if_iwn.c revision 1.47 1 /* $NetBSD: if_iwn.c,v 1.47 2010/07/02 14:47:25 christos Exp $ */
2 /* $OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $ */
3
4 /*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.47 2010/07/02 14:47:25 christos Exp $");
26
27 #define IWN_USE_RBUF /* Use local storage for RX */
28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */
29
30 /* XXX Avoid sensor code (correct option for NetBSD too?) */
31 #undef SMALL_KERNEL
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/proc.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45
46 #include <dev/sysmon/sysmonvar.h>
47
48 #include <machine/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #include <dev/firmload.h>
74
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77
78 static const pci_product_id_t iwn_devices[] = {
79 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
80 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
81 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
82 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
83 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
84 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
85 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
86 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
87 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
88 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
89 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
90 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
91 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
92 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
93 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
94 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
95 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
96 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
97 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
98 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
99 #ifdef notyet
100 /*
101 * XXX NetBSD: the 6005A replaces the two 6005, above
102 * (see OpenBSD rev 1.96).
103 */
104 PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_1,
105 PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_2,
106 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_1,
107 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_2,
108 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_1,
109 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_2,
110 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_3
111 #endif
112 };
113
114 /*
115 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
116 */
117 static const struct ieee80211_rateset iwn_rateset_11a =
118 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
119
120 static const struct ieee80211_rateset iwn_rateset_11b =
121 { 4, { 2, 4, 11, 22 } };
122
123 static const struct ieee80211_rateset iwn_rateset_11g =
124 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
125
126 static int iwn_match(device_t , struct cfdata *, void *);
127 static void iwn_attach(device_t , device_t , void *);
128 const struct iwn_hal *iwn_hal_attach(struct iwn_softc *, pci_product_id_t pid);
129 #ifndef SMALL_KERNEL
130 static void iwn_sensor_attach(struct iwn_softc *);
131 #endif
132 static void iwn_radiotap_attach(struct iwn_softc *);
133 static int iwn_detach(device_t , int);
134 #if 0
135 static void iwn_power(int, void *);
136 #endif
137 static bool iwn_resume(device_t, const pmf_qual_t *);
138 static int iwn_nic_lock(struct iwn_softc *);
139 static int iwn_eeprom_lock(struct iwn_softc *);
140 static int iwn_init_otprom(struct iwn_softc *);
141 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
142 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
143 void **, bus_size_t, bus_size_t);
144 static void iwn_dma_contig_free(struct iwn_dma_info *);
145 static int iwn_alloc_sched(struct iwn_softc *);
146 static void iwn_free_sched(struct iwn_softc *);
147 static int iwn_alloc_kw(struct iwn_softc *);
148 static void iwn_free_kw(struct iwn_softc *);
149 static int iwn_alloc_ict(struct iwn_softc *);
150 static void iwn_free_ict(struct iwn_softc *);
151 static int iwn_alloc_fwmem(struct iwn_softc *);
152 static void iwn_free_fwmem(struct iwn_softc *);
153 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
154 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
155 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
156 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
157 int);
158 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
159 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
160 static void iwn5000_ict_reset(struct iwn_softc *);
161 static int iwn_read_eeprom(struct iwn_softc *);
162 static void iwn4965_read_eeprom(struct iwn_softc *);
163 #ifdef IWN_DEBUG
164 static void iwn4965_print_power_group(struct iwn_softc *, int);
165 #endif
166 static void iwn5000_read_eeprom(struct iwn_softc *);
167 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
168 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
169 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
170 static void iwn_newassoc(struct ieee80211_node *, int);
171 static int iwn_media_change(struct ifnet *);
172 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
173 static void iwn_iter_func(void *, struct ieee80211_node *);
174 static void iwn_calib_timeout(void *);
175 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
176 struct iwn_rx_data *);
177 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
178 struct iwn_rx_data *);
179 #ifndef IEEE80211_NO_HT
180 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
181 struct iwn_rx_data *);
182 #endif
183 static void iwn5000_rx_calib_results(struct iwn_softc *,
184 struct iwn_rx_desc *, struct iwn_rx_data *);
185 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
186 struct iwn_rx_data *);
187 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
188 struct iwn_rx_data *);
189 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
190 struct iwn_rx_data *);
191 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
192 uint8_t);
193 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
194 static void iwn_notif_intr(struct iwn_softc *);
195 static void iwn_wakeup_intr(struct iwn_softc *);
196 static void iwn_fatal_intr(struct iwn_softc *);
197 static int iwn_intr(void *);
198 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
199 uint16_t);
200 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
201 uint16_t);
202 #ifdef notyet
203 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
204 #endif
205 static int iwn_tx(struct iwn_softc *, struct mbuf *,
206 struct ieee80211_node *, int);
207 static void iwn_start(struct ifnet *);
208 static void iwn_watchdog(struct ifnet *);
209 static int iwn_ioctl(struct ifnet *, u_long, void *);
210 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
211 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
212 int);
213 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
214 int);
215 static int iwn_set_link_quality(struct iwn_softc *,
216 struct ieee80211_node *);
217 static int iwn_add_broadcast_node(struct iwn_softc *, int);
218 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
219 static int iwn_set_critical_temp(struct iwn_softc *);
220 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
221 static void iwn4965_power_calibration(struct iwn_softc *, int);
222 static int iwn4965_set_txpower(struct iwn_softc *, int);
223 static int iwn5000_set_txpower(struct iwn_softc *, int);
224 static int iwn4965_get_rssi(const struct iwn_rx_stat *);
225 static int iwn5000_get_rssi(const struct iwn_rx_stat *);
226 static int iwn_get_noise(const struct iwn_rx_general_stats *);
227 static int iwn4965_get_temperature(struct iwn_softc *);
228 static int iwn5000_get_temperature(struct iwn_softc *);
229 static int iwn_init_sensitivity(struct iwn_softc *);
230 static void iwn_collect_noise(struct iwn_softc *,
231 const struct iwn_rx_general_stats *);
232 static int iwn4965_init_gains(struct iwn_softc *);
233 static int iwn5000_init_gains(struct iwn_softc *);
234 static int iwn4965_set_gains(struct iwn_softc *);
235 static int iwn5000_set_gains(struct iwn_softc *);
236 static void iwn_tune_sensitivity(struct iwn_softc *,
237 const struct iwn_rx_stats *);
238 static int iwn_send_sensitivity(struct iwn_softc *);
239 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
240 static int iwn_config(struct iwn_softc *);
241 static int iwn_scan(struct iwn_softc *, uint16_t);
242 static int iwn_auth(struct iwn_softc *);
243 static int iwn_run(struct iwn_softc *);
244 #ifdef IWN_HWCRYPTO
245 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
246 struct ieee80211_key *);
247 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
248 struct ieee80211_key *);
249 #endif
250 static int iwn_wme_update(struct ieee80211com *);
251 #ifndef IEEE80211_NO_HT
252 static int iwn_ampdu_rx_start(struct ieee80211com *,
253 struct ieee80211_node *, uint8_t);
254 static void iwn_ampdu_rx_stop(struct ieee80211com *,
255 struct ieee80211_node *, uint8_t);
256 static int iwn_ampdu_tx_start(struct ieee80211com *,
257 struct ieee80211_node *, uint8_t);
258 static void iwn_ampdu_tx_stop(struct ieee80211com *,
259 struct ieee80211_node *, uint8_t);
260 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
261 struct ieee80211_node *, uint8_t, uint16_t);
262 static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
263 uint8_t, uint16_t);
264 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
265 struct ieee80211_node *, uint8_t, uint16_t);
266 static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
267 uint8_t, uint16_t);
268 #endif
269 static int iwn5000_query_calibration(struct iwn_softc *);
270 static int iwn5000_send_calibration(struct iwn_softc *);
271 static int iwn5000_send_wimax_coex(struct iwn_softc *);
272 static int iwn4965_post_alive(struct iwn_softc *);
273 static int iwn5000_post_alive(struct iwn_softc *);
274 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
275 int);
276 static int iwn4965_load_firmware(struct iwn_softc *);
277 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
278 const uint8_t *, int);
279 static int iwn_read_firmware_leg(struct iwn_softc *,
280 struct iwn_fw_info *);
281 static int iwn_read_firmware_tlv(struct iwn_softc *,
282 struct iwn_fw_info *, uint16_t);
283 static int iwn5000_load_firmware(struct iwn_softc *);
284 static int iwn_read_firmware(struct iwn_softc *);
285 static int iwn_clock_wait(struct iwn_softc *);
286 static int iwn_apm_init(struct iwn_softc *);
287 static void iwn_apm_stop_master(struct iwn_softc *);
288 static void iwn_apm_stop(struct iwn_softc *);
289 static int iwn4965_nic_config(struct iwn_softc *);
290 static int iwn5000_nic_config(struct iwn_softc *);
291 static int iwn_hw_prepare(struct iwn_softc *);
292 static int iwn_hw_init(struct iwn_softc *);
293 static void iwn_hw_stop(struct iwn_softc *);
294 static int iwn_init(struct ifnet *);
295 static void iwn_stop(struct ifnet *, int);
296
297 /* XXX MCLGETI alternative */
298 static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
299 struct ifnet *, u_int);
300 #ifdef IWN_USE_RBUF
301 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
302 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
303 static int iwn_alloc_rpool(struct iwn_softc *);
304 static void iwn_free_rpool(struct iwn_softc *);
305 #endif
306
307 /* XXX needed by iwn_scan */
308 static u_int8_t *ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
309 static u_int8_t *ieee80211_add_rates(u_int8_t *,
310 const struct ieee80211_rateset *);
311 static u_int8_t *ieee80211_add_xrates(u_int8_t *,
312 const struct ieee80211_rateset *);
313
314 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *);
315
316 #ifdef IWN_DEBUG
317 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
318 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
319 int iwn_debug = 0;
320 #else
321 #define DPRINTF(x)
322 #define DPRINTFN(n, x)
323 #endif
324
325 static const struct iwn_hal iwn4965_hal = {
326 iwn4965_load_firmware,
327 iwn4965_read_eeprom,
328 iwn4965_post_alive,
329 iwn4965_nic_config,
330 iwn4965_update_sched,
331 iwn4965_get_temperature,
332 iwn4965_get_rssi,
333 iwn4965_set_txpower,
334 iwn4965_init_gains,
335 iwn4965_set_gains,
336 iwn4965_add_node,
337 iwn4965_tx_done,
338 #ifndef IEEE80211_NO_HT
339 iwn4965_ampdu_tx_start,
340 iwn4965_ampdu_tx_stop,
341 #endif
342 IWN4965_NTXQUEUES,
343 IWN4965_NDMACHNLS,
344 IWN4965_ID_BROADCAST,
345 IWN4965_RXONSZ,
346 IWN4965_SCHEDSZ,
347 IWN4965_FW_TEXT_MAXSZ,
348 IWN4965_FW_DATA_MAXSZ,
349 IWN4965_FWSZ,
350 IWN4965_SCHED_TXFACT
351 };
352
353 static const struct iwn_hal iwn5000_hal = {
354 iwn5000_load_firmware,
355 iwn5000_read_eeprom,
356 iwn5000_post_alive,
357 iwn5000_nic_config,
358 iwn5000_update_sched,
359 iwn5000_get_temperature,
360 iwn5000_get_rssi,
361 iwn5000_set_txpower,
362 iwn5000_init_gains,
363 iwn5000_set_gains,
364 iwn5000_add_node,
365 iwn5000_tx_done,
366 #ifndef IEEE80211_NO_HT
367 iwn5000_ampdu_tx_start,
368 iwn5000_ampdu_tx_stop,
369 #endif
370 IWN5000_NTXQUEUES,
371 IWN5000_NDMACHNLS,
372 IWN5000_ID_BROADCAST,
373 IWN5000_RXONSZ,
374 IWN5000_SCHEDSZ,
375 IWN5000_FW_TEXT_MAXSZ,
376 IWN5000_FW_DATA_MAXSZ,
377 IWN5000_FWSZ,
378 IWN5000_SCHED_TXFACT
379 };
380
381 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
382 iwn_detach, NULL);
383
384 static int
385 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
386 {
387 struct pci_attach_args *pa = aux;
388 size_t i;
389
390 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
391 return 0;
392
393 for (i = 0; i < __arraycount(iwn_devices); i++)
394 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
395 return 1;
396
397 return 0;
398 }
399
400 static void
401 iwn_attach(device_t parent __unused, device_t self, void *aux)
402 {
403 struct iwn_softc *sc = device_private(self);
404 struct ieee80211com *ic = &sc->sc_ic;
405 struct ifnet *ifp = &sc->sc_ec.ec_if;
406 struct pci_attach_args *pa = aux;
407 const struct iwn_hal *hal;
408 const char *intrstr;
409 char devinfo[256];
410 pci_intr_handle_t ih;
411 pcireg_t memtype, reg;
412 int i, error;
413 int revision;
414
415 sc->sc_dev = self;
416 sc->sc_pct = pa->pa_pc;
417 sc->sc_pcitag = pa->pa_tag;
418 sc->sc_dmat = pa->pa_dmat;
419 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
420
421 callout_init(&sc->calib_to, 0);
422 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
423
424 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
425 revision = PCI_REVISION(pa->pa_class);
426 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
427
428 /*
429 * Get the offset of the PCI Express Capability Structure in PCI
430 * Configuration Space.
431 */
432 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
433 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
434 if (error == 0) {
435 aprint_error(": PCIe capability structure not found!\n");
436 return;
437 }
438
439 /* Clear device-specific "PCI retry timeout" register (41h). */
440 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
441 reg &= ~0xff00;
442 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
443
444 /* Enable bus-mastering and hardware bug workaround. */
445 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */
446 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
447 reg |= PCI_COMMAND_MASTER_ENABLE;
448 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
449 DPRINTF(("PCIe INTx Disable set\n"));
450 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
451 }
452 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
453
454 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
455 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
456 &sc->sc_sh, NULL, &sc->sc_sz);
457 if (error != 0) {
458 aprint_error(": can't map mem space\n");
459 return;
460 }
461
462 /* Install interrupt handler. */
463 if (pci_intr_map(pa, &ih) != 0) {
464 aprint_error(": can't map interrupt\n");
465 return;
466 }
467 intrstr = pci_intr_string(sc->sc_pct, ih);
468 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
469 if (sc->sc_ih == NULL) {
470 aprint_error(": can't establish interrupt");
471 if (intrstr != NULL)
472 aprint_error(" at %s", intrstr);
473 aprint_error("\n");
474 return;
475 }
476 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
477
478 /* Attach Hardware Abstraction Layer. */
479 hal = iwn_hal_attach(sc, PCI_PRODUCT(pa->pa_id));
480 if (hal == NULL)
481 return;
482
483 if ((error = iwn_hw_prepare(sc)) != 0) {
484 aprint_error(": hardware not ready\n");
485 return;
486 }
487
488 /* Read MAC address, channels, etc from EEPROM. */
489 if ((error = iwn_read_eeprom(sc)) != 0) {
490 aprint_error(": could not read EEPROM\n");
491 return;
492 }
493
494 /* Allocate DMA memory for firmware transfers. */
495 if ((error = iwn_alloc_fwmem(sc)) != 0) {
496 aprint_error(": could not allocate memory for firmware\n");
497 return;
498 }
499
500 /* Allocate "Keep Warm" page. */
501 if ((error = iwn_alloc_kw(sc)) != 0) {
502 aprint_error(": could not allocate keep warm page\n");
503 goto fail1;
504 }
505
506 /* Allocate ICT table for 5000 Series. */
507 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
508 (error = iwn_alloc_ict(sc)) != 0) {
509 aprint_error(": could not allocate ICT table\n");
510 goto fail2;
511 }
512
513 /* Allocate TX scheduler "rings". */
514 if ((error = iwn_alloc_sched(sc)) != 0) {
515 aprint_error(": could not allocate TX scheduler rings\n");
516 goto fail3;
517 }
518
519 #ifdef IWN_USE_RBUF
520 /* Allocate RX buffers. */
521 if ((error = iwn_alloc_rpool(sc)) != 0) {
522 aprint_error_dev(self, "could not allocate RX buffers\n");
523 goto fail3;
524 }
525 #endif
526
527 /* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */
528 for (i = 0; i < hal->ntxqs; i++) {
529 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
530 aprint_error(": could not allocate TX ring %d\n", i);
531 goto fail4;
532 }
533 }
534
535 /* Allocate RX ring. */
536 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
537 aprint_error(": could not allocate RX ring\n");
538 goto fail4;
539 }
540
541 /* Clear pending interrupts. */
542 IWN_WRITE(sc, IWN_INT, 0xffffffff);
543
544 /* Count the number of available chains. */
545 sc->ntxchains =
546 ((sc->txchainmask >> 2) & 1) +
547 ((sc->txchainmask >> 1) & 1) +
548 ((sc->txchainmask >> 0) & 1);
549 sc->nrxchains =
550 ((sc->rxchainmask >> 2) & 1) +
551 ((sc->rxchainmask >> 1) & 1) +
552 ((sc->rxchainmask >> 0) & 1);
553 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
554 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
555 ether_sprintf(ic->ic_myaddr));
556
557 ic->ic_ifp = ifp;
558 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
559 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
560 ic->ic_state = IEEE80211_S_INIT;
561
562 /* Set device capabilities. */
563 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
564 * and IEEE80211_C_PMGT too. */
565 ic->ic_caps =
566 IEEE80211_C_IBSS | /* IBSS mode support */
567 IEEE80211_C_WPA | /* 802.11i */
568 IEEE80211_C_MONITOR | /* monitor mode supported */
569 IEEE80211_C_TXPMGT | /* tx power management */
570 IEEE80211_C_SHSLOT | /* short slot time supported */
571 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
572 IEEE80211_C_WME; /* 802.11e */
573
574 #ifndef IEEE80211_NO_HT
575 /* Set HT capabilities. */
576 ic->ic_htcaps =
577 #if IWN_RBUF_SIZE == 8192
578 IEEE80211_HTCAP_AMSDU7935 |
579 #endif
580 IEEE80211_HTCAP_CBW20_40 |
581 IEEE80211_HTCAP_SGI20 |
582 IEEE80211_HTCAP_SGI40;
583 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
584 ic->ic_htcaps |= IEEE80211_HTCAP_GF;
585 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
586 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
587 else
588 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
589 #endif /* !IEEE80211_NO_HT */
590
591 /* Set supported legacy rates. */
592 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
593 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
594 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
595 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
596 }
597 #ifndef IEEE80211_NO_HT
598 /* Set supported HT rates. */
599 ic->ic_sup_mcs[0] = 0xff;
600 if (sc->nrxchains > 1) /* MCS 0-7 */
601 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
602 if (sc->nrxchains > 2)
603 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
604 #endif
605
606 /* IBSS channel undefined for now. */
607 ic->ic_ibss_chan = &ic->ic_channels[0];
608
609 ifp->if_softc = sc;
610 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
611 ifp->if_init = iwn_init;
612 ifp->if_ioctl = iwn_ioctl;
613 ifp->if_start = iwn_start;
614 ifp->if_watchdog = iwn_watchdog;
615 IFQ_SET_READY(&ifp->if_snd);
616 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
617
618 if_attach(ifp);
619 ieee80211_ifattach(ic);
620 ic->ic_node_alloc = iwn_node_alloc;
621 ic->ic_newassoc = iwn_newassoc;
622 #ifdef IWN_HWCRYPTO
623 ic->ic_crypto.cs_key_set = iwn_set_key;
624 ic->ic_crypto.cs_key_delete = iwn_delete_key;
625 #endif
626 ic->ic_wme.wme_update = iwn_wme_update;
627 #ifndef IEEE80211_NO_HT
628 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
629 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
630 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
631 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
632 #endif
633
634 /* Override 802.11 state transition machine. */
635 sc->sc_newstate = ic->ic_newstate;
636 ic->ic_newstate = iwn_newstate;
637 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
638
639 sc->amrr.amrr_min_success_threshold = 1;
640 sc->amrr.amrr_max_success_threshold = 15;
641
642 #ifndef SMALL_KERNEL
643 iwn_sensor_attach(sc);
644 #endif
645 iwn_radiotap_attach(sc);
646
647 /*
648 * XXX for NetBSD, OpenBSD timeout_set replaced by
649 * callout_init and callout_setfunc, above.
650 */
651
652 if (pmf_device_register(self, NULL, iwn_resume))
653 pmf_class_network_register(self, ifp);
654 else
655 aprint_error_dev(self, "couldn't establish power handler\n");
656
657 /* XXX NetBSD add call to ieee80211_announce for dmesg. */
658 ieee80211_announce(ic);
659
660 return;
661
662 /* Free allocated memory if something failed during attachment. */
663 fail4: while (--i >= 0)
664 iwn_free_tx_ring(sc, &sc->txq[i]);
665 #ifdef IWN_USE_RBUF
666 iwn_free_rpool(sc);
667 #endif
668 iwn_free_sched(sc);
669 fail3: if (sc->ict != NULL)
670 iwn_free_ict(sc);
671 fail2: iwn_free_kw(sc);
672 fail1: iwn_free_fwmem(sc);
673 }
674
675 const struct iwn_hal *
676 iwn_hal_attach(struct iwn_softc *sc, pci_product_id_t pid)
677 {
678 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
679
680 switch (sc->hw_type) {
681 case IWN_HW_REV_TYPE_4965:
682 sc->sc_hal = &iwn4965_hal;
683 sc->limits = &iwn4965_sensitivity_limits;
684 sc->fwname = "iwlwifi-4965-2.ucode";
685 sc->txchainmask = IWN_ANT_AB;
686 sc->rxchainmask = IWN_ANT_ABC;
687 break;
688 case IWN_HW_REV_TYPE_5100:
689 sc->sc_hal = &iwn5000_hal;
690 sc->limits = &iwn5000_sensitivity_limits;
691 sc->fwname = "iwlwifi-5000-2.ucode";
692 sc->txchainmask = IWN_ANT_B;
693 sc->rxchainmask = IWN_ANT_AB;
694 break;
695 case IWN_HW_REV_TYPE_5150:
696 sc->sc_hal = &iwn5000_hal;
697 sc->limits = &iwn5150_sensitivity_limits;
698 sc->fwname = "iwlwifi-5150-2.ucode";
699 sc->txchainmask = IWN_ANT_A;
700 sc->rxchainmask = IWN_ANT_AB;
701 break;
702 case IWN_HW_REV_TYPE_5300:
703 case IWN_HW_REV_TYPE_5350:
704 sc->sc_hal = &iwn5000_hal;
705 sc->limits = &iwn5000_sensitivity_limits;
706 sc->fwname = "iwlwifi-5000-2.ucode";
707 sc->txchainmask = IWN_ANT_ABC;
708 sc->rxchainmask = IWN_ANT_ABC;
709 break;
710 case IWN_HW_REV_TYPE_1000:
711 sc->sc_hal = &iwn5000_hal;
712 sc->limits = &iwn1000_sensitivity_limits;
713 sc->fwname = "iwlwifi-1000-3.ucode";
714 sc->txchainmask = IWN_ANT_A;
715 sc->rxchainmask = IWN_ANT_AB;
716 break;
717 case IWN_HW_REV_TYPE_6000:
718 sc->sc_hal = &iwn5000_hal;
719 sc->limits = &iwn6000_sensitivity_limits;
720 sc->fwname = "iwlwifi-6000-4.ucode";
721 switch (pid) {
722 case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1:
723 case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2:
724 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
725 sc->txchainmask = IWN_ANT_BC;
726 sc->rxchainmask = IWN_ANT_BC;
727 break;
728 default:
729 sc->txchainmask = IWN_ANT_ABC;
730 sc->rxchainmask = IWN_ANT_ABC;
731 break;
732 }
733 break;
734 case IWN_HW_REV_TYPE_6050:
735 sc->sc_hal = &iwn5000_hal;
736 sc->limits = &iwn6000_sensitivity_limits;
737 sc->fwname = "iwlwifi-6050-2.ucode";
738 sc->txchainmask = IWN_ANT_AB;
739 sc->rxchainmask = IWN_ANT_AB;
740 break;
741 case IWN_HW_REV_TYPE_6005:
742 sc->sc_hal = &iwn5000_hal;
743 sc->limits = &iwn6000_sensitivity_limits;
744 sc->fwname = "iwlwifi-6005-2.ucode";
745 sc->txchainmask = IWN_ANT_AB;
746 sc->rxchainmask = IWN_ANT_AB;
747 break;
748 default:
749 aprint_normal(": adapter type %d not supported\n", sc->hw_type);
750 return NULL;
751 }
752 return sc->sc_hal;
753 }
754
755 #ifndef SMALL_KERNEL
756 /*
757 * Attach the adapter on-board thermal sensor to the sensors framework.
758 */
759 static void
760 iwn_sensor_attach(struct iwn_softc *sc)
761 {
762 int error;
763
764 sc->sc_sensor.units = ENVSYS_STEMP;
765 #if 0
766 /* XXX something like this ought to work */
767 sc->sc_sensor.flags = ENVSYS_FMONLIMITS | ENVSYS_FMONNOTSUPP;
768 sc->sc_sensor.limits.sel_critmax = IWN_CTOK(110);
769 #endif
770 strlcpy((sc->sc_sensor.desc), "TEMP", sizeof(sc->sc_sensor.desc));
771
772 /* Temperature is not valid unless interface is up. */
773 sc->sc_sensor.value_cur = 0;
774 sc->sc_sensor.state = ENVSYS_SINVALID;
775
776 sc->sc_sme = sysmon_envsys_create();
777
778 /* Initialize sensor */
779 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
780 sysmon_envsys_destroy(sc->sc_sme);
781 return;
782 }
783
784 /*
785 * Hook into the System Monitor.
786 */
787 sc->sc_sme->sme_name = device_xname(sc->sc_dev);
788 sc->sc_sme->sme_flags = SME_DISABLE_REFRESH;
789
790 if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) {
791 aprint_error_dev(sc->sc_dev,
792 "unable to register with sysmon (%d)\n", error);
793 sysmon_envsys_destroy(sc->sc_sme);
794 return;
795 }
796 }
797 #endif
798
799 /*
800 * Attach the interface to 802.11 radiotap.
801 */
802 static void
803 iwn_radiotap_attach(struct iwn_softc *sc)
804 {
805 struct ifnet *ifp = sc->sc_ic.ic_ifp;
806
807 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
808 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
809 &sc->sc_drvbpf);
810
811 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
812 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
813 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
814
815 sc->sc_txtap_len = sizeof sc->sc_txtapu;
816 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
817 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
818 }
819
820 static int
821 iwn_detach(device_t self, int flags __unused)
822 {
823 struct iwn_softc *sc = device_private(self);
824 struct ifnet *ifp = sc->sc_ic.ic_ifp;
825 int qid;
826
827 callout_stop(&sc->calib_to);
828
829 /* Uninstall interrupt handler. */
830 if (sc->sc_ih != NULL)
831 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
832
833 /* Free DMA resources. */
834 iwn_free_rx_ring(sc, &sc->rxq);
835 for (qid = 0; qid < sc->sc_hal->ntxqs; qid++)
836 iwn_free_tx_ring(sc, &sc->txq[qid]);
837 #ifdef IWN_USE_RBUF
838 iwn_free_rpool(sc);
839 #endif
840 iwn_free_sched(sc);
841 iwn_free_kw(sc);
842 if (sc->ict != NULL)
843 iwn_free_ict(sc);
844 iwn_free_fwmem(sc);
845
846 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
847
848 #ifndef SMALL_KERNEL
849 /* Detach the thermal sensor. */
850 sysmon_envsys_sensor_detach(sc->sc_sme, &sc->sc_sensor);
851 sysmon_envsys_destroy(sc->sc_sme);
852 #endif
853
854 ieee80211_ifdetach(&sc->sc_ic);
855 if_detach(ifp);
856
857 return 0;
858 }
859
860 #if 0
861 /*
862 * XXX Investigate if clearing the PCI retry timeout could eliminate
863 * the repeated scan calls. Also the calls to if_init and if_start
864 * are similar to the effect of adding the call to ifioctl_common .
865 */
866 static void
867 iwn_power(int why, void *arg)
868 {
869 struct iwn_softc *sc = arg;
870 struct ifnet *ifp;
871 pcireg_t reg;
872 int s;
873
874 if (why != PWR_RESUME)
875 return;
876
877 /* Clear device-specific "PCI retry timeout" register (41h). */
878 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
879 reg &= ~0xff00;
880 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
881
882 s = splnet();
883 ifp = &sc->sc_ic.ic_if;
884 if (ifp->if_flags & IFF_UP) {
885 ifp->if_init(ifp);
886 if (ifp->if_flags & IFF_RUNNING)
887 ifp->if_start(ifp);
888 }
889 splx(s);
890 }
891 #endif
892
893 static bool
894 iwn_resume(device_t dv, const pmf_qual_t *qual)
895 {
896 return true;
897 }
898
899 static int
900 iwn_nic_lock(struct iwn_softc *sc)
901 {
902 int ntries;
903
904 /* Request exclusive access to NIC. */
905 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
906
907 /* Spin until we actually get the lock. */
908 for (ntries = 0; ntries < 1000; ntries++) {
909 if ((IWN_READ(sc, IWN_GP_CNTRL) &
910 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
911 IWN_GP_CNTRL_MAC_ACCESS_ENA)
912 return 0;
913 DELAY(10);
914 }
915 return ETIMEDOUT;
916 }
917
918 static __inline void
919 iwn_nic_unlock(struct iwn_softc *sc)
920 {
921 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
922 }
923
924 static __inline uint32_t
925 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
926 {
927 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
928 IWN_BARRIER_READ_WRITE(sc);
929 return IWN_READ(sc, IWN_PRPH_RDATA);
930 }
931
932 static __inline void
933 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
934 {
935 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
936 IWN_BARRIER_WRITE(sc);
937 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
938 }
939
940 static __inline void
941 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
942 {
943 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
944 }
945
946 static __inline void
947 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
948 {
949 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
950 }
951
952 static __inline void
953 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
954 const uint32_t *data, int count)
955 {
956 for (; count > 0; count--, data++, addr += 4)
957 iwn_prph_write(sc, addr, *data);
958 }
959
960 static __inline uint32_t
961 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
962 {
963 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
964 IWN_BARRIER_READ_WRITE(sc);
965 return IWN_READ(sc, IWN_MEM_RDATA);
966 }
967
968 static __inline void
969 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
970 {
971 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
972 IWN_BARRIER_WRITE(sc);
973 IWN_WRITE(sc, IWN_MEM_WDATA, data);
974 }
975
976 static __inline void
977 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
978 {
979 uint32_t tmp;
980
981 tmp = iwn_mem_read(sc, addr & ~3);
982 if (addr & 3)
983 tmp = (tmp & 0x0000ffff) | data << 16;
984 else
985 tmp = (tmp & 0xffff0000) | data;
986 iwn_mem_write(sc, addr & ~3, tmp);
987 }
988
989 static __inline void
990 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
991 int count)
992 {
993 for (; count > 0; count--, addr += 4)
994 *data++ = iwn_mem_read(sc, addr);
995 }
996
997 static __inline void
998 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
999 int count)
1000 {
1001 for (; count > 0; count--, addr += 4)
1002 iwn_mem_write(sc, addr, val);
1003 }
1004
1005 static int
1006 iwn_eeprom_lock(struct iwn_softc *sc)
1007 {
1008 int i, ntries;
1009
1010 for (i = 0; i < 100; i++) {
1011 /* Request exclusive access to EEPROM. */
1012 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1013 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1014
1015 /* Spin until we actually get the lock. */
1016 for (ntries = 0; ntries < 100; ntries++) {
1017 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1018 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1019 return 0;
1020 DELAY(10);
1021 }
1022 }
1023 return ETIMEDOUT;
1024 }
1025
1026 static __inline void
1027 iwn_eeprom_unlock(struct iwn_softc *sc)
1028 {
1029 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1030 }
1031
1032 /*
1033 * Initialize access by host to One Time Programmable ROM.
1034 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1035 */
1036 static int
1037 iwn_init_otprom(struct iwn_softc *sc)
1038 {
1039 uint16_t prev = 0, base, next;
1040 int count, error;
1041
1042 /* Wait for clock stabilization before accessing prph. */
1043 if ((error = iwn_clock_wait(sc)) != 0)
1044 return error;
1045
1046 if ((error = iwn_nic_lock(sc)) != 0)
1047 return error;
1048 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1049 DELAY(5);
1050 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1051 iwn_nic_unlock(sc);
1052
1053 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1054 if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1055 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1056 IWN_RESET_LINK_PWR_MGMT_DIS);
1057 }
1058 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1059 /* Clear ECC status. */
1060 IWN_SETBITS(sc, IWN_OTP_GP,
1061 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1062
1063 /*
1064 * Find the block before last block (contains the EEPROM image)
1065 * for HW without OTP shadow RAM.
1066 */
1067 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1068 /* Switch to absolute addressing mode. */
1069 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1070 base = 0;
1071 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1072 error = iwn_read_prom_data(sc, base, &next, 2);
1073 if (error != 0)
1074 return error;
1075 if (next == 0) /* End of linked-list. */
1076 break;
1077 prev = base;
1078 base = le16toh(next);
1079 }
1080 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1081 return EIO;
1082 /* Skip "next" word. */
1083 sc->prom_base = prev + 1;
1084 }
1085 return 0;
1086 }
1087
1088 static int
1089 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1090 {
1091 uint8_t *out = data;
1092 uint32_t val, tmp;
1093 int ntries;
1094
1095 addr += sc->prom_base;
1096 for (; count > 0; count -= 2, addr++) {
1097 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1098 for (ntries = 0; ntries < 10; ntries++) {
1099 val = IWN_READ(sc, IWN_EEPROM);
1100 if (val & IWN_EEPROM_READ_VALID)
1101 break;
1102 DELAY(5);
1103 }
1104 if (ntries == 10) {
1105 aprint_error_dev(sc->sc_dev,
1106 "timeout reading ROM at 0x%x\n", addr);
1107 return ETIMEDOUT;
1108 }
1109 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1110 /* OTPROM, check for ECC errors. */
1111 tmp = IWN_READ(sc, IWN_OTP_GP);
1112 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1113 aprint_error_dev(sc->sc_dev,
1114 "OTPROM ECC error at 0x%x\n", addr);
1115 return EIO;
1116 }
1117 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1118 /* Correctable ECC error, clear bit. */
1119 IWN_SETBITS(sc, IWN_OTP_GP,
1120 IWN_OTP_GP_ECC_CORR_STTS);
1121 }
1122 }
1123 *out++ = val >> 16;
1124 if (count > 1)
1125 *out++ = val >> 24;
1126 }
1127 return 0;
1128 }
1129
1130 static int
1131 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1132 bus_size_t size, bus_size_t alignment)
1133 {
1134 int nsegs, error;
1135
1136 dma->tag = tag;
1137 dma->size = size;
1138
1139 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1140 &dma->map);
1141 if (error != 0)
1142 goto fail;
1143
1144 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1145 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1146 if (error != 0)
1147 goto fail;
1148
1149 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1150 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1151 if (error != 0)
1152 goto fail;
1153
1154 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1155 BUS_DMA_NOWAIT);
1156 if (error != 0)
1157 goto fail;
1158
1159 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1160 memset(dma->vaddr, 0, size);
1161 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1162
1163 dma->paddr = dma->map->dm_segs[0].ds_addr;
1164 if (kvap != NULL)
1165 *kvap = dma->vaddr;
1166
1167 return 0;
1168
1169 fail: iwn_dma_contig_free(dma);
1170 return error;
1171 }
1172
1173 static void
1174 iwn_dma_contig_free(struct iwn_dma_info *dma)
1175 {
1176 if (dma->map != NULL) {
1177 if (dma->vaddr != NULL) {
1178 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1179 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1180 bus_dmamap_unload(dma->tag, dma->map);
1181 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1182 bus_dmamem_free(dma->tag, &dma->seg, 1);
1183 dma->vaddr = NULL;
1184 }
1185 bus_dmamap_destroy(dma->tag, dma->map);
1186 dma->map = NULL;
1187 }
1188 }
1189
1190 static int
1191 iwn_alloc_sched(struct iwn_softc *sc)
1192 {
1193 /* TX scheduler rings must be aligned on a 1KB boundary. */
1194 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1195 (void **)&sc->sched, sc->sc_hal->schedsz, 1024);
1196 }
1197
1198 static void
1199 iwn_free_sched(struct iwn_softc *sc)
1200 {
1201 iwn_dma_contig_free(&sc->sched_dma);
1202 }
1203
1204 static int
1205 iwn_alloc_kw(struct iwn_softc *sc)
1206 {
1207 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1208 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1209 4096);
1210 }
1211
1212 static void
1213 iwn_free_kw(struct iwn_softc *sc)
1214 {
1215 iwn_dma_contig_free(&sc->kw_dma);
1216 }
1217
1218 static int
1219 iwn_alloc_ict(struct iwn_softc *sc)
1220 {
1221 /* ICT table must be aligned on a 4KB boundary. */
1222 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1223 (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1224 }
1225
1226 static void
1227 iwn_free_ict(struct iwn_softc *sc)
1228 {
1229 iwn_dma_contig_free(&sc->ict_dma);
1230 }
1231
1232 static int
1233 iwn_alloc_fwmem(struct iwn_softc *sc)
1234 {
1235 /* Must be aligned on a 16-byte boundary. */
1236 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1237 sc->sc_hal->fwsz, 16);
1238 }
1239
1240 static void
1241 iwn_free_fwmem(struct iwn_softc *sc)
1242 {
1243 iwn_dma_contig_free(&sc->fw_dma);
1244 }
1245
1246 static int
1247 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1248 {
1249 bus_size_t size;
1250 int i, error;
1251
1252 ring->cur = 0;
1253
1254 /* Allocate RX descriptors (256-byte aligned.) */
1255 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1256 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1257 (void **)&ring->desc, size, 256);
1258 if (error != 0) {
1259 aprint_error_dev(sc->sc_dev,
1260 "could not allocate RX ring DMA memory\n");
1261 goto fail;
1262 }
1263
1264 /* Allocate RX status area (16-byte aligned.) */
1265 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1266 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1267 if (error != 0) {
1268 aprint_error_dev(sc->sc_dev,
1269 "could not allocate RX status DMA memory\n");
1270 goto fail;
1271 }
1272
1273 /*
1274 * Allocate and map RX buffers.
1275 */
1276 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1277 struct iwn_rx_data *data = &ring->data[i];
1278
1279 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1280 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1281 &data->map);
1282 if (error != 0) {
1283 aprint_error_dev(sc->sc_dev,
1284 "could not create RX buf DMA map\n");
1285 goto fail;
1286 }
1287
1288 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1289 if (data->m == NULL) {
1290 aprint_error_dev(sc->sc_dev,
1291 "could not allocate RX mbuf\n");
1292 error = ENOBUFS;
1293 goto fail;
1294 }
1295
1296 error = bus_dmamap_load(sc->sc_dmat, data->map,
1297 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1298 BUS_DMA_NOWAIT | BUS_DMA_READ);
1299 if (error != 0) {
1300 aprint_error_dev(sc->sc_dev,
1301 "can't not map mbuf (error %d)\n", error);
1302 goto fail;
1303 }
1304
1305 /* Set physical address of RX buffer (256-byte aligned.) */
1306 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1307 }
1308
1309 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1310 BUS_DMASYNC_PREWRITE);
1311
1312 return 0;
1313
1314 fail: iwn_free_rx_ring(sc, ring);
1315 return error;
1316 }
1317
1318 static void
1319 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1320 {
1321 int ntries;
1322
1323 if (iwn_nic_lock(sc) == 0) {
1324 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1325 for (ntries = 0; ntries < 1000; ntries++) {
1326 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1327 IWN_FH_RX_STATUS_IDLE)
1328 break;
1329 DELAY(10);
1330 }
1331 iwn_nic_unlock(sc);
1332 }
1333 ring->cur = 0;
1334 sc->last_rx_valid = 0;
1335 }
1336
1337 static void
1338 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1339 {
1340 int i;
1341
1342 iwn_dma_contig_free(&ring->desc_dma);
1343 iwn_dma_contig_free(&ring->stat_dma);
1344
1345 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1346 struct iwn_rx_data *data = &ring->data[i];
1347
1348 if (data->m != NULL) {
1349 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1350 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1351 bus_dmamap_unload(sc->sc_dmat, data->map);
1352 m_freem(data->m);
1353 }
1354 if (data->map != NULL)
1355 bus_dmamap_destroy(sc->sc_dmat, data->map);
1356 }
1357 }
1358
1359 static int
1360 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1361 {
1362 bus_addr_t paddr;
1363 bus_size_t size;
1364 int i, error;
1365
1366 ring->qid = qid;
1367 ring->queued = 0;
1368 ring->cur = 0;
1369
1370 /* Allocate TX descriptors (256-byte aligned.) */
1371 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1372 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1373 (void **)&ring->desc, size, 256);
1374 if (error != 0) {
1375 aprint_error_dev(sc->sc_dev,
1376 "could not allocate TX ring DMA memory\n");
1377 goto fail;
1378 }
1379 /*
1380 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1381 * to allocate commands space for other rings.
1382 * XXX Do we really need to allocate descriptors for other rings?
1383 */
1384 if (qid > 4)
1385 return 0;
1386
1387 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1388 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1389 (void **)&ring->cmd, size, 4);
1390 if (error != 0) {
1391 aprint_error_dev(sc->sc_dev,
1392 "could not allocate TX cmd DMA memory\n");
1393 goto fail;
1394 }
1395
1396 paddr = ring->cmd_dma.paddr;
1397 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1398 struct iwn_tx_data *data = &ring->data[i];
1399
1400 data->cmd_paddr = paddr;
1401 data->scratch_paddr = paddr + 12;
1402 paddr += sizeof (struct iwn_tx_cmd);
1403
1404 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1405 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1406 &data->map);
1407 if (error != 0) {
1408 aprint_error_dev(sc->sc_dev,
1409 "could not create TX buf DMA map\n");
1410 goto fail;
1411 }
1412 }
1413 return 0;
1414
1415 fail: iwn_free_tx_ring(sc, ring);
1416 return error;
1417 }
1418
1419 static void
1420 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1421 {
1422 int i;
1423
1424 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1425 struct iwn_tx_data *data = &ring->data[i];
1426
1427 if (data->m != NULL) {
1428 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1429 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1430 bus_dmamap_unload(sc->sc_dmat, data->map);
1431 m_freem(data->m);
1432 data->m = NULL;
1433 }
1434 }
1435 /* Clear TX descriptors. */
1436 memset(ring->desc, 0, ring->desc_dma.size);
1437 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1438 ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1439 sc->qfullmsk &= ~(1 << ring->qid);
1440 ring->queued = 0;
1441 ring->cur = 0;
1442 }
1443
1444 static void
1445 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1446 {
1447 int i;
1448
1449 iwn_dma_contig_free(&ring->desc_dma);
1450 iwn_dma_contig_free(&ring->cmd_dma);
1451
1452 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1453 struct iwn_tx_data *data = &ring->data[i];
1454
1455 if (data->m != NULL) {
1456 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1457 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1458 bus_dmamap_unload(sc->sc_dmat, data->map);
1459 m_freem(data->m);
1460 }
1461 if (data->map != NULL)
1462 bus_dmamap_destroy(sc->sc_dmat, data->map);
1463 }
1464 }
1465
1466 static void
1467 iwn5000_ict_reset(struct iwn_softc *sc)
1468 {
1469 /* Disable interrupts. */
1470 IWN_WRITE(sc, IWN_INT_MASK, 0);
1471
1472 /* Reset ICT table. */
1473 memset(sc->ict, 0, IWN_ICT_SIZE);
1474 sc->ict_cur = 0;
1475
1476 /* Set physical address of ICT table (4KB aligned.) */
1477 DPRINTF(("enabling ICT\n"));
1478 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1479 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1480
1481 /* Enable periodic RX interrupt. */
1482 sc->int_mask |= IWN_INT_RX_PERIODIC;
1483 /* Switch to ICT interrupt mode in driver. */
1484 sc->sc_flags |= IWN_FLAG_USE_ICT;
1485
1486 /* Re-enable interrupts. */
1487 IWN_WRITE(sc, IWN_INT, 0xffffffff);
1488 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1489 }
1490
1491 static int
1492 iwn_read_eeprom(struct iwn_softc *sc)
1493 {
1494 const struct iwn_hal *hal = sc->sc_hal;
1495 struct ieee80211com *ic = &sc->sc_ic;
1496 uint16_t val;
1497 int error;
1498
1499 /* Check whether adapter has an EEPROM or an OTPROM. */
1500 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1501 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1502 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1503 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1504 "OTPROM" : "EEPROM"));
1505
1506 /* Adapter has to be powered on for EEPROM access to work. */
1507 if ((error = iwn_apm_init(sc)) != 0) {
1508 aprint_error_dev(sc->sc_dev,
1509 "could not power ON adapter\n");
1510 return error;
1511 }
1512
1513 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1514 aprint_error_dev(sc->sc_dev,
1515 "bad ROM signature\n");
1516 return EIO;
1517 }
1518 if ((error = iwn_eeprom_lock(sc)) != 0) {
1519 aprint_error_dev(sc->sc_dev,
1520 "could not lock ROM (error=%d)\n", error);
1521 return error;
1522 }
1523 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1524 if ((error = iwn_init_otprom(sc)) != 0) {
1525 aprint_error_dev(sc->sc_dev,
1526 "could not initialize OTPROM\n");
1527 return error;
1528 }
1529 }
1530
1531 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1532 sc->rfcfg = le16toh(val);
1533 DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1534
1535 /* Read MAC address. */
1536 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1537
1538 /* Read adapter-specific information from EEPROM. */
1539 hal->read_eeprom(sc);
1540
1541 iwn_apm_stop(sc); /* Power OFF adapter. */
1542
1543 iwn_eeprom_unlock(sc);
1544 return 0;
1545 }
1546
1547 static void
1548 iwn4965_read_eeprom(struct iwn_softc *sc)
1549 {
1550 uint32_t addr;
1551 uint16_t val;
1552 int i;
1553
1554 /* Read regulatory domain (4 ASCII characters.) */
1555 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1556
1557 /* Read the list of authorized channels (20MHz ones only.) */
1558 for (i = 0; i < 5; i++) {
1559 addr = iwn4965_regulatory_bands[i];
1560 iwn_read_eeprom_channels(sc, i, addr);
1561 }
1562
1563 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1564 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1565 sc->maxpwr2GHz = val & 0xff;
1566 sc->maxpwr5GHz = val >> 8;
1567 /* Check that EEPROM values are within valid range. */
1568 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1569 sc->maxpwr5GHz = 38;
1570 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1571 sc->maxpwr2GHz = 38;
1572 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1573
1574 /* Read samples for each TX power group. */
1575 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1576 sizeof sc->bands);
1577
1578 /* Read voltage at which samples were taken. */
1579 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1580 sc->eeprom_voltage = (int16_t)le16toh(val);
1581 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1582
1583 #ifdef IWN_DEBUG
1584 /* Print samples. */
1585 if (iwn_debug > 0) {
1586 for (i = 0; i < IWN_NBANDS; i++)
1587 iwn4965_print_power_group(sc, i);
1588 }
1589 #endif
1590 }
1591
1592 #ifdef IWN_DEBUG
1593 static void
1594 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1595 {
1596 struct iwn4965_eeprom_band *band = &sc->bands[i];
1597 struct iwn4965_eeprom_chan_samples *chans = band->chans;
1598 int j, c;
1599
1600 aprint_normal("===band %d===\n", i);
1601 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1602 aprint_normal("chan1 num=%d\n", chans[0].num);
1603 for (c = 0; c < 2; c++) {
1604 for (j = 0; j < IWN_NSAMPLES; j++) {
1605 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1606 "power=%d pa_det=%d\n", c, j,
1607 chans[0].samples[c][j].temp,
1608 chans[0].samples[c][j].gain,
1609 chans[0].samples[c][j].power,
1610 chans[0].samples[c][j].pa_det);
1611 }
1612 }
1613 aprint_normal("chan2 num=%d\n", chans[1].num);
1614 for (c = 0; c < 2; c++) {
1615 for (j = 0; j < IWN_NSAMPLES; j++) {
1616 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1617 "power=%d pa_det=%d\n", c, j,
1618 chans[1].samples[c][j].temp,
1619 chans[1].samples[c][j].gain,
1620 chans[1].samples[c][j].power,
1621 chans[1].samples[c][j].pa_det);
1622 }
1623 }
1624 }
1625 #endif
1626
1627 static void
1628 iwn5000_read_eeprom(struct iwn_softc *sc)
1629 {
1630 struct iwn5000_eeprom_calib_hdr hdr;
1631 int32_t temp, volt;
1632 uint32_t base, addr;
1633 uint16_t val;
1634 int i;
1635
1636 /* Read regulatory domain (4 ASCII characters.) */
1637 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1638 base = le16toh(val);
1639 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1640 sc->eeprom_domain, 4);
1641
1642 /* Read the list of authorized channels (20MHz ones only.) */
1643 for (i = 0; i < 5; i++) {
1644 addr = base + iwn5000_regulatory_bands[i];
1645 iwn_read_eeprom_channels(sc, i, addr);
1646 }
1647
1648 /* Read enhanced TX power information for 6000 Series. */
1649 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1650 iwn_read_eeprom_enhinfo(sc);
1651
1652 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1653 base = le16toh(val);
1654 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1655 DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1656 hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1657 sc->calib_ver = hdr.version;
1658
1659 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1660 /* Compute temperature offset. */
1661 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1662 temp = le16toh(val);
1663 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1664 volt = le16toh(val);
1665 sc->temp_off = temp - (volt / -5);
1666 DPRINTF(("temp=%d volt=%d offset=%dK\n",
1667 temp, volt, sc->temp_off));
1668 } else {
1669 /* Read crystal calibration. */
1670 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1671 &sc->eeprom_crystal, sizeof (uint32_t));
1672 DPRINTF(("crystal calibration 0x%08x\n",
1673 le32toh(sc->eeprom_crystal)));
1674 }
1675 }
1676
1677 static void
1678 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1679 {
1680 struct ieee80211com *ic = &sc->sc_ic;
1681 const struct iwn_chan_band *band = &iwn_bands[n];
1682 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1683 uint8_t chan;
1684 int i;
1685
1686 iwn_read_prom_data(sc, addr, channels,
1687 band->nchan * sizeof (struct iwn_eeprom_chan));
1688
1689 for (i = 0; i < band->nchan; i++) {
1690 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1691 continue;
1692
1693 chan = band->chan[i];
1694
1695 if (n == 0) { /* 2GHz band */
1696 ic->ic_channels[chan].ic_freq =
1697 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1698 ic->ic_channels[chan].ic_flags =
1699 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1700 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1701
1702 } else { /* 5GHz band */
1703 /*
1704 * Some adapters support channels 7, 8, 11 and 12
1705 * both in the 2GHz and 4.9GHz bands.
1706 * Because of limitations in our net80211 layer,
1707 * we don't support them in the 4.9GHz band.
1708 */
1709 if (chan <= 14)
1710 continue;
1711
1712 ic->ic_channels[chan].ic_freq =
1713 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1714 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1715 /* We have at least one valid 5GHz channel. */
1716 sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1717 }
1718
1719 /* Is active scan allowed on this channel? */
1720 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1721 ic->ic_channels[chan].ic_flags |=
1722 IEEE80211_CHAN_PASSIVE;
1723 }
1724
1725 /* Save maximum allowed TX power for this channel. */
1726 sc->maxpwr[chan] = channels[i].maxpwr;
1727
1728 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1729 chan, channels[i].flags, sc->maxpwr[chan]));
1730 }
1731 }
1732
1733 static void
1734 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1735 {
1736 struct iwn_eeprom_enhinfo enhinfo[35];
1737 uint16_t val, base;
1738 int8_t maxpwr;
1739 int i;
1740
1741 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1742 base = le16toh(val);
1743 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1744 enhinfo, sizeof enhinfo);
1745
1746 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1747 for (i = 0; i < __arraycount(enhinfo); i++) {
1748 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1749 continue; /* Skip invalid entries. */
1750
1751 maxpwr = 0;
1752 if (sc->txchainmask & IWN_ANT_A)
1753 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1754 if (sc->txchainmask & IWN_ANT_B)
1755 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1756 if (sc->txchainmask & IWN_ANT_C)
1757 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1758 if (sc->ntxchains == 2)
1759 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1760 else if (sc->ntxchains == 3)
1761 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1762 maxpwr /= 2; /* Convert half-dBm to dBm. */
1763
1764 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1765 sc->enh_maxpwr[i] = maxpwr;
1766 }
1767 }
1768
1769 static struct ieee80211_node *
1770 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1771 {
1772 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1773 }
1774
1775 static void
1776 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1777 {
1778 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1779 struct iwn_node *wn = (void *)ni;
1780 uint8_t rate;
1781 int ridx, i;
1782
1783 ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1784 /* Start at lowest available bit-rate, AMRR will raise. */
1785 ni->ni_txrate = 0;
1786
1787 for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1788 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1789 /* Map 802.11 rate to HW rate index. */
1790 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1791 if (iwn_rates[ridx].rate == rate)
1792 break;
1793 wn->ridx[i] = ridx;
1794 }
1795 }
1796
1797 static int
1798 iwn_media_change(struct ifnet *ifp)
1799 {
1800 struct iwn_softc *sc = ifp->if_softc;
1801 struct ieee80211com *ic = &sc->sc_ic;
1802 uint8_t rate, ridx;
1803 int error;
1804
1805 error = ieee80211_media_change(ifp);
1806 if (error != ENETRESET)
1807 return error;
1808
1809 if (ic->ic_fixed_rate != -1) {
1810 rate = ic->ic_sup_rates[ic->ic_curmode].
1811 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1812 /* Map 802.11 rate to HW rate index. */
1813 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1814 if (iwn_rates[ridx].rate == rate)
1815 break;
1816 sc->fixed_ridx = ridx;
1817 }
1818
1819 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1820 (IFF_UP | IFF_RUNNING)) {
1821 iwn_stop(ifp, 0);
1822 error = iwn_init(ifp);
1823 }
1824 return error;
1825 }
1826
1827 static int
1828 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1829 {
1830 struct ifnet *ifp = ic->ic_ifp;
1831 struct iwn_softc *sc = ifp->if_softc;
1832 int error;
1833
1834 callout_stop(&sc->calib_to);
1835
1836 switch (nstate) {
1837 case IEEE80211_S_SCAN:
1838 /* XXX Do not abort a running scan. */
1839 if (sc->sc_flags & IWN_FLAG_SCANNING) {
1840 if (ic->ic_state != nstate)
1841 aprint_error_dev(sc->sc_dev, "scan request(%d) "
1842 "while scanning(%d) ignored\n", nstate,
1843 ic->ic_state);
1844 break;
1845 }
1846
1847 /* XXX Not sure if call and flags are needed. */
1848 ieee80211_node_table_reset(&ic->ic_scan);
1849 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1850 sc->sc_flags |= IWN_FLAG_SCANNING;
1851
1852 /* Make the link LED blink while we're scanning. */
1853 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1854
1855 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1856 aprint_error_dev(sc->sc_dev,
1857 "could not initiate scan\n");
1858 return error;
1859 }
1860 ic->ic_state = nstate;
1861 return 0;
1862
1863 case IEEE80211_S_ASSOC:
1864 if (ic->ic_state != IEEE80211_S_RUN)
1865 break;
1866 /* FALLTHROUGH */
1867 case IEEE80211_S_AUTH:
1868 /* Reset state to handle reassociations correctly. */
1869 sc->rxon.associd = 0;
1870 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1871 sc->calib.state = IWN_CALIB_STATE_INIT;
1872
1873 if ((error = iwn_auth(sc)) != 0) {
1874 aprint_error_dev(sc->sc_dev,
1875 "could not move to auth state\n");
1876 return error;
1877 }
1878 break;
1879
1880 case IEEE80211_S_RUN:
1881 if ((error = iwn_run(sc)) != 0) {
1882 aprint_error_dev(sc->sc_dev,
1883 "could not move to run state\n");
1884 return error;
1885 }
1886 break;
1887
1888 case IEEE80211_S_INIT:
1889 sc->sc_flags &= ~IWN_FLAG_SCANNING;
1890 sc->calib.state = IWN_CALIB_STATE_INIT;
1891 break;
1892 }
1893
1894 return sc->sc_newstate(ic, nstate, arg);
1895 }
1896
1897 static void
1898 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1899 {
1900 struct iwn_softc *sc = arg;
1901 struct iwn_node *wn = (struct iwn_node *)ni;
1902
1903 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1904 }
1905
1906 static void
1907 iwn_calib_timeout(void *arg)
1908 {
1909 struct iwn_softc *sc = arg;
1910 struct ieee80211com *ic = &sc->sc_ic;
1911 int s;
1912
1913 s = splnet();
1914 if (ic->ic_fixed_rate == -1) {
1915 if (ic->ic_opmode == IEEE80211_M_STA)
1916 iwn_iter_func(sc, ic->ic_bss);
1917 else
1918 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1919 }
1920 /* Force automatic TX power calibration every 60 secs. */
1921 if (++sc->calib_cnt >= 120) {
1922 uint32_t flags = 0;
1923
1924 DPRINTF(("sending request for statistics\n"));
1925 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1926 sizeof flags, 1);
1927 sc->calib_cnt = 0;
1928 }
1929 splx(s);
1930
1931 /* Automatic rate control triggered every 500ms. */
1932 callout_schedule(&sc->calib_to, hz/2);
1933 }
1934
1935 /*
1936 * Process an RX_PHY firmware notification. This is usually immediately
1937 * followed by an MPDU_RX_DONE notification.
1938 */
1939 static void
1940 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1941 struct iwn_rx_data *data)
1942 {
1943 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1944
1945 DPRINTFN(2, ("received PHY stats\n"));
1946 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1947 sizeof (*stat), BUS_DMASYNC_POSTREAD);
1948
1949 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
1950 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1951 sc->last_rx_valid = 1;
1952 }
1953
1954 /*
1955 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1956 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1957 */
1958 static void
1959 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1960 struct iwn_rx_data *data)
1961 {
1962 const struct iwn_hal *hal = sc->sc_hal;
1963 struct ieee80211com *ic = &sc->sc_ic;
1964 struct ifnet *ifp = ic->ic_ifp;
1965 struct iwn_rx_ring *ring = &sc->rxq;
1966 struct ieee80211_frame *wh;
1967 struct ieee80211_node *ni;
1968 struct mbuf *m, *m1;
1969 struct iwn_rx_stat *stat;
1970 char *head;
1971 uint32_t flags;
1972 int error, len, rssi;
1973
1974 if (desc->type == IWN_MPDU_RX_DONE) {
1975 /* Check for prior RX_PHY notification. */
1976 if (!sc->last_rx_valid) {
1977 DPRINTF(("missing RX_PHY\n"));
1978 ifp->if_ierrors++;
1979 return;
1980 }
1981 sc->last_rx_valid = 0;
1982 stat = &sc->last_rx_stat;
1983 } else
1984 stat = (struct iwn_rx_stat *)(desc + 1);
1985
1986 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1987 BUS_DMASYNC_POSTREAD);
1988
1989 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1990 aprint_error_dev(sc->sc_dev,
1991 "invalid RX statistic header\n");
1992 ifp->if_ierrors++;
1993 return;
1994 }
1995 if (desc->type == IWN_MPDU_RX_DONE) {
1996 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1997 head = (char *)(mpdu + 1);
1998 len = le16toh(mpdu->len);
1999 } else {
2000 head = (char *)(stat + 1) + stat->cfg_phy_len;
2001 len = le16toh(stat->len);
2002 }
2003
2004 flags = le32toh(*(uint32_t *)(head + len));
2005
2006 /* Discard frames with a bad FCS early. */
2007 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2008 DPRINTFN(2, ("RX flags error %x\n", flags));
2009 ifp->if_ierrors++;
2010 return;
2011 }
2012 /* Discard frames that are too short. */
2013 if (len < sizeof (*wh)) {
2014 DPRINTF(("frame too short: %d\n", len));
2015 ic->ic_stats.is_rx_tooshort++;
2016 ifp->if_ierrors++;
2017 return;
2018 }
2019
2020 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2021 if (m1 == NULL) {
2022 ic->ic_stats.is_rx_nobuf++;
2023 ifp->if_ierrors++;
2024 return;
2025 }
2026 bus_dmamap_unload(sc->sc_dmat, data->map);
2027
2028 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2029 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2030 if (error != 0) {
2031 m_freem(m1);
2032
2033 /* Try to reload the old mbuf. */
2034 error = bus_dmamap_load(sc->sc_dmat, data->map,
2035 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2036 BUS_DMA_NOWAIT | BUS_DMA_READ);
2037 if (error != 0) {
2038 panic("%s: could not load old RX mbuf",
2039 device_xname(sc->sc_dev));
2040 }
2041 /* Physical address may have changed. */
2042 ring->desc[ring->cur] =
2043 htole32(data->map->dm_segs[0].ds_addr >> 8);
2044 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2045 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2046 BUS_DMASYNC_PREWRITE);
2047 ifp->if_ierrors++;
2048 return;
2049 }
2050
2051 m = data->m;
2052 data->m = m1;
2053 /* Update RX descriptor. */
2054 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2055 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2056 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2057 BUS_DMASYNC_PREWRITE);
2058
2059 /* Finalize mbuf. */
2060 m->m_pkthdr.rcvif = ifp;
2061 m->m_data = head;
2062 m->m_pkthdr.len = m->m_len = len;
2063
2064 /* Grab a reference to the source node. */
2065 wh = mtod(m, struct ieee80211_frame *);
2066 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2067
2068 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2069 /* NetBSD does decryption in ieee80211_input. */
2070
2071 rssi = hal->get_rssi(stat);
2072
2073 /* XXX Added for NetBSD: scans never stop without it */
2074 if (ic->ic_state == IEEE80211_S_SCAN)
2075 iwn_fix_channel(ic, m);
2076
2077 if (sc->sc_drvbpf != NULL) {
2078 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2079
2080 tap->wr_flags = 0;
2081 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2082 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2083 tap->wr_chan_freq =
2084 htole16(ic->ic_channels[stat->chan].ic_freq);
2085 tap->wr_chan_flags =
2086 htole16(ic->ic_channels[stat->chan].ic_flags);
2087 tap->wr_dbm_antsignal = (int8_t)rssi;
2088 tap->wr_dbm_antnoise = (int8_t)sc->noise;
2089 tap->wr_tsft = stat->tstamp;
2090 switch (stat->rate) {
2091 /* CCK rates. */
2092 case 10: tap->wr_rate = 2; break;
2093 case 20: tap->wr_rate = 4; break;
2094 case 55: tap->wr_rate = 11; break;
2095 case 110: tap->wr_rate = 22; break;
2096 /* OFDM rates. */
2097 case 0xd: tap->wr_rate = 12; break;
2098 case 0xf: tap->wr_rate = 18; break;
2099 case 0x5: tap->wr_rate = 24; break;
2100 case 0x7: tap->wr_rate = 36; break;
2101 case 0x9: tap->wr_rate = 48; break;
2102 case 0xb: tap->wr_rate = 72; break;
2103 case 0x1: tap->wr_rate = 96; break;
2104 case 0x3: tap->wr_rate = 108; break;
2105 /* Unknown rate: should not happen. */
2106 default: tap->wr_rate = 0;
2107 }
2108
2109 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2110 }
2111
2112 /* Send the frame to the 802.11 layer. */
2113 ieee80211_input(ic, m, ni, rssi, 0);
2114
2115 /* Node is no longer needed. */
2116 ieee80211_free_node(ni);
2117 }
2118
2119 #ifndef IEEE80211_NO_HT
2120 /* Process an incoming Compressed BlockAck. */
2121 static void
2122 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2123 struct iwn_rx_data *data)
2124 {
2125 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2126 struct iwn_tx_ring *txq;
2127
2128 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2129 BUS_DMASYNC_POSTREAD);
2130
2131 txq = &sc->txq[le16toh(ba->qid)];
2132 /* XXX TBD */
2133 }
2134 #endif
2135
2136 /*
2137 * Process a CALIBRATION_RESULT notification sent by the initialization
2138 * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2139 */
2140 static void
2141 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2142 struct iwn_rx_data *data)
2143 {
2144 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2145 int len, idx = -1;
2146
2147 /* Runtime firmware should not send such a notification. */
2148 if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2149 return;
2150
2151 len = (le32toh(desc->len) & 0x3fff) - 4;
2152 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2153 BUS_DMASYNC_POSTREAD);
2154
2155 switch (calib->code) {
2156 case IWN5000_PHY_CALIB_DC:
2157 if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2158 sc->hw_type == IWN_HW_REV_TYPE_6050)
2159 idx = 0;
2160 break;
2161 case IWN5000_PHY_CALIB_LO:
2162 idx = 1;
2163 break;
2164 case IWN5000_PHY_CALIB_TX_IQ:
2165 idx = 2;
2166 break;
2167 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2168 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2169 sc->hw_type != IWN_HW_REV_TYPE_5150)
2170 idx = 3;
2171 break;
2172 case IWN5000_PHY_CALIB_BASE_BAND:
2173 idx = 4;
2174 break;
2175 }
2176 if (idx == -1) /* Ignore other results. */
2177 return;
2178
2179 /* Save calibration result. */
2180 if (sc->calibcmd[idx].buf != NULL)
2181 free(sc->calibcmd[idx].buf, M_DEVBUF);
2182 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2183 if (sc->calibcmd[idx].buf == NULL) {
2184 DPRINTF(("not enough memory for calibration result %d\n",
2185 calib->code));
2186 return;
2187 }
2188 DPRINTF(("saving calibration result code=%d len=%d\n",
2189 calib->code, len));
2190 sc->calibcmd[idx].len = len;
2191 memcpy(sc->calibcmd[idx].buf, calib, len);
2192 }
2193
2194 /*
2195 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2196 * The latter is sent by the firmware after each received beacon.
2197 */
2198 static void
2199 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2200 struct iwn_rx_data *data)
2201 {
2202 const struct iwn_hal *hal = sc->sc_hal;
2203 struct ieee80211com *ic = &sc->sc_ic;
2204 struct iwn_calib_state *calib = &sc->calib;
2205 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2206 int temp;
2207
2208 /* Ignore statistics received during a scan. */
2209 if (ic->ic_state != IEEE80211_S_RUN)
2210 return;
2211
2212 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2213 sizeof (*stats), BUS_DMASYNC_POSTREAD);
2214
2215 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2216 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2217
2218 /* Test if temperature has changed. */
2219 if (stats->general.temp != sc->rawtemp) {
2220 /* Convert "raw" temperature to degC. */
2221 sc->rawtemp = stats->general.temp;
2222 temp = hal->get_temperature(sc);
2223 DPRINTFN(2, ("temperature=%dC\n", temp));
2224
2225 #ifndef SMALL_KERNEL
2226 /* Update temperature sensor. */
2227 sc->sc_sensor.value_cur = IWN_CTOMUK(temp);
2228 sc->sc_sensor.state = ENVSYS_SVALID;
2229 #endif
2230
2231 /* Update TX power if need be (4965AGN only.) */
2232 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2233 iwn4965_power_calibration(sc, temp);
2234 }
2235
2236 if (desc->type != IWN_BEACON_STATISTICS)
2237 return; /* Reply to a statistics request. */
2238
2239 sc->noise = iwn_get_noise(&stats->rx.general);
2240
2241 /* Test that RSSI and noise are present in stats report. */
2242 if (le32toh(stats->rx.general.flags) != 1) {
2243 DPRINTF(("received statistics without RSSI\n"));
2244 return;
2245 }
2246
2247 if (calib->state == IWN_CALIB_STATE_ASSOC)
2248 iwn_collect_noise(sc, &stats->rx.general);
2249 else if (calib->state == IWN_CALIB_STATE_RUN)
2250 iwn_tune_sensitivity(sc, &stats->rx);
2251 }
2252
2253 /*
2254 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2255 * and 5000 adapters have different incompatible TX status formats.
2256 */
2257 static void
2258 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2259 struct iwn_rx_data *data)
2260 {
2261 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2262
2263 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2264 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2265 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2266 }
2267
2268 static void
2269 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2270 struct iwn_rx_data *data)
2271 {
2272 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2273
2274 #ifdef notyet
2275 /* Reset TX scheduler slot. */
2276 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2277 #endif
2278
2279 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2280 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2281 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2282 }
2283
2284 /*
2285 * Adapter-independent backend for TX_DONE firmware notifications.
2286 */
2287 static void
2288 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2289 uint8_t status)
2290 {
2291 struct ieee80211com *ic = &sc->sc_ic;
2292 struct ifnet *ifp = ic->ic_ifp;
2293 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2294 struct iwn_tx_data *data = &ring->data[desc->idx];
2295 struct iwn_node *wn = (struct iwn_node *)data->ni;
2296
2297 /* Update rate control statistics. */
2298 wn->amn.amn_txcnt++;
2299 if (ackfailcnt > 0)
2300 wn->amn.amn_retrycnt++;
2301
2302 if (status != 1 && status != 2)
2303 ifp->if_oerrors++;
2304 else
2305 ifp->if_opackets++;
2306
2307 /* Unmap and free mbuf. */
2308 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2309 BUS_DMASYNC_POSTWRITE);
2310 bus_dmamap_unload(sc->sc_dmat, data->map);
2311 m_freem(data->m);
2312 data->m = NULL;
2313 ieee80211_free_node(data->ni);
2314 data->ni = NULL;
2315
2316 sc->sc_tx_timer = 0;
2317 if (--ring->queued < IWN_TX_RING_LOMARK) {
2318 sc->qfullmsk &= ~(1 << ring->qid);
2319 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2320 ifp->if_flags &= ~IFF_OACTIVE;
2321 (*ifp->if_start)(ifp);
2322 }
2323 }
2324 }
2325
2326 /*
2327 * Process a "command done" firmware notification. This is where we wakeup
2328 * processes waiting for a synchronous command completion.
2329 */
2330 static void
2331 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2332 {
2333 struct iwn_tx_ring *ring = &sc->txq[4];
2334 struct iwn_tx_data *data;
2335
2336 if ((desc->qid & 0xf) != 4)
2337 return; /* Not a command ack. */
2338
2339 data = &ring->data[desc->idx];
2340
2341 /* If the command was mapped in an mbuf, free it. */
2342 if (data->m != NULL) {
2343 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2344 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2345 bus_dmamap_unload(sc->sc_dmat, data->map);
2346 m_freem(data->m);
2347 data->m = NULL;
2348 }
2349 wakeup(&ring->desc[desc->idx]);
2350 }
2351
2352 /*
2353 * Process an INT_FH_RX or INT_SW_RX interrupt.
2354 */
2355 static void
2356 iwn_notif_intr(struct iwn_softc *sc)
2357 {
2358 struct ieee80211com *ic = &sc->sc_ic;
2359 struct ifnet *ifp = ic->ic_ifp;
2360 uint16_t hw;
2361
2362 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2363 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2364
2365 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2366 while (sc->rxq.cur != hw) {
2367 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2368 struct iwn_rx_desc *desc;
2369
2370 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2371 BUS_DMASYNC_POSTREAD);
2372 desc = mtod(data->m, struct iwn_rx_desc *);
2373
2374 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2375 desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2376
2377 if (!(desc->qid & 0x80)) /* Reply to a command. */
2378 iwn_cmd_done(sc, desc);
2379
2380 switch (desc->type) {
2381 case IWN_RX_PHY:
2382 iwn_rx_phy(sc, desc, data);
2383 break;
2384
2385 case IWN_RX_DONE: /* 4965AGN only. */
2386 case IWN_MPDU_RX_DONE:
2387 /* An 802.11 frame has been received. */
2388 iwn_rx_done(sc, desc, data);
2389 break;
2390 #ifndef IEEE80211_NO_HT
2391 case IWN_RX_COMPRESSED_BA:
2392 /* A Compressed BlockAck has been received. */
2393 iwn_rx_compressed_ba(sc, desc, data);
2394 break;
2395 #endif
2396 case IWN_TX_DONE:
2397 /* An 802.11 frame has been transmitted. */
2398 sc->sc_hal->tx_done(sc, desc, data);
2399 break;
2400
2401 case IWN_RX_STATISTICS:
2402 case IWN_BEACON_STATISTICS:
2403 iwn_rx_statistics(sc, desc, data);
2404 break;
2405
2406 case IWN_BEACON_MISSED:
2407 {
2408 struct iwn_beacon_missed *miss =
2409 (struct iwn_beacon_missed *)(desc + 1);
2410
2411 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2412 sizeof (*miss), BUS_DMASYNC_POSTREAD);
2413 /*
2414 * If more than 5 consecutive beacons are missed,
2415 * reinitialize the sensitivity state machine.
2416 */
2417 DPRINTF(("beacons missed %d/%d\n",
2418 le32toh(miss->consecutive), le32toh(miss->total)));
2419 if (ic->ic_state == IEEE80211_S_RUN &&
2420 le32toh(miss->consecutive) > 5)
2421 (void)iwn_init_sensitivity(sc);
2422 break;
2423 }
2424 case IWN_UC_READY:
2425 {
2426 struct iwn_ucode_info *uc =
2427 (struct iwn_ucode_info *)(desc + 1);
2428
2429 /* The microcontroller is ready. */
2430 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2431 sizeof (*uc), BUS_DMASYNC_POSTREAD);
2432 DPRINTF(("microcode alive notification version=%d.%d "
2433 "subtype=%x alive=%x\n", uc->major, uc->minor,
2434 uc->subtype, le32toh(uc->valid)));
2435
2436 if (le32toh(uc->valid) != 1) {
2437 aprint_error_dev(sc->sc_dev,
2438 "microcontroller initialization "
2439 "failed\n");
2440 break;
2441 }
2442 if (uc->subtype == IWN_UCODE_INIT) {
2443 /* Save microcontroller report. */
2444 memcpy(&sc->ucode_info, uc, sizeof (*uc));
2445 }
2446 /* Save the address of the error log in SRAM. */
2447 sc->errptr = le32toh(uc->errptr);
2448 break;
2449 }
2450 case IWN_STATE_CHANGED:
2451 {
2452 uint32_t *status = (uint32_t *)(desc + 1);
2453
2454 /* Enabled/disabled notification. */
2455 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2456 sizeof (*status), BUS_DMASYNC_POSTREAD);
2457 DPRINTF(("state changed to %x\n", le32toh(*status)));
2458
2459 if (le32toh(*status) & 1) {
2460 /* The radio button has to be pushed. */
2461 aprint_error_dev(sc->sc_dev,
2462 "Radio transmitter is off\n");
2463 /* Turn the interface down. */
2464 ifp->if_flags &= ~IFF_UP;
2465 iwn_stop(ifp, 1);
2466 return; /* No further processing. */
2467 }
2468 break;
2469 }
2470 case IWN_START_SCAN:
2471 {
2472 struct iwn_start_scan *scan =
2473 (struct iwn_start_scan *)(desc + 1);
2474
2475 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2476 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2477 DPRINTFN(2, ("scanning channel %d status %x\n",
2478 scan->chan, le32toh(scan->status)));
2479
2480 /* Fix current channel. */
2481 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2482 break;
2483 }
2484 case IWN_STOP_SCAN:
2485 {
2486 struct iwn_stop_scan *scan =
2487 (struct iwn_stop_scan *)(desc + 1);
2488
2489 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2490 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2491 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2492 scan->nchan, scan->status, scan->chan));
2493
2494 if (scan->status == 1 && scan->chan <= 14 &&
2495 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2496 /*
2497 * We just finished scanning 2GHz channels,
2498 * start scanning 5GHz ones.
2499 */
2500 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2501 break;
2502 }
2503 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2504 ieee80211_end_scan(ic);
2505 break;
2506 }
2507 case IWN5000_CALIBRATION_RESULT:
2508 iwn5000_rx_calib_results(sc, desc, data);
2509 break;
2510
2511 case IWN5000_CALIBRATION_DONE:
2512 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2513 wakeup(sc);
2514 break;
2515 }
2516
2517 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2518 }
2519
2520 /* Tell the firmware what we have processed. */
2521 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2522 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2523 }
2524
2525 /*
2526 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2527 * from power-down sleep mode.
2528 */
2529 static void
2530 iwn_wakeup_intr(struct iwn_softc *sc)
2531 {
2532 int qid;
2533
2534 DPRINTF(("ucode wakeup from power-down sleep\n"));
2535
2536 /* Wakeup RX and TX rings. */
2537 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2538 for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
2539 struct iwn_tx_ring *ring = &sc->txq[qid];
2540 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2541 }
2542 }
2543
2544 /*
2545 * Dump the error log of the firmware when a firmware panic occurs. Although
2546 * we can't debug the firmware because it is neither open source nor free, it
2547 * can help us to identify certain classes of problems.
2548 */
2549 static void
2550 iwn_fatal_intr(struct iwn_softc *sc)
2551 {
2552 const struct iwn_hal *hal = sc->sc_hal;
2553 struct iwn_fw_dump dump;
2554 int i;
2555
2556 /* Force a complete recalibration on next init. */
2557 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2558
2559 /* Check that the error log address is valid. */
2560 if (sc->errptr < IWN_FW_DATA_BASE ||
2561 sc->errptr + sizeof (dump) >
2562 IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2563 aprint_error_dev(sc->sc_dev,
2564 "bad firmware error log address 0x%08x\n", sc->errptr);
2565 return;
2566 }
2567 if (iwn_nic_lock(sc) != 0) {
2568 aprint_error_dev(sc->sc_dev,
2569 "could not read firmware error log\n");
2570 return;
2571 }
2572 /* Read firmware error log from SRAM. */
2573 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2574 sizeof (dump) / sizeof (uint32_t));
2575 iwn_nic_unlock(sc);
2576
2577 if (dump.valid == 0) {
2578 aprint_error_dev(sc->sc_dev,
2579 "firmware error log is empty\n");
2580 return;
2581 }
2582 aprint_error("firmware error log:\n");
2583 aprint_error(" error type = \"%s\" (0x%08X)\n",
2584 (dump.id < __arraycount(iwn_fw_errmsg)) ?
2585 iwn_fw_errmsg[dump.id] : "UNKNOWN",
2586 dump.id);
2587 aprint_error(" program counter = 0x%08X\n", dump.pc);
2588 aprint_error(" source line = 0x%08X\n", dump.src_line);
2589 aprint_error(" error data = 0x%08X%08X\n",
2590 dump.error_data[0], dump.error_data[1]);
2591 aprint_error(" branch link = 0x%08X%08X\n",
2592 dump.branch_link[0], dump.branch_link[1]);
2593 aprint_error(" interrupt link = 0x%08X%08X\n",
2594 dump.interrupt_link[0], dump.interrupt_link[1]);
2595 aprint_error(" time = %u\n", dump.time[0]);
2596
2597 /* Dump driver status (TX and RX rings) while we're here. */
2598 aprint_error("driver status:\n");
2599 for (i = 0; i < hal->ntxqs; i++) {
2600 struct iwn_tx_ring *ring = &sc->txq[i];
2601 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2602 i, ring->qid, ring->cur, ring->queued);
2603 }
2604 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
2605 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
2606 }
2607
2608 static int
2609 iwn_intr(void *arg)
2610 {
2611 struct iwn_softc *sc = arg;
2612 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2613 uint32_t r1, r2, tmp;
2614
2615 /* Disable interrupts. */
2616 IWN_WRITE(sc, IWN_INT_MASK, 0);
2617
2618 /* Read interrupts from ICT (fast) or from registers (slow). */
2619 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2620 tmp = 0;
2621 while (sc->ict[sc->ict_cur] != 0) {
2622 tmp |= sc->ict[sc->ict_cur];
2623 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2624 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2625 }
2626 tmp = le32toh(tmp);
2627 if (tmp == 0xffffffff) /* Shouldn't happen. */
2628 tmp = 0;
2629 else if (tmp & 0xc0000) /* Workaround a HW bug. */
2630 tmp |= 0x8000;
2631 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2632 r2 = 0; /* Unused. */
2633 } else {
2634 r1 = IWN_READ(sc, IWN_INT);
2635 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2636 return 0; /* Hardware gone! */
2637 r2 = IWN_READ(sc, IWN_FH_INT);
2638 }
2639 if (r1 == 0 && r2 == 0) {
2640 if (ifp->if_flags & IFF_UP)
2641 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2642 return 0; /* Interrupt not for us. */
2643 }
2644
2645 /* Acknowledge interrupts. */
2646 IWN_WRITE(sc, IWN_INT, r1);
2647 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2648 IWN_WRITE(sc, IWN_FH_INT, r2);
2649
2650 if (r1 & IWN_INT_RF_TOGGLED) {
2651 tmp = IWN_READ(sc, IWN_GP_CNTRL);
2652 aprint_error_dev(sc->sc_dev,
2653 "RF switch: radio %s\n",
2654 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2655 }
2656 if (r1 & IWN_INT_CT_REACHED) {
2657 aprint_error_dev(sc->sc_dev,
2658 "critical temperature reached!\n");
2659 }
2660 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2661 aprint_error_dev(sc->sc_dev,
2662 "fatal firmware error\n");
2663 /* Dump firmware error log and stop. */
2664 iwn_fatal_intr(sc);
2665 ifp->if_flags &= ~IFF_UP;
2666 iwn_stop(ifp, 1);
2667 return 1;
2668 }
2669 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2670 (r2 & IWN_FH_INT_RX)) {
2671 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2672 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2673 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2674 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2675 IWN_INT_PERIODIC_DIS);
2676 iwn_notif_intr(sc);
2677 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2678 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2679 IWN_INT_PERIODIC_ENA);
2680 }
2681 } else
2682 iwn_notif_intr(sc);
2683 }
2684
2685 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2686 if (sc->sc_flags & IWN_FLAG_USE_ICT)
2687 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2688 wakeup(sc); /* FH DMA transfer completed. */
2689 }
2690
2691 if (r1 & IWN_INT_ALIVE)
2692 wakeup(sc); /* Firmware is alive. */
2693
2694 if (r1 & IWN_INT_WAKEUP)
2695 iwn_wakeup_intr(sc);
2696
2697 /* Re-enable interrupts. */
2698 if (ifp->if_flags & IFF_UP)
2699 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2700
2701 return 1;
2702 }
2703
2704 /*
2705 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2706 * 5000 adapters use a slightly different format.)
2707 */
2708 static void
2709 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2710 uint16_t len)
2711 {
2712 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2713
2714 *w = htole16(len + 8);
2715 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2716 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2717 sizeof (uint16_t),
2718 BUS_DMASYNC_PREWRITE);
2719 if (idx < IWN_SCHED_WINSZ) {
2720 *(w + IWN_TX_RING_COUNT) = *w;
2721 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2722 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2723 (char *)(void *)sc->sched_dma.vaddr,
2724 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2725 }
2726 }
2727
2728 static void
2729 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2730 uint16_t len)
2731 {
2732 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2733
2734 *w = htole16(id << 12 | (len + 8));
2735 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2736 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2737 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2738 if (idx < IWN_SCHED_WINSZ) {
2739 *(w + IWN_TX_RING_COUNT) = *w;
2740 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2741 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2742 (char *)(void *)sc->sched_dma.vaddr,
2743 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2744 }
2745 }
2746
2747 #ifdef notyet
2748 static void
2749 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2750 {
2751 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2752
2753 *w = (*w & htole16(0xf000)) | htole16(1);
2754 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2755 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2756 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2757 if (idx < IWN_SCHED_WINSZ) {
2758 *(w + IWN_TX_RING_COUNT) = *w;
2759 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2760 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2761 (char *)(void *)sc->sched_dma.vaddr,
2762 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2763 }
2764 }
2765 #endif
2766
2767 static int
2768 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2769 {
2770 const struct iwn_hal *hal = sc->sc_hal;
2771 struct ieee80211com *ic = &sc->sc_ic;
2772 struct iwn_node *wn = (void *)ni;
2773 struct iwn_tx_ring *ring;
2774 struct iwn_tx_desc *desc;
2775 struct iwn_tx_data *data;
2776 struct iwn_tx_cmd *cmd;
2777 struct iwn_cmd_data *tx;
2778 const struct iwn_rate *rinfo;
2779 struct ieee80211_frame *wh;
2780 struct ieee80211_key *k = NULL;
2781 struct mbuf *m1;
2782 uint32_t flags;
2783 u_int hdrlen;
2784 bus_dma_segment_t *seg;
2785 uint8_t tid, ridx, txant, type;
2786 int i, totlen, error, pad;
2787
2788 const struct chanAccParams *cap;
2789 int noack;
2790 int hdrlen2;
2791
2792 wh = mtod(m, struct ieee80211_frame *);
2793 hdrlen = ieee80211_anyhdrsize(wh);
2794 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2795
2796 hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
2797 sizeof (struct ieee80211_qosframe) :
2798 sizeof (struct ieee80211_frame);
2799
2800 if (hdrlen != hdrlen2)
2801 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2802 hdrlen, hdrlen2);
2803
2804 /* XXX OpenBSD sets a different tid when using QOS */
2805 tid = 0;
2806 if (IEEE80211_QOS_HAS_SEQ(wh)) {
2807 cap = &ic->ic_wme.wme_chanParams;
2808 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2809 }
2810 else
2811 noack = 0;
2812
2813 ring = &sc->txq[ac];
2814 desc = &ring->desc[ring->cur];
2815 data = &ring->data[ring->cur];
2816
2817 /* Choose a TX rate index. */
2818 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2819 type != IEEE80211_FC0_TYPE_DATA) {
2820 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2821 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2822 } else if (ic->ic_fixed_rate != -1) {
2823 ridx = sc->fixed_ridx;
2824 } else
2825 ridx = wn->ridx[ni->ni_txrate];
2826 rinfo = &iwn_rates[ridx];
2827
2828 /* Encrypt the frame if need be. */
2829 /*
2830 * XXX For now, NetBSD swaps the encryption and bpf sections
2831 * in order to match old code and other drivers. Tests with
2832 * tcpdump indicates that the order is irrelevant, however,
2833 * as bpf produces unencrypted data for both ordering choices.
2834 */
2835 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2836 k = ieee80211_crypto_encap(ic, ni, m);
2837 if (k == NULL) {
2838 m_freem(m);
2839 return ENOBUFS;
2840 }
2841 /* Packet header may have moved, reset our local pointer. */
2842 wh = mtod(m, struct ieee80211_frame *);
2843 }
2844 totlen = m->m_pkthdr.len;
2845
2846 if (sc->sc_drvbpf != NULL) {
2847 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2848
2849 tap->wt_flags = 0;
2850 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2851 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2852 tap->wt_rate = rinfo->rate;
2853 tap->wt_hwqueue = ac;
2854 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2855 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2856
2857 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2858 }
2859
2860 /* Prepare TX firmware command. */
2861 cmd = &ring->cmd[ring->cur];
2862 cmd->code = IWN_CMD_TX_DATA;
2863 cmd->flags = 0;
2864 cmd->qid = ring->qid;
2865 cmd->idx = ring->cur;
2866
2867 tx = (struct iwn_cmd_data *)cmd->data;
2868 /* NB: No need to clear tx, all fields are reinitialized here. */
2869 tx->scratch = 0; /* clear "scratch" area */
2870
2871 flags = 0;
2872 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2873 /* Unicast frame, check if an ACK is expected. */
2874 if (!noack)
2875 flags |= IWN_TX_NEED_ACK;
2876 }
2877
2878 #ifdef notyet
2879 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2880 if ((wh->i_fc[0] &
2881 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2882 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2883 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
2884 #endif
2885
2886 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2887 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
2888
2889 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2890 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2891 /* NB: Group frames are sent using CCK in 802.11b/g. */
2892 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2893 flags |= IWN_TX_NEED_RTS;
2894 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2895 ridx >= IWN_RIDX_OFDM6) {
2896 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2897 flags |= IWN_TX_NEED_CTS;
2898 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2899 flags |= IWN_TX_NEED_RTS;
2900 }
2901 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2902 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2903 /* 5000 autoselects RTS/CTS or CTS-to-self. */
2904 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2905 flags |= IWN_TX_NEED_PROTECTION;
2906 } else
2907 flags |= IWN_TX_FULL_TXOP;
2908 }
2909 }
2910
2911 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2912 type != IEEE80211_FC0_TYPE_DATA)
2913 tx->id = hal->broadcast_id;
2914 else
2915 tx->id = wn->id;
2916
2917 if (type == IEEE80211_FC0_TYPE_MGT) {
2918 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2919
2920 #ifndef IEEE80211_STA_ONLY
2921 /* Tell HW to set timestamp in probe responses. */
2922 /* XXX NetBSD rev 1.11 added probe requests here but */
2923 /* probe requests do not take timestamps (from Bergamini). */
2924 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2925 flags |= IWN_TX_INSERT_TSTAMP;
2926 #endif
2927 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2928 /* changes here. These are not needed (from Bergamini). */
2929 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2930 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2931 tx->timeout = htole16(3);
2932 else
2933 tx->timeout = htole16(2);
2934 } else
2935 tx->timeout = htole16(0);
2936
2937 if (hdrlen & 3) {
2938 /* First segment's length must be a multiple of 4. */
2939 flags |= IWN_TX_NEED_PADDING;
2940 pad = 4 - (hdrlen & 3);
2941 } else
2942 pad = 0;
2943
2944 tx->len = htole16(totlen);
2945 tx->tid = tid;
2946 tx->rts_ntries = 60;
2947 tx->data_ntries = 15;
2948 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2949 tx->plcp = rinfo->plcp;
2950 tx->rflags = rinfo->flags;
2951 if (tx->id == hal->broadcast_id) {
2952 /* Group or management frame. */
2953 tx->linkq = 0;
2954 /* XXX Alternate between antenna A and B? */
2955 txant = IWN_LSB(sc->txchainmask);
2956 tx->rflags |= IWN_RFLAG_ANT(txant);
2957 } else {
2958 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2959 flags |= IWN_TX_LINKQ; /* enable MRR */
2960 }
2961 /* Set physical address of "scratch area". */
2962 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2963 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2964
2965 /* Copy 802.11 header in TX command. */
2966 /* XXX NetBSD changed this in rev 1.20 */
2967 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2968
2969 /* Trim 802.11 header. */
2970 m_adj(m, hdrlen);
2971 tx->security = 0;
2972 tx->flags = htole32(flags);
2973
2974 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2975 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2976 if (error != 0) {
2977 if (error != EFBIG) {
2978 aprint_error_dev(sc->sc_dev,
2979 "can't map mbuf (error %d)\n", error);
2980 m_freem(m);
2981 return error;
2982 }
2983 /* Too many DMA segments, linearize mbuf. */
2984 MGETHDR(m1, M_DONTWAIT, MT_DATA);
2985 if (m1 == NULL) {
2986 m_freem(m);
2987 return ENOBUFS;
2988 }
2989 if (m->m_pkthdr.len > MHLEN) {
2990 MCLGET(m1, M_DONTWAIT);
2991 if (!(m1->m_flags & M_EXT)) {
2992 m_freem(m);
2993 m_freem(m1);
2994 return ENOBUFS;
2995 }
2996 }
2997 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2998 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2999 m_freem(m);
3000 m = m1;
3001
3002 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3003 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3004 if (error != 0) {
3005 aprint_error_dev(sc->sc_dev,
3006 "can't map mbuf (error %d)\n", error);
3007 m_freem(m);
3008 return error;
3009 }
3010 }
3011
3012 data->m = m;
3013 data->ni = ni;
3014
3015 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3016 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3017
3018 /* Fill TX descriptor. */
3019 desc->nsegs = 1 + data->map->dm_nsegs;
3020 /* First DMA segment is used by the TX command. */
3021 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3022 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
3023 (4 + sizeof (*tx) + hdrlen + pad) << 4);
3024 /* Other DMA segments are for data payload. */
3025 seg = data->map->dm_segs;
3026 for (i = 1; i <= data->map->dm_nsegs; i++) {
3027 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3028 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
3029 seg->ds_len << 4);
3030 seg++;
3031 }
3032
3033 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3034 BUS_DMASYNC_PREWRITE);
3035 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3036 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3037 sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3038 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3039 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3040 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3041
3042 #ifdef notyet
3043 /* Update TX scheduler. */
3044 hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3045 #endif
3046
3047 /* Kick TX ring. */
3048 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3049 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3050
3051 /* Mark TX ring as full if we reach a certain threshold. */
3052 if (++ring->queued > IWN_TX_RING_HIMARK)
3053 sc->qfullmsk |= 1 << ring->qid;
3054
3055 return 0;
3056 }
3057
3058 static void
3059 iwn_start(struct ifnet *ifp)
3060 {
3061 struct iwn_softc *sc = ifp->if_softc;
3062 struct ieee80211com *ic = &sc->sc_ic;
3063 struct ieee80211_node *ni;
3064 struct ether_header *eh;
3065 struct mbuf *m;
3066 int ac;
3067
3068 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3069 return;
3070
3071 for (;;) {
3072 if (sc->qfullmsk != 0) {
3073 ifp->if_flags |= IFF_OACTIVE;
3074 break;
3075 }
3076 /* Send pending management frames first. */
3077 IF_DEQUEUE(&ic->ic_mgtq, m);
3078 if (m != NULL) {
3079 ni = (void *)m->m_pkthdr.rcvif;
3080 ac = 0;
3081 goto sendit;
3082 }
3083 if (ic->ic_state != IEEE80211_S_RUN)
3084 break;
3085
3086 /* Encapsulate and send data frames. */
3087 IFQ_DEQUEUE(&ifp->if_snd, m);
3088 if (m == NULL)
3089 break;
3090 if (m->m_len < sizeof (*eh) &&
3091 (m = m_pullup(m, sizeof (*eh))) == NULL) {
3092 ifp->if_oerrors++;
3093 continue;
3094 }
3095 eh = mtod(m, struct ether_header *);
3096 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3097 if (ni == NULL) {
3098 m_freem(m);
3099 ifp->if_oerrors++;
3100 continue;
3101 }
3102 /* classify mbuf so we can find which tx ring to use */
3103 if (ieee80211_classify(ic, m, ni) != 0) {
3104 m_freem(m);
3105 ieee80211_free_node(ni);
3106 ifp->if_oerrors++;
3107 continue;
3108 }
3109
3110 /* No QoS encapsulation for EAPOL frames. */
3111 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3112 M_WME_GETAC(m) : WME_AC_BE;
3113
3114 bpf_mtap(ifp, m);
3115
3116 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3117 ieee80211_free_node(ni);
3118 ifp->if_oerrors++;
3119 continue;
3120 }
3121 sendit:
3122 bpf_mtap3(ic->ic_rawbpf, m);
3123
3124 if (iwn_tx(sc, m, ni, ac) != 0) {
3125 ieee80211_free_node(ni);
3126 ifp->if_oerrors++;
3127 continue;
3128 }
3129
3130 sc->sc_tx_timer = 5;
3131 ifp->if_timer = 1;
3132 }
3133 }
3134
3135 static void
3136 iwn_watchdog(struct ifnet *ifp)
3137 {
3138 struct iwn_softc *sc = ifp->if_softc;
3139
3140 ifp->if_timer = 0;
3141
3142 if (sc->sc_tx_timer > 0) {
3143 if (--sc->sc_tx_timer == 0) {
3144 aprint_error_dev(sc->sc_dev,
3145 "device timeout\n");
3146 ifp->if_flags &= ~IFF_UP;
3147 iwn_stop(ifp, 1);
3148 ifp->if_oerrors++;
3149 return;
3150 }
3151 ifp->if_timer = 1;
3152 }
3153
3154 ieee80211_watchdog(&sc->sc_ic);
3155 }
3156
3157 static int
3158 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3159 {
3160 struct iwn_softc *sc = ifp->if_softc;
3161 struct ieee80211com *ic = &sc->sc_ic;
3162 struct ifaddr *ifa;
3163 const struct sockaddr *sa;
3164 int s, error = 0;
3165
3166 s = splnet();
3167
3168 switch (cmd) {
3169 case SIOCSIFADDR:
3170 ifa = (struct ifaddr *)data;
3171 ifp->if_flags |= IFF_UP;
3172 #ifdef INET
3173 if (ifa->ifa_addr->sa_family == AF_INET)
3174 arp_ifinit(&ic->ic_ac, ifa);
3175 #endif
3176 /* FALLTHROUGH */
3177 case SIOCSIFFLAGS:
3178 /* XXX Added as it is in every NetBSD driver */
3179 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3180 break;
3181 if (ifp->if_flags & IFF_UP) {
3182 if (!(ifp->if_flags & IFF_RUNNING))
3183 error = iwn_init(ifp);
3184 } else {
3185 if (ifp->if_flags & IFF_RUNNING)
3186 iwn_stop(ifp, 1);
3187 }
3188 break;
3189
3190 case SIOCADDMULTI:
3191 case SIOCDELMULTI:
3192 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3193 error = (cmd == SIOCADDMULTI) ?
3194 ether_addmulti(sa, &sc->sc_ec) :
3195 ether_delmulti(sa, &sc->sc_ec);
3196
3197 if (error == ENETRESET)
3198 error = 0;
3199 break;
3200
3201 default:
3202 error = ieee80211_ioctl(ic, cmd, data);
3203 }
3204
3205 if (error == ENETRESET) {
3206 error = 0;
3207 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3208 (IFF_UP | IFF_RUNNING)) {
3209 iwn_stop(ifp, 0);
3210 error = iwn_init(ifp);
3211 }
3212 }
3213
3214 splx(s);
3215 return error;
3216 }
3217
3218 /*
3219 * Send a command to the firmware.
3220 */
3221 static int
3222 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3223 {
3224 struct iwn_tx_ring *ring = &sc->txq[4];
3225 struct iwn_tx_desc *desc;
3226 struct iwn_tx_data *data;
3227 struct iwn_tx_cmd *cmd;
3228 struct mbuf *m;
3229 bus_addr_t paddr;
3230 int totlen, error;
3231
3232 desc = &ring->desc[ring->cur];
3233 data = &ring->data[ring->cur];
3234 totlen = 4 + size;
3235
3236 if (size > sizeof cmd->data) {
3237 /* Command is too large to fit in a descriptor. */
3238 if (totlen > MCLBYTES)
3239 return EINVAL;
3240 MGETHDR(m, M_DONTWAIT, MT_DATA);
3241 if (m == NULL)
3242 return ENOMEM;
3243 if (totlen > MHLEN) {
3244 MCLGET(m, M_DONTWAIT);
3245 if (!(m->m_flags & M_EXT)) {
3246 m_freem(m);
3247 return ENOMEM;
3248 }
3249 }
3250 cmd = mtod(m, struct iwn_tx_cmd *);
3251 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3252 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3253 if (error != 0) {
3254 m_freem(m);
3255 return error;
3256 }
3257 data->m = m;
3258 paddr = data->map->dm_segs[0].ds_addr;
3259 } else {
3260 cmd = &ring->cmd[ring->cur];
3261 paddr = data->cmd_paddr;
3262 }
3263
3264 cmd->code = code;
3265 cmd->flags = 0;
3266 cmd->qid = ring->qid;
3267 cmd->idx = ring->cur;
3268 memcpy(cmd->data, buf, size);
3269
3270 desc->nsegs = 1;
3271 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3272 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3273
3274 if (size > sizeof cmd->data) {
3275 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3276 BUS_DMASYNC_PREWRITE);
3277 } else {
3278 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3279 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3280 totlen, BUS_DMASYNC_PREWRITE);
3281 }
3282 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3283 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3284 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3285
3286 #ifdef notyet
3287 /* Update TX scheduler. */
3288 sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3289 #endif
3290 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3291
3292 /* Kick command ring. */
3293 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3294 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3295
3296 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3297 }
3298
3299 static int
3300 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3301 {
3302 struct iwn4965_node_info hnode;
3303 char *src, *dst;
3304
3305 /*
3306 * We use the node structure for 5000 Series internally (it is
3307 * a superset of the one for 4965AGN). We thus copy the common
3308 * fields before sending the command.
3309 */
3310 src = (char *)node;
3311 dst = (char *)&hnode;
3312 memcpy(dst, src, 48);
3313 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3314 memcpy(dst + 48, src + 72, 20);
3315 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3316 }
3317
3318 static int
3319 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3320 {
3321 /* Direct mapping. */
3322 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3323 }
3324
3325 static int
3326 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3327 {
3328 struct iwn_node *wn = (void *)ni;
3329 struct ieee80211_rateset *rs = &ni->ni_rates;
3330 struct iwn_cmd_link_quality linkq;
3331 const struct iwn_rate *rinfo;
3332 uint8_t txant;
3333 int i, txrate;
3334
3335 /* Use the first valid TX antenna. */
3336 txant = IWN_LSB(sc->txchainmask);
3337
3338 memset(&linkq, 0, sizeof linkq);
3339 linkq.id = wn->id;
3340 linkq.antmsk_1stream = txant;
3341 linkq.antmsk_2stream = IWN_ANT_AB;
3342 linkq.ampdu_max = 31;
3343 linkq.ampdu_threshold = 3;
3344 linkq.ampdu_limit = htole16(4000); /* 4ms */
3345
3346 /* Start at highest available bit-rate. */
3347 txrate = rs->rs_nrates - 1;
3348 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3349 rinfo = &iwn_rates[wn->ridx[txrate]];
3350 linkq.retry[i].plcp = rinfo->plcp;
3351 linkq.retry[i].rflags = rinfo->flags;
3352 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3353 /* Next retry at immediate lower bit-rate. */
3354 if (txrate > 0)
3355 txrate--;
3356 }
3357 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3358 }
3359
3360 /*
3361 * Broadcast node is used to send group-addressed and management frames.
3362 */
3363 static int
3364 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3365 {
3366 const struct iwn_hal *hal = sc->sc_hal;
3367 struct iwn_node_info node;
3368 struct iwn_cmd_link_quality linkq;
3369 const struct iwn_rate *rinfo;
3370 uint8_t txant;
3371 int i, error;
3372
3373 memset(&node, 0, sizeof node);
3374 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3375 node.id = hal->broadcast_id;
3376 DPRINTF(("adding broadcast node\n"));
3377 if ((error = hal->add_node(sc, &node, async)) != 0)
3378 return error;
3379
3380 /* Use the first valid TX antenna. */
3381 txant = IWN_LSB(sc->txchainmask);
3382
3383 memset(&linkq, 0, sizeof linkq);
3384 linkq.id = hal->broadcast_id;
3385 linkq.antmsk_1stream = txant;
3386 linkq.antmsk_2stream = IWN_ANT_AB;
3387 linkq.ampdu_max = 64;
3388 linkq.ampdu_threshold = 3;
3389 linkq.ampdu_limit = htole16(4000); /* 4ms */
3390
3391 /* Use lowest mandatory bit-rate. */
3392 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3393 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3394 linkq.retry[0].plcp = rinfo->plcp;
3395 linkq.retry[0].rflags = rinfo->flags;
3396 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3397 /* Use same bit-rate for all TX retries. */
3398 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3399 linkq.retry[i].plcp = linkq.retry[0].plcp;
3400 linkq.retry[i].rflags = linkq.retry[0].rflags;
3401 }
3402 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3403 }
3404
3405 static void
3406 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3407 {
3408 struct iwn_cmd_led led;
3409
3410 /* Clear microcode LED ownership. */
3411 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3412
3413 led.which = which;
3414 led.unit = htole32(10000); /* on/off in unit of 100ms */
3415 led.off = off;
3416 led.on = on;
3417 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3418 }
3419
3420 /*
3421 * Set the critical temperature at which the firmware will stop the radio
3422 * and notify us.
3423 */
3424 static int
3425 iwn_set_critical_temp(struct iwn_softc *sc)
3426 {
3427 struct iwn_critical_temp crit;
3428 int32_t temp;
3429
3430 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3431
3432 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3433 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3434 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3435 temp = IWN_CTOK(110);
3436 else
3437 temp = 110;
3438 memset(&crit, 0, sizeof crit);
3439 crit.tempR = htole32(temp);
3440 DPRINTF(("setting critical temperature to %d\n", temp));
3441 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3442 }
3443
3444 static int
3445 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3446 {
3447 struct iwn_cmd_timing cmd;
3448 uint64_t val, mod;
3449
3450 memset(&cmd, 0, sizeof cmd);
3451 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3452 cmd.bintval = htole16(ni->ni_intval);
3453 cmd.lintval = htole16(10);
3454
3455 /* Compute remaining time until next beacon. */
3456 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
3457 mod = le64toh(cmd.tstamp) % val;
3458 cmd.binitval = htole32((uint32_t)(val - mod));
3459
3460 DPRINTF(("timing bintval=%u, tstamp=%zu, init=%u\n",
3461 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3462
3463 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3464 }
3465
3466 static void
3467 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3468 {
3469 /* Adjust TX power if need be (delta >= 3 degC.) */
3470 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3471 if (abs(temp - sc->temp) >= 3) {
3472 /* Record temperature of last calibration. */
3473 sc->temp = temp;
3474 (void)iwn4965_set_txpower(sc, 1);
3475 }
3476 }
3477
3478 /*
3479 * Set TX power for current channel (each rate has its own power settings).
3480 * This function takes into account the regulatory information from EEPROM,
3481 * the current temperature and the current voltage.
3482 */
3483 static int
3484 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3485 {
3486 /* Fixed-point arithmetic division using a n-bit fractional part. */
3487 #define fdivround(a, b, n) \
3488 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3489 /* Linear interpolation. */
3490 #define interpolate(x, x1, y1, x2, y2, n) \
3491 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3492
3493 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3494 struct ieee80211com *ic = &sc->sc_ic;
3495 struct iwn_ucode_info *uc = &sc->ucode_info;
3496 struct ieee80211_channel *ch;
3497 struct iwn4965_cmd_txpower cmd;
3498 struct iwn4965_eeprom_chan_samples *chans;
3499 const uint8_t *rf_gain, *dsp_gain;
3500 int32_t vdiff, tdiff;
3501 int i, c, grp, maxpwr;
3502 uint8_t chan;
3503
3504 /* Retrieve current channel from last RXON. */
3505 chan = sc->rxon.chan;
3506 DPRINTF(("setting TX power for channel %d\n", chan));
3507 ch = &ic->ic_channels[chan];
3508
3509 memset(&cmd, 0, sizeof cmd);
3510 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3511 cmd.chan = chan;
3512
3513 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3514 maxpwr = sc->maxpwr5GHz;
3515 rf_gain = iwn4965_rf_gain_5ghz;
3516 dsp_gain = iwn4965_dsp_gain_5ghz;
3517 } else {
3518 maxpwr = sc->maxpwr2GHz;
3519 rf_gain = iwn4965_rf_gain_2ghz;
3520 dsp_gain = iwn4965_dsp_gain_2ghz;
3521 }
3522
3523 /* Compute voltage compensation. */
3524 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3525 if (vdiff > 0)
3526 vdiff *= 2;
3527 if (abs(vdiff) > 2)
3528 vdiff = 0;
3529 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3530 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3531
3532 /* Get channel attenuation group. */
3533 if (chan <= 20) /* 1-20 */
3534 grp = 4;
3535 else if (chan <= 43) /* 34-43 */
3536 grp = 0;
3537 else if (chan <= 70) /* 44-70 */
3538 grp = 1;
3539 else if (chan <= 124) /* 71-124 */
3540 grp = 2;
3541 else /* 125-200 */
3542 grp = 3;
3543 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3544
3545 /* Get channel sub-band. */
3546 for (i = 0; i < IWN_NBANDS; i++)
3547 if (sc->bands[i].lo != 0 &&
3548 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3549 break;
3550 if (i == IWN_NBANDS) /* Can't happen in real-life. */
3551 return EINVAL;
3552 chans = sc->bands[i].chans;
3553 DPRINTF(("chan %d sub-band=%d\n", chan, i));
3554
3555 for (c = 0; c < 2; c++) {
3556 uint8_t power, gain, temp;
3557 int maxchpwr, pwr, ridx, idx;
3558
3559 power = interpolate(chan,
3560 chans[0].num, chans[0].samples[c][1].power,
3561 chans[1].num, chans[1].samples[c][1].power, 1);
3562 gain = interpolate(chan,
3563 chans[0].num, chans[0].samples[c][1].gain,
3564 chans[1].num, chans[1].samples[c][1].gain, 1);
3565 temp = interpolate(chan,
3566 chans[0].num, chans[0].samples[c][1].temp,
3567 chans[1].num, chans[1].samples[c][1].temp, 1);
3568 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3569 c, power, gain, temp));
3570
3571 /* Compute temperature compensation. */
3572 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3573 DPRINTF(("temperature compensation=%d (current=%d, "
3574 "EEPROM=%d)\n", tdiff, sc->temp, temp));
3575
3576 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3577 /* Convert dBm to half-dBm. */
3578 maxchpwr = sc->maxpwr[chan] * 2;
3579 if ((ridx / 8) & 1)
3580 maxchpwr -= 6; /* MIMO 2T: -3dB */
3581
3582 pwr = maxpwr;
3583
3584 /* Adjust TX power based on rate. */
3585 if ((ridx % 8) == 5)
3586 pwr -= 15; /* OFDM48: -7.5dB */
3587 else if ((ridx % 8) == 6)
3588 pwr -= 17; /* OFDM54: -8.5dB */
3589 else if ((ridx % 8) == 7)
3590 pwr -= 20; /* OFDM60: -10dB */
3591 else
3592 pwr -= 10; /* Others: -5dB */
3593
3594 /* Do not exceed channel max TX power. */
3595 if (pwr > maxchpwr)
3596 pwr = maxchpwr;
3597
3598 idx = gain - (pwr - power) - tdiff - vdiff;
3599 if ((ridx / 8) & 1) /* MIMO */
3600 idx += (int32_t)le32toh(uc->atten[grp][c]);
3601
3602 if (cmd.band == 0)
3603 idx += 9; /* 5GHz */
3604 if (ridx == IWN_RIDX_MAX)
3605 idx += 5; /* CCK */
3606
3607 /* Make sure idx stays in a valid range. */
3608 if (idx < 0)
3609 idx = 0;
3610 else if (idx > IWN4965_MAX_PWR_INDEX)
3611 idx = IWN4965_MAX_PWR_INDEX;
3612
3613 DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3614 c, ridx, idx));
3615 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3616 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3617 }
3618 }
3619
3620 DPRINTF(("setting TX power for chan %d\n", chan));
3621 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3622
3623 #undef interpolate
3624 #undef fdivround
3625 }
3626
3627 static int
3628 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3629 {
3630 struct iwn5000_cmd_txpower cmd;
3631
3632 /*
3633 * TX power calibration is handled automatically by the firmware
3634 * for 5000 Series.
3635 */
3636 memset(&cmd, 0, sizeof cmd);
3637 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3638 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3639 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3640 DPRINTF(("setting TX power\n"));
3641 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3642 }
3643
3644 /*
3645 * Retrieve the maximum RSSI (in dBm) among receivers.
3646 */
3647 static int
3648 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3649 {
3650 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3651 uint8_t mask, agc;
3652 int rssi;
3653
3654 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3655 agc = (le16toh(phy->agc) >> 7) & 0x7f;
3656
3657 rssi = 0;
3658 if (mask & IWN_ANT_A)
3659 rssi = MAX(rssi, phy->rssi[0]);
3660 if (mask & IWN_ANT_B)
3661 rssi = MAX(rssi, phy->rssi[2]);
3662 if (mask & IWN_ANT_C)
3663 rssi = MAX(rssi, phy->rssi[4]);
3664
3665 return rssi - agc - IWN_RSSI_TO_DBM;
3666 }
3667
3668 static int
3669 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3670 {
3671 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3672 uint8_t agc;
3673 int rssi;
3674
3675 agc = (le32toh(phy->agc) >> 9) & 0x7f;
3676
3677 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3678 le16toh(phy->rssi[1]) & 0xff);
3679 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3680
3681 return rssi - agc - IWN_RSSI_TO_DBM;
3682 }
3683
3684 /*
3685 * Retrieve the average noise (in dBm) among receivers.
3686 */
3687 static int
3688 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3689 {
3690 int i, total, nbant, noise;
3691
3692 total = nbant = 0;
3693 for (i = 0; i < 3; i++) {
3694 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3695 continue;
3696 total += noise;
3697 nbant++;
3698 }
3699 /* There should be at least one antenna but check anyway. */
3700 return (nbant == 0) ? -127 : (total / nbant) - 107;
3701 }
3702
3703 /*
3704 * Compute temperature (in degC) from last received statistics.
3705 */
3706 static int
3707 iwn4965_get_temperature(struct iwn_softc *sc)
3708 {
3709 struct iwn_ucode_info *uc = &sc->ucode_info;
3710 int32_t r1, r2, r3, r4, temp;
3711
3712 r1 = le32toh(uc->temp[0].chan20MHz);
3713 r2 = le32toh(uc->temp[1].chan20MHz);
3714 r3 = le32toh(uc->temp[2].chan20MHz);
3715 r4 = le32toh(sc->rawtemp);
3716
3717 if (r1 == r3) /* Prevents division by 0 (should not happen.) */
3718 return 0;
3719
3720 /* Sign-extend 23-bit R4 value to 32-bit. */
3721 r4 = (r4 << 8) >> 8;
3722 /* Compute temperature in Kelvin. */
3723 temp = (259 * (r4 - r2)) / (r3 - r1);
3724 temp = (temp * 97) / 100 + 8;
3725
3726 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3727 return IWN_KTOC(temp);
3728 }
3729
3730 static int
3731 iwn5000_get_temperature(struct iwn_softc *sc)
3732 {
3733 int32_t temp;
3734
3735 /*
3736 * Temperature is not used by the driver for 5000 Series because
3737 * TX power calibration is handled by firmware. We export it to
3738 * users through the sensor framework though.
3739 */
3740 temp = le32toh(sc->rawtemp);
3741 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3742 temp = (temp / -5) + sc->temp_off;
3743 temp = IWN_KTOC(temp);
3744 }
3745 return temp;
3746 }
3747
3748 /*
3749 * Initialize sensitivity calibration state machine.
3750 */
3751 static int
3752 iwn_init_sensitivity(struct iwn_softc *sc)
3753 {
3754 const struct iwn_hal *hal = sc->sc_hal;
3755 struct iwn_calib_state *calib = &sc->calib;
3756 uint32_t flags;
3757 int error;
3758
3759 /* Reset calibration state machine. */
3760 memset(calib, 0, sizeof (*calib));
3761 calib->state = IWN_CALIB_STATE_INIT;
3762 calib->cck_state = IWN_CCK_STATE_HIFA;
3763 /* Set initial correlation values. */
3764 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3765 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3766 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3767 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3768 calib->cck_x4 = 125;
3769 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3770 calib->energy_cck = sc->limits->energy_cck;
3771
3772 /* Write initial sensitivity. */
3773 if ((error = iwn_send_sensitivity(sc)) != 0)
3774 return error;
3775
3776 /* Write initial gains. */
3777 if ((error = hal->init_gains(sc)) != 0)
3778 return error;
3779
3780 /* Request statistics at each beacon interval. */
3781 flags = 0;
3782 DPRINTF(("sending request for statistics\n"));
3783 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3784 }
3785
3786 /*
3787 * Collect noise and RSSI statistics for the first 20 beacons received
3788 * after association and use them to determine connected antennas and
3789 * to set differential gains.
3790 */
3791 static void
3792 iwn_collect_noise(struct iwn_softc *sc,
3793 const struct iwn_rx_general_stats *stats)
3794 {
3795 const struct iwn_hal *hal = sc->sc_hal;
3796 struct iwn_calib_state *calib = &sc->calib;
3797 uint32_t val;
3798 int i;
3799
3800 /* Accumulate RSSI and noise for all 3 antennas. */
3801 for (i = 0; i < 3; i++) {
3802 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3803 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3804 }
3805 /* NB: We update differential gains only once after 20 beacons. */
3806 if (++calib->nbeacons < 20)
3807 return;
3808
3809 /* Determine highest average RSSI. */
3810 val = MAX(calib->rssi[0], calib->rssi[1]);
3811 val = MAX(calib->rssi[2], val);
3812
3813 /* Determine which antennas are connected. */
3814 sc->chainmask = sc->rxchainmask;
3815 for (i = 0; i < 3; i++)
3816 if (val - calib->rssi[i] > 15 * 20)
3817 sc->chainmask &= ~(1 << i);
3818 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3819 sc->rxchainmask, sc->chainmask));
3820
3821 /* If none of the TX antennas are connected, keep at least one. */
3822 if ((sc->chainmask & sc->txchainmask) == 0)
3823 sc->chainmask |= IWN_LSB(sc->txchainmask);
3824
3825 (void)hal->set_gains(sc);
3826 calib->state = IWN_CALIB_STATE_RUN;
3827
3828 #ifdef notyet
3829 /* XXX Disable RX chains with no antennas connected. */
3830 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3831 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
3832 #endif
3833
3834 /* Enable power-saving mode if requested by user. */
3835 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3836 (void)iwn_set_pslevel(sc, 0, 3, 1);
3837 }
3838
3839 static int
3840 iwn4965_init_gains(struct iwn_softc *sc)
3841 {
3842 struct iwn_phy_calib_gain cmd;
3843
3844 memset(&cmd, 0, sizeof cmd);
3845 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3846 /* Differential gains initially set to 0 for all 3 antennas. */
3847 DPRINTF(("setting initial differential gains\n"));
3848 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3849 }
3850
3851 static int
3852 iwn5000_init_gains(struct iwn_softc *sc)
3853 {
3854 struct iwn_phy_calib cmd;
3855
3856 memset(&cmd, 0, sizeof cmd);
3857 cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3858 cmd.ngroups = 1;
3859 cmd.isvalid = 1;
3860 DPRINTF(("setting initial differential gains\n"));
3861 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3862 }
3863
3864 static int
3865 iwn4965_set_gains(struct iwn_softc *sc)
3866 {
3867 struct iwn_calib_state *calib = &sc->calib;
3868 struct iwn_phy_calib_gain cmd;
3869 int i, delta, noise;
3870
3871 /* Get minimal noise among connected antennas. */
3872 noise = INT_MAX; /* NB: There's at least one antenna. */
3873 for (i = 0; i < 3; i++)
3874 if (sc->chainmask & (1 << i))
3875 noise = MIN(calib->noise[i], noise);
3876
3877 memset(&cmd, 0, sizeof cmd);
3878 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3879 /* Set differential gains for connected antennas. */
3880 for (i = 0; i < 3; i++) {
3881 if (sc->chainmask & (1 << i)) {
3882 /* Compute attenuation (in unit of 1.5dB). */
3883 delta = (noise - (int32_t)calib->noise[i]) / 30;
3884 /* NB: delta <= 0 */
3885 /* Limit to [-4.5dB,0]. */
3886 cmd.gain[i] = MIN(abs(delta), 3);
3887 if (delta < 0)
3888 cmd.gain[i] |= 1 << 2; /* sign bit */
3889 }
3890 }
3891 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3892 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3893 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3894 }
3895
3896 static int
3897 iwn5000_set_gains(struct iwn_softc *sc)
3898 {
3899 struct iwn_calib_state *calib = &sc->calib;
3900 struct iwn_phy_calib_gain cmd;
3901 int i, ant, div, delta;
3902
3903 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
3904 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3905
3906 memset(&cmd, 0, sizeof cmd);
3907 cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3908 cmd.ngroups = 1;
3909 cmd.isvalid = 1;
3910 /* Get first available RX antenna as referential. */
3911 ant = IWN_LSB(sc->rxchainmask);
3912 /* Set differential gains for other antennas. */
3913 for (i = ant + 1; i < 3; i++) {
3914 if (sc->chainmask & (1 << i)) {
3915 /* The delta is relative to antenna "ant". */
3916 delta = ((int32_t)calib->noise[ant] -
3917 (int32_t)calib->noise[i]) / div;
3918 /* Limit to [-4.5dB,+4.5dB]. */
3919 cmd.gain[i - 1] = MIN(abs(delta), 3);
3920 if (delta < 0)
3921 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
3922 }
3923 }
3924 DPRINTF(("setting differential gains: %x/%x (%x)\n",
3925 cmd.gain[0], cmd.gain[1], sc->chainmask));
3926 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3927 }
3928
3929 /*
3930 * Tune RF RX sensitivity based on the number of false alarms detected
3931 * during the last beacon period.
3932 */
3933 static void
3934 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3935 {
3936 #define inc(val, inc, max) \
3937 if ((val) < (max)) { \
3938 if ((val) < (max) - (inc)) \
3939 (val) += (inc); \
3940 else \
3941 (val) = (max); \
3942 needs_update = 1; \
3943 }
3944 #define dec(val, dec, min) \
3945 if ((val) > (min)) { \
3946 if ((val) > (min) + (dec)) \
3947 (val) -= (dec); \
3948 else \
3949 (val) = (min); \
3950 needs_update = 1; \
3951 }
3952
3953 const struct iwn_sensitivity_limits *limits = sc->limits;
3954 struct iwn_calib_state *calib = &sc->calib;
3955 uint32_t val, rxena, fa;
3956 uint32_t energy[3], energy_min;
3957 uint8_t noise[3], noise_ref;
3958 int i, needs_update = 0;
3959
3960 /* Check that we've been enabled long enough. */
3961 if ((rxena = le32toh(stats->general.load)) == 0)
3962 return;
3963
3964 /* Compute number of false alarms since last call for OFDM. */
3965 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3966 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3967 fa *= 200 * 1024; /* 200TU */
3968
3969 /* Save counters values for next call. */
3970 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3971 calib->fa_ofdm = le32toh(stats->ofdm.fa);
3972
3973 if (fa > 50 * rxena) {
3974 /* High false alarm count, decrease sensitivity. */
3975 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3976 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
3977 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3978 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
3979 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3980
3981 } else if (fa < 5 * rxena) {
3982 /* Low false alarm count, increase sensitivity. */
3983 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3984 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
3985 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3986 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
3987 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3988 }
3989
3990 /* Compute maximum noise among 3 receivers. */
3991 for (i = 0; i < 3; i++)
3992 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3993 val = MAX(noise[0], noise[1]);
3994 val = MAX(noise[2], val);
3995 /* Insert it into our samples table. */
3996 calib->noise_samples[calib->cur_noise_sample] = val;
3997 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3998
3999 /* Compute maximum noise among last 20 samples. */
4000 noise_ref = calib->noise_samples[0];
4001 for (i = 1; i < 20; i++)
4002 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4003
4004 /* Compute maximum energy among 3 receivers. */
4005 for (i = 0; i < 3; i++)
4006 energy[i] = le32toh(stats->general.energy[i]);
4007 val = MIN(energy[0], energy[1]);
4008 val = MIN(energy[2], val);
4009 /* Insert it into our samples table. */
4010 calib->energy_samples[calib->cur_energy_sample] = val;
4011 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4012
4013 /* Compute minimum energy among last 10 samples. */
4014 energy_min = calib->energy_samples[0];
4015 for (i = 1; i < 10; i++)
4016 energy_min = MAX(energy_min, calib->energy_samples[i]);
4017 energy_min += 6;
4018
4019 /* Compute number of false alarms since last call for CCK. */
4020 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4021 fa += le32toh(stats->cck.fa) - calib->fa_cck;
4022 fa *= 200 * 1024; /* 200TU */
4023
4024 /* Save counters values for next call. */
4025 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4026 calib->fa_cck = le32toh(stats->cck.fa);
4027
4028 if (fa > 50 * rxena) {
4029 /* High false alarm count, decrease sensitivity. */
4030 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4031 calib->cck_state = IWN_CCK_STATE_HIFA;
4032 calib->low_fa = 0;
4033
4034 if (calib->cck_x4 > 160) {
4035 calib->noise_ref = noise_ref;
4036 if (calib->energy_cck > 2)
4037 dec(calib->energy_cck, 2, energy_min);
4038 }
4039 if (calib->cck_x4 < 160) {
4040 calib->cck_x4 = 161;
4041 needs_update = 1;
4042 } else
4043 inc(calib->cck_x4, 3, limits->max_cck_x4);
4044
4045 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4046
4047 } else if (fa < 5 * rxena) {
4048 /* Low false alarm count, increase sensitivity. */
4049 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4050 calib->cck_state = IWN_CCK_STATE_LOFA;
4051 calib->low_fa++;
4052
4053 if (calib->cck_state != IWN_CCK_STATE_INIT &&
4054 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4055 calib->low_fa > 100)) {
4056 inc(calib->energy_cck, 2, limits->min_energy_cck);
4057 dec(calib->cck_x4, 3, limits->min_cck_x4);
4058 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4059 }
4060 } else {
4061 /* Not worth to increase or decrease sensitivity. */
4062 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4063 calib->low_fa = 0;
4064 calib->noise_ref = noise_ref;
4065
4066 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4067 /* Previous interval had many false alarms. */
4068 dec(calib->energy_cck, 8, energy_min);
4069 }
4070 calib->cck_state = IWN_CCK_STATE_INIT;
4071 }
4072
4073 if (needs_update)
4074 (void)iwn_send_sensitivity(sc);
4075 #undef dec
4076 #undef inc
4077 }
4078
4079 static int
4080 iwn_send_sensitivity(struct iwn_softc *sc)
4081 {
4082 struct iwn_calib_state *calib = &sc->calib;
4083 struct iwn_sensitivity_cmd cmd;
4084
4085 memset(&cmd, 0, sizeof cmd);
4086 cmd.which = IWN_SENSITIVITY_WORKTBL;
4087 /* OFDM modulation. */
4088 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4089 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4090 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4091 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4092 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4093 cmd.energy_ofdm_th = htole16(62);
4094 /* CCK modulation. */
4095 cmd.corr_cck_x4 = htole16(calib->cck_x4);
4096 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4097 cmd.energy_cck = htole16(calib->energy_cck);
4098 /* Barker modulation: use default values. */
4099 cmd.corr_barker = htole16(190);
4100 cmd.corr_barker_mrc = htole16(390);
4101
4102 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4103 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4104 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4105 calib->energy_cck));
4106 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4107 }
4108
4109 /*
4110 * Set STA mode power saving level (between 0 and 5).
4111 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4112 */
4113 static int
4114 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4115 {
4116 struct iwn_pmgt_cmd cmd;
4117 const struct iwn_pmgt *pmgt;
4118 uint32_t maxp, skip_dtim;
4119 pcireg_t reg;
4120 int i;
4121
4122 /* Select which PS parameters to use. */
4123 if (dtim <= 2)
4124 pmgt = &iwn_pmgt[0][level];
4125 else if (dtim <= 10)
4126 pmgt = &iwn_pmgt[1][level];
4127 else
4128 pmgt = &iwn_pmgt[2][level];
4129
4130 memset(&cmd, 0, sizeof cmd);
4131 if (level != 0) /* not CAM */
4132 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4133 if (level == 5)
4134 cmd.flags |= htole16(IWN_PS_FAST_PD);
4135 /* Retrieve PCIe Active State Power Management (ASPM). */
4136 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4137 sc->sc_cap_off + PCI_PCIE_LCSR);
4138 if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4139 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4140 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4141 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4142
4143 if (dtim == 0) {
4144 dtim = 1;
4145 skip_dtim = 0;
4146 } else
4147 skip_dtim = pmgt->skip_dtim;
4148 if (skip_dtim != 0) {
4149 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4150 maxp = pmgt->intval[4];
4151 if (maxp == (uint32_t)-1)
4152 maxp = dtim * (skip_dtim + 1);
4153 else if (maxp > dtim)
4154 maxp = (maxp / dtim) * dtim;
4155 } else
4156 maxp = dtim;
4157 for (i = 0; i < 5; i++)
4158 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4159
4160 DPRINTF(("setting power saving level to %d\n", level));
4161 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4162 }
4163
4164 static int
4165 iwn_config(struct iwn_softc *sc)
4166 {
4167 const struct iwn_hal *hal = sc->sc_hal;
4168 struct ieee80211com *ic = &sc->sc_ic;
4169 struct ifnet *ifp = ic->ic_ifp;
4170 struct iwn_bluetooth bluetooth;
4171 uint32_t txmask;
4172 uint16_t rxchain;
4173 int error;
4174
4175 /* Configure valid TX chains for 5000 Series. */
4176 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4177 txmask = htole32(sc->txchainmask);
4178 DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4179 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4180 sizeof txmask, 0);
4181 if (error != 0) {
4182 aprint_error_dev(sc->sc_dev,
4183 "could not configure valid TX chains\n");
4184 return error;
4185 }
4186 }
4187
4188 /* Configure bluetooth coexistence. */
4189 memset(&bluetooth, 0, sizeof bluetooth);
4190 bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4191 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4192 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4193 DPRINTF(("configuring bluetooth coexistence\n"));
4194 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4195 if (error != 0) {
4196 aprint_error_dev(sc->sc_dev,
4197 "could not configure bluetooth coexistence\n");
4198 return error;
4199 }
4200
4201 /* Set mode, channel, RX filter and enable RX. */
4202 memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4203 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4204 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4205 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4206 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4207 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4208 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4209 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4210 switch (ic->ic_opmode) {
4211 case IEEE80211_M_STA:
4212 sc->rxon.mode = IWN_MODE_STA;
4213 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4214 break;
4215 case IEEE80211_M_MONITOR:
4216 sc->rxon.mode = IWN_MODE_MONITOR;
4217 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4218 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4219 break;
4220 default:
4221 /* Should not get there. */
4222 break;
4223 }
4224 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4225 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4226 sc->rxon.ht_single_mask = 0xff;
4227 sc->rxon.ht_dual_mask = 0xff;
4228 sc->rxon.ht_triple_mask = 0xff;
4229 rxchain =
4230 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4231 IWN_RXCHAIN_MIMO_COUNT(2) |
4232 IWN_RXCHAIN_IDLE_COUNT(2);
4233 sc->rxon.rxchain = htole16(rxchain);
4234 DPRINTF(("setting configuration\n"));
4235 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
4236 if (error != 0) {
4237 aprint_error_dev(sc->sc_dev,
4238 "RXON command failed\n");
4239 return error;
4240 }
4241
4242 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4243 aprint_error_dev(sc->sc_dev,
4244 "could not add broadcast node\n");
4245 return error;
4246 }
4247
4248 /* Configuration has changed, set TX power accordingly. */
4249 if ((error = hal->set_txpower(sc, 0)) != 0) {
4250 aprint_error_dev(sc->sc_dev,
4251 "could not set TX power\n");
4252 return error;
4253 }
4254
4255 if ((error = iwn_set_critical_temp(sc)) != 0) {
4256 aprint_error_dev(sc->sc_dev,
4257 "could not set critical temperature\n");
4258 return error;
4259 }
4260
4261 /* Set power saving level to CAM during initialization. */
4262 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4263 aprint_error_dev(sc->sc_dev,
4264 "could not set power saving level\n");
4265 return error;
4266 }
4267 return 0;
4268 }
4269
4270 static int
4271 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4272 {
4273 struct ieee80211com *ic = &sc->sc_ic;
4274 struct iwn_scan_hdr *hdr;
4275 struct iwn_cmd_data *tx;
4276 struct iwn_scan_essid *essid;
4277 struct iwn_scan_chan *chan;
4278 struct ieee80211_frame *wh;
4279 struct ieee80211_rateset *rs;
4280 struct ieee80211_channel *c;
4281 uint8_t *buf, *frm;
4282 uint16_t rxchain;
4283 uint8_t txant;
4284 int buflen, error;
4285
4286 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4287 if (buf == NULL) {
4288 aprint_error_dev(sc->sc_dev,
4289 "could not allocate buffer for scan command\n");
4290 return ENOMEM;
4291 }
4292 hdr = (struct iwn_scan_hdr *)buf;
4293 /*
4294 * Move to the next channel if no frames are received within 10ms
4295 * after sending the probe request.
4296 */
4297 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4298 hdr->quiet_threshold = htole16(1); /* min # of packets */
4299
4300 /* Select antennas for scanning. */
4301 rxchain =
4302 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4303 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4304 IWN_RXCHAIN_DRIVER_FORCE;
4305 if ((flags & IEEE80211_CHAN_5GHZ) &&
4306 sc->hw_type == IWN_HW_REV_TYPE_4965) {
4307 /* Ant A must be avoided in 5GHz because of an HW bug. */
4308 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4309 } else /* Use all available RX antennas. */
4310 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4311 hdr->rxchain = htole16(rxchain);
4312 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4313
4314 tx = (struct iwn_cmd_data *)(hdr + 1);
4315 tx->flags = htole32(IWN_TX_AUTO_SEQ);
4316 tx->id = sc->sc_hal->broadcast_id;
4317 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4318
4319 if (flags & IEEE80211_CHAN_5GHZ) {
4320 hdr->crc_threshold = 0xffff;
4321 /* Send probe requests at 6Mbps. */
4322 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4323 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4324 } else {
4325 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4326 /* Send probe requests at 1Mbps. */
4327 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4328 tx->rflags = IWN_RFLAG_CCK;
4329 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4330 }
4331 /* Use the first valid TX antenna. */
4332 txant = IWN_LSB(sc->txchainmask);
4333 tx->rflags |= IWN_RFLAG_ANT(txant);
4334
4335 essid = (struct iwn_scan_essid *)(tx + 1);
4336 if (ic->ic_des_esslen != 0) {
4337 essid[0].id = IEEE80211_ELEMID_SSID;
4338 essid[0].len = ic->ic_des_esslen;
4339 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4340 }
4341 /*
4342 * Build a probe request frame. Most of the following code is a
4343 * copy & paste of what is done in net80211.
4344 */
4345 wh = (struct ieee80211_frame *)(essid + 20);
4346 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4347 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4348 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4349 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4350 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4351 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4352 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4353 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4354
4355 frm = (uint8_t *)(wh + 1);
4356 frm = ieee80211_add_ssid(frm, NULL, 0);
4357 frm = ieee80211_add_rates(frm, rs);
4358 #ifndef IEEE80211_NO_HT
4359 if (ic->ic_flags & IEEE80211_F_HTON)
4360 frm = ieee80211_add_htcaps(frm, ic);
4361 #endif
4362 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4363 frm = ieee80211_add_xrates(frm, rs);
4364
4365 /* Set length of probe request. */
4366 tx->len = htole16(frm - (uint8_t *)wh);
4367
4368 chan = (struct iwn_scan_chan *)frm;
4369 for (c = &ic->ic_channels[1];
4370 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4371 if ((c->ic_flags & flags) != flags)
4372 continue;
4373
4374 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4375 DPRINTFN(2, ("adding channel %d\n", chan->chan));
4376 chan->flags = 0;
4377 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4378 chan->flags |= htole32(IWN_CHAN_ACTIVE);
4379 if (ic->ic_des_esslen != 0)
4380 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4381 chan->dsp_gain = 0x6e;
4382 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4383 chan->rf_gain = 0x3b;
4384 chan->active = htole16(24);
4385 chan->passive = htole16(110);
4386 } else {
4387 chan->rf_gain = 0x28;
4388 chan->active = htole16(36);
4389 chan->passive = htole16(120);
4390 }
4391 hdr->nchan++;
4392 chan++;
4393 }
4394
4395 buflen = (uint8_t *)chan - buf;
4396 hdr->len = htole16(buflen);
4397
4398 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4399 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4400 free(buf, M_DEVBUF);
4401 return error;
4402 }
4403
4404 static int
4405 iwn_auth(struct iwn_softc *sc)
4406 {
4407 const struct iwn_hal *hal = sc->sc_hal;
4408 struct ieee80211com *ic = &sc->sc_ic;
4409 struct ieee80211_node *ni = ic->ic_bss;
4410 int error;
4411
4412 /* Update adapter configuration. */
4413 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4414 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4415 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4416 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4417 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4418 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4419 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4420 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4421 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4422 switch (ic->ic_curmode) {
4423 case IEEE80211_MODE_11A:
4424 sc->rxon.cck_mask = 0;
4425 sc->rxon.ofdm_mask = 0x15;
4426 break;
4427 case IEEE80211_MODE_11B:
4428 sc->rxon.cck_mask = 0x03;
4429 sc->rxon.ofdm_mask = 0;
4430 break;
4431 default: /* Assume 802.11b/g. */
4432 sc->rxon.cck_mask = 0x0f;
4433 sc->rxon.ofdm_mask = 0x15;
4434 }
4435 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4436 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4437 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4438 if (error != 0) {
4439 aprint_error_dev(sc->sc_dev,
4440 "RXON command failed\n");
4441 return error;
4442 }
4443
4444 /* Configuration has changed, set TX power accordingly. */
4445 if ((error = hal->set_txpower(sc, 1)) != 0) {
4446 aprint_error_dev(sc->sc_dev,
4447 "could not set TX power\n");
4448 return error;
4449 }
4450 /*
4451 * Reconfiguring RXON clears the firmware nodes table so we must
4452 * add the broadcast node again.
4453 */
4454 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4455 aprint_error_dev(sc->sc_dev,
4456 "could not add broadcast node\n");
4457 return error;
4458 }
4459 return 0;
4460 }
4461
4462 static int
4463 iwn_run(struct iwn_softc *sc)
4464 {
4465 const struct iwn_hal *hal = sc->sc_hal;
4466 struct ieee80211com *ic = &sc->sc_ic;
4467 struct ieee80211_node *ni = ic->ic_bss;
4468 struct iwn_node_info node;
4469 int error;
4470
4471 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4472 /* Link LED blinks while monitoring. */
4473 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4474 return 0;
4475 }
4476 if ((error = iwn_set_timing(sc, ni)) != 0) {
4477 aprint_error_dev(sc->sc_dev,
4478 "could not set timing\n");
4479 return error;
4480 }
4481
4482 /* Update adapter configuration. */
4483 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4484 /* Short preamble and slot time are negotiated when associating. */
4485 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4486 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4487 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4488 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4489 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4490 sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4491 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4492 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4493 if (error != 0) {
4494 aprint_error_dev(sc->sc_dev,
4495 "could not update configuration\n");
4496 return error;
4497 }
4498
4499 /* Configuration has changed, set TX power accordingly. */
4500 if ((error = hal->set_txpower(sc, 1)) != 0) {
4501 aprint_error_dev(sc->sc_dev,
4502 "could not set TX power\n");
4503 return error;
4504 }
4505
4506 /* Fake a join to initialize the TX rate. */
4507 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
4508 iwn_newassoc(ni, 1);
4509
4510 /* Add BSS node. */
4511 memset(&node, 0, sizeof node);
4512 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4513 node.id = IWN_ID_BSS;
4514 #ifdef notyet
4515 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4516 IWN_AMDPU_DENSITY(5)); /* 2us */
4517 #endif
4518 DPRINTF(("adding BSS node\n"));
4519 error = hal->add_node(sc, &node, 1);
4520 if (error != 0) {
4521 aprint_error_dev(sc->sc_dev,
4522 "could not add BSS node\n");
4523 return error;
4524 }
4525 DPRINTF(("setting link quality for node %d\n", node.id));
4526 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4527 aprint_error_dev(sc->sc_dev,
4528 "could not setup link quality for node %d\n", node.id);
4529 return error;
4530 }
4531
4532 if ((error = iwn_init_sensitivity(sc)) != 0) {
4533 aprint_error_dev(sc->sc_dev,
4534 "could not set sensitivity\n");
4535 return error;
4536 }
4537 /* Start periodic calibration timer. */
4538 sc->calib.state = IWN_CALIB_STATE_ASSOC;
4539 sc->calib_cnt = 0;
4540 callout_schedule(&sc->calib_to, hz/2);
4541
4542 /* Link LED always on while associated. */
4543 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4544 return 0;
4545 }
4546
4547 #ifdef IWN_HWCRYPTO
4548 /*
4549 * We support CCMP hardware encryption/decryption of unicast frames only.
4550 * HW support for TKIP really sucks. We should let TKIP die anyway.
4551 */
4552 static int
4553 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4554 struct ieee80211_key *k)
4555 {
4556 struct iwn_softc *sc = ic->ic_softc;
4557 const struct iwn_hal *hal = sc->sc_hal;
4558 struct iwn_node *wn = (void *)ni;
4559 struct iwn_node_info node;
4560 uint16_t kflags;
4561
4562 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4563 k->k_cipher != IEEE80211_CIPHER_CCMP)
4564 return ieee80211_set_key(ic, ni, k);
4565
4566 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4567 if (k->k_flags & IEEE80211_KEY_GROUP)
4568 kflags |= IWN_KFLAG_GROUP;
4569
4570 memset(&node, 0, sizeof node);
4571 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4572 hal->broadcast_id : wn->id;
4573 node.control = IWN_NODE_UPDATE;
4574 node.flags = IWN_FLAG_SET_KEY;
4575 node.kflags = htole16(kflags);
4576 node.kid = k->k_id;
4577 memcpy(node.key, k->k_key, k->k_len);
4578 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4579 return hal->add_node(sc, &node, 1);
4580 }
4581
4582 static void
4583 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4584 struct ieee80211_key *k)
4585 {
4586 struct iwn_softc *sc = ic->ic_softc;
4587 const struct iwn_hal *hal = sc->sc_hal;
4588 struct iwn_node *wn = (void *)ni;
4589 struct iwn_node_info node;
4590
4591 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4592 k->k_cipher != IEEE80211_CIPHER_CCMP) {
4593 /* See comment about other ciphers above. */
4594 ieee80211_delete_key(ic, ni, k);
4595 return;
4596 }
4597 if (ic->ic_state != IEEE80211_S_RUN)
4598 return; /* Nothing to do. */
4599 memset(&node, 0, sizeof node);
4600 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4601 hal->broadcast_id : wn->id;
4602 node.control = IWN_NODE_UPDATE;
4603 node.flags = IWN_FLAG_SET_KEY;
4604 node.kflags = htole16(IWN_KFLAG_INVALID);
4605 node.kid = 0xff;
4606 DPRINTF(("delete keys for node %d\n", node.id));
4607 (void)hal->add_node(sc, &node, 1);
4608 }
4609 #endif
4610
4611 /* XXX Added for NetBSD (copied from rev 1.39). */
4612
4613 static int
4614 iwn_wme_update(struct ieee80211com *ic)
4615 {
4616 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
4617 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
4618 struct iwn_softc *sc = ic->ic_ifp->if_softc;
4619 const struct wmeParams *wmep;
4620 struct iwn_edca_params cmd;
4621 int ac;
4622
4623 /* don't override default WME values if WME is not actually enabled */
4624 if (!(ic->ic_flags & IEEE80211_F_WME))
4625 return 0;
4626 cmd.flags = 0;
4627 for (ac = 0; ac < WME_NUM_AC; ac++) {
4628 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4629 cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4630 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4631 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4632 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
4633
4634 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4635 "txop=%d\n", ac, cmd.ac[ac].aifsn,
4636 cmd.ac[ac].cwmin,
4637 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4638 }
4639 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4640 #undef IWN_USEC
4641 #undef IWN_EXP2
4642 }
4643
4644 #ifndef IEEE80211_NO_HT
4645 /*
4646 * This function is called by upper layer when an ADDBA request is received
4647 * from another STA and before the ADDBA response is sent.
4648 */
4649 static int
4650 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4651 uint8_t tid)
4652 {
4653 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4654 struct iwn_softc *sc = ic->ic_softc;
4655 struct iwn_node *wn = (void *)ni;
4656 struct iwn_node_info node;
4657
4658 memset(&node, 0, sizeof node);
4659 node.id = wn->id;
4660 node.control = IWN_NODE_UPDATE;
4661 node.flags = IWN_FLAG_SET_ADDBA;
4662 node.addba_tid = tid;
4663 node.addba_ssn = htole16(ba->ba_winstart);
4664 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4665 ba->ba_winstart));
4666 return sc->sc_hal->add_node(sc, &node, 1);
4667 }
4668
4669 /*
4670 * This function is called by upper layer on teardown of an HT-immediate
4671 * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
4672 */
4673 static void
4674 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4675 uint8_t tid)
4676 {
4677 struct iwn_softc *sc = ic->ic_softc;
4678 struct iwn_node *wn = (void *)ni;
4679 struct iwn_node_info node;
4680
4681 memset(&node, 0, sizeof node);
4682 node.id = wn->id;
4683 node.control = IWN_NODE_UPDATE;
4684 node.flags = IWN_FLAG_SET_DELBA;
4685 node.delba_tid = tid;
4686 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4687 (void)sc->sc_hal->add_node(sc, &node, 1);
4688 }
4689
4690 /*
4691 * This function is called by upper layer when an ADDBA response is received
4692 * from another STA.
4693 */
4694 static int
4695 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4696 uint8_t tid)
4697 {
4698 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4699 struct iwn_softc *sc = ic->ic_softc;
4700 const struct iwn_hal *hal = sc->sc_hal;
4701 struct iwn_node *wn = (void *)ni;
4702 struct iwn_node_info node;
4703 int error;
4704
4705 /* Enable TX for the specified RA/TID. */
4706 wn->disable_tid &= ~(1 << tid);
4707 memset(&node, 0, sizeof node);
4708 node.id = wn->id;
4709 node.control = IWN_NODE_UPDATE;
4710 node.flags = IWN_FLAG_SET_DISABLE_TID;
4711 node.disable_tid = htole16(wn->disable_tid);
4712 error = hal->add_node(sc, &node, 1);
4713 if (error != 0)
4714 return error;
4715
4716 if ((error = iwn_nic_lock(sc)) != 0)
4717 return error;
4718 hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4719 iwn_nic_unlock(sc);
4720 return 0;
4721 }
4722
4723 static void
4724 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4725 uint8_t tid)
4726 {
4727 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4728 struct iwn_softc *sc = ic->ic_softc;
4729
4730 if (iwn_nic_lock(sc) != 0)
4731 return;
4732 sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4733 iwn_nic_unlock(sc);
4734 }
4735
4736 static void
4737 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4738 uint8_t tid, uint16_t ssn)
4739 {
4740 struct iwn_node *wn = (void *)ni;
4741 int qid = 7 + tid;
4742
4743 /* Stop TX scheduler while we're changing its configuration. */
4744 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4745 IWN4965_TXQ_STATUS_CHGACT);
4746
4747 /* Assign RA/TID translation to the queue. */
4748 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4749 wn->id << 4 | tid);
4750
4751 /* Enable chain-building mode for the queue. */
4752 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4753
4754 /* Set starting sequence number from the ADDBA request. */
4755 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4756 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4757
4758 /* Set scheduler window size. */
4759 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4760 IWN_SCHED_WINSZ);
4761 /* Set scheduler frame limit. */
4762 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4763 IWN_SCHED_LIMIT << 16);
4764
4765 /* Enable interrupts for the queue. */
4766 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4767
4768 /* Mark the queue as active. */
4769 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4770 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4771 iwn_tid2fifo[tid] << 1);
4772 }
4773
4774 static void
4775 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4776 {
4777 int qid = 7 + tid;
4778
4779 /* Stop TX scheduler while we're changing its configuration. */
4780 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4781 IWN4965_TXQ_STATUS_CHGACT);
4782
4783 /* Set starting sequence number from the ADDBA request. */
4784 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4785 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4786
4787 /* Disable interrupts for the queue. */
4788 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4789
4790 /* Mark the queue as inactive. */
4791 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4792 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4793 }
4794
4795 static void
4796 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4797 uint8_t tid, uint16_t ssn)
4798 {
4799 struct iwn_node *wn = (void *)ni;
4800 int qid = 10 + tid;
4801
4802 /* Stop TX scheduler while we're changing its configuration. */
4803 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4804 IWN5000_TXQ_STATUS_CHGACT);
4805
4806 /* Assign RA/TID translation to the queue. */
4807 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4808 wn->id << 4 | tid);
4809
4810 /* Enable chain-building mode for the queue. */
4811 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4812
4813 /* Enable aggregation for the queue. */
4814 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4815
4816 /* Set starting sequence number from the ADDBA request. */
4817 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4818 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4819
4820 /* Set scheduler window size and frame limit. */
4821 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4822 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4823
4824 /* Enable interrupts for the queue. */
4825 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4826
4827 /* Mark the queue as active. */
4828 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4829 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4830 }
4831
4832 static void
4833 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4834 {
4835 int qid = 10 + tid;
4836
4837 /* Stop TX scheduler while we're changing its configuration. */
4838 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4839 IWN5000_TXQ_STATUS_CHGACT);
4840
4841 /* Disable aggregation for the queue. */
4842 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4843
4844 /* Set starting sequence number from the ADDBA request. */
4845 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4846 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4847
4848 /* Disable interrupts for the queue. */
4849 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4850
4851 /* Mark the queue as inactive. */
4852 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4853 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4854 }
4855 #endif /* !IEEE80211_NO_HT */
4856
4857 /*
4858 * Query calibration tables from the initialization firmware. We do this
4859 * only once at first boot. Called from a process context.
4860 */
4861 static int
4862 iwn5000_query_calibration(struct iwn_softc *sc)
4863 {
4864 struct iwn5000_calib_config cmd;
4865 int error;
4866
4867 memset(&cmd, 0, sizeof cmd);
4868 cmd.ucode.once.enable = 0xffffffff;
4869 cmd.ucode.once.start = 0xffffffff;
4870 cmd.ucode.once.send = 0xffffffff;
4871 cmd.ucode.flags = 0xffffffff;
4872 DPRINTF(("sending calibration query\n"));
4873 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4874 if (error != 0)
4875 return error;
4876
4877 /* Wait at most two seconds for calibration to complete. */
4878 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4879 error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4880 return error;
4881 }
4882
4883 /*
4884 * Send calibration results to the runtime firmware. These results were
4885 * obtained on first boot from the initialization firmware.
4886 */
4887 static int
4888 iwn5000_send_calibration(struct iwn_softc *sc)
4889 {
4890 int idx, error;
4891
4892 for (idx = 0; idx < 5; idx++) {
4893 if (sc->calibcmd[idx].buf == NULL)
4894 continue; /* No results available. */
4895 DPRINTF(("send calibration result idx=%d len=%d\n",
4896 idx, sc->calibcmd[idx].len));
4897 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4898 sc->calibcmd[idx].len, 0);
4899 if (error != 0) {
4900 aprint_error_dev(sc->sc_dev,
4901 "could not send calibration result\n");
4902 return error;
4903 }
4904 }
4905 return 0;
4906 }
4907
4908 static int
4909 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4910 {
4911 struct iwn5000_wimax_coex wimax;
4912
4913 #ifdef notyet
4914 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4915 /* Enable WiMAX coexistence for combo adapters. */
4916 wimax.flags =
4917 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4918 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4919 IWN_WIMAX_COEX_STA_TABLE_VALID |
4920 IWN_WIMAX_COEX_ENABLE;
4921 memcpy(wimax.events, iwn6050_wimax_events,
4922 sizeof iwn6050_wimax_events);
4923 } else
4924 #endif
4925 {
4926 /* Disable WiMAX coexistence. */
4927 wimax.flags = 0;
4928 memset(wimax.events, 0, sizeof wimax.events);
4929 }
4930 DPRINTF(("Configuring WiMAX coexistence\n"));
4931 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4932 }
4933
4934 /*
4935 * This function is called after the runtime firmware notifies us of its
4936 * readiness (called in a process context.)
4937 */
4938 static int
4939 iwn4965_post_alive(struct iwn_softc *sc)
4940 {
4941 int error, qid;
4942
4943 if ((error = iwn_nic_lock(sc)) != 0)
4944 return error;
4945
4946 /* Clear TX scheduler state in SRAM. */
4947 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4948 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
4949 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
4950
4951 /* Set physical address of TX scheduler rings (1KB aligned.) */
4952 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4953
4954 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4955
4956 /* Disable chain mode for all our 16 queues. */
4957 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
4958
4959 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
4960 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
4961 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4962
4963 /* Set scheduler window size. */
4964 iwn_mem_write(sc, sc->sched_base +
4965 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
4966 /* Set scheduler frame limit. */
4967 iwn_mem_write(sc, sc->sched_base +
4968 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4969 IWN_SCHED_LIMIT << 16);
4970 }
4971
4972 /* Enable interrupts for all our 16 queues. */
4973 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
4974 /* Identify TX FIFO rings (0-7). */
4975 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
4976
4977 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4978 for (qid = 0; qid < 7; qid++) {
4979 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
4980 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4981 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
4982 }
4983 iwn_nic_unlock(sc);
4984 return 0;
4985 }
4986
4987 /*
4988 * This function is called after the initialization or runtime firmware
4989 * notifies us of its readiness (called in a process context.)
4990 */
4991 static int
4992 iwn5000_post_alive(struct iwn_softc *sc)
4993 {
4994 int error, qid;
4995
4996 /* Switch to using ICT interrupt mode. */
4997 iwn5000_ict_reset(sc);
4998
4999 if ((error = iwn_nic_lock(sc)) != 0)
5000 return error;
5001
5002 /* Clear TX scheduler state in SRAM. */
5003 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5004 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5005 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5006
5007 /* Set physical address of TX scheduler rings (1KB aligned.) */
5008 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5009
5010 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5011
5012 /* Enable chain mode for all queues, except command queue. */
5013 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5014 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5015
5016 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5017 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5018 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5019
5020 iwn_mem_write(sc, sc->sched_base +
5021 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5022 /* Set scheduler window size and frame limit. */
5023 iwn_mem_write(sc, sc->sched_base +
5024 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5025 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5026 }
5027
5028 /* Enable interrupts for all our 20 queues. */
5029 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5030 /* Identify TX FIFO rings (0-7). */
5031 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5032
5033 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5034 for (qid = 0; qid < 7; qid++) {
5035 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5036 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5037 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5038 }
5039 iwn_nic_unlock(sc);
5040
5041 /* Configure WiMAX coexistence for combo adapters. */
5042 error = iwn5000_send_wimax_coex(sc);
5043 if (error != 0) {
5044 aprint_error_dev(sc->sc_dev,
5045 "could not configure WiMAX coexistence\n");
5046 return error;
5047 }
5048 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5049 struct iwn5000_phy_calib_crystal cmd;
5050
5051 /* Perform crystal calibration. */
5052 memset(&cmd, 0, sizeof cmd);
5053 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5054 cmd.ngroups = 1;
5055 cmd.isvalid = 1;
5056 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5057 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5058 DPRINTF(("sending crystal calibration %d, %d\n",
5059 cmd.cap_pin[0], cmd.cap_pin[1]));
5060 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5061 if (error != 0) {
5062 aprint_error_dev(sc->sc_dev,
5063 "crystal calibration failed\n");
5064 return error;
5065 }
5066 }
5067 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5068 /* Query calibration from the initialization firmware. */
5069 if ((error = iwn5000_query_calibration(sc)) != 0) {
5070 aprint_error_dev(sc->sc_dev,
5071 "could not query calibration\n");
5072 return error;
5073 }
5074 /*
5075 * We have the calibration results now, reboot with the
5076 * runtime firmware (call ourselves recursively!)
5077 */
5078 iwn_hw_stop(sc);
5079 error = iwn_hw_init(sc);
5080 } else {
5081 /* Send calibration results to runtime firmware. */
5082 error = iwn5000_send_calibration(sc);
5083 }
5084 return error;
5085 }
5086
5087 /*
5088 * The firmware boot code is small and is intended to be copied directly into
5089 * the NIC internal memory (no DMA transfer.)
5090 */
5091 static int
5092 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5093 {
5094 int error, ntries;
5095
5096 size /= sizeof (uint32_t);
5097
5098 if ((error = iwn_nic_lock(sc)) != 0)
5099 return error;
5100
5101 /* Copy microcode image into NIC memory. */
5102 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5103 (const uint32_t *)ucode, size);
5104
5105 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5106 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5107 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5108
5109 /* Start boot load now. */
5110 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5111
5112 /* Wait for transfer to complete. */
5113 for (ntries = 0; ntries < 1000; ntries++) {
5114 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5115 IWN_BSM_WR_CTRL_START))
5116 break;
5117 DELAY(10);
5118 }
5119 if (ntries == 1000) {
5120 aprint_error_dev(sc->sc_dev,
5121 "could not load boot firmware\n");
5122 iwn_nic_unlock(sc);
5123 return ETIMEDOUT;
5124 }
5125
5126 /* Enable boot after power up. */
5127 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5128
5129 iwn_nic_unlock(sc);
5130 return 0;
5131 }
5132
5133 static int
5134 iwn4965_load_firmware(struct iwn_softc *sc)
5135 {
5136 struct iwn_fw_info *fw = &sc->fw;
5137 struct iwn_dma_info *dma = &sc->fw_dma;
5138 int error;
5139
5140 /* Copy initialization sections into pre-allocated DMA-safe memory. */
5141 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5142 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5143 BUS_DMASYNC_PREWRITE);
5144 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5145 fw->init.text, fw->init.textsz);
5146 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5147 fw->init.textsz, BUS_DMASYNC_PREWRITE);
5148
5149 /* Tell adapter where to find initialization sections. */
5150 if ((error = iwn_nic_lock(sc)) != 0)
5151 return error;
5152 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5153 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5154 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5155 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5156 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5157 iwn_nic_unlock(sc);
5158
5159 /* Load firmware boot code. */
5160 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5161 if (error != 0) {
5162 aprint_error_dev(sc->sc_dev,
5163 "could not load boot firmware\n");
5164 return error;
5165 }
5166 /* Now press "execute". */
5167 IWN_WRITE(sc, IWN_RESET, 0);
5168
5169 /* Wait at most one second for first alive notification. */
5170 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5171 aprint_error_dev(sc->sc_dev,
5172 "timeout waiting for adapter to initialize\n");
5173 return error;
5174 }
5175
5176 /* Retrieve current temperature for initial TX power calibration. */
5177 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5178 sc->temp = iwn4965_get_temperature(sc);
5179
5180 /* Copy runtime sections into pre-allocated DMA-safe memory. */
5181 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5182 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5183 BUS_DMASYNC_PREWRITE);
5184 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5185 fw->main.text, fw->main.textsz);
5186 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5187 fw->main.textsz, BUS_DMASYNC_PREWRITE);
5188
5189 /* Tell adapter where to find runtime sections. */
5190 if ((error = iwn_nic_lock(sc)) != 0)
5191 return error;
5192 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5193 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5194 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5195 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5196 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5197 IWN_FW_UPDATED | fw->main.textsz);
5198 iwn_nic_unlock(sc);
5199
5200 return 0;
5201 }
5202
5203 static int
5204 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5205 const uint8_t *section, int size)
5206 {
5207 struct iwn_dma_info *dma = &sc->fw_dma;
5208 int error;
5209
5210 /* Copy firmware section into pre-allocated DMA-safe memory. */
5211 memcpy(dma->vaddr, section, size);
5212 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5213
5214 if ((error = iwn_nic_lock(sc)) != 0)
5215 return error;
5216
5217 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5218 IWN_FH_TX_CONFIG_DMA_PAUSE);
5219
5220 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5221 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5222 IWN_LOADDR(dma->paddr));
5223 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5224 IWN_HIADDR(dma->paddr) << 28 | size);
5225 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5226 IWN_FH_TXBUF_STATUS_TBNUM(1) |
5227 IWN_FH_TXBUF_STATUS_TBIDX(1) |
5228 IWN_FH_TXBUF_STATUS_TFBD_VALID);
5229
5230 /* Kick Flow Handler to start DMA transfer. */
5231 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5232 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5233
5234 iwn_nic_unlock(sc);
5235
5236 /* Wait at most five seconds for FH DMA transfer to complete. */
5237 return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5238 }
5239
5240 static int
5241 iwn5000_load_firmware(struct iwn_softc *sc)
5242 {
5243 struct iwn_fw_part *fw;
5244 int error;
5245
5246 /* Load the initialization firmware on first boot only. */
5247 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5248 &sc->fw.main : &sc->fw.init;
5249
5250 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5251 fw->text, fw->textsz);
5252 if (error != 0) {
5253 aprint_error_dev(sc->sc_dev,
5254 "could not load firmware %s section\n", ".text");
5255 return error;
5256 }
5257 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5258 fw->data, fw->datasz);
5259 if (error != 0) {
5260 aprint_error_dev(sc->sc_dev,
5261 "could not load firmware %s section\n", ".data");
5262 return error;
5263 }
5264
5265 /* Now press "execute". */
5266 IWN_WRITE(sc, IWN_RESET, 0);
5267 return 0;
5268 }
5269
5270 /*
5271 * Extract text and data sections from a legacy firmware image.
5272 */
5273 static int
5274 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5275 {
5276 const uint32_t *ptr;
5277 size_t hdrlen = 24;
5278 uint32_t rev;
5279
5280 ptr = (const uint32_t *)fw->data;
5281 rev = le32toh(*ptr++);
5282
5283 /* Check firmware API version. */
5284 if (IWN_FW_API(rev) <= 1) {
5285 aprint_error_dev(sc->sc_dev,
5286 "bad firmware, need API version >=2\n");
5287 return EINVAL;
5288 }
5289 if (IWN_FW_API(rev) >= 3) {
5290 /* Skip build number (version 2 header). */
5291 hdrlen += 4;
5292 ptr++;
5293 }
5294 if (fw->size < hdrlen) {
5295 aprint_error_dev(sc->sc_dev,
5296 "firmware too short: %zd bytes\n", fw->size);
5297 return EINVAL;
5298 }
5299 fw->main.textsz = le32toh(*ptr++);
5300 fw->main.datasz = le32toh(*ptr++);
5301 fw->init.textsz = le32toh(*ptr++);
5302 fw->init.datasz = le32toh(*ptr++);
5303 fw->boot.textsz = le32toh(*ptr++);
5304
5305 /* Check that all firmware sections fit. */
5306 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5307 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5308 aprint_error_dev(sc->sc_dev,
5309 "firmware too short: %zd bytes\n", fw->size);
5310 return EINVAL;
5311 }
5312
5313 /* Get pointers to firmware sections. */
5314 fw->main.text = (const uint8_t *)ptr;
5315 fw->main.data = fw->main.text + fw->main.textsz;
5316 fw->init.text = fw->main.data + fw->main.datasz;
5317 fw->init.data = fw->init.text + fw->init.textsz;
5318 fw->boot.text = fw->init.data + fw->init.datasz;
5319 return 0;
5320 }
5321
5322 /*
5323 * Extract text and data sections from a TLV firmware image.
5324 */
5325 static int
5326 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5327 uint16_t alt)
5328 {
5329 const struct iwn_fw_tlv_hdr *hdr;
5330 const struct iwn_fw_tlv *tlv;
5331 const uint8_t *ptr, *end;
5332 uint64_t altmask;
5333 uint32_t len;
5334
5335 if (fw->size < sizeof (*hdr)) {
5336 aprint_error_dev(sc->sc_dev,
5337 "firmware too short: %zd bytes\n", fw->size);
5338 return EINVAL;
5339 }
5340 hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5341 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5342 aprint_error_dev(sc->sc_dev,
5343 "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5344 return EINVAL;
5345 }
5346 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5347 le32toh(hdr->build)));
5348
5349 /*
5350 * Select the closest supported alternative that is less than
5351 * or equal to the specified one.
5352 */
5353 altmask = le64toh(hdr->altmask);
5354 while (alt > 0 && !(altmask & (1ULL << alt)))
5355 alt--; /* Downgrade. */
5356 DPRINTF(("using alternative %d\n", alt));
5357
5358 ptr = (const uint8_t *)(hdr + 1);
5359 end = (const uint8_t *)(fw->data + fw->size);
5360
5361 /* Parse type-length-value fields. */
5362 while (ptr + sizeof (*tlv) <= end) {
5363 tlv = (const struct iwn_fw_tlv *)ptr;
5364 len = le32toh(tlv->len);
5365
5366 ptr += sizeof (*tlv);
5367 if (ptr + len > end) {
5368 aprint_error_dev(sc->sc_dev,
5369 "firmware too short: %zd bytes\n", fw->size);
5370 return EINVAL;
5371 }
5372 /* Skip other alternatives. */
5373 if (tlv->alt != 0 && tlv->alt != htole16(alt))
5374 goto next;
5375
5376 switch (le16toh(tlv->type)) {
5377 case IWN_FW_TLV_MAIN_TEXT:
5378 fw->main.text = ptr;
5379 fw->main.textsz = len;
5380 break;
5381 case IWN_FW_TLV_MAIN_DATA:
5382 fw->main.data = ptr;
5383 fw->main.datasz = len;
5384 break;
5385 case IWN_FW_TLV_INIT_TEXT:
5386 fw->init.text = ptr;
5387 fw->init.textsz = len;
5388 break;
5389 case IWN_FW_TLV_INIT_DATA:
5390 fw->init.data = ptr;
5391 fw->init.datasz = len;
5392 break;
5393 case IWN_FW_TLV_BOOT_TEXT:
5394 fw->boot.text = ptr;
5395 fw->boot.textsz = len;
5396 break;
5397 default:
5398 DPRINTF(("TLV type %d not handled\n",
5399 le16toh(tlv->type)));
5400 break;
5401 }
5402 next: /* TLV fields are 32-bit aligned. */
5403 ptr += (len + 3) & ~3;
5404 }
5405 return 0;
5406 }
5407
5408 static int
5409 iwn_read_firmware(struct iwn_softc *sc)
5410 {
5411 const struct iwn_hal *hal = sc->sc_hal;
5412 struct iwn_fw_info *fw = &sc->fw;
5413 firmware_handle_t fwh;
5414 int error;
5415
5416 /* Initialize for error returns */
5417 fw->data = NULL;
5418 fw->size = 0;
5419
5420 /* Open firmware image. */
5421 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5422 aprint_error_dev(sc->sc_dev,
5423 "could not get firmware handle %s\n", sc->fwname);
5424 return error;
5425 }
5426 fw->size = firmware_get_size(fwh);
5427 if (fw->size < sizeof (uint32_t)) {
5428 aprint_error_dev(sc->sc_dev,
5429 "firmware too short: %zd bytes\n", fw->size);
5430 firmware_close(fwh);
5431 return EINVAL;
5432 }
5433
5434 /* Read the firmware. */
5435 fw->data = firmware_malloc(fw->size);
5436 if (fw->data == NULL) {
5437 aprint_error_dev(sc->sc_dev,
5438 "not enough memory to stock firmware %s\n", sc->fwname);
5439 firmware_close(fwh);
5440 return ENOMEM;
5441 }
5442 error = firmware_read(fwh, 0, fw->data, fw->size);
5443 firmware_close(fwh);
5444 if (error != 0) {
5445 aprint_error_dev(sc->sc_dev,
5446 "could not read firmware %s\n", sc->fwname);
5447 goto out;
5448 }
5449
5450 /* Retrieve text and data sections. */
5451 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
5452 error = iwn_read_firmware_leg(sc, fw);
5453 else
5454 error = iwn_read_firmware_tlv(sc, fw, 1);
5455 if (error != 0) {
5456 aprint_error_dev(sc->sc_dev,
5457 "could not read firmware sections\n");
5458 goto out;
5459 }
5460
5461 /* Make sure text and data sections fit in hardware memory. */
5462 if (fw->main.textsz > hal->fw_text_maxsz ||
5463 fw->main.datasz > hal->fw_data_maxsz ||
5464 fw->init.textsz > hal->fw_text_maxsz ||
5465 fw->init.datasz > hal->fw_data_maxsz ||
5466 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5467 (fw->boot.textsz & 3) != 0) {
5468 aprint_error_dev(sc->sc_dev,
5469 "firmware sections too large\n");
5470 goto out;
5471 }
5472
5473 /* We can proceed with loading the firmware. */
5474 return 0;
5475 out:
5476 firmware_free(fw->data, fw->size);
5477 fw->data = NULL;
5478 fw->size = 0;
5479 return error ? error : EINVAL;
5480 }
5481
5482 static int
5483 iwn_clock_wait(struct iwn_softc *sc)
5484 {
5485 int ntries;
5486
5487 /* Set "initialization complete" bit. */
5488 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5489
5490 /* Wait for clock stabilization. */
5491 for (ntries = 0; ntries < 2500; ntries++) {
5492 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5493 return 0;
5494 DELAY(10);
5495 }
5496 aprint_error_dev(sc->sc_dev,
5497 "timeout waiting for clock stabilization\n");
5498 return ETIMEDOUT;
5499 }
5500
5501 static int
5502 iwn_apm_init(struct iwn_softc *sc)
5503 {
5504 pcireg_t reg;
5505 int error;
5506
5507 /* Disable L0s exit timer (NMI bug workaround.) */
5508 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5509 /* Don't wait for ICH L0s (ICH bug workaround.) */
5510 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5511
5512 /* Set FH wait threshold to max (HW bug under stress workaround.) */
5513 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5514
5515 /* Enable HAP INTA to move adapter from L1a to L0s. */
5516 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5517
5518 /* Retrieve PCIe Active State Power Management (ASPM). */
5519 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5520 sc->sc_cap_off + PCI_PCIE_LCSR);
5521 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5522 if (reg & PCI_PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
5523 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5524 else
5525 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5526
5527 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5528 sc->hw_type <= IWN_HW_REV_TYPE_1000)
5529 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5530
5531 /* Wait for clock stabilization before accessing prph. */
5532 if ((error = iwn_clock_wait(sc)) != 0)
5533 return error;
5534
5535 if ((error = iwn_nic_lock(sc)) != 0)
5536 return error;
5537 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5538 /* Enable DMA and BSM (Bootstrap State Machine.) */
5539 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5540 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5541 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5542 } else {
5543 /* Enable DMA. */
5544 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5545 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5546 }
5547 DELAY(20);
5548 /* Disable L1-Active. */
5549 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5550 iwn_nic_unlock(sc);
5551
5552 return 0;
5553 }
5554
5555 static void
5556 iwn_apm_stop_master(struct iwn_softc *sc)
5557 {
5558 int ntries;
5559
5560 /* Stop busmaster DMA activity. */
5561 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5562 for (ntries = 0; ntries < 100; ntries++) {
5563 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5564 return;
5565 DELAY(10);
5566 }
5567 aprint_error_dev(sc->sc_dev,
5568 "timeout waiting for master\n");
5569 }
5570
5571 static void
5572 iwn_apm_stop(struct iwn_softc *sc)
5573 {
5574 iwn_apm_stop_master(sc);
5575
5576 /* Reset the entire device. */
5577 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5578 DELAY(10);
5579 /* Clear "initialization complete" bit. */
5580 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5581 }
5582
5583 static int
5584 iwn4965_nic_config(struct iwn_softc *sc)
5585 {
5586 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5587 /*
5588 * I don't believe this to be correct but this is what the
5589 * vendor driver is doing. Probably the bits should not be
5590 * shifted in IWN_RFCFG_*.
5591 */
5592 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5593 IWN_RFCFG_TYPE(sc->rfcfg) |
5594 IWN_RFCFG_STEP(sc->rfcfg) |
5595 IWN_RFCFG_DASH(sc->rfcfg));
5596 }
5597 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5598 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5599 return 0;
5600 }
5601
5602 static int
5603 iwn5000_nic_config(struct iwn_softc *sc)
5604 {
5605 uint32_t tmp;
5606 int error;
5607
5608 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5609 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5610 IWN_RFCFG_TYPE(sc->rfcfg) |
5611 IWN_RFCFG_STEP(sc->rfcfg) |
5612 IWN_RFCFG_DASH(sc->rfcfg));
5613 }
5614 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5615 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5616
5617 if ((error = iwn_nic_lock(sc)) != 0)
5618 return error;
5619 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5620
5621 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5622 /*
5623 * Select first Switching Voltage Regulator (1.32V) to
5624 * solve a stability issue related to noisy DC2DC line
5625 * in the silicon of 1000 Series.
5626 */
5627 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5628 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5629 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5630 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5631 }
5632 iwn_nic_unlock(sc);
5633
5634 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5635 /* Use internal power amplifier only. */
5636 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5637 }
5638 if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
5639 /* Indicate that ROM calibration version is >=6. */
5640 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5641 }
5642 return 0;
5643 }
5644
5645 /*
5646 * Take NIC ownership over Intel Active Management Technology (AMT).
5647 */
5648 static int
5649 iwn_hw_prepare(struct iwn_softc *sc)
5650 {
5651 int ntries;
5652
5653 /* Check if hardware is ready. */
5654 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5655 for (ntries = 0; ntries < 5; ntries++) {
5656 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5657 IWN_HW_IF_CONFIG_NIC_READY)
5658 return 0;
5659 DELAY(10);
5660 }
5661
5662 /* Hardware not ready, force into ready state. */
5663 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5664 for (ntries = 0; ntries < 15000; ntries++) {
5665 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5666 IWN_HW_IF_CONFIG_PREPARE_DONE))
5667 break;
5668 DELAY(10);
5669 }
5670 if (ntries == 15000)
5671 return ETIMEDOUT;
5672
5673 /* Hardware should be ready now. */
5674 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5675 for (ntries = 0; ntries < 5; ntries++) {
5676 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5677 IWN_HW_IF_CONFIG_NIC_READY)
5678 return 0;
5679 DELAY(10);
5680 }
5681 return ETIMEDOUT;
5682 }
5683
5684 static int
5685 iwn_hw_init(struct iwn_softc *sc)
5686 {
5687 const struct iwn_hal *hal = sc->sc_hal;
5688 int error, chnl, qid;
5689
5690 /* Clear pending interrupts. */
5691 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5692
5693 if ((error = iwn_apm_init(sc)) != 0) {
5694 aprint_error_dev(sc->sc_dev,
5695 "could not power ON adapter\n");
5696 return error;
5697 }
5698
5699 /* Select VMAIN power source. */
5700 if ((error = iwn_nic_lock(sc)) != 0)
5701 return error;
5702 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5703 iwn_nic_unlock(sc);
5704
5705 /* Perform adapter-specific initialization. */
5706 if ((error = hal->nic_config(sc)) != 0)
5707 return error;
5708
5709 /* Initialize RX ring. */
5710 if ((error = iwn_nic_lock(sc)) != 0)
5711 return error;
5712 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5713 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5714 /* Set physical address of RX ring (256-byte aligned.) */
5715 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5716 /* Set physical address of RX status (16-byte aligned.) */
5717 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5718 /* Enable RX. */
5719 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5720 IWN_FH_RX_CONFIG_ENA |
5721 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
5722 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
5723 IWN_FH_RX_CONFIG_SINGLE_FRAME |
5724 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5725 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5726 iwn_nic_unlock(sc);
5727 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5728
5729 if ((error = iwn_nic_lock(sc)) != 0)
5730 return error;
5731
5732 /* Initialize TX scheduler. */
5733 iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5734
5735 /* Set physical address of "keep warm" page (16-byte aligned.) */
5736 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5737
5738 /* Initialize TX rings. */
5739 for (qid = 0; qid < hal->ntxqs; qid++) {
5740 struct iwn_tx_ring *txq = &sc->txq[qid];
5741
5742 /* Set physical address of TX ring (256-byte aligned.) */
5743 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5744 txq->desc_dma.paddr >> 8);
5745 }
5746 iwn_nic_unlock(sc);
5747
5748 /* Enable DMA channels. */
5749 for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5750 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5751 IWN_FH_TX_CONFIG_DMA_ENA |
5752 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5753 }
5754
5755 /* Clear "radio off" and "commands blocked" bits. */
5756 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5757 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5758
5759 /* Clear pending interrupts. */
5760 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5761 /* Enable interrupt coalescing. */
5762 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5763 /* Enable interrupts. */
5764 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5765
5766 /* _Really_ make sure "radio off" bit is cleared! */
5767 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5768 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5769
5770 if ((error = hal->load_firmware(sc)) != 0) {
5771 aprint_error_dev(sc->sc_dev,
5772 "could not load firmware\n");
5773 return error;
5774 }
5775 /* Wait at most one second for firmware alive notification. */
5776 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5777 aprint_error_dev(sc->sc_dev,
5778 "timeout waiting for adapter to initialize\n");
5779 return error;
5780 }
5781 /* Do post-firmware initialization. */
5782 return hal->post_alive(sc);
5783 }
5784
5785 static void
5786 iwn_hw_stop(struct iwn_softc *sc)
5787 {
5788 const struct iwn_hal *hal = sc->sc_hal;
5789 int chnl, qid, ntries;
5790 uint32_t tmp;
5791
5792 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5793
5794 /* Disable interrupts. */
5795 IWN_WRITE(sc, IWN_INT_MASK, 0);
5796 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5797 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5798 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5799
5800 /* Make sure we no longer hold the NIC lock. */
5801 iwn_nic_unlock(sc);
5802
5803 /* Stop TX scheduler. */
5804 iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5805
5806 /* Stop all DMA channels. */
5807 if (iwn_nic_lock(sc) == 0) {
5808 for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5809 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5810 for (ntries = 0; ntries < 200; ntries++) {
5811 tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
5812 if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
5813 IWN_FH_TX_STATUS_IDLE(chnl))
5814 break;
5815 DELAY(10);
5816 }
5817 }
5818 iwn_nic_unlock(sc);
5819 }
5820
5821 /* Stop RX ring. */
5822 iwn_reset_rx_ring(sc, &sc->rxq);
5823
5824 /* Reset all TX rings. */
5825 for (qid = 0; qid < hal->ntxqs; qid++)
5826 iwn_reset_tx_ring(sc, &sc->txq[qid]);
5827
5828 if (iwn_nic_lock(sc) == 0) {
5829 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5830 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5831 iwn_nic_unlock(sc);
5832 }
5833 DELAY(5);
5834 /* Power OFF adapter. */
5835 iwn_apm_stop(sc);
5836 }
5837
5838 static int
5839 iwn_init(struct ifnet *ifp)
5840 {
5841 struct iwn_softc *sc = ifp->if_softc;
5842 struct ieee80211com *ic = &sc->sc_ic;
5843 int error;
5844
5845 mutex_spin_enter(&sc->sc_mtx);
5846 if (sc->sc_flags & IWN_FLAG_HW_INITED)
5847 return 0;
5848 if ((error = iwn_hw_prepare(sc)) != 0) {
5849 aprint_error_dev(sc->sc_dev,
5850 "hardware not ready\n");
5851 goto fail;
5852 }
5853
5854 /* Check that the radio is not disabled by hardware switch. */
5855 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5856 aprint_error_dev(sc->sc_dev,
5857 "radio is disabled by hardware switch\n");
5858 error = EPERM; /* :-) */
5859 goto fail;
5860 }
5861
5862 /* Read firmware images from the filesystem. */
5863 if ((error = iwn_read_firmware(sc)) != 0) {
5864 aprint_error_dev(sc->sc_dev,
5865 "could not read firmware\n");
5866 goto fail;
5867 }
5868
5869 /* Initialize interrupt mask to default value. */
5870 sc->int_mask = IWN_INT_MASK_DEF;
5871 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5872
5873 /* Initialize hardware and upload firmware. */
5874 KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
5875 error = iwn_hw_init(sc);
5876 firmware_free(sc->fw.data, sc->fw.size);
5877 sc->fw.data = NULL;
5878 sc->fw.size = 0;
5879 if (error != 0) {
5880 aprint_error_dev(sc->sc_dev,
5881 "could not initialize hardware\n");
5882 goto fail;
5883 }
5884
5885 /* Configure adapter now that it is ready. */
5886 if ((error = iwn_config(sc)) != 0) {
5887 aprint_error_dev(sc->sc_dev,
5888 "could not configure device\n");
5889 goto fail;
5890 }
5891
5892 ifp->if_flags &= ~IFF_OACTIVE;
5893 ifp->if_flags |= IFF_RUNNING;
5894
5895 if (ic->ic_opmode != IEEE80211_M_MONITOR)
5896 ieee80211_begin_scan(ic, 0);
5897 else
5898 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5899
5900 sc->sc_flags |= IWN_FLAG_HW_INITED;
5901 mutex_spin_exit(&sc->sc_mtx);
5902 return 0;
5903
5904 fail: mutex_spin_exit(&sc->sc_mtx);
5905 iwn_stop(ifp, 1);
5906 return error;
5907 }
5908
5909 static void
5910 iwn_stop(struct ifnet *ifp, int disable)
5911 {
5912 struct iwn_softc *sc = ifp->if_softc;
5913 struct ieee80211com *ic = &sc->sc_ic;
5914
5915 mutex_spin_enter(&sc->sc_mtx);
5916 sc->sc_flags &= ~IWN_FLAG_HW_INITED;
5917 ifp->if_timer = sc->sc_tx_timer = 0;
5918 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5919
5920 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5921
5922 /* Power OFF hardware. */
5923 iwn_hw_stop(sc);
5924
5925 #ifndef SMALL_KERNEL
5926 /* Temperature sensor is no longer valid. */
5927 sc->sc_sensor.value_cur = 0;
5928 sc->sc_sensor.state = ENVSYS_SINVALID;
5929 #endif
5930 mutex_spin_exit(&sc->sc_mtx);
5931 }
5932
5933 /*
5934 * XXX MCLGETI alternative
5935 *
5936 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
5937 * as long as there are available free buffers then it uses MEXTMALLOC.,
5938 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
5939 * The MCLGET4K code is used for testing an alternative mbuf cache.
5940 */
5941
5942 static struct mbuf *
5943 MCLGETIalt(struct iwn_softc *sc, int how,
5944 struct ifnet *ifp __unused, u_int size)
5945 {
5946 struct mbuf *m;
5947 #ifdef IWN_USE_RBUF
5948 struct iwn_rbuf *rbuf;
5949 #endif
5950
5951 MGETHDR(m, how, MT_DATA);
5952 if (m == NULL)
5953 return NULL;
5954
5955 #ifdef IWN_USE_RBUF
5956 if (sc->rxq.nb_free_entries > 0 &&
5957 (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
5958 /* Attach buffer to mbuf header. */
5959 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
5960 m->m_flags |= M_EXT_RW;
5961 }
5962 else {
5963 MEXTMALLOC(m, size, how);
5964 if ((m->m_flags & M_EXT) == 0) {
5965 m_freem(m);
5966 return NULL;
5967 }
5968 }
5969
5970 #else
5971 #ifdef MCLGET4K
5972 if (size == 4096)
5973 MCLGET4K(m, how);
5974 else
5975 panic("size must be 4k");
5976 #else
5977 MEXTMALLOC(m, size, how);
5978 #endif
5979 if ((m->m_flags & M_EXT) == 0) {
5980 m_freem(m);
5981 return NULL;
5982 }
5983 #endif
5984
5985 return m;
5986 }
5987
5988 #ifdef IWN_USE_RBUF
5989 static struct iwn_rbuf *
5990 iwn_alloc_rbuf(struct iwn_softc *sc)
5991 {
5992 struct iwn_rbuf *rbuf;
5993 mutex_enter(&sc->rxq.freelist_mtx);
5994
5995 rbuf = SLIST_FIRST(&sc->rxq.freelist);
5996 if (rbuf != NULL) {
5997 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
5998 sc->rxq.nb_free_entries --;
5999 }
6000 mutex_exit(&sc->rxq.freelist_mtx);
6001 return rbuf;
6002 }
6003
6004 /*
6005 * This is called automatically by the network stack when the mbuf to which
6006 * our RX buffer is attached is freed.
6007 */
6008 static void
6009 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
6010 {
6011 struct iwn_rbuf *rbuf = arg;
6012 struct iwn_softc *sc = rbuf->sc;
6013
6014 /* Put the RX buffer back in the free list. */
6015 mutex_enter(&sc->rxq.freelist_mtx);
6016 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6017 mutex_exit(&sc->rxq.freelist_mtx);
6018
6019 sc->rxq.nb_free_entries ++;
6020 if (__predict_true(m != NULL))
6021 pool_cache_put(mb_cache, m);
6022 }
6023
6024 static int
6025 iwn_alloc_rpool(struct iwn_softc *sc)
6026 {
6027 struct iwn_rx_ring *ring = &sc->rxq;
6028 struct iwn_rbuf *rbuf;
6029 int i, error;
6030
6031 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6032
6033 /* Allocate a big chunk of DMA'able memory... */
6034 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6035 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6036 if (error != 0) {
6037 aprint_error_dev(sc->sc_dev,
6038 "could not allocate RX buffers DMA memory\n");
6039 return error;
6040 }
6041 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6042 SLIST_INIT(&ring->freelist);
6043 for (i = 0; i < IWN_RBUF_COUNT; i++) {
6044 rbuf = &ring->rbuf[i];
6045
6046 rbuf->sc = sc; /* Backpointer for callbacks. */
6047 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6048 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6049
6050 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6051 }
6052 ring->nb_free_entries = IWN_RBUF_COUNT;
6053 return 0;
6054 }
6055
6056 static void
6057 iwn_free_rpool(struct iwn_softc *sc)
6058 {
6059 iwn_dma_contig_free(&sc->rxq.buf_dma);
6060 }
6061 #endif
6062
6063 /*
6064 * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6065 * Copyright (c) 2001 Atsushi Onoe
6066 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6067 * Copyright (c) 2007-2009 Damien Bergamini
6068 * All rights reserved.
6069 */
6070
6071 /*
6072 * Add an SSID element to a frame (see 7.3.2.1).
6073 */
6074 static u_int8_t *
6075 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6076 {
6077 *frm++ = IEEE80211_ELEMID_SSID;
6078 *frm++ = len;
6079 memcpy(frm, ssid, len);
6080 return frm + len;
6081 }
6082
6083 /*
6084 * Add a supported rates element to a frame (see 7.3.2.2).
6085 */
6086 static u_int8_t *
6087 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6088 {
6089 int nrates;
6090
6091 *frm++ = IEEE80211_ELEMID_RATES;
6092 nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6093 *frm++ = nrates;
6094 memcpy(frm, rs->rs_rates, nrates);
6095 return frm + nrates;
6096 }
6097
6098 /*
6099 * Add an extended supported rates element to a frame (see 7.3.2.14).
6100 */
6101 static u_int8_t *
6102 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6103 {
6104 int nrates;
6105
6106 KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6107
6108 *frm++ = IEEE80211_ELEMID_XRATES;
6109 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6110 *frm++ = nrates;
6111 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6112 return frm + nrates;
6113 }
6114
6115 /*
6116 * XXX: Hack to set the current channel to the value advertised in beacons or
6117 * probe responses. Only used during AP detection.
6118 * XXX: Duplicated from if_iwi.c
6119 */
6120 static void
6121 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6122 {
6123 struct ieee80211_frame *wh;
6124 uint8_t subtype;
6125 uint8_t *frm, *efrm;
6126
6127 wh = mtod(m, struct ieee80211_frame *);
6128
6129 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6130 return;
6131
6132 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6133
6134 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6135 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6136 return;
6137
6138 frm = (uint8_t *)(wh + 1);
6139 efrm = mtod(m, uint8_t *) + m->m_len;
6140
6141 frm += 12; /* skip tstamp, bintval and capinfo fields */
6142 while (frm < efrm) {
6143 if (*frm == IEEE80211_ELEMID_DSPARMS)
6144 #if IEEE80211_CHAN_MAX < 255
6145 if (frm[2] <= IEEE80211_CHAN_MAX)
6146 #endif
6147 ic->ic_curchan = &ic->ic_channels[frm[2]];
6148
6149 frm += frm[1] + 2;
6150 }
6151 }
6152
6153