Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.46
      1 /*	$NetBSD: if_iwn.c,v 1.46 2010/06/18 21:10:23 christos Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.46 2010/06/18 21:10:23 christos Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 /* XXX Avoid sensor code (correct option for NetBSD too?) */
     31 #undef SMALL_KERNEL
     32 
     33 #include <sys/param.h>
     34 #include <sys/sockio.h>
     35 #include <sys/proc.h>
     36 #include <sys/mbuf.h>
     37 #include <sys/kernel.h>
     38 #include <sys/socket.h>
     39 #include <sys/systm.h>
     40 #include <sys/malloc.h>
     41 #include <sys/mutex.h>
     42 #include <sys/conf.h>
     43 #include <sys/kauth.h>
     44 #include <sys/callout.h>
     45 
     46 #include <dev/sysmon/sysmonvar.h>
     47 
     48 #include <machine/bus.h>
     49 #include <machine/endian.h>
     50 #include <machine/intr.h>
     51 
     52 #include <dev/pci/pcireg.h>
     53 #include <dev/pci/pcivar.h>
     54 #include <dev/pci/pcidevs.h>
     55 
     56 #include <net/bpf.h>
     57 #include <net/if.h>
     58 #include <net/if_arp.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_types.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <net/if_ether.h>
     67 #include <netinet/ip.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_amrr.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #include <dev/firmload.h>
     74 
     75 #include <dev/pci/if_iwnreg.h>
     76 #include <dev/pci/if_iwnvar.h>
     77 
     78 static const pci_product_id_t iwn_devices[] = {
     79 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     80 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     81 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     82 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     83 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     84 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     85 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     86 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     87 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
     89 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
     90 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
     99 #ifdef notyet
    100 	/*
    101 	 * XXX NetBSD: the 6005A replaces the two 6005, above
    102 	 * (see OpenBSD rev 1.96).
    103 	 */
    104 	PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_1,
    105 	PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_2,
    106 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_1,
    107 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_2,
    108 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_1,
    109 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_2,
    110 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_3
    111 #endif
    112 };
    113 
    114 /*
    115  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    116  */
    117 static const struct ieee80211_rateset iwn_rateset_11a =
    118 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    119 
    120 static const struct ieee80211_rateset iwn_rateset_11b =
    121 	{ 4, { 2, 4, 11, 22 } };
    122 
    123 static const struct ieee80211_rateset iwn_rateset_11g =
    124 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    125 
    126 static int	iwn_match(device_t , struct cfdata *, void *);
    127 static void	iwn_attach(device_t , device_t , void *);
    128 const struct	iwn_hal *iwn_hal_attach(struct iwn_softc *, pci_product_id_t pid);
    129 #ifndef SMALL_KERNEL
    130 static void	iwn_sensor_attach(struct iwn_softc *);
    131 #endif
    132 static void	iwn_radiotap_attach(struct iwn_softc *);
    133 static int	iwn_detach(device_t , int);
    134 #if 0
    135 static void	iwn_power(int, void *);
    136 #endif
    137 static bool	iwn_resume(device_t, const pmf_qual_t *);
    138 static int	iwn_nic_lock(struct iwn_softc *);
    139 static int	iwn_eeprom_lock(struct iwn_softc *);
    140 static int	iwn_init_otprom(struct iwn_softc *);
    141 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    142 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    143 		    void **, bus_size_t, bus_size_t);
    144 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    145 static int	iwn_alloc_sched(struct iwn_softc *);
    146 static void	iwn_free_sched(struct iwn_softc *);
    147 static int	iwn_alloc_kw(struct iwn_softc *);
    148 static void	iwn_free_kw(struct iwn_softc *);
    149 static int	iwn_alloc_ict(struct iwn_softc *);
    150 static void	iwn_free_ict(struct iwn_softc *);
    151 static int	iwn_alloc_fwmem(struct iwn_softc *);
    152 static void	iwn_free_fwmem(struct iwn_softc *);
    153 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    154 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    155 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    156 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    157 		    int);
    158 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    159 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    160 static void	iwn5000_ict_reset(struct iwn_softc *);
    161 static int	iwn_read_eeprom(struct iwn_softc *);
    162 static void	iwn4965_read_eeprom(struct iwn_softc *);
    163 #ifdef IWN_DEBUG
    164 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    165 #endif
    166 static void	iwn5000_read_eeprom(struct iwn_softc *);
    167 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    168 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    169 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    170 static void	iwn_newassoc(struct ieee80211_node *, int);
    171 static int	iwn_media_change(struct ifnet *);
    172 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    173 static void	iwn_iter_func(void *, struct ieee80211_node *);
    174 static void	iwn_calib_timeout(void *);
    175 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    176 		    struct iwn_rx_data *);
    177 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    178 		    struct iwn_rx_data *);
    179 #ifndef IEEE80211_NO_HT
    180 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    181 		    struct iwn_rx_data *);
    182 #endif
    183 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    184 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    185 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    186 		    struct iwn_rx_data *);
    187 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    188 		    struct iwn_rx_data *);
    189 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    190 		    struct iwn_rx_data *);
    191 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    192 		    uint8_t);
    193 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    194 static void	iwn_notif_intr(struct iwn_softc *);
    195 static void	iwn_wakeup_intr(struct iwn_softc *);
    196 static void	iwn_fatal_intr(struct iwn_softc *);
    197 static int	iwn_intr(void *);
    198 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    199 		    uint16_t);
    200 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    201 		    uint16_t);
    202 #ifdef notyet
    203 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    204 #endif
    205 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    206 		    struct ieee80211_node *, int);
    207 static void	iwn_start(struct ifnet *);
    208 static void	iwn_watchdog(struct ifnet *);
    209 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    210 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    211 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    212 		    int);
    213 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    214 		    int);
    215 static int	iwn_set_link_quality(struct iwn_softc *,
    216 		    struct ieee80211_node *);
    217 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    218 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    219 static int	iwn_set_critical_temp(struct iwn_softc *);
    220 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    221 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    222 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    223 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    224 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    225 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    226 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    227 static int	iwn4965_get_temperature(struct iwn_softc *);
    228 static int	iwn5000_get_temperature(struct iwn_softc *);
    229 static int	iwn_init_sensitivity(struct iwn_softc *);
    230 static void	iwn_collect_noise(struct iwn_softc *,
    231 		    const struct iwn_rx_general_stats *);
    232 static int	iwn4965_init_gains(struct iwn_softc *);
    233 static int	iwn5000_init_gains(struct iwn_softc *);
    234 static int	iwn4965_set_gains(struct iwn_softc *);
    235 static int	iwn5000_set_gains(struct iwn_softc *);
    236 static void	iwn_tune_sensitivity(struct iwn_softc *,
    237 		    const struct iwn_rx_stats *);
    238 static int	iwn_send_sensitivity(struct iwn_softc *);
    239 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    240 static int	iwn_config(struct iwn_softc *);
    241 static int	iwn_scan(struct iwn_softc *, uint16_t);
    242 static int	iwn_auth(struct iwn_softc *);
    243 static int	iwn_run(struct iwn_softc *);
    244 #ifdef IWN_HWCRYPTO
    245 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    246 		    struct ieee80211_key *);
    247 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    248 		    struct ieee80211_key *);
    249 #endif
    250 static int	iwn_wme_update(struct ieee80211com *);
    251 #ifndef IEEE80211_NO_HT
    252 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    253 		    struct ieee80211_node *, uint8_t);
    254 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    255 		    struct ieee80211_node *, uint8_t);
    256 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    257 		    struct ieee80211_node *, uint8_t);
    258 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    259 		    struct ieee80211_node *, uint8_t);
    260 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    261 		    struct ieee80211_node *, uint8_t, uint16_t);
    262 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    263 		    uint8_t, uint16_t);
    264 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    265 		    struct ieee80211_node *, uint8_t, uint16_t);
    266 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    267 		    uint8_t, uint16_t);
    268 #endif
    269 static int	iwn5000_query_calibration(struct iwn_softc *);
    270 static int	iwn5000_send_calibration(struct iwn_softc *);
    271 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    272 static int	iwn4965_post_alive(struct iwn_softc *);
    273 static int	iwn5000_post_alive(struct iwn_softc *);
    274 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    275 		    int);
    276 static int	iwn4965_load_firmware(struct iwn_softc *);
    277 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    278 		    const uint8_t *, int);
    279 static int	iwn_read_firmware_leg(struct iwn_softc *,
    280 		    struct iwn_fw_info *);
    281 static int	iwn_read_firmware_tlv(struct iwn_softc *,
    282 		    struct iwn_fw_info *, uint16_t);
    283 static int	iwn5000_load_firmware(struct iwn_softc *);
    284 static int	iwn_read_firmware(struct iwn_softc *);
    285 static int	iwn_clock_wait(struct iwn_softc *);
    286 static int	iwn_apm_init(struct iwn_softc *);
    287 static void	iwn_apm_stop_master(struct iwn_softc *);
    288 static void	iwn_apm_stop(struct iwn_softc *);
    289 static int	iwn4965_nic_config(struct iwn_softc *);
    290 static int	iwn5000_nic_config(struct iwn_softc *);
    291 static int	iwn_hw_prepare(struct iwn_softc *);
    292 static int	iwn_hw_init(struct iwn_softc *);
    293 static void	iwn_hw_stop(struct iwn_softc *);
    294 static int	iwn_init(struct ifnet *);
    295 static void	iwn_stop(struct ifnet *, int);
    296 
    297 /* XXX MCLGETI alternative */
    298 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    299 		    struct ifnet *, u_int);
    300 #ifdef IWN_USE_RBUF
    301 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    302 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    303 static int	iwn_alloc_rpool(struct iwn_softc *);
    304 static void	iwn_free_rpool(struct iwn_softc *);
    305 #endif
    306 
    307 /* XXX needed by iwn_scan */
    308 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
    309 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
    310     const struct ieee80211_rateset *);
    311 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
    312     const struct ieee80211_rateset *);
    313 
    314 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
    315 
    316 #ifdef IWN_DEBUG
    317 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    318 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    319 int iwn_debug = 0;
    320 #else
    321 #define DPRINTF(x)
    322 #define DPRINTFN(n, x)
    323 #endif
    324 
    325 static const struct iwn_hal iwn4965_hal = {
    326 	iwn4965_load_firmware,
    327 	iwn4965_read_eeprom,
    328 	iwn4965_post_alive,
    329 	iwn4965_nic_config,
    330 	iwn4965_update_sched,
    331 	iwn4965_get_temperature,
    332 	iwn4965_get_rssi,
    333 	iwn4965_set_txpower,
    334 	iwn4965_init_gains,
    335 	iwn4965_set_gains,
    336 	iwn4965_add_node,
    337 	iwn4965_tx_done,
    338 #ifndef IEEE80211_NO_HT
    339 	iwn4965_ampdu_tx_start,
    340 	iwn4965_ampdu_tx_stop,
    341 #endif
    342 	IWN4965_NTXQUEUES,
    343 	IWN4965_NDMACHNLS,
    344 	IWN4965_ID_BROADCAST,
    345 	IWN4965_RXONSZ,
    346 	IWN4965_SCHEDSZ,
    347 	IWN4965_FW_TEXT_MAXSZ,
    348 	IWN4965_FW_DATA_MAXSZ,
    349 	IWN4965_FWSZ,
    350 	IWN4965_SCHED_TXFACT
    351 };
    352 
    353 static const struct iwn_hal iwn5000_hal = {
    354 	iwn5000_load_firmware,
    355 	iwn5000_read_eeprom,
    356 	iwn5000_post_alive,
    357 	iwn5000_nic_config,
    358 	iwn5000_update_sched,
    359 	iwn5000_get_temperature,
    360 	iwn5000_get_rssi,
    361 	iwn5000_set_txpower,
    362 	iwn5000_init_gains,
    363 	iwn5000_set_gains,
    364 	iwn5000_add_node,
    365 	iwn5000_tx_done,
    366 #ifndef IEEE80211_NO_HT
    367 	iwn5000_ampdu_tx_start,
    368 	iwn5000_ampdu_tx_stop,
    369 #endif
    370 	IWN5000_NTXQUEUES,
    371 	IWN5000_NDMACHNLS,
    372 	IWN5000_ID_BROADCAST,
    373 	IWN5000_RXONSZ,
    374 	IWN5000_SCHEDSZ,
    375 	IWN5000_FW_TEXT_MAXSZ,
    376 	IWN5000_FW_DATA_MAXSZ,
    377 	IWN5000_FWSZ,
    378 	IWN5000_SCHED_TXFACT
    379 };
    380 
    381 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    382 	iwn_detach, NULL);
    383 
    384 static int
    385 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    386 {
    387 	struct pci_attach_args *pa = aux;
    388 	size_t i;
    389 
    390 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    391 		return 0;
    392 
    393 	for (i = 0; i < __arraycount(iwn_devices); i++)
    394 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    395 			return 1;
    396 
    397 	return 0;
    398 }
    399 
    400 static void
    401 iwn_attach(device_t parent __unused, device_t self, void *aux)
    402 {
    403 	struct iwn_softc *sc = device_private(self);
    404 	struct ieee80211com *ic = &sc->sc_ic;
    405 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    406 	struct pci_attach_args *pa = aux;
    407 	const struct iwn_hal *hal;
    408 	const char *intrstr;
    409 	char devinfo[256];
    410 	pci_intr_handle_t ih;
    411 	pcireg_t memtype, reg;
    412 	int i, error;
    413 	int revision;
    414 
    415 	sc->sc_dev = self;
    416 	sc->sc_pct = pa->pa_pc;
    417 	sc->sc_pcitag = pa->pa_tag;
    418 	sc->sc_dmat = pa->pa_dmat;
    419 
    420 	callout_init(&sc->calib_to, 0);
    421 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    422 
    423 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
    424 	revision = PCI_REVISION(pa->pa_class);
    425 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
    426 
    427 	/*
    428 	 * Get the offset of the PCI Express Capability Structure in PCI
    429 	 * Configuration Space.
    430 	 */
    431 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    432 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    433 	if (error == 0) {
    434 		aprint_error(": PCIe capability structure not found!\n");
    435 		return;
    436 	}
    437 
    438 	/* Clear device-specific "PCI retry timeout" register (41h). */
    439 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    440 	reg &= ~0xff00;
    441 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
    442 
    443 	/* Enable bus-mastering and hardware bug workaround. */
    444 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    445 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    446 	reg |= PCI_COMMAND_MASTER_ENABLE;
    447 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
    448 		DPRINTF(("PCIe INTx Disable set\n"));
    449 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
    450 	}
    451 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    452 
    453 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    454 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    455 	    &sc->sc_sh, NULL, &sc->sc_sz);
    456 	if (error != 0) {
    457 		aprint_error(": can't map mem space\n");
    458 		return;
    459 	}
    460 
    461 	/* Install interrupt handler. */
    462 	if (pci_intr_map(pa, &ih) != 0) {
    463 		aprint_error(": can't map interrupt\n");
    464 		return;
    465 	}
    466 	intrstr = pci_intr_string(sc->sc_pct, ih);
    467 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
    468 	if (sc->sc_ih == NULL) {
    469 		aprint_error(": can't establish interrupt");
    470 		if (intrstr != NULL)
    471 			aprint_error(" at %s", intrstr);
    472 		aprint_error("\n");
    473 		return;
    474 	}
    475 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    476 
    477 	/* Attach Hardware Abstraction Layer. */
    478 	hal = iwn_hal_attach(sc, PCI_PRODUCT(pa->pa_id));
    479 	if (hal == NULL)
    480 		return;
    481 
    482 	if ((error = iwn_hw_prepare(sc)) != 0) {
    483 		aprint_error(": hardware not ready\n");
    484 		return;
    485 	}
    486 
    487 	/* Read MAC address, channels, etc from EEPROM. */
    488 	if ((error = iwn_read_eeprom(sc)) != 0) {
    489 		aprint_error(": could not read EEPROM\n");
    490 		return;
    491 	}
    492 
    493 	/* Allocate DMA memory for firmware transfers. */
    494 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    495 		aprint_error(": could not allocate memory for firmware\n");
    496 		return;
    497 	}
    498 
    499 	/* Allocate "Keep Warm" page. */
    500 	if ((error = iwn_alloc_kw(sc)) != 0) {
    501 		aprint_error(": could not allocate keep warm page\n");
    502 		goto fail1;
    503 	}
    504 
    505 	/* Allocate ICT table for 5000 Series. */
    506 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    507 	    (error = iwn_alloc_ict(sc)) != 0) {
    508 		aprint_error(": could not allocate ICT table\n");
    509 		goto fail2;
    510 	}
    511 
    512 	/* Allocate TX scheduler "rings". */
    513 	if ((error = iwn_alloc_sched(sc)) != 0) {
    514 		aprint_error(": could not allocate TX scheduler rings\n");
    515 		goto fail3;
    516 	}
    517 
    518 #ifdef IWN_USE_RBUF
    519 	/* Allocate RX buffers. */
    520 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    521 		aprint_error_dev(self, "could not allocate RX buffers\n");
    522 		goto fail3;
    523 	}
    524 #endif
    525 
    526 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */
    527 	for (i = 0; i < hal->ntxqs; i++) {
    528 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    529 			aprint_error(": could not allocate TX ring %d\n", i);
    530 			goto fail4;
    531 		}
    532 	}
    533 
    534 	/* Allocate RX ring. */
    535 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    536 		aprint_error(": could not allocate RX ring\n");
    537 		goto fail4;
    538 	}
    539 
    540 	/* Clear pending interrupts. */
    541 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    542 
    543 	/* Count the number of available chains. */
    544 	sc->ntxchains =
    545 	    ((sc->txchainmask >> 2) & 1) +
    546 	    ((sc->txchainmask >> 1) & 1) +
    547 	    ((sc->txchainmask >> 0) & 1);
    548 	sc->nrxchains =
    549 	    ((sc->rxchainmask >> 2) & 1) +
    550 	    ((sc->rxchainmask >> 1) & 1) +
    551 	    ((sc->rxchainmask >> 0) & 1);
    552 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    553 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    554 	    ether_sprintf(ic->ic_myaddr));
    555 
    556 	ic->ic_ifp = ifp;
    557 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    558 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    559 	ic->ic_state = IEEE80211_S_INIT;
    560 
    561 	/* Set device capabilities. */
    562 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
    563 	 * and IEEE80211_C_PMGT too. */
    564 	ic->ic_caps =
    565 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    566 	    IEEE80211_C_WPA |		/* 802.11i */
    567 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    568 	    IEEE80211_C_TXPMGT |	/* tx power management */
    569 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    570 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    571 	    IEEE80211_C_WME;		/* 802.11e */
    572 
    573 #ifndef IEEE80211_NO_HT
    574 	/* Set HT capabilities. */
    575 	ic->ic_htcaps =
    576 #if IWN_RBUF_SIZE == 8192
    577 	    IEEE80211_HTCAP_AMSDU7935 |
    578 #endif
    579 	    IEEE80211_HTCAP_CBW20_40 |
    580 	    IEEE80211_HTCAP_SGI20 |
    581 	    IEEE80211_HTCAP_SGI40;
    582 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    583 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    584 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    585 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    586 	else
    587 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    588 #endif	/* !IEEE80211_NO_HT */
    589 
    590 	/* Set supported legacy rates. */
    591 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
    592 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
    593 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    594 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
    595 	}
    596 #ifndef IEEE80211_NO_HT
    597 	/* Set supported HT rates. */
    598 	ic->ic_sup_mcs[0] = 0xff;
    599 	if (sc->nrxchains > 1)			/* MCS 0-7 */
    600 		ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    601 	if (sc->nrxchains > 2)
    602 		ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    603 #endif
    604 
    605 	/* IBSS channel undefined for now. */
    606 	ic->ic_ibss_chan = &ic->ic_channels[0];
    607 
    608 	ifp->if_softc = sc;
    609 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    610 	ifp->if_init = iwn_init;
    611 	ifp->if_ioctl = iwn_ioctl;
    612 	ifp->if_start = iwn_start;
    613 	ifp->if_watchdog = iwn_watchdog;
    614 	IFQ_SET_READY(&ifp->if_snd);
    615 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    616 
    617 	if_attach(ifp);
    618 	ieee80211_ifattach(ic);
    619 	ic->ic_node_alloc = iwn_node_alloc;
    620 	ic->ic_newassoc = iwn_newassoc;
    621 #ifdef IWN_HWCRYPTO
    622 	ic->ic_crypto.cs_key_set = iwn_set_key;
    623 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    624 #endif
    625 	ic->ic_wme.wme_update = iwn_wme_update;
    626 #ifndef IEEE80211_NO_HT
    627 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    628 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    629 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    630 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    631 #endif
    632 
    633 	/* Override 802.11 state transition machine. */
    634 	sc->sc_newstate = ic->ic_newstate;
    635 	ic->ic_newstate = iwn_newstate;
    636 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    637 
    638 	sc->amrr.amrr_min_success_threshold =  1;
    639 	sc->amrr.amrr_max_success_threshold = 15;
    640 
    641 #ifndef SMALL_KERNEL
    642 	iwn_sensor_attach(sc);
    643 #endif
    644 	iwn_radiotap_attach(sc);
    645 
    646 	/*
    647 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    648 	 * callout_init and callout_setfunc, above.
    649 	*/
    650 
    651 	if (pmf_device_register(self, NULL, iwn_resume))
    652 		pmf_class_network_register(self, ifp);
    653 	else
    654 		aprint_error_dev(self, "couldn't establish power handler\n");
    655 
    656 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    657 	ieee80211_announce(ic);
    658 
    659 	return;
    660 
    661 	/* Free allocated memory if something failed during attachment. */
    662 fail4:	while (--i >= 0)
    663 		iwn_free_tx_ring(sc, &sc->txq[i]);
    664 #ifdef IWN_USE_RBUF
    665 	iwn_free_rpool(sc);
    666 #endif
    667 	iwn_free_sched(sc);
    668 fail3:	if (sc->ict != NULL)
    669 		iwn_free_ict(sc);
    670 fail2:	iwn_free_kw(sc);
    671 fail1:	iwn_free_fwmem(sc);
    672 }
    673 
    674 const struct iwn_hal *
    675 iwn_hal_attach(struct iwn_softc *sc, pci_product_id_t pid)
    676 {
    677 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
    678 
    679 	switch (sc->hw_type) {
    680 	case IWN_HW_REV_TYPE_4965:
    681 		sc->sc_hal = &iwn4965_hal;
    682 		sc->limits = &iwn4965_sensitivity_limits;
    683 		sc->fwname = "iwlwifi-4965-2.ucode";
    684 		sc->txchainmask = IWN_ANT_AB;
    685 		sc->rxchainmask = IWN_ANT_ABC;
    686 		break;
    687 	case IWN_HW_REV_TYPE_5100:
    688 		sc->sc_hal = &iwn5000_hal;
    689 		sc->limits = &iwn5000_sensitivity_limits;
    690 		sc->fwname = "iwlwifi-5000-2.ucode";
    691 		sc->txchainmask = IWN_ANT_B;
    692 		sc->rxchainmask = IWN_ANT_AB;
    693 		break;
    694 	case IWN_HW_REV_TYPE_5150:
    695 		sc->sc_hal = &iwn5000_hal;
    696 		sc->limits = &iwn5150_sensitivity_limits;
    697 		sc->fwname = "iwlwifi-5150-2.ucode";
    698 		sc->txchainmask = IWN_ANT_A;
    699 		sc->rxchainmask = IWN_ANT_AB;
    700 		break;
    701 	case IWN_HW_REV_TYPE_5300:
    702 	case IWN_HW_REV_TYPE_5350:
    703 		sc->sc_hal = &iwn5000_hal;
    704 		sc->limits = &iwn5000_sensitivity_limits;
    705 		sc->fwname = "iwlwifi-5000-2.ucode";
    706 		sc->txchainmask = IWN_ANT_ABC;
    707 		sc->rxchainmask = IWN_ANT_ABC;
    708 		break;
    709 	case IWN_HW_REV_TYPE_1000:
    710 		sc->sc_hal = &iwn5000_hal;
    711 		sc->limits = &iwn1000_sensitivity_limits;
    712 		sc->fwname = "iwlwifi-1000-3.ucode";
    713 		sc->txchainmask = IWN_ANT_A;
    714 		sc->rxchainmask = IWN_ANT_AB;
    715 		break;
    716 	case IWN_HW_REV_TYPE_6000:
    717 		sc->sc_hal = &iwn5000_hal;
    718 		sc->limits = &iwn6000_sensitivity_limits;
    719 		sc->fwname = "iwlwifi-6000-4.ucode";
    720 		switch (pid) {
    721 		case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1:
    722 		case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2:
    723 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    724 			sc->txchainmask = IWN_ANT_BC;
    725 			sc->rxchainmask = IWN_ANT_BC;
    726 			break;
    727 		default:
    728 			sc->txchainmask = IWN_ANT_ABC;
    729 			sc->rxchainmask = IWN_ANT_ABC;
    730 			break;
    731 		}
    732 		break;
    733 	case IWN_HW_REV_TYPE_6050:
    734 		sc->sc_hal = &iwn5000_hal;
    735 		sc->limits = &iwn6000_sensitivity_limits;
    736 		sc->fwname = "iwlwifi-6050-2.ucode";
    737 		sc->txchainmask = IWN_ANT_AB;
    738 		sc->rxchainmask = IWN_ANT_AB;
    739 		break;
    740 	case IWN_HW_REV_TYPE_6005:
    741 		sc->sc_hal = &iwn5000_hal;
    742 		sc->limits = &iwn6000_sensitivity_limits;
    743 		sc->fwname = "iwlwifi-6005-2.ucode";
    744 		sc->txchainmask = IWN_ANT_AB;
    745 		sc->rxchainmask = IWN_ANT_AB;
    746 		break;
    747 	default:
    748 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    749 		return NULL;
    750 	}
    751 	return sc->sc_hal;
    752 }
    753 
    754 #ifndef SMALL_KERNEL
    755 /*
    756  * Attach the adapter on-board thermal sensor to the sensors framework.
    757  */
    758 static void
    759 iwn_sensor_attach(struct iwn_softc *sc)
    760 {
    761 	int error;
    762 
    763 	sc->sc_sensor.units = ENVSYS_STEMP;
    764 #if 0
    765 	/* XXX something like this ought to work */
    766 	sc->sc_sensor.flags = ENVSYS_FMONLIMITS | ENVSYS_FMONNOTSUPP;
    767 	sc->sc_sensor.limits.sel_critmax = IWN_CTOK(110);
    768 #endif
    769 	strlcpy((sc->sc_sensor.desc), "TEMP", sizeof(sc->sc_sensor.desc));
    770 
    771 	/* Temperature is not valid unless interface is up. */
    772 	sc->sc_sensor.value_cur = 0;
    773 	sc->sc_sensor.state = ENVSYS_SINVALID;
    774 
    775 	sc->sc_sme = sysmon_envsys_create();
    776 
    777 	/* Initialize sensor */
    778 	if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
    779 		sysmon_envsys_destroy(sc->sc_sme);
    780 		return;
    781 	}
    782 
    783 	/*
    784 	 * Hook into the System Monitor.
    785 	 */
    786 	sc->sc_sme->sme_name = device_xname(sc->sc_dev);
    787 	sc->sc_sme->sme_flags = SME_DISABLE_REFRESH;
    788 
    789 	if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) {
    790 		aprint_error_dev(sc->sc_dev,
    791 		    "unable to register with sysmon (%d)\n", error);
    792 		sysmon_envsys_destroy(sc->sc_sme);
    793 		return;
    794 	}
    795 }
    796 #endif
    797 
    798 /*
    799  * Attach the interface to 802.11 radiotap.
    800  */
    801 static void
    802 iwn_radiotap_attach(struct iwn_softc *sc)
    803 {
    804 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    805 
    806 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    807 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    808 	    &sc->sc_drvbpf);
    809 
    810 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    811 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    812 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    813 
    814 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    815 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    816 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    817 }
    818 
    819 static int
    820 iwn_detach(device_t self, int flags __unused)
    821 {
    822 	struct iwn_softc *sc = device_private(self);
    823 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    824 	int qid;
    825 
    826 	callout_stop(&sc->calib_to);
    827 
    828 	/* Uninstall interrupt handler. */
    829 	if (sc->sc_ih != NULL)
    830 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    831 
    832 	/* Free DMA resources. */
    833 	iwn_free_rx_ring(sc, &sc->rxq);
    834 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++)
    835 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    836 #ifdef IWN_USE_RBUF
    837 	iwn_free_rpool(sc);
    838 #endif
    839 	iwn_free_sched(sc);
    840 	iwn_free_kw(sc);
    841 	if (sc->ict != NULL)
    842 		iwn_free_ict(sc);
    843 	iwn_free_fwmem(sc);
    844 
    845 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    846 
    847 #ifndef SMALL_KERNEL
    848 	/* Detach the thermal sensor. */
    849 	sysmon_envsys_sensor_detach(sc->sc_sme, &sc->sc_sensor);
    850 	sysmon_envsys_destroy(sc->sc_sme);
    851 #endif
    852 
    853 	ieee80211_ifdetach(&sc->sc_ic);
    854 	if_detach(ifp);
    855 
    856 	return 0;
    857 }
    858 
    859 #if 0
    860 /*
    861  * XXX Investigate if clearing the PCI retry timeout could eliminate
    862  * the repeated scan calls.  Also the calls to if_init and if_start
    863  * are similar to the effect of adding the call to ifioctl_common .
    864  */
    865 static void
    866 iwn_power(int why, void *arg)
    867 {
    868 	struct iwn_softc *sc = arg;
    869 	struct ifnet *ifp;
    870 	pcireg_t reg;
    871 	int s;
    872 
    873 	if (why != PWR_RESUME)
    874 		return;
    875 
    876 	/* Clear device-specific "PCI retry timeout" register (41h). */
    877 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    878 	reg &= ~0xff00;
    879 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
    880 
    881 	s = splnet();
    882 	ifp = &sc->sc_ic.ic_if;
    883 	if (ifp->if_flags & IFF_UP) {
    884 		ifp->if_init(ifp);
    885 		if (ifp->if_flags & IFF_RUNNING)
    886 			ifp->if_start(ifp);
    887 	}
    888 	splx(s);
    889 }
    890 #endif
    891 
    892 static bool
    893 iwn_resume(device_t dv, const pmf_qual_t *qual)
    894 {
    895 	return true;
    896 }
    897 
    898 static int
    899 iwn_nic_lock(struct iwn_softc *sc)
    900 {
    901 	int ntries;
    902 
    903 	/* Request exclusive access to NIC. */
    904 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    905 
    906 	/* Spin until we actually get the lock. */
    907 	for (ntries = 0; ntries < 1000; ntries++) {
    908 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    909 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    910 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    911 			return 0;
    912 		DELAY(10);
    913 	}
    914 	return ETIMEDOUT;
    915 }
    916 
    917 static __inline void
    918 iwn_nic_unlock(struct iwn_softc *sc)
    919 {
    920 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    921 }
    922 
    923 static __inline uint32_t
    924 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    925 {
    926 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    927 	IWN_BARRIER_READ_WRITE(sc);
    928 	return IWN_READ(sc, IWN_PRPH_RDATA);
    929 }
    930 
    931 static __inline void
    932 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    933 {
    934 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    935 	IWN_BARRIER_WRITE(sc);
    936 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    937 }
    938 
    939 static __inline void
    940 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    941 {
    942 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    943 }
    944 
    945 static __inline void
    946 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    947 {
    948 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    949 }
    950 
    951 static __inline void
    952 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    953     const uint32_t *data, int count)
    954 {
    955 	for (; count > 0; count--, data++, addr += 4)
    956 		iwn_prph_write(sc, addr, *data);
    957 }
    958 
    959 static __inline uint32_t
    960 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    961 {
    962 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    963 	IWN_BARRIER_READ_WRITE(sc);
    964 	return IWN_READ(sc, IWN_MEM_RDATA);
    965 }
    966 
    967 static __inline void
    968 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    969 {
    970 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    971 	IWN_BARRIER_WRITE(sc);
    972 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    973 }
    974 
    975 static __inline void
    976 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
    977 {
    978 	uint32_t tmp;
    979 
    980 	tmp = iwn_mem_read(sc, addr & ~3);
    981 	if (addr & 3)
    982 		tmp = (tmp & 0x0000ffff) | data << 16;
    983 	else
    984 		tmp = (tmp & 0xffff0000) | data;
    985 	iwn_mem_write(sc, addr & ~3, tmp);
    986 }
    987 
    988 static __inline void
    989 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
    990     int count)
    991 {
    992 	for (; count > 0; count--, addr += 4)
    993 		*data++ = iwn_mem_read(sc, addr);
    994 }
    995 
    996 static __inline void
    997 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
    998     int count)
    999 {
   1000 	for (; count > 0; count--, addr += 4)
   1001 		iwn_mem_write(sc, addr, val);
   1002 }
   1003 
   1004 static int
   1005 iwn_eeprom_lock(struct iwn_softc *sc)
   1006 {
   1007 	int i, ntries;
   1008 
   1009 	for (i = 0; i < 100; i++) {
   1010 		/* Request exclusive access to EEPROM. */
   1011 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   1012 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1013 
   1014 		/* Spin until we actually get the lock. */
   1015 		for (ntries = 0; ntries < 100; ntries++) {
   1016 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   1017 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
   1018 				return 0;
   1019 			DELAY(10);
   1020 		}
   1021 	}
   1022 	return ETIMEDOUT;
   1023 }
   1024 
   1025 static __inline void
   1026 iwn_eeprom_unlock(struct iwn_softc *sc)
   1027 {
   1028 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1029 }
   1030 
   1031 /*
   1032  * Initialize access by host to One Time Programmable ROM.
   1033  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
   1034  */
   1035 static int
   1036 iwn_init_otprom(struct iwn_softc *sc)
   1037 {
   1038 	uint16_t prev = 0, base, next;
   1039 	int count, error;
   1040 
   1041 	/* Wait for clock stabilization before accessing prph. */
   1042 	if ((error = iwn_clock_wait(sc)) != 0)
   1043 		return error;
   1044 
   1045 	if ((error = iwn_nic_lock(sc)) != 0)
   1046 		return error;
   1047 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1048 	DELAY(5);
   1049 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1050 	iwn_nic_unlock(sc);
   1051 
   1052 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
   1053 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
   1054 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
   1055 		    IWN_RESET_LINK_PWR_MGMT_DIS);
   1056 	}
   1057 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
   1058 	/* Clear ECC status. */
   1059 	IWN_SETBITS(sc, IWN_OTP_GP,
   1060 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
   1061 
   1062 	/*
   1063 	 * Find the block before last block (contains the EEPROM image)
   1064 	 * for HW without OTP shadow RAM.
   1065 	 */
   1066 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   1067 		/* Switch to absolute addressing mode. */
   1068 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
   1069 		base = 0;
   1070 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
   1071 			error = iwn_read_prom_data(sc, base, &next, 2);
   1072 			if (error != 0)
   1073 				return error;
   1074 			if (next == 0)	/* End of linked-list. */
   1075 				break;
   1076 			prev = base;
   1077 			base = le16toh(next);
   1078 		}
   1079 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1080 			return EIO;
   1081 		/* Skip "next" word. */
   1082 		sc->prom_base = prev + 1;
   1083 	}
   1084 	return 0;
   1085 }
   1086 
   1087 static int
   1088 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1089 {
   1090 	uint8_t *out = data;
   1091 	uint32_t val, tmp;
   1092 	int ntries;
   1093 
   1094 	addr += sc->prom_base;
   1095 	for (; count > 0; count -= 2, addr++) {
   1096 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1097 		for (ntries = 0; ntries < 10; ntries++) {
   1098 			val = IWN_READ(sc, IWN_EEPROM);
   1099 			if (val & IWN_EEPROM_READ_VALID)
   1100 				break;
   1101 			DELAY(5);
   1102 		}
   1103 		if (ntries == 10) {
   1104 			aprint_error_dev(sc->sc_dev,
   1105 			    "timeout reading ROM at 0x%x\n", addr);
   1106 			return ETIMEDOUT;
   1107 		}
   1108 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1109 			/* OTPROM, check for ECC errors. */
   1110 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1111 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1112 				aprint_error_dev(sc->sc_dev,
   1113 				    "OTPROM ECC error at 0x%x\n", addr);
   1114 				return EIO;
   1115 			}
   1116 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1117 				/* Correctable ECC error, clear bit. */
   1118 				IWN_SETBITS(sc, IWN_OTP_GP,
   1119 				    IWN_OTP_GP_ECC_CORR_STTS);
   1120 			}
   1121 		}
   1122 		*out++ = val >> 16;
   1123 		if (count > 1)
   1124 			*out++ = val >> 24;
   1125 	}
   1126 	return 0;
   1127 }
   1128 
   1129 static int
   1130 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1131     bus_size_t size, bus_size_t alignment)
   1132 {
   1133 	int nsegs, error;
   1134 
   1135 	dma->tag = tag;
   1136 	dma->size = size;
   1137 
   1138 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1139 	    &dma->map);
   1140 	if (error != 0)
   1141 		goto fail;
   1142 
   1143 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1144 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1145 	if (error != 0)
   1146 		goto fail;
   1147 
   1148 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1149 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1150 	if (error != 0)
   1151 		goto fail;
   1152 
   1153 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1154 	    BUS_DMA_NOWAIT);
   1155 	if (error != 0)
   1156 		goto fail;
   1157 
   1158 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1159 	memset(dma->vaddr, 0, size);
   1160 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1161 
   1162 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1163 	if (kvap != NULL)
   1164 		*kvap = dma->vaddr;
   1165 
   1166 	return 0;
   1167 
   1168 fail:	iwn_dma_contig_free(dma);
   1169 	return error;
   1170 }
   1171 
   1172 static void
   1173 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1174 {
   1175 	if (dma->map != NULL) {
   1176 		if (dma->vaddr != NULL) {
   1177 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1178 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1179 			bus_dmamap_unload(dma->tag, dma->map);
   1180 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1181 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1182 			dma->vaddr = NULL;
   1183 		}
   1184 		bus_dmamap_destroy(dma->tag, dma->map);
   1185 		dma->map = NULL;
   1186 	}
   1187 }
   1188 
   1189 static int
   1190 iwn_alloc_sched(struct iwn_softc *sc)
   1191 {
   1192 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1193 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1194 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024);
   1195 }
   1196 
   1197 static void
   1198 iwn_free_sched(struct iwn_softc *sc)
   1199 {
   1200 	iwn_dma_contig_free(&sc->sched_dma);
   1201 }
   1202 
   1203 static int
   1204 iwn_alloc_kw(struct iwn_softc *sc)
   1205 {
   1206 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1207 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1208 	    4096);
   1209 }
   1210 
   1211 static void
   1212 iwn_free_kw(struct iwn_softc *sc)
   1213 {
   1214 	iwn_dma_contig_free(&sc->kw_dma);
   1215 }
   1216 
   1217 static int
   1218 iwn_alloc_ict(struct iwn_softc *sc)
   1219 {
   1220 	/* ICT table must be aligned on a 4KB boundary. */
   1221 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1222 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1223 }
   1224 
   1225 static void
   1226 iwn_free_ict(struct iwn_softc *sc)
   1227 {
   1228 	iwn_dma_contig_free(&sc->ict_dma);
   1229 }
   1230 
   1231 static int
   1232 iwn_alloc_fwmem(struct iwn_softc *sc)
   1233 {
   1234 	/* Must be aligned on a 16-byte boundary. */
   1235 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1236 	    sc->sc_hal->fwsz, 16);
   1237 }
   1238 
   1239 static void
   1240 iwn_free_fwmem(struct iwn_softc *sc)
   1241 {
   1242 	iwn_dma_contig_free(&sc->fw_dma);
   1243 }
   1244 
   1245 static int
   1246 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1247 {
   1248 	bus_size_t size;
   1249 	int i, error;
   1250 
   1251 	ring->cur = 0;
   1252 
   1253 	/* Allocate RX descriptors (256-byte aligned.) */
   1254 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1255 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1256 	    (void **)&ring->desc, size, 256);
   1257 	if (error != 0) {
   1258 		aprint_error_dev(sc->sc_dev,
   1259 		    "could not allocate RX ring DMA memory\n");
   1260 		goto fail;
   1261 	}
   1262 
   1263 	/* Allocate RX status area (16-byte aligned.) */
   1264 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1265 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1266 	if (error != 0) {
   1267 		aprint_error_dev(sc->sc_dev,
   1268 		    "could not allocate RX status DMA memory\n");
   1269 		goto fail;
   1270 	}
   1271 
   1272 	/*
   1273 	 * Allocate and map RX buffers.
   1274 	 */
   1275 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1276 		struct iwn_rx_data *data = &ring->data[i];
   1277 
   1278 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1279 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1280 		    &data->map);
   1281 		if (error != 0) {
   1282 			aprint_error_dev(sc->sc_dev,
   1283 			    "could not create RX buf DMA map\n");
   1284 			goto fail;
   1285 		}
   1286 
   1287 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1288 		if (data->m == NULL) {
   1289 			aprint_error_dev(sc->sc_dev,
   1290 			    "could not allocate RX mbuf\n");
   1291 			error = ENOBUFS;
   1292 			goto fail;
   1293 		}
   1294 
   1295 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1296 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1297 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1298 		if (error != 0) {
   1299 			aprint_error_dev(sc->sc_dev,
   1300 			    "can't not map mbuf (error %d)\n", error);
   1301 			goto fail;
   1302 		}
   1303 
   1304 		/* Set physical address of RX buffer (256-byte aligned.) */
   1305 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1306 	}
   1307 
   1308 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1309 	    BUS_DMASYNC_PREWRITE);
   1310 
   1311 	return 0;
   1312 
   1313 fail:	iwn_free_rx_ring(sc, ring);
   1314 	return error;
   1315 }
   1316 
   1317 static void
   1318 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1319 {
   1320 	int ntries;
   1321 
   1322 	if (iwn_nic_lock(sc) == 0) {
   1323 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1324 		for (ntries = 0; ntries < 1000; ntries++) {
   1325 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1326 			    IWN_FH_RX_STATUS_IDLE)
   1327 				break;
   1328 			DELAY(10);
   1329 		}
   1330 		iwn_nic_unlock(sc);
   1331 	}
   1332 	ring->cur = 0;
   1333 	sc->last_rx_valid = 0;
   1334 }
   1335 
   1336 static void
   1337 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1338 {
   1339 	int i;
   1340 
   1341 	iwn_dma_contig_free(&ring->desc_dma);
   1342 	iwn_dma_contig_free(&ring->stat_dma);
   1343 
   1344 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1345 		struct iwn_rx_data *data = &ring->data[i];
   1346 
   1347 		if (data->m != NULL) {
   1348 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1349 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1350 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1351 			m_freem(data->m);
   1352 		}
   1353 		if (data->map != NULL)
   1354 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1355 	}
   1356 }
   1357 
   1358 static int
   1359 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1360 {
   1361 	bus_addr_t paddr;
   1362 	bus_size_t size;
   1363 	int i, error;
   1364 
   1365 	ring->qid = qid;
   1366 	ring->queued = 0;
   1367 	ring->cur = 0;
   1368 
   1369 	/* Allocate TX descriptors (256-byte aligned.) */
   1370 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1371 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1372 	    (void **)&ring->desc, size, 256);
   1373 	if (error != 0) {
   1374 		aprint_error_dev(sc->sc_dev,
   1375 		    "could not allocate TX ring DMA memory\n");
   1376 		goto fail;
   1377 	}
   1378 	/*
   1379 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1380 	 * to allocate commands space for other rings.
   1381 	 * XXX Do we really need to allocate descriptors for other rings?
   1382 	 */
   1383 	if (qid > 4)
   1384 		return 0;
   1385 
   1386 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1387 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1388 	    (void **)&ring->cmd, size, 4);
   1389 	if (error != 0) {
   1390 		aprint_error_dev(sc->sc_dev,
   1391 		    "could not allocate TX cmd DMA memory\n");
   1392 		goto fail;
   1393 	}
   1394 
   1395 	paddr = ring->cmd_dma.paddr;
   1396 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1397 		struct iwn_tx_data *data = &ring->data[i];
   1398 
   1399 		data->cmd_paddr = paddr;
   1400 		data->scratch_paddr = paddr + 12;
   1401 		paddr += sizeof (struct iwn_tx_cmd);
   1402 
   1403 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1404 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1405 		    &data->map);
   1406 		if (error != 0) {
   1407 			aprint_error_dev(sc->sc_dev,
   1408 			    "could not create TX buf DMA map\n");
   1409 			goto fail;
   1410 		}
   1411 	}
   1412 	return 0;
   1413 
   1414 fail:	iwn_free_tx_ring(sc, ring);
   1415 	return error;
   1416 }
   1417 
   1418 static void
   1419 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1420 {
   1421 	int i;
   1422 
   1423 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1424 		struct iwn_tx_data *data = &ring->data[i];
   1425 
   1426 		if (data->m != NULL) {
   1427 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1428 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1429 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1430 			m_freem(data->m);
   1431 			data->m = NULL;
   1432 		}
   1433 	}
   1434 	/* Clear TX descriptors. */
   1435 	memset(ring->desc, 0, ring->desc_dma.size);
   1436 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1437 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1438 	sc->qfullmsk &= ~(1 << ring->qid);
   1439 	ring->queued = 0;
   1440 	ring->cur = 0;
   1441 }
   1442 
   1443 static void
   1444 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1445 {
   1446 	int i;
   1447 
   1448 	iwn_dma_contig_free(&ring->desc_dma);
   1449 	iwn_dma_contig_free(&ring->cmd_dma);
   1450 
   1451 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1452 		struct iwn_tx_data *data = &ring->data[i];
   1453 
   1454 		if (data->m != NULL) {
   1455 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1456 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1457 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1458 			m_freem(data->m);
   1459 		}
   1460 		if (data->map != NULL)
   1461 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1462 	}
   1463 }
   1464 
   1465 static void
   1466 iwn5000_ict_reset(struct iwn_softc *sc)
   1467 {
   1468 	/* Disable interrupts. */
   1469 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1470 
   1471 	/* Reset ICT table. */
   1472 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1473 	sc->ict_cur = 0;
   1474 
   1475 	/* Set physical address of ICT table (4KB aligned.) */
   1476 	DPRINTF(("enabling ICT\n"));
   1477 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1478 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1479 
   1480 	/* Enable periodic RX interrupt. */
   1481 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1482 	/* Switch to ICT interrupt mode in driver. */
   1483 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1484 
   1485 	/* Re-enable interrupts. */
   1486 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1487 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1488 }
   1489 
   1490 static int
   1491 iwn_read_eeprom(struct iwn_softc *sc)
   1492 {
   1493 	const struct iwn_hal *hal = sc->sc_hal;
   1494 	struct ieee80211com *ic = &sc->sc_ic;
   1495 	uint16_t val;
   1496 	int error;
   1497 
   1498 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1499 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1500 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1501 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1502 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1503 	    "OTPROM" : "EEPROM"));
   1504 
   1505 	/* Adapter has to be powered on for EEPROM access to work. */
   1506 	if ((error = iwn_apm_init(sc)) != 0) {
   1507 		aprint_error_dev(sc->sc_dev,
   1508 		    "could not power ON adapter\n");
   1509 		return error;
   1510 	}
   1511 
   1512 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1513 		aprint_error_dev(sc->sc_dev,
   1514 		    "bad ROM signature\n");
   1515 		return EIO;
   1516 	}
   1517 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1518 		aprint_error_dev(sc->sc_dev,
   1519 		    "could not lock ROM (error=%d)\n", error);
   1520 		return error;
   1521 	}
   1522 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1523 		if ((error = iwn_init_otprom(sc)) != 0) {
   1524 			aprint_error_dev(sc->sc_dev,
   1525 			    "could not initialize OTPROM\n");
   1526 			return error;
   1527 		}
   1528 	}
   1529 
   1530 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1531 	sc->rfcfg = le16toh(val);
   1532 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1533 
   1534 	/* Read MAC address. */
   1535 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1536 
   1537 	/* Read adapter-specific information from EEPROM. */
   1538 	hal->read_eeprom(sc);
   1539 
   1540 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1541 
   1542 	iwn_eeprom_unlock(sc);
   1543 	return 0;
   1544 }
   1545 
   1546 static void
   1547 iwn4965_read_eeprom(struct iwn_softc *sc)
   1548 {
   1549 	uint32_t addr;
   1550 	uint16_t val;
   1551 	int i;
   1552 
   1553 	/* Read regulatory domain (4 ASCII characters.) */
   1554 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1555 
   1556 	/* Read the list of authorized channels (20MHz ones only.) */
   1557 	for (i = 0; i < 5; i++) {
   1558 		addr = iwn4965_regulatory_bands[i];
   1559 		iwn_read_eeprom_channels(sc, i, addr);
   1560 	}
   1561 
   1562 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1563 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1564 	sc->maxpwr2GHz = val & 0xff;
   1565 	sc->maxpwr5GHz = val >> 8;
   1566 	/* Check that EEPROM values are within valid range. */
   1567 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1568 		sc->maxpwr5GHz = 38;
   1569 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1570 		sc->maxpwr2GHz = 38;
   1571 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1572 
   1573 	/* Read samples for each TX power group. */
   1574 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1575 	    sizeof sc->bands);
   1576 
   1577 	/* Read voltage at which samples were taken. */
   1578 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1579 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1580 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1581 
   1582 #ifdef IWN_DEBUG
   1583 	/* Print samples. */
   1584 	if (iwn_debug > 0) {
   1585 		for (i = 0; i < IWN_NBANDS; i++)
   1586 			iwn4965_print_power_group(sc, i);
   1587 	}
   1588 #endif
   1589 }
   1590 
   1591 #ifdef IWN_DEBUG
   1592 static void
   1593 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1594 {
   1595 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1596 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1597 	int j, c;
   1598 
   1599 	aprint_normal("===band %d===\n", i);
   1600 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1601 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1602 	for (c = 0; c < 2; c++) {
   1603 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1604 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1605 			    "power=%d pa_det=%d\n", c, j,
   1606 			    chans[0].samples[c][j].temp,
   1607 			    chans[0].samples[c][j].gain,
   1608 			    chans[0].samples[c][j].power,
   1609 			    chans[0].samples[c][j].pa_det);
   1610 		}
   1611 	}
   1612 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1613 	for (c = 0; c < 2; c++) {
   1614 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1615 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1616 			    "power=%d pa_det=%d\n", c, j,
   1617 			    chans[1].samples[c][j].temp,
   1618 			    chans[1].samples[c][j].gain,
   1619 			    chans[1].samples[c][j].power,
   1620 			    chans[1].samples[c][j].pa_det);
   1621 		}
   1622 	}
   1623 }
   1624 #endif
   1625 
   1626 static void
   1627 iwn5000_read_eeprom(struct iwn_softc *sc)
   1628 {
   1629 	struct iwn5000_eeprom_calib_hdr hdr;
   1630 	int32_t temp, volt;
   1631 	uint32_t base, addr;
   1632 	uint16_t val;
   1633 	int i;
   1634 
   1635 	/* Read regulatory domain (4 ASCII characters.) */
   1636 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1637 	base = le16toh(val);
   1638 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1639 	    sc->eeprom_domain, 4);
   1640 
   1641 	/* Read the list of authorized channels (20MHz ones only.) */
   1642 	for (i = 0; i < 5; i++) {
   1643 		addr = base + iwn5000_regulatory_bands[i];
   1644 		iwn_read_eeprom_channels(sc, i, addr);
   1645 	}
   1646 
   1647 	/* Read enhanced TX power information for 6000 Series. */
   1648 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1649 		iwn_read_eeprom_enhinfo(sc);
   1650 
   1651 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1652 	base = le16toh(val);
   1653 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1654 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1655 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1656 	sc->calib_ver = hdr.version;
   1657 
   1658 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1659 		/* Compute temperature offset. */
   1660 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1661 		temp = le16toh(val);
   1662 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1663 		volt = le16toh(val);
   1664 		sc->temp_off = temp - (volt / -5);
   1665 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1666 		    temp, volt, sc->temp_off));
   1667 	} else {
   1668 		/* Read crystal calibration. */
   1669 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1670 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1671 		DPRINTF(("crystal calibration 0x%08x\n",
   1672 		    le32toh(sc->eeprom_crystal)));
   1673 	}
   1674 }
   1675 
   1676 static void
   1677 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1678 {
   1679 	struct ieee80211com *ic = &sc->sc_ic;
   1680 	const struct iwn_chan_band *band = &iwn_bands[n];
   1681 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1682 	uint8_t chan;
   1683 	int i;
   1684 
   1685 	iwn_read_prom_data(sc, addr, channels,
   1686 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1687 
   1688 	for (i = 0; i < band->nchan; i++) {
   1689 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1690 			continue;
   1691 
   1692 		chan = band->chan[i];
   1693 
   1694 		if (n == 0) {	/* 2GHz band */
   1695 			ic->ic_channels[chan].ic_freq =
   1696 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1697 			ic->ic_channels[chan].ic_flags =
   1698 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1699 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1700 
   1701 		} else {	/* 5GHz band */
   1702 			/*
   1703 			 * Some adapters support channels 7, 8, 11 and 12
   1704 			 * both in the 2GHz and 4.9GHz bands.
   1705 			 * Because of limitations in our net80211 layer,
   1706 			 * we don't support them in the 4.9GHz band.
   1707 			 */
   1708 			if (chan <= 14)
   1709 				continue;
   1710 
   1711 			ic->ic_channels[chan].ic_freq =
   1712 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1713 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1714 			/* We have at least one valid 5GHz channel. */
   1715 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1716 		}
   1717 
   1718 		/* Is active scan allowed on this channel? */
   1719 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1720 			ic->ic_channels[chan].ic_flags |=
   1721 			    IEEE80211_CHAN_PASSIVE;
   1722 		}
   1723 
   1724 		/* Save maximum allowed TX power for this channel. */
   1725 		sc->maxpwr[chan] = channels[i].maxpwr;
   1726 
   1727 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1728 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1729 	}
   1730 }
   1731 
   1732 static void
   1733 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1734 {
   1735 	struct iwn_eeprom_enhinfo enhinfo[35];
   1736 	uint16_t val, base;
   1737 	int8_t maxpwr;
   1738 	int i;
   1739 
   1740 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1741 	base = le16toh(val);
   1742 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1743 	    enhinfo, sizeof enhinfo);
   1744 
   1745 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1746 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1747 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
   1748 			continue;	/* Skip invalid entries. */
   1749 
   1750 		maxpwr = 0;
   1751 		if (sc->txchainmask & IWN_ANT_A)
   1752 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1753 		if (sc->txchainmask & IWN_ANT_B)
   1754 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1755 		if (sc->txchainmask & IWN_ANT_C)
   1756 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1757 		if (sc->ntxchains == 2)
   1758 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1759 		else if (sc->ntxchains == 3)
   1760 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1761 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1762 
   1763 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1764 		sc->enh_maxpwr[i] = maxpwr;
   1765 	}
   1766 }
   1767 
   1768 static struct ieee80211_node *
   1769 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1770 {
   1771 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1772 }
   1773 
   1774 static void
   1775 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1776 {
   1777 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1778 	struct iwn_node *wn = (void *)ni;
   1779 	uint8_t rate;
   1780 	int ridx, i;
   1781 
   1782 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1783 	/* Start at lowest available bit-rate, AMRR will raise. */
   1784 	ni->ni_txrate = 0;
   1785 
   1786 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1787 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1788 		/* Map 802.11 rate to HW rate index. */
   1789 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1790 			if (iwn_rates[ridx].rate == rate)
   1791 				break;
   1792 		wn->ridx[i] = ridx;
   1793 	}
   1794 }
   1795 
   1796 static int
   1797 iwn_media_change(struct ifnet *ifp)
   1798 {
   1799 	struct iwn_softc *sc = ifp->if_softc;
   1800 	struct ieee80211com *ic = &sc->sc_ic;
   1801 	uint8_t rate, ridx;
   1802 	int error;
   1803 
   1804 	error = ieee80211_media_change(ifp);
   1805 	if (error != ENETRESET)
   1806 		return error;
   1807 
   1808 	if (ic->ic_fixed_rate != -1) {
   1809 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1810 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1811 		/* Map 802.11 rate to HW rate index. */
   1812 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1813 			if (iwn_rates[ridx].rate == rate)
   1814 				break;
   1815 		sc->fixed_ridx = ridx;
   1816 	}
   1817 
   1818 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1819 	    (IFF_UP | IFF_RUNNING)) {
   1820 		iwn_stop(ifp, 0);
   1821 		error = iwn_init(ifp);
   1822 	}
   1823 	return error;
   1824 }
   1825 
   1826 static int
   1827 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1828 {
   1829 	struct ifnet *ifp = ic->ic_ifp;
   1830 	struct iwn_softc *sc = ifp->if_softc;
   1831 	int error;
   1832 
   1833 	callout_stop(&sc->calib_to);
   1834 
   1835 	switch (nstate) {
   1836 	case IEEE80211_S_SCAN:
   1837 		/* XXX Do not abort a running scan. */
   1838 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1839 			aprint_error_dev(sc->sc_dev,
   1840 			    "scan request while scanning ignored\n");
   1841 			break;
   1842 		}
   1843 
   1844 		/* XXX Not sure if call and flags are needed. */
   1845 		ieee80211_node_table_reset(&ic->ic_scan);
   1846 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1847 		sc->sc_flags |= IWN_FLAG_SCANNING;
   1848 
   1849 		/* Make the link LED blink while we're scanning. */
   1850 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1851 
   1852 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1853 			aprint_error_dev(sc->sc_dev,
   1854 			    "could not initiate scan\n");
   1855 			return error;
   1856 		}
   1857 		ic->ic_state = nstate;
   1858 		return 0;
   1859 
   1860 	case IEEE80211_S_ASSOC:
   1861 		if (ic->ic_state != IEEE80211_S_RUN)
   1862 			break;
   1863 		/* FALLTHROUGH */
   1864 	case IEEE80211_S_AUTH:
   1865 		/* Reset state to handle reassociations correctly. */
   1866 		sc->rxon.associd = 0;
   1867 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1868 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1869 
   1870 		if ((error = iwn_auth(sc)) != 0) {
   1871 			aprint_error_dev(sc->sc_dev,
   1872 			    "could not move to auth state\n");
   1873 			return error;
   1874 		}
   1875 		break;
   1876 
   1877 	case IEEE80211_S_RUN:
   1878 		if ((error = iwn_run(sc)) != 0) {
   1879 			aprint_error_dev(sc->sc_dev,
   1880 			    "could not move to run state\n");
   1881 			return error;
   1882 		}
   1883 		break;
   1884 
   1885 	case IEEE80211_S_INIT:
   1886 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1887 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1888 		break;
   1889 	}
   1890 
   1891 	return sc->sc_newstate(ic, nstate, arg);
   1892 }
   1893 
   1894 static void
   1895 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1896 {
   1897 	struct iwn_softc *sc = arg;
   1898 	struct iwn_node *wn = (struct iwn_node *)ni;
   1899 
   1900 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1901 }
   1902 
   1903 static void
   1904 iwn_calib_timeout(void *arg)
   1905 {
   1906 	struct iwn_softc *sc = arg;
   1907 	struct ieee80211com *ic = &sc->sc_ic;
   1908 	int s;
   1909 
   1910 	s = splnet();
   1911 	if (ic->ic_fixed_rate == -1) {
   1912 		if (ic->ic_opmode == IEEE80211_M_STA)
   1913 			iwn_iter_func(sc, ic->ic_bss);
   1914 		else
   1915 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1916 	}
   1917 	/* Force automatic TX power calibration every 60 secs. */
   1918 	if (++sc->calib_cnt >= 120) {
   1919 		uint32_t flags = 0;
   1920 
   1921 		DPRINTF(("sending request for statistics\n"));
   1922 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   1923 		    sizeof flags, 1);
   1924 		sc->calib_cnt = 0;
   1925 	}
   1926 	splx(s);
   1927 
   1928 	/* Automatic rate control triggered every 500ms. */
   1929 	callout_schedule(&sc->calib_to, hz/2);
   1930 }
   1931 
   1932 /*
   1933  * Process an RX_PHY firmware notification.  This is usually immediately
   1934  * followed by an MPDU_RX_DONE notification.
   1935  */
   1936 static void
   1937 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1938     struct iwn_rx_data *data)
   1939 {
   1940 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   1941 
   1942 	DPRINTFN(2, ("received PHY stats\n"));
   1943 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   1944 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   1945 
   1946 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   1947 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   1948 	sc->last_rx_valid = 1;
   1949 }
   1950 
   1951 /*
   1952  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   1953  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   1954  */
   1955 static void
   1956 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1957     struct iwn_rx_data *data)
   1958 {
   1959 	const struct iwn_hal *hal = sc->sc_hal;
   1960 	struct ieee80211com *ic = &sc->sc_ic;
   1961 	struct ifnet *ifp = ic->ic_ifp;
   1962 	struct iwn_rx_ring *ring = &sc->rxq;
   1963 	struct ieee80211_frame *wh;
   1964 	struct ieee80211_node *ni;
   1965 	struct mbuf *m, *m1;
   1966 	struct iwn_rx_stat *stat;
   1967 	char	*head;
   1968 	uint32_t flags;
   1969 	int error, len, rssi;
   1970 
   1971 	if (desc->type == IWN_MPDU_RX_DONE) {
   1972 		/* Check for prior RX_PHY notification. */
   1973 		if (!sc->last_rx_valid) {
   1974 			DPRINTF(("missing RX_PHY\n"));
   1975 			ifp->if_ierrors++;
   1976 			return;
   1977 		}
   1978 		sc->last_rx_valid = 0;
   1979 		stat = &sc->last_rx_stat;
   1980 	} else
   1981 		stat = (struct iwn_rx_stat *)(desc + 1);
   1982 
   1983 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   1984 	    BUS_DMASYNC_POSTREAD);
   1985 
   1986 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   1987 		aprint_error_dev(sc->sc_dev,
   1988 		    "invalid RX statistic header\n");
   1989 		ifp->if_ierrors++;
   1990 		return;
   1991 	}
   1992 	if (desc->type == IWN_MPDU_RX_DONE) {
   1993 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   1994 		head = (char *)(mpdu + 1);
   1995 		len = le16toh(mpdu->len);
   1996 	} else {
   1997 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   1998 		len = le16toh(stat->len);
   1999 	}
   2000 
   2001 	flags = le32toh(*(uint32_t *)(head + len));
   2002 
   2003 	/* Discard frames with a bad FCS early. */
   2004 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   2005 		DPRINTFN(2, ("RX flags error %x\n", flags));
   2006 		ifp->if_ierrors++;
   2007 		return;
   2008 	}
   2009 	/* Discard frames that are too short. */
   2010 	if (len < sizeof (*wh)) {
   2011 		DPRINTF(("frame too short: %d\n", len));
   2012 		ic->ic_stats.is_rx_tooshort++;
   2013 		ifp->if_ierrors++;
   2014 		return;
   2015 	}
   2016 
   2017 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   2018 	if (m1 == NULL) {
   2019 		ic->ic_stats.is_rx_nobuf++;
   2020 		ifp->if_ierrors++;
   2021 		return;
   2022 	}
   2023 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2024 
   2025 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   2026 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   2027 	if (error != 0) {
   2028 		m_freem(m1);
   2029 
   2030 		/* Try to reload the old mbuf. */
   2031 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   2032 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   2033 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   2034 		if (error != 0) {
   2035 			panic("%s: could not load old RX mbuf",
   2036 			    device_xname(sc->sc_dev));
   2037 		}
   2038 		/* Physical address may have changed. */
   2039 		ring->desc[ring->cur] =
   2040 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   2041 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2042 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2043 		    BUS_DMASYNC_PREWRITE);
   2044 		ifp->if_ierrors++;
   2045 		return;
   2046 	}
   2047 
   2048 	m = data->m;
   2049 	data->m = m1;
   2050 	/* Update RX descriptor. */
   2051 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   2052 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2053 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2054 	    BUS_DMASYNC_PREWRITE);
   2055 
   2056 	/* Finalize mbuf. */
   2057 	m->m_pkthdr.rcvif = ifp;
   2058 	m->m_data = head;
   2059 	m->m_pkthdr.len = m->m_len = len;
   2060 
   2061 	/* Grab a reference to the source node. */
   2062 	wh = mtod(m, struct ieee80211_frame *);
   2063 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2064 
   2065 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2066 	/* NetBSD does decryption in ieee80211_input. */
   2067 
   2068 	rssi = hal->get_rssi(stat);
   2069 
   2070 	/* XXX Added for NetBSD: scans never stop without it */
   2071 	if (ic->ic_state == IEEE80211_S_SCAN)
   2072 		iwn_fix_channel(ic, m);
   2073 
   2074 	if (sc->sc_drvbpf != NULL) {
   2075 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2076 
   2077 		tap->wr_flags = 0;
   2078 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2079 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2080 		tap->wr_chan_freq =
   2081 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2082 		tap->wr_chan_flags =
   2083 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2084 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2085 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2086 		tap->wr_tsft = stat->tstamp;
   2087 		switch (stat->rate) {
   2088 		/* CCK rates. */
   2089 		case  10: tap->wr_rate =   2; break;
   2090 		case  20: tap->wr_rate =   4; break;
   2091 		case  55: tap->wr_rate =  11; break;
   2092 		case 110: tap->wr_rate =  22; break;
   2093 		/* OFDM rates. */
   2094 		case 0xd: tap->wr_rate =  12; break;
   2095 		case 0xf: tap->wr_rate =  18; break;
   2096 		case 0x5: tap->wr_rate =  24; break;
   2097 		case 0x7: tap->wr_rate =  36; break;
   2098 		case 0x9: tap->wr_rate =  48; break;
   2099 		case 0xb: tap->wr_rate =  72; break;
   2100 		case 0x1: tap->wr_rate =  96; break;
   2101 		case 0x3: tap->wr_rate = 108; break;
   2102 		/* Unknown rate: should not happen. */
   2103 		default:  tap->wr_rate =   0;
   2104 		}
   2105 
   2106 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   2107 	}
   2108 
   2109 	/* Send the frame to the 802.11 layer. */
   2110 	ieee80211_input(ic, m, ni, rssi, 0);
   2111 
   2112 	/* Node is no longer needed. */
   2113 	ieee80211_free_node(ni);
   2114 }
   2115 
   2116 #ifndef IEEE80211_NO_HT
   2117 /* Process an incoming Compressed BlockAck. */
   2118 static void
   2119 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2120     struct iwn_rx_data *data)
   2121 {
   2122 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2123 	struct iwn_tx_ring *txq;
   2124 
   2125 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2126 	    BUS_DMASYNC_POSTREAD);
   2127 
   2128 	txq = &sc->txq[le16toh(ba->qid)];
   2129 	/* XXX TBD */
   2130 }
   2131 #endif
   2132 
   2133 /*
   2134  * Process a CALIBRATION_RESULT notification sent by the initialization
   2135  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
   2136  */
   2137 static void
   2138 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2139     struct iwn_rx_data *data)
   2140 {
   2141 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2142 	int len, idx = -1;
   2143 
   2144 	/* Runtime firmware should not send such a notification. */
   2145 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2146 		return;
   2147 
   2148 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2149 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2150 	    BUS_DMASYNC_POSTREAD);
   2151 
   2152 	switch (calib->code) {
   2153 	case IWN5000_PHY_CALIB_DC:
   2154 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
   2155 		    sc->hw_type == IWN_HW_REV_TYPE_6050)
   2156 			idx = 0;
   2157 		break;
   2158 	case IWN5000_PHY_CALIB_LO:
   2159 		idx = 1;
   2160 		break;
   2161 	case IWN5000_PHY_CALIB_TX_IQ:
   2162 		idx = 2;
   2163 		break;
   2164 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2165 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2166 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2167 			idx = 3;
   2168 		break;
   2169 	case IWN5000_PHY_CALIB_BASE_BAND:
   2170 		idx = 4;
   2171 		break;
   2172 	}
   2173 	if (idx == -1)	/* Ignore other results. */
   2174 		return;
   2175 
   2176 	/* Save calibration result. */
   2177 	if (sc->calibcmd[idx].buf != NULL)
   2178 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2179 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2180 	if (sc->calibcmd[idx].buf == NULL) {
   2181 		DPRINTF(("not enough memory for calibration result %d\n",
   2182 		    calib->code));
   2183 		return;
   2184 	}
   2185 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2186 	    calib->code, len));
   2187 	sc->calibcmd[idx].len = len;
   2188 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2189 }
   2190 
   2191 /*
   2192  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2193  * The latter is sent by the firmware after each received beacon.
   2194  */
   2195 static void
   2196 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2197     struct iwn_rx_data *data)
   2198 {
   2199 	const struct iwn_hal *hal = sc->sc_hal;
   2200 	struct ieee80211com *ic = &sc->sc_ic;
   2201 	struct iwn_calib_state *calib = &sc->calib;
   2202 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2203 	int temp;
   2204 
   2205 	/* Ignore statistics received during a scan. */
   2206 	if (ic->ic_state != IEEE80211_S_RUN)
   2207 		return;
   2208 
   2209 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2210 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2211 
   2212 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2213 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2214 
   2215 	/* Test if temperature has changed. */
   2216 	if (stats->general.temp != sc->rawtemp) {
   2217 		/* Convert "raw" temperature to degC. */
   2218 		sc->rawtemp = stats->general.temp;
   2219 		temp = hal->get_temperature(sc);
   2220 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2221 
   2222 #ifndef SMALL_KERNEL
   2223 		/* Update temperature sensor. */
   2224 		sc->sc_sensor.value_cur = IWN_CTOMUK(temp);
   2225 		sc->sc_sensor.state = ENVSYS_SVALID;
   2226 #endif
   2227 
   2228 		/* Update TX power if need be (4965AGN only.) */
   2229 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2230 			iwn4965_power_calibration(sc, temp);
   2231 	}
   2232 
   2233 	if (desc->type != IWN_BEACON_STATISTICS)
   2234 		return;	/* Reply to a statistics request. */
   2235 
   2236 	sc->noise = iwn_get_noise(&stats->rx.general);
   2237 
   2238 	/* Test that RSSI and noise are present in stats report. */
   2239 	if (le32toh(stats->rx.general.flags) != 1) {
   2240 		DPRINTF(("received statistics without RSSI\n"));
   2241 		return;
   2242 	}
   2243 
   2244 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2245 		iwn_collect_noise(sc, &stats->rx.general);
   2246 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2247 		iwn_tune_sensitivity(sc, &stats->rx);
   2248 }
   2249 
   2250 /*
   2251  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2252  * and 5000 adapters have different incompatible TX status formats.
   2253  */
   2254 static void
   2255 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2256     struct iwn_rx_data *data)
   2257 {
   2258 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2259 
   2260 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2261 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2262 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2263 }
   2264 
   2265 static void
   2266 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2267     struct iwn_rx_data *data)
   2268 {
   2269 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2270 
   2271 #ifdef notyet
   2272 	/* Reset TX scheduler slot. */
   2273 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2274 #endif
   2275 
   2276 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2277 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2278 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2279 }
   2280 
   2281 /*
   2282  * Adapter-independent backend for TX_DONE firmware notifications.
   2283  */
   2284 static void
   2285 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2286     uint8_t status)
   2287 {
   2288 	struct ieee80211com *ic = &sc->sc_ic;
   2289 	struct ifnet *ifp = ic->ic_ifp;
   2290 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2291 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2292 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2293 
   2294 	/* Update rate control statistics. */
   2295 	wn->amn.amn_txcnt++;
   2296 	if (ackfailcnt > 0)
   2297 		wn->amn.amn_retrycnt++;
   2298 
   2299 	if (status != 1 && status != 2)
   2300 		ifp->if_oerrors++;
   2301 	else
   2302 		ifp->if_opackets++;
   2303 
   2304 	/* Unmap and free mbuf. */
   2305 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2306 	    BUS_DMASYNC_POSTWRITE);
   2307 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2308 	m_freem(data->m);
   2309 	data->m = NULL;
   2310 	ieee80211_free_node(data->ni);
   2311 	data->ni = NULL;
   2312 
   2313 	sc->sc_tx_timer = 0;
   2314 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2315 		sc->qfullmsk &= ~(1 << ring->qid);
   2316 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2317 			ifp->if_flags &= ~IFF_OACTIVE;
   2318 			(*ifp->if_start)(ifp);
   2319 		}
   2320 	}
   2321 }
   2322 
   2323 /*
   2324  * Process a "command done" firmware notification.  This is where we wakeup
   2325  * processes waiting for a synchronous command completion.
   2326  */
   2327 static void
   2328 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2329 {
   2330 	struct iwn_tx_ring *ring = &sc->txq[4];
   2331 	struct iwn_tx_data *data;
   2332 
   2333 	if ((desc->qid & 0xf) != 4)
   2334 		return;	/* Not a command ack. */
   2335 
   2336 	data = &ring->data[desc->idx];
   2337 
   2338 	/* If the command was mapped in an mbuf, free it. */
   2339 	if (data->m != NULL) {
   2340 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2341 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2342 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2343 		m_freem(data->m);
   2344 		data->m = NULL;
   2345 	}
   2346 	wakeup(&ring->desc[desc->idx]);
   2347 }
   2348 
   2349 /*
   2350  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2351  */
   2352 static void
   2353 iwn_notif_intr(struct iwn_softc *sc)
   2354 {
   2355 	struct ieee80211com *ic = &sc->sc_ic;
   2356 	struct ifnet *ifp = ic->ic_ifp;
   2357 	uint16_t hw;
   2358 
   2359 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2360 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2361 
   2362 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2363 	while (sc->rxq.cur != hw) {
   2364 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2365 		struct iwn_rx_desc *desc;
   2366 
   2367 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2368 		    BUS_DMASYNC_POSTREAD);
   2369 		desc = mtod(data->m, struct iwn_rx_desc *);
   2370 
   2371 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2372 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2373 
   2374 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2375 			iwn_cmd_done(sc, desc);
   2376 
   2377 		switch (desc->type) {
   2378 		case IWN_RX_PHY:
   2379 			iwn_rx_phy(sc, desc, data);
   2380 			break;
   2381 
   2382 		case IWN_RX_DONE:		/* 4965AGN only. */
   2383 		case IWN_MPDU_RX_DONE:
   2384 			/* An 802.11 frame has been received. */
   2385 			iwn_rx_done(sc, desc, data);
   2386 			break;
   2387 #ifndef IEEE80211_NO_HT
   2388 		case IWN_RX_COMPRESSED_BA:
   2389 			/* A Compressed BlockAck has been received. */
   2390 			iwn_rx_compressed_ba(sc, desc, data);
   2391 			break;
   2392 #endif
   2393 		case IWN_TX_DONE:
   2394 			/* An 802.11 frame has been transmitted. */
   2395 			sc->sc_hal->tx_done(sc, desc, data);
   2396 			break;
   2397 
   2398 		case IWN_RX_STATISTICS:
   2399 		case IWN_BEACON_STATISTICS:
   2400 			iwn_rx_statistics(sc, desc, data);
   2401 			break;
   2402 
   2403 		case IWN_BEACON_MISSED:
   2404 		{
   2405 			struct iwn_beacon_missed *miss =
   2406 			    (struct iwn_beacon_missed *)(desc + 1);
   2407 
   2408 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2409 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2410 			/*
   2411 			 * If more than 5 consecutive beacons are missed,
   2412 			 * reinitialize the sensitivity state machine.
   2413 			 */
   2414 			DPRINTF(("beacons missed %d/%d\n",
   2415 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2416 			if (ic->ic_state == IEEE80211_S_RUN &&
   2417 			    le32toh(miss->consecutive) > 5)
   2418 				(void)iwn_init_sensitivity(sc);
   2419 			break;
   2420 		}
   2421 		case IWN_UC_READY:
   2422 		{
   2423 			struct iwn_ucode_info *uc =
   2424 			    (struct iwn_ucode_info *)(desc + 1);
   2425 
   2426 			/* The microcontroller is ready. */
   2427 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2428 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2429 			DPRINTF(("microcode alive notification version=%d.%d "
   2430 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2431 			    uc->subtype, le32toh(uc->valid)));
   2432 
   2433 			if (le32toh(uc->valid) != 1) {
   2434 				aprint_error_dev(sc->sc_dev,
   2435 				    "microcontroller initialization "
   2436 				    "failed\n");
   2437 				break;
   2438 			}
   2439 			if (uc->subtype == IWN_UCODE_INIT) {
   2440 				/* Save microcontroller report. */
   2441 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2442 			}
   2443 			/* Save the address of the error log in SRAM. */
   2444 			sc->errptr = le32toh(uc->errptr);
   2445 			break;
   2446 		}
   2447 		case IWN_STATE_CHANGED:
   2448 		{
   2449 			uint32_t *status = (uint32_t *)(desc + 1);
   2450 
   2451 			/* Enabled/disabled notification. */
   2452 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2453 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2454 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2455 
   2456 			if (le32toh(*status) & 1) {
   2457 				/* The radio button has to be pushed. */
   2458 				aprint_error_dev(sc->sc_dev,
   2459 				    "Radio transmitter is off\n");
   2460 				/* Turn the interface down. */
   2461 				ifp->if_flags &= ~IFF_UP;
   2462 				iwn_stop(ifp, 1);
   2463 				return;	/* No further processing. */
   2464 			}
   2465 			break;
   2466 		}
   2467 		case IWN_START_SCAN:
   2468 		{
   2469 			struct iwn_start_scan *scan =
   2470 			    (struct iwn_start_scan *)(desc + 1);
   2471 
   2472 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2473 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2474 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2475 			    scan->chan, le32toh(scan->status)));
   2476 
   2477 			/* Fix current channel. */
   2478 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2479 			break;
   2480 		}
   2481 		case IWN_STOP_SCAN:
   2482 		{
   2483 			struct iwn_stop_scan *scan =
   2484 			    (struct iwn_stop_scan *)(desc + 1);
   2485 
   2486 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2487 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2488 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2489 			    scan->nchan, scan->status, scan->chan));
   2490 
   2491 			if (scan->status == 1 && scan->chan <= 14 &&
   2492 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2493 				/*
   2494 				 * We just finished scanning 2GHz channels,
   2495 				 * start scanning 5GHz ones.
   2496 				 */
   2497 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2498 					break;
   2499 			}
   2500 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2501 			ieee80211_end_scan(ic);
   2502 			break;
   2503 		}
   2504 		case IWN5000_CALIBRATION_RESULT:
   2505 			iwn5000_rx_calib_results(sc, desc, data);
   2506 			break;
   2507 
   2508 		case IWN5000_CALIBRATION_DONE:
   2509 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2510 			wakeup(sc);
   2511 			break;
   2512 		}
   2513 
   2514 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2515 	}
   2516 
   2517 	/* Tell the firmware what we have processed. */
   2518 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2519 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2520 }
   2521 
   2522 /*
   2523  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2524  * from power-down sleep mode.
   2525  */
   2526 static void
   2527 iwn_wakeup_intr(struct iwn_softc *sc)
   2528 {
   2529 	int qid;
   2530 
   2531 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2532 
   2533 	/* Wakeup RX and TX rings. */
   2534 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2535 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
   2536 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2537 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2538 	}
   2539 }
   2540 
   2541 /*
   2542  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2543  * we can't debug the firmware because it is neither open source nor free, it
   2544  * can help us to identify certain classes of problems.
   2545  */
   2546 static void
   2547 iwn_fatal_intr(struct iwn_softc *sc)
   2548 {
   2549 	const struct iwn_hal *hal = sc->sc_hal;
   2550 	struct iwn_fw_dump dump;
   2551 	int i;
   2552 
   2553 	/* Force a complete recalibration on next init. */
   2554 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2555 
   2556 	/* Check that the error log address is valid. */
   2557 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2558 	    sc->errptr + sizeof (dump) >
   2559 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
   2560 		aprint_error_dev(sc->sc_dev,
   2561 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2562 		return;
   2563 	}
   2564 	if (iwn_nic_lock(sc) != 0) {
   2565 		aprint_error_dev(sc->sc_dev,
   2566 		    "could not read firmware error log\n");
   2567 		return;
   2568 	}
   2569 	/* Read firmware error log from SRAM. */
   2570 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2571 	    sizeof (dump) / sizeof (uint32_t));
   2572 	iwn_nic_unlock(sc);
   2573 
   2574 	if (dump.valid == 0) {
   2575 		aprint_error_dev(sc->sc_dev,
   2576 		    "firmware error log is empty\n");
   2577 		return;
   2578 	}
   2579 	aprint_error("firmware error log:\n");
   2580 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2581 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2582 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2583 	    dump.id);
   2584 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2585 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2586 	aprint_error("  error data      = 0x%08X%08X\n",
   2587 	    dump.error_data[0], dump.error_data[1]);
   2588 	aprint_error("  branch link     = 0x%08X%08X\n",
   2589 	    dump.branch_link[0], dump.branch_link[1]);
   2590 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2591 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2592 	aprint_error("  time            = %u\n", dump.time[0]);
   2593 
   2594 	/* Dump driver status (TX and RX rings) while we're here. */
   2595 	aprint_error("driver status:\n");
   2596 	for (i = 0; i < hal->ntxqs; i++) {
   2597 		struct iwn_tx_ring *ring = &sc->txq[i];
   2598 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2599 		    i, ring->qid, ring->cur, ring->queued);
   2600 	}
   2601 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2602 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2603 }
   2604 
   2605 static int
   2606 iwn_intr(void *arg)
   2607 {
   2608 	struct iwn_softc *sc = arg;
   2609 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2610 	uint32_t r1, r2, tmp;
   2611 
   2612 	/* Disable interrupts. */
   2613 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2614 
   2615 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2616 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2617 		tmp = 0;
   2618 		while (sc->ict[sc->ict_cur] != 0) {
   2619 			tmp |= sc->ict[sc->ict_cur];
   2620 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2621 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2622 		}
   2623 		tmp = le32toh(tmp);
   2624 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2625 			tmp = 0;
   2626 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2627 			tmp |= 0x8000;
   2628 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2629 		r2 = 0;	/* Unused. */
   2630 	} else {
   2631 		r1 = IWN_READ(sc, IWN_INT);
   2632 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2633 			return 0;	/* Hardware gone! */
   2634 		r2 = IWN_READ(sc, IWN_FH_INT);
   2635 	}
   2636 	if (r1 == 0 && r2 == 0) {
   2637 		if (ifp->if_flags & IFF_UP)
   2638 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2639 		return 0;	/* Interrupt not for us. */
   2640 	}
   2641 
   2642 	/* Acknowledge interrupts. */
   2643 	IWN_WRITE(sc, IWN_INT, r1);
   2644 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2645 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2646 
   2647 	if (r1 & IWN_INT_RF_TOGGLED) {
   2648 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2649 		aprint_error_dev(sc->sc_dev,
   2650 		    "RF switch: radio %s\n",
   2651 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2652 	}
   2653 	if (r1 & IWN_INT_CT_REACHED) {
   2654 		aprint_error_dev(sc->sc_dev,
   2655 		    "critical temperature reached!\n");
   2656 	}
   2657 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2658 		aprint_error_dev(sc->sc_dev,
   2659 		    "fatal firmware error\n");
   2660 		/* Dump firmware error log and stop. */
   2661 		iwn_fatal_intr(sc);
   2662 		ifp->if_flags &= ~IFF_UP;
   2663 		iwn_stop(ifp, 1);
   2664 		return 1;
   2665 	}
   2666 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2667 	    (r2 & IWN_FH_INT_RX)) {
   2668 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2669 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2670 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2671 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2672 			    IWN_INT_PERIODIC_DIS);
   2673 			iwn_notif_intr(sc);
   2674 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2675 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2676 				    IWN_INT_PERIODIC_ENA);
   2677 			}
   2678 		} else
   2679 			iwn_notif_intr(sc);
   2680 	}
   2681 
   2682 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2683 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2684 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2685 		wakeup(sc);	/* FH DMA transfer completed. */
   2686 	}
   2687 
   2688 	if (r1 & IWN_INT_ALIVE)
   2689 		wakeup(sc);	/* Firmware is alive. */
   2690 
   2691 	if (r1 & IWN_INT_WAKEUP)
   2692 		iwn_wakeup_intr(sc);
   2693 
   2694 	/* Re-enable interrupts. */
   2695 	if (ifp->if_flags & IFF_UP)
   2696 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2697 
   2698 	return 1;
   2699 }
   2700 
   2701 /*
   2702  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2703  * 5000 adapters use a slightly different format.)
   2704  */
   2705 static void
   2706 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2707     uint16_t len)
   2708 {
   2709 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2710 
   2711 	*w = htole16(len + 8);
   2712 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2713 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2714 	    sizeof (uint16_t),
   2715 	    BUS_DMASYNC_PREWRITE);
   2716 	if (idx < IWN_SCHED_WINSZ) {
   2717 		*(w + IWN_TX_RING_COUNT) = *w;
   2718 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2719 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2720 		    (char *)(void *)sc->sched_dma.vaddr,
   2721 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2722 	}
   2723 }
   2724 
   2725 static void
   2726 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2727     uint16_t len)
   2728 {
   2729 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2730 
   2731 	*w = htole16(id << 12 | (len + 8));
   2732 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2733 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2734 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2735 	if (idx < IWN_SCHED_WINSZ) {
   2736 		*(w + IWN_TX_RING_COUNT) = *w;
   2737 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2738 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2739 		    (char *)(void *)sc->sched_dma.vaddr,
   2740 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2741 	}
   2742 }
   2743 
   2744 #ifdef notyet
   2745 static void
   2746 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2747 {
   2748 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2749 
   2750 	*w = (*w & htole16(0xf000)) | htole16(1);
   2751 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2752 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2753 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2754 	if (idx < IWN_SCHED_WINSZ) {
   2755 		*(w + IWN_TX_RING_COUNT) = *w;
   2756 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2757 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2758 		    (char *)(void *)sc->sched_dma.vaddr,
   2759 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2760 	}
   2761 }
   2762 #endif
   2763 
   2764 static int
   2765 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2766 {
   2767 	const struct iwn_hal *hal = sc->sc_hal;
   2768 	struct ieee80211com *ic = &sc->sc_ic;
   2769 	struct iwn_node *wn = (void *)ni;
   2770 	struct iwn_tx_ring *ring;
   2771 	struct iwn_tx_desc *desc;
   2772 	struct iwn_tx_data *data;
   2773 	struct iwn_tx_cmd *cmd;
   2774 	struct iwn_cmd_data *tx;
   2775 	const struct iwn_rate *rinfo;
   2776 	struct ieee80211_frame *wh;
   2777 	struct ieee80211_key *k = NULL;
   2778 	struct mbuf *m1;
   2779 	uint32_t flags;
   2780 	u_int hdrlen;
   2781 	bus_dma_segment_t *seg;
   2782 	uint8_t tid, ridx, txant, type;
   2783 	int i, totlen, error, pad;
   2784 
   2785 	const struct chanAccParams *cap;
   2786 	int noack;
   2787 	int hdrlen2;
   2788 
   2789 	wh = mtod(m, struct ieee80211_frame *);
   2790 	hdrlen = ieee80211_anyhdrsize(wh);
   2791 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2792 
   2793 	hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
   2794 	    sizeof (struct ieee80211_qosframe) :
   2795 	    sizeof (struct ieee80211_frame);
   2796 
   2797 	if (hdrlen != hdrlen2)
   2798 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2799 		hdrlen, hdrlen2);
   2800 
   2801 	/* XXX OpenBSD sets a different tid when using QOS */
   2802 	tid = 0;
   2803 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   2804 		cap = &ic->ic_wme.wme_chanParams;
   2805 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2806 	}
   2807 	else
   2808 		noack = 0;
   2809 
   2810 	ring = &sc->txq[ac];
   2811 	desc = &ring->desc[ring->cur];
   2812 	data = &ring->data[ring->cur];
   2813 
   2814 	/* Choose a TX rate index. */
   2815 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2816 	    type != IEEE80211_FC0_TYPE_DATA) {
   2817 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2818 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2819 	} else if (ic->ic_fixed_rate != -1) {
   2820 		ridx = sc->fixed_ridx;
   2821 	} else
   2822 		ridx = wn->ridx[ni->ni_txrate];
   2823 	rinfo = &iwn_rates[ridx];
   2824 
   2825 	/* Encrypt the frame if need be. */
   2826 	/*
   2827 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   2828 	 * in order to match old code and other drivers. Tests with
   2829 	 * tcpdump indicates that the order is irrelevant, however,
   2830 	 * as bpf produces unencrypted data for both ordering choices.
   2831 	 */
   2832 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2833 		k = ieee80211_crypto_encap(ic, ni, m);
   2834 		if (k == NULL) {
   2835 			m_freem(m);
   2836 			return ENOBUFS;
   2837 		}
   2838 		/* Packet header may have moved, reset our local pointer. */
   2839 		wh = mtod(m, struct ieee80211_frame *);
   2840 	}
   2841 	totlen = m->m_pkthdr.len;
   2842 
   2843 	if (sc->sc_drvbpf != NULL) {
   2844 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2845 
   2846 		tap->wt_flags = 0;
   2847 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2848 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2849 		tap->wt_rate = rinfo->rate;
   2850 		tap->wt_hwqueue = ac;
   2851 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2852 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2853 
   2854 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   2855 	}
   2856 
   2857 	/* Prepare TX firmware command. */
   2858 	cmd = &ring->cmd[ring->cur];
   2859 	cmd->code = IWN_CMD_TX_DATA;
   2860 	cmd->flags = 0;
   2861 	cmd->qid = ring->qid;
   2862 	cmd->idx = ring->cur;
   2863 
   2864 	tx = (struct iwn_cmd_data *)cmd->data;
   2865 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2866 	tx->scratch = 0;	/* clear "scratch" area */
   2867 
   2868 	flags = 0;
   2869 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2870 		/* Unicast frame, check if an ACK is expected. */
   2871 		if (!noack)
   2872 			flags |= IWN_TX_NEED_ACK;
   2873 	}
   2874 
   2875 #ifdef notyet
   2876 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   2877 	if ((wh->i_fc[0] &
   2878 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   2879 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   2880 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   2881 #endif
   2882 
   2883 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   2884 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   2885 
   2886 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   2887 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2888 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   2889 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   2890 			flags |= IWN_TX_NEED_RTS;
   2891 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   2892 		    ridx >= IWN_RIDX_OFDM6) {
   2893 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   2894 				flags |= IWN_TX_NEED_CTS;
   2895 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   2896 				flags |= IWN_TX_NEED_RTS;
   2897 		}
   2898 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   2899 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   2900 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   2901 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   2902 				flags |= IWN_TX_NEED_PROTECTION;
   2903 			} else
   2904 				flags |= IWN_TX_FULL_TXOP;
   2905 		}
   2906 	}
   2907 
   2908 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2909 	    type != IEEE80211_FC0_TYPE_DATA)
   2910 		tx->id = hal->broadcast_id;
   2911 	else
   2912 		tx->id = wn->id;
   2913 
   2914 	if (type == IEEE80211_FC0_TYPE_MGT) {
   2915 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2916 
   2917 #ifndef IEEE80211_STA_ONLY
   2918 		/* Tell HW to set timestamp in probe responses. */
   2919 		/* XXX NetBSD rev 1.11 added probe requests here but */
   2920 		/* probe requests do not take timestamps (from Bergamini). */
   2921 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   2922 			flags |= IWN_TX_INSERT_TSTAMP;
   2923 #endif
   2924 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   2925 		/* changes here. These are not needed (from Bergamini). */
   2926 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   2927 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   2928 			tx->timeout = htole16(3);
   2929 		else
   2930 			tx->timeout = htole16(2);
   2931 	} else
   2932 		tx->timeout = htole16(0);
   2933 
   2934 	if (hdrlen & 3) {
   2935 		/* First segment's length must be a multiple of 4. */
   2936 		flags |= IWN_TX_NEED_PADDING;
   2937 		pad = 4 - (hdrlen & 3);
   2938 	} else
   2939 		pad = 0;
   2940 
   2941 	tx->len = htole16(totlen);
   2942 	tx->tid = tid;
   2943 	tx->rts_ntries = 60;
   2944 	tx->data_ntries = 15;
   2945 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   2946 	tx->plcp = rinfo->plcp;
   2947 	tx->rflags = rinfo->flags;
   2948 	if (tx->id == hal->broadcast_id) {
   2949 		/* Group or management frame. */
   2950 		tx->linkq = 0;
   2951 		/* XXX Alternate between antenna A and B? */
   2952 		txant = IWN_LSB(sc->txchainmask);
   2953 		tx->rflags |= IWN_RFLAG_ANT(txant);
   2954 	} else {
   2955 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   2956 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   2957 	}
   2958 	/* Set physical address of "scratch area". */
   2959 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   2960 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   2961 
   2962 	/* Copy 802.11 header in TX command. */
   2963 	/* XXX NetBSD changed this in rev 1.20 */
   2964 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   2965 
   2966 	/* Trim 802.11 header. */
   2967 	m_adj(m, hdrlen);
   2968 	tx->security = 0;
   2969 	tx->flags = htole32(flags);
   2970 
   2971 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2972 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2973 	if (error != 0) {
   2974 		if (error != EFBIG) {
   2975 			aprint_error_dev(sc->sc_dev,
   2976 			    "can't map mbuf (error %d)\n", error);
   2977 			m_freem(m);
   2978 			return error;
   2979 		}
   2980 		/* Too many DMA segments, linearize mbuf. */
   2981 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   2982 		if (m1 == NULL) {
   2983 			m_freem(m);
   2984 			return ENOBUFS;
   2985 		}
   2986 		if (m->m_pkthdr.len > MHLEN) {
   2987 			MCLGET(m1, M_DONTWAIT);
   2988 			if (!(m1->m_flags & M_EXT)) {
   2989 				m_freem(m);
   2990 				m_freem(m1);
   2991 				return ENOBUFS;
   2992 			}
   2993 		}
   2994 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   2995 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   2996 		m_freem(m);
   2997 		m = m1;
   2998 
   2999 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3000 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3001 		if (error != 0) {
   3002 			aprint_error_dev(sc->sc_dev,
   3003 			    "can't map mbuf (error %d)\n", error);
   3004 			m_freem(m);
   3005 			return error;
   3006 		}
   3007 	}
   3008 
   3009 	data->m = m;
   3010 	data->ni = ni;
   3011 
   3012 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   3013 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   3014 
   3015 	/* Fill TX descriptor. */
   3016 	desc->nsegs = 1 + data->map->dm_nsegs;
   3017 	/* First DMA segment is used by the TX command. */
   3018 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   3019 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   3020 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   3021 	/* Other DMA segments are for data payload. */
   3022 	seg = data->map->dm_segs;
   3023 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   3024 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   3025 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   3026 		    seg->ds_len << 4);
   3027 		seg++;
   3028 	}
   3029 
   3030 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   3031 	    BUS_DMASYNC_PREWRITE);
   3032 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3033 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3034 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   3035 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3036 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3037 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3038 
   3039 #ifdef notyet
   3040 	/* Update TX scheduler. */
   3041 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   3042 #endif
   3043 
   3044 	/* Kick TX ring. */
   3045 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3046 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3047 
   3048 	/* Mark TX ring as full if we reach a certain threshold. */
   3049 	if (++ring->queued > IWN_TX_RING_HIMARK)
   3050 		sc->qfullmsk |= 1 << ring->qid;
   3051 
   3052 	return 0;
   3053 }
   3054 
   3055 static void
   3056 iwn_start(struct ifnet *ifp)
   3057 {
   3058 	struct iwn_softc *sc = ifp->if_softc;
   3059 	struct ieee80211com *ic = &sc->sc_ic;
   3060 	struct ieee80211_node *ni;
   3061 	struct ether_header *eh;
   3062 	struct mbuf *m;
   3063 	int ac;
   3064 
   3065 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3066 		return;
   3067 
   3068 	for (;;) {
   3069 		if (sc->qfullmsk != 0) {
   3070 			ifp->if_flags |= IFF_OACTIVE;
   3071 			break;
   3072 		}
   3073 		/* Send pending management frames first. */
   3074 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3075 		if (m != NULL) {
   3076 			ni = (void *)m->m_pkthdr.rcvif;
   3077 			ac = 0;
   3078 			goto sendit;
   3079 		}
   3080 		if (ic->ic_state != IEEE80211_S_RUN)
   3081 			break;
   3082 
   3083 		/* Encapsulate and send data frames. */
   3084 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3085 		if (m == NULL)
   3086 			break;
   3087 		if (m->m_len < sizeof (*eh) &&
   3088 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3089 			ifp->if_oerrors++;
   3090 			continue;
   3091 		}
   3092 		eh = mtod(m, struct ether_header *);
   3093 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3094 		if (ni == NULL) {
   3095 			m_freem(m);
   3096 			ifp->if_oerrors++;
   3097 			continue;
   3098 		}
   3099 		/* classify mbuf so we can find which tx ring to use */
   3100 		if (ieee80211_classify(ic, m, ni) != 0) {
   3101 			m_freem(m);
   3102 			ieee80211_free_node(ni);
   3103 			ifp->if_oerrors++;
   3104 			continue;
   3105 		}
   3106 
   3107 		/* No QoS encapsulation for EAPOL frames. */
   3108 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3109 		    M_WME_GETAC(m) : WME_AC_BE;
   3110 
   3111 		bpf_mtap(ifp, m);
   3112 
   3113 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3114 			ieee80211_free_node(ni);
   3115 			ifp->if_oerrors++;
   3116 			continue;
   3117 		}
   3118 sendit:
   3119 		bpf_mtap3(ic->ic_rawbpf, m);
   3120 
   3121 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3122 			ieee80211_free_node(ni);
   3123 			ifp->if_oerrors++;
   3124 			continue;
   3125 		}
   3126 
   3127 		sc->sc_tx_timer = 5;
   3128 		ifp->if_timer = 1;
   3129 	}
   3130 }
   3131 
   3132 static void
   3133 iwn_watchdog(struct ifnet *ifp)
   3134 {
   3135 	struct iwn_softc *sc = ifp->if_softc;
   3136 
   3137 	ifp->if_timer = 0;
   3138 
   3139 	if (sc->sc_tx_timer > 0) {
   3140 		if (--sc->sc_tx_timer == 0) {
   3141 			aprint_error_dev(sc->sc_dev,
   3142 			    "device timeout\n");
   3143 			ifp->if_flags &= ~IFF_UP;
   3144 			iwn_stop(ifp, 1);
   3145 			ifp->if_oerrors++;
   3146 			return;
   3147 		}
   3148 		ifp->if_timer = 1;
   3149 	}
   3150 
   3151 	ieee80211_watchdog(&sc->sc_ic);
   3152 }
   3153 
   3154 static int
   3155 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3156 {
   3157 	struct iwn_softc *sc = ifp->if_softc;
   3158 	struct ieee80211com *ic = &sc->sc_ic;
   3159 	struct ifaddr *ifa;
   3160 	const struct sockaddr *sa;
   3161 	int s, error = 0;
   3162 
   3163 	s = splnet();
   3164 	/*
   3165 	 * Prevent processes from entering this function while another
   3166 	 * process is tsleep'ing in it.
   3167 	 */
   3168 	if (sc->sc_flags & IWN_FLAG_BUSY) {
   3169 		switch (cmd) {
   3170 		case SIOCSIFADDR:
   3171 			/* FALLTHROUGH */
   3172 		case SIOCSIFFLAGS:
   3173 			splx(s);
   3174 			aprint_normal_dev(sc->sc_dev,
   3175 			    "ioctl while busy cmd = 0x%lx\n", cmd);
   3176 			return EBUSY;
   3177 		}
   3178 	}
   3179 	sc->sc_flags |= IWN_FLAG_BUSY;
   3180 
   3181 	switch (cmd) {
   3182 	case SIOCSIFADDR:
   3183 		ifa = (struct ifaddr *)data;
   3184 		ifp->if_flags |= IFF_UP;
   3185 #ifdef INET
   3186 		if (ifa->ifa_addr->sa_family == AF_INET)
   3187 			arp_ifinit(&ic->ic_ac, ifa);
   3188 #endif
   3189 		/* FALLTHROUGH */
   3190 	case SIOCSIFFLAGS:
   3191 		/* XXX Added as it is in every NetBSD driver */
   3192 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3193 			break;
   3194 		if (ifp->if_flags & IFF_UP) {
   3195 			if (!(ifp->if_flags & IFF_RUNNING))
   3196 				error = iwn_init(ifp);
   3197 		} else {
   3198 			if (ifp->if_flags & IFF_RUNNING)
   3199 				iwn_stop(ifp, 1);
   3200 		}
   3201 		break;
   3202 
   3203 	case SIOCADDMULTI:
   3204 	case SIOCDELMULTI:
   3205 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3206 		error = (cmd == SIOCADDMULTI) ?
   3207 		    ether_addmulti(sa, &sc->sc_ec) :
   3208 		    ether_delmulti(sa, &sc->sc_ec);
   3209 
   3210 		if (error == ENETRESET)
   3211 			error = 0;
   3212 		break;
   3213 
   3214 	default:
   3215 		error = ieee80211_ioctl(ic, cmd, data);
   3216 	}
   3217 
   3218 	if (error == ENETRESET) {
   3219 		error = 0;
   3220 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3221 		    (IFF_UP | IFF_RUNNING)) {
   3222 			iwn_stop(ifp, 0);
   3223 			error = iwn_init(ifp);
   3224 		}
   3225 	}
   3226 
   3227 	sc->sc_flags &= ~IWN_FLAG_BUSY;
   3228 	splx(s);
   3229 	return error;
   3230 }
   3231 
   3232 /*
   3233  * Send a command to the firmware.
   3234  */
   3235 static int
   3236 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3237 {
   3238 	struct iwn_tx_ring *ring = &sc->txq[4];
   3239 	struct iwn_tx_desc *desc;
   3240 	struct iwn_tx_data *data;
   3241 	struct iwn_tx_cmd *cmd;
   3242 	struct mbuf *m;
   3243 	bus_addr_t paddr;
   3244 	int totlen, error;
   3245 
   3246 	desc = &ring->desc[ring->cur];
   3247 	data = &ring->data[ring->cur];
   3248 	totlen = 4 + size;
   3249 
   3250 	if (size > sizeof cmd->data) {
   3251 		/* Command is too large to fit in a descriptor. */
   3252 		if (totlen > MCLBYTES)
   3253 			return EINVAL;
   3254 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3255 		if (m == NULL)
   3256 			return ENOMEM;
   3257 		if (totlen > MHLEN) {
   3258 			MCLGET(m, M_DONTWAIT);
   3259 			if (!(m->m_flags & M_EXT)) {
   3260 				m_freem(m);
   3261 				return ENOMEM;
   3262 			}
   3263 		}
   3264 		cmd = mtod(m, struct iwn_tx_cmd *);
   3265 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3266 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3267 		if (error != 0) {
   3268 			m_freem(m);
   3269 			return error;
   3270 		}
   3271 		data->m = m;
   3272 		paddr = data->map->dm_segs[0].ds_addr;
   3273 	} else {
   3274 		cmd = &ring->cmd[ring->cur];
   3275 		paddr = data->cmd_paddr;
   3276 	}
   3277 
   3278 	cmd->code = code;
   3279 	cmd->flags = 0;
   3280 	cmd->qid = ring->qid;
   3281 	cmd->idx = ring->cur;
   3282 	memcpy(cmd->data, buf, size);
   3283 
   3284 	desc->nsegs = 1;
   3285 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3286 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3287 
   3288 	if (size > sizeof cmd->data) {
   3289 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3290 		    BUS_DMASYNC_PREWRITE);
   3291 	} else {
   3292 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3293 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3294 		    totlen, BUS_DMASYNC_PREWRITE);
   3295 	}
   3296 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3297 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3298 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3299 
   3300 #ifdef notyet
   3301 	/* Update TX scheduler. */
   3302 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3303 #endif
   3304 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3305 
   3306 	/* Kick command ring. */
   3307 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3308 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3309 
   3310 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3311 }
   3312 
   3313 static int
   3314 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3315 {
   3316 	struct iwn4965_node_info hnode;
   3317 	char *src, *dst;
   3318 
   3319 	/*
   3320 	 * We use the node structure for 5000 Series internally (it is
   3321 	 * a superset of the one for 4965AGN). We thus copy the common
   3322 	 * fields before sending the command.
   3323 	 */
   3324 	src = (char *)node;
   3325 	dst = (char *)&hnode;
   3326 	memcpy(dst, src, 48);
   3327 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3328 	memcpy(dst + 48, src + 72, 20);
   3329 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3330 }
   3331 
   3332 static int
   3333 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3334 {
   3335 	/* Direct mapping. */
   3336 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3337 }
   3338 
   3339 static int
   3340 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3341 {
   3342 	struct iwn_node *wn = (void *)ni;
   3343 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3344 	struct iwn_cmd_link_quality linkq;
   3345 	const struct iwn_rate *rinfo;
   3346 	uint8_t txant;
   3347 	int i, txrate;
   3348 
   3349 	/* Use the first valid TX antenna. */
   3350 	txant = IWN_LSB(sc->txchainmask);
   3351 
   3352 	memset(&linkq, 0, sizeof linkq);
   3353 	linkq.id = wn->id;
   3354 	linkq.antmsk_1stream = txant;
   3355 	linkq.antmsk_2stream = IWN_ANT_AB;
   3356 	linkq.ampdu_max = 31;
   3357 	linkq.ampdu_threshold = 3;
   3358 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3359 
   3360 	/* Start at highest available bit-rate. */
   3361 	txrate = rs->rs_nrates - 1;
   3362 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3363 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3364 		linkq.retry[i].plcp = rinfo->plcp;
   3365 		linkq.retry[i].rflags = rinfo->flags;
   3366 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3367 		/* Next retry at immediate lower bit-rate. */
   3368 		if (txrate > 0)
   3369 			txrate--;
   3370 	}
   3371 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3372 }
   3373 
   3374 /*
   3375  * Broadcast node is used to send group-addressed and management frames.
   3376  */
   3377 static int
   3378 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3379 {
   3380 	const struct iwn_hal *hal = sc->sc_hal;
   3381 	struct iwn_node_info node;
   3382 	struct iwn_cmd_link_quality linkq;
   3383 	const struct iwn_rate *rinfo;
   3384 	uint8_t txant;
   3385 	int i, error;
   3386 
   3387 	memset(&node, 0, sizeof node);
   3388 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3389 	node.id = hal->broadcast_id;
   3390 	DPRINTF(("adding broadcast node\n"));
   3391 	if ((error = hal->add_node(sc, &node, async)) != 0)
   3392 		return error;
   3393 
   3394 	/* Use the first valid TX antenna. */
   3395 	txant = IWN_LSB(sc->txchainmask);
   3396 
   3397 	memset(&linkq, 0, sizeof linkq);
   3398 	linkq.id = hal->broadcast_id;
   3399 	linkq.antmsk_1stream = txant;
   3400 	linkq.antmsk_2stream = IWN_ANT_AB;
   3401 	linkq.ampdu_max = 64;
   3402 	linkq.ampdu_threshold = 3;
   3403 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3404 
   3405 	/* Use lowest mandatory bit-rate. */
   3406 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3407 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3408 	linkq.retry[0].plcp = rinfo->plcp;
   3409 	linkq.retry[0].rflags = rinfo->flags;
   3410 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3411 	/* Use same bit-rate for all TX retries. */
   3412 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3413 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3414 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3415 	}
   3416 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3417 }
   3418 
   3419 static void
   3420 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3421 {
   3422 	struct iwn_cmd_led led;
   3423 
   3424 	/* Clear microcode LED ownership. */
   3425 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3426 
   3427 	led.which = which;
   3428 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3429 	led.off = off;
   3430 	led.on = on;
   3431 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3432 }
   3433 
   3434 /*
   3435  * Set the critical temperature at which the firmware will stop the radio
   3436  * and notify us.
   3437  */
   3438 static int
   3439 iwn_set_critical_temp(struct iwn_softc *sc)
   3440 {
   3441 	struct iwn_critical_temp crit;
   3442 	int32_t temp;
   3443 
   3444 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3445 
   3446 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3447 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3448 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3449 		temp = IWN_CTOK(110);
   3450 	else
   3451 		temp = 110;
   3452 	memset(&crit, 0, sizeof crit);
   3453 	crit.tempR = htole32(temp);
   3454 	DPRINTF(("setting critical temperature to %d\n", temp));
   3455 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3456 }
   3457 
   3458 static int
   3459 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3460 {
   3461 	struct iwn_cmd_timing cmd;
   3462 	uint64_t val, mod;
   3463 
   3464 	memset(&cmd, 0, sizeof cmd);
   3465 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3466 	cmd.bintval = htole16(ni->ni_intval);
   3467 	cmd.lintval = htole16(10);
   3468 
   3469 	/* Compute remaining time until next beacon. */
   3470 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3471 	mod = le64toh(cmd.tstamp) % val;
   3472 	cmd.binitval = htole32((uint32_t)(val - mod));
   3473 
   3474 	DPRINTF(("timing bintval=%u, tstamp=%zu, init=%u\n",
   3475 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3476 
   3477 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3478 }
   3479 
   3480 static void
   3481 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3482 {
   3483 	/* Adjust TX power if need be (delta >= 3 degC.) */
   3484 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3485 	if (abs(temp - sc->temp) >= 3) {
   3486 		/* Record temperature of last calibration. */
   3487 		sc->temp = temp;
   3488 		(void)iwn4965_set_txpower(sc, 1);
   3489 	}
   3490 }
   3491 
   3492 /*
   3493  * Set TX power for current channel (each rate has its own power settings).
   3494  * This function takes into account the regulatory information from EEPROM,
   3495  * the current temperature and the current voltage.
   3496  */
   3497 static int
   3498 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3499 {
   3500 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3501 #define fdivround(a, b, n)	\
   3502 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3503 /* Linear interpolation. */
   3504 #define interpolate(x, x1, y1, x2, y2, n)	\
   3505 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3506 
   3507 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3508 	struct ieee80211com *ic = &sc->sc_ic;
   3509 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3510 	struct ieee80211_channel *ch;
   3511 	struct iwn4965_cmd_txpower cmd;
   3512 	struct iwn4965_eeprom_chan_samples *chans;
   3513 	const uint8_t *rf_gain, *dsp_gain;
   3514 	int32_t vdiff, tdiff;
   3515 	int i, c, grp, maxpwr;
   3516 	uint8_t chan;
   3517 
   3518 	/* Retrieve current channel from last RXON. */
   3519 	chan = sc->rxon.chan;
   3520 	DPRINTF(("setting TX power for channel %d\n", chan));
   3521 	ch = &ic->ic_channels[chan];
   3522 
   3523 	memset(&cmd, 0, sizeof cmd);
   3524 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3525 	cmd.chan = chan;
   3526 
   3527 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3528 		maxpwr   = sc->maxpwr5GHz;
   3529 		rf_gain  = iwn4965_rf_gain_5ghz;
   3530 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3531 	} else {
   3532 		maxpwr   = sc->maxpwr2GHz;
   3533 		rf_gain  = iwn4965_rf_gain_2ghz;
   3534 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3535 	}
   3536 
   3537 	/* Compute voltage compensation. */
   3538 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3539 	if (vdiff > 0)
   3540 		vdiff *= 2;
   3541 	if (abs(vdiff) > 2)
   3542 		vdiff = 0;
   3543 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3544 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3545 
   3546 	/* Get channel attenuation group. */
   3547 	if (chan <= 20)		/* 1-20 */
   3548 		grp = 4;
   3549 	else if (chan <= 43)	/* 34-43 */
   3550 		grp = 0;
   3551 	else if (chan <= 70)	/* 44-70 */
   3552 		grp = 1;
   3553 	else if (chan <= 124)	/* 71-124 */
   3554 		grp = 2;
   3555 	else			/* 125-200 */
   3556 		grp = 3;
   3557 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3558 
   3559 	/* Get channel sub-band. */
   3560 	for (i = 0; i < IWN_NBANDS; i++)
   3561 		if (sc->bands[i].lo != 0 &&
   3562 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3563 			break;
   3564 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3565 		return EINVAL;
   3566 	chans = sc->bands[i].chans;
   3567 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3568 
   3569 	for (c = 0; c < 2; c++) {
   3570 		uint8_t power, gain, temp;
   3571 		int maxchpwr, pwr, ridx, idx;
   3572 
   3573 		power = interpolate(chan,
   3574 		    chans[0].num, chans[0].samples[c][1].power,
   3575 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3576 		gain  = interpolate(chan,
   3577 		    chans[0].num, chans[0].samples[c][1].gain,
   3578 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3579 		temp  = interpolate(chan,
   3580 		    chans[0].num, chans[0].samples[c][1].temp,
   3581 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3582 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3583 		    c, power, gain, temp));
   3584 
   3585 		/* Compute temperature compensation. */
   3586 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3587 		DPRINTF(("temperature compensation=%d (current=%d, "
   3588 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3589 
   3590 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3591 			/* Convert dBm to half-dBm. */
   3592 			maxchpwr = sc->maxpwr[chan] * 2;
   3593 			if ((ridx / 8) & 1)
   3594 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3595 
   3596 			pwr = maxpwr;
   3597 
   3598 			/* Adjust TX power based on rate. */
   3599 			if ((ridx % 8) == 5)
   3600 				pwr -= 15;	/* OFDM48: -7.5dB */
   3601 			else if ((ridx % 8) == 6)
   3602 				pwr -= 17;	/* OFDM54: -8.5dB */
   3603 			else if ((ridx % 8) == 7)
   3604 				pwr -= 20;	/* OFDM60: -10dB */
   3605 			else
   3606 				pwr -= 10;	/* Others: -5dB */
   3607 
   3608 			/* Do not exceed channel max TX power. */
   3609 			if (pwr > maxchpwr)
   3610 				pwr = maxchpwr;
   3611 
   3612 			idx = gain - (pwr - power) - tdiff - vdiff;
   3613 			if ((ridx / 8) & 1)	/* MIMO */
   3614 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3615 
   3616 			if (cmd.band == 0)
   3617 				idx += 9;	/* 5GHz */
   3618 			if (ridx == IWN_RIDX_MAX)
   3619 				idx += 5;	/* CCK */
   3620 
   3621 			/* Make sure idx stays in a valid range. */
   3622 			if (idx < 0)
   3623 				idx = 0;
   3624 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3625 				idx = IWN4965_MAX_PWR_INDEX;
   3626 
   3627 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3628 			    c, ridx, idx));
   3629 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3630 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3631 		}
   3632 	}
   3633 
   3634 	DPRINTF(("setting TX power for chan %d\n", chan));
   3635 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3636 
   3637 #undef interpolate
   3638 #undef fdivround
   3639 }
   3640 
   3641 static int
   3642 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3643 {
   3644 	struct iwn5000_cmd_txpower cmd;
   3645 
   3646 	/*
   3647 	 * TX power calibration is handled automatically by the firmware
   3648 	 * for 5000 Series.
   3649 	 */
   3650 	memset(&cmd, 0, sizeof cmd);
   3651 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3652 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3653 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3654 	DPRINTF(("setting TX power\n"));
   3655 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
   3656 }
   3657 
   3658 /*
   3659  * Retrieve the maximum RSSI (in dBm) among receivers.
   3660  */
   3661 static int
   3662 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3663 {
   3664 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3665 	uint8_t mask, agc;
   3666 	int rssi;
   3667 
   3668 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3669 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3670 
   3671 	rssi = 0;
   3672 	if (mask & IWN_ANT_A)
   3673 		rssi = MAX(rssi, phy->rssi[0]);
   3674 	if (mask & IWN_ANT_B)
   3675 		rssi = MAX(rssi, phy->rssi[2]);
   3676 	if (mask & IWN_ANT_C)
   3677 		rssi = MAX(rssi, phy->rssi[4]);
   3678 
   3679 	return rssi - agc - IWN_RSSI_TO_DBM;
   3680 }
   3681 
   3682 static int
   3683 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3684 {
   3685 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3686 	uint8_t agc;
   3687 	int rssi;
   3688 
   3689 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3690 
   3691 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3692 		   le16toh(phy->rssi[1]) & 0xff);
   3693 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3694 
   3695 	return rssi - agc - IWN_RSSI_TO_DBM;
   3696 }
   3697 
   3698 /*
   3699  * Retrieve the average noise (in dBm) among receivers.
   3700  */
   3701 static int
   3702 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3703 {
   3704 	int i, total, nbant, noise;
   3705 
   3706 	total = nbant = 0;
   3707 	for (i = 0; i < 3; i++) {
   3708 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3709 			continue;
   3710 		total += noise;
   3711 		nbant++;
   3712 	}
   3713 	/* There should be at least one antenna but check anyway. */
   3714 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3715 }
   3716 
   3717 /*
   3718  * Compute temperature (in degC) from last received statistics.
   3719  */
   3720 static int
   3721 iwn4965_get_temperature(struct iwn_softc *sc)
   3722 {
   3723 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3724 	int32_t r1, r2, r3, r4, temp;
   3725 
   3726 	r1 = le32toh(uc->temp[0].chan20MHz);
   3727 	r2 = le32toh(uc->temp[1].chan20MHz);
   3728 	r3 = le32toh(uc->temp[2].chan20MHz);
   3729 	r4 = le32toh(sc->rawtemp);
   3730 
   3731 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
   3732 		return 0;
   3733 
   3734 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3735 	r4 = (r4 << 8) >> 8;
   3736 	/* Compute temperature in Kelvin. */
   3737 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3738 	temp = (temp * 97) / 100 + 8;
   3739 
   3740 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3741 	return IWN_KTOC(temp);
   3742 }
   3743 
   3744 static int
   3745 iwn5000_get_temperature(struct iwn_softc *sc)
   3746 {
   3747 	int32_t temp;
   3748 
   3749 	/*
   3750 	 * Temperature is not used by the driver for 5000 Series because
   3751 	 * TX power calibration is handled by firmware.  We export it to
   3752 	 * users through the sensor framework though.
   3753 	 */
   3754 	temp = le32toh(sc->rawtemp);
   3755 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3756 		temp = (temp / -5) + sc->temp_off;
   3757 		temp = IWN_KTOC(temp);
   3758 	}
   3759 	return temp;
   3760 }
   3761 
   3762 /*
   3763  * Initialize sensitivity calibration state machine.
   3764  */
   3765 static int
   3766 iwn_init_sensitivity(struct iwn_softc *sc)
   3767 {
   3768 	const struct iwn_hal *hal = sc->sc_hal;
   3769 	struct iwn_calib_state *calib = &sc->calib;
   3770 	uint32_t flags;
   3771 	int error;
   3772 
   3773 	/* Reset calibration state machine. */
   3774 	memset(calib, 0, sizeof (*calib));
   3775 	calib->state = IWN_CALIB_STATE_INIT;
   3776 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3777 	/* Set initial correlation values. */
   3778 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3779 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3780 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3781 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3782 	calib->cck_x4      = 125;
   3783 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3784 	calib->energy_cck  = sc->limits->energy_cck;
   3785 
   3786 	/* Write initial sensitivity. */
   3787 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3788 		return error;
   3789 
   3790 	/* Write initial gains. */
   3791 	if ((error = hal->init_gains(sc)) != 0)
   3792 		return error;
   3793 
   3794 	/* Request statistics at each beacon interval. */
   3795 	flags = 0;
   3796 	DPRINTF(("sending request for statistics\n"));
   3797 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3798 }
   3799 
   3800 /*
   3801  * Collect noise and RSSI statistics for the first 20 beacons received
   3802  * after association and use them to determine connected antennas and
   3803  * to set differential gains.
   3804  */
   3805 static void
   3806 iwn_collect_noise(struct iwn_softc *sc,
   3807     const struct iwn_rx_general_stats *stats)
   3808 {
   3809 	const struct iwn_hal *hal = sc->sc_hal;
   3810 	struct iwn_calib_state *calib = &sc->calib;
   3811 	uint32_t val;
   3812 	int i;
   3813 
   3814 	/* Accumulate RSSI and noise for all 3 antennas. */
   3815 	for (i = 0; i < 3; i++) {
   3816 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3817 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3818 	}
   3819 	/* NB: We update differential gains only once after 20 beacons. */
   3820 	if (++calib->nbeacons < 20)
   3821 		return;
   3822 
   3823 	/* Determine highest average RSSI. */
   3824 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3825 	val = MAX(calib->rssi[2], val);
   3826 
   3827 	/* Determine which antennas are connected. */
   3828 	sc->chainmask = sc->rxchainmask;
   3829 	for (i = 0; i < 3; i++)
   3830 		if (val - calib->rssi[i] > 15 * 20)
   3831 			sc->chainmask &= ~(1 << i);
   3832 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   3833 	    sc->rxchainmask, sc->chainmask));
   3834 
   3835 	/* If none of the TX antennas are connected, keep at least one. */
   3836 	if ((sc->chainmask & sc->txchainmask) == 0)
   3837 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   3838 
   3839 	(void)hal->set_gains(sc);
   3840 	calib->state = IWN_CALIB_STATE_RUN;
   3841 
   3842 #ifdef notyet
   3843 	/* XXX Disable RX chains with no antennas connected. */
   3844 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   3845 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
   3846 #endif
   3847 
   3848 	/* Enable power-saving mode if requested by user. */
   3849 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3850 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3851 }
   3852 
   3853 static int
   3854 iwn4965_init_gains(struct iwn_softc *sc)
   3855 {
   3856 	struct iwn_phy_calib_gain cmd;
   3857 
   3858 	memset(&cmd, 0, sizeof cmd);
   3859 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3860 	/* Differential gains initially set to 0 for all 3 antennas. */
   3861 	DPRINTF(("setting initial differential gains\n"));
   3862 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3863 }
   3864 
   3865 static int
   3866 iwn5000_init_gains(struct iwn_softc *sc)
   3867 {
   3868 	struct iwn_phy_calib cmd;
   3869 
   3870 	memset(&cmd, 0, sizeof cmd);
   3871 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   3872 	cmd.ngroups = 1;
   3873 	cmd.isvalid = 1;
   3874 	DPRINTF(("setting initial differential gains\n"));
   3875 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3876 }
   3877 
   3878 static int
   3879 iwn4965_set_gains(struct iwn_softc *sc)
   3880 {
   3881 	struct iwn_calib_state *calib = &sc->calib;
   3882 	struct iwn_phy_calib_gain cmd;
   3883 	int i, delta, noise;
   3884 
   3885 	/* Get minimal noise among connected antennas. */
   3886 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   3887 	for (i = 0; i < 3; i++)
   3888 		if (sc->chainmask & (1 << i))
   3889 			noise = MIN(calib->noise[i], noise);
   3890 
   3891 	memset(&cmd, 0, sizeof cmd);
   3892 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3893 	/* Set differential gains for connected antennas. */
   3894 	for (i = 0; i < 3; i++) {
   3895 		if (sc->chainmask & (1 << i)) {
   3896 			/* Compute attenuation (in unit of 1.5dB). */
   3897 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   3898 			/* NB: delta <= 0 */
   3899 			/* Limit to [-4.5dB,0]. */
   3900 			cmd.gain[i] = MIN(abs(delta), 3);
   3901 			if (delta < 0)
   3902 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   3903 		}
   3904 	}
   3905 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   3906 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   3907 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3908 }
   3909 
   3910 static int
   3911 iwn5000_set_gains(struct iwn_softc *sc)
   3912 {
   3913 	struct iwn_calib_state *calib = &sc->calib;
   3914 	struct iwn_phy_calib_gain cmd;
   3915 	int i, ant, div, delta;
   3916 
   3917 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   3918 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   3919 
   3920 	memset(&cmd, 0, sizeof cmd);
   3921 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
   3922 	cmd.ngroups = 1;
   3923 	cmd.isvalid = 1;
   3924 	/* Get first available RX antenna as referential. */
   3925 	ant = IWN_LSB(sc->rxchainmask);
   3926 	/* Set differential gains for other antennas. */
   3927 	for (i = ant + 1; i < 3; i++) {
   3928 		if (sc->chainmask & (1 << i)) {
   3929 			/* The delta is relative to antenna "ant". */
   3930 			delta = ((int32_t)calib->noise[ant] -
   3931 			    (int32_t)calib->noise[i]) / div;
   3932 			/* Limit to [-4.5dB,+4.5dB]. */
   3933 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   3934 			if (delta < 0)
   3935 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   3936 		}
   3937 	}
   3938 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   3939 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   3940 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3941 }
   3942 
   3943 /*
   3944  * Tune RF RX sensitivity based on the number of false alarms detected
   3945  * during the last beacon period.
   3946  */
   3947 static void
   3948 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   3949 {
   3950 #define inc(val, inc, max)			\
   3951 	if ((val) < (max)) {			\
   3952 		if ((val) < (max) - (inc))	\
   3953 			(val) += (inc);		\
   3954 		else				\
   3955 			(val) = (max);		\
   3956 		needs_update = 1;		\
   3957 	}
   3958 #define dec(val, dec, min)			\
   3959 	if ((val) > (min)) {			\
   3960 		if ((val) > (min) + (dec))	\
   3961 			(val) -= (dec);		\
   3962 		else				\
   3963 			(val) = (min);		\
   3964 		needs_update = 1;		\
   3965 	}
   3966 
   3967 	const struct iwn_sensitivity_limits *limits = sc->limits;
   3968 	struct iwn_calib_state *calib = &sc->calib;
   3969 	uint32_t val, rxena, fa;
   3970 	uint32_t energy[3], energy_min;
   3971 	uint8_t noise[3], noise_ref;
   3972 	int i, needs_update = 0;
   3973 
   3974 	/* Check that we've been enabled long enough. */
   3975 	if ((rxena = le32toh(stats->general.load)) == 0)
   3976 		return;
   3977 
   3978 	/* Compute number of false alarms since last call for OFDM. */
   3979 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   3980 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   3981 	fa *= 200 * 1024;	/* 200TU */
   3982 
   3983 	/* Save counters values for next call. */
   3984 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   3985 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   3986 
   3987 	if (fa > 50 * rxena) {
   3988 		/* High false alarm count, decrease sensitivity. */
   3989 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   3990 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   3991 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   3992 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   3993 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   3994 
   3995 	} else if (fa < 5 * rxena) {
   3996 		/* Low false alarm count, increase sensitivity. */
   3997 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   3998 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   3999 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   4000 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   4001 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   4002 	}
   4003 
   4004 	/* Compute maximum noise among 3 receivers. */
   4005 	for (i = 0; i < 3; i++)
   4006 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   4007 	val = MAX(noise[0], noise[1]);
   4008 	val = MAX(noise[2], val);
   4009 	/* Insert it into our samples table. */
   4010 	calib->noise_samples[calib->cur_noise_sample] = val;
   4011 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   4012 
   4013 	/* Compute maximum noise among last 20 samples. */
   4014 	noise_ref = calib->noise_samples[0];
   4015 	for (i = 1; i < 20; i++)
   4016 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   4017 
   4018 	/* Compute maximum energy among 3 receivers. */
   4019 	for (i = 0; i < 3; i++)
   4020 		energy[i] = le32toh(stats->general.energy[i]);
   4021 	val = MIN(energy[0], energy[1]);
   4022 	val = MIN(energy[2], val);
   4023 	/* Insert it into our samples table. */
   4024 	calib->energy_samples[calib->cur_energy_sample] = val;
   4025 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   4026 
   4027 	/* Compute minimum energy among last 10 samples. */
   4028 	energy_min = calib->energy_samples[0];
   4029 	for (i = 1; i < 10; i++)
   4030 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   4031 	energy_min += 6;
   4032 
   4033 	/* Compute number of false alarms since last call for CCK. */
   4034 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   4035 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   4036 	fa *= 200 * 1024;	/* 200TU */
   4037 
   4038 	/* Save counters values for next call. */
   4039 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   4040 	calib->fa_cck = le32toh(stats->cck.fa);
   4041 
   4042 	if (fa > 50 * rxena) {
   4043 		/* High false alarm count, decrease sensitivity. */
   4044 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   4045 		calib->cck_state = IWN_CCK_STATE_HIFA;
   4046 		calib->low_fa = 0;
   4047 
   4048 		if (calib->cck_x4 > 160) {
   4049 			calib->noise_ref = noise_ref;
   4050 			if (calib->energy_cck > 2)
   4051 				dec(calib->energy_cck, 2, energy_min);
   4052 		}
   4053 		if (calib->cck_x4 < 160) {
   4054 			calib->cck_x4 = 161;
   4055 			needs_update = 1;
   4056 		} else
   4057 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   4058 
   4059 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   4060 
   4061 	} else if (fa < 5 * rxena) {
   4062 		/* Low false alarm count, increase sensitivity. */
   4063 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   4064 		calib->cck_state = IWN_CCK_STATE_LOFA;
   4065 		calib->low_fa++;
   4066 
   4067 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   4068 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   4069 		     calib->low_fa > 100)) {
   4070 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   4071 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   4072 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   4073 		}
   4074 	} else {
   4075 		/* Not worth to increase or decrease sensitivity. */
   4076 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   4077 		calib->low_fa = 0;
   4078 		calib->noise_ref = noise_ref;
   4079 
   4080 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4081 			/* Previous interval had many false alarms. */
   4082 			dec(calib->energy_cck, 8, energy_min);
   4083 		}
   4084 		calib->cck_state = IWN_CCK_STATE_INIT;
   4085 	}
   4086 
   4087 	if (needs_update)
   4088 		(void)iwn_send_sensitivity(sc);
   4089 #undef dec
   4090 #undef inc
   4091 }
   4092 
   4093 static int
   4094 iwn_send_sensitivity(struct iwn_softc *sc)
   4095 {
   4096 	struct iwn_calib_state *calib = &sc->calib;
   4097 	struct iwn_sensitivity_cmd cmd;
   4098 
   4099 	memset(&cmd, 0, sizeof cmd);
   4100 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4101 	/* OFDM modulation. */
   4102 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4103 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4104 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4105 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4106 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4107 	cmd.energy_ofdm_th   = htole16(62);
   4108 	/* CCK modulation. */
   4109 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4110 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4111 	cmd.energy_cck       = htole16(calib->energy_cck);
   4112 	/* Barker modulation: use default values. */
   4113 	cmd.corr_barker      = htole16(190);
   4114 	cmd.corr_barker_mrc  = htole16(390);
   4115 
   4116 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4117 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4118 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4119 	    calib->energy_cck));
   4120 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
   4121 }
   4122 
   4123 /*
   4124  * Set STA mode power saving level (between 0 and 5).
   4125  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4126  */
   4127 static int
   4128 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4129 {
   4130 	struct iwn_pmgt_cmd cmd;
   4131 	const struct iwn_pmgt *pmgt;
   4132 	uint32_t maxp, skip_dtim;
   4133 	pcireg_t reg;
   4134 	int i;
   4135 
   4136 	/* Select which PS parameters to use. */
   4137 	if (dtim <= 2)
   4138 		pmgt = &iwn_pmgt[0][level];
   4139 	else if (dtim <= 10)
   4140 		pmgt = &iwn_pmgt[1][level];
   4141 	else
   4142 		pmgt = &iwn_pmgt[2][level];
   4143 
   4144 	memset(&cmd, 0, sizeof cmd);
   4145 	if (level != 0)	/* not CAM */
   4146 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4147 	if (level == 5)
   4148 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4149 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4150 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4151 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   4152 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4153 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4154 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4155 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4156 
   4157 	if (dtim == 0) {
   4158 		dtim = 1;
   4159 		skip_dtim = 0;
   4160 	} else
   4161 		skip_dtim = pmgt->skip_dtim;
   4162 	if (skip_dtim != 0) {
   4163 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4164 		maxp = pmgt->intval[4];
   4165 		if (maxp == (uint32_t)-1)
   4166 			maxp = dtim * (skip_dtim + 1);
   4167 		else if (maxp > dtim)
   4168 			maxp = (maxp / dtim) * dtim;
   4169 	} else
   4170 		maxp = dtim;
   4171 	for (i = 0; i < 5; i++)
   4172 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4173 
   4174 	DPRINTF(("setting power saving level to %d\n", level));
   4175 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4176 }
   4177 
   4178 static int
   4179 iwn_config(struct iwn_softc *sc)
   4180 {
   4181 	const struct iwn_hal *hal = sc->sc_hal;
   4182 	struct ieee80211com *ic = &sc->sc_ic;
   4183 	struct ifnet *ifp = ic->ic_ifp;
   4184 	struct iwn_bluetooth bluetooth;
   4185 	uint32_t txmask;
   4186 	uint16_t rxchain;
   4187 	int error;
   4188 
   4189 	/* Configure valid TX chains for 5000 Series. */
   4190 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4191 		txmask = htole32(sc->txchainmask);
   4192 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4193 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4194 		    sizeof txmask, 0);
   4195 		if (error != 0) {
   4196 			aprint_error_dev(sc->sc_dev,
   4197 			    "could not configure valid TX chains\n");
   4198 			return error;
   4199 		}
   4200 	}
   4201 
   4202 	/* Configure bluetooth coexistence. */
   4203 	memset(&bluetooth, 0, sizeof bluetooth);
   4204 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
   4205 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4206 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4207 	DPRINTF(("configuring bluetooth coexistence\n"));
   4208 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4209 	if (error != 0) {
   4210 		aprint_error_dev(sc->sc_dev,
   4211 		    "could not configure bluetooth coexistence\n");
   4212 		return error;
   4213 	}
   4214 
   4215 	/* Set mode, channel, RX filter and enable RX. */
   4216 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4217 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4218 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4219 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4220 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4221 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4222 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4223 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4224 	switch (ic->ic_opmode) {
   4225 	case IEEE80211_M_STA:
   4226 		sc->rxon.mode = IWN_MODE_STA;
   4227 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4228 		break;
   4229 	case IEEE80211_M_MONITOR:
   4230 		sc->rxon.mode = IWN_MODE_MONITOR;
   4231 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4232 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4233 		break;
   4234 	default:
   4235 		/* Should not get there. */
   4236 		break;
   4237 	}
   4238 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4239 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4240 	sc->rxon.ht_single_mask = 0xff;
   4241 	sc->rxon.ht_dual_mask = 0xff;
   4242 	sc->rxon.ht_triple_mask = 0xff;
   4243 	rxchain =
   4244 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4245 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4246 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4247 	sc->rxon.rxchain = htole16(rxchain);
   4248 	DPRINTF(("setting configuration\n"));
   4249 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
   4250 	if (error != 0) {
   4251 		aprint_error_dev(sc->sc_dev,
   4252 		    "RXON command failed\n");
   4253 		return error;
   4254 	}
   4255 
   4256 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4257 		aprint_error_dev(sc->sc_dev,
   4258 		    "could not add broadcast node\n");
   4259 		return error;
   4260 	}
   4261 
   4262 	/* Configuration has changed, set TX power accordingly. */
   4263 	if ((error = hal->set_txpower(sc, 0)) != 0) {
   4264 		aprint_error_dev(sc->sc_dev,
   4265 		    "could not set TX power\n");
   4266 		return error;
   4267 	}
   4268 
   4269 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4270 		aprint_error_dev(sc->sc_dev,
   4271 		    "could not set critical temperature\n");
   4272 		return error;
   4273 	}
   4274 
   4275 	/* Set power saving level to CAM during initialization. */
   4276 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4277 		aprint_error_dev(sc->sc_dev,
   4278 		    "could not set power saving level\n");
   4279 		return error;
   4280 	}
   4281 	return 0;
   4282 }
   4283 
   4284 static int
   4285 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4286 {
   4287 	struct ieee80211com *ic = &sc->sc_ic;
   4288 	struct iwn_scan_hdr *hdr;
   4289 	struct iwn_cmd_data *tx;
   4290 	struct iwn_scan_essid *essid;
   4291 	struct iwn_scan_chan *chan;
   4292 	struct ieee80211_frame *wh;
   4293 	struct ieee80211_rateset *rs;
   4294 	struct ieee80211_channel *c;
   4295 	uint8_t *buf, *frm;
   4296 	uint16_t rxchain;
   4297 	uint8_t txant;
   4298 	int buflen, error;
   4299 
   4300 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4301 	if (buf == NULL) {
   4302 		aprint_error_dev(sc->sc_dev,
   4303 		    "could not allocate buffer for scan command\n");
   4304 		return ENOMEM;
   4305 	}
   4306 	hdr = (struct iwn_scan_hdr *)buf;
   4307 	/*
   4308 	 * Move to the next channel if no frames are received within 10ms
   4309 	 * after sending the probe request.
   4310 	 */
   4311 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4312 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4313 
   4314 	/* Select antennas for scanning. */
   4315 	rxchain =
   4316 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4317 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4318 	    IWN_RXCHAIN_DRIVER_FORCE;
   4319 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4320 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4321 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4322 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4323 	} else	/* Use all available RX antennas. */
   4324 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4325 	hdr->rxchain = htole16(rxchain);
   4326 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4327 
   4328 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4329 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4330 	tx->id = sc->sc_hal->broadcast_id;
   4331 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4332 
   4333 	if (flags & IEEE80211_CHAN_5GHZ) {
   4334 		hdr->crc_threshold = 0xffff;
   4335 		/* Send probe requests at 6Mbps. */
   4336 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4337 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4338 	} else {
   4339 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4340 		/* Send probe requests at 1Mbps. */
   4341 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4342 		tx->rflags = IWN_RFLAG_CCK;
   4343 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4344 	}
   4345 	/* Use the first valid TX antenna. */
   4346 	txant = IWN_LSB(sc->txchainmask);
   4347 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4348 
   4349 	essid = (struct iwn_scan_essid *)(tx + 1);
   4350 	if (ic->ic_des_esslen != 0) {
   4351 		essid[0].id = IEEE80211_ELEMID_SSID;
   4352 		essid[0].len = ic->ic_des_esslen;
   4353 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4354 	}
   4355 	/*
   4356 	 * Build a probe request frame.  Most of the following code is a
   4357 	 * copy & paste of what is done in net80211.
   4358 	 */
   4359 	wh = (struct ieee80211_frame *)(essid + 20);
   4360 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4361 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4362 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4363 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4364 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4365 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4366 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4367 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4368 
   4369 	frm = (uint8_t *)(wh + 1);
   4370 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4371 	frm = ieee80211_add_rates(frm, rs);
   4372 #ifndef IEEE80211_NO_HT
   4373 	if (ic->ic_flags & IEEE80211_F_HTON)
   4374 		frm = ieee80211_add_htcaps(frm, ic);
   4375 #endif
   4376 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4377 		frm = ieee80211_add_xrates(frm, rs);
   4378 
   4379 	/* Set length of probe request. */
   4380 	tx->len = htole16(frm - (uint8_t *)wh);
   4381 
   4382 	chan = (struct iwn_scan_chan *)frm;
   4383 	for (c  = &ic->ic_channels[1];
   4384 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4385 		if ((c->ic_flags & flags) != flags)
   4386 			continue;
   4387 
   4388 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4389 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4390 		chan->flags = 0;
   4391 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4392 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4393 		if (ic->ic_des_esslen != 0)
   4394 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4395 		chan->dsp_gain = 0x6e;
   4396 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4397 			chan->rf_gain = 0x3b;
   4398 			chan->active  = htole16(24);
   4399 			chan->passive = htole16(110);
   4400 		} else {
   4401 			chan->rf_gain = 0x28;
   4402 			chan->active  = htole16(36);
   4403 			chan->passive = htole16(120);
   4404 		}
   4405 		hdr->nchan++;
   4406 		chan++;
   4407 	}
   4408 
   4409 	buflen = (uint8_t *)chan - buf;
   4410 	hdr->len = htole16(buflen);
   4411 
   4412 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4413 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4414 	free(buf, M_DEVBUF);
   4415 	return error;
   4416 }
   4417 
   4418 static int
   4419 iwn_auth(struct iwn_softc *sc)
   4420 {
   4421 	const struct iwn_hal *hal = sc->sc_hal;
   4422 	struct ieee80211com *ic = &sc->sc_ic;
   4423 	struct ieee80211_node *ni = ic->ic_bss;
   4424 	int error;
   4425 
   4426 	/* Update adapter configuration. */
   4427 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4428 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4429 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4430 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4431 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4432 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4433 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4434 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4435 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4436 	switch (ic->ic_curmode) {
   4437 	case IEEE80211_MODE_11A:
   4438 		sc->rxon.cck_mask  = 0;
   4439 		sc->rxon.ofdm_mask = 0x15;
   4440 		break;
   4441 	case IEEE80211_MODE_11B:
   4442 		sc->rxon.cck_mask  = 0x03;
   4443 		sc->rxon.ofdm_mask = 0;
   4444 		break;
   4445 	default:	/* Assume 802.11b/g. */
   4446 		sc->rxon.cck_mask  = 0x0f;
   4447 		sc->rxon.ofdm_mask = 0x15;
   4448 	}
   4449 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4450 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4451 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
   4452 	if (error != 0) {
   4453 		aprint_error_dev(sc->sc_dev,
   4454 		    "RXON command failed\n");
   4455 		return error;
   4456 	}
   4457 
   4458 	/* Configuration has changed, set TX power accordingly. */
   4459 	if ((error = hal->set_txpower(sc, 1)) != 0) {
   4460 		aprint_error_dev(sc->sc_dev,
   4461 		    "could not set TX power\n");
   4462 		return error;
   4463 	}
   4464 	/*
   4465 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4466 	 * add the broadcast node again.
   4467 	 */
   4468 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4469 		aprint_error_dev(sc->sc_dev,
   4470 		    "could not add broadcast node\n");
   4471 		return error;
   4472 	}
   4473 	return 0;
   4474 }
   4475 
   4476 static int
   4477 iwn_run(struct iwn_softc *sc)
   4478 {
   4479 	const struct iwn_hal *hal = sc->sc_hal;
   4480 	struct ieee80211com *ic = &sc->sc_ic;
   4481 	struct ieee80211_node *ni = ic->ic_bss;
   4482 	struct iwn_node_info node;
   4483 	int error;
   4484 
   4485 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4486 		/* Link LED blinks while monitoring. */
   4487 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4488 		return 0;
   4489 	}
   4490 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4491 		aprint_error_dev(sc->sc_dev,
   4492 		    "could not set timing\n");
   4493 		return error;
   4494 	}
   4495 
   4496 	/* Update adapter configuration. */
   4497 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4498 	/* Short preamble and slot time are negotiated when associating. */
   4499 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4500 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4501 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4502 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4503 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4504 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4505 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4506 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
   4507 	if (error != 0) {
   4508 		aprint_error_dev(sc->sc_dev,
   4509 		    "could not update configuration\n");
   4510 		return error;
   4511 	}
   4512 
   4513 	/* Configuration has changed, set TX power accordingly. */
   4514 	if ((error = hal->set_txpower(sc, 1)) != 0) {
   4515 		aprint_error_dev(sc->sc_dev,
   4516 		    "could not set TX power\n");
   4517 		return error;
   4518 	}
   4519 
   4520 	/* Fake a join to initialize the TX rate. */
   4521 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4522 	iwn_newassoc(ni, 1);
   4523 
   4524 	/* Add BSS node. */
   4525 	memset(&node, 0, sizeof node);
   4526 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4527 	node.id = IWN_ID_BSS;
   4528 #ifdef notyet
   4529 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4530 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4531 #endif
   4532 	DPRINTF(("adding BSS node\n"));
   4533 	error = hal->add_node(sc, &node, 1);
   4534 	if (error != 0) {
   4535 		aprint_error_dev(sc->sc_dev,
   4536 		    "could not add BSS node\n");
   4537 		return error;
   4538 	}
   4539 	DPRINTF(("setting link quality for node %d\n", node.id));
   4540 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4541 		aprint_error_dev(sc->sc_dev,
   4542 		    "could not setup link quality for node %d\n", node.id);
   4543 		return error;
   4544 	}
   4545 
   4546 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4547 		aprint_error_dev(sc->sc_dev,
   4548 		    "could not set sensitivity\n");
   4549 		return error;
   4550 	}
   4551 	/* Start periodic calibration timer. */
   4552 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4553 	sc->calib_cnt = 0;
   4554 	callout_schedule(&sc->calib_to, hz/2);
   4555 
   4556 	/* Link LED always on while associated. */
   4557 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4558 	return 0;
   4559 }
   4560 
   4561 #ifdef IWN_HWCRYPTO
   4562 /*
   4563  * We support CCMP hardware encryption/decryption of unicast frames only.
   4564  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4565  */
   4566 static int
   4567 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4568     struct ieee80211_key *k)
   4569 {
   4570 	struct iwn_softc *sc = ic->ic_softc;
   4571 	const struct iwn_hal *hal = sc->sc_hal;
   4572 	struct iwn_node *wn = (void *)ni;
   4573 	struct iwn_node_info node;
   4574 	uint16_t kflags;
   4575 
   4576 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4577 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4578 		return ieee80211_set_key(ic, ni, k);
   4579 
   4580 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4581 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4582 		kflags |= IWN_KFLAG_GROUP;
   4583 
   4584 	memset(&node, 0, sizeof node);
   4585 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4586 	    hal->broadcast_id : wn->id;
   4587 	node.control = IWN_NODE_UPDATE;
   4588 	node.flags = IWN_FLAG_SET_KEY;
   4589 	node.kflags = htole16(kflags);
   4590 	node.kid = k->k_id;
   4591 	memcpy(node.key, k->k_key, k->k_len);
   4592 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   4593 	return hal->add_node(sc, &node, 1);
   4594 }
   4595 
   4596 static void
   4597 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4598     struct ieee80211_key *k)
   4599 {
   4600 	struct iwn_softc *sc = ic->ic_softc;
   4601 	const struct iwn_hal *hal = sc->sc_hal;
   4602 	struct iwn_node *wn = (void *)ni;
   4603 	struct iwn_node_info node;
   4604 
   4605 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4606 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   4607 		/* See comment about other ciphers above. */
   4608 		ieee80211_delete_key(ic, ni, k);
   4609 		return;
   4610 	}
   4611 	if (ic->ic_state != IEEE80211_S_RUN)
   4612 		return;	/* Nothing to do. */
   4613 	memset(&node, 0, sizeof node);
   4614 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4615 	    hal->broadcast_id : wn->id;
   4616 	node.control = IWN_NODE_UPDATE;
   4617 	node.flags = IWN_FLAG_SET_KEY;
   4618 	node.kflags = htole16(IWN_KFLAG_INVALID);
   4619 	node.kid = 0xff;
   4620 	DPRINTF(("delete keys for node %d\n", node.id));
   4621 	(void)hal->add_node(sc, &node, 1);
   4622 }
   4623 #endif
   4624 
   4625 /* XXX Added for NetBSD (copied from rev 1.39). */
   4626 
   4627 static int
   4628 iwn_wme_update(struct ieee80211com *ic)
   4629 {
   4630 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   4631 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   4632 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   4633 	const struct wmeParams *wmep;
   4634 	struct iwn_edca_params cmd;
   4635 	int ac;
   4636 
   4637 	/* don't override default WME values if WME is not actually enabled */
   4638 	if (!(ic->ic_flags & IEEE80211_F_WME))
   4639 		return 0;
   4640 	cmd.flags = 0;
   4641 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   4642 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   4643 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   4644 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   4645 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   4646 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   4647 
   4648 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   4649 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   4650 					cmd.ac[ac].cwmin,
   4651 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   4652 	}
   4653 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   4654 #undef IWN_USEC
   4655 #undef IWN_EXP2
   4656 }
   4657 
   4658 #ifndef IEEE80211_NO_HT
   4659 /*
   4660  * This function is called by upper layer when an ADDBA request is received
   4661  * from another STA and before the ADDBA response is sent.
   4662  */
   4663 static int
   4664 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4665     uint8_t tid)
   4666 {
   4667 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   4668 	struct iwn_softc *sc = ic->ic_softc;
   4669 	struct iwn_node *wn = (void *)ni;
   4670 	struct iwn_node_info node;
   4671 
   4672 	memset(&node, 0, sizeof node);
   4673 	node.id = wn->id;
   4674 	node.control = IWN_NODE_UPDATE;
   4675 	node.flags = IWN_FLAG_SET_ADDBA;
   4676 	node.addba_tid = tid;
   4677 	node.addba_ssn = htole16(ba->ba_winstart);
   4678 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   4679 	    ba->ba_winstart));
   4680 	return sc->sc_hal->add_node(sc, &node, 1);
   4681 }
   4682 
   4683 /*
   4684  * This function is called by upper layer on teardown of an HT-immediate
   4685  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
   4686  */
   4687 static void
   4688 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4689     uint8_t tid)
   4690 {
   4691 	struct iwn_softc *sc = ic->ic_softc;
   4692 	struct iwn_node *wn = (void *)ni;
   4693 	struct iwn_node_info node;
   4694 
   4695 	memset(&node, 0, sizeof node);
   4696 	node.id = wn->id;
   4697 	node.control = IWN_NODE_UPDATE;
   4698 	node.flags = IWN_FLAG_SET_DELBA;
   4699 	node.delba_tid = tid;
   4700 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   4701 	(void)sc->sc_hal->add_node(sc, &node, 1);
   4702 }
   4703 
   4704 /*
   4705  * This function is called by upper layer when an ADDBA response is received
   4706  * from another STA.
   4707  */
   4708 static int
   4709 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4710     uint8_t tid)
   4711 {
   4712 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4713 	struct iwn_softc *sc = ic->ic_softc;
   4714 	const struct iwn_hal *hal = sc->sc_hal;
   4715 	struct iwn_node *wn = (void *)ni;
   4716 	struct iwn_node_info node;
   4717 	int error;
   4718 
   4719 	/* Enable TX for the specified RA/TID. */
   4720 	wn->disable_tid &= ~(1 << tid);
   4721 	memset(&node, 0, sizeof node);
   4722 	node.id = wn->id;
   4723 	node.control = IWN_NODE_UPDATE;
   4724 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   4725 	node.disable_tid = htole16(wn->disable_tid);
   4726 	error = hal->add_node(sc, &node, 1);
   4727 	if (error != 0)
   4728 		return error;
   4729 
   4730 	if ((error = iwn_nic_lock(sc)) != 0)
   4731 		return error;
   4732 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   4733 	iwn_nic_unlock(sc);
   4734 	return 0;
   4735 }
   4736 
   4737 static void
   4738 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4739     uint8_t tid)
   4740 {
   4741 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4742 	struct iwn_softc *sc = ic->ic_softc;
   4743 
   4744 	if (iwn_nic_lock(sc) != 0)
   4745 		return;
   4746 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   4747 	iwn_nic_unlock(sc);
   4748 }
   4749 
   4750 static void
   4751 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4752     uint8_t tid, uint16_t ssn)
   4753 {
   4754 	struct iwn_node *wn = (void *)ni;
   4755 	int qid = 7 + tid;
   4756 
   4757 	/* Stop TX scheduler while we're changing its configuration. */
   4758 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4759 	    IWN4965_TXQ_STATUS_CHGACT);
   4760 
   4761 	/* Assign RA/TID translation to the queue. */
   4762 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   4763 	    wn->id << 4 | tid);
   4764 
   4765 	/* Enable chain-building mode for the queue. */
   4766 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   4767 
   4768 	/* Set starting sequence number from the ADDBA request. */
   4769 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4770 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4771 
   4772 	/* Set scheduler window size. */
   4773 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   4774 	    IWN_SCHED_WINSZ);
   4775 	/* Set scheduler frame limit. */
   4776 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4777 	    IWN_SCHED_LIMIT << 16);
   4778 
   4779 	/* Enable interrupts for the queue. */
   4780 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4781 
   4782 	/* Mark the queue as active. */
   4783 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4784 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   4785 	    iwn_tid2fifo[tid] << 1);
   4786 }
   4787 
   4788 static void
   4789 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4790 {
   4791 	int qid = 7 + tid;
   4792 
   4793 	/* Stop TX scheduler while we're changing its configuration. */
   4794 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4795 	    IWN4965_TXQ_STATUS_CHGACT);
   4796 
   4797 	/* Set starting sequence number from the ADDBA request. */
   4798 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4799 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4800 
   4801 	/* Disable interrupts for the queue. */
   4802 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4803 
   4804 	/* Mark the queue as inactive. */
   4805 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4806 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   4807 }
   4808 
   4809 static void
   4810 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4811     uint8_t tid, uint16_t ssn)
   4812 {
   4813 	struct iwn_node *wn = (void *)ni;
   4814 	int qid = 10 + tid;
   4815 
   4816 	/* Stop TX scheduler while we're changing its configuration. */
   4817 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4818 	    IWN5000_TXQ_STATUS_CHGACT);
   4819 
   4820 	/* Assign RA/TID translation to the queue. */
   4821 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   4822 	    wn->id << 4 | tid);
   4823 
   4824 	/* Enable chain-building mode for the queue. */
   4825 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   4826 
   4827 	/* Enable aggregation for the queue. */
   4828 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4829 
   4830 	/* Set starting sequence number from the ADDBA request. */
   4831 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4832 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4833 
   4834 	/* Set scheduler window size and frame limit. */
   4835 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   4836 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   4837 
   4838 	/* Enable interrupts for the queue. */
   4839 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4840 
   4841 	/* Mark the queue as active. */
   4842 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4843 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   4844 }
   4845 
   4846 static void
   4847 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4848 {
   4849 	int qid = 10 + tid;
   4850 
   4851 	/* Stop TX scheduler while we're changing its configuration. */
   4852 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4853 	    IWN5000_TXQ_STATUS_CHGACT);
   4854 
   4855 	/* Disable aggregation for the queue. */
   4856 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4857 
   4858 	/* Set starting sequence number from the ADDBA request. */
   4859 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4860 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4861 
   4862 	/* Disable interrupts for the queue. */
   4863 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4864 
   4865 	/* Mark the queue as inactive. */
   4866 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4867 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   4868 }
   4869 #endif	/* !IEEE80211_NO_HT */
   4870 
   4871 /*
   4872  * Query calibration tables from the initialization firmware.  We do this
   4873  * only once at first boot.  Called from a process context.
   4874  */
   4875 static int
   4876 iwn5000_query_calibration(struct iwn_softc *sc)
   4877 {
   4878 	struct iwn5000_calib_config cmd;
   4879 	int error;
   4880 
   4881 	memset(&cmd, 0, sizeof cmd);
   4882 	cmd.ucode.once.enable = 0xffffffff;
   4883 	cmd.ucode.once.start  = 0xffffffff;
   4884 	cmd.ucode.once.send   = 0xffffffff;
   4885 	cmd.ucode.flags       = 0xffffffff;
   4886 	DPRINTF(("sending calibration query\n"));
   4887 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   4888 	if (error != 0)
   4889 		return error;
   4890 
   4891 	/* Wait at most two seconds for calibration to complete. */
   4892 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   4893 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   4894 	return error;
   4895 }
   4896 
   4897 /*
   4898  * Send calibration results to the runtime firmware.  These results were
   4899  * obtained on first boot from the initialization firmware.
   4900  */
   4901 static int
   4902 iwn5000_send_calibration(struct iwn_softc *sc)
   4903 {
   4904 	int idx, error;
   4905 
   4906 	for (idx = 0; idx < 5; idx++) {
   4907 		if (sc->calibcmd[idx].buf == NULL)
   4908 			continue;	/* No results available. */
   4909 		DPRINTF(("send calibration result idx=%d len=%d\n",
   4910 		    idx, sc->calibcmd[idx].len));
   4911 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   4912 		    sc->calibcmd[idx].len, 0);
   4913 		if (error != 0) {
   4914 			aprint_error_dev(sc->sc_dev,
   4915 			    "could not send calibration result\n");
   4916 			return error;
   4917 		}
   4918 	}
   4919 	return 0;
   4920 }
   4921 
   4922 static int
   4923 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   4924 {
   4925 	struct iwn5000_wimax_coex wimax;
   4926 
   4927 #ifdef notyet
   4928 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   4929 		/* Enable WiMAX coexistence for combo adapters. */
   4930 		wimax.flags =
   4931 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   4932 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   4933 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   4934 		    IWN_WIMAX_COEX_ENABLE;
   4935 		memcpy(wimax.events, iwn6050_wimax_events,
   4936 		    sizeof iwn6050_wimax_events);
   4937 	} else
   4938 #endif
   4939 	{
   4940 		/* Disable WiMAX coexistence. */
   4941 		wimax.flags = 0;
   4942 		memset(wimax.events, 0, sizeof wimax.events);
   4943 	}
   4944 	DPRINTF(("Configuring WiMAX coexistence\n"));
   4945 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   4946 }
   4947 
   4948 /*
   4949  * This function is called after the runtime firmware notifies us of its
   4950  * readiness (called in a process context.)
   4951  */
   4952 static int
   4953 iwn4965_post_alive(struct iwn_softc *sc)
   4954 {
   4955 	int error, qid;
   4956 
   4957 	if ((error = iwn_nic_lock(sc)) != 0)
   4958 		return error;
   4959 
   4960 	/* Clear TX scheduler state in SRAM. */
   4961 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   4962 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   4963 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   4964 
   4965 	/* Set physical address of TX scheduler rings (1KB aligned.) */
   4966 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   4967 
   4968 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   4969 
   4970 	/* Disable chain mode for all our 16 queues. */
   4971 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   4972 
   4973 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   4974 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   4975 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   4976 
   4977 		/* Set scheduler window size. */
   4978 		iwn_mem_write(sc, sc->sched_base +
   4979 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   4980 		/* Set scheduler frame limit. */
   4981 		iwn_mem_write(sc, sc->sched_base +
   4982 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4983 		    IWN_SCHED_LIMIT << 16);
   4984 	}
   4985 
   4986 	/* Enable interrupts for all our 16 queues. */
   4987 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   4988 	/* Identify TX FIFO rings (0-7). */
   4989 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   4990 
   4991 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   4992 	for (qid = 0; qid < 7; qid++) {
   4993 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   4994 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4995 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   4996 	}
   4997 	iwn_nic_unlock(sc);
   4998 	return 0;
   4999 }
   5000 
   5001 /*
   5002  * This function is called after the initialization or runtime firmware
   5003  * notifies us of its readiness (called in a process context.)
   5004  */
   5005 static int
   5006 iwn5000_post_alive(struct iwn_softc *sc)
   5007 {
   5008 	int error, qid;
   5009 
   5010 	/* Switch to using ICT interrupt mode. */
   5011 	iwn5000_ict_reset(sc);
   5012 
   5013 	if ((error = iwn_nic_lock(sc)) != 0)
   5014 		return error;
   5015 
   5016 	/* Clear TX scheduler state in SRAM. */
   5017 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5018 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   5019 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   5020 
   5021 	/* Set physical address of TX scheduler rings (1KB aligned.) */
   5022 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5023 
   5024 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5025 
   5026 	/* Enable chain mode for all queues, except command queue. */
   5027 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   5028 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   5029 
   5030 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   5031 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   5032 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5033 
   5034 		iwn_mem_write(sc, sc->sched_base +
   5035 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   5036 		/* Set scheduler window size and frame limit. */
   5037 		iwn_mem_write(sc, sc->sched_base +
   5038 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5039 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5040 	}
   5041 
   5042 	/* Enable interrupts for all our 20 queues. */
   5043 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   5044 	/* Identify TX FIFO rings (0-7). */
   5045 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   5046 
   5047 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5048 	for (qid = 0; qid < 7; qid++) {
   5049 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   5050 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5051 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   5052 	}
   5053 	iwn_nic_unlock(sc);
   5054 
   5055 	/* Configure WiMAX coexistence for combo adapters. */
   5056 	error = iwn5000_send_wimax_coex(sc);
   5057 	if (error != 0) {
   5058 		aprint_error_dev(sc->sc_dev,
   5059 		    "could not configure WiMAX coexistence\n");
   5060 		return error;
   5061 	}
   5062 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5063 		struct iwn5000_phy_calib_crystal cmd;
   5064 
   5065 		/* Perform crystal calibration. */
   5066 		memset(&cmd, 0, sizeof cmd);
   5067 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5068 		cmd.ngroups = 1;
   5069 		cmd.isvalid = 1;
   5070 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5071 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5072 		DPRINTF(("sending crystal calibration %d, %d\n",
   5073 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5074 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5075 		if (error != 0) {
   5076 			aprint_error_dev(sc->sc_dev,
   5077 			    "crystal calibration failed\n");
   5078 			return error;
   5079 		}
   5080 	}
   5081 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5082 		/* Query calibration from the initialization firmware. */
   5083 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5084 			aprint_error_dev(sc->sc_dev,
   5085 			    "could not query calibration\n");
   5086 			return error;
   5087 		}
   5088 		/*
   5089 		 * We have the calibration results now, reboot with the
   5090 		 * runtime firmware (call ourselves recursively!)
   5091 		 */
   5092 		iwn_hw_stop(sc);
   5093 		error = iwn_hw_init(sc);
   5094 	} else {
   5095 		/* Send calibration results to runtime firmware. */
   5096 		error = iwn5000_send_calibration(sc);
   5097 	}
   5098 	return error;
   5099 }
   5100 
   5101 /*
   5102  * The firmware boot code is small and is intended to be copied directly into
   5103  * the NIC internal memory (no DMA transfer.)
   5104  */
   5105 static int
   5106 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5107 {
   5108 	int error, ntries;
   5109 
   5110 	size /= sizeof (uint32_t);
   5111 
   5112 	if ((error = iwn_nic_lock(sc)) != 0)
   5113 		return error;
   5114 
   5115 	/* Copy microcode image into NIC memory. */
   5116 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5117 	    (const uint32_t *)ucode, size);
   5118 
   5119 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5120 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5121 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5122 
   5123 	/* Start boot load now. */
   5124 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5125 
   5126 	/* Wait for transfer to complete. */
   5127 	for (ntries = 0; ntries < 1000; ntries++) {
   5128 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5129 		    IWN_BSM_WR_CTRL_START))
   5130 			break;
   5131 		DELAY(10);
   5132 	}
   5133 	if (ntries == 1000) {
   5134 		aprint_error_dev(sc->sc_dev,
   5135 		    "could not load boot firmware\n");
   5136 		iwn_nic_unlock(sc);
   5137 		return ETIMEDOUT;
   5138 	}
   5139 
   5140 	/* Enable boot after power up. */
   5141 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5142 
   5143 	iwn_nic_unlock(sc);
   5144 	return 0;
   5145 }
   5146 
   5147 static int
   5148 iwn4965_load_firmware(struct iwn_softc *sc)
   5149 {
   5150 	struct iwn_fw_info *fw = &sc->fw;
   5151 	struct iwn_dma_info *dma = &sc->fw_dma;
   5152 	int error;
   5153 
   5154 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5155 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5156 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5157 	    BUS_DMASYNC_PREWRITE);
   5158 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5159 	    fw->init.text, fw->init.textsz);
   5160 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5161 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5162 
   5163 	/* Tell adapter where to find initialization sections. */
   5164 	if ((error = iwn_nic_lock(sc)) != 0)
   5165 		return error;
   5166 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5167 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5168 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5169 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5170 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5171 	iwn_nic_unlock(sc);
   5172 
   5173 	/* Load firmware boot code. */
   5174 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5175 	if (error != 0) {
   5176 		aprint_error_dev(sc->sc_dev,
   5177 		    "could not load boot firmware\n");
   5178 		return error;
   5179 	}
   5180 	/* Now press "execute". */
   5181 	IWN_WRITE(sc, IWN_RESET, 0);
   5182 
   5183 	/* Wait at most one second for first alive notification. */
   5184 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5185 		aprint_error_dev(sc->sc_dev,
   5186 		    "timeout waiting for adapter to initialize\n");
   5187 		return error;
   5188 	}
   5189 
   5190 	/* Retrieve current temperature for initial TX power calibration. */
   5191 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5192 	sc->temp = iwn4965_get_temperature(sc);
   5193 
   5194 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5195 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5196 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5197 	    BUS_DMASYNC_PREWRITE);
   5198 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5199 	    fw->main.text, fw->main.textsz);
   5200 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5201 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5202 
   5203 	/* Tell adapter where to find runtime sections. */
   5204 	if ((error = iwn_nic_lock(sc)) != 0)
   5205 		return error;
   5206 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5207 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5208 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5209 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5210 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5211 	    IWN_FW_UPDATED | fw->main.textsz);
   5212 	iwn_nic_unlock(sc);
   5213 
   5214 	return 0;
   5215 }
   5216 
   5217 static int
   5218 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5219     const uint8_t *section, int size)
   5220 {
   5221 	struct iwn_dma_info *dma = &sc->fw_dma;
   5222 	int error;
   5223 
   5224 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5225 	memcpy(dma->vaddr, section, size);
   5226 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5227 
   5228 	if ((error = iwn_nic_lock(sc)) != 0)
   5229 		return error;
   5230 
   5231 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5232 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5233 
   5234 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5235 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5236 	    IWN_LOADDR(dma->paddr));
   5237 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5238 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5239 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5240 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5241 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5242 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5243 
   5244 	/* Kick Flow Handler to start DMA transfer. */
   5245 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5246 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5247 
   5248 	iwn_nic_unlock(sc);
   5249 
   5250 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5251 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5252 }
   5253 
   5254 static int
   5255 iwn5000_load_firmware(struct iwn_softc *sc)
   5256 {
   5257 	struct iwn_fw_part *fw;
   5258 	int error;
   5259 
   5260 	/* Load the initialization firmware on first boot only. */
   5261 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5262 	    &sc->fw.main : &sc->fw.init;
   5263 
   5264 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5265 	    fw->text, fw->textsz);
   5266 	if (error != 0) {
   5267 		aprint_error_dev(sc->sc_dev,
   5268 		    "could not load firmware %s section\n", ".text");
   5269 		return error;
   5270 	}
   5271 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5272 	    fw->data, fw->datasz);
   5273 	if (error != 0) {
   5274 		aprint_error_dev(sc->sc_dev,
   5275 		    "could not load firmware %s section\n", ".data");
   5276 		return error;
   5277 	}
   5278 
   5279 	/* Now press "execute". */
   5280 	IWN_WRITE(sc, IWN_RESET, 0);
   5281 	return 0;
   5282 }
   5283 
   5284 /*
   5285  * Extract text and data sections from a legacy firmware image.
   5286  */
   5287 static int
   5288 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
   5289 {
   5290 	const uint32_t *ptr;
   5291 	size_t hdrlen = 24;
   5292 	uint32_t rev;
   5293 
   5294 	ptr = (const uint32_t *)fw->data;
   5295 	rev = le32toh(*ptr++);
   5296 
   5297 	/* Check firmware API version. */
   5298 	if (IWN_FW_API(rev) <= 1) {
   5299 		aprint_error_dev(sc->sc_dev,
   5300 		    "bad firmware, need API version >=2\n");
   5301 		return EINVAL;
   5302 	}
   5303 	if (IWN_FW_API(rev) >= 3) {
   5304 		/* Skip build number (version 2 header). */
   5305 		hdrlen += 4;
   5306 		ptr++;
   5307 	}
   5308 	if (fw->size < hdrlen) {
   5309 		aprint_error_dev(sc->sc_dev,
   5310 		    "firmware too short: %zd bytes\n", fw->size);
   5311 		return EINVAL;
   5312 	}
   5313 	fw->main.textsz = le32toh(*ptr++);
   5314 	fw->main.datasz = le32toh(*ptr++);
   5315 	fw->init.textsz = le32toh(*ptr++);
   5316 	fw->init.datasz = le32toh(*ptr++);
   5317 	fw->boot.textsz = le32toh(*ptr++);
   5318 
   5319 	/* Check that all firmware sections fit. */
   5320 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
   5321 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
   5322 		aprint_error_dev(sc->sc_dev,
   5323 		    "firmware too short: %zd bytes\n", fw->size);
   5324 		return EINVAL;
   5325 	}
   5326 
   5327 	/* Get pointers to firmware sections. */
   5328 	fw->main.text = (const uint8_t *)ptr;
   5329 	fw->main.data = fw->main.text + fw->main.textsz;
   5330 	fw->init.text = fw->main.data + fw->main.datasz;
   5331 	fw->init.data = fw->init.text + fw->init.textsz;
   5332 	fw->boot.text = fw->init.data + fw->init.datasz;
   5333 	return 0;
   5334 }
   5335 
   5336 /*
   5337  * Extract text and data sections from a TLV firmware image.
   5338  */
   5339 static int
   5340 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
   5341     uint16_t alt)
   5342 {
   5343 	const struct iwn_fw_tlv_hdr *hdr;
   5344 	const struct iwn_fw_tlv *tlv;
   5345 	const uint8_t *ptr, *end;
   5346 	uint64_t altmask;
   5347 	uint32_t len;
   5348 
   5349 	if (fw->size < sizeof (*hdr)) {
   5350 		aprint_error_dev(sc->sc_dev,
   5351 		    "firmware too short: %zd bytes\n", fw->size);
   5352 		return EINVAL;
   5353 	}
   5354 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
   5355 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
   5356 		aprint_error_dev(sc->sc_dev,
   5357 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
   5358 		return EINVAL;
   5359 	}
   5360 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
   5361 	    le32toh(hdr->build)));
   5362 
   5363 	/*
   5364 	 * Select the closest supported alternative that is less than
   5365 	 * or equal to the specified one.
   5366 	 */
   5367 	altmask = le64toh(hdr->altmask);
   5368 	while (alt > 0 && !(altmask & (1ULL << alt)))
   5369 		alt--;	/* Downgrade. */
   5370 	DPRINTF(("using alternative %d\n", alt));
   5371 
   5372 	ptr = (const uint8_t *)(hdr + 1);
   5373 	end = (const uint8_t *)(fw->data + fw->size);
   5374 
   5375 	/* Parse type-length-value fields. */
   5376 	while (ptr + sizeof (*tlv) <= end) {
   5377 		tlv = (const struct iwn_fw_tlv *)ptr;
   5378 		len = le32toh(tlv->len);
   5379 
   5380 		ptr += sizeof (*tlv);
   5381 		if (ptr + len > end) {
   5382 			aprint_error_dev(sc->sc_dev,
   5383 			    "firmware too short: %zd bytes\n", fw->size);
   5384 			return EINVAL;
   5385 		}
   5386 		/* Skip other alternatives. */
   5387 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
   5388 			goto next;
   5389 
   5390 		switch (le16toh(tlv->type)) {
   5391 		case IWN_FW_TLV_MAIN_TEXT:
   5392 			fw->main.text = ptr;
   5393 			fw->main.textsz = len;
   5394 			break;
   5395 		case IWN_FW_TLV_MAIN_DATA:
   5396 			fw->main.data = ptr;
   5397 			fw->main.datasz = len;
   5398 			break;
   5399 		case IWN_FW_TLV_INIT_TEXT:
   5400 			fw->init.text = ptr;
   5401 			fw->init.textsz = len;
   5402 			break;
   5403 		case IWN_FW_TLV_INIT_DATA:
   5404 			fw->init.data = ptr;
   5405 			fw->init.datasz = len;
   5406 			break;
   5407 		case IWN_FW_TLV_BOOT_TEXT:
   5408 			fw->boot.text = ptr;
   5409 			fw->boot.textsz = len;
   5410 			break;
   5411 		default:
   5412 			DPRINTF(("TLV type %d not handled\n",
   5413 			    le16toh(tlv->type)));
   5414 			break;
   5415 		}
   5416  next:		/* TLV fields are 32-bit aligned. */
   5417 		ptr += (len + 3) & ~3;
   5418 	}
   5419 	return 0;
   5420 }
   5421 
   5422 static int
   5423 iwn_read_firmware(struct iwn_softc *sc)
   5424 {
   5425 	const struct iwn_hal *hal = sc->sc_hal;
   5426 	struct iwn_fw_info *fw = &sc->fw;
   5427 	firmware_handle_t fwh;
   5428 	int error;
   5429 
   5430 	/* Initialize for error returns */
   5431 	fw->data = NULL;
   5432 	fw->size = 0;
   5433 
   5434 	/* Open firmware image. */
   5435 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5436 		aprint_error_dev(sc->sc_dev,
   5437 		    "could not get firmware handle %s\n", sc->fwname);
   5438 		return error;
   5439 	}
   5440 	fw->size = firmware_get_size(fwh);
   5441 	if (fw->size < sizeof (uint32_t)) {
   5442 		aprint_error_dev(sc->sc_dev,
   5443 		    "firmware too short: %zd bytes\n", fw->size);
   5444 		firmware_close(fwh);
   5445 		return EINVAL;
   5446 	}
   5447 
   5448 	/* Read the firmware. */
   5449 	fw->data = firmware_malloc(fw->size);
   5450 	if (fw->data == NULL) {
   5451 		aprint_error_dev(sc->sc_dev,
   5452 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5453 		firmware_close(fwh);
   5454 		return ENOMEM;
   5455 	}
   5456 	error = firmware_read(fwh, 0, fw->data, fw->size);
   5457 	firmware_close(fwh);
   5458 	if (error != 0) {
   5459 		aprint_error_dev(sc->sc_dev,
   5460 		    "could not read firmware %s\n", sc->fwname);
   5461 		goto out;
   5462 	}
   5463 
   5464 	/* Retrieve text and data sections. */
   5465 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
   5466 		error = iwn_read_firmware_leg(sc, fw);
   5467 	else
   5468 		error = iwn_read_firmware_tlv(sc, fw, 1);
   5469 	if (error != 0) {
   5470 		aprint_error_dev(sc->sc_dev,
   5471 		    "could not read firmware sections\n");
   5472 		goto out;
   5473 	}
   5474 
   5475 	/* Make sure text and data sections fit in hardware memory. */
   5476 	if (fw->main.textsz > hal->fw_text_maxsz ||
   5477 	    fw->main.datasz > hal->fw_data_maxsz ||
   5478 	    fw->init.textsz > hal->fw_text_maxsz ||
   5479 	    fw->init.datasz > hal->fw_data_maxsz ||
   5480 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5481 	    (fw->boot.textsz & 3) != 0) {
   5482 		aprint_error_dev(sc->sc_dev,
   5483 		    "firmware sections too large\n");
   5484 		goto out;
   5485 	}
   5486 
   5487 	/* We can proceed with loading the firmware. */
   5488 	return 0;
   5489 out:
   5490 	firmware_free(fw->data, fw->size);
   5491 	fw->data = NULL;
   5492 	fw->size = 0;
   5493 	return error ? error : EINVAL;
   5494 }
   5495 
   5496 static int
   5497 iwn_clock_wait(struct iwn_softc *sc)
   5498 {
   5499 	int ntries;
   5500 
   5501 	/* Set "initialization complete" bit. */
   5502 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5503 
   5504 	/* Wait for clock stabilization. */
   5505 	for (ntries = 0; ntries < 2500; ntries++) {
   5506 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5507 			return 0;
   5508 		DELAY(10);
   5509 	}
   5510 	aprint_error_dev(sc->sc_dev,
   5511 	    "timeout waiting for clock stabilization\n");
   5512 	return ETIMEDOUT;
   5513 }
   5514 
   5515 static int
   5516 iwn_apm_init(struct iwn_softc *sc)
   5517 {
   5518 	pcireg_t reg;
   5519 	int error;
   5520 
   5521 	/* Disable L0s exit timer (NMI bug workaround.) */
   5522 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   5523 	/* Don't wait for ICH L0s (ICH bug workaround.) */
   5524 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   5525 
   5526 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
   5527 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   5528 
   5529 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   5530 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   5531 
   5532 	/* Retrieve PCIe Active State Power Management (ASPM). */
   5533 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   5534 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   5535 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   5536 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   5537 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5538 	else
   5539 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5540 
   5541 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   5542 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   5543 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   5544 
   5545 	/* Wait for clock stabilization before accessing prph. */
   5546 	if ((error = iwn_clock_wait(sc)) != 0)
   5547 		return error;
   5548 
   5549 	if ((error = iwn_nic_lock(sc)) != 0)
   5550 		return error;
   5551 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   5552 		/* Enable DMA and BSM (Bootstrap State Machine.) */
   5553 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5554 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   5555 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   5556 	} else {
   5557 		/* Enable DMA. */
   5558 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5559 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5560 	}
   5561 	DELAY(20);
   5562 	/* Disable L1-Active. */
   5563 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   5564 	iwn_nic_unlock(sc);
   5565 
   5566 	return 0;
   5567 }
   5568 
   5569 static void
   5570 iwn_apm_stop_master(struct iwn_softc *sc)
   5571 {
   5572 	int ntries;
   5573 
   5574 	/* Stop busmaster DMA activity. */
   5575 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   5576 	for (ntries = 0; ntries < 100; ntries++) {
   5577 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   5578 			return;
   5579 		DELAY(10);
   5580 	}
   5581 	aprint_error_dev(sc->sc_dev,
   5582 	    "timeout waiting for master\n");
   5583 }
   5584 
   5585 static void
   5586 iwn_apm_stop(struct iwn_softc *sc)
   5587 {
   5588 	iwn_apm_stop_master(sc);
   5589 
   5590 	/* Reset the entire device. */
   5591 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   5592 	DELAY(10);
   5593 	/* Clear "initialization complete" bit. */
   5594 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5595 }
   5596 
   5597 static int
   5598 iwn4965_nic_config(struct iwn_softc *sc)
   5599 {
   5600 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   5601 		/*
   5602 		 * I don't believe this to be correct but this is what the
   5603 		 * vendor driver is doing. Probably the bits should not be
   5604 		 * shifted in IWN_RFCFG_*.
   5605 		 */
   5606 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5607 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5608 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5609 		    IWN_RFCFG_DASH(sc->rfcfg));
   5610 	}
   5611 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5612 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5613 	return 0;
   5614 }
   5615 
   5616 static int
   5617 iwn5000_nic_config(struct iwn_softc *sc)
   5618 {
   5619 	uint32_t tmp;
   5620 	int error;
   5621 
   5622 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   5623 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5624 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5625 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5626 		    IWN_RFCFG_DASH(sc->rfcfg));
   5627 	}
   5628 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5629 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5630 
   5631 	if ((error = iwn_nic_lock(sc)) != 0)
   5632 		return error;
   5633 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   5634 
   5635 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   5636 		/*
   5637 		 * Select first Switching Voltage Regulator (1.32V) to
   5638 		 * solve a stability issue related to noisy DC2DC line
   5639 		 * in the silicon of 1000 Series.
   5640 		 */
   5641 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   5642 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   5643 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   5644 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   5645 	}
   5646 	iwn_nic_unlock(sc);
   5647 
   5648 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   5649 		/* Use internal power amplifier only. */
   5650 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   5651 	}
   5652 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
   5653 		/* Indicate that ROM calibration version is >=6. */
   5654 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   5655 	}
   5656 	return 0;
   5657 }
   5658 
   5659 /*
   5660  * Take NIC ownership over Intel Active Management Technology (AMT).
   5661  */
   5662 static int
   5663 iwn_hw_prepare(struct iwn_softc *sc)
   5664 {
   5665 	int ntries;
   5666 
   5667 	/* Check if hardware is ready. */
   5668 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5669 	for (ntries = 0; ntries < 5; ntries++) {
   5670 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5671 		    IWN_HW_IF_CONFIG_NIC_READY)
   5672 			return 0;
   5673 		DELAY(10);
   5674 	}
   5675 
   5676 	/* Hardware not ready, force into ready state. */
   5677 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   5678 	for (ntries = 0; ntries < 15000; ntries++) {
   5679 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5680 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   5681 			break;
   5682 		DELAY(10);
   5683 	}
   5684 	if (ntries == 15000)
   5685 		return ETIMEDOUT;
   5686 
   5687 	/* Hardware should be ready now. */
   5688 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5689 	for (ntries = 0; ntries < 5; ntries++) {
   5690 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5691 		    IWN_HW_IF_CONFIG_NIC_READY)
   5692 			return 0;
   5693 		DELAY(10);
   5694 	}
   5695 	return ETIMEDOUT;
   5696 }
   5697 
   5698 static int
   5699 iwn_hw_init(struct iwn_softc *sc)
   5700 {
   5701 	const struct iwn_hal *hal = sc->sc_hal;
   5702 	int error, chnl, qid;
   5703 
   5704 	/* Clear pending interrupts. */
   5705 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5706 
   5707 	if ((error = iwn_apm_init(sc)) != 0) {
   5708 		aprint_error_dev(sc->sc_dev,
   5709 		    "could not power ON adapter\n");
   5710 		return error;
   5711 	}
   5712 
   5713 	/* Select VMAIN power source. */
   5714 	if ((error = iwn_nic_lock(sc)) != 0)
   5715 		return error;
   5716 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   5717 	iwn_nic_unlock(sc);
   5718 
   5719 	/* Perform adapter-specific initialization. */
   5720 	if ((error = hal->nic_config(sc)) != 0)
   5721 		return error;
   5722 
   5723 	/* Initialize RX ring. */
   5724 	if ((error = iwn_nic_lock(sc)) != 0)
   5725 		return error;
   5726 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   5727 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   5728 	/* Set physical address of RX ring (256-byte aligned.) */
   5729 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   5730 	/* Set physical address of RX status (16-byte aligned.) */
   5731 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   5732 	/* Enable RX. */
   5733 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   5734 	    IWN_FH_RX_CONFIG_ENA           |
   5735 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   5736 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   5737 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   5738 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   5739 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   5740 	iwn_nic_unlock(sc);
   5741 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   5742 
   5743 	if ((error = iwn_nic_lock(sc)) != 0)
   5744 		return error;
   5745 
   5746 	/* Initialize TX scheduler. */
   5747 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
   5748 
   5749 	/* Set physical address of "keep warm" page (16-byte aligned.) */
   5750 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   5751 
   5752 	/* Initialize TX rings. */
   5753 	for (qid = 0; qid < hal->ntxqs; qid++) {
   5754 		struct iwn_tx_ring *txq = &sc->txq[qid];
   5755 
   5756 		/* Set physical address of TX ring (256-byte aligned.) */
   5757 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   5758 		    txq->desc_dma.paddr >> 8);
   5759 	}
   5760 	iwn_nic_unlock(sc);
   5761 
   5762 	/* Enable DMA channels. */
   5763 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
   5764 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   5765 		    IWN_FH_TX_CONFIG_DMA_ENA |
   5766 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   5767 	}
   5768 
   5769 	/* Clear "radio off" and "commands blocked" bits. */
   5770 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5771 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   5772 
   5773 	/* Clear pending interrupts. */
   5774 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5775 	/* Enable interrupt coalescing. */
   5776 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   5777 	/* Enable interrupts. */
   5778 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   5779 
   5780 	/* _Really_ make sure "radio off" bit is cleared! */
   5781 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5782 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5783 
   5784 	if ((error = hal->load_firmware(sc)) != 0) {
   5785 		aprint_error_dev(sc->sc_dev,
   5786 		    "could not load firmware\n");
   5787 		return error;
   5788 	}
   5789 	/* Wait at most one second for firmware alive notification. */
   5790 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5791 		aprint_error_dev(sc->sc_dev,
   5792 		    "timeout waiting for adapter to initialize\n");
   5793 		return error;
   5794 	}
   5795 	/* Do post-firmware initialization. */
   5796 	return hal->post_alive(sc);
   5797 }
   5798 
   5799 static void
   5800 iwn_hw_stop(struct iwn_softc *sc)
   5801 {
   5802 	const struct iwn_hal *hal = sc->sc_hal;
   5803 	int chnl, qid, ntries;
   5804 	uint32_t tmp;
   5805 
   5806 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   5807 
   5808 	/* Disable interrupts. */
   5809 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   5810 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5811 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   5812 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5813 
   5814 	/* Make sure we no longer hold the NIC lock. */
   5815 	iwn_nic_unlock(sc);
   5816 
   5817 	/* Stop TX scheduler. */
   5818 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
   5819 
   5820 	/* Stop all DMA channels. */
   5821 	if (iwn_nic_lock(sc) == 0) {
   5822 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
   5823 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   5824 			for (ntries = 0; ntries < 200; ntries++) {
   5825 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
   5826 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
   5827 				    IWN_FH_TX_STATUS_IDLE(chnl))
   5828 					break;
   5829 				DELAY(10);
   5830 			}
   5831 		}
   5832 		iwn_nic_unlock(sc);
   5833 	}
   5834 
   5835 	/* Stop RX ring. */
   5836 	iwn_reset_rx_ring(sc, &sc->rxq);
   5837 
   5838 	/* Reset all TX rings. */
   5839 	for (qid = 0; qid < hal->ntxqs; qid++)
   5840 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   5841 
   5842 	if (iwn_nic_lock(sc) == 0) {
   5843 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   5844 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5845 		iwn_nic_unlock(sc);
   5846 	}
   5847 	DELAY(5);
   5848 	/* Power OFF adapter. */
   5849 	iwn_apm_stop(sc);
   5850 }
   5851 
   5852 static int
   5853 iwn_init(struct ifnet *ifp)
   5854 {
   5855 	struct iwn_softc *sc = ifp->if_softc;
   5856 	struct ieee80211com *ic = &sc->sc_ic;
   5857 	int error;
   5858 
   5859 	if ((error = iwn_hw_prepare(sc)) != 0) {
   5860 		aprint_error_dev(sc->sc_dev,
   5861 		    "hardware not ready\n");
   5862 		goto fail;
   5863 	}
   5864 
   5865 	/* Check that the radio is not disabled by hardware switch. */
   5866 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   5867 		aprint_error_dev(sc->sc_dev,
   5868 		    "radio is disabled by hardware switch\n");
   5869 		error = EPERM;	/* :-) */
   5870 		goto fail;
   5871 	}
   5872 
   5873 	/* Read firmware images from the filesystem. */
   5874 	if ((error = iwn_read_firmware(sc)) != 0) {
   5875 		aprint_error_dev(sc->sc_dev,
   5876 		    "could not read firmware\n");
   5877 		goto fail;
   5878 	}
   5879 
   5880 	/* Initialize interrupt mask to default value. */
   5881 	sc->int_mask = IWN_INT_MASK_DEF;
   5882 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5883 
   5884 	/* Initialize hardware and upload firmware. */
   5885 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
   5886 	error = iwn_hw_init(sc);
   5887 	firmware_free(sc->fw.data, sc->fw.size);
   5888 	sc->fw.data = NULL;
   5889 	sc->fw.size = 0;
   5890 	if (error != 0) {
   5891 		aprint_error_dev(sc->sc_dev,
   5892 		    "could not initialize hardware\n");
   5893 		goto fail;
   5894 	}
   5895 
   5896 	/* Configure adapter now that it is ready. */
   5897 	if ((error = iwn_config(sc)) != 0) {
   5898 		aprint_error_dev(sc->sc_dev,
   5899 		    "could not configure device\n");
   5900 		goto fail;
   5901 	}
   5902 
   5903 	ifp->if_flags &= ~IFF_OACTIVE;
   5904 	ifp->if_flags |= IFF_RUNNING;
   5905 
   5906 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   5907 		ieee80211_begin_scan(ic, 0);
   5908 	else
   5909 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   5910 
   5911 	return 0;
   5912 
   5913 fail:	iwn_stop(ifp, 1);
   5914 	return error;
   5915 }
   5916 
   5917 static void
   5918 iwn_stop(struct ifnet *ifp, int disable)
   5919 {
   5920 	struct iwn_softc *sc = ifp->if_softc;
   5921 	struct ieee80211com *ic = &sc->sc_ic;
   5922 
   5923 	ifp->if_timer = sc->sc_tx_timer = 0;
   5924 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5925 
   5926 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   5927 
   5928 	/* Power OFF hardware. */
   5929 	iwn_hw_stop(sc);
   5930 
   5931 #ifndef SMALL_KERNEL
   5932 	/* Temperature sensor is no longer valid. */
   5933 	sc->sc_sensor.value_cur = 0;
   5934 	sc->sc_sensor.state = ENVSYS_SINVALID;
   5935 #endif
   5936 }
   5937 
   5938 /*
   5939  * XXX MCLGETI alternative
   5940  *
   5941  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   5942  * as long as there are available free buffers then it uses MEXTMALLOC.,
   5943  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   5944  * The MCLGET4K code is used for testing an alternative mbuf cache.
   5945  */
   5946 
   5947 static struct mbuf *
   5948 MCLGETIalt(struct iwn_softc *sc, int how,
   5949     struct ifnet *ifp __unused, u_int size)
   5950 {
   5951 	struct mbuf *m;
   5952 #ifdef IWN_USE_RBUF
   5953 	struct iwn_rbuf *rbuf;
   5954 #endif
   5955 
   5956 	MGETHDR(m, how, MT_DATA);
   5957 	if (m == NULL)
   5958 		return NULL;
   5959 
   5960 #ifdef IWN_USE_RBUF
   5961 	if (sc->rxq.nb_free_entries > 0 &&
   5962 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   5963 		/* Attach buffer to mbuf header. */
   5964 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   5965 		m->m_flags |= M_EXT_RW;
   5966 	}
   5967 	else {
   5968 		MEXTMALLOC(m, size, how);
   5969 		if ((m->m_flags & M_EXT) == 0) {
   5970 			m_freem(m);
   5971 			return NULL;
   5972 		}
   5973 	}
   5974 
   5975 #else
   5976 #ifdef MCLGET4K
   5977 	if (size == 4096)
   5978 		MCLGET4K(m, how);
   5979 	else
   5980 		panic("size must be 4k");
   5981 #else
   5982 	MEXTMALLOC(m, size, how);
   5983 #endif
   5984 	if ((m->m_flags & M_EXT) == 0) {
   5985 		m_freem(m);
   5986 		return NULL;
   5987 	}
   5988 #endif
   5989 
   5990 	return m;
   5991 }
   5992 
   5993 #ifdef IWN_USE_RBUF
   5994 static struct iwn_rbuf *
   5995 iwn_alloc_rbuf(struct iwn_softc *sc)
   5996 {
   5997 	struct iwn_rbuf *rbuf;
   5998 	mutex_enter(&sc->rxq.freelist_mtx);
   5999 
   6000 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   6001 	if (rbuf != NULL) {
   6002 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   6003 		sc->rxq.nb_free_entries --;
   6004 	}
   6005 	mutex_exit(&sc->rxq.freelist_mtx);
   6006 	return rbuf;
   6007 }
   6008 
   6009 /*
   6010  * This is called automatically by the network stack when the mbuf to which
   6011  * our RX buffer is attached is freed.
   6012  */
   6013 static void
   6014 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   6015 {
   6016 	struct iwn_rbuf *rbuf = arg;
   6017 	struct iwn_softc *sc = rbuf->sc;
   6018 
   6019 	/* Put the RX buffer back in the free list. */
   6020 	mutex_enter(&sc->rxq.freelist_mtx);
   6021 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   6022 	mutex_exit(&sc->rxq.freelist_mtx);
   6023 
   6024 	sc->rxq.nb_free_entries ++;
   6025 	if (__predict_true(m != NULL))
   6026 		pool_cache_put(mb_cache, m);
   6027 }
   6028 
   6029 static int
   6030 iwn_alloc_rpool(struct iwn_softc *sc)
   6031 {
   6032 	struct iwn_rx_ring *ring = &sc->rxq;
   6033 	struct iwn_rbuf *rbuf;
   6034 	int i, error;
   6035 
   6036 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   6037 
   6038 	/* Allocate a big chunk of DMA'able memory... */
   6039 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   6040 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   6041 	if (error != 0) {
   6042 		aprint_error_dev(sc->sc_dev,
   6043 		    "could not allocate RX buffers DMA memory\n");
   6044 		return error;
   6045 	}
   6046 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   6047 	SLIST_INIT(&ring->freelist);
   6048 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   6049 		rbuf = &ring->rbuf[i];
   6050 
   6051 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   6052 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   6053 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   6054 
   6055 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   6056 	}
   6057 	ring->nb_free_entries = IWN_RBUF_COUNT;
   6058 	return 0;
   6059 }
   6060 
   6061 static void
   6062 iwn_free_rpool(struct iwn_softc *sc)
   6063 {
   6064 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   6065 }
   6066 #endif
   6067 
   6068 /*
   6069  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
   6070  * Copyright (c) 2001 Atsushi Onoe
   6071  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
   6072  * Copyright (c) 2007-2009 Damien Bergamini
   6073  * All rights reserved.
   6074  */
   6075 
   6076 /*
   6077  * Add an SSID element to a frame (see 7.3.2.1).
   6078  */
   6079 static u_int8_t *
   6080 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
   6081 {
   6082 	*frm++ = IEEE80211_ELEMID_SSID;
   6083 	*frm++ = len;
   6084 	memcpy(frm, ssid, len);
   6085 	return frm + len;
   6086 }
   6087 
   6088 /*
   6089  * Add a supported rates element to a frame (see 7.3.2.2).
   6090  */
   6091 static u_int8_t *
   6092 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6093 {
   6094 	int nrates;
   6095 
   6096 	*frm++ = IEEE80211_ELEMID_RATES;
   6097 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
   6098 	*frm++ = nrates;
   6099 	memcpy(frm, rs->rs_rates, nrates);
   6100 	return frm + nrates;
   6101 }
   6102 
   6103 /*
   6104  * Add an extended supported rates element to a frame (see 7.3.2.14).
   6105  */
   6106 static u_int8_t *
   6107 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6108 {
   6109 	int nrates;
   6110 
   6111 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
   6112 
   6113 	*frm++ = IEEE80211_ELEMID_XRATES;
   6114 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   6115 	*frm++ = nrates;
   6116 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   6117 	return frm + nrates;
   6118 }
   6119 
   6120 /*
   6121  * XXX: Hack to set the current channel to the value advertised in beacons or
   6122  * probe responses. Only used during AP detection.
   6123  * XXX: Duplicated from if_iwi.c
   6124  */
   6125 static void
   6126 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
   6127 {
   6128 	struct ieee80211_frame *wh;
   6129 	uint8_t subtype;
   6130 	uint8_t *frm, *efrm;
   6131 
   6132 	wh = mtod(m, struct ieee80211_frame *);
   6133 
   6134 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6135 		return;
   6136 
   6137 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6138 
   6139 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6140 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6141 		return;
   6142 
   6143 	frm = (uint8_t *)(wh + 1);
   6144 	efrm = mtod(m, uint8_t *) + m->m_len;
   6145 
   6146 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6147 	while (frm < efrm) {
   6148 		if (*frm == IEEE80211_ELEMID_DSPARMS)
   6149 #if IEEE80211_CHAN_MAX < 255
   6150 		if (frm[2] <= IEEE80211_CHAN_MAX)
   6151 #endif
   6152 			ic->ic_curchan = &ic->ic_channels[frm[2]];
   6153 
   6154 		frm += frm[1] + 2;
   6155 	}
   6156 }
   6157 
   6158