qid < hal->ntxqs; qid++) {
5620 struct iwn_tx_ring *txq = &sc->txq[qid];
5621
5622 /* Set physical address of TX ring (256-byte aligned.) */
5623 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5624 txq->desc_dma.paddr >> 8);
5625 }
5626 iwn_nic_unlock(sc);
5627
5628 /* Enable DMA channels. */
5629 for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5630 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5631 IWN_FH_TX_CONFIG_DMA_ENA |
5632 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5633 }
5634
5635 /* Clear "radio off" and "commands blocked" bits. */
5636 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5637 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5638
5639 /* Clear pending interrupts. */
5640 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5641 /* Enable interrupt coalescing. */
5642 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5643 /* Enable interrupts. */
5644 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5645
5646 /* _Really_ make sure "radio off" bit is cleared! */
5647 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5648 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5649
5650 if ((error = hal->load_firmware(sc)) != 0) {
5651 aprint_error_dev(sc->sc_dev,
5652 "could not load firmware\n");
5653 return error;
5654 }
5655 /* Wait at most one second for firmware alive notification. */
5656 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5657 aprint_error_dev(sc->sc_dev,
5658 "timeout waiting for adapter to initialize\n");
5659 return error;
5660 }
5661 /* Do post-firmware initialization. */
5662 return hal->post_alive(sc);
5663 }
5664
5665 static void
5666 iwn_hw_stop(struct iwn_softc *sc)
5667 {
5668 const struct iwn_hal *hal = sc->sc_hal;
5669 int chnl, qid, ntries;
5670 uint32_t tmp;
5671
5672 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5673
5674 /* Disable interrupts. */
5675 IWN_WRITE(sc, IWN_INT_MASK, 0);
5676 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5677 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5678 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5679
5680 /* Make sure we no longer hold the NIC lock. */
5681 iwn_nic_unlock(sc);
5682
5683 /* Stop TX scheduler. */
5684 iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5685
5686 /* Stop all DMA channels. */
5687 if (iwn_nic_lock(sc) == 0) {
5688 for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5689 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5690 for (ntries = 0; ntries < 200; ntries++) {
5691 tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
5692 if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
5693 IWN_FH_TX_STATUS_IDLE(chnl))
5694 break;
5695 DELAY(10);
5696 }
5697 }
5698 iwn_nic_unlock(sc);
5699 }
5700
5701 /* Stop RX ring. */
5702 iwn_reset_rx_ring(sc, &sc->rxq);
5703
5704 /* Reset all TX rings. */
5705 for (qid = 0; qid < hal->ntxqs; qid++)
5706 iwn_reset_tx_ring(sc, &sc->txq[qid]);
5707
5708 if (iwn_nic_lock(sc) == 0) {
5709 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5710 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5711 iwn_nic_unlock(sc);
5712 }
5713 DELAY(5);
5714 /* Power OFF adapter. */
5715 iwn_apm_stop(sc);
5716 }
5717
5718 static int
5719 iwn_init(struct ifnet *ifp)
5720 {
5721 struct iwn_softc *sc = ifp->if_softc;
5722 struct ieee80211com *ic = &sc->sc_ic;
5723 int error;
5724
5725 if ((error = iwn_hw_prepare(sc)) != 0) {
5726 aprint_error_dev(sc->sc_dev,
5727 "hardware not ready\n");
5728 goto fail;
5729 }
5730
5731 /* Check that the radio is not disabled by hardware switch. */
5732 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5733 aprint_error_dev(sc->sc_dev,
5734 "radio is disabled by hardware switch\n");
5735 error = EPERM; /* :-) */
5736 goto fail;
5737 }
5738
5739 /* Read firmware images from the filesystem. */
5740 if ((error = iwn_read_firmware(sc)) != 0) {
5741 aprint_error_dev(sc->sc_dev,
5742 "could not read firmware\n");
5743 goto fail;
5744 }
5745
5746 /* Initialize interrupt mask to default value. */
5747 sc->int_mask = IWN_INT_MASK_DEF;
5748 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5749
5750 /* Initialize hardware and upload firmware. */
5751 KASSERT(sc->fw.data != NULL && sc->fw.datasz > 0);
5752 error = iwn_hw_init(sc);
5753 firmware_free(sc->fw.data, sc->fw.datasz);
5754 sc->fw.data = NULL;
5755 sc->fw.datasz = 0;
5756 if (error != 0) {
5757 aprint_error_dev(sc->sc_dev,
5758 "could not initialize hardware\n");
5759 goto fail;
5760 }
5761
5762 /* Configure adapter now that it is ready. */
5763 if ((error = iwn_config(sc)) != 0) {
5764 aprint_error_dev(sc->sc_dev,
5765 "could not configure device\n");
5766 goto fail;
5767 }
5768
5769 ifp->if_flags &= ~IFF_OACTIVE;
5770 ifp->if_flags |= IFF_RUNNING;
5771
5772 if (ic->ic_opmode != IEEE80211_M_MONITOR)
5773 ieee80211_begin_scan(ic, 0);
5774 else
5775 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5776
5777 return 0;
5778
5779 fail: iwn_stop(ifp, 1);
5780 return error;
5781 }
5782
5783 static void
5784 iwn_stop(struct ifnet *ifp, int disable)
5785 {
5786 struct iwn_softc *sc = ifp->if_softc;
5787 struct ieee80211com *ic = &sc->sc_ic;
5788
5789 ifp->if_timer = sc->sc_tx_timer = 0;
5790 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5791
5792 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5793
5794 /* Power OFF hardware. */
5795 iwn_hw_stop(sc);
5796
5797 #ifndef SMALL_KERNEL
5798 /* Temperature sensor is no longer valid. */
5799 sc->sc_sensor.value_cur = 0;
5800 sc->sc_sensor.state = ENVSYS_SINVALID;
5801 #endif
5802 }
5803
5804 /*
5805 * XXX MCLGETI alternative
5806 *
5807 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
5808 * as long as there are available free buffers then it uses MEXTMALLOC.,
5809 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
5810 * The MCLGET4K code is used for testing an alternative mbuf cache.
5811 */
5812
5813 static struct mbuf *
5814 MCLGETIalt(struct iwn_softc *sc, int how,
5815 struct ifnet *ifp __unused, u_int size)
5816 {
5817 struct mbuf *m;
5818 #ifdef IWN_USE_RBUF
5819 struct iwn_rbuf *rbuf;
5820 #endif
5821
5822 MGETHDR(m, how, MT_DATA);
5823 if (m == NULL)
5824 return NULL;
5825
5826 #ifdef IWN_USE_RBUF
5827 if (sc->rxq.nb_free_entries > 0 &&
5828 (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
5829 /* Attach buffer to mbuf header. */
5830 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
5831 m->m_flags |= M_EXT_RW;
5832 }
5833 else {
5834 MEXTMALLOC(m, size, how);
5835 if ((m->m_flags & M_EXT) == 0) {
5836 m_freem(m);
5837 return NULL;
5838 }
5839 }
5840
5841 #else
5842 #ifdef MCLGET4K
5843 if (size == 4096)
5844 MCLGET4K(m, how);
5845 else
5846 panic("size must be 4k");
5847 #else
5848 MEXTMALLOC(m, size, how);
5849 #endif
5850 if ((m->m_flags & M_EXT) == 0) {
5851 m_freem(m);
5852 return NULL;
5853 }
5854 #endif
5855
5856 return m;
5857 }
5858
5859 #ifdef IWN_USE_RBUF
5860 static struct iwn_rbuf *
5861 iwn_alloc_rbuf(struct iwn_softc *sc)
5862 {
5863 struct iwn_rbuf *rbuf;
5864 mutex_enter(&sc->rxq.freelist_mtx);
5865
5866 rbuf = SLIST_FIRST(&sc->rxq.freelist);
5867 if (rbuf != NULL) {
5868 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
5869 sc->rxq.nb_free_entries --;
5870 }
5871 mutex_exit(&sc->rxq.freelist_mtx);
5872 return rbuf;
5873 }
5874
5875 /*
5876 * This is called automatically by the network stack when the mbuf to which
5877 * our RX buffer is attached is freed.
5878 */
5879 static void
5880 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
5881 {
5882 struct iwn_rbuf *rbuf = arg;
5883 struct iwn_softc *sc = rbuf->sc;
5884
5885 /* Put the RX buffer back in the free list. */
5886 mutex_enter(&sc->rxq.freelist_mtx);
5887 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
5888 mutex_exit(&sc->rxq.freelist_mtx);
5889
5890 sc->rxq.nb_free_entries ++;
5891 if (__predict_true(m != NULL))
5892 pool_cache_put(mb_cache, m);
5893 }
5894
5895 static int
5896 iwn_alloc_rpool(struct iwn_softc *sc)
5897 {
5898 struct iwn_rx_ring *ring = &sc->rxq;
5899 struct iwn_rbuf *rbuf;
5900 int i, error;
5901
5902 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
5903
5904 /* Allocate a big chunk of DMA'able memory... */
5905 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
5906 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
5907 if (error != 0) {
5908 aprint_error_dev(sc->sc_dev,
5909 "could not allocate RX buffers DMA memory\n");
5910 return error;
5911 }
5912 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
5913 SLIST_INIT(&ring->freelist);
5914 for (i = 0; i < IWN_RBUF_COUNT; i++) {
5915 rbuf = &ring->rbuf[i];
5916
5917 rbuf->sc = sc; /* Backpointer for callbacks. */
5918 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
5919 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
5920
5921 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
5922 }
5923 ring->nb_free_entries = IWN_RBUF_COUNT;
5924 return 0;
5925 }
5926
5927 static void
5928 iwn_free_rpool(struct iwn_softc *sc)
5929 {
5930 iwn_dma_contig_free(&sc->rxq.buf_dma);
5931 }
5932 #endif
5933
5934 /*
5935 * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
5936 * Copyright (c) 2001 Atsushi Onoe
5937 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
5938 * Copyright (c) 2007-2009 Damien Bergamini
5939 * All rights reserved.
5940 */
5941
5942 /*
5943 * Add an SSID element to a frame (see 7.3.2.1).
5944 */
5945 static u_int8_t *
5946 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
5947 {
5948 *frm++ = IEEE80211_ELEMID_SSID;
5949 *frm++ = len;
5950 memcpy(frm, ssid, len);
5951 return frm + len;
5952 }
5953
5954 /*
5955 * Add a supported rates element to a frame (see 7.3.2.2).
5956 */
5957 static u_int8_t *
5958 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
5959 {
5960 int nrates;
5961
5962 *frm++ = IEEE80211_ELEMID_RATES;
5963 nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
5964 *frm++ = nrates;
5965 memcpy(frm, rs->rs_rates, nrates);
5966 return frm + nrates;
5967 }
5968
5969 /*
5970 * Add an extended supported rates element to a frame (see 7.3.2.14).
5971 */
5972 static u_int8_t *
5973 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
5974 {
5975 int nrates;
5976
5977 KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
5978
5979 *frm++ = IEEE80211_ELEMID_XRATES;
5980 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
5981 *frm++ = nrates;
5982 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
5983 return frm + nrates;
5984 }
5985
5986 /*
5987 * XXX: Hack to set the current channel to the value advertised in beacons or
5988 * probe responses. Only used during AP detection.
5989 * XXX: Duplicated from if_iwi.c
5990 */
5991 static void
5992 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
5993 {
5994 struct ieee80211_frame *wh;
5995 uint8_t subtype;
5996 uint8_t *frm, *efrm;
5997
5998 wh = mtod(m, struct ieee80211_frame *);
5999
6000 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6001 return;
6002
6003 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6004
6005 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6006 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6007 return;
6008
6009 frm = (uint8_t *)(wh + 1);
6010 efrm = mtod(m, uint8_t *) + m->m_len;
6011
6012 frm += 12; /* skip tstamp, bintval and capinfo fields */
6013 while (frm < efrm) {
6014 if (*frm == IEEE80211_ELEMID_DSPARMS)
6015 #if IEEE80211_CHAN_MAX < 255
6016 if (frm[2] <= IEEE80211_CHAN_MAX)
6017 #endif
6018 ic->ic_curchan = &ic->ic_channels[frm[2]];
6019
6020 frm += frm[1] + 2;
6021 }
6022 }
6023
6024