if_iwn.c revision 1.53 1 /* $NetBSD: if_iwn.c,v 1.53 2011/05/15 13:56:20 christos Exp $ */
2 /* $OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $ */
3
4 /*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.53 2011/05/15 13:56:20 christos Exp $");
26
27 #define IWN_USE_RBUF /* Use local storage for RX */
28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/conf.h>
40 #include <sys/kauth.h>
41 #include <sys/callout.h>
42
43 #include <dev/sysmon/sysmonvar.h>
44
45 #include <machine/bus.h>
46 #include <machine/endian.h>
47 #include <machine/intr.h>
48
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pcidevs.h>
52
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <net/if_ether.h>
64 #include <netinet/ip.h>
65
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_amrr.h>
68 #include <net80211/ieee80211_radiotap.h>
69
70 #include <dev/firmload.h>
71
72 #include <dev/pci/if_iwnreg.h>
73 #include <dev/pci/if_iwnvar.h>
74
75 static const pci_product_id_t iwn_devices[] = {
76 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
77 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
78 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
79 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
80 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
81 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
82 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
83 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
84 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
85 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
86 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
87 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
88 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
89 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
90 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
91 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
92 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
93 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
94 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
95 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
96 #ifdef notyet
97 /*
98 * XXX NetBSD: the 6005A replaces the two 6005, above
99 * (see OpenBSD rev 1.96).
100 */
101 PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_1,
102 PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_2,
103 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_1,
104 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_2,
105 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_1,
106 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_2,
107 PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_3
108 #endif
109 };
110
111 /*
112 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
113 */
114 static const struct ieee80211_rateset iwn_rateset_11a =
115 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
116
117 static const struct ieee80211_rateset iwn_rateset_11b =
118 { 4, { 2, 4, 11, 22 } };
119
120 static const struct ieee80211_rateset iwn_rateset_11g =
121 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
122
123 static int iwn_match(device_t , struct cfdata *, void *);
124 static void iwn_attach(device_t , device_t , void *);
125 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t);
126 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t);
127 static void iwn_radiotap_attach(struct iwn_softc *);
128 static int iwn_detach(device_t , int);
129 #if 0
130 static void iwn_power(int, void *);
131 #endif
132 static bool iwn_resume(device_t, const pmf_qual_t *);
133 static int iwn_nic_lock(struct iwn_softc *);
134 static int iwn_eeprom_lock(struct iwn_softc *);
135 static int iwn_init_otprom(struct iwn_softc *);
136 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
137 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
138 void **, bus_size_t, bus_size_t);
139 static void iwn_dma_contig_free(struct iwn_dma_info *);
140 static int iwn_alloc_sched(struct iwn_softc *);
141 static void iwn_free_sched(struct iwn_softc *);
142 static int iwn_alloc_kw(struct iwn_softc *);
143 static void iwn_free_kw(struct iwn_softc *);
144 static int iwn_alloc_ict(struct iwn_softc *);
145 static void iwn_free_ict(struct iwn_softc *);
146 static int iwn_alloc_fwmem(struct iwn_softc *);
147 static void iwn_free_fwmem(struct iwn_softc *);
148 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
149 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
150 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
151 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
152 int);
153 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
154 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
155 static void iwn5000_ict_reset(struct iwn_softc *);
156 static int iwn_read_eeprom(struct iwn_softc *);
157 static void iwn4965_read_eeprom(struct iwn_softc *);
158
159 #define IWN_DEBUG 1
160 #ifdef IWN_DEBUG
161 static void iwn4965_print_power_group(struct iwn_softc *, int);
162 #endif
163 static void iwn5000_read_eeprom(struct iwn_softc *);
164 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
165 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
166 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
167 static void iwn_newassoc(struct ieee80211_node *, int);
168 static int iwn_media_change(struct ifnet *);
169 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
170 static void iwn_iter_func(void *, struct ieee80211_node *);
171 static void iwn_calib_timeout(void *);
172 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
173 struct iwn_rx_data *);
174 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
175 struct iwn_rx_data *);
176 #ifndef IEEE80211_NO_HT
177 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
178 struct iwn_rx_data *);
179 #endif
180 static void iwn5000_rx_calib_results(struct iwn_softc *,
181 struct iwn_rx_desc *, struct iwn_rx_data *);
182 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
183 struct iwn_rx_data *);
184 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
185 struct iwn_rx_data *);
186 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
187 struct iwn_rx_data *);
188 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
189 uint8_t);
190 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
191 static void iwn_notif_intr(struct iwn_softc *);
192 static void iwn_wakeup_intr(struct iwn_softc *);
193 static void iwn_fatal_intr(struct iwn_softc *);
194 static int iwn_intr(void *);
195 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
196 uint16_t);
197 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
198 uint16_t);
199 #ifdef notyet
200 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
201 #endif
202 static int iwn_tx(struct iwn_softc *, struct mbuf *,
203 struct ieee80211_node *, int);
204 static void iwn_start(struct ifnet *);
205 static void iwn_watchdog(struct ifnet *);
206 static int iwn_ioctl(struct ifnet *, u_long, void *);
207 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
208 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
209 int);
210 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
211 int);
212 static int iwn_set_link_quality(struct iwn_softc *,
213 struct ieee80211_node *);
214 static int iwn_add_broadcast_node(struct iwn_softc *, int);
215 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
216 static int iwn_set_critical_temp(struct iwn_softc *);
217 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
218 static void iwn4965_power_calibration(struct iwn_softc *, int);
219 static int iwn4965_set_txpower(struct iwn_softc *, int);
220 static int iwn5000_set_txpower(struct iwn_softc *, int);
221 static int iwn4965_get_rssi(const struct iwn_rx_stat *);
222 static int iwn5000_get_rssi(const struct iwn_rx_stat *);
223 static int iwn_get_noise(const struct iwn_rx_general_stats *);
224 static int iwn4965_get_temperature(struct iwn_softc *);
225 static int iwn5000_get_temperature(struct iwn_softc *);
226 static int iwn_init_sensitivity(struct iwn_softc *);
227 static void iwn_collect_noise(struct iwn_softc *,
228 const struct iwn_rx_general_stats *);
229 static int iwn4965_init_gains(struct iwn_softc *);
230 static int iwn5000_init_gains(struct iwn_softc *);
231 static int iwn4965_set_gains(struct iwn_softc *);
232 static int iwn5000_set_gains(struct iwn_softc *);
233 static void iwn_tune_sensitivity(struct iwn_softc *,
234 const struct iwn_rx_stats *);
235 static int iwn_send_sensitivity(struct iwn_softc *);
236 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
237 static int iwn_config(struct iwn_softc *);
238 static int iwn_scan(struct iwn_softc *, uint16_t);
239 static int iwn_auth(struct iwn_softc *);
240 static int iwn_run(struct iwn_softc *);
241 #ifdef IWN_HWCRYPTO
242 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
243 struct ieee80211_key *);
244 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
245 struct ieee80211_key *);
246 #endif
247 static int iwn_wme_update(struct ieee80211com *);
248 #ifndef IEEE80211_NO_HT
249 static int iwn_ampdu_rx_start(struct ieee80211com *,
250 struct ieee80211_node *, uint8_t);
251 static void iwn_ampdu_rx_stop(struct ieee80211com *,
252 struct ieee80211_node *, uint8_t);
253 static int iwn_ampdu_tx_start(struct ieee80211com *,
254 struct ieee80211_node *, uint8_t);
255 static void iwn_ampdu_tx_stop(struct ieee80211com *,
256 struct ieee80211_node *, uint8_t);
257 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
258 struct ieee80211_node *, uint8_t, uint16_t);
259 static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
260 uint8_t, uint16_t);
261 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
262 struct ieee80211_node *, uint8_t, uint16_t);
263 static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
264 uint8_t, uint16_t);
265 #endif
266 static int iwn5000_query_calibration(struct iwn_softc *);
267 static int iwn5000_send_calibration(struct iwn_softc *);
268 static int iwn5000_send_wimax_coex(struct iwn_softc *);
269 static int iwn4965_post_alive(struct iwn_softc *);
270 static int iwn5000_post_alive(struct iwn_softc *);
271 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
272 int);
273 static int iwn4965_load_firmware(struct iwn_softc *);
274 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
275 const uint8_t *, int);
276 static int iwn5000_load_firmware(struct iwn_softc *);
277 static int iwn_read_firmware_leg(struct iwn_softc *,
278 struct iwn_fw_info *);
279 static int iwn_read_firmware_tlv(struct iwn_softc *,
280 struct iwn_fw_info *, uint16_t);
281 static int iwn_read_firmware(struct iwn_softc *);
282 static int iwn_clock_wait(struct iwn_softc *);
283 static int iwn_apm_init(struct iwn_softc *);
284 static void iwn_apm_stop_master(struct iwn_softc *);
285 static void iwn_apm_stop(struct iwn_softc *);
286 static int iwn4965_nic_config(struct iwn_softc *);
287 static int iwn5000_nic_config(struct iwn_softc *);
288 static int iwn_hw_prepare(struct iwn_softc *);
289 static int iwn_hw_init(struct iwn_softc *);
290 static void iwn_hw_stop(struct iwn_softc *);
291 static int iwn_init(struct ifnet *);
292 static void iwn_stop(struct ifnet *, int);
293
294 /* XXX MCLGETI alternative */
295 static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
296 struct ifnet *, u_int);
297 #ifdef IWN_USE_RBUF
298 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
299 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
300 static int iwn_alloc_rpool(struct iwn_softc *);
301 static void iwn_free_rpool(struct iwn_softc *);
302 #endif
303
304 /* XXX needed by iwn_scan */
305 static u_int8_t *ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
306 static u_int8_t *ieee80211_add_rates(u_int8_t *,
307 const struct ieee80211_rateset *);
308 static u_int8_t *ieee80211_add_xrates(u_int8_t *,
309 const struct ieee80211_rateset *);
310
311 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *);
312
313 #ifdef IWN_DEBUG
314 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
315 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
316 int iwn_debug = 0;
317 #else
318 #define DPRINTF(x)
319 #define DPRINTFN(n, x)
320 #endif
321
322 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
323 iwn_detach, NULL);
324
325 static int
326 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
327 {
328 struct pci_attach_args *pa = aux;
329 size_t i;
330
331 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
332 return 0;
333
334 for (i = 0; i < __arraycount(iwn_devices); i++)
335 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
336 return 1;
337
338 return 0;
339 }
340
341 static void
342 iwn_attach(device_t parent __unused, device_t self, void *aux)
343 {
344 struct iwn_softc *sc = device_private(self);
345 struct ieee80211com *ic = &sc->sc_ic;
346 struct ifnet *ifp = &sc->sc_ec.ec_if;
347 struct pci_attach_args *pa = aux;
348 const char *intrstr;
349 char devinfo[256];
350 pci_intr_handle_t ih;
351 pcireg_t memtype, reg;
352 int i, error;
353 int revision;
354
355 sc->sc_dev = self;
356 sc->sc_pct = pa->pa_pc;
357 sc->sc_pcitag = pa->pa_tag;
358 sc->sc_dmat = pa->pa_dmat;
359 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
360
361 callout_init(&sc->calib_to, 0);
362 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
363
364 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
365 revision = PCI_REVISION(pa->pa_class);
366 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
367
368 /*
369 * Get the offset of the PCI Express Capability Structure in PCI
370 * Configuration Space.
371 */
372 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
373 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
374 if (error == 0) {
375 aprint_error(": PCIe capability structure not found!\n");
376 return;
377 }
378
379 /* Clear device-specific "PCI retry timeout" register (41h). */
380 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
381 if (reg & 0xff00)
382 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
383
384 /* Enable bus-mastering and hardware bug workaround. */
385 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */
386 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
387 reg |= PCI_COMMAND_MASTER_ENABLE;
388 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
389 DPRINTF(("PCIe INTx Disable set\n"));
390 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
391 }
392 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
393
394 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
395 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
396 &sc->sc_sh, NULL, &sc->sc_sz);
397 if (error != 0) {
398 aprint_error(": can't map mem space\n");
399 return;
400 }
401
402 /* Install interrupt handler. */
403 if (pci_intr_map(pa, &ih) != 0) {
404 aprint_error(": can't map interrupt\n");
405 return;
406 }
407 intrstr = pci_intr_string(sc->sc_pct, ih);
408 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
409 if (sc->sc_ih == NULL) {
410 aprint_error(": can't establish interrupt");
411 if (intrstr != NULL)
412 aprint_error(" at %s", intrstr);
413 aprint_error("\n");
414 return;
415 }
416 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
417
418 /* Read hardware revision and attach. */
419 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
420 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
421 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
422 else
423 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
424 if (error != 0) {
425 aprint_error(": could not attach device\n");
426 return;
427 }
428
429 if ((error = iwn_hw_prepare(sc)) != 0) {
430 aprint_error(": hardware not ready\n");
431 return;
432 }
433
434 /* Read MAC address, channels, etc from EEPROM. */
435 if ((error = iwn_read_eeprom(sc)) != 0) {
436 aprint_error(": could not read EEPROM\n");
437 return;
438 }
439
440 /* Allocate DMA memory for firmware transfers. */
441 if ((error = iwn_alloc_fwmem(sc)) != 0) {
442 aprint_error(": could not allocate memory for firmware\n");
443 return;
444 }
445
446 /* Allocate "Keep Warm" page. */
447 if ((error = iwn_alloc_kw(sc)) != 0) {
448 aprint_error(": could not allocate keep warm page\n");
449 goto fail1;
450 }
451
452 /* Allocate ICT table for 5000 Series. */
453 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
454 (error = iwn_alloc_ict(sc)) != 0) {
455 aprint_error(": could not allocate ICT table\n");
456 goto fail2;
457 }
458
459 /* Allocate TX scheduler "rings". */
460 if ((error = iwn_alloc_sched(sc)) != 0) {
461 aprint_error(": could not allocate TX scheduler rings\n");
462 goto fail3;
463 }
464
465 #ifdef IWN_USE_RBUF
466 /* Allocate RX buffers. */
467 if ((error = iwn_alloc_rpool(sc)) != 0) {
468 aprint_error_dev(self, "could not allocate RX buffers\n");
469 goto fail3;
470 }
471 #endif
472
473 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
474 for (i = 0; i < sc->ntxqs; i++) {
475 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
476 aprint_error(": could not allocate TX ring %d\n", i);
477 goto fail4;
478 }
479 }
480
481 /* Allocate RX ring. */
482 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
483 aprint_error(": could not allocate RX ring\n");
484 goto fail4;
485 }
486
487 /* Clear pending interrupts. */
488 IWN_WRITE(sc, IWN_INT, 0xffffffff);
489
490 /* Count the number of available chains. */
491 sc->ntxchains =
492 ((sc->txchainmask >> 2) & 1) +
493 ((sc->txchainmask >> 1) & 1) +
494 ((sc->txchainmask >> 0) & 1);
495 sc->nrxchains =
496 ((sc->rxchainmask >> 2) & 1) +
497 ((sc->rxchainmask >> 1) & 1) +
498 ((sc->rxchainmask >> 0) & 1);
499 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
500 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
501 ether_sprintf(ic->ic_myaddr));
502
503 ic->ic_ifp = ifp;
504 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
505 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
506 ic->ic_state = IEEE80211_S_INIT;
507
508 /* Set device capabilities. */
509 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
510 * and IEEE80211_C_PMGT too. */
511 ic->ic_caps =
512 IEEE80211_C_IBSS | /* IBSS mode support */
513 IEEE80211_C_WPA | /* 802.11i */
514 IEEE80211_C_MONITOR | /* monitor mode supported */
515 IEEE80211_C_TXPMGT | /* tx power management */
516 IEEE80211_C_SHSLOT | /* short slot time supported */
517 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
518 IEEE80211_C_WME; /* 802.11e */
519
520 #ifndef IEEE80211_NO_HT
521 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
522 /* Set HT capabilities. */
523 ic->ic_htcaps =
524 #if IWN_RBUF_SIZE == 8192
525 IEEE80211_HTCAP_AMSDU7935 |
526 #endif
527 IEEE80211_HTCAP_CBW20_40 |
528 IEEE80211_HTCAP_SGI20 |
529 IEEE80211_HTCAP_SGI40;
530 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
531 ic->ic_htcaps |= IEEE80211_HTCAP_GF;
532 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
533 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
534 else
535 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
536 }
537 #endif /* !IEEE80211_NO_HT */
538
539 /* Set supported legacy rates. */
540 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
541 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
542 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
543 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
544 }
545 #ifndef IEEE80211_NO_HT
546 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
547 /* Set supported HT rates. */
548 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
549 if (sc->nrxchains > 1)
550 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
551 if (sc->nrxchains > 2)
552 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
553 }
554 #endif
555
556 /* IBSS channel undefined for now. */
557 ic->ic_ibss_chan = &ic->ic_channels[0];
558
559 ifp->if_softc = sc;
560 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
561 ifp->if_init = iwn_init;
562 ifp->if_ioctl = iwn_ioctl;
563 ifp->if_start = iwn_start;
564 ifp->if_stop = iwn_stop;
565 ifp->if_watchdog = iwn_watchdog;
566 IFQ_SET_READY(&ifp->if_snd);
567 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
568
569 if_attach(ifp);
570 ieee80211_ifattach(ic);
571 ic->ic_node_alloc = iwn_node_alloc;
572 ic->ic_newassoc = iwn_newassoc;
573 #ifdef IWN_HWCRYPTO
574 ic->ic_crypto.cs_key_set = iwn_set_key;
575 ic->ic_crypto.cs_key_delete = iwn_delete_key;
576 #endif
577 ic->ic_wme.wme_update = iwn_wme_update;
578 #ifndef IEEE80211_NO_HT
579 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
580 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
581 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
582 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
583 #endif
584
585 /* Override 802.11 state transition machine. */
586 sc->sc_newstate = ic->ic_newstate;
587 ic->ic_newstate = iwn_newstate;
588 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
589
590 sc->amrr.amrr_min_success_threshold = 1;
591 sc->amrr.amrr_max_success_threshold = 15;
592
593 iwn_radiotap_attach(sc);
594
595 /*
596 * XXX for NetBSD, OpenBSD timeout_set replaced by
597 * callout_init and callout_setfunc, above.
598 */
599
600 if (pmf_device_register(self, NULL, iwn_resume))
601 pmf_class_network_register(self, ifp);
602 else
603 aprint_error_dev(self, "couldn't establish power handler\n");
604
605 /* XXX NetBSD add call to ieee80211_announce for dmesg. */
606 ieee80211_announce(ic);
607
608 return;
609
610 /* Free allocated memory if something failed during attachment. */
611 fail4: while (--i >= 0)
612 iwn_free_tx_ring(sc, &sc->txq[i]);
613 #ifdef IWN_USE_RBUF
614 iwn_free_rpool(sc);
615 #endif
616 iwn_free_sched(sc);
617 fail3: if (sc->ict != NULL)
618 iwn_free_ict(sc);
619 fail2: iwn_free_kw(sc);
620 fail1: iwn_free_fwmem(sc);
621 }
622
623 int
624 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
625 {
626 struct iwn_ops *ops = &sc->ops;
627
628 ops->load_firmware = iwn4965_load_firmware;
629 ops->read_eeprom = iwn4965_read_eeprom;
630 ops->post_alive = iwn4965_post_alive;
631 ops->nic_config = iwn4965_nic_config;
632 ops->update_sched = iwn4965_update_sched;
633 ops->get_temperature = iwn4965_get_temperature;
634 ops->get_rssi = iwn4965_get_rssi;
635 ops->set_txpower = iwn4965_set_txpower;
636 ops->init_gains = iwn4965_init_gains;
637 ops->set_gains = iwn4965_set_gains;
638 ops->add_node = iwn4965_add_node;
639 ops->tx_done = iwn4965_tx_done;
640 #ifndef IEEE80211_NO_HT
641 ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
642 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
643 #endif
644 sc->ntxqs = IWN4965_NTXQUEUES;
645 sc->ndmachnls = IWN4965_NDMACHNLS;
646 sc->broadcast_id = IWN4965_ID_BROADCAST;
647 sc->rxonsz = IWN4965_RXONSZ;
648 sc->schedsz = IWN4965_SCHEDSZ;
649 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
650 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
651 sc->fwsz = IWN4965_FWSZ;
652 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
653 sc->limits = &iwn4965_sensitivity_limits;
654 sc->fwname = "iwlwifi-4965-2.ucode";
655 /* Override chains masks, ROM is known to be broken. */
656 sc->txchainmask = IWN_ANT_AB;
657 sc->rxchainmask = IWN_ANT_ABC;
658
659 return 0;
660 }
661
662 int
663 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
664 {
665 struct iwn_ops *ops = &sc->ops;
666
667 ops->load_firmware = iwn5000_load_firmware;
668 ops->read_eeprom = iwn5000_read_eeprom;
669 ops->post_alive = iwn5000_post_alive;
670 ops->nic_config = iwn5000_nic_config;
671 ops->update_sched = iwn5000_update_sched;
672 ops->get_temperature = iwn5000_get_temperature;
673 ops->get_rssi = iwn5000_get_rssi;
674 ops->set_txpower = iwn5000_set_txpower;
675 ops->init_gains = iwn5000_init_gains;
676 ops->set_gains = iwn5000_set_gains;
677 ops->add_node = iwn5000_add_node;
678 ops->tx_done = iwn5000_tx_done;
679 #ifndef IEEE80211_NO_HT
680 ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
681 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
682 #endif
683 sc->ntxqs = IWN5000_NTXQUEUES;
684 sc->ndmachnls = IWN5000_NDMACHNLS;
685 sc->broadcast_id = IWN5000_ID_BROADCAST;
686 sc->rxonsz = IWN5000_RXONSZ;
687 sc->schedsz = IWN5000_SCHEDSZ;
688 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
689 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
690 sc->fwsz = IWN5000_FWSZ;
691 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
692
693 switch (sc->hw_type) {
694 case IWN_HW_REV_TYPE_5100:
695 sc->limits = &iwn5000_sensitivity_limits;
696 sc->fwname = "iwlwifi-5000-2.ucode";
697 /* Override chains masks, ROM is known to be broken. */
698 sc->txchainmask = IWN_ANT_B;
699 sc->rxchainmask = IWN_ANT_AB;
700 break;
701 case IWN_HW_REV_TYPE_5150:
702 sc->limits = &iwn5150_sensitivity_limits;
703 sc->fwname = "iwlwifi-5150-2.ucode";
704 break;
705 case IWN_HW_REV_TYPE_5300:
706 case IWN_HW_REV_TYPE_5350:
707 sc->limits = &iwn5000_sensitivity_limits;
708 sc->fwname = "iwlwifi-5000-2.ucode";
709 break;
710 case IWN_HW_REV_TYPE_1000:
711 sc->limits = &iwn1000_sensitivity_limits;
712 sc->fwname = "iwlwifi-1000-3.ucode";
713 break;
714 case IWN_HW_REV_TYPE_6000:
715 sc->limits = &iwn6000_sensitivity_limits;
716 sc->fwname = "iwlwifi-6000-4.ucode";
717 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
718 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
719 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
720 /* Override chains masks, ROM is known to be broken. */
721 sc->txchainmask = IWN_ANT_BC;
722 sc->rxchainmask = IWN_ANT_BC;
723 }
724 break;
725 case IWN_HW_REV_TYPE_6050:
726 sc->limits = &iwn6000_sensitivity_limits;
727 sc->fwname = "iwlwifi-6050-2.ucode";
728 break;
729 case IWN_HW_REV_TYPE_6005:
730 sc->limits = &iwn6000_sensitivity_limits;
731 sc->fwname = "iwlwifi-6005-2.ucode";
732 break;
733 default:
734 aprint_normal(": adapter type %d not supported\n", sc->hw_type);
735 return ENOTSUP;
736 }
737 return 0;
738 }
739
740 /*
741 * Attach the interface to 802.11 radiotap.
742 */
743 static void
744 iwn_radiotap_attach(struct iwn_softc *sc)
745 {
746 struct ifnet *ifp = sc->sc_ic.ic_ifp;
747
748 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
749 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
750 &sc->sc_drvbpf);
751
752 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
753 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
754 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
755
756 sc->sc_txtap_len = sizeof sc->sc_txtapu;
757 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
758 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
759 }
760
761 static int
762 iwn_detach(device_t self, int flags __unused)
763 {
764 struct iwn_softc *sc = device_private(self);
765 struct ifnet *ifp = sc->sc_ic.ic_ifp;
766 int qid;
767
768 callout_stop(&sc->calib_to);
769
770 /* Uninstall interrupt handler. */
771 if (sc->sc_ih != NULL)
772 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
773
774 /* Free DMA resources. */
775 iwn_free_rx_ring(sc, &sc->rxq);
776 for (qid = 0; qid < sc->ntxqs; qid++)
777 iwn_free_tx_ring(sc, &sc->txq[qid]);
778 #ifdef IWN_USE_RBUF
779 iwn_free_rpool(sc);
780 #endif
781 iwn_free_sched(sc);
782 iwn_free_kw(sc);
783 if (sc->ict != NULL)
784 iwn_free_ict(sc);
785 iwn_free_fwmem(sc);
786
787 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
788
789 ieee80211_ifdetach(&sc->sc_ic);
790 if_detach(ifp);
791
792 return 0;
793 }
794
795 #if 0
796 /*
797 * XXX Investigate if clearing the PCI retry timeout could eliminate
798 * the repeated scan calls. Also the calls to if_init and if_start
799 * are similar to the effect of adding the call to ifioctl_common .
800 */
801 static void
802 iwn_power(int why, void *arg)
803 {
804 struct iwn_softc *sc = arg;
805 struct ifnet *ifp;
806 pcireg_t reg;
807 int s;
808
809 if (why != PWR_RESUME)
810 return;
811
812 /* Clear device-specific "PCI retry timeout" register (41h). */
813 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
814 if (reg & 0xff00)
815 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
816
817 s = splnet();
818 ifp = &sc->sc_ic.ic_if;
819 if (ifp->if_flags & IFF_UP) {
820 ifp->if_init(ifp);
821 if (ifp->if_flags & IFF_RUNNING)
822 ifp->if_start(ifp);
823 }
824 splx(s);
825 }
826 #endif
827
828 static bool
829 iwn_resume(device_t dv, const pmf_qual_t *qual)
830 {
831 return true;
832 }
833
834 static int
835 iwn_nic_lock(struct iwn_softc *sc)
836 {
837 int ntries;
838
839 /* Request exclusive access to NIC. */
840 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
841
842 /* Spin until we actually get the lock. */
843 for (ntries = 0; ntries < 1000; ntries++) {
844 if ((IWN_READ(sc, IWN_GP_CNTRL) &
845 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
846 IWN_GP_CNTRL_MAC_ACCESS_ENA)
847 return 0;
848 DELAY(10);
849 }
850 return ETIMEDOUT;
851 }
852
853 static __inline void
854 iwn_nic_unlock(struct iwn_softc *sc)
855 {
856 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
857 }
858
859 static __inline uint32_t
860 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
861 {
862 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
863 IWN_BARRIER_READ_WRITE(sc);
864 return IWN_READ(sc, IWN_PRPH_RDATA);
865 }
866
867 static __inline void
868 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
869 {
870 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
871 IWN_BARRIER_WRITE(sc);
872 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
873 }
874
875 static __inline void
876 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
877 {
878 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
879 }
880
881 static __inline void
882 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
883 {
884 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
885 }
886
887 static __inline void
888 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
889 const uint32_t *data, int count)
890 {
891 for (; count > 0; count--, data++, addr += 4)
892 iwn_prph_write(sc, addr, *data);
893 }
894
895 static __inline uint32_t
896 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
897 {
898 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
899 IWN_BARRIER_READ_WRITE(sc);
900 return IWN_READ(sc, IWN_MEM_RDATA);
901 }
902
903 static __inline void
904 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
905 {
906 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
907 IWN_BARRIER_WRITE(sc);
908 IWN_WRITE(sc, IWN_MEM_WDATA, data);
909 }
910
911 static __inline void
912 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
913 {
914 uint32_t tmp;
915
916 tmp = iwn_mem_read(sc, addr & ~3);
917 if (addr & 3)
918 tmp = (tmp & 0x0000ffff) | data << 16;
919 else
920 tmp = (tmp & 0xffff0000) | data;
921 iwn_mem_write(sc, addr & ~3, tmp);
922 }
923
924 static __inline void
925 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
926 int count)
927 {
928 for (; count > 0; count--, addr += 4)
929 *data++ = iwn_mem_read(sc, addr);
930 }
931
932 static __inline void
933 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
934 int count)
935 {
936 for (; count > 0; count--, addr += 4)
937 iwn_mem_write(sc, addr, val);
938 }
939
940 static int
941 iwn_eeprom_lock(struct iwn_softc *sc)
942 {
943 int i, ntries;
944
945 for (i = 0; i < 100; i++) {
946 /* Request exclusive access to EEPROM. */
947 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
948 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
949
950 /* Spin until we actually get the lock. */
951 for (ntries = 0; ntries < 100; ntries++) {
952 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
953 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
954 return 0;
955 DELAY(10);
956 }
957 }
958 return ETIMEDOUT;
959 }
960
961 static __inline void
962 iwn_eeprom_unlock(struct iwn_softc *sc)
963 {
964 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
965 }
966
967 /*
968 * Initialize access by host to One Time Programmable ROM.
969 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
970 */
971 static int
972 iwn_init_otprom(struct iwn_softc *sc)
973 {
974 uint16_t prev = 0, base, next;
975 int count, error;
976
977 /* Wait for clock stabilization before accessing prph. */
978 if ((error = iwn_clock_wait(sc)) != 0)
979 return error;
980
981 if ((error = iwn_nic_lock(sc)) != 0)
982 return error;
983 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
984 DELAY(5);
985 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
986 iwn_nic_unlock(sc);
987
988 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
989 if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
990 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
991 IWN_RESET_LINK_PWR_MGMT_DIS);
992 }
993 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
994 /* Clear ECC status. */
995 IWN_SETBITS(sc, IWN_OTP_GP,
996 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
997
998 /*
999 * Find the block before last block (contains the EEPROM image)
1000 * for HW without OTP shadow RAM.
1001 */
1002 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1003 /* Switch to absolute addressing mode. */
1004 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1005 base = 0;
1006 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1007 error = iwn_read_prom_data(sc, base, &next, 2);
1008 if (error != 0)
1009 return error;
1010 if (next == 0) /* End of linked-list. */
1011 break;
1012 prev = base;
1013 base = le16toh(next);
1014 }
1015 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1016 return EIO;
1017 /* Skip "next" word. */
1018 sc->prom_base = prev + 1;
1019 }
1020 return 0;
1021 }
1022
1023 static int
1024 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1025 {
1026 uint8_t *out = data;
1027 uint32_t val, tmp;
1028 int ntries;
1029
1030 addr += sc->prom_base;
1031 for (; count > 0; count -= 2, addr++) {
1032 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1033 for (ntries = 0; ntries < 10; ntries++) {
1034 val = IWN_READ(sc, IWN_EEPROM);
1035 if (val & IWN_EEPROM_READ_VALID)
1036 break;
1037 DELAY(5);
1038 }
1039 if (ntries == 10) {
1040 aprint_error_dev(sc->sc_dev,
1041 "timeout reading ROM at 0x%x\n", addr);
1042 return ETIMEDOUT;
1043 }
1044 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1045 /* OTPROM, check for ECC errors. */
1046 tmp = IWN_READ(sc, IWN_OTP_GP);
1047 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1048 aprint_error_dev(sc->sc_dev,
1049 "OTPROM ECC error at 0x%x\n", addr);
1050 return EIO;
1051 }
1052 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1053 /* Correctable ECC error, clear bit. */
1054 IWN_SETBITS(sc, IWN_OTP_GP,
1055 IWN_OTP_GP_ECC_CORR_STTS);
1056 }
1057 }
1058 *out++ = val >> 16;
1059 if (count > 1)
1060 *out++ = val >> 24;
1061 }
1062 return 0;
1063 }
1064
1065 static int
1066 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1067 bus_size_t size, bus_size_t alignment)
1068 {
1069 int nsegs, error;
1070
1071 dma->tag = tag;
1072 dma->size = size;
1073
1074 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1075 &dma->map);
1076 if (error != 0)
1077 goto fail;
1078
1079 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1080 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1081 if (error != 0)
1082 goto fail;
1083
1084 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1085 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1086 if (error != 0)
1087 goto fail;
1088
1089 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1090 BUS_DMA_NOWAIT);
1091 if (error != 0)
1092 goto fail;
1093
1094 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1095 memset(dma->vaddr, 0, size);
1096 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1097
1098 dma->paddr = dma->map->dm_segs[0].ds_addr;
1099 if (kvap != NULL)
1100 *kvap = dma->vaddr;
1101
1102 return 0;
1103
1104 fail: iwn_dma_contig_free(dma);
1105 return error;
1106 }
1107
1108 static void
1109 iwn_dma_contig_free(struct iwn_dma_info *dma)
1110 {
1111 if (dma->map != NULL) {
1112 if (dma->vaddr != NULL) {
1113 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1114 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1115 bus_dmamap_unload(dma->tag, dma->map);
1116 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1117 bus_dmamem_free(dma->tag, &dma->seg, 1);
1118 dma->vaddr = NULL;
1119 }
1120 bus_dmamap_destroy(dma->tag, dma->map);
1121 dma->map = NULL;
1122 }
1123 }
1124
1125 static int
1126 iwn_alloc_sched(struct iwn_softc *sc)
1127 {
1128 /* TX scheduler rings must be aligned on a 1KB boundary. */
1129 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1130 (void **)&sc->sched, sc->schedsz, 1024);
1131 }
1132
1133 static void
1134 iwn_free_sched(struct iwn_softc *sc)
1135 {
1136 iwn_dma_contig_free(&sc->sched_dma);
1137 }
1138
1139 static int
1140 iwn_alloc_kw(struct iwn_softc *sc)
1141 {
1142 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1143 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1144 4096);
1145 }
1146
1147 static void
1148 iwn_free_kw(struct iwn_softc *sc)
1149 {
1150 iwn_dma_contig_free(&sc->kw_dma);
1151 }
1152
1153 static int
1154 iwn_alloc_ict(struct iwn_softc *sc)
1155 {
1156 /* ICT table must be aligned on a 4KB boundary. */
1157 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1158 (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1159 }
1160
1161 static void
1162 iwn_free_ict(struct iwn_softc *sc)
1163 {
1164 iwn_dma_contig_free(&sc->ict_dma);
1165 }
1166
1167 static int
1168 iwn_alloc_fwmem(struct iwn_softc *sc)
1169 {
1170 /* Must be aligned on a 16-byte boundary. */
1171 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1172 sc->fwsz, 16);
1173 }
1174
1175 static void
1176 iwn_free_fwmem(struct iwn_softc *sc)
1177 {
1178 iwn_dma_contig_free(&sc->fw_dma);
1179 }
1180
1181 static int
1182 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1183 {
1184 bus_size_t size;
1185 int i, error;
1186
1187 ring->cur = 0;
1188
1189 /* Allocate RX descriptors (256-byte aligned). */
1190 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1191 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1192 (void **)&ring->desc, size, 256);
1193 if (error != 0) {
1194 aprint_error_dev(sc->sc_dev,
1195 "could not allocate RX ring DMA memory\n");
1196 goto fail;
1197 }
1198
1199 /* Allocate RX status area (16-byte aligned). */
1200 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1201 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1202 if (error != 0) {
1203 aprint_error_dev(sc->sc_dev,
1204 "could not allocate RX status DMA memory\n");
1205 goto fail;
1206 }
1207
1208 /*
1209 * Allocate and map RX buffers.
1210 */
1211 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1212 struct iwn_rx_data *data = &ring->data[i];
1213
1214 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1215 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1216 &data->map);
1217 if (error != 0) {
1218 aprint_error_dev(sc->sc_dev,
1219 "could not create RX buf DMA map\n");
1220 goto fail;
1221 }
1222
1223 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1224 if (data->m == NULL) {
1225 aprint_error_dev(sc->sc_dev,
1226 "could not allocate RX mbuf\n");
1227 error = ENOBUFS;
1228 goto fail;
1229 }
1230
1231 error = bus_dmamap_load(sc->sc_dmat, data->map,
1232 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1233 BUS_DMA_NOWAIT | BUS_DMA_READ);
1234 if (error != 0) {
1235 aprint_error_dev(sc->sc_dev,
1236 "can't not map mbuf (error %d)\n", error);
1237 goto fail;
1238 }
1239
1240 /* Set physical address of RX buffer (256-byte aligned). */
1241 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1242 }
1243
1244 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1245 BUS_DMASYNC_PREWRITE);
1246
1247 return 0;
1248
1249 fail: iwn_free_rx_ring(sc, ring);
1250 return error;
1251 }
1252
1253 static void
1254 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1255 {
1256 int ntries;
1257
1258 if (iwn_nic_lock(sc) == 0) {
1259 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1260 for (ntries = 0; ntries < 1000; ntries++) {
1261 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1262 IWN_FH_RX_STATUS_IDLE)
1263 break;
1264 DELAY(10);
1265 }
1266 iwn_nic_unlock(sc);
1267 }
1268 ring->cur = 0;
1269 sc->last_rx_valid = 0;
1270 }
1271
1272 static void
1273 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1274 {
1275 int i;
1276
1277 iwn_dma_contig_free(&ring->desc_dma);
1278 iwn_dma_contig_free(&ring->stat_dma);
1279
1280 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1281 struct iwn_rx_data *data = &ring->data[i];
1282
1283 if (data->m != NULL) {
1284 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1285 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1286 bus_dmamap_unload(sc->sc_dmat, data->map);
1287 m_freem(data->m);
1288 }
1289 if (data->map != NULL)
1290 bus_dmamap_destroy(sc->sc_dmat, data->map);
1291 }
1292 }
1293
1294 static int
1295 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1296 {
1297 bus_addr_t paddr;
1298 bus_size_t size;
1299 int i, error;
1300
1301 ring->qid = qid;
1302 ring->queued = 0;
1303 ring->cur = 0;
1304
1305 /* Allocate TX descriptors (256-byte aligned). */
1306 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1307 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1308 (void **)&ring->desc, size, 256);
1309 if (error != 0) {
1310 aprint_error_dev(sc->sc_dev,
1311 "could not allocate TX ring DMA memory\n");
1312 goto fail;
1313 }
1314 /*
1315 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1316 * to allocate commands space for other rings.
1317 * XXX Do we really need to allocate descriptors for other rings?
1318 */
1319 if (qid > 4)
1320 return 0;
1321
1322 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1323 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1324 (void **)&ring->cmd, size, 4);
1325 if (error != 0) {
1326 aprint_error_dev(sc->sc_dev,
1327 "could not allocate TX cmd DMA memory\n");
1328 goto fail;
1329 }
1330
1331 paddr = ring->cmd_dma.paddr;
1332 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1333 struct iwn_tx_data *data = &ring->data[i];
1334
1335 data->cmd_paddr = paddr;
1336 data->scratch_paddr = paddr + 12;
1337 paddr += sizeof (struct iwn_tx_cmd);
1338
1339 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1340 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1341 &data->map);
1342 if (error != 0) {
1343 aprint_error_dev(sc->sc_dev,
1344 "could not create TX buf DMA map\n");
1345 goto fail;
1346 }
1347 }
1348 return 0;
1349
1350 fail: iwn_free_tx_ring(sc, ring);
1351 return error;
1352 }
1353
1354 static void
1355 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1356 {
1357 int i;
1358
1359 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1360 struct iwn_tx_data *data = &ring->data[i];
1361
1362 if (data->m != NULL) {
1363 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1364 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1365 bus_dmamap_unload(sc->sc_dmat, data->map);
1366 m_freem(data->m);
1367 data->m = NULL;
1368 }
1369 }
1370 /* Clear TX descriptors. */
1371 memset(ring->desc, 0, ring->desc_dma.size);
1372 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1373 ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1374 sc->qfullmsk &= ~(1 << ring->qid);
1375 ring->queued = 0;
1376 ring->cur = 0;
1377 }
1378
1379 static void
1380 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1381 {
1382 int i;
1383
1384 iwn_dma_contig_free(&ring->desc_dma);
1385 iwn_dma_contig_free(&ring->cmd_dma);
1386
1387 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1388 struct iwn_tx_data *data = &ring->data[i];
1389
1390 if (data->m != NULL) {
1391 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1392 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1393 bus_dmamap_unload(sc->sc_dmat, data->map);
1394 m_freem(data->m);
1395 }
1396 if (data->map != NULL)
1397 bus_dmamap_destroy(sc->sc_dmat, data->map);
1398 }
1399 }
1400
1401 static void
1402 iwn5000_ict_reset(struct iwn_softc *sc)
1403 {
1404 /* Disable interrupts. */
1405 IWN_WRITE(sc, IWN_INT_MASK, 0);
1406
1407 /* Reset ICT table. */
1408 memset(sc->ict, 0, IWN_ICT_SIZE);
1409 sc->ict_cur = 0;
1410
1411 /* Set physical address of ICT table (4KB aligned). */
1412 DPRINTF(("enabling ICT\n"));
1413 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1414 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1415
1416 /* Enable periodic RX interrupt. */
1417 sc->int_mask |= IWN_INT_RX_PERIODIC;
1418 /* Switch to ICT interrupt mode in driver. */
1419 sc->sc_flags |= IWN_FLAG_USE_ICT;
1420
1421 /* Re-enable interrupts. */
1422 IWN_WRITE(sc, IWN_INT, 0xffffffff);
1423 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1424 }
1425
1426 static int
1427 iwn_read_eeprom(struct iwn_softc *sc)
1428 {
1429 struct iwn_ops *ops = &sc->ops;
1430 struct ieee80211com *ic = &sc->sc_ic;
1431 uint16_t val;
1432 int error;
1433
1434 /* Check whether adapter has an EEPROM or an OTPROM. */
1435 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1436 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1437 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1438 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1439 "OTPROM" : "EEPROM"));
1440
1441 /* Adapter has to be powered on for EEPROM access to work. */
1442 if ((error = iwn_apm_init(sc)) != 0) {
1443 aprint_error_dev(sc->sc_dev,
1444 "could not power ON adapter\n");
1445 return error;
1446 }
1447
1448 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1449 aprint_error_dev(sc->sc_dev,
1450 "bad ROM signature\n");
1451 return EIO;
1452 }
1453 if ((error = iwn_eeprom_lock(sc)) != 0) {
1454 aprint_error_dev(sc->sc_dev,
1455 "could not lock ROM (error=%d)\n", error);
1456 return error;
1457 }
1458 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1459 if ((error = iwn_init_otprom(sc)) != 0) {
1460 aprint_error_dev(sc->sc_dev,
1461 "could not initialize OTPROM\n");
1462 return error;
1463 }
1464 }
1465
1466 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1467 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1468 /* Check if HT support is bonded out. */
1469 if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1470 sc->sc_flags |= IWN_FLAG_HAS_11N;
1471
1472 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1473 sc->rfcfg = le16toh(val);
1474 DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1475 /* Read Tx/Rx chains from ROM unless it's known to be broken. */
1476 if (sc->txchainmask == 0)
1477 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1478 if (sc->rxchainmask == 0)
1479 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1480
1481 /* Read MAC address. */
1482 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1483
1484 /* Read adapter-specific information from EEPROM. */
1485 ops->read_eeprom(sc);
1486
1487 iwn_apm_stop(sc); /* Power OFF adapter. */
1488
1489 iwn_eeprom_unlock(sc);
1490 return 0;
1491 }
1492
1493 static void
1494 iwn4965_read_eeprom(struct iwn_softc *sc)
1495 {
1496 uint32_t addr;
1497 uint16_t val;
1498 int i;
1499
1500 /* Read regulatory domain (4 ASCII characters). */
1501 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1502
1503 /* Read the list of authorized channels (20MHz ones only). */
1504 for (i = 0; i < 5; i++) {
1505 addr = iwn4965_regulatory_bands[i];
1506 iwn_read_eeprom_channels(sc, i, addr);
1507 }
1508
1509 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1510 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1511 sc->maxpwr2GHz = val & 0xff;
1512 sc->maxpwr5GHz = val >> 8;
1513 /* Check that EEPROM values are within valid range. */
1514 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1515 sc->maxpwr5GHz = 38;
1516 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1517 sc->maxpwr2GHz = 38;
1518 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1519
1520 /* Read samples for each TX power group. */
1521 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1522 sizeof sc->bands);
1523
1524 /* Read voltage at which samples were taken. */
1525 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1526 sc->eeprom_voltage = (int16_t)le16toh(val);
1527 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1528
1529 #ifdef IWN_DEBUG
1530 /* Print samples. */
1531 if (iwn_debug > 0) {
1532 for (i = 0; i < IWN_NBANDS; i++)
1533 iwn4965_print_power_group(sc, i);
1534 }
1535 #endif
1536 }
1537
1538 #ifdef IWN_DEBUG
1539 static void
1540 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1541 {
1542 struct iwn4965_eeprom_band *band = &sc->bands[i];
1543 struct iwn4965_eeprom_chan_samples *chans = band->chans;
1544 int j, c;
1545
1546 aprint_normal("===band %d===\n", i);
1547 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1548 aprint_normal("chan1 num=%d\n", chans[0].num);
1549 for (c = 0; c < 2; c++) {
1550 for (j = 0; j < IWN_NSAMPLES; j++) {
1551 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1552 "power=%d pa_det=%d\n", c, j,
1553 chans[0].samples[c][j].temp,
1554 chans[0].samples[c][j].gain,
1555 chans[0].samples[c][j].power,
1556 chans[0].samples[c][j].pa_det);
1557 }
1558 }
1559 aprint_normal("chan2 num=%d\n", chans[1].num);
1560 for (c = 0; c < 2; c++) {
1561 for (j = 0; j < IWN_NSAMPLES; j++) {
1562 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1563 "power=%d pa_det=%d\n", c, j,
1564 chans[1].samples[c][j].temp,
1565 chans[1].samples[c][j].gain,
1566 chans[1].samples[c][j].power,
1567 chans[1].samples[c][j].pa_det);
1568 }
1569 }
1570 }
1571 #endif
1572
1573 static void
1574 iwn5000_read_eeprom(struct iwn_softc *sc)
1575 {
1576 struct iwn5000_eeprom_calib_hdr hdr;
1577 int32_t volt;
1578 uint32_t base, addr;
1579 uint16_t val;
1580 int i;
1581
1582 /* Read regulatory domain (4 ASCII characters). */
1583 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1584 base = le16toh(val);
1585 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1586 sc->eeprom_domain, 4);
1587
1588 /* Read the list of authorized channels (20MHz ones only). */
1589 for (i = 0; i < 5; i++) {
1590 addr = base + iwn5000_regulatory_bands[i];
1591 iwn_read_eeprom_channels(sc, i, addr);
1592 }
1593
1594 /* Read enhanced TX power information for 6000 Series. */
1595 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1596 iwn_read_eeprom_enhinfo(sc);
1597
1598 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1599 base = le16toh(val);
1600 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1601 DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1602 hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1603 sc->calib_ver = hdr.version;
1604
1605 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1606 /* Compute temperature offset. */
1607 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1608 sc->eeprom_temp = le16toh(val);
1609 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1610 volt = le16toh(val);
1611 sc->temp_off = sc->eeprom_temp - (volt / -5);
1612 DPRINTF(("temp=%d volt=%d offset=%dK\n",
1613 sc->eeprom_temp, volt, sc->temp_off));
1614 } else {
1615 /* Read crystal calibration. */
1616 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1617 &sc->eeprom_crystal, sizeof (uint32_t));
1618 DPRINTF(("crystal calibration 0x%08x\n",
1619 le32toh(sc->eeprom_crystal)));
1620 }
1621 }
1622
1623 static void
1624 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1625 {
1626 struct ieee80211com *ic = &sc->sc_ic;
1627 const struct iwn_chan_band *band = &iwn_bands[n];
1628 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1629 uint8_t chan;
1630 int i;
1631
1632 iwn_read_prom_data(sc, addr, channels,
1633 band->nchan * sizeof (struct iwn_eeprom_chan));
1634
1635 for (i = 0; i < band->nchan; i++) {
1636 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1637 continue;
1638
1639 chan = band->chan[i];
1640
1641 if (n == 0) { /* 2GHz band */
1642 ic->ic_channels[chan].ic_freq =
1643 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1644 ic->ic_channels[chan].ic_flags =
1645 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1646 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1647
1648 } else { /* 5GHz band */
1649 /*
1650 * Some adapters support channels 7, 8, 11 and 12
1651 * both in the 2GHz and 4.9GHz bands.
1652 * Because of limitations in our net80211 layer,
1653 * we don't support them in the 4.9GHz band.
1654 */
1655 if (chan <= 14)
1656 continue;
1657
1658 ic->ic_channels[chan].ic_freq =
1659 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1660 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1661 /* We have at least one valid 5GHz channel. */
1662 sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1663 }
1664
1665 /* Is active scan allowed on this channel? */
1666 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1667 ic->ic_channels[chan].ic_flags |=
1668 IEEE80211_CHAN_PASSIVE;
1669 }
1670
1671 /* Save maximum allowed TX power for this channel. */
1672 sc->maxpwr[chan] = channels[i].maxpwr;
1673
1674 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1675 chan, channels[i].flags, sc->maxpwr[chan]));
1676 }
1677 }
1678
1679 static void
1680 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1681 {
1682 struct iwn_eeprom_enhinfo enhinfo[35];
1683 uint16_t val, base;
1684 int8_t maxpwr;
1685 int i;
1686
1687 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1688 base = le16toh(val);
1689 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1690 enhinfo, sizeof enhinfo);
1691
1692 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1693 for (i = 0; i < __arraycount(enhinfo); i++) {
1694 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1695 continue; /* Skip invalid entries. */
1696
1697 maxpwr = 0;
1698 if (sc->txchainmask & IWN_ANT_A)
1699 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1700 if (sc->txchainmask & IWN_ANT_B)
1701 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1702 if (sc->txchainmask & IWN_ANT_C)
1703 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1704 if (sc->ntxchains == 2)
1705 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1706 else if (sc->ntxchains == 3)
1707 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1708 maxpwr /= 2; /* Convert half-dBm to dBm. */
1709
1710 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1711 sc->enh_maxpwr[i] = maxpwr;
1712 }
1713 }
1714
1715 static struct ieee80211_node *
1716 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1717 {
1718 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1719 }
1720
1721 static void
1722 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1723 {
1724 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1725 struct iwn_node *wn = (void *)ni;
1726 uint8_t rate;
1727 int ridx, i;
1728
1729 ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1730 /* Start at lowest available bit-rate, AMRR will raise. */
1731 ni->ni_txrate = 0;
1732
1733 for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1734 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1735 /* Map 802.11 rate to HW rate index. */
1736 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1737 if (iwn_rates[ridx].rate == rate)
1738 break;
1739 wn->ridx[i] = ridx;
1740 }
1741 }
1742
1743 static int
1744 iwn_media_change(struct ifnet *ifp)
1745 {
1746 struct iwn_softc *sc = ifp->if_softc;
1747 struct ieee80211com *ic = &sc->sc_ic;
1748 uint8_t rate, ridx;
1749 int error;
1750
1751 error = ieee80211_media_change(ifp);
1752 if (error != ENETRESET)
1753 return error;
1754
1755 if (ic->ic_fixed_rate != -1) {
1756 rate = ic->ic_sup_rates[ic->ic_curmode].
1757 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1758 /* Map 802.11 rate to HW rate index. */
1759 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1760 if (iwn_rates[ridx].rate == rate)
1761 break;
1762 sc->fixed_ridx = ridx;
1763 }
1764
1765 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1766 (IFF_UP | IFF_RUNNING)) {
1767 iwn_stop(ifp, 0);
1768 error = iwn_init(ifp);
1769 }
1770 return error;
1771 }
1772
1773 static int
1774 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1775 {
1776 struct ifnet *ifp = ic->ic_ifp;
1777 struct iwn_softc *sc = ifp->if_softc;
1778 int error;
1779
1780 callout_stop(&sc->calib_to);
1781
1782 switch (nstate) {
1783 case IEEE80211_S_SCAN:
1784 /* XXX Do not abort a running scan. */
1785 if (sc->sc_flags & IWN_FLAG_SCANNING) {
1786 if (ic->ic_state != nstate)
1787 aprint_error_dev(sc->sc_dev, "scan request(%d) "
1788 "while scanning(%d) ignored\n", nstate,
1789 ic->ic_state);
1790 break;
1791 }
1792
1793 /* XXX Not sure if call and flags are needed. */
1794 ieee80211_node_table_reset(&ic->ic_scan);
1795 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1796 sc->sc_flags |= IWN_FLAG_SCANNING;
1797
1798 /* Make the link LED blink while we're scanning. */
1799 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1800
1801 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1802 aprint_error_dev(sc->sc_dev,
1803 "could not initiate scan\n");
1804 return error;
1805 }
1806 ic->ic_state = nstate;
1807 return 0;
1808
1809 case IEEE80211_S_ASSOC:
1810 if (ic->ic_state != IEEE80211_S_RUN)
1811 break;
1812 /* FALLTHROUGH */
1813 case IEEE80211_S_AUTH:
1814 /* Reset state to handle reassociations correctly. */
1815 sc->rxon.associd = 0;
1816 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1817 sc->calib.state = IWN_CALIB_STATE_INIT;
1818
1819 if ((error = iwn_auth(sc)) != 0) {
1820 aprint_error_dev(sc->sc_dev,
1821 "could not move to auth state\n");
1822 return error;
1823 }
1824 break;
1825
1826 case IEEE80211_S_RUN:
1827 if ((error = iwn_run(sc)) != 0) {
1828 aprint_error_dev(sc->sc_dev,
1829 "could not move to run state\n");
1830 return error;
1831 }
1832 break;
1833
1834 case IEEE80211_S_INIT:
1835 sc->sc_flags &= ~IWN_FLAG_SCANNING;
1836 sc->calib.state = IWN_CALIB_STATE_INIT;
1837 break;
1838 }
1839
1840 return sc->sc_newstate(ic, nstate, arg);
1841 }
1842
1843 static void
1844 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1845 {
1846 struct iwn_softc *sc = arg;
1847 struct iwn_node *wn = (struct iwn_node *)ni;
1848
1849 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1850 }
1851
1852 static void
1853 iwn_calib_timeout(void *arg)
1854 {
1855 struct iwn_softc *sc = arg;
1856 struct ieee80211com *ic = &sc->sc_ic;
1857 int s;
1858
1859 s = splnet();
1860 if (ic->ic_fixed_rate == -1) {
1861 if (ic->ic_opmode == IEEE80211_M_STA)
1862 iwn_iter_func(sc, ic->ic_bss);
1863 else
1864 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1865 }
1866 /* Force automatic TX power calibration every 60 secs. */
1867 if (++sc->calib_cnt >= 120) {
1868 uint32_t flags = 0;
1869
1870 DPRINTF(("sending request for statistics\n"));
1871 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1872 sizeof flags, 1);
1873 sc->calib_cnt = 0;
1874 }
1875 splx(s);
1876
1877 /* Automatic rate control triggered every 500ms. */
1878 callout_schedule(&sc->calib_to, hz/2);
1879 }
1880
1881 /*
1882 * Process an RX_PHY firmware notification. This is usually immediately
1883 * followed by an MPDU_RX_DONE notification.
1884 */
1885 static void
1886 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1887 struct iwn_rx_data *data)
1888 {
1889 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1890
1891 DPRINTFN(2, ("received PHY stats\n"));
1892 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1893 sizeof (*stat), BUS_DMASYNC_POSTREAD);
1894
1895 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
1896 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1897 sc->last_rx_valid = 1;
1898 }
1899
1900 /*
1901 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1902 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1903 */
1904 static void
1905 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1906 struct iwn_rx_data *data)
1907 {
1908 struct iwn_ops *ops = &sc->ops;
1909 struct ieee80211com *ic = &sc->sc_ic;
1910 struct ifnet *ifp = ic->ic_ifp;
1911 struct iwn_rx_ring *ring = &sc->rxq;
1912 struct ieee80211_frame *wh;
1913 struct ieee80211_node *ni;
1914 struct mbuf *m, *m1;
1915 struct iwn_rx_stat *stat;
1916 char *head;
1917 uint32_t flags;
1918 int error, len, rssi;
1919
1920 if (desc->type == IWN_MPDU_RX_DONE) {
1921 /* Check for prior RX_PHY notification. */
1922 if (!sc->last_rx_valid) {
1923 DPRINTF(("missing RX_PHY\n"));
1924 return;
1925 }
1926 sc->last_rx_valid = 0;
1927 stat = &sc->last_rx_stat;
1928 } else
1929 stat = (struct iwn_rx_stat *)(desc + 1);
1930
1931 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1932 BUS_DMASYNC_POSTREAD);
1933
1934 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1935 aprint_error_dev(sc->sc_dev,
1936 "invalid RX statistic header\n");
1937 return;
1938 }
1939 if (desc->type == IWN_MPDU_RX_DONE) {
1940 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1941 head = (char *)(mpdu + 1);
1942 len = le16toh(mpdu->len);
1943 } else {
1944 head = (char *)(stat + 1) + stat->cfg_phy_len;
1945 len = le16toh(stat->len);
1946 }
1947
1948 flags = le32toh(*(uint32_t *)(head + len));
1949
1950 /* Discard frames with a bad FCS early. */
1951 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1952 DPRINTFN(2, ("RX flags error %x\n", flags));
1953 ifp->if_ierrors++;
1954 return;
1955 }
1956 /* Discard frames that are too short. */
1957 if (len < sizeof (*wh)) {
1958 DPRINTF(("frame too short: %d\n", len));
1959 ic->ic_stats.is_rx_tooshort++;
1960 ifp->if_ierrors++;
1961 return;
1962 }
1963
1964 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1965 if (m1 == NULL) {
1966 ic->ic_stats.is_rx_nobuf++;
1967 ifp->if_ierrors++;
1968 return;
1969 }
1970 bus_dmamap_unload(sc->sc_dmat, data->map);
1971
1972 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1973 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1974 if (error != 0) {
1975 m_freem(m1);
1976
1977 /* Try to reload the old mbuf. */
1978 error = bus_dmamap_load(sc->sc_dmat, data->map,
1979 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1980 BUS_DMA_NOWAIT | BUS_DMA_READ);
1981 if (error != 0) {
1982 panic("%s: could not load old RX mbuf",
1983 device_xname(sc->sc_dev));
1984 }
1985 /* Physical address may have changed. */
1986 ring->desc[ring->cur] =
1987 htole32(data->map->dm_segs[0].ds_addr >> 8);
1988 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1989 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1990 BUS_DMASYNC_PREWRITE);
1991 ifp->if_ierrors++;
1992 return;
1993 }
1994
1995 m = data->m;
1996 data->m = m1;
1997 /* Update RX descriptor. */
1998 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1999 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2000 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2001 BUS_DMASYNC_PREWRITE);
2002
2003 /* Finalize mbuf. */
2004 m->m_pkthdr.rcvif = ifp;
2005 m->m_data = head;
2006 m->m_pkthdr.len = m->m_len = len;
2007
2008 /* Grab a reference to the source node. */
2009 wh = mtod(m, struct ieee80211_frame *);
2010 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2011
2012 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2013 /* NetBSD does decryption in ieee80211_input. */
2014
2015 rssi = ops->get_rssi(stat);
2016
2017 /* XXX Added for NetBSD: scans never stop without it */
2018 if (ic->ic_state == IEEE80211_S_SCAN)
2019 iwn_fix_channel(ic, m);
2020
2021 if (sc->sc_drvbpf != NULL) {
2022 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2023
2024 tap->wr_flags = 0;
2025 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2026 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2027 tap->wr_chan_freq =
2028 htole16(ic->ic_channels[stat->chan].ic_freq);
2029 tap->wr_chan_flags =
2030 htole16(ic->ic_channels[stat->chan].ic_flags);
2031 tap->wr_dbm_antsignal = (int8_t)rssi;
2032 tap->wr_dbm_antnoise = (int8_t)sc->noise;
2033 tap->wr_tsft = stat->tstamp;
2034 switch (stat->rate) {
2035 /* CCK rates. */
2036 case 10: tap->wr_rate = 2; break;
2037 case 20: tap->wr_rate = 4; break;
2038 case 55: tap->wr_rate = 11; break;
2039 case 110: tap->wr_rate = 22; break;
2040 /* OFDM rates. */
2041 case 0xd: tap->wr_rate = 12; break;
2042 case 0xf: tap->wr_rate = 18; break;
2043 case 0x5: tap->wr_rate = 24; break;
2044 case 0x7: tap->wr_rate = 36; break;
2045 case 0x9: tap->wr_rate = 48; break;
2046 case 0xb: tap->wr_rate = 72; break;
2047 case 0x1: tap->wr_rate = 96; break;
2048 case 0x3: tap->wr_rate = 108; break;
2049 /* Unknown rate: should not happen. */
2050 default: tap->wr_rate = 0;
2051 }
2052
2053 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2054 }
2055
2056 /* Send the frame to the 802.11 layer. */
2057 ieee80211_input(ic, m, ni, rssi, 0);
2058
2059 /* Node is no longer needed. */
2060 ieee80211_free_node(ni);
2061 }
2062
2063 #ifndef IEEE80211_NO_HT
2064 /* Process an incoming Compressed BlockAck. */
2065 static void
2066 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2067 struct iwn_rx_data *data)
2068 {
2069 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2070 struct iwn_tx_ring *txq;
2071
2072 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2073 BUS_DMASYNC_POSTREAD);
2074
2075 txq = &sc->txq[le16toh(ba->qid)];
2076 /* XXX TBD */
2077 }
2078 #endif
2079
2080 /*
2081 * Process a CALIBRATION_RESULT notification sent by the initialization
2082 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2083 */
2084 static void
2085 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2086 struct iwn_rx_data *data)
2087 {
2088 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2089 int len, idx = -1;
2090
2091 /* Runtime firmware should not send such a notification. */
2092 if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2093 return;
2094
2095 len = (le32toh(desc->len) & 0x3fff) - 4;
2096 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2097 BUS_DMASYNC_POSTREAD);
2098
2099 switch (calib->code) {
2100 case IWN5000_PHY_CALIB_DC:
2101 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
2102 idx = 0;
2103 break;
2104 case IWN5000_PHY_CALIB_LO:
2105 idx = 1;
2106 break;
2107 case IWN5000_PHY_CALIB_TX_IQ:
2108 idx = 2;
2109 break;
2110 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2111 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2112 sc->hw_type != IWN_HW_REV_TYPE_5150)
2113 idx = 3;
2114 break;
2115 case IWN5000_PHY_CALIB_BASE_BAND:
2116 idx = 4;
2117 break;
2118 }
2119 if (idx == -1) /* Ignore other results. */
2120 return;
2121
2122 /* Save calibration result. */
2123 if (sc->calibcmd[idx].buf != NULL)
2124 free(sc->calibcmd[idx].buf, M_DEVBUF);
2125 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2126 if (sc->calibcmd[idx].buf == NULL) {
2127 DPRINTF(("not enough memory for calibration result %d\n",
2128 calib->code));
2129 return;
2130 }
2131 DPRINTF(("saving calibration result code=%d len=%d\n",
2132 calib->code, len));
2133 sc->calibcmd[idx].len = len;
2134 memcpy(sc->calibcmd[idx].buf, calib, len);
2135 }
2136
2137 /*
2138 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2139 * The latter is sent by the firmware after each received beacon.
2140 */
2141 static void
2142 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2143 struct iwn_rx_data *data)
2144 {
2145 struct iwn_ops *ops = &sc->ops;
2146 struct ieee80211com *ic = &sc->sc_ic;
2147 struct iwn_calib_state *calib = &sc->calib;
2148 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2149 int temp;
2150
2151 /* Ignore statistics received during a scan. */
2152 if (ic->ic_state != IEEE80211_S_RUN)
2153 return;
2154
2155 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2156 sizeof (*stats), BUS_DMASYNC_POSTREAD);
2157
2158 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2159 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2160
2161 /* Test if temperature has changed. */
2162 if (stats->general.temp != sc->rawtemp) {
2163 /* Convert "raw" temperature to degC. */
2164 sc->rawtemp = stats->general.temp;
2165 temp = ops->get_temperature(sc);
2166 DPRINTFN(2, ("temperature=%dC\n", temp));
2167
2168 /* Update TX power if need be (4965AGN only). */
2169 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2170 iwn4965_power_calibration(sc, temp);
2171 }
2172
2173 if (desc->type != IWN_BEACON_STATISTICS)
2174 return; /* Reply to a statistics request. */
2175
2176 sc->noise = iwn_get_noise(&stats->rx.general);
2177
2178 /* Test that RSSI and noise are present in stats report. */
2179 if (le32toh(stats->rx.general.flags) != 1) {
2180 DPRINTF(("received statistics without RSSI\n"));
2181 return;
2182 }
2183
2184 if (calib->state == IWN_CALIB_STATE_ASSOC)
2185 iwn_collect_noise(sc, &stats->rx.general);
2186 else if (calib->state == IWN_CALIB_STATE_RUN)
2187 iwn_tune_sensitivity(sc, &stats->rx);
2188 }
2189
2190 /*
2191 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2192 * and 5000 adapters have different incompatible TX status formats.
2193 */
2194 static void
2195 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2196 struct iwn_rx_data *data)
2197 {
2198 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2199
2200 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2201 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2202 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2203 }
2204
2205 static void
2206 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2207 struct iwn_rx_data *data)
2208 {
2209 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2210
2211 #ifdef notyet
2212 /* Reset TX scheduler slot. */
2213 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2214 #endif
2215
2216 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2217 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2218 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2219 }
2220
2221 /*
2222 * Adapter-independent backend for TX_DONE firmware notifications.
2223 */
2224 static void
2225 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2226 uint8_t status)
2227 {
2228 struct ieee80211com *ic = &sc->sc_ic;
2229 struct ifnet *ifp = ic->ic_ifp;
2230 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2231 struct iwn_tx_data *data = &ring->data[desc->idx];
2232 struct iwn_node *wn = (struct iwn_node *)data->ni;
2233
2234 /* Update rate control statistics. */
2235 wn->amn.amn_txcnt++;
2236 if (ackfailcnt > 0)
2237 wn->amn.amn_retrycnt++;
2238
2239 if (status != 1 && status != 2)
2240 ifp->if_oerrors++;
2241 else
2242 ifp->if_opackets++;
2243
2244 /* Unmap and free mbuf. */
2245 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2246 BUS_DMASYNC_POSTWRITE);
2247 bus_dmamap_unload(sc->sc_dmat, data->map);
2248 m_freem(data->m);
2249 data->m = NULL;
2250 ieee80211_free_node(data->ni);
2251 data->ni = NULL;
2252
2253 sc->sc_tx_timer = 0;
2254 if (--ring->queued < IWN_TX_RING_LOMARK) {
2255 sc->qfullmsk &= ~(1 << ring->qid);
2256 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2257 ifp->if_flags &= ~IFF_OACTIVE;
2258 (*ifp->if_start)(ifp);
2259 }
2260 }
2261 }
2262
2263 /*
2264 * Process a "command done" firmware notification. This is where we wakeup
2265 * processes waiting for a synchronous command completion.
2266 */
2267 static void
2268 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2269 {
2270 struct iwn_tx_ring *ring = &sc->txq[4];
2271 struct iwn_tx_data *data;
2272
2273 if ((desc->qid & 0xf) != 4)
2274 return; /* Not a command ack. */
2275
2276 data = &ring->data[desc->idx];
2277
2278 /* If the command was mapped in an mbuf, free it. */
2279 if (data->m != NULL) {
2280 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2281 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2282 bus_dmamap_unload(sc->sc_dmat, data->map);
2283 m_freem(data->m);
2284 data->m = NULL;
2285 }
2286 wakeup(&ring->desc[desc->idx]);
2287 }
2288
2289 /*
2290 * Process an INT_FH_RX or INT_SW_RX interrupt.
2291 */
2292 static void
2293 iwn_notif_intr(struct iwn_softc *sc)
2294 {
2295 struct iwn_ops *ops = &sc->ops;
2296 struct ieee80211com *ic = &sc->sc_ic;
2297 struct ifnet *ifp = ic->ic_ifp;
2298 uint16_t hw;
2299
2300 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2301 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2302
2303 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2304 while (sc->rxq.cur != hw) {
2305 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2306 struct iwn_rx_desc *desc;
2307
2308 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2309 BUS_DMASYNC_POSTREAD);
2310 desc = mtod(data->m, struct iwn_rx_desc *);
2311
2312 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2313 desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2314
2315 if (!(desc->qid & 0x80)) /* Reply to a command. */
2316 iwn_cmd_done(sc, desc);
2317
2318 switch (desc->type) {
2319 case IWN_RX_PHY:
2320 iwn_rx_phy(sc, desc, data);
2321 break;
2322
2323 case IWN_RX_DONE: /* 4965AGN only. */
2324 case IWN_MPDU_RX_DONE:
2325 /* An 802.11 frame has been received. */
2326 iwn_rx_done(sc, desc, data);
2327 break;
2328 #ifndef IEEE80211_NO_HT
2329 case IWN_RX_COMPRESSED_BA:
2330 /* A Compressed BlockAck has been received. */
2331 iwn_rx_compressed_ba(sc, desc, data);
2332 break;
2333 #endif
2334 case IWN_TX_DONE:
2335 /* An 802.11 frame has been transmitted. */
2336 ops->tx_done(sc, desc, data);
2337 break;
2338
2339 case IWN_RX_STATISTICS:
2340 case IWN_BEACON_STATISTICS:
2341 iwn_rx_statistics(sc, desc, data);
2342 break;
2343
2344 case IWN_BEACON_MISSED:
2345 {
2346 struct iwn_beacon_missed *miss =
2347 (struct iwn_beacon_missed *)(desc + 1);
2348
2349 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2350 sizeof (*miss), BUS_DMASYNC_POSTREAD);
2351 /*
2352 * If more than 5 consecutive beacons are missed,
2353 * reinitialize the sensitivity state machine.
2354 */
2355 DPRINTF(("beacons missed %d/%d\n",
2356 le32toh(miss->consecutive), le32toh(miss->total)));
2357 if (ic->ic_state == IEEE80211_S_RUN &&
2358 le32toh(miss->consecutive) > 5)
2359 (void)iwn_init_sensitivity(sc);
2360 break;
2361 }
2362 case IWN_UC_READY:
2363 {
2364 struct iwn_ucode_info *uc =
2365 (struct iwn_ucode_info *)(desc + 1);
2366
2367 /* The microcontroller is ready. */
2368 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2369 sizeof (*uc), BUS_DMASYNC_POSTREAD);
2370 DPRINTF(("microcode alive notification version=%d.%d "
2371 "subtype=%x alive=%x\n", uc->major, uc->minor,
2372 uc->subtype, le32toh(uc->valid)));
2373
2374 if (le32toh(uc->valid) != 1) {
2375 aprint_error_dev(sc->sc_dev,
2376 "microcontroller initialization "
2377 "failed\n");
2378 break;
2379 }
2380 if (uc->subtype == IWN_UCODE_INIT) {
2381 /* Save microcontroller report. */
2382 memcpy(&sc->ucode_info, uc, sizeof (*uc));
2383 }
2384 /* Save the address of the error log in SRAM. */
2385 sc->errptr = le32toh(uc->errptr);
2386 break;
2387 }
2388 case IWN_STATE_CHANGED:
2389 {
2390 uint32_t *status = (uint32_t *)(desc + 1);
2391
2392 /* Enabled/disabled notification. */
2393 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2394 sizeof (*status), BUS_DMASYNC_POSTREAD);
2395 DPRINTF(("state changed to %x\n", le32toh(*status)));
2396
2397 if (le32toh(*status) & 1) {
2398 /* The radio button has to be pushed. */
2399 aprint_error_dev(sc->sc_dev,
2400 "Radio transmitter is off\n");
2401 /* Turn the interface down. */
2402 ifp->if_flags &= ~IFF_UP;
2403 iwn_stop(ifp, 1);
2404 return; /* No further processing. */
2405 }
2406 break;
2407 }
2408 case IWN_START_SCAN:
2409 {
2410 struct iwn_start_scan *scan =
2411 (struct iwn_start_scan *)(desc + 1);
2412
2413 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2414 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2415 DPRINTFN(2, ("scanning channel %d status %x\n",
2416 scan->chan, le32toh(scan->status)));
2417
2418 /* Fix current channel. */
2419 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2420 break;
2421 }
2422 case IWN_STOP_SCAN:
2423 {
2424 struct iwn_stop_scan *scan =
2425 (struct iwn_stop_scan *)(desc + 1);
2426
2427 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2428 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2429 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2430 scan->nchan, scan->status, scan->chan));
2431
2432 if (scan->status == 1 && scan->chan <= 14 &&
2433 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2434 /*
2435 * We just finished scanning 2GHz channels,
2436 * start scanning 5GHz ones.
2437 */
2438 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2439 break;
2440 }
2441 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2442 ieee80211_end_scan(ic);
2443 break;
2444 }
2445 case IWN5000_CALIBRATION_RESULT:
2446 iwn5000_rx_calib_results(sc, desc, data);
2447 break;
2448
2449 case IWN5000_CALIBRATION_DONE:
2450 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2451 wakeup(sc);
2452 break;
2453 }
2454
2455 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2456 }
2457
2458 /* Tell the firmware what we have processed. */
2459 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2460 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2461 }
2462
2463 /*
2464 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2465 * from power-down sleep mode.
2466 */
2467 static void
2468 iwn_wakeup_intr(struct iwn_softc *sc)
2469 {
2470 int qid;
2471
2472 DPRINTF(("ucode wakeup from power-down sleep\n"));
2473
2474 /* Wakeup RX and TX rings. */
2475 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2476 for (qid = 0; qid < sc->ntxqs; qid++) {
2477 struct iwn_tx_ring *ring = &sc->txq[qid];
2478 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2479 }
2480 }
2481
2482 /*
2483 * Dump the error log of the firmware when a firmware panic occurs. Although
2484 * we can't debug the firmware because it is neither open source nor free, it
2485 * can help us to identify certain classes of problems.
2486 */
2487 static void
2488 iwn_fatal_intr(struct iwn_softc *sc)
2489 {
2490 struct iwn_fw_dump dump;
2491 int i;
2492
2493 /* Force a complete recalibration on next init. */
2494 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2495
2496 /* Check that the error log address is valid. */
2497 if (sc->errptr < IWN_FW_DATA_BASE ||
2498 sc->errptr + sizeof (dump) >
2499 IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2500 aprint_error_dev(sc->sc_dev,
2501 "bad firmware error log address 0x%08x\n", sc->errptr);
2502 return;
2503 }
2504 if (iwn_nic_lock(sc) != 0) {
2505 aprint_error_dev(sc->sc_dev,
2506 "could not read firmware error log\n");
2507 return;
2508 }
2509 /* Read firmware error log from SRAM. */
2510 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2511 sizeof (dump) / sizeof (uint32_t));
2512 iwn_nic_unlock(sc);
2513
2514 if (dump.valid == 0) {
2515 aprint_error_dev(sc->sc_dev,
2516 "firmware error log is empty\n");
2517 return;
2518 }
2519 aprint_error("firmware error log:\n");
2520 aprint_error(" error type = \"%s\" (0x%08X)\n",
2521 (dump.id < __arraycount(iwn_fw_errmsg)) ?
2522 iwn_fw_errmsg[dump.id] : "UNKNOWN",
2523 dump.id);
2524 aprint_error(" program counter = 0x%08X\n", dump.pc);
2525 aprint_error(" source line = 0x%08X\n", dump.src_line);
2526 aprint_error(" error data = 0x%08X%08X\n",
2527 dump.error_data[0], dump.error_data[1]);
2528 aprint_error(" branch link = 0x%08X%08X\n",
2529 dump.branch_link[0], dump.branch_link[1]);
2530 aprint_error(" interrupt link = 0x%08X%08X\n",
2531 dump.interrupt_link[0], dump.interrupt_link[1]);
2532 aprint_error(" time = %u\n", dump.time[0]);
2533
2534 /* Dump driver status (TX and RX rings) while we're here. */
2535 aprint_error("driver status:\n");
2536 for (i = 0; i < sc->ntxqs; i++) {
2537 struct iwn_tx_ring *ring = &sc->txq[i];
2538 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2539 i, ring->qid, ring->cur, ring->queued);
2540 }
2541 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
2542 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
2543 }
2544
2545 static int
2546 iwn_intr(void *arg)
2547 {
2548 struct iwn_softc *sc = arg;
2549 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2550 uint32_t r1, r2, tmp;
2551
2552 /* Disable interrupts. */
2553 IWN_WRITE(sc, IWN_INT_MASK, 0);
2554
2555 /* Read interrupts from ICT (fast) or from registers (slow). */
2556 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2557 tmp = 0;
2558 while (sc->ict[sc->ict_cur] != 0) {
2559 tmp |= sc->ict[sc->ict_cur];
2560 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2561 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2562 }
2563 tmp = le32toh(tmp);
2564 if (tmp == 0xffffffff) /* Shouldn't happen. */
2565 tmp = 0;
2566 else if (tmp & 0xc0000) /* Workaround a HW bug. */
2567 tmp |= 0x8000;
2568 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2569 r2 = 0; /* Unused. */
2570 } else {
2571 r1 = IWN_READ(sc, IWN_INT);
2572 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2573 return 0; /* Hardware gone! */
2574 r2 = IWN_READ(sc, IWN_FH_INT);
2575 }
2576 if (r1 == 0 && r2 == 0) {
2577 if (ifp->if_flags & IFF_UP)
2578 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2579 return 0; /* Interrupt not for us. */
2580 }
2581
2582 /* Acknowledge interrupts. */
2583 IWN_WRITE(sc, IWN_INT, r1);
2584 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2585 IWN_WRITE(sc, IWN_FH_INT, r2);
2586
2587 if (r1 & IWN_INT_RF_TOGGLED) {
2588 tmp = IWN_READ(sc, IWN_GP_CNTRL);
2589 aprint_error_dev(sc->sc_dev,
2590 "RF switch: radio %s\n",
2591 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2592 }
2593 if (r1 & IWN_INT_CT_REACHED) {
2594 aprint_error_dev(sc->sc_dev,
2595 "critical temperature reached!\n");
2596 }
2597 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2598 aprint_error_dev(sc->sc_dev,
2599 "fatal firmware error\n");
2600 /* Dump firmware error log and stop. */
2601 iwn_fatal_intr(sc);
2602 ifp->if_flags &= ~IFF_UP;
2603 iwn_stop(ifp, 1);
2604 return 1;
2605 }
2606 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2607 (r2 & IWN_FH_INT_RX)) {
2608 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2609 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2610 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2611 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2612 IWN_INT_PERIODIC_DIS);
2613 iwn_notif_intr(sc);
2614 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2615 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2616 IWN_INT_PERIODIC_ENA);
2617 }
2618 } else
2619 iwn_notif_intr(sc);
2620 }
2621
2622 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2623 if (sc->sc_flags & IWN_FLAG_USE_ICT)
2624 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2625 wakeup(sc); /* FH DMA transfer completed. */
2626 }
2627
2628 if (r1 & IWN_INT_ALIVE)
2629 wakeup(sc); /* Firmware is alive. */
2630
2631 if (r1 & IWN_INT_WAKEUP)
2632 iwn_wakeup_intr(sc);
2633
2634 /* Re-enable interrupts. */
2635 if (ifp->if_flags & IFF_UP)
2636 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2637
2638 return 1;
2639 }
2640
2641 /*
2642 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2643 * 5000 adapters use a slightly different format).
2644 */
2645 static void
2646 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2647 uint16_t len)
2648 {
2649 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2650
2651 *w = htole16(len + 8);
2652 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2653 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2654 sizeof (uint16_t),
2655 BUS_DMASYNC_PREWRITE);
2656 if (idx < IWN_SCHED_WINSZ) {
2657 *(w + IWN_TX_RING_COUNT) = *w;
2658 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2659 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2660 (char *)(void *)sc->sched_dma.vaddr,
2661 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2662 }
2663 }
2664
2665 static void
2666 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2667 uint16_t len)
2668 {
2669 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2670
2671 *w = htole16(id << 12 | (len + 8));
2672 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2673 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2674 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2675 if (idx < IWN_SCHED_WINSZ) {
2676 *(w + IWN_TX_RING_COUNT) = *w;
2677 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2678 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2679 (char *)(void *)sc->sched_dma.vaddr,
2680 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2681 }
2682 }
2683
2684 #ifdef notyet
2685 static void
2686 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2687 {
2688 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2689
2690 *w = (*w & htole16(0xf000)) | htole16(1);
2691 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2692 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2693 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2694 if (idx < IWN_SCHED_WINSZ) {
2695 *(w + IWN_TX_RING_COUNT) = *w;
2696 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2697 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2698 (char *)(void *)sc->sched_dma.vaddr,
2699 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2700 }
2701 }
2702 #endif
2703
2704 static int
2705 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2706 {
2707 struct ieee80211com *ic = &sc->sc_ic;
2708 struct iwn_node *wn = (void *)ni;
2709 struct iwn_tx_ring *ring;
2710 struct iwn_tx_desc *desc;
2711 struct iwn_tx_data *data;
2712 struct iwn_tx_cmd *cmd;
2713 struct iwn_cmd_data *tx;
2714 const struct iwn_rate *rinfo;
2715 struct ieee80211_frame *wh;
2716 struct ieee80211_key *k = NULL;
2717 struct mbuf *m1;
2718 uint32_t flags;
2719 u_int hdrlen;
2720 bus_dma_segment_t *seg;
2721 uint8_t tid, ridx, txant, type;
2722 int i, totlen, error, pad;
2723
2724 const struct chanAccParams *cap;
2725 int noack;
2726 int hdrlen2;
2727
2728 wh = mtod(m, struct ieee80211_frame *);
2729 hdrlen = ieee80211_anyhdrsize(wh);
2730 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2731
2732 hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
2733 sizeof (struct ieee80211_qosframe) :
2734 sizeof (struct ieee80211_frame);
2735
2736 if (hdrlen != hdrlen2)
2737 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2738 hdrlen, hdrlen2);
2739
2740 /* XXX OpenBSD sets a different tid when using QOS */
2741 tid = 0;
2742 if (IEEE80211_QOS_HAS_SEQ(wh)) {
2743 cap = &ic->ic_wme.wme_chanParams;
2744 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2745 }
2746 else
2747 noack = 0;
2748
2749 ring = &sc->txq[ac];
2750 desc = &ring->desc[ring->cur];
2751 data = &ring->data[ring->cur];
2752
2753 /* Choose a TX rate index. */
2754 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2755 type != IEEE80211_FC0_TYPE_DATA) {
2756 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2757 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2758 } else if (ic->ic_fixed_rate != -1) {
2759 ridx = sc->fixed_ridx;
2760 } else
2761 ridx = wn->ridx[ni->ni_txrate];
2762 rinfo = &iwn_rates[ridx];
2763
2764 /* Encrypt the frame if need be. */
2765 /*
2766 * XXX For now, NetBSD swaps the encryption and bpf sections
2767 * in order to match old code and other drivers. Tests with
2768 * tcpdump indicates that the order is irrelevant, however,
2769 * as bpf produces unencrypted data for both ordering choices.
2770 */
2771 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2772 k = ieee80211_crypto_encap(ic, ni, m);
2773 if (k == NULL) {
2774 m_freem(m);
2775 return ENOBUFS;
2776 }
2777 /* Packet header may have moved, reset our local pointer. */
2778 wh = mtod(m, struct ieee80211_frame *);
2779 }
2780 totlen = m->m_pkthdr.len;
2781
2782 if (sc->sc_drvbpf != NULL) {
2783 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2784
2785 tap->wt_flags = 0;
2786 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2787 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2788 tap->wt_rate = rinfo->rate;
2789 tap->wt_hwqueue = ac;
2790 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2791 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2792
2793 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2794 }
2795
2796 /* Prepare TX firmware command. */
2797 cmd = &ring->cmd[ring->cur];
2798 cmd->code = IWN_CMD_TX_DATA;
2799 cmd->flags = 0;
2800 cmd->qid = ring->qid;
2801 cmd->idx = ring->cur;
2802
2803 tx = (struct iwn_cmd_data *)cmd->data;
2804 /* NB: No need to clear tx, all fields are reinitialized here. */
2805 tx->scratch = 0; /* clear "scratch" area */
2806
2807 flags = 0;
2808 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2809 /* Unicast frame, check if an ACK is expected. */
2810 if (!noack)
2811 flags |= IWN_TX_NEED_ACK;
2812 }
2813
2814 #ifdef notyet
2815 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2816 if ((wh->i_fc[0] &
2817 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2818 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2819 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
2820 #endif
2821
2822 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2823 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
2824
2825 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2826 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2827 /* NB: Group frames are sent using CCK in 802.11b/g. */
2828 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2829 flags |= IWN_TX_NEED_RTS;
2830 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2831 ridx >= IWN_RIDX_OFDM6) {
2832 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2833 flags |= IWN_TX_NEED_CTS;
2834 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2835 flags |= IWN_TX_NEED_RTS;
2836 }
2837 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2838 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2839 /* 5000 autoselects RTS/CTS or CTS-to-self. */
2840 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2841 flags |= IWN_TX_NEED_PROTECTION;
2842 } else
2843 flags |= IWN_TX_FULL_TXOP;
2844 }
2845 }
2846
2847 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2848 type != IEEE80211_FC0_TYPE_DATA)
2849 tx->id = sc->broadcast_id;
2850 else
2851 tx->id = wn->id;
2852
2853 if (type == IEEE80211_FC0_TYPE_MGT) {
2854 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2855
2856 #ifndef IEEE80211_STA_ONLY
2857 /* Tell HW to set timestamp in probe responses. */
2858 /* XXX NetBSD rev 1.11 added probe requests here but */
2859 /* probe requests do not take timestamps (from Bergamini). */
2860 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2861 flags |= IWN_TX_INSERT_TSTAMP;
2862 #endif
2863 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2864 /* changes here. These are not needed (from Bergamini). */
2865 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2866 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2867 tx->timeout = htole16(3);
2868 else
2869 tx->timeout = htole16(2);
2870 } else
2871 tx->timeout = htole16(0);
2872
2873 if (hdrlen & 3) {
2874 /* First segment length must be a multiple of 4. */
2875 flags |= IWN_TX_NEED_PADDING;
2876 pad = 4 - (hdrlen & 3);
2877 } else
2878 pad = 0;
2879
2880 tx->len = htole16(totlen);
2881 tx->tid = tid;
2882 tx->rts_ntries = 60;
2883 tx->data_ntries = 15;
2884 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2885 tx->plcp = rinfo->plcp;
2886 tx->rflags = rinfo->flags;
2887 if (tx->id == sc->broadcast_id) {
2888 /* Group or management frame. */
2889 tx->linkq = 0;
2890 /* XXX Alternate between antenna A and B? */
2891 txant = IWN_LSB(sc->txchainmask);
2892 tx->rflags |= IWN_RFLAG_ANT(txant);
2893 } else {
2894 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2895 flags |= IWN_TX_LINKQ; /* enable MRR */
2896 }
2897 /* Set physical address of "scratch area". */
2898 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2899 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2900
2901 /* Copy 802.11 header in TX command. */
2902 /* XXX NetBSD changed this in rev 1.20 */
2903 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2904
2905 /* Trim 802.11 header. */
2906 m_adj(m, hdrlen);
2907 tx->security = 0;
2908 tx->flags = htole32(flags);
2909
2910 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2911 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2912 if (error != 0) {
2913 if (error != EFBIG) {
2914 aprint_error_dev(sc->sc_dev,
2915 "can't map mbuf (error %d)\n", error);
2916 m_freem(m);
2917 return error;
2918 }
2919 /* Too many DMA segments, linearize mbuf. */
2920 MGETHDR(m1, M_DONTWAIT, MT_DATA);
2921 if (m1 == NULL) {
2922 m_freem(m);
2923 return ENOBUFS;
2924 }
2925 if (m->m_pkthdr.len > MHLEN) {
2926 MCLGET(m1, M_DONTWAIT);
2927 if (!(m1->m_flags & M_EXT)) {
2928 m_freem(m);
2929 m_freem(m1);
2930 return ENOBUFS;
2931 }
2932 }
2933 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2934 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2935 m_freem(m);
2936 m = m1;
2937
2938 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2939 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2940 if (error != 0) {
2941 aprint_error_dev(sc->sc_dev,
2942 "can't map mbuf (error %d)\n", error);
2943 m_freem(m);
2944 return error;
2945 }
2946 }
2947
2948 data->m = m;
2949 data->ni = ni;
2950
2951 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2952 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
2953
2954 /* Fill TX descriptor. */
2955 desc->nsegs = 1 + data->map->dm_nsegs;
2956 /* First DMA segment is used by the TX command. */
2957 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
2958 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
2959 (4 + sizeof (*tx) + hdrlen + pad) << 4);
2960 /* Other DMA segments are for data payload. */
2961 seg = data->map->dm_segs;
2962 for (i = 1; i <= data->map->dm_nsegs; i++) {
2963 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
2964 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
2965 seg->ds_len << 4);
2966 seg++;
2967 }
2968
2969 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2970 BUS_DMASYNC_PREWRITE);
2971 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2972 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
2973 sizeof (*cmd), BUS_DMASYNC_PREWRITE);
2974 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2975 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
2976 sizeof (*desc), BUS_DMASYNC_PREWRITE);
2977
2978 #ifdef notyet
2979 /* Update TX scheduler. */
2980 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
2981 #endif
2982
2983 /* Kick TX ring. */
2984 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2985 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2986
2987 /* Mark TX ring as full if we reach a certain threshold. */
2988 if (++ring->queued > IWN_TX_RING_HIMARK)
2989 sc->qfullmsk |= 1 << ring->qid;
2990
2991 return 0;
2992 }
2993
2994 static void
2995 iwn_start(struct ifnet *ifp)
2996 {
2997 struct iwn_softc *sc = ifp->if_softc;
2998 struct ieee80211com *ic = &sc->sc_ic;
2999 struct ieee80211_node *ni;
3000 struct ether_header *eh;
3001 struct mbuf *m;
3002 int ac;
3003
3004 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3005 return;
3006
3007 for (;;) {
3008 if (sc->qfullmsk != 0) {
3009 ifp->if_flags |= IFF_OACTIVE;
3010 break;
3011 }
3012 /* Send pending management frames first. */
3013 IF_DEQUEUE(&ic->ic_mgtq, m);
3014 if (m != NULL) {
3015 ni = (void *)m->m_pkthdr.rcvif;
3016 ac = 0;
3017 goto sendit;
3018 }
3019 if (ic->ic_state != IEEE80211_S_RUN)
3020 break;
3021
3022 /* Encapsulate and send data frames. */
3023 IFQ_DEQUEUE(&ifp->if_snd, m);
3024 if (m == NULL)
3025 break;
3026 if (m->m_len < sizeof (*eh) &&
3027 (m = m_pullup(m, sizeof (*eh))) == NULL) {
3028 ifp->if_oerrors++;
3029 continue;
3030 }
3031 eh = mtod(m, struct ether_header *);
3032 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3033 if (ni == NULL) {
3034 m_freem(m);
3035 ifp->if_oerrors++;
3036 continue;
3037 }
3038 /* classify mbuf so we can find which tx ring to use */
3039 if (ieee80211_classify(ic, m, ni) != 0) {
3040 m_freem(m);
3041 ieee80211_free_node(ni);
3042 ifp->if_oerrors++;
3043 continue;
3044 }
3045
3046 /* No QoS encapsulation for EAPOL frames. */
3047 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3048 M_WME_GETAC(m) : WME_AC_BE;
3049
3050 bpf_mtap(ifp, m);
3051
3052 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3053 ieee80211_free_node(ni);
3054 ifp->if_oerrors++;
3055 continue;
3056 }
3057 sendit:
3058 bpf_mtap3(ic->ic_rawbpf, m);
3059
3060 if (iwn_tx(sc, m, ni, ac) != 0) {
3061 ieee80211_free_node(ni);
3062 ifp->if_oerrors++;
3063 continue;
3064 }
3065
3066 sc->sc_tx_timer = 5;
3067 ifp->if_timer = 1;
3068 }
3069 }
3070
3071 static void
3072 iwn_watchdog(struct ifnet *ifp)
3073 {
3074 struct iwn_softc *sc = ifp->if_softc;
3075
3076 ifp->if_timer = 0;
3077
3078 if (sc->sc_tx_timer > 0) {
3079 if (--sc->sc_tx_timer == 0) {
3080 aprint_error_dev(sc->sc_dev,
3081 "device timeout\n");
3082 ifp->if_flags &= ~IFF_UP;
3083 iwn_stop(ifp, 1);
3084 ifp->if_oerrors++;
3085 return;
3086 }
3087 ifp->if_timer = 1;
3088 }
3089
3090 ieee80211_watchdog(&sc->sc_ic);
3091 }
3092
3093 static int
3094 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3095 {
3096 struct iwn_softc *sc = ifp->if_softc;
3097 struct ieee80211com *ic = &sc->sc_ic;
3098 struct ifaddr *ifa;
3099 const struct sockaddr *sa;
3100 int s, error = 0;
3101
3102 s = splnet();
3103
3104 switch (cmd) {
3105 case SIOCSIFADDR:
3106 ifa = (struct ifaddr *)data;
3107 ifp->if_flags |= IFF_UP;
3108 #ifdef INET
3109 if (ifa->ifa_addr->sa_family == AF_INET)
3110 arp_ifinit(&ic->ic_ac, ifa);
3111 #endif
3112 /* FALLTHROUGH */
3113 case SIOCSIFFLAGS:
3114 /* XXX Added as it is in every NetBSD driver */
3115 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3116 break;
3117 if (ifp->if_flags & IFF_UP) {
3118 if (!(ifp->if_flags & IFF_RUNNING))
3119 error = iwn_init(ifp);
3120 } else {
3121 if (ifp->if_flags & IFF_RUNNING)
3122 iwn_stop(ifp, 1);
3123 }
3124 break;
3125
3126 case SIOCADDMULTI:
3127 case SIOCDELMULTI:
3128 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3129 error = (cmd == SIOCADDMULTI) ?
3130 ether_addmulti(sa, &sc->sc_ec) :
3131 ether_delmulti(sa, &sc->sc_ec);
3132
3133 if (error == ENETRESET)
3134 error = 0;
3135 break;
3136
3137 default:
3138 error = ieee80211_ioctl(ic, cmd, data);
3139 }
3140
3141 if (error == ENETRESET) {
3142 error = 0;
3143 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3144 (IFF_UP | IFF_RUNNING)) {
3145 iwn_stop(ifp, 0);
3146 error = iwn_init(ifp);
3147 }
3148 }
3149
3150 splx(s);
3151 return error;
3152 }
3153
3154 /*
3155 * Send a command to the firmware.
3156 */
3157 static int
3158 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3159 {
3160 struct iwn_tx_ring *ring = &sc->txq[4];
3161 struct iwn_tx_desc *desc;
3162 struct iwn_tx_data *data;
3163 struct iwn_tx_cmd *cmd;
3164 struct mbuf *m;
3165 bus_addr_t paddr;
3166 int totlen, error;
3167
3168 desc = &ring->desc[ring->cur];
3169 data = &ring->data[ring->cur];
3170 totlen = 4 + size;
3171
3172 if (size > sizeof cmd->data) {
3173 /* Command is too large to fit in a descriptor. */
3174 if (totlen > MCLBYTES)
3175 return EINVAL;
3176 MGETHDR(m, M_DONTWAIT, MT_DATA);
3177 if (m == NULL)
3178 return ENOMEM;
3179 if (totlen > MHLEN) {
3180 MCLGET(m, M_DONTWAIT);
3181 if (!(m->m_flags & M_EXT)) {
3182 m_freem(m);
3183 return ENOMEM;
3184 }
3185 }
3186 cmd = mtod(m, struct iwn_tx_cmd *);
3187 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3188 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3189 if (error != 0) {
3190 m_freem(m);
3191 return error;
3192 }
3193 data->m = m;
3194 paddr = data->map->dm_segs[0].ds_addr;
3195 } else {
3196 cmd = &ring->cmd[ring->cur];
3197 paddr = data->cmd_paddr;
3198 }
3199
3200 cmd->code = code;
3201 cmd->flags = 0;
3202 cmd->qid = ring->qid;
3203 cmd->idx = ring->cur;
3204 memcpy(cmd->data, buf, size);
3205
3206 desc->nsegs = 1;
3207 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3208 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3209
3210 if (size > sizeof cmd->data) {
3211 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3212 BUS_DMASYNC_PREWRITE);
3213 } else {
3214 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3215 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3216 totlen, BUS_DMASYNC_PREWRITE);
3217 }
3218 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3219 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3220 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3221
3222 #ifdef notyet
3223 /* Update TX scheduler. */
3224 ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3225 #endif
3226 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3227
3228 /* Kick command ring. */
3229 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3230 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3231
3232 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3233 }
3234
3235 static int
3236 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3237 {
3238 struct iwn4965_node_info hnode;
3239 char *src, *dst;
3240
3241 /*
3242 * We use the node structure for 5000 Series internally (it is
3243 * a superset of the one for 4965AGN). We thus copy the common
3244 * fields before sending the command.
3245 */
3246 src = (char *)node;
3247 dst = (char *)&hnode;
3248 memcpy(dst, src, 48);
3249 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3250 memcpy(dst + 48, src + 72, 20);
3251 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3252 }
3253
3254 static int
3255 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3256 {
3257 /* Direct mapping. */
3258 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3259 }
3260
3261 static int
3262 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3263 {
3264 struct iwn_node *wn = (void *)ni;
3265 struct ieee80211_rateset *rs = &ni->ni_rates;
3266 struct iwn_cmd_link_quality linkq;
3267 const struct iwn_rate *rinfo;
3268 uint8_t txant;
3269 int i, txrate;
3270
3271 /* Use the first valid TX antenna. */
3272 txant = IWN_LSB(sc->txchainmask);
3273
3274 memset(&linkq, 0, sizeof linkq);
3275 linkq.id = wn->id;
3276 linkq.antmsk_1stream = txant;
3277 linkq.antmsk_2stream = IWN_ANT_AB;
3278 linkq.ampdu_max = 31;
3279 linkq.ampdu_threshold = 3;
3280 linkq.ampdu_limit = htole16(4000); /* 4ms */
3281
3282 /* Start at highest available bit-rate. */
3283 txrate = rs->rs_nrates - 1;
3284 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3285 rinfo = &iwn_rates[wn->ridx[txrate]];
3286 linkq.retry[i].plcp = rinfo->plcp;
3287 linkq.retry[i].rflags = rinfo->flags;
3288 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3289 /* Next retry at immediate lower bit-rate. */
3290 if (txrate > 0)
3291 txrate--;
3292 }
3293 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3294 }
3295
3296 /*
3297 * Broadcast node is used to send group-addressed and management frames.
3298 */
3299 static int
3300 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3301 {
3302 struct iwn_ops *ops = &sc->ops;
3303 struct iwn_node_info node;
3304 struct iwn_cmd_link_quality linkq;
3305 const struct iwn_rate *rinfo;
3306 uint8_t txant;
3307 int i, error;
3308
3309 memset(&node, 0, sizeof node);
3310 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3311 node.id = sc->broadcast_id;
3312 DPRINTF(("adding broadcast node\n"));
3313 if ((error = ops->add_node(sc, &node, async)) != 0)
3314 return error;
3315
3316 /* Use the first valid TX antenna. */
3317 txant = IWN_LSB(sc->txchainmask);
3318
3319 memset(&linkq, 0, sizeof linkq);
3320 linkq.id = sc->broadcast_id;
3321 linkq.antmsk_1stream = txant;
3322 linkq.antmsk_2stream = IWN_ANT_AB;
3323 linkq.ampdu_max = 64;
3324 linkq.ampdu_threshold = 3;
3325 linkq.ampdu_limit = htole16(4000); /* 4ms */
3326
3327 /* Use lowest mandatory bit-rate. */
3328 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3329 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3330 linkq.retry[0].plcp = rinfo->plcp;
3331 linkq.retry[0].rflags = rinfo->flags;
3332 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3333 /* Use same bit-rate for all TX retries. */
3334 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3335 linkq.retry[i].plcp = linkq.retry[0].plcp;
3336 linkq.retry[i].rflags = linkq.retry[0].rflags;
3337 }
3338 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3339 }
3340
3341 static void
3342 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3343 {
3344 struct iwn_cmd_led led;
3345
3346 /* Clear microcode LED ownership. */
3347 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3348
3349 led.which = which;
3350 led.unit = htole32(10000); /* on/off in unit of 100ms */
3351 led.off = off;
3352 led.on = on;
3353 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3354 }
3355
3356 /*
3357 * Set the critical temperature at which the firmware will stop the radio
3358 * and notify us.
3359 */
3360 static int
3361 iwn_set_critical_temp(struct iwn_softc *sc)
3362 {
3363 struct iwn_critical_temp crit;
3364 int32_t temp;
3365
3366 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3367
3368 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3369 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3370 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3371 temp = IWN_CTOK(110);
3372 else
3373 temp = 110;
3374 memset(&crit, 0, sizeof crit);
3375 crit.tempR = htole32(temp);
3376 DPRINTF(("setting critical temperature to %d\n", temp));
3377 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3378 }
3379
3380 static int
3381 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3382 {
3383 struct iwn_cmd_timing cmd;
3384 uint64_t val, mod;
3385
3386 memset(&cmd, 0, sizeof cmd);
3387 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3388 cmd.bintval = htole16(ni->ni_intval);
3389 cmd.lintval = htole16(10);
3390
3391 /* Compute remaining time until next beacon. */
3392 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
3393 mod = le64toh(cmd.tstamp) % val;
3394 cmd.binitval = htole32((uint32_t)(val - mod));
3395
3396 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3397 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3398
3399 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3400 }
3401
3402 static void
3403 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3404 {
3405 /* Adjust TX power if need be (delta >= 3 degC). */
3406 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3407 if (abs(temp - sc->temp) >= 3) {
3408 /* Record temperature of last calibration. */
3409 sc->temp = temp;
3410 (void)iwn4965_set_txpower(sc, 1);
3411 }
3412 }
3413
3414 /*
3415 * Set TX power for current channel (each rate has its own power settings).
3416 * This function takes into account the regulatory information from EEPROM,
3417 * the current temperature and the current voltage.
3418 */
3419 static int
3420 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3421 {
3422 /* Fixed-point arithmetic division using a n-bit fractional part. */
3423 #define fdivround(a, b, n) \
3424 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3425 /* Linear interpolation. */
3426 #define interpolate(x, x1, y1, x2, y2, n) \
3427 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3428
3429 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3430 struct ieee80211com *ic = &sc->sc_ic;
3431 struct iwn_ucode_info *uc = &sc->ucode_info;
3432 struct ieee80211_channel *ch;
3433 struct iwn4965_cmd_txpower cmd;
3434 struct iwn4965_eeprom_chan_samples *chans;
3435 const uint8_t *rf_gain, *dsp_gain;
3436 int32_t vdiff, tdiff;
3437 int i, c, grp, maxpwr;
3438 uint8_t chan;
3439
3440 /* Retrieve current channel from last RXON. */
3441 chan = sc->rxon.chan;
3442 DPRINTF(("setting TX power for channel %d\n", chan));
3443 ch = &ic->ic_channels[chan];
3444
3445 memset(&cmd, 0, sizeof cmd);
3446 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3447 cmd.chan = chan;
3448
3449 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3450 maxpwr = sc->maxpwr5GHz;
3451 rf_gain = iwn4965_rf_gain_5ghz;
3452 dsp_gain = iwn4965_dsp_gain_5ghz;
3453 } else {
3454 maxpwr = sc->maxpwr2GHz;
3455 rf_gain = iwn4965_rf_gain_2ghz;
3456 dsp_gain = iwn4965_dsp_gain_2ghz;
3457 }
3458
3459 /* Compute voltage compensation. */
3460 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3461 if (vdiff > 0)
3462 vdiff *= 2;
3463 if (abs(vdiff) > 2)
3464 vdiff = 0;
3465 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3466 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3467
3468 /* Get channel attenuation group. */
3469 if (chan <= 20) /* 1-20 */
3470 grp = 4;
3471 else if (chan <= 43) /* 34-43 */
3472 grp = 0;
3473 else if (chan <= 70) /* 44-70 */
3474 grp = 1;
3475 else if (chan <= 124) /* 71-124 */
3476 grp = 2;
3477 else /* 125-200 */
3478 grp = 3;
3479 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3480
3481 /* Get channel sub-band. */
3482 for (i = 0; i < IWN_NBANDS; i++)
3483 if (sc->bands[i].lo != 0 &&
3484 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3485 break;
3486 if (i == IWN_NBANDS) /* Can't happen in real-life. */
3487 return EINVAL;
3488 chans = sc->bands[i].chans;
3489 DPRINTF(("chan %d sub-band=%d\n", chan, i));
3490
3491 for (c = 0; c < 2; c++) {
3492 uint8_t power, gain, temp;
3493 int maxchpwr, pwr, ridx, idx;
3494
3495 power = interpolate(chan,
3496 chans[0].num, chans[0].samples[c][1].power,
3497 chans[1].num, chans[1].samples[c][1].power, 1);
3498 gain = interpolate(chan,
3499 chans[0].num, chans[0].samples[c][1].gain,
3500 chans[1].num, chans[1].samples[c][1].gain, 1);
3501 temp = interpolate(chan,
3502 chans[0].num, chans[0].samples[c][1].temp,
3503 chans[1].num, chans[1].samples[c][1].temp, 1);
3504 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3505 c, power, gain, temp));
3506
3507 /* Compute temperature compensation. */
3508 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3509 DPRINTF(("temperature compensation=%d (current=%d, "
3510 "EEPROM=%d)\n", tdiff, sc->temp, temp));
3511
3512 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3513 /* Convert dBm to half-dBm. */
3514 maxchpwr = sc->maxpwr[chan] * 2;
3515 if ((ridx / 8) & 1)
3516 maxchpwr -= 6; /* MIMO 2T: -3dB */
3517
3518 pwr = maxpwr;
3519
3520 /* Adjust TX power based on rate. */
3521 if ((ridx % 8) == 5)
3522 pwr -= 15; /* OFDM48: -7.5dB */
3523 else if ((ridx % 8) == 6)
3524 pwr -= 17; /* OFDM54: -8.5dB */
3525 else if ((ridx % 8) == 7)
3526 pwr -= 20; /* OFDM60: -10dB */
3527 else
3528 pwr -= 10; /* Others: -5dB */
3529
3530 /* Do not exceed channel max TX power. */
3531 if (pwr > maxchpwr)
3532 pwr = maxchpwr;
3533
3534 idx = gain - (pwr - power) - tdiff - vdiff;
3535 if ((ridx / 8) & 1) /* MIMO */
3536 idx += (int32_t)le32toh(uc->atten[grp][c]);
3537
3538 if (cmd.band == 0)
3539 idx += 9; /* 5GHz */
3540 if (ridx == IWN_RIDX_MAX)
3541 idx += 5; /* CCK */
3542
3543 /* Make sure idx stays in a valid range. */
3544 if (idx < 0)
3545 idx = 0;
3546 else if (idx > IWN4965_MAX_PWR_INDEX)
3547 idx = IWN4965_MAX_PWR_INDEX;
3548
3549 DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3550 c, ridx, idx));
3551 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3552 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3553 }
3554 }
3555
3556 DPRINTF(("setting TX power for chan %d\n", chan));
3557 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3558
3559 #undef interpolate
3560 #undef fdivround
3561 }
3562
3563 static int
3564 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3565 {
3566 struct iwn5000_cmd_txpower cmd;
3567
3568 /*
3569 * TX power calibration is handled automatically by the firmware
3570 * for 5000 Series.
3571 */
3572 memset(&cmd, 0, sizeof cmd);
3573 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3574 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3575 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3576 DPRINTF(("setting TX power\n"));
3577 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3578 }
3579
3580 /*
3581 * Retrieve the maximum RSSI (in dBm) among receivers.
3582 */
3583 static int
3584 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3585 {
3586 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3587 uint8_t mask, agc;
3588 int rssi;
3589
3590 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3591 agc = (le16toh(phy->agc) >> 7) & 0x7f;
3592
3593 rssi = 0;
3594 if (mask & IWN_ANT_A)
3595 rssi = MAX(rssi, phy->rssi[0]);
3596 if (mask & IWN_ANT_B)
3597 rssi = MAX(rssi, phy->rssi[2]);
3598 if (mask & IWN_ANT_C)
3599 rssi = MAX(rssi, phy->rssi[4]);
3600
3601 return rssi - agc - IWN_RSSI_TO_DBM;
3602 }
3603
3604 static int
3605 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3606 {
3607 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3608 uint8_t agc;
3609 int rssi;
3610
3611 agc = (le32toh(phy->agc) >> 9) & 0x7f;
3612
3613 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3614 le16toh(phy->rssi[1]) & 0xff);
3615 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3616
3617 return rssi - agc - IWN_RSSI_TO_DBM;
3618 }
3619
3620 /*
3621 * Retrieve the average noise (in dBm) among receivers.
3622 */
3623 static int
3624 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3625 {
3626 int i, total, nbant, noise;
3627
3628 total = nbant = 0;
3629 for (i = 0; i < 3; i++) {
3630 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3631 continue;
3632 total += noise;
3633 nbant++;
3634 }
3635 /* There should be at least one antenna but check anyway. */
3636 return (nbant == 0) ? -127 : (total / nbant) - 107;
3637 }
3638
3639 /*
3640 * Compute temperature (in degC) from last received statistics.
3641 */
3642 static int
3643 iwn4965_get_temperature(struct iwn_softc *sc)
3644 {
3645 struct iwn_ucode_info *uc = &sc->ucode_info;
3646 int32_t r1, r2, r3, r4, temp;
3647
3648 r1 = le32toh(uc->temp[0].chan20MHz);
3649 r2 = le32toh(uc->temp[1].chan20MHz);
3650 r3 = le32toh(uc->temp[2].chan20MHz);
3651 r4 = le32toh(sc->rawtemp);
3652
3653 if (r1 == r3) /* Prevents division by 0 (should not happen). */
3654 return 0;
3655
3656 /* Sign-extend 23-bit R4 value to 32-bit. */
3657 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3658 /* Compute temperature in Kelvin. */
3659 temp = (259 * (r4 - r2)) / (r3 - r1);
3660 temp = (temp * 97) / 100 + 8;
3661
3662 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3663 return IWN_KTOC(temp);
3664 }
3665
3666 static int
3667 iwn5000_get_temperature(struct iwn_softc *sc)
3668 {
3669 int32_t temp;
3670
3671 /*
3672 * Temperature is not used by the driver for 5000 Series because
3673 * TX power calibration is handled by firmware. We export it to
3674 * users through the sensor framework though.
3675 */
3676 temp = le32toh(sc->rawtemp);
3677 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3678 temp = (temp / -5) + sc->temp_off;
3679 temp = IWN_KTOC(temp);
3680 }
3681 return temp;
3682 }
3683
3684 /*
3685 * Initialize sensitivity calibration state machine.
3686 */
3687 static int
3688 iwn_init_sensitivity(struct iwn_softc *sc)
3689 {
3690 struct iwn_ops *ops = &sc->ops;
3691 struct iwn_calib_state *calib = &sc->calib;
3692 uint32_t flags;
3693 int error;
3694
3695 /* Reset calibration state machine. */
3696 memset(calib, 0, sizeof (*calib));
3697 calib->state = IWN_CALIB_STATE_INIT;
3698 calib->cck_state = IWN_CCK_STATE_HIFA;
3699 /* Set initial correlation values. */
3700 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3701 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3702 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3703 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3704 calib->cck_x4 = 125;
3705 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3706 calib->energy_cck = sc->limits->energy_cck;
3707
3708 /* Write initial sensitivity. */
3709 if ((error = iwn_send_sensitivity(sc)) != 0)
3710 return error;
3711
3712 /* Write initial gains. */
3713 if ((error = ops->init_gains(sc)) != 0)
3714 return error;
3715
3716 /* Request statistics at each beacon interval. */
3717 flags = 0;
3718 DPRINTF(("sending request for statistics\n"));
3719 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3720 }
3721
3722 /*
3723 * Collect noise and RSSI statistics for the first 20 beacons received
3724 * after association and use them to determine connected antennas and
3725 * to set differential gains.
3726 */
3727 static void
3728 iwn_collect_noise(struct iwn_softc *sc,
3729 const struct iwn_rx_general_stats *stats)
3730 {
3731 struct iwn_ops *ops = &sc->ops;
3732 struct iwn_calib_state *calib = &sc->calib;
3733 uint32_t val;
3734 int i;
3735
3736 /* Accumulate RSSI and noise for all 3 antennas. */
3737 for (i = 0; i < 3; i++) {
3738 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3739 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3740 }
3741 /* NB: We update differential gains only once after 20 beacons. */
3742 if (++calib->nbeacons < 20)
3743 return;
3744
3745 /* Determine highest average RSSI. */
3746 val = MAX(calib->rssi[0], calib->rssi[1]);
3747 val = MAX(calib->rssi[2], val);
3748
3749 /* Determine which antennas are connected. */
3750 sc->chainmask = sc->rxchainmask;
3751 for (i = 0; i < 3; i++)
3752 if (val - calib->rssi[i] > 15 * 20)
3753 sc->chainmask &= ~(1 << i);
3754 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3755 sc->rxchainmask, sc->chainmask));
3756
3757 /* If none of the TX antennas are connected, keep at least one. */
3758 if ((sc->chainmask & sc->txchainmask) == 0)
3759 sc->chainmask |= IWN_LSB(sc->txchainmask);
3760
3761 (void)ops->set_gains(sc);
3762 calib->state = IWN_CALIB_STATE_RUN;
3763
3764 #ifdef notyet
3765 /* XXX Disable RX chains with no antennas connected. */
3766 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3767 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3768 #endif
3769
3770 /* Enable power-saving mode if requested by user. */
3771 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3772 (void)iwn_set_pslevel(sc, 0, 3, 1);
3773 }
3774
3775 static int
3776 iwn4965_init_gains(struct iwn_softc *sc)
3777 {
3778 struct iwn_phy_calib_gain cmd;
3779
3780 memset(&cmd, 0, sizeof cmd);
3781 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3782 /* Differential gains initially set to 0 for all 3 antennas. */
3783 DPRINTF(("setting initial differential gains\n"));
3784 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3785 }
3786
3787 static int
3788 iwn5000_init_gains(struct iwn_softc *sc)
3789 {
3790 struct iwn_phy_calib cmd;
3791
3792 memset(&cmd, 0, sizeof cmd);
3793 cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3794 cmd.ngroups = 1;
3795 cmd.isvalid = 1;
3796 DPRINTF(("setting initial differential gains\n"));
3797 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3798 }
3799
3800 static int
3801 iwn4965_set_gains(struct iwn_softc *sc)
3802 {
3803 struct iwn_calib_state *calib = &sc->calib;
3804 struct iwn_phy_calib_gain cmd;
3805 int i, delta, noise;
3806
3807 /* Get minimal noise among connected antennas. */
3808 noise = INT_MAX; /* NB: There's at least one antenna. */
3809 for (i = 0; i < 3; i++)
3810 if (sc->chainmask & (1 << i))
3811 noise = MIN(calib->noise[i], noise);
3812
3813 memset(&cmd, 0, sizeof cmd);
3814 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3815 /* Set differential gains for connected antennas. */
3816 for (i = 0; i < 3; i++) {
3817 if (sc->chainmask & (1 << i)) {
3818 /* Compute attenuation (in unit of 1.5dB). */
3819 delta = (noise - (int32_t)calib->noise[i]) / 30;
3820 /* NB: delta <= 0 */
3821 /* Limit to [-4.5dB,0]. */
3822 cmd.gain[i] = MIN(abs(delta), 3);
3823 if (delta < 0)
3824 cmd.gain[i] |= 1 << 2; /* sign bit */
3825 }
3826 }
3827 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3828 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3829 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3830 }
3831
3832 static int
3833 iwn5000_set_gains(struct iwn_softc *sc)
3834 {
3835 struct iwn_calib_state *calib = &sc->calib;
3836 struct iwn_phy_calib_gain cmd;
3837 int i, ant, div, delta;
3838
3839 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
3840 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3841
3842 memset(&cmd, 0, sizeof cmd);
3843 cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3844 cmd.ngroups = 1;
3845 cmd.isvalid = 1;
3846 /* Get first available RX antenna as referential. */
3847 ant = IWN_LSB(sc->rxchainmask);
3848 /* Set differential gains for other antennas. */
3849 for (i = ant + 1; i < 3; i++) {
3850 if (sc->chainmask & (1 << i)) {
3851 /* The delta is relative to antenna "ant". */
3852 delta = ((int32_t)calib->noise[ant] -
3853 (int32_t)calib->noise[i]) / div;
3854 /* Limit to [-4.5dB,+4.5dB]. */
3855 cmd.gain[i - 1] = MIN(abs(delta), 3);
3856 if (delta < 0)
3857 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
3858 }
3859 }
3860 DPRINTF(("setting differential gains: %x/%x (%x)\n",
3861 cmd.gain[0], cmd.gain[1], sc->chainmask));
3862 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3863 }
3864
3865 /*
3866 * Tune RF RX sensitivity based on the number of false alarms detected
3867 * during the last beacon period.
3868 */
3869 static void
3870 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3871 {
3872 #define inc(val, inc, max) \
3873 if ((val) < (max)) { \
3874 if ((val) < (max) - (inc)) \
3875 (val) += (inc); \
3876 else \
3877 (val) = (max); \
3878 needs_update = 1; \
3879 }
3880 #define dec(val, dec, min) \
3881 if ((val) > (min)) { \
3882 if ((val) > (min) + (dec)) \
3883 (val) -= (dec); \
3884 else \
3885 (val) = (min); \
3886 needs_update = 1; \
3887 }
3888
3889 const struct iwn_sensitivity_limits *limits = sc->limits;
3890 struct iwn_calib_state *calib = &sc->calib;
3891 uint32_t val, rxena, fa;
3892 uint32_t energy[3], energy_min;
3893 uint8_t noise[3], noise_ref;
3894 int i, needs_update = 0;
3895
3896 /* Check that we've been enabled long enough. */
3897 if ((rxena = le32toh(stats->general.load)) == 0)
3898 return;
3899
3900 /* Compute number of false alarms since last call for OFDM. */
3901 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3902 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3903 fa *= 200 * 1024; /* 200TU */
3904
3905 /* Save counters values for next call. */
3906 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3907 calib->fa_ofdm = le32toh(stats->ofdm.fa);
3908
3909 if (fa > 50 * rxena) {
3910 /* High false alarm count, decrease sensitivity. */
3911 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3912 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
3913 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3914 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
3915 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3916
3917 } else if (fa < 5 * rxena) {
3918 /* Low false alarm count, increase sensitivity. */
3919 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3920 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
3921 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3922 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
3923 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3924 }
3925
3926 /* Compute maximum noise among 3 receivers. */
3927 for (i = 0; i < 3; i++)
3928 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3929 val = MAX(noise[0], noise[1]);
3930 val = MAX(noise[2], val);
3931 /* Insert it into our samples table. */
3932 calib->noise_samples[calib->cur_noise_sample] = val;
3933 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3934
3935 /* Compute maximum noise among last 20 samples. */
3936 noise_ref = calib->noise_samples[0];
3937 for (i = 1; i < 20; i++)
3938 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
3939
3940 /* Compute maximum energy among 3 receivers. */
3941 for (i = 0; i < 3; i++)
3942 energy[i] = le32toh(stats->general.energy[i]);
3943 val = MIN(energy[0], energy[1]);
3944 val = MIN(energy[2], val);
3945 /* Insert it into our samples table. */
3946 calib->energy_samples[calib->cur_energy_sample] = val;
3947 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3948
3949 /* Compute minimum energy among last 10 samples. */
3950 energy_min = calib->energy_samples[0];
3951 for (i = 1; i < 10; i++)
3952 energy_min = MAX(energy_min, calib->energy_samples[i]);
3953 energy_min += 6;
3954
3955 /* Compute number of false alarms since last call for CCK. */
3956 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3957 fa += le32toh(stats->cck.fa) - calib->fa_cck;
3958 fa *= 200 * 1024; /* 200TU */
3959
3960 /* Save counters values for next call. */
3961 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3962 calib->fa_cck = le32toh(stats->cck.fa);
3963
3964 if (fa > 50 * rxena) {
3965 /* High false alarm count, decrease sensitivity. */
3966 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
3967 calib->cck_state = IWN_CCK_STATE_HIFA;
3968 calib->low_fa = 0;
3969
3970 if (calib->cck_x4 > 160) {
3971 calib->noise_ref = noise_ref;
3972 if (calib->energy_cck > 2)
3973 dec(calib->energy_cck, 2, energy_min);
3974 }
3975 if (calib->cck_x4 < 160) {
3976 calib->cck_x4 = 161;
3977 needs_update = 1;
3978 } else
3979 inc(calib->cck_x4, 3, limits->max_cck_x4);
3980
3981 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
3982
3983 } else if (fa < 5 * rxena) {
3984 /* Low false alarm count, increase sensitivity. */
3985 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
3986 calib->cck_state = IWN_CCK_STATE_LOFA;
3987 calib->low_fa++;
3988
3989 if (calib->cck_state != IWN_CCK_STATE_INIT &&
3990 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
3991 calib->low_fa > 100)) {
3992 inc(calib->energy_cck, 2, limits->min_energy_cck);
3993 dec(calib->cck_x4, 3, limits->min_cck_x4);
3994 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
3995 }
3996 } else {
3997 /* Not worth to increase or decrease sensitivity. */
3998 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
3999 calib->low_fa = 0;
4000 calib->noise_ref = noise_ref;
4001
4002 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4003 /* Previous interval had many false alarms. */
4004 dec(calib->energy_cck, 8, energy_min);
4005 }
4006 calib->cck_state = IWN_CCK_STATE_INIT;
4007 }
4008
4009 if (needs_update)
4010 (void)iwn_send_sensitivity(sc);
4011 #undef dec
4012 #undef inc
4013 }
4014
4015 static int
4016 iwn_send_sensitivity(struct iwn_softc *sc)
4017 {
4018 struct iwn_calib_state *calib = &sc->calib;
4019 struct iwn_sensitivity_cmd cmd;
4020
4021 memset(&cmd, 0, sizeof cmd);
4022 cmd.which = IWN_SENSITIVITY_WORKTBL;
4023 /* OFDM modulation. */
4024 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4025 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4026 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4027 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4028 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4029 cmd.energy_ofdm_th = htole16(62);
4030 /* CCK modulation. */
4031 cmd.corr_cck_x4 = htole16(calib->cck_x4);
4032 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4033 cmd.energy_cck = htole16(calib->energy_cck);
4034 /* Barker modulation: use default values. */
4035 cmd.corr_barker = htole16(190);
4036 cmd.corr_barker_mrc = htole16(390);
4037
4038 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4039 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4040 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4041 calib->energy_cck));
4042 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4043 }
4044
4045 /*
4046 * Set STA mode power saving level (between 0 and 5).
4047 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4048 */
4049 static int
4050 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4051 {
4052 struct iwn_pmgt_cmd cmd;
4053 const struct iwn_pmgt *pmgt;
4054 uint32_t maxp, skip_dtim;
4055 pcireg_t reg;
4056 int i;
4057
4058 /* Select which PS parameters to use. */
4059 if (dtim <= 2)
4060 pmgt = &iwn_pmgt[0][level];
4061 else if (dtim <= 10)
4062 pmgt = &iwn_pmgt[1][level];
4063 else
4064 pmgt = &iwn_pmgt[2][level];
4065
4066 memset(&cmd, 0, sizeof cmd);
4067 if (level != 0) /* not CAM */
4068 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4069 if (level == 5)
4070 cmd.flags |= htole16(IWN_PS_FAST_PD);
4071 /* Retrieve PCIe Active State Power Management (ASPM). */
4072 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4073 sc->sc_cap_off + PCI_PCIE_LCSR);
4074 if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4075 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4076 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4077 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4078
4079 if (dtim == 0) {
4080 dtim = 1;
4081 skip_dtim = 0;
4082 } else
4083 skip_dtim = pmgt->skip_dtim;
4084 if (skip_dtim != 0) {
4085 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4086 maxp = pmgt->intval[4];
4087 if (maxp == (uint32_t)-1)
4088 maxp = dtim * (skip_dtim + 1);
4089 else if (maxp > dtim)
4090 maxp = (maxp / dtim) * dtim;
4091 } else
4092 maxp = dtim;
4093 for (i = 0; i < 5; i++)
4094 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4095
4096 DPRINTF(("setting power saving level to %d\n", level));
4097 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4098 }
4099
4100 static int
4101 iwn_config(struct iwn_softc *sc)
4102 {
4103 struct iwn_ops *ops = &sc->ops;
4104 struct ieee80211com *ic = &sc->sc_ic;
4105 struct ifnet *ifp = ic->ic_ifp;
4106 struct iwn_bluetooth bluetooth;
4107 uint32_t txmask;
4108 uint16_t rxchain;
4109 int error;
4110
4111 /* Configure valid TX chains for 5000 Series. */
4112 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4113 txmask = htole32(sc->txchainmask);
4114 DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4115 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4116 sizeof txmask, 0);
4117 if (error != 0) {
4118 aprint_error_dev(sc->sc_dev,
4119 "could not configure valid TX chains\n");
4120 return error;
4121 }
4122 }
4123
4124 /* Configure bluetooth coexistence. */
4125 memset(&bluetooth, 0, sizeof bluetooth);
4126 bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4127 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4128 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4129 DPRINTF(("configuring bluetooth coexistence\n"));
4130 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4131 if (error != 0) {
4132 aprint_error_dev(sc->sc_dev,
4133 "could not configure bluetooth coexistence\n");
4134 return error;
4135 }
4136
4137 /* Set mode, channel, RX filter and enable RX. */
4138 memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4139 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4140 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4141 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4142 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4143 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4144 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4145 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4146 switch (ic->ic_opmode) {
4147 case IEEE80211_M_STA:
4148 sc->rxon.mode = IWN_MODE_STA;
4149 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4150 break;
4151 case IEEE80211_M_MONITOR:
4152 sc->rxon.mode = IWN_MODE_MONITOR;
4153 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4154 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4155 break;
4156 default:
4157 /* Should not get there. */
4158 break;
4159 }
4160 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4161 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4162 sc->rxon.ht_single_mask = 0xff;
4163 sc->rxon.ht_dual_mask = 0xff;
4164 sc->rxon.ht_triple_mask = 0xff;
4165 rxchain =
4166 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4167 IWN_RXCHAIN_MIMO_COUNT(2) |
4168 IWN_RXCHAIN_IDLE_COUNT(2);
4169 sc->rxon.rxchain = htole16(rxchain);
4170 DPRINTF(("setting configuration\n"));
4171 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4172 if (error != 0) {
4173 aprint_error_dev(sc->sc_dev,
4174 "RXON command failed\n");
4175 return error;
4176 }
4177
4178 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4179 aprint_error_dev(sc->sc_dev,
4180 "could not add broadcast node\n");
4181 return error;
4182 }
4183
4184 /* Configuration has changed, set TX power accordingly. */
4185 if ((error = ops->set_txpower(sc, 0)) != 0) {
4186 aprint_error_dev(sc->sc_dev,
4187 "could not set TX power\n");
4188 return error;
4189 }
4190
4191 if ((error = iwn_set_critical_temp(sc)) != 0) {
4192 aprint_error_dev(sc->sc_dev,
4193 "could not set critical temperature\n");
4194 return error;
4195 }
4196
4197 /* Set power saving level to CAM during initialization. */
4198 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4199 aprint_error_dev(sc->sc_dev,
4200 "could not set power saving level\n");
4201 return error;
4202 }
4203 return 0;
4204 }
4205
4206 static int
4207 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4208 {
4209 struct ieee80211com *ic = &sc->sc_ic;
4210 struct iwn_scan_hdr *hdr;
4211 struct iwn_cmd_data *tx;
4212 struct iwn_scan_essid *essid;
4213 struct iwn_scan_chan *chan;
4214 struct ieee80211_frame *wh;
4215 struct ieee80211_rateset *rs;
4216 struct ieee80211_channel *c;
4217 uint8_t *buf, *frm;
4218 uint16_t rxchain;
4219 uint8_t txant;
4220 int buflen, error;
4221
4222 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4223 if (buf == NULL) {
4224 aprint_error_dev(sc->sc_dev,
4225 "could not allocate buffer for scan command\n");
4226 return ENOMEM;
4227 }
4228 hdr = (struct iwn_scan_hdr *)buf;
4229 /*
4230 * Move to the next channel if no frames are received within 10ms
4231 * after sending the probe request.
4232 */
4233 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4234 hdr->quiet_threshold = htole16(1); /* min # of packets */
4235
4236 /* Select antennas for scanning. */
4237 rxchain =
4238 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4239 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4240 IWN_RXCHAIN_DRIVER_FORCE;
4241 if ((flags & IEEE80211_CHAN_5GHZ) &&
4242 sc->hw_type == IWN_HW_REV_TYPE_4965) {
4243 /* Ant A must be avoided in 5GHz because of an HW bug. */
4244 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4245 } else /* Use all available RX antennas. */
4246 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4247 hdr->rxchain = htole16(rxchain);
4248 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4249
4250 tx = (struct iwn_cmd_data *)(hdr + 1);
4251 tx->flags = htole32(IWN_TX_AUTO_SEQ);
4252 tx->id = sc->broadcast_id;
4253 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4254
4255 if (flags & IEEE80211_CHAN_5GHZ) {
4256 hdr->crc_threshold = 0xffff;
4257 /* Send probe requests at 6Mbps. */
4258 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4259 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4260 } else {
4261 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4262 /* Send probe requests at 1Mbps. */
4263 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4264 tx->rflags = IWN_RFLAG_CCK;
4265 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4266 }
4267 /* Use the first valid TX antenna. */
4268 txant = IWN_LSB(sc->txchainmask);
4269 tx->rflags |= IWN_RFLAG_ANT(txant);
4270
4271 essid = (struct iwn_scan_essid *)(tx + 1);
4272 if (ic->ic_des_esslen != 0) {
4273 essid[0].id = IEEE80211_ELEMID_SSID;
4274 essid[0].len = ic->ic_des_esslen;
4275 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4276 }
4277 /*
4278 * Build a probe request frame. Most of the following code is a
4279 * copy & paste of what is done in net80211.
4280 */
4281 wh = (struct ieee80211_frame *)(essid + 20);
4282 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4283 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4284 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4285 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4286 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4287 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4288 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4289 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4290
4291 frm = (uint8_t *)(wh + 1);
4292 frm = ieee80211_add_ssid(frm, NULL, 0);
4293 frm = ieee80211_add_rates(frm, rs);
4294 #ifndef IEEE80211_NO_HT
4295 if (ic->ic_flags & IEEE80211_F_HTON)
4296 frm = ieee80211_add_htcaps(frm, ic);
4297 #endif
4298 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4299 frm = ieee80211_add_xrates(frm, rs);
4300
4301 /* Set length of probe request. */
4302 tx->len = htole16(frm - (uint8_t *)wh);
4303
4304 chan = (struct iwn_scan_chan *)frm;
4305 for (c = &ic->ic_channels[1];
4306 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4307 if ((c->ic_flags & flags) != flags)
4308 continue;
4309
4310 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4311 DPRINTFN(2, ("adding channel %d\n", chan->chan));
4312 chan->flags = 0;
4313 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4314 chan->flags |= htole32(IWN_CHAN_ACTIVE);
4315 if (ic->ic_des_esslen != 0)
4316 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4317 chan->dsp_gain = 0x6e;
4318 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4319 chan->rf_gain = 0x3b;
4320 chan->active = htole16(24);
4321 chan->passive = htole16(110);
4322 } else {
4323 chan->rf_gain = 0x28;
4324 chan->active = htole16(36);
4325 chan->passive = htole16(120);
4326 }
4327 hdr->nchan++;
4328 chan++;
4329 }
4330
4331 buflen = (uint8_t *)chan - buf;
4332 hdr->len = htole16(buflen);
4333
4334 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4335 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4336 free(buf, M_DEVBUF);
4337 return error;
4338 }
4339
4340 static int
4341 iwn_auth(struct iwn_softc *sc)
4342 {
4343 struct iwn_ops *ops = &sc->ops;
4344 struct ieee80211com *ic = &sc->sc_ic;
4345 struct ieee80211_node *ni = ic->ic_bss;
4346 int error;
4347
4348 /* Update adapter configuration. */
4349 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4350 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4351 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4352 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4353 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4354 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4355 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4356 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4357 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4358 switch (ic->ic_curmode) {
4359 case IEEE80211_MODE_11A:
4360 sc->rxon.cck_mask = 0;
4361 sc->rxon.ofdm_mask = 0x15;
4362 break;
4363 case IEEE80211_MODE_11B:
4364 sc->rxon.cck_mask = 0x03;
4365 sc->rxon.ofdm_mask = 0;
4366 break;
4367 default: /* Assume 802.11b/g. */
4368 sc->rxon.cck_mask = 0x0f;
4369 sc->rxon.ofdm_mask = 0x15;
4370 }
4371 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4372 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4373 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4374 if (error != 0) {
4375 aprint_error_dev(sc->sc_dev,
4376 "RXON command failed\n");
4377 return error;
4378 }
4379
4380 /* Configuration has changed, set TX power accordingly. */
4381 if ((error = ops->set_txpower(sc, 1)) != 0) {
4382 aprint_error_dev(sc->sc_dev,
4383 "could not set TX power\n");
4384 return error;
4385 }
4386 /*
4387 * Reconfiguring RXON clears the firmware nodes table so we must
4388 * add the broadcast node again.
4389 */
4390 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4391 aprint_error_dev(sc->sc_dev,
4392 "could not add broadcast node\n");
4393 return error;
4394 }
4395 return 0;
4396 }
4397
4398 static int
4399 iwn_run(struct iwn_softc *sc)
4400 {
4401 struct iwn_ops *ops = &sc->ops;
4402 struct ieee80211com *ic = &sc->sc_ic;
4403 struct ieee80211_node *ni = ic->ic_bss;
4404 struct iwn_node_info node;
4405 int error;
4406
4407 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4408 /* Link LED blinks while monitoring. */
4409 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4410 return 0;
4411 }
4412 if ((error = iwn_set_timing(sc, ni)) != 0) {
4413 aprint_error_dev(sc->sc_dev,
4414 "could not set timing\n");
4415 return error;
4416 }
4417
4418 /* Update adapter configuration. */
4419 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4420 /* Short preamble and slot time are negotiated when associating. */
4421 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4422 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4423 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4424 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4425 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4426 sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4427 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4428 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4429 if (error != 0) {
4430 aprint_error_dev(sc->sc_dev,
4431 "could not update configuration\n");
4432 return error;
4433 }
4434
4435 /* Configuration has changed, set TX power accordingly. */
4436 if ((error = ops->set_txpower(sc, 1)) != 0) {
4437 aprint_error_dev(sc->sc_dev,
4438 "could not set TX power\n");
4439 return error;
4440 }
4441
4442 /* Fake a join to initialize the TX rate. */
4443 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
4444 iwn_newassoc(ni, 1);
4445
4446 /* Add BSS node. */
4447 memset(&node, 0, sizeof node);
4448 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4449 node.id = IWN_ID_BSS;
4450 #ifdef notyet
4451 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4452 IWN_AMDPU_DENSITY(5)); /* 2us */
4453 #endif
4454 DPRINTF(("adding BSS node\n"));
4455 error = ops->add_node(sc, &node, 1);
4456 if (error != 0) {
4457 aprint_error_dev(sc->sc_dev,
4458 "could not add BSS node\n");
4459 return error;
4460 }
4461 DPRINTF(("setting link quality for node %d\n", node.id));
4462 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4463 aprint_error_dev(sc->sc_dev,
4464 "could not setup link quality for node %d\n", node.id);
4465 return error;
4466 }
4467
4468 if ((error = iwn_init_sensitivity(sc)) != 0) {
4469 aprint_error_dev(sc->sc_dev,
4470 "could not set sensitivity\n");
4471 return error;
4472 }
4473 /* Start periodic calibration timer. */
4474 sc->calib.state = IWN_CALIB_STATE_ASSOC;
4475 sc->calib_cnt = 0;
4476 callout_schedule(&sc->calib_to, hz/2);
4477
4478 /* Link LED always on while associated. */
4479 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4480 return 0;
4481 }
4482
4483 #ifdef IWN_HWCRYPTO
4484 /*
4485 * We support CCMP hardware encryption/decryption of unicast frames only.
4486 * HW support for TKIP really sucks. We should let TKIP die anyway.
4487 */
4488 static int
4489 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4490 struct ieee80211_key *k)
4491 {
4492 struct iwn_softc *sc = ic->ic_softc;
4493 struct iwn_ops *ops = &sc->ops;
4494 struct iwn_node *wn = (void *)ni;
4495 struct iwn_node_info node;
4496 uint16_t kflags;
4497
4498 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4499 k->k_cipher != IEEE80211_CIPHER_CCMP)
4500 return ieee80211_set_key(ic, ni, k);
4501
4502 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4503 if (k->k_flags & IEEE80211_KEY_GROUP)
4504 kflags |= IWN_KFLAG_GROUP;
4505
4506 memset(&node, 0, sizeof node);
4507 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4508 sc->broadcast_id : wn->id;
4509 node.control = IWN_NODE_UPDATE;
4510 node.flags = IWN_FLAG_SET_KEY;
4511 node.kflags = htole16(kflags);
4512 node.kid = k->k_id;
4513 memcpy(node.key, k->k_key, k->k_len);
4514 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4515 return ops->add_node(sc, &node, 1);
4516 }
4517
4518 static void
4519 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4520 struct ieee80211_key *k)
4521 {
4522 struct iwn_softc *sc = ic->ic_softc;
4523 struct iwn_ops *ops = &sc->ops;
4524 struct iwn_node *wn = (void *)ni;
4525 struct iwn_node_info node;
4526
4527 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4528 k->k_cipher != IEEE80211_CIPHER_CCMP) {
4529 /* See comment about other ciphers above. */
4530 ieee80211_delete_key(ic, ni, k);
4531 return;
4532 }
4533 if (ic->ic_state != IEEE80211_S_RUN)
4534 return; /* Nothing to do. */
4535 memset(&node, 0, sizeof node);
4536 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4537 sc->broadcast_id : wn->id;
4538 node.control = IWN_NODE_UPDATE;
4539 node.flags = IWN_FLAG_SET_KEY;
4540 node.kflags = htole16(IWN_KFLAG_INVALID);
4541 node.kid = 0xff;
4542 DPRINTF(("delete keys for node %d\n", node.id));
4543 (void)ops->add_node(sc, &node, 1);
4544 }
4545 #endif
4546
4547 /* XXX Added for NetBSD (copied from rev 1.39). */
4548
4549 static int
4550 iwn_wme_update(struct ieee80211com *ic)
4551 {
4552 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
4553 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
4554 struct iwn_softc *sc = ic->ic_ifp->if_softc;
4555 const struct wmeParams *wmep;
4556 struct iwn_edca_params cmd;
4557 int ac;
4558
4559 /* don't override default WME values if WME is not actually enabled */
4560 if (!(ic->ic_flags & IEEE80211_F_WME))
4561 return 0;
4562 cmd.flags = 0;
4563 for (ac = 0; ac < WME_NUM_AC; ac++) {
4564 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4565 cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4566 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4567 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4568 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
4569
4570 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4571 "txop=%d\n", ac, cmd.ac[ac].aifsn,
4572 cmd.ac[ac].cwmin,
4573 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4574 }
4575 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4576 #undef IWN_USEC
4577 #undef IWN_EXP2
4578 }
4579
4580 #ifndef IEEE80211_NO_HT
4581 /*
4582 * This function is called by upper layer when an ADDBA request is received
4583 * from another STA and before the ADDBA response is sent.
4584 */
4585 static int
4586 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4587 uint8_t tid)
4588 {
4589 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4590 struct iwn_softc *sc = ic->ic_softc;
4591 struct iwn_ops *ops = &sc->ops;
4592 struct iwn_node *wn = (void *)ni;
4593 struct iwn_node_info node;
4594
4595 memset(&node, 0, sizeof node);
4596 node.id = wn->id;
4597 node.control = IWN_NODE_UPDATE;
4598 node.flags = IWN_FLAG_SET_ADDBA;
4599 node.addba_tid = tid;
4600 node.addba_ssn = htole16(ba->ba_winstart);
4601 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4602 ba->ba_winstart));
4603 return ops->add_node(sc, &node, 1);
4604 }
4605
4606 /*
4607 * This function is called by upper layer on teardown of an HT-immediate
4608 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
4609 */
4610 static void
4611 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4612 uint8_t tid)
4613 {
4614 struct iwn_softc *sc = ic->ic_softc;
4615 struct iwn_ops *ops = &sc->ops;
4616 struct iwn_node *wn = (void *)ni;
4617 struct iwn_node_info node;
4618
4619 memset(&node, 0, sizeof node);
4620 node.id = wn->id;
4621 node.control = IWN_NODE_UPDATE;
4622 node.flags = IWN_FLAG_SET_DELBA;
4623 node.delba_tid = tid;
4624 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4625 (void)ops->add_node(sc, &node, 1);
4626 }
4627
4628 /*
4629 * This function is called by upper layer when an ADDBA response is received
4630 * from another STA.
4631 */
4632 static int
4633 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4634 uint8_t tid)
4635 {
4636 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4637 struct iwn_softc *sc = ic->ic_softc;
4638 struct iwn_ops *ops = &sc->ops;
4639 struct iwn_node *wn = (void *)ni;
4640 struct iwn_node_info node;
4641 int error;
4642
4643 /* Enable TX for the specified RA/TID. */
4644 wn->disable_tid &= ~(1 << tid);
4645 memset(&node, 0, sizeof node);
4646 node.id = wn->id;
4647 node.control = IWN_NODE_UPDATE;
4648 node.flags = IWN_FLAG_SET_DISABLE_TID;
4649 node.disable_tid = htole16(wn->disable_tid);
4650 error = ops->add_node(sc, &node, 1);
4651 if (error != 0)
4652 return error;
4653
4654 if ((error = iwn_nic_lock(sc)) != 0)
4655 return error;
4656 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4657 iwn_nic_unlock(sc);
4658 return 0;
4659 }
4660
4661 static void
4662 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4663 uint8_t tid)
4664 {
4665 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4666 struct iwn_softc *sc = ic->ic_softc;
4667 struct iwn_ops *ops = &sc->ops;
4668
4669 if (iwn_nic_lock(sc) != 0)
4670 return;
4671 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4672 iwn_nic_unlock(sc);
4673 }
4674
4675 static void
4676 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4677 uint8_t tid, uint16_t ssn)
4678 {
4679 struct iwn_node *wn = (void *)ni;
4680 int qid = 7 + tid;
4681
4682 /* Stop TX scheduler while we're changing its configuration. */
4683 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4684 IWN4965_TXQ_STATUS_CHGACT);
4685
4686 /* Assign RA/TID translation to the queue. */
4687 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4688 wn->id << 4 | tid);
4689
4690 /* Enable chain-building mode for the queue. */
4691 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4692
4693 /* Set starting sequence number from the ADDBA request. */
4694 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4695 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4696
4697 /* Set scheduler window size. */
4698 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4699 IWN_SCHED_WINSZ);
4700 /* Set scheduler frame limit. */
4701 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4702 IWN_SCHED_LIMIT << 16);
4703
4704 /* Enable interrupts for the queue. */
4705 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4706
4707 /* Mark the queue as active. */
4708 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4709 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4710 iwn_tid2fifo[tid] << 1);
4711 }
4712
4713 static void
4714 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4715 {
4716 int qid = 7 + tid;
4717
4718 /* Stop TX scheduler while we're changing its configuration. */
4719 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4720 IWN4965_TXQ_STATUS_CHGACT);
4721
4722 /* Set starting sequence number from the ADDBA request. */
4723 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4724 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4725
4726 /* Disable interrupts for the queue. */
4727 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4728
4729 /* Mark the queue as inactive. */
4730 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4731 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4732 }
4733
4734 static void
4735 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4736 uint8_t tid, uint16_t ssn)
4737 {
4738 struct iwn_node *wn = (void *)ni;
4739 int qid = 10 + tid;
4740
4741 /* Stop TX scheduler while we're changing its configuration. */
4742 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4743 IWN5000_TXQ_STATUS_CHGACT);
4744
4745 /* Assign RA/TID translation to the queue. */
4746 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4747 wn->id << 4 | tid);
4748
4749 /* Enable chain-building mode for the queue. */
4750 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4751
4752 /* Enable aggregation for the queue. */
4753 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4754
4755 /* Set starting sequence number from the ADDBA request. */
4756 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4757 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4758
4759 /* Set scheduler window size and frame limit. */
4760 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4761 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4762
4763 /* Enable interrupts for the queue. */
4764 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4765
4766 /* Mark the queue as active. */
4767 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4768 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4769 }
4770
4771 static void
4772 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4773 {
4774 int qid = 10 + tid;
4775
4776 /* Stop TX scheduler while we're changing its configuration. */
4777 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4778 IWN5000_TXQ_STATUS_CHGACT);
4779
4780 /* Disable aggregation for the queue. */
4781 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4782
4783 /* Set starting sequence number from the ADDBA request. */
4784 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4785 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4786
4787 /* Disable interrupts for the queue. */
4788 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4789
4790 /* Mark the queue as inactive. */
4791 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4792 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4793 }
4794 #endif /* !IEEE80211_NO_HT */
4795
4796 /*
4797 * Query calibration tables from the initialization firmware. We do this
4798 * only once at first boot. Called from a process context.
4799 */
4800 static int
4801 iwn5000_query_calibration(struct iwn_softc *sc)
4802 {
4803 struct iwn5000_calib_config cmd;
4804 int error;
4805
4806 memset(&cmd, 0, sizeof cmd);
4807 cmd.ucode.once.enable = 0xffffffff;
4808 cmd.ucode.once.start = 0xffffffff;
4809 cmd.ucode.once.send = 0xffffffff;
4810 cmd.ucode.flags = 0xffffffff;
4811 DPRINTF(("sending calibration query\n"));
4812 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4813 if (error != 0)
4814 return error;
4815
4816 /* Wait at most two seconds for calibration to complete. */
4817 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4818 error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4819 return error;
4820 }
4821
4822 /*
4823 * Send calibration results to the runtime firmware. These results were
4824 * obtained on first boot from the initialization firmware.
4825 */
4826 static int
4827 iwn5000_send_calibration(struct iwn_softc *sc)
4828 {
4829 int idx, error;
4830
4831 for (idx = 0; idx < 5; idx++) {
4832 if (sc->calibcmd[idx].buf == NULL)
4833 continue; /* No results available. */
4834 DPRINTF(("send calibration result idx=%d len=%d\n",
4835 idx, sc->calibcmd[idx].len));
4836 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4837 sc->calibcmd[idx].len, 0);
4838 if (error != 0) {
4839 aprint_error_dev(sc->sc_dev,
4840 "could not send calibration result\n");
4841 return error;
4842 }
4843 }
4844 return 0;
4845 }
4846
4847 static int
4848 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4849 {
4850 struct iwn5000_wimax_coex wimax;
4851
4852 #ifdef notyet
4853 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4854 /* Enable WiMAX coexistence for combo adapters. */
4855 wimax.flags =
4856 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4857 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4858 IWN_WIMAX_COEX_STA_TABLE_VALID |
4859 IWN_WIMAX_COEX_ENABLE;
4860 memcpy(wimax.events, iwn6050_wimax_events,
4861 sizeof iwn6050_wimax_events);
4862 } else
4863 #endif
4864 {
4865 /* Disable WiMAX coexistence. */
4866 wimax.flags = 0;
4867 memset(wimax.events, 0, sizeof wimax.events);
4868 }
4869 DPRINTF(("Configuring WiMAX coexistence\n"));
4870 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4871 }
4872
4873 /*
4874 * This function is called after the runtime firmware notifies us of its
4875 * readiness (called in a process context).
4876 */
4877 static int
4878 iwn4965_post_alive(struct iwn_softc *sc)
4879 {
4880 int error, qid;
4881
4882 if ((error = iwn_nic_lock(sc)) != 0)
4883 return error;
4884
4885 /* Clear TX scheduler state in SRAM. */
4886 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4887 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
4888 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
4889
4890 /* Set physical address of TX scheduler rings (1KB aligned). */
4891 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4892
4893 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4894
4895 /* Disable chain mode for all our 16 queues. */
4896 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
4897
4898 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
4899 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
4900 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4901
4902 /* Set scheduler window size. */
4903 iwn_mem_write(sc, sc->sched_base +
4904 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
4905 /* Set scheduler frame limit. */
4906 iwn_mem_write(sc, sc->sched_base +
4907 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4908 IWN_SCHED_LIMIT << 16);
4909 }
4910
4911 /* Enable interrupts for all our 16 queues. */
4912 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
4913 /* Identify TX FIFO rings (0-7). */
4914 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
4915
4916 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4917 for (qid = 0; qid < 7; qid++) {
4918 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
4919 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4920 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
4921 }
4922 iwn_nic_unlock(sc);
4923 return 0;
4924 }
4925
4926 /*
4927 * This function is called after the initialization or runtime firmware
4928 * notifies us of its readiness (called in a process context).
4929 */
4930 static int
4931 iwn5000_post_alive(struct iwn_softc *sc)
4932 {
4933 int error, qid;
4934
4935 /* Switch to using ICT interrupt mode. */
4936 iwn5000_ict_reset(sc);
4937
4938 if ((error = iwn_nic_lock(sc)) != 0)
4939 return error;
4940
4941 /* Clear TX scheduler state in SRAM. */
4942 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4943 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
4944 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
4945
4946 /* Set physical address of TX scheduler rings (1KB aligned). */
4947 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4948
4949 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4950
4951 /* Enable chain mode for all queues, except command queue. */
4952 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
4953 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
4954
4955 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
4956 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
4957 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4958
4959 iwn_mem_write(sc, sc->sched_base +
4960 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
4961 /* Set scheduler window size and frame limit. */
4962 iwn_mem_write(sc, sc->sched_base +
4963 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4964 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4965 }
4966
4967 /* Enable interrupts for all our 20 queues. */
4968 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
4969 /* Identify TX FIFO rings (0-7). */
4970 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
4971
4972 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4973 for (qid = 0; qid < 7; qid++) {
4974 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
4975 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4976 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
4977 }
4978 iwn_nic_unlock(sc);
4979
4980 /* Configure WiMAX coexistence for combo adapters. */
4981 error = iwn5000_send_wimax_coex(sc);
4982 if (error != 0) {
4983 aprint_error_dev(sc->sc_dev,
4984 "could not configure WiMAX coexistence\n");
4985 return error;
4986 }
4987 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
4988 struct iwn5000_phy_calib_crystal cmd;
4989
4990 /* Perform crystal calibration. */
4991 memset(&cmd, 0, sizeof cmd);
4992 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
4993 cmd.ngroups = 1;
4994 cmd.isvalid = 1;
4995 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
4996 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
4997 DPRINTF(("sending crystal calibration %d, %d\n",
4998 cmd.cap_pin[0], cmd.cap_pin[1]));
4999 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5000 if (error != 0) {
5001 aprint_error_dev(sc->sc_dev,
5002 "crystal calibration failed\n");
5003 return error;
5004 }
5005 }
5006 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5007 /* Query calibration from the initialization firmware. */
5008 if ((error = iwn5000_query_calibration(sc)) != 0) {
5009 aprint_error_dev(sc->sc_dev,
5010 "could not query calibration\n");
5011 return error;
5012 }
5013 /*
5014 * We have the calibration results now, reboot with the
5015 * runtime firmware (call ourselves recursively!)
5016 */
5017 iwn_hw_stop(sc);
5018 error = iwn_hw_init(sc);
5019 } else {
5020 /* Send calibration results to runtime firmware. */
5021 error = iwn5000_send_calibration(sc);
5022 }
5023 return error;
5024 }
5025
5026 /*
5027 * The firmware boot code is small and is intended to be copied directly into
5028 * the NIC internal memory (no DMA transfer).
5029 */
5030 static int
5031 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5032 {
5033 int error, ntries;
5034
5035 size /= sizeof (uint32_t);
5036
5037 if ((error = iwn_nic_lock(sc)) != 0)
5038 return error;
5039
5040 /* Copy microcode image into NIC memory. */
5041 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5042 (const uint32_t *)ucode, size);
5043
5044 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5045 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5046 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5047
5048 /* Start boot load now. */
5049 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5050
5051 /* Wait for transfer to complete. */
5052 for (ntries = 0; ntries < 1000; ntries++) {
5053 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5054 IWN_BSM_WR_CTRL_START))
5055 break;
5056 DELAY(10);
5057 }
5058 if (ntries == 1000) {
5059 aprint_error_dev(sc->sc_dev,
5060 "could not load boot firmware\n");
5061 iwn_nic_unlock(sc);
5062 return ETIMEDOUT;
5063 }
5064
5065 /* Enable boot after power up. */
5066 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5067
5068 iwn_nic_unlock(sc);
5069 return 0;
5070 }
5071
5072 static int
5073 iwn4965_load_firmware(struct iwn_softc *sc)
5074 {
5075 struct iwn_fw_info *fw = &sc->fw;
5076 struct iwn_dma_info *dma = &sc->fw_dma;
5077 int error;
5078
5079 /* Copy initialization sections into pre-allocated DMA-safe memory. */
5080 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5081 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5082 BUS_DMASYNC_PREWRITE);
5083 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5084 fw->init.text, fw->init.textsz);
5085 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5086 fw->init.textsz, BUS_DMASYNC_PREWRITE);
5087
5088 /* Tell adapter where to find initialization sections. */
5089 if ((error = iwn_nic_lock(sc)) != 0)
5090 return error;
5091 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5092 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5093 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5094 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5095 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5096 iwn_nic_unlock(sc);
5097
5098 /* Load firmware boot code. */
5099 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5100 if (error != 0) {
5101 aprint_error_dev(sc->sc_dev,
5102 "could not load boot firmware\n");
5103 return error;
5104 }
5105 /* Now press "execute". */
5106 IWN_WRITE(sc, IWN_RESET, 0);
5107
5108 /* Wait at most one second for first alive notification. */
5109 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5110 aprint_error_dev(sc->sc_dev,
5111 "timeout waiting for adapter to initialize\n");
5112 return error;
5113 }
5114
5115 /* Retrieve current temperature for initial TX power calibration. */
5116 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5117 sc->temp = iwn4965_get_temperature(sc);
5118
5119 /* Copy runtime sections into pre-allocated DMA-safe memory. */
5120 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5121 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5122 BUS_DMASYNC_PREWRITE);
5123 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5124 fw->main.text, fw->main.textsz);
5125 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5126 fw->main.textsz, BUS_DMASYNC_PREWRITE);
5127
5128 /* Tell adapter where to find runtime sections. */
5129 if ((error = iwn_nic_lock(sc)) != 0)
5130 return error;
5131 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5132 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5133 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5134 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5135 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5136 IWN_FW_UPDATED | fw->main.textsz);
5137 iwn_nic_unlock(sc);
5138
5139 return 0;
5140 }
5141
5142 static int
5143 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5144 const uint8_t *section, int size)
5145 {
5146 struct iwn_dma_info *dma = &sc->fw_dma;
5147 int error;
5148
5149 /* Copy firmware section into pre-allocated DMA-safe memory. */
5150 memcpy(dma->vaddr, section, size);
5151 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5152
5153 if ((error = iwn_nic_lock(sc)) != 0)
5154 return error;
5155
5156 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5157 IWN_FH_TX_CONFIG_DMA_PAUSE);
5158
5159 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5160 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5161 IWN_LOADDR(dma->paddr));
5162 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5163 IWN_HIADDR(dma->paddr) << 28 | size);
5164 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5165 IWN_FH_TXBUF_STATUS_TBNUM(1) |
5166 IWN_FH_TXBUF_STATUS_TBIDX(1) |
5167 IWN_FH_TXBUF_STATUS_TFBD_VALID);
5168
5169 /* Kick Flow Handler to start DMA transfer. */
5170 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5171 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5172
5173 iwn_nic_unlock(sc);
5174
5175 /* Wait at most five seconds for FH DMA transfer to complete. */
5176 return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5177 }
5178
5179 static int
5180 iwn5000_load_firmware(struct iwn_softc *sc)
5181 {
5182 struct iwn_fw_part *fw;
5183 int error;
5184
5185 /* Load the initialization firmware on first boot only. */
5186 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5187 &sc->fw.main : &sc->fw.init;
5188
5189 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5190 fw->text, fw->textsz);
5191 if (error != 0) {
5192 aprint_error_dev(sc->sc_dev,
5193 "could not load firmware %s section\n", ".text");
5194 return error;
5195 }
5196 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5197 fw->data, fw->datasz);
5198 if (error != 0) {
5199 aprint_error_dev(sc->sc_dev,
5200 "could not load firmware %s section\n", ".data");
5201 return error;
5202 }
5203
5204 /* Now press "execute". */
5205 IWN_WRITE(sc, IWN_RESET, 0);
5206 return 0;
5207 }
5208
5209 /*
5210 * Extract text and data sections from a legacy firmware image.
5211 */
5212 static int
5213 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5214 {
5215 const uint32_t *ptr;
5216 size_t hdrlen = 24;
5217 uint32_t rev;
5218
5219 ptr = (const uint32_t *)fw->data;
5220 rev = le32toh(*ptr++);
5221
5222 /* Check firmware API version. */
5223 if (IWN_FW_API(rev) <= 1) {
5224 aprint_error_dev(sc->sc_dev,
5225 "bad firmware, need API version >=2\n");
5226 return EINVAL;
5227 }
5228 if (IWN_FW_API(rev) >= 3) {
5229 /* Skip build number (version 2 header). */
5230 hdrlen += 4;
5231 ptr++;
5232 }
5233 if (fw->size < hdrlen) {
5234 aprint_error_dev(sc->sc_dev,
5235 "firmware too short: %zd bytes\n", fw->size);
5236 return EINVAL;
5237 }
5238 fw->main.textsz = le32toh(*ptr++);
5239 fw->main.datasz = le32toh(*ptr++);
5240 fw->init.textsz = le32toh(*ptr++);
5241 fw->init.datasz = le32toh(*ptr++);
5242 fw->boot.textsz = le32toh(*ptr++);
5243
5244 /* Check that all firmware sections fit. */
5245 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5246 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5247 aprint_error_dev(sc->sc_dev,
5248 "firmware too short: %zd bytes\n", fw->size);
5249 return EINVAL;
5250 }
5251
5252 /* Get pointers to firmware sections. */
5253 fw->main.text = (const uint8_t *)ptr;
5254 fw->main.data = fw->main.text + fw->main.textsz;
5255 fw->init.text = fw->main.data + fw->main.datasz;
5256 fw->init.data = fw->init.text + fw->init.textsz;
5257 fw->boot.text = fw->init.data + fw->init.datasz;
5258 return 0;
5259 }
5260
5261 /*
5262 * Extract text and data sections from a TLV firmware image.
5263 */
5264 static int
5265 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5266 uint16_t alt)
5267 {
5268 const struct iwn_fw_tlv_hdr *hdr;
5269 const struct iwn_fw_tlv *tlv;
5270 const uint8_t *ptr, *end;
5271 uint64_t altmask;
5272 uint32_t len;
5273
5274 if (fw->size < sizeof (*hdr)) {
5275 aprint_error_dev(sc->sc_dev,
5276 "firmware too short: %zd bytes\n", fw->size);
5277 return EINVAL;
5278 }
5279 hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5280 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5281 aprint_error_dev(sc->sc_dev,
5282 "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5283 return EINVAL;
5284 }
5285 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5286 le32toh(hdr->build)));
5287
5288 /*
5289 * Select the closest supported alternative that is less than
5290 * or equal to the specified one.
5291 */
5292 altmask = le64toh(hdr->altmask);
5293 while (alt > 0 && !(altmask & (1ULL << alt)))
5294 alt--; /* Downgrade. */
5295 DPRINTF(("using alternative %d\n", alt));
5296
5297 ptr = (const uint8_t *)(hdr + 1);
5298 end = (const uint8_t *)(fw->data + fw->size);
5299
5300 /* Parse type-length-value fields. */
5301 while (ptr + sizeof (*tlv) <= end) {
5302 tlv = (const struct iwn_fw_tlv *)ptr;
5303 len = le32toh(tlv->len);
5304
5305 ptr += sizeof (*tlv);
5306 if (ptr + len > end) {
5307 aprint_error_dev(sc->sc_dev,
5308 "firmware too short: %zd bytes\n", fw->size);
5309 return EINVAL;
5310 }
5311 /* Skip other alternatives. */
5312 if (tlv->alt != 0 && tlv->alt != htole16(alt))
5313 goto next;
5314
5315 switch (le16toh(tlv->type)) {
5316 case IWN_FW_TLV_MAIN_TEXT:
5317 fw->main.text = ptr;
5318 fw->main.textsz = len;
5319 break;
5320 case IWN_FW_TLV_MAIN_DATA:
5321 fw->main.data = ptr;
5322 fw->main.datasz = len;
5323 break;
5324 case IWN_FW_TLV_INIT_TEXT:
5325 fw->init.text = ptr;
5326 fw->init.textsz = len;
5327 break;
5328 case IWN_FW_TLV_INIT_DATA:
5329 fw->init.data = ptr;
5330 fw->init.datasz = len;
5331 break;
5332 case IWN_FW_TLV_BOOT_TEXT:
5333 fw->boot.text = ptr;
5334 fw->boot.textsz = len;
5335 break;
5336 default:
5337 DPRINTF(("TLV type %d not handled\n",
5338 le16toh(tlv->type)));
5339 break;
5340 }
5341 next: /* TLV fields are 32-bit aligned. */
5342 ptr += (len + 3) & ~3;
5343 }
5344 return 0;
5345 }
5346
5347 static int
5348 iwn_read_firmware(struct iwn_softc *sc)
5349 {
5350 struct iwn_fw_info *fw = &sc->fw;
5351 firmware_handle_t fwh;
5352 int error;
5353
5354 /* Initialize for error returns */
5355 fw->data = NULL;
5356 fw->size = 0;
5357
5358 /* Open firmware image. */
5359 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5360 aprint_error_dev(sc->sc_dev,
5361 "could not get firmware handle %s\n", sc->fwname);
5362 return error;
5363 }
5364 fw->size = firmware_get_size(fwh);
5365 if (fw->size < sizeof (uint32_t)) {
5366 aprint_error_dev(sc->sc_dev,
5367 "firmware too short: %zd bytes\n", fw->size);
5368 firmware_close(fwh);
5369 return EINVAL;
5370 }
5371
5372 /* Read the firmware. */
5373 fw->data = firmware_malloc(fw->size);
5374 if (fw->data == NULL) {
5375 aprint_error_dev(sc->sc_dev,
5376 "not enough memory to stock firmware %s\n", sc->fwname);
5377 firmware_close(fwh);
5378 return ENOMEM;
5379 }
5380 error = firmware_read(fwh, 0, fw->data, fw->size);
5381 firmware_close(fwh);
5382 if (error != 0) {
5383 aprint_error_dev(sc->sc_dev,
5384 "could not read firmware %s\n", sc->fwname);
5385 goto out;
5386 }
5387
5388 /* Retrieve text and data sections. */
5389 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
5390 error = iwn_read_firmware_leg(sc, fw);
5391 else
5392 error = iwn_read_firmware_tlv(sc, fw, 1);
5393 if (error != 0) {
5394 aprint_error_dev(sc->sc_dev,
5395 "could not read firmware sections\n");
5396 goto out;
5397 }
5398
5399 /* Make sure text and data sections fit in hardware memory. */
5400 if (fw->main.textsz > sc->fw_text_maxsz ||
5401 fw->main.datasz > sc->fw_data_maxsz ||
5402 fw->init.textsz > sc->fw_text_maxsz ||
5403 fw->init.datasz > sc->fw_data_maxsz ||
5404 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5405 (fw->boot.textsz & 3) != 0) {
5406 aprint_error_dev(sc->sc_dev,
5407 "firmware sections too large\n");
5408 goto out;
5409 }
5410
5411 /* We can proceed with loading the firmware. */
5412 return 0;
5413 out:
5414 firmware_free(fw->data, fw->size);
5415 fw->data = NULL;
5416 fw->size = 0;
5417 return error ? error : EINVAL;
5418 }
5419
5420 static int
5421 iwn_clock_wait(struct iwn_softc *sc)
5422 {
5423 int ntries;
5424
5425 /* Set "initialization complete" bit. */
5426 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5427
5428 /* Wait for clock stabilization. */
5429 for (ntries = 0; ntries < 2500; ntries++) {
5430 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5431 return 0;
5432 DELAY(10);
5433 }
5434 aprint_error_dev(sc->sc_dev,
5435 "timeout waiting for clock stabilization\n");
5436 return ETIMEDOUT;
5437 }
5438
5439 static int
5440 iwn_apm_init(struct iwn_softc *sc)
5441 {
5442 pcireg_t reg;
5443 int error;
5444
5445 /* Disable L0s exit timer (NMI bug workaround). */
5446 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5447 /* Don't wait for ICH L0s (ICH bug workaround). */
5448 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5449
5450 /* Set FH wait threshold to max (HW bug under stress workaround). */
5451 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5452
5453 /* Enable HAP INTA to move adapter from L1a to L0s. */
5454 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5455
5456 /* Retrieve PCIe Active State Power Management (ASPM). */
5457 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5458 sc->sc_cap_off + PCI_PCIE_LCSR);
5459 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5460 if (reg & PCI_PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
5461 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5462 else
5463 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5464
5465 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5466 sc->hw_type <= IWN_HW_REV_TYPE_1000)
5467 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5468
5469 /* Wait for clock stabilization before accessing prph. */
5470 if ((error = iwn_clock_wait(sc)) != 0)
5471 return error;
5472
5473 if ((error = iwn_nic_lock(sc)) != 0)
5474 return error;
5475 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5476 /* Enable DMA and BSM (Bootstrap State Machine). */
5477 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5478 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5479 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5480 } else {
5481 /* Enable DMA. */
5482 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5483 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5484 }
5485 DELAY(20);
5486 /* Disable L1-Active. */
5487 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5488 iwn_nic_unlock(sc);
5489
5490 return 0;
5491 }
5492
5493 static void
5494 iwn_apm_stop_master(struct iwn_softc *sc)
5495 {
5496 int ntries;
5497
5498 /* Stop busmaster DMA activity. */
5499 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5500 for (ntries = 0; ntries < 100; ntries++) {
5501 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5502 return;
5503 DELAY(10);
5504 }
5505 aprint_error_dev(sc->sc_dev,
5506 "timeout waiting for master\n");
5507 }
5508
5509 static void
5510 iwn_apm_stop(struct iwn_softc *sc)
5511 {
5512 iwn_apm_stop_master(sc);
5513
5514 /* Reset the entire device. */
5515 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5516 DELAY(10);
5517 /* Clear "initialization complete" bit. */
5518 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5519 }
5520
5521 static int
5522 iwn4965_nic_config(struct iwn_softc *sc)
5523 {
5524 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5525 /*
5526 * I don't believe this to be correct but this is what the
5527 * vendor driver is doing. Probably the bits should not be
5528 * shifted in IWN_RFCFG_*.
5529 */
5530 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5531 IWN_RFCFG_TYPE(sc->rfcfg) |
5532 IWN_RFCFG_STEP(sc->rfcfg) |
5533 IWN_RFCFG_DASH(sc->rfcfg));
5534 }
5535 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5536 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5537 return 0;
5538 }
5539
5540 static int
5541 iwn5000_nic_config(struct iwn_softc *sc)
5542 {
5543 uint32_t tmp;
5544 int error;
5545
5546 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5547 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5548 IWN_RFCFG_TYPE(sc->rfcfg) |
5549 IWN_RFCFG_STEP(sc->rfcfg) |
5550 IWN_RFCFG_DASH(sc->rfcfg));
5551 }
5552 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5553 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5554
5555 if ((error = iwn_nic_lock(sc)) != 0)
5556 return error;
5557 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5558
5559 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5560 /*
5561 * Select first Switching Voltage Regulator (1.32V) to
5562 * solve a stability issue related to noisy DC2DC line
5563 * in the silicon of 1000 Series.
5564 */
5565 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5566 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5567 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5568 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5569 }
5570 iwn_nic_unlock(sc);
5571
5572 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5573 /* Use internal power amplifier only. */
5574 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5575 }
5576 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
5577 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
5578 /* Indicate that ROM calibration version is >=6. */
5579 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5580 }
5581 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
5582 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
5583 return 0;
5584 }
5585
5586 /*
5587 * Take NIC ownership over Intel Active Management Technology (AMT).
5588 */
5589 static int
5590 iwn_hw_prepare(struct iwn_softc *sc)
5591 {
5592 int ntries;
5593
5594 /* Check if hardware is ready. */
5595 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5596 for (ntries = 0; ntries < 5; ntries++) {
5597 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5598 IWN_HW_IF_CONFIG_NIC_READY)
5599 return 0;
5600 DELAY(10);
5601 }
5602
5603 /* Hardware not ready, force into ready state. */
5604 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5605 for (ntries = 0; ntries < 15000; ntries++) {
5606 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5607 IWN_HW_IF_CONFIG_PREPARE_DONE))
5608 break;
5609 DELAY(10);
5610 }
5611 if (ntries == 15000)
5612 return ETIMEDOUT;
5613
5614 /* Hardware should be ready now. */
5615 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5616 for (ntries = 0; ntries < 5; ntries++) {
5617 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5618 IWN_HW_IF_CONFIG_NIC_READY)
5619 return 0;
5620 DELAY(10);
5621 }
5622 return ETIMEDOUT;
5623 }
5624
5625 static int
5626 iwn_hw_init(struct iwn_softc *sc)
5627 {
5628 struct iwn_ops *ops = &sc->ops;
5629 int error, chnl, qid;
5630
5631 /* Clear pending interrupts. */
5632 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5633
5634 if ((error = iwn_apm_init(sc)) != 0) {
5635 aprint_error_dev(sc->sc_dev,
5636 "could not power ON adapter\n");
5637 return error;
5638 }
5639
5640 /* Select VMAIN power source. */
5641 if ((error = iwn_nic_lock(sc)) != 0)
5642 return error;
5643 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5644 iwn_nic_unlock(sc);
5645
5646 /* Perform adapter-specific initialization. */
5647 if ((error = ops->nic_config(sc)) != 0)
5648 return error;
5649
5650 /* Initialize RX ring. */
5651 if ((error = iwn_nic_lock(sc)) != 0)
5652 return error;
5653 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5654 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5655 /* Set physical address of RX ring (256-byte aligned). */
5656 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5657 /* Set physical address of RX status (16-byte aligned). */
5658 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5659 /* Enable RX. */
5660 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5661 IWN_FH_RX_CONFIG_ENA |
5662 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
5663 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
5664 IWN_FH_RX_CONFIG_SINGLE_FRAME |
5665 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5666 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5667 iwn_nic_unlock(sc);
5668 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5669
5670 if ((error = iwn_nic_lock(sc)) != 0)
5671 return error;
5672
5673 /* Initialize TX scheduler. */
5674 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5675
5676 /* Set physical address of "keep warm" page (16-byte aligned). */
5677 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5678
5679 /* Initialize TX rings. */
5680 for (qid = 0; qid < sc->ntxqs; qid++) {
5681 struct iwn_tx_ring *txq = &sc->txq[qid];
5682
5683 /* Set physical address of TX ring (256-byte aligned). */
5684 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5685 txq->desc_dma.paddr >> 8);
5686 }
5687 iwn_nic_unlock(sc);
5688
5689 /* Enable DMA channels. */
5690 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5691 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5692 IWN_FH_TX_CONFIG_DMA_ENA |
5693 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5694 }
5695
5696 /* Clear "radio off" and "commands blocked" bits. */
5697 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5698 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5699
5700 /* Clear pending interrupts. */
5701 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5702 /* Enable interrupt coalescing. */
5703 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5704 /* Enable interrupts. */
5705 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5706
5707 /* _Really_ make sure "radio off" bit is cleared! */
5708 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5709 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5710
5711 /* Enable shadow registers. */
5712 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
5713 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
5714
5715 if ((error = ops->load_firmware(sc)) != 0) {
5716 aprint_error_dev(sc->sc_dev,
5717 "could not load firmware\n");
5718 return error;
5719 }
5720 /* Wait at most one second for firmware alive notification. */
5721 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5722 aprint_error_dev(sc->sc_dev,
5723 "timeout waiting for adapter to initialize\n");
5724 return error;
5725 }
5726 /* Do post-firmware initialization. */
5727 return ops->post_alive(sc);
5728 }
5729
5730 static void
5731 iwn_hw_stop(struct iwn_softc *sc)
5732 {
5733 int chnl, qid, ntries;
5734
5735 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5736
5737 /* Disable interrupts. */
5738 IWN_WRITE(sc, IWN_INT_MASK, 0);
5739 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5740 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5741 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5742
5743 /* Make sure we no longer hold the NIC lock. */
5744 iwn_nic_unlock(sc);
5745
5746 /* Stop TX scheduler. */
5747 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5748
5749 /* Stop all DMA channels. */
5750 if (iwn_nic_lock(sc) == 0) {
5751 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5752 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5753 for (ntries = 0; ntries < 200; ntries++) {
5754 if (IWN_READ(sc, IWN_FH_TX_STATUS) &
5755 IWN_FH_TX_STATUS_IDLE(chnl))
5756 break;
5757 DELAY(10);
5758 }
5759 }
5760 iwn_nic_unlock(sc);
5761 }
5762
5763 /* Stop RX ring. */
5764 iwn_reset_rx_ring(sc, &sc->rxq);
5765
5766 /* Reset all TX rings. */
5767 for (qid = 0; qid < sc->ntxqs; qid++)
5768 iwn_reset_tx_ring(sc, &sc->txq[qid]);
5769
5770 if (iwn_nic_lock(sc) == 0) {
5771 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5772 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5773 iwn_nic_unlock(sc);
5774 }
5775 DELAY(5);
5776 /* Power OFF adapter. */
5777 iwn_apm_stop(sc);
5778 }
5779
5780 static int
5781 iwn_init(struct ifnet *ifp)
5782 {
5783 struct iwn_softc *sc = ifp->if_softc;
5784 struct ieee80211com *ic = &sc->sc_ic;
5785 int error;
5786
5787 mutex_enter(&sc->sc_mtx);
5788 if (sc->sc_flags & IWN_FLAG_HW_INITED)
5789 goto out;
5790 if ((error = iwn_hw_prepare(sc)) != 0) {
5791 aprint_error_dev(sc->sc_dev,
5792 "hardware not ready\n");
5793 goto fail;
5794 }
5795
5796 /* Check that the radio is not disabled by hardware switch. */
5797 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5798 aprint_error_dev(sc->sc_dev,
5799 "radio is disabled by hardware switch\n");
5800 error = EPERM; /* :-) */
5801 goto fail;
5802 }
5803
5804 /* Read firmware images from the filesystem. */
5805 if ((error = iwn_read_firmware(sc)) != 0) {
5806 aprint_error_dev(sc->sc_dev,
5807 "could not read firmware\n");
5808 goto fail;
5809 }
5810
5811 /* Initialize interrupt mask to default value. */
5812 sc->int_mask = IWN_INT_MASK_DEF;
5813 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5814
5815 /* Initialize hardware and upload firmware. */
5816 KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
5817 error = iwn_hw_init(sc);
5818 firmware_free(sc->fw.data, sc->fw.size);
5819 sc->fw.data = NULL;
5820 sc->fw.size = 0;
5821 if (error != 0) {
5822 aprint_error_dev(sc->sc_dev,
5823 "could not initialize hardware\n");
5824 goto fail;
5825 }
5826
5827 /* Configure adapter now that it is ready. */
5828 if ((error = iwn_config(sc)) != 0) {
5829 aprint_error_dev(sc->sc_dev,
5830 "could not configure device\n");
5831 goto fail;
5832 }
5833
5834 ifp->if_flags &= ~IFF_OACTIVE;
5835 ifp->if_flags |= IFF_RUNNING;
5836
5837 if (ic->ic_opmode != IEEE80211_M_MONITOR)
5838 ieee80211_begin_scan(ic, 0);
5839 else
5840 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5841
5842 sc->sc_flags |= IWN_FLAG_HW_INITED;
5843 out:
5844 mutex_exit(&sc->sc_mtx);
5845 return 0;
5846
5847 fail: mutex_exit(&sc->sc_mtx);
5848 iwn_stop(ifp, 1);
5849 return error;
5850 }
5851
5852 static void
5853 iwn_stop(struct ifnet *ifp, int disable)
5854 {
5855 struct iwn_softc *sc = ifp->if_softc;
5856 struct ieee80211com *ic = &sc->sc_ic;
5857
5858 if (!disable)
5859 mutex_enter(&sc->sc_mtx);
5860 sc->sc_flags &= ~IWN_FLAG_HW_INITED;
5861 ifp->if_timer = sc->sc_tx_timer = 0;
5862 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5863
5864 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5865
5866 /* Power OFF hardware. */
5867 iwn_hw_stop(sc);
5868
5869 if (!disable)
5870 mutex_exit(&sc->sc_mtx);
5871 }
5872
5873 /*
5874 * XXX MCLGETI alternative
5875 *
5876 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
5877 * as long as there are available free buffers then it uses MEXTMALLOC.,
5878 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
5879 * The MCLGET4K code is used for testing an alternative mbuf cache.
5880 */
5881
5882 static struct mbuf *
5883 MCLGETIalt(struct iwn_softc *sc, int how,
5884 struct ifnet *ifp __unused, u_int size)
5885 {
5886 struct mbuf *m;
5887 #ifdef IWN_USE_RBUF
5888 struct iwn_rbuf *rbuf;
5889 #endif
5890
5891 MGETHDR(m, how, MT_DATA);
5892 if (m == NULL)
5893 return NULL;
5894
5895 #ifdef IWN_USE_RBUF
5896 if (sc->rxq.nb_free_entries > 0 &&
5897 (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
5898 /* Attach buffer to mbuf header. */
5899 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
5900 m->m_flags |= M_EXT_RW;
5901 }
5902 else {
5903 MEXTMALLOC(m, size, how);
5904 if ((m->m_flags & M_EXT) == 0) {
5905 m_freem(m);
5906 return NULL;
5907 }
5908 }
5909
5910 #else
5911 #ifdef MCLGET4K
5912 if (size == 4096)
5913 MCLGET4K(m, how);
5914 else
5915 panic("size must be 4k");
5916 #else
5917 MEXTMALLOC(m, size, how);
5918 #endif
5919 if ((m->m_flags & M_EXT) == 0) {
5920 m_freem(m);
5921 return NULL;
5922 }
5923 #endif
5924
5925 return m;
5926 }
5927
5928 #ifdef IWN_USE_RBUF
5929 static struct iwn_rbuf *
5930 iwn_alloc_rbuf(struct iwn_softc *sc)
5931 {
5932 struct iwn_rbuf *rbuf;
5933 mutex_enter(&sc->rxq.freelist_mtx);
5934
5935 rbuf = SLIST_FIRST(&sc->rxq.freelist);
5936 if (rbuf != NULL) {
5937 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
5938 sc->rxq.nb_free_entries --;
5939 }
5940 mutex_exit(&sc->rxq.freelist_mtx);
5941 return rbuf;
5942 }
5943
5944 /*
5945 * This is called automatically by the network stack when the mbuf to which
5946 * our RX buffer is attached is freed.
5947 */
5948 static void
5949 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
5950 {
5951 struct iwn_rbuf *rbuf = arg;
5952 struct iwn_softc *sc = rbuf->sc;
5953
5954 /* Put the RX buffer back in the free list. */
5955 mutex_enter(&sc->rxq.freelist_mtx);
5956 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
5957 mutex_exit(&sc->rxq.freelist_mtx);
5958
5959 sc->rxq.nb_free_entries ++;
5960 if (__predict_true(m != NULL))
5961 pool_cache_put(mb_cache, m);
5962 }
5963
5964 static int
5965 iwn_alloc_rpool(struct iwn_softc *sc)
5966 {
5967 struct iwn_rx_ring *ring = &sc->rxq;
5968 struct iwn_rbuf *rbuf;
5969 int i, error;
5970
5971 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
5972
5973 /* Allocate a big chunk of DMA'able memory... */
5974 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
5975 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
5976 if (error != 0) {
5977 aprint_error_dev(sc->sc_dev,
5978 "could not allocate RX buffers DMA memory\n");
5979 return error;
5980 }
5981 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
5982 SLIST_INIT(&ring->freelist);
5983 for (i = 0; i < IWN_RBUF_COUNT; i++) {
5984 rbuf = &ring->rbuf[i];
5985
5986 rbuf->sc = sc; /* Backpointer for callbacks. */
5987 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
5988 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
5989
5990 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
5991 }
5992 ring->nb_free_entries = IWN_RBUF_COUNT;
5993 return 0;
5994 }
5995
5996 static void
5997 iwn_free_rpool(struct iwn_softc *sc)
5998 {
5999 iwn_dma_contig_free(&sc->rxq.buf_dma);
6000 }
6001 #endif
6002
6003 /*
6004 * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6005 * Copyright (c) 2001 Atsushi Onoe
6006 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6007 * Copyright (c) 2007-2009 Damien Bergamini
6008 * All rights reserved.
6009 */
6010
6011 /*
6012 * Add an SSID element to a frame (see 7.3.2.1).
6013 */
6014 static u_int8_t *
6015 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6016 {
6017 *frm++ = IEEE80211_ELEMID_SSID;
6018 *frm++ = len;
6019 memcpy(frm, ssid, len);
6020 return frm + len;
6021 }
6022
6023 /*
6024 * Add a supported rates element to a frame (see 7.3.2.2).
6025 */
6026 static u_int8_t *
6027 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6028 {
6029 int nrates;
6030
6031 *frm++ = IEEE80211_ELEMID_RATES;
6032 nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6033 *frm++ = nrates;
6034 memcpy(frm, rs->rs_rates, nrates);
6035 return frm + nrates;
6036 }
6037
6038 /*
6039 * Add an extended supported rates element to a frame (see 7.3.2.14).
6040 */
6041 static u_int8_t *
6042 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6043 {
6044 int nrates;
6045
6046 KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6047
6048 *frm++ = IEEE80211_ELEMID_XRATES;
6049 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6050 *frm++ = nrates;
6051 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6052 return frm + nrates;
6053 }
6054
6055 /*
6056 * XXX: Hack to set the current channel to the value advertised in beacons or
6057 * probe responses. Only used during AP detection.
6058 * XXX: Duplicated from if_iwi.c
6059 */
6060 static void
6061 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6062 {
6063 struct ieee80211_frame *wh;
6064 uint8_t subtype;
6065 uint8_t *frm, *efrm;
6066
6067 wh = mtod(m, struct ieee80211_frame *);
6068
6069 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6070 return;
6071
6072 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6073
6074 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6075 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6076 return;
6077
6078 frm = (uint8_t *)(wh + 1);
6079 efrm = mtod(m, uint8_t *) + m->m_len;
6080
6081 frm += 12; /* skip tstamp, bintval and capinfo fields */
6082 while (frm < efrm) {
6083 if (*frm == IEEE80211_ELEMID_DSPARMS)
6084 #if IEEE80211_CHAN_MAX < 255
6085 if (frm[2] <= IEEE80211_CHAN_MAX)
6086 #endif
6087 ic->ic_curchan = &ic->ic_channels[frm[2]];
6088
6089 frm += frm[1] + 2;
6090 }
6091 }
6092
6093