Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.53
      1 /*	$NetBSD: if_iwn.c,v 1.53 2011/05/15 13:56:20 christos Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.53 2011/05/15 13:56:20 christos Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/proc.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #include <sys/mutex.h>
     39 #include <sys/conf.h>
     40 #include <sys/kauth.h>
     41 #include <sys/callout.h>
     42 
     43 #include <dev/sysmon/sysmonvar.h>
     44 
     45 #include <machine/bus.h>
     46 #include <machine/endian.h>
     47 #include <machine/intr.h>
     48 
     49 #include <dev/pci/pcireg.h>
     50 #include <dev/pci/pcivar.h>
     51 #include <dev/pci/pcidevs.h>
     52 
     53 #include <net/bpf.h>
     54 #include <net/if.h>
     55 #include <net/if_arp.h>
     56 #include <net/if_dl.h>
     57 #include <net/if_media.h>
     58 #include <net/if_types.h>
     59 
     60 #include <netinet/in.h>
     61 #include <netinet/in_systm.h>
     62 #include <netinet/in_var.h>
     63 #include <net/if_ether.h>
     64 #include <netinet/ip.h>
     65 
     66 #include <net80211/ieee80211_var.h>
     67 #include <net80211/ieee80211_amrr.h>
     68 #include <net80211/ieee80211_radiotap.h>
     69 
     70 #include <dev/firmload.h>
     71 
     72 #include <dev/pci/if_iwnreg.h>
     73 #include <dev/pci/if_iwnvar.h>
     74 
     75 static const pci_product_id_t iwn_devices[] = {
     76 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     77 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     78 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     79 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     80 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     81 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     82 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     83 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     84 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
     85 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
     86 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
     87 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
     89 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     90 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
     96 #ifdef notyet
     97 	/*
     98 	 * XXX NetBSD: the 6005A replaces the two 6005, above
     99 	 * (see OpenBSD rev 1.96).
    100 	 */
    101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_1,
    102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_2,
    103 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_1,
    104 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_2,
    105 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_1,
    106 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_2,
    107 	PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_3
    108 #endif
    109 };
    110 
    111 /*
    112  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    113  */
    114 static const struct ieee80211_rateset iwn_rateset_11a =
    115 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    116 
    117 static const struct ieee80211_rateset iwn_rateset_11b =
    118 	{ 4, { 2, 4, 11, 22 } };
    119 
    120 static const struct ieee80211_rateset iwn_rateset_11g =
    121 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    122 
    123 static int	iwn_match(device_t , struct cfdata *, void *);
    124 static void	iwn_attach(device_t , device_t , void *);
    125 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
    126 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
    127 static void	iwn_radiotap_attach(struct iwn_softc *);
    128 static int	iwn_detach(device_t , int);
    129 #if 0
    130 static void	iwn_power(int, void *);
    131 #endif
    132 static bool	iwn_resume(device_t, const pmf_qual_t *);
    133 static int	iwn_nic_lock(struct iwn_softc *);
    134 static int	iwn_eeprom_lock(struct iwn_softc *);
    135 static int	iwn_init_otprom(struct iwn_softc *);
    136 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    137 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    138 		    void **, bus_size_t, bus_size_t);
    139 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    140 static int	iwn_alloc_sched(struct iwn_softc *);
    141 static void	iwn_free_sched(struct iwn_softc *);
    142 static int	iwn_alloc_kw(struct iwn_softc *);
    143 static void	iwn_free_kw(struct iwn_softc *);
    144 static int	iwn_alloc_ict(struct iwn_softc *);
    145 static void	iwn_free_ict(struct iwn_softc *);
    146 static int	iwn_alloc_fwmem(struct iwn_softc *);
    147 static void	iwn_free_fwmem(struct iwn_softc *);
    148 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    149 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    150 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    151 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    152 		    int);
    153 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    154 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    155 static void	iwn5000_ict_reset(struct iwn_softc *);
    156 static int	iwn_read_eeprom(struct iwn_softc *);
    157 static void	iwn4965_read_eeprom(struct iwn_softc *);
    158 
    159 #define IWN_DEBUG 1
    160 #ifdef IWN_DEBUG
    161 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    162 #endif
    163 static void	iwn5000_read_eeprom(struct iwn_softc *);
    164 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    165 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    166 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    167 static void	iwn_newassoc(struct ieee80211_node *, int);
    168 static int	iwn_media_change(struct ifnet *);
    169 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    170 static void	iwn_iter_func(void *, struct ieee80211_node *);
    171 static void	iwn_calib_timeout(void *);
    172 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    173 		    struct iwn_rx_data *);
    174 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    175 		    struct iwn_rx_data *);
    176 #ifndef IEEE80211_NO_HT
    177 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    178 		    struct iwn_rx_data *);
    179 #endif
    180 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    181 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    182 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    183 		    struct iwn_rx_data *);
    184 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    185 		    struct iwn_rx_data *);
    186 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    187 		    struct iwn_rx_data *);
    188 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    189 		    uint8_t);
    190 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    191 static void	iwn_notif_intr(struct iwn_softc *);
    192 static void	iwn_wakeup_intr(struct iwn_softc *);
    193 static void	iwn_fatal_intr(struct iwn_softc *);
    194 static int	iwn_intr(void *);
    195 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    196 		    uint16_t);
    197 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    198 		    uint16_t);
    199 #ifdef notyet
    200 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    201 #endif
    202 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    203 		    struct ieee80211_node *, int);
    204 static void	iwn_start(struct ifnet *);
    205 static void	iwn_watchdog(struct ifnet *);
    206 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    207 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    208 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    209 		    int);
    210 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    211 		    int);
    212 static int	iwn_set_link_quality(struct iwn_softc *,
    213 		    struct ieee80211_node *);
    214 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    215 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    216 static int	iwn_set_critical_temp(struct iwn_softc *);
    217 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    218 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    219 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    220 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    221 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    222 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    223 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    224 static int	iwn4965_get_temperature(struct iwn_softc *);
    225 static int	iwn5000_get_temperature(struct iwn_softc *);
    226 static int	iwn_init_sensitivity(struct iwn_softc *);
    227 static void	iwn_collect_noise(struct iwn_softc *,
    228 		    const struct iwn_rx_general_stats *);
    229 static int	iwn4965_init_gains(struct iwn_softc *);
    230 static int	iwn5000_init_gains(struct iwn_softc *);
    231 static int	iwn4965_set_gains(struct iwn_softc *);
    232 static int	iwn5000_set_gains(struct iwn_softc *);
    233 static void	iwn_tune_sensitivity(struct iwn_softc *,
    234 		    const struct iwn_rx_stats *);
    235 static int	iwn_send_sensitivity(struct iwn_softc *);
    236 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    237 static int	iwn_config(struct iwn_softc *);
    238 static int	iwn_scan(struct iwn_softc *, uint16_t);
    239 static int	iwn_auth(struct iwn_softc *);
    240 static int	iwn_run(struct iwn_softc *);
    241 #ifdef IWN_HWCRYPTO
    242 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    243 		    struct ieee80211_key *);
    244 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    245 		    struct ieee80211_key *);
    246 #endif
    247 static int	iwn_wme_update(struct ieee80211com *);
    248 #ifndef IEEE80211_NO_HT
    249 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    250 		    struct ieee80211_node *, uint8_t);
    251 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    252 		    struct ieee80211_node *, uint8_t);
    253 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    254 		    struct ieee80211_node *, uint8_t);
    255 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    256 		    struct ieee80211_node *, uint8_t);
    257 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    258 		    struct ieee80211_node *, uint8_t, uint16_t);
    259 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    260 		    uint8_t, uint16_t);
    261 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    262 		    struct ieee80211_node *, uint8_t, uint16_t);
    263 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    264 		    uint8_t, uint16_t);
    265 #endif
    266 static int	iwn5000_query_calibration(struct iwn_softc *);
    267 static int	iwn5000_send_calibration(struct iwn_softc *);
    268 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    269 static int	iwn4965_post_alive(struct iwn_softc *);
    270 static int	iwn5000_post_alive(struct iwn_softc *);
    271 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    272 		    int);
    273 static int	iwn4965_load_firmware(struct iwn_softc *);
    274 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    275 		    const uint8_t *, int);
    276 static int	iwn5000_load_firmware(struct iwn_softc *);
    277 static int	iwn_read_firmware_leg(struct iwn_softc *,
    278 		    struct iwn_fw_info *);
    279 static int	iwn_read_firmware_tlv(struct iwn_softc *,
    280 		    struct iwn_fw_info *, uint16_t);
    281 static int	iwn_read_firmware(struct iwn_softc *);
    282 static int	iwn_clock_wait(struct iwn_softc *);
    283 static int	iwn_apm_init(struct iwn_softc *);
    284 static void	iwn_apm_stop_master(struct iwn_softc *);
    285 static void	iwn_apm_stop(struct iwn_softc *);
    286 static int	iwn4965_nic_config(struct iwn_softc *);
    287 static int	iwn5000_nic_config(struct iwn_softc *);
    288 static int	iwn_hw_prepare(struct iwn_softc *);
    289 static int	iwn_hw_init(struct iwn_softc *);
    290 static void	iwn_hw_stop(struct iwn_softc *);
    291 static int	iwn_init(struct ifnet *);
    292 static void	iwn_stop(struct ifnet *, int);
    293 
    294 /* XXX MCLGETI alternative */
    295 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    296 		    struct ifnet *, u_int);
    297 #ifdef IWN_USE_RBUF
    298 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    299 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    300 static int	iwn_alloc_rpool(struct iwn_softc *);
    301 static void	iwn_free_rpool(struct iwn_softc *);
    302 #endif
    303 
    304 /* XXX needed by iwn_scan */
    305 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
    306 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
    307     const struct ieee80211_rateset *);
    308 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
    309     const struct ieee80211_rateset *);
    310 
    311 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
    312 
    313 #ifdef IWN_DEBUG
    314 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    315 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    316 int iwn_debug = 0;
    317 #else
    318 #define DPRINTF(x)
    319 #define DPRINTFN(n, x)
    320 #endif
    321 
    322 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    323 	iwn_detach, NULL);
    324 
    325 static int
    326 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    327 {
    328 	struct pci_attach_args *pa = aux;
    329 	size_t i;
    330 
    331 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    332 		return 0;
    333 
    334 	for (i = 0; i < __arraycount(iwn_devices); i++)
    335 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    336 			return 1;
    337 
    338 	return 0;
    339 }
    340 
    341 static void
    342 iwn_attach(device_t parent __unused, device_t self, void *aux)
    343 {
    344 	struct iwn_softc *sc = device_private(self);
    345 	struct ieee80211com *ic = &sc->sc_ic;
    346 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    347 	struct pci_attach_args *pa = aux;
    348 	const char *intrstr;
    349 	char devinfo[256];
    350 	pci_intr_handle_t ih;
    351 	pcireg_t memtype, reg;
    352 	int i, error;
    353 	int revision;
    354 
    355 	sc->sc_dev = self;
    356 	sc->sc_pct = pa->pa_pc;
    357 	sc->sc_pcitag = pa->pa_tag;
    358 	sc->sc_dmat = pa->pa_dmat;
    359 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
    360 
    361 	callout_init(&sc->calib_to, 0);
    362 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    363 
    364 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
    365 	revision = PCI_REVISION(pa->pa_class);
    366 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
    367 
    368 	/*
    369 	 * Get the offset of the PCI Express Capability Structure in PCI
    370 	 * Configuration Space.
    371 	 */
    372 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    373 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    374 	if (error == 0) {
    375 		aprint_error(": PCIe capability structure not found!\n");
    376 		return;
    377 	}
    378 
    379 	/* Clear device-specific "PCI retry timeout" register (41h). */
    380 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    381 	if (reg & 0xff00)
    382 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    383 
    384 	/* Enable bus-mastering and hardware bug workaround. */
    385 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    386 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    387 	reg |= PCI_COMMAND_MASTER_ENABLE;
    388 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
    389 		DPRINTF(("PCIe INTx Disable set\n"));
    390 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
    391 	}
    392 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    393 
    394 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    395 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    396 	    &sc->sc_sh, NULL, &sc->sc_sz);
    397 	if (error != 0) {
    398 		aprint_error(": can't map mem space\n");
    399 		return;
    400 	}
    401 
    402 	/* Install interrupt handler. */
    403 	if (pci_intr_map(pa, &ih) != 0) {
    404 		aprint_error(": can't map interrupt\n");
    405 		return;
    406 	}
    407 	intrstr = pci_intr_string(sc->sc_pct, ih);
    408 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
    409 	if (sc->sc_ih == NULL) {
    410 		aprint_error(": can't establish interrupt");
    411 		if (intrstr != NULL)
    412 			aprint_error(" at %s", intrstr);
    413 		aprint_error("\n");
    414 		return;
    415 	}
    416 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    417 
    418 	/* Read hardware revision and attach. */
    419 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
    420 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
    421 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
    422 	else
    423 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
    424 	if (error != 0) {
    425 		aprint_error(": could not attach device\n");
    426 		return;
    427 	}
    428 
    429 	if ((error = iwn_hw_prepare(sc)) != 0) {
    430 		aprint_error(": hardware not ready\n");
    431 		return;
    432 	}
    433 
    434 	/* Read MAC address, channels, etc from EEPROM. */
    435 	if ((error = iwn_read_eeprom(sc)) != 0) {
    436 		aprint_error(": could not read EEPROM\n");
    437 		return;
    438 	}
    439 
    440 	/* Allocate DMA memory for firmware transfers. */
    441 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    442 		aprint_error(": could not allocate memory for firmware\n");
    443 		return;
    444 	}
    445 
    446 	/* Allocate "Keep Warm" page. */
    447 	if ((error = iwn_alloc_kw(sc)) != 0) {
    448 		aprint_error(": could not allocate keep warm page\n");
    449 		goto fail1;
    450 	}
    451 
    452 	/* Allocate ICT table for 5000 Series. */
    453 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    454 	    (error = iwn_alloc_ict(sc)) != 0) {
    455 		aprint_error(": could not allocate ICT table\n");
    456 		goto fail2;
    457 	}
    458 
    459 	/* Allocate TX scheduler "rings". */
    460 	if ((error = iwn_alloc_sched(sc)) != 0) {
    461 		aprint_error(": could not allocate TX scheduler rings\n");
    462 		goto fail3;
    463 	}
    464 
    465 #ifdef IWN_USE_RBUF
    466 	/* Allocate RX buffers. */
    467 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    468 		aprint_error_dev(self, "could not allocate RX buffers\n");
    469 		goto fail3;
    470 	}
    471 #endif
    472 
    473 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
    474 	for (i = 0; i < sc->ntxqs; i++) {
    475 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    476 			aprint_error(": could not allocate TX ring %d\n", i);
    477 			goto fail4;
    478 		}
    479 	}
    480 
    481 	/* Allocate RX ring. */
    482 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    483 		aprint_error(": could not allocate RX ring\n");
    484 		goto fail4;
    485 	}
    486 
    487 	/* Clear pending interrupts. */
    488 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    489 
    490 	/* Count the number of available chains. */
    491 	sc->ntxchains =
    492 	    ((sc->txchainmask >> 2) & 1) +
    493 	    ((sc->txchainmask >> 1) & 1) +
    494 	    ((sc->txchainmask >> 0) & 1);
    495 	sc->nrxchains =
    496 	    ((sc->rxchainmask >> 2) & 1) +
    497 	    ((sc->rxchainmask >> 1) & 1) +
    498 	    ((sc->rxchainmask >> 0) & 1);
    499 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    500 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    501 	    ether_sprintf(ic->ic_myaddr));
    502 
    503 	ic->ic_ifp = ifp;
    504 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    505 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    506 	ic->ic_state = IEEE80211_S_INIT;
    507 
    508 	/* Set device capabilities. */
    509 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
    510 	 * and IEEE80211_C_PMGT too. */
    511 	ic->ic_caps =
    512 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    513 	    IEEE80211_C_WPA |		/* 802.11i */
    514 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    515 	    IEEE80211_C_TXPMGT |	/* tx power management */
    516 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    517 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    518 	    IEEE80211_C_WME;		/* 802.11e */
    519 
    520 #ifndef IEEE80211_NO_HT
    521 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    522 		/* Set HT capabilities. */
    523 		ic->ic_htcaps =
    524 #if IWN_RBUF_SIZE == 8192
    525 		    IEEE80211_HTCAP_AMSDU7935 |
    526 #endif
    527 		    IEEE80211_HTCAP_CBW20_40 |
    528 		    IEEE80211_HTCAP_SGI20 |
    529 		    IEEE80211_HTCAP_SGI40;
    530 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    531 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    532 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    533 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    534 		else
    535 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    536 	}
    537 #endif	/* !IEEE80211_NO_HT */
    538 
    539 	/* Set supported legacy rates. */
    540 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
    541 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
    542 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    543 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
    544 	}
    545 #ifndef IEEE80211_NO_HT
    546 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    547 		/* Set supported HT rates. */
    548 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
    549 		if (sc->nrxchains > 1)
    550 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    551 		if (sc->nrxchains > 2)
    552 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    553 	}
    554 #endif
    555 
    556 	/* IBSS channel undefined for now. */
    557 	ic->ic_ibss_chan = &ic->ic_channels[0];
    558 
    559 	ifp->if_softc = sc;
    560 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    561 	ifp->if_init = iwn_init;
    562 	ifp->if_ioctl = iwn_ioctl;
    563 	ifp->if_start = iwn_start;
    564 	ifp->if_stop = iwn_stop;
    565 	ifp->if_watchdog = iwn_watchdog;
    566 	IFQ_SET_READY(&ifp->if_snd);
    567 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    568 
    569 	if_attach(ifp);
    570 	ieee80211_ifattach(ic);
    571 	ic->ic_node_alloc = iwn_node_alloc;
    572 	ic->ic_newassoc = iwn_newassoc;
    573 #ifdef IWN_HWCRYPTO
    574 	ic->ic_crypto.cs_key_set = iwn_set_key;
    575 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    576 #endif
    577 	ic->ic_wme.wme_update = iwn_wme_update;
    578 #ifndef IEEE80211_NO_HT
    579 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    580 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    581 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    582 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    583 #endif
    584 
    585 	/* Override 802.11 state transition machine. */
    586 	sc->sc_newstate = ic->ic_newstate;
    587 	ic->ic_newstate = iwn_newstate;
    588 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    589 
    590 	sc->amrr.amrr_min_success_threshold =  1;
    591 	sc->amrr.amrr_max_success_threshold = 15;
    592 
    593 	iwn_radiotap_attach(sc);
    594 
    595 	/*
    596 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    597 	 * callout_init and callout_setfunc, above.
    598 	*/
    599 
    600 	if (pmf_device_register(self, NULL, iwn_resume))
    601 		pmf_class_network_register(self, ifp);
    602 	else
    603 		aprint_error_dev(self, "couldn't establish power handler\n");
    604 
    605 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    606 	ieee80211_announce(ic);
    607 
    608 	return;
    609 
    610 	/* Free allocated memory if something failed during attachment. */
    611 fail4:	while (--i >= 0)
    612 		iwn_free_tx_ring(sc, &sc->txq[i]);
    613 #ifdef IWN_USE_RBUF
    614 	iwn_free_rpool(sc);
    615 #endif
    616 	iwn_free_sched(sc);
    617 fail3:	if (sc->ict != NULL)
    618 		iwn_free_ict(sc);
    619 fail2:	iwn_free_kw(sc);
    620 fail1:	iwn_free_fwmem(sc);
    621 }
    622 
    623 int
    624 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
    625 {
    626 	struct iwn_ops *ops = &sc->ops;
    627 
    628 	ops->load_firmware = iwn4965_load_firmware;
    629 	ops->read_eeprom = iwn4965_read_eeprom;
    630 	ops->post_alive = iwn4965_post_alive;
    631 	ops->nic_config = iwn4965_nic_config;
    632 	ops->update_sched = iwn4965_update_sched;
    633 	ops->get_temperature = iwn4965_get_temperature;
    634 	ops->get_rssi = iwn4965_get_rssi;
    635 	ops->set_txpower = iwn4965_set_txpower;
    636 	ops->init_gains = iwn4965_init_gains;
    637 	ops->set_gains = iwn4965_set_gains;
    638 	ops->add_node = iwn4965_add_node;
    639 	ops->tx_done = iwn4965_tx_done;
    640 #ifndef IEEE80211_NO_HT
    641 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
    642 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
    643 #endif
    644 	sc->ntxqs = IWN4965_NTXQUEUES;
    645 	sc->ndmachnls = IWN4965_NDMACHNLS;
    646 	sc->broadcast_id = IWN4965_ID_BROADCAST;
    647 	sc->rxonsz = IWN4965_RXONSZ;
    648 	sc->schedsz = IWN4965_SCHEDSZ;
    649 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
    650 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
    651 	sc->fwsz = IWN4965_FWSZ;
    652 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
    653 	sc->limits = &iwn4965_sensitivity_limits;
    654 	sc->fwname = "iwlwifi-4965-2.ucode";
    655 	/* Override chains masks, ROM is known to be broken. */
    656 	sc->txchainmask = IWN_ANT_AB;
    657 	sc->rxchainmask = IWN_ANT_ABC;
    658 
    659 	return 0;
    660 }
    661 
    662 int
    663 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
    664 {
    665 	struct iwn_ops *ops = &sc->ops;
    666 
    667 	ops->load_firmware = iwn5000_load_firmware;
    668 	ops->read_eeprom = iwn5000_read_eeprom;
    669 	ops->post_alive = iwn5000_post_alive;
    670 	ops->nic_config = iwn5000_nic_config;
    671 	ops->update_sched = iwn5000_update_sched;
    672 	ops->get_temperature = iwn5000_get_temperature;
    673 	ops->get_rssi = iwn5000_get_rssi;
    674 	ops->set_txpower = iwn5000_set_txpower;
    675 	ops->init_gains = iwn5000_init_gains;
    676 	ops->set_gains = iwn5000_set_gains;
    677 	ops->add_node = iwn5000_add_node;
    678 	ops->tx_done = iwn5000_tx_done;
    679 #ifndef IEEE80211_NO_HT
    680 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
    681 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
    682 #endif
    683 	sc->ntxqs = IWN5000_NTXQUEUES;
    684 	sc->ndmachnls = IWN5000_NDMACHNLS;
    685 	sc->broadcast_id = IWN5000_ID_BROADCAST;
    686 	sc->rxonsz = IWN5000_RXONSZ;
    687 	sc->schedsz = IWN5000_SCHEDSZ;
    688 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
    689 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
    690 	sc->fwsz = IWN5000_FWSZ;
    691 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
    692 
    693 	switch (sc->hw_type) {
    694 	case IWN_HW_REV_TYPE_5100:
    695 		sc->limits = &iwn5000_sensitivity_limits;
    696 		sc->fwname = "iwlwifi-5000-2.ucode";
    697 		/* Override chains masks, ROM is known to be broken. */
    698 		sc->txchainmask = IWN_ANT_B;
    699 		sc->rxchainmask = IWN_ANT_AB;
    700 		break;
    701 	case IWN_HW_REV_TYPE_5150:
    702 		sc->limits = &iwn5150_sensitivity_limits;
    703 		sc->fwname = "iwlwifi-5150-2.ucode";
    704 		break;
    705 	case IWN_HW_REV_TYPE_5300:
    706 	case IWN_HW_REV_TYPE_5350:
    707 		sc->limits = &iwn5000_sensitivity_limits;
    708 		sc->fwname = "iwlwifi-5000-2.ucode";
    709 		break;
    710 	case IWN_HW_REV_TYPE_1000:
    711 		sc->limits = &iwn1000_sensitivity_limits;
    712 		sc->fwname = "iwlwifi-1000-3.ucode";
    713 		break;
    714 	case IWN_HW_REV_TYPE_6000:
    715 		sc->limits = &iwn6000_sensitivity_limits;
    716 		sc->fwname = "iwlwifi-6000-4.ucode";
    717 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
    718 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
    719 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    720 			/* Override chains masks, ROM is known to be broken. */
    721 			sc->txchainmask = IWN_ANT_BC;
    722 			sc->rxchainmask = IWN_ANT_BC;
    723 		}
    724 		break;
    725 	case IWN_HW_REV_TYPE_6050:
    726 		sc->limits = &iwn6000_sensitivity_limits;
    727 		sc->fwname = "iwlwifi-6050-2.ucode";
    728 		break;
    729 	case IWN_HW_REV_TYPE_6005:
    730 		sc->limits = &iwn6000_sensitivity_limits;
    731 		sc->fwname = "iwlwifi-6005-2.ucode";
    732 		break;
    733 	default:
    734 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    735 		return ENOTSUP;
    736 	}
    737 	return 0;
    738 }
    739 
    740 /*
    741  * Attach the interface to 802.11 radiotap.
    742  */
    743 static void
    744 iwn_radiotap_attach(struct iwn_softc *sc)
    745 {
    746 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    747 
    748 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    749 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    750 	    &sc->sc_drvbpf);
    751 
    752 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    753 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    754 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    755 
    756 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    757 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    758 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    759 }
    760 
    761 static int
    762 iwn_detach(device_t self, int flags __unused)
    763 {
    764 	struct iwn_softc *sc = device_private(self);
    765 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    766 	int qid;
    767 
    768 	callout_stop(&sc->calib_to);
    769 
    770 	/* Uninstall interrupt handler. */
    771 	if (sc->sc_ih != NULL)
    772 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    773 
    774 	/* Free DMA resources. */
    775 	iwn_free_rx_ring(sc, &sc->rxq);
    776 	for (qid = 0; qid < sc->ntxqs; qid++)
    777 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    778 #ifdef IWN_USE_RBUF
    779 	iwn_free_rpool(sc);
    780 #endif
    781 	iwn_free_sched(sc);
    782 	iwn_free_kw(sc);
    783 	if (sc->ict != NULL)
    784 		iwn_free_ict(sc);
    785 	iwn_free_fwmem(sc);
    786 
    787 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    788 
    789 	ieee80211_ifdetach(&sc->sc_ic);
    790 	if_detach(ifp);
    791 
    792 	return 0;
    793 }
    794 
    795 #if 0
    796 /*
    797  * XXX Investigate if clearing the PCI retry timeout could eliminate
    798  * the repeated scan calls.  Also the calls to if_init and if_start
    799  * are similar to the effect of adding the call to ifioctl_common .
    800  */
    801 static void
    802 iwn_power(int why, void *arg)
    803 {
    804 	struct iwn_softc *sc = arg;
    805 	struct ifnet *ifp;
    806 	pcireg_t reg;
    807 	int s;
    808 
    809 	if (why != PWR_RESUME)
    810 		return;
    811 
    812 	/* Clear device-specific "PCI retry timeout" register (41h). */
    813 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    814 	if (reg & 0xff00)
    815 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    816 
    817 	s = splnet();
    818 	ifp = &sc->sc_ic.ic_if;
    819 	if (ifp->if_flags & IFF_UP) {
    820 		ifp->if_init(ifp);
    821 		if (ifp->if_flags & IFF_RUNNING)
    822 			ifp->if_start(ifp);
    823 	}
    824 	splx(s);
    825 }
    826 #endif
    827 
    828 static bool
    829 iwn_resume(device_t dv, const pmf_qual_t *qual)
    830 {
    831 	return true;
    832 }
    833 
    834 static int
    835 iwn_nic_lock(struct iwn_softc *sc)
    836 {
    837 	int ntries;
    838 
    839 	/* Request exclusive access to NIC. */
    840 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    841 
    842 	/* Spin until we actually get the lock. */
    843 	for (ntries = 0; ntries < 1000; ntries++) {
    844 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    845 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    846 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    847 			return 0;
    848 		DELAY(10);
    849 	}
    850 	return ETIMEDOUT;
    851 }
    852 
    853 static __inline void
    854 iwn_nic_unlock(struct iwn_softc *sc)
    855 {
    856 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    857 }
    858 
    859 static __inline uint32_t
    860 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    861 {
    862 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    863 	IWN_BARRIER_READ_WRITE(sc);
    864 	return IWN_READ(sc, IWN_PRPH_RDATA);
    865 }
    866 
    867 static __inline void
    868 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    869 {
    870 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    871 	IWN_BARRIER_WRITE(sc);
    872 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    873 }
    874 
    875 static __inline void
    876 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    877 {
    878 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    879 }
    880 
    881 static __inline void
    882 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    883 {
    884 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    885 }
    886 
    887 static __inline void
    888 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    889     const uint32_t *data, int count)
    890 {
    891 	for (; count > 0; count--, data++, addr += 4)
    892 		iwn_prph_write(sc, addr, *data);
    893 }
    894 
    895 static __inline uint32_t
    896 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    897 {
    898 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    899 	IWN_BARRIER_READ_WRITE(sc);
    900 	return IWN_READ(sc, IWN_MEM_RDATA);
    901 }
    902 
    903 static __inline void
    904 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    905 {
    906 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    907 	IWN_BARRIER_WRITE(sc);
    908 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    909 }
    910 
    911 static __inline void
    912 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
    913 {
    914 	uint32_t tmp;
    915 
    916 	tmp = iwn_mem_read(sc, addr & ~3);
    917 	if (addr & 3)
    918 		tmp = (tmp & 0x0000ffff) | data << 16;
    919 	else
    920 		tmp = (tmp & 0xffff0000) | data;
    921 	iwn_mem_write(sc, addr & ~3, tmp);
    922 }
    923 
    924 static __inline void
    925 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
    926     int count)
    927 {
    928 	for (; count > 0; count--, addr += 4)
    929 		*data++ = iwn_mem_read(sc, addr);
    930 }
    931 
    932 static __inline void
    933 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
    934     int count)
    935 {
    936 	for (; count > 0; count--, addr += 4)
    937 		iwn_mem_write(sc, addr, val);
    938 }
    939 
    940 static int
    941 iwn_eeprom_lock(struct iwn_softc *sc)
    942 {
    943 	int i, ntries;
    944 
    945 	for (i = 0; i < 100; i++) {
    946 		/* Request exclusive access to EEPROM. */
    947 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
    948 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
    949 
    950 		/* Spin until we actually get the lock. */
    951 		for (ntries = 0; ntries < 100; ntries++) {
    952 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
    953 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
    954 				return 0;
    955 			DELAY(10);
    956 		}
    957 	}
    958 	return ETIMEDOUT;
    959 }
    960 
    961 static __inline void
    962 iwn_eeprom_unlock(struct iwn_softc *sc)
    963 {
    964 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
    965 }
    966 
    967 /*
    968  * Initialize access by host to One Time Programmable ROM.
    969  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
    970  */
    971 static int
    972 iwn_init_otprom(struct iwn_softc *sc)
    973 {
    974 	uint16_t prev = 0, base, next;
    975 	int count, error;
    976 
    977 	/* Wait for clock stabilization before accessing prph. */
    978 	if ((error = iwn_clock_wait(sc)) != 0)
    979 		return error;
    980 
    981 	if ((error = iwn_nic_lock(sc)) != 0)
    982 		return error;
    983 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
    984 	DELAY(5);
    985 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
    986 	iwn_nic_unlock(sc);
    987 
    988 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
    989 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
    990 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
    991 		    IWN_RESET_LINK_PWR_MGMT_DIS);
    992 	}
    993 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
    994 	/* Clear ECC status. */
    995 	IWN_SETBITS(sc, IWN_OTP_GP,
    996 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
    997 
    998 	/*
    999 	 * Find the block before last block (contains the EEPROM image)
   1000 	 * for HW without OTP shadow RAM.
   1001 	 */
   1002 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   1003 		/* Switch to absolute addressing mode. */
   1004 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
   1005 		base = 0;
   1006 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
   1007 			error = iwn_read_prom_data(sc, base, &next, 2);
   1008 			if (error != 0)
   1009 				return error;
   1010 			if (next == 0)	/* End of linked-list. */
   1011 				break;
   1012 			prev = base;
   1013 			base = le16toh(next);
   1014 		}
   1015 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1016 			return EIO;
   1017 		/* Skip "next" word. */
   1018 		sc->prom_base = prev + 1;
   1019 	}
   1020 	return 0;
   1021 }
   1022 
   1023 static int
   1024 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1025 {
   1026 	uint8_t *out = data;
   1027 	uint32_t val, tmp;
   1028 	int ntries;
   1029 
   1030 	addr += sc->prom_base;
   1031 	for (; count > 0; count -= 2, addr++) {
   1032 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1033 		for (ntries = 0; ntries < 10; ntries++) {
   1034 			val = IWN_READ(sc, IWN_EEPROM);
   1035 			if (val & IWN_EEPROM_READ_VALID)
   1036 				break;
   1037 			DELAY(5);
   1038 		}
   1039 		if (ntries == 10) {
   1040 			aprint_error_dev(sc->sc_dev,
   1041 			    "timeout reading ROM at 0x%x\n", addr);
   1042 			return ETIMEDOUT;
   1043 		}
   1044 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1045 			/* OTPROM, check for ECC errors. */
   1046 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1047 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1048 				aprint_error_dev(sc->sc_dev,
   1049 				    "OTPROM ECC error at 0x%x\n", addr);
   1050 				return EIO;
   1051 			}
   1052 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1053 				/* Correctable ECC error, clear bit. */
   1054 				IWN_SETBITS(sc, IWN_OTP_GP,
   1055 				    IWN_OTP_GP_ECC_CORR_STTS);
   1056 			}
   1057 		}
   1058 		*out++ = val >> 16;
   1059 		if (count > 1)
   1060 			*out++ = val >> 24;
   1061 	}
   1062 	return 0;
   1063 }
   1064 
   1065 static int
   1066 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1067     bus_size_t size, bus_size_t alignment)
   1068 {
   1069 	int nsegs, error;
   1070 
   1071 	dma->tag = tag;
   1072 	dma->size = size;
   1073 
   1074 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1075 	    &dma->map);
   1076 	if (error != 0)
   1077 		goto fail;
   1078 
   1079 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1080 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1081 	if (error != 0)
   1082 		goto fail;
   1083 
   1084 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1085 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1086 	if (error != 0)
   1087 		goto fail;
   1088 
   1089 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1090 	    BUS_DMA_NOWAIT);
   1091 	if (error != 0)
   1092 		goto fail;
   1093 
   1094 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1095 	memset(dma->vaddr, 0, size);
   1096 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1097 
   1098 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1099 	if (kvap != NULL)
   1100 		*kvap = dma->vaddr;
   1101 
   1102 	return 0;
   1103 
   1104 fail:	iwn_dma_contig_free(dma);
   1105 	return error;
   1106 }
   1107 
   1108 static void
   1109 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1110 {
   1111 	if (dma->map != NULL) {
   1112 		if (dma->vaddr != NULL) {
   1113 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1114 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1115 			bus_dmamap_unload(dma->tag, dma->map);
   1116 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1117 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1118 			dma->vaddr = NULL;
   1119 		}
   1120 		bus_dmamap_destroy(dma->tag, dma->map);
   1121 		dma->map = NULL;
   1122 	}
   1123 }
   1124 
   1125 static int
   1126 iwn_alloc_sched(struct iwn_softc *sc)
   1127 {
   1128 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1129 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1130 	    (void **)&sc->sched, sc->schedsz, 1024);
   1131 }
   1132 
   1133 static void
   1134 iwn_free_sched(struct iwn_softc *sc)
   1135 {
   1136 	iwn_dma_contig_free(&sc->sched_dma);
   1137 }
   1138 
   1139 static int
   1140 iwn_alloc_kw(struct iwn_softc *sc)
   1141 {
   1142 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1143 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1144 	    4096);
   1145 }
   1146 
   1147 static void
   1148 iwn_free_kw(struct iwn_softc *sc)
   1149 {
   1150 	iwn_dma_contig_free(&sc->kw_dma);
   1151 }
   1152 
   1153 static int
   1154 iwn_alloc_ict(struct iwn_softc *sc)
   1155 {
   1156 	/* ICT table must be aligned on a 4KB boundary. */
   1157 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1158 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1159 }
   1160 
   1161 static void
   1162 iwn_free_ict(struct iwn_softc *sc)
   1163 {
   1164 	iwn_dma_contig_free(&sc->ict_dma);
   1165 }
   1166 
   1167 static int
   1168 iwn_alloc_fwmem(struct iwn_softc *sc)
   1169 {
   1170 	/* Must be aligned on a 16-byte boundary. */
   1171 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1172 	    sc->fwsz, 16);
   1173 }
   1174 
   1175 static void
   1176 iwn_free_fwmem(struct iwn_softc *sc)
   1177 {
   1178 	iwn_dma_contig_free(&sc->fw_dma);
   1179 }
   1180 
   1181 static int
   1182 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1183 {
   1184 	bus_size_t size;
   1185 	int i, error;
   1186 
   1187 	ring->cur = 0;
   1188 
   1189 	/* Allocate RX descriptors (256-byte aligned). */
   1190 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1191 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1192 	    (void **)&ring->desc, size, 256);
   1193 	if (error != 0) {
   1194 		aprint_error_dev(sc->sc_dev,
   1195 		    "could not allocate RX ring DMA memory\n");
   1196 		goto fail;
   1197 	}
   1198 
   1199 	/* Allocate RX status area (16-byte aligned). */
   1200 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1201 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1202 	if (error != 0) {
   1203 		aprint_error_dev(sc->sc_dev,
   1204 		    "could not allocate RX status DMA memory\n");
   1205 		goto fail;
   1206 	}
   1207 
   1208 	/*
   1209 	 * Allocate and map RX buffers.
   1210 	 */
   1211 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1212 		struct iwn_rx_data *data = &ring->data[i];
   1213 
   1214 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1215 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1216 		    &data->map);
   1217 		if (error != 0) {
   1218 			aprint_error_dev(sc->sc_dev,
   1219 			    "could not create RX buf DMA map\n");
   1220 			goto fail;
   1221 		}
   1222 
   1223 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1224 		if (data->m == NULL) {
   1225 			aprint_error_dev(sc->sc_dev,
   1226 			    "could not allocate RX mbuf\n");
   1227 			error = ENOBUFS;
   1228 			goto fail;
   1229 		}
   1230 
   1231 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1232 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1233 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1234 		if (error != 0) {
   1235 			aprint_error_dev(sc->sc_dev,
   1236 			    "can't not map mbuf (error %d)\n", error);
   1237 			goto fail;
   1238 		}
   1239 
   1240 		/* Set physical address of RX buffer (256-byte aligned). */
   1241 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1242 	}
   1243 
   1244 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1245 	    BUS_DMASYNC_PREWRITE);
   1246 
   1247 	return 0;
   1248 
   1249 fail:	iwn_free_rx_ring(sc, ring);
   1250 	return error;
   1251 }
   1252 
   1253 static void
   1254 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1255 {
   1256 	int ntries;
   1257 
   1258 	if (iwn_nic_lock(sc) == 0) {
   1259 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1260 		for (ntries = 0; ntries < 1000; ntries++) {
   1261 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1262 			    IWN_FH_RX_STATUS_IDLE)
   1263 				break;
   1264 			DELAY(10);
   1265 		}
   1266 		iwn_nic_unlock(sc);
   1267 	}
   1268 	ring->cur = 0;
   1269 	sc->last_rx_valid = 0;
   1270 }
   1271 
   1272 static void
   1273 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1274 {
   1275 	int i;
   1276 
   1277 	iwn_dma_contig_free(&ring->desc_dma);
   1278 	iwn_dma_contig_free(&ring->stat_dma);
   1279 
   1280 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1281 		struct iwn_rx_data *data = &ring->data[i];
   1282 
   1283 		if (data->m != NULL) {
   1284 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1285 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1286 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1287 			m_freem(data->m);
   1288 		}
   1289 		if (data->map != NULL)
   1290 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1291 	}
   1292 }
   1293 
   1294 static int
   1295 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1296 {
   1297 	bus_addr_t paddr;
   1298 	bus_size_t size;
   1299 	int i, error;
   1300 
   1301 	ring->qid = qid;
   1302 	ring->queued = 0;
   1303 	ring->cur = 0;
   1304 
   1305 	/* Allocate TX descriptors (256-byte aligned). */
   1306 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1307 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1308 	    (void **)&ring->desc, size, 256);
   1309 	if (error != 0) {
   1310 		aprint_error_dev(sc->sc_dev,
   1311 		    "could not allocate TX ring DMA memory\n");
   1312 		goto fail;
   1313 	}
   1314 	/*
   1315 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1316 	 * to allocate commands space for other rings.
   1317 	 * XXX Do we really need to allocate descriptors for other rings?
   1318 	 */
   1319 	if (qid > 4)
   1320 		return 0;
   1321 
   1322 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1323 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1324 	    (void **)&ring->cmd, size, 4);
   1325 	if (error != 0) {
   1326 		aprint_error_dev(sc->sc_dev,
   1327 		    "could not allocate TX cmd DMA memory\n");
   1328 		goto fail;
   1329 	}
   1330 
   1331 	paddr = ring->cmd_dma.paddr;
   1332 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1333 		struct iwn_tx_data *data = &ring->data[i];
   1334 
   1335 		data->cmd_paddr = paddr;
   1336 		data->scratch_paddr = paddr + 12;
   1337 		paddr += sizeof (struct iwn_tx_cmd);
   1338 
   1339 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1340 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1341 		    &data->map);
   1342 		if (error != 0) {
   1343 			aprint_error_dev(sc->sc_dev,
   1344 			    "could not create TX buf DMA map\n");
   1345 			goto fail;
   1346 		}
   1347 	}
   1348 	return 0;
   1349 
   1350 fail:	iwn_free_tx_ring(sc, ring);
   1351 	return error;
   1352 }
   1353 
   1354 static void
   1355 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1356 {
   1357 	int i;
   1358 
   1359 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1360 		struct iwn_tx_data *data = &ring->data[i];
   1361 
   1362 		if (data->m != NULL) {
   1363 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1364 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1365 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1366 			m_freem(data->m);
   1367 			data->m = NULL;
   1368 		}
   1369 	}
   1370 	/* Clear TX descriptors. */
   1371 	memset(ring->desc, 0, ring->desc_dma.size);
   1372 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1373 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1374 	sc->qfullmsk &= ~(1 << ring->qid);
   1375 	ring->queued = 0;
   1376 	ring->cur = 0;
   1377 }
   1378 
   1379 static void
   1380 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1381 {
   1382 	int i;
   1383 
   1384 	iwn_dma_contig_free(&ring->desc_dma);
   1385 	iwn_dma_contig_free(&ring->cmd_dma);
   1386 
   1387 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1388 		struct iwn_tx_data *data = &ring->data[i];
   1389 
   1390 		if (data->m != NULL) {
   1391 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1392 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1393 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1394 			m_freem(data->m);
   1395 		}
   1396 		if (data->map != NULL)
   1397 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1398 	}
   1399 }
   1400 
   1401 static void
   1402 iwn5000_ict_reset(struct iwn_softc *sc)
   1403 {
   1404 	/* Disable interrupts. */
   1405 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1406 
   1407 	/* Reset ICT table. */
   1408 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1409 	sc->ict_cur = 0;
   1410 
   1411 	/* Set physical address of ICT table (4KB aligned). */
   1412 	DPRINTF(("enabling ICT\n"));
   1413 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1414 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1415 
   1416 	/* Enable periodic RX interrupt. */
   1417 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1418 	/* Switch to ICT interrupt mode in driver. */
   1419 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1420 
   1421 	/* Re-enable interrupts. */
   1422 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1423 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1424 }
   1425 
   1426 static int
   1427 iwn_read_eeprom(struct iwn_softc *sc)
   1428 {
   1429 	struct iwn_ops *ops = &sc->ops;
   1430 	struct ieee80211com *ic = &sc->sc_ic;
   1431 	uint16_t val;
   1432 	int error;
   1433 
   1434 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1435 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1436 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1437 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1438 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1439 	    "OTPROM" : "EEPROM"));
   1440 
   1441 	/* Adapter has to be powered on for EEPROM access to work. */
   1442 	if ((error = iwn_apm_init(sc)) != 0) {
   1443 		aprint_error_dev(sc->sc_dev,
   1444 		    "could not power ON adapter\n");
   1445 		return error;
   1446 	}
   1447 
   1448 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1449 		aprint_error_dev(sc->sc_dev,
   1450 		    "bad ROM signature\n");
   1451 		return EIO;
   1452 	}
   1453 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1454 		aprint_error_dev(sc->sc_dev,
   1455 		    "could not lock ROM (error=%d)\n", error);
   1456 		return error;
   1457 	}
   1458 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1459 		if ((error = iwn_init_otprom(sc)) != 0) {
   1460 			aprint_error_dev(sc->sc_dev,
   1461 			    "could not initialize OTPROM\n");
   1462 			return error;
   1463 		}
   1464 	}
   1465 
   1466 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
   1467 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
   1468 	/* Check if HT support is bonded out. */
   1469 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
   1470 		sc->sc_flags |= IWN_FLAG_HAS_11N;
   1471 
   1472 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1473 	sc->rfcfg = le16toh(val);
   1474 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1475 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
   1476 	if (sc->txchainmask == 0)
   1477 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
   1478 	if (sc->rxchainmask == 0)
   1479 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
   1480 
   1481 	/* Read MAC address. */
   1482 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1483 
   1484 	/* Read adapter-specific information from EEPROM. */
   1485 	ops->read_eeprom(sc);
   1486 
   1487 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1488 
   1489 	iwn_eeprom_unlock(sc);
   1490 	return 0;
   1491 }
   1492 
   1493 static void
   1494 iwn4965_read_eeprom(struct iwn_softc *sc)
   1495 {
   1496 	uint32_t addr;
   1497 	uint16_t val;
   1498 	int i;
   1499 
   1500 	/* Read regulatory domain (4 ASCII characters). */
   1501 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1502 
   1503 	/* Read the list of authorized channels (20MHz ones only). */
   1504 	for (i = 0; i < 5; i++) {
   1505 		addr = iwn4965_regulatory_bands[i];
   1506 		iwn_read_eeprom_channels(sc, i, addr);
   1507 	}
   1508 
   1509 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1510 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1511 	sc->maxpwr2GHz = val & 0xff;
   1512 	sc->maxpwr5GHz = val >> 8;
   1513 	/* Check that EEPROM values are within valid range. */
   1514 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1515 		sc->maxpwr5GHz = 38;
   1516 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1517 		sc->maxpwr2GHz = 38;
   1518 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1519 
   1520 	/* Read samples for each TX power group. */
   1521 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1522 	    sizeof sc->bands);
   1523 
   1524 	/* Read voltage at which samples were taken. */
   1525 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1526 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1527 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1528 
   1529 #ifdef IWN_DEBUG
   1530 	/* Print samples. */
   1531 	if (iwn_debug > 0) {
   1532 		for (i = 0; i < IWN_NBANDS; i++)
   1533 			iwn4965_print_power_group(sc, i);
   1534 	}
   1535 #endif
   1536 }
   1537 
   1538 #ifdef IWN_DEBUG
   1539 static void
   1540 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1541 {
   1542 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1543 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1544 	int j, c;
   1545 
   1546 	aprint_normal("===band %d===\n", i);
   1547 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1548 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1549 	for (c = 0; c < 2; c++) {
   1550 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1551 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1552 			    "power=%d pa_det=%d\n", c, j,
   1553 			    chans[0].samples[c][j].temp,
   1554 			    chans[0].samples[c][j].gain,
   1555 			    chans[0].samples[c][j].power,
   1556 			    chans[0].samples[c][j].pa_det);
   1557 		}
   1558 	}
   1559 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1560 	for (c = 0; c < 2; c++) {
   1561 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1562 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1563 			    "power=%d pa_det=%d\n", c, j,
   1564 			    chans[1].samples[c][j].temp,
   1565 			    chans[1].samples[c][j].gain,
   1566 			    chans[1].samples[c][j].power,
   1567 			    chans[1].samples[c][j].pa_det);
   1568 		}
   1569 	}
   1570 }
   1571 #endif
   1572 
   1573 static void
   1574 iwn5000_read_eeprom(struct iwn_softc *sc)
   1575 {
   1576 	struct iwn5000_eeprom_calib_hdr hdr;
   1577 	int32_t volt;
   1578 	uint32_t base, addr;
   1579 	uint16_t val;
   1580 	int i;
   1581 
   1582 	/* Read regulatory domain (4 ASCII characters). */
   1583 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1584 	base = le16toh(val);
   1585 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1586 	    sc->eeprom_domain, 4);
   1587 
   1588 	/* Read the list of authorized channels (20MHz ones only). */
   1589 	for (i = 0; i < 5; i++) {
   1590 		addr = base + iwn5000_regulatory_bands[i];
   1591 		iwn_read_eeprom_channels(sc, i, addr);
   1592 	}
   1593 
   1594 	/* Read enhanced TX power information for 6000 Series. */
   1595 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1596 		iwn_read_eeprom_enhinfo(sc);
   1597 
   1598 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1599 	base = le16toh(val);
   1600 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1601 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1602 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1603 	sc->calib_ver = hdr.version;
   1604 
   1605 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1606 		/* Compute temperature offset. */
   1607 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1608 		sc->eeprom_temp = le16toh(val);
   1609 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1610 		volt = le16toh(val);
   1611 		sc->temp_off = sc->eeprom_temp - (volt / -5);
   1612 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1613 		    sc->eeprom_temp, volt, sc->temp_off));
   1614 	} else {
   1615 		/* Read crystal calibration. */
   1616 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1617 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1618 		DPRINTF(("crystal calibration 0x%08x\n",
   1619 		    le32toh(sc->eeprom_crystal)));
   1620 	}
   1621 }
   1622 
   1623 static void
   1624 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1625 {
   1626 	struct ieee80211com *ic = &sc->sc_ic;
   1627 	const struct iwn_chan_band *band = &iwn_bands[n];
   1628 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1629 	uint8_t chan;
   1630 	int i;
   1631 
   1632 	iwn_read_prom_data(sc, addr, channels,
   1633 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1634 
   1635 	for (i = 0; i < band->nchan; i++) {
   1636 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1637 			continue;
   1638 
   1639 		chan = band->chan[i];
   1640 
   1641 		if (n == 0) {	/* 2GHz band */
   1642 			ic->ic_channels[chan].ic_freq =
   1643 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1644 			ic->ic_channels[chan].ic_flags =
   1645 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1646 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1647 
   1648 		} else {	/* 5GHz band */
   1649 			/*
   1650 			 * Some adapters support channels 7, 8, 11 and 12
   1651 			 * both in the 2GHz and 4.9GHz bands.
   1652 			 * Because of limitations in our net80211 layer,
   1653 			 * we don't support them in the 4.9GHz band.
   1654 			 */
   1655 			if (chan <= 14)
   1656 				continue;
   1657 
   1658 			ic->ic_channels[chan].ic_freq =
   1659 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1660 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1661 			/* We have at least one valid 5GHz channel. */
   1662 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1663 		}
   1664 
   1665 		/* Is active scan allowed on this channel? */
   1666 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1667 			ic->ic_channels[chan].ic_flags |=
   1668 			    IEEE80211_CHAN_PASSIVE;
   1669 		}
   1670 
   1671 		/* Save maximum allowed TX power for this channel. */
   1672 		sc->maxpwr[chan] = channels[i].maxpwr;
   1673 
   1674 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1675 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1676 	}
   1677 }
   1678 
   1679 static void
   1680 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1681 {
   1682 	struct iwn_eeprom_enhinfo enhinfo[35];
   1683 	uint16_t val, base;
   1684 	int8_t maxpwr;
   1685 	int i;
   1686 
   1687 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1688 	base = le16toh(val);
   1689 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1690 	    enhinfo, sizeof enhinfo);
   1691 
   1692 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1693 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1694 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
   1695 			continue;	/* Skip invalid entries. */
   1696 
   1697 		maxpwr = 0;
   1698 		if (sc->txchainmask & IWN_ANT_A)
   1699 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1700 		if (sc->txchainmask & IWN_ANT_B)
   1701 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1702 		if (sc->txchainmask & IWN_ANT_C)
   1703 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1704 		if (sc->ntxchains == 2)
   1705 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1706 		else if (sc->ntxchains == 3)
   1707 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1708 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1709 
   1710 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1711 		sc->enh_maxpwr[i] = maxpwr;
   1712 	}
   1713 }
   1714 
   1715 static struct ieee80211_node *
   1716 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1717 {
   1718 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1719 }
   1720 
   1721 static void
   1722 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1723 {
   1724 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1725 	struct iwn_node *wn = (void *)ni;
   1726 	uint8_t rate;
   1727 	int ridx, i;
   1728 
   1729 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1730 	/* Start at lowest available bit-rate, AMRR will raise. */
   1731 	ni->ni_txrate = 0;
   1732 
   1733 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1734 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1735 		/* Map 802.11 rate to HW rate index. */
   1736 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1737 			if (iwn_rates[ridx].rate == rate)
   1738 				break;
   1739 		wn->ridx[i] = ridx;
   1740 	}
   1741 }
   1742 
   1743 static int
   1744 iwn_media_change(struct ifnet *ifp)
   1745 {
   1746 	struct iwn_softc *sc = ifp->if_softc;
   1747 	struct ieee80211com *ic = &sc->sc_ic;
   1748 	uint8_t rate, ridx;
   1749 	int error;
   1750 
   1751 	error = ieee80211_media_change(ifp);
   1752 	if (error != ENETRESET)
   1753 		return error;
   1754 
   1755 	if (ic->ic_fixed_rate != -1) {
   1756 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1757 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1758 		/* Map 802.11 rate to HW rate index. */
   1759 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1760 			if (iwn_rates[ridx].rate == rate)
   1761 				break;
   1762 		sc->fixed_ridx = ridx;
   1763 	}
   1764 
   1765 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1766 	    (IFF_UP | IFF_RUNNING)) {
   1767 		iwn_stop(ifp, 0);
   1768 		error = iwn_init(ifp);
   1769 	}
   1770 	return error;
   1771 }
   1772 
   1773 static int
   1774 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1775 {
   1776 	struct ifnet *ifp = ic->ic_ifp;
   1777 	struct iwn_softc *sc = ifp->if_softc;
   1778 	int error;
   1779 
   1780 	callout_stop(&sc->calib_to);
   1781 
   1782 	switch (nstate) {
   1783 	case IEEE80211_S_SCAN:
   1784 		/* XXX Do not abort a running scan. */
   1785 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1786 			if (ic->ic_state != nstate)
   1787 				aprint_error_dev(sc->sc_dev, "scan request(%d) "
   1788 				    "while scanning(%d) ignored\n", nstate,
   1789 				    ic->ic_state);
   1790 			break;
   1791 		}
   1792 
   1793 		/* XXX Not sure if call and flags are needed. */
   1794 		ieee80211_node_table_reset(&ic->ic_scan);
   1795 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1796 		sc->sc_flags |= IWN_FLAG_SCANNING;
   1797 
   1798 		/* Make the link LED blink while we're scanning. */
   1799 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1800 
   1801 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1802 			aprint_error_dev(sc->sc_dev,
   1803 			    "could not initiate scan\n");
   1804 			return error;
   1805 		}
   1806 		ic->ic_state = nstate;
   1807 		return 0;
   1808 
   1809 	case IEEE80211_S_ASSOC:
   1810 		if (ic->ic_state != IEEE80211_S_RUN)
   1811 			break;
   1812 		/* FALLTHROUGH */
   1813 	case IEEE80211_S_AUTH:
   1814 		/* Reset state to handle reassociations correctly. */
   1815 		sc->rxon.associd = 0;
   1816 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1817 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1818 
   1819 		if ((error = iwn_auth(sc)) != 0) {
   1820 			aprint_error_dev(sc->sc_dev,
   1821 			    "could not move to auth state\n");
   1822 			return error;
   1823 		}
   1824 		break;
   1825 
   1826 	case IEEE80211_S_RUN:
   1827 		if ((error = iwn_run(sc)) != 0) {
   1828 			aprint_error_dev(sc->sc_dev,
   1829 			    "could not move to run state\n");
   1830 			return error;
   1831 		}
   1832 		break;
   1833 
   1834 	case IEEE80211_S_INIT:
   1835 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1836 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1837 		break;
   1838 	}
   1839 
   1840 	return sc->sc_newstate(ic, nstate, arg);
   1841 }
   1842 
   1843 static void
   1844 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1845 {
   1846 	struct iwn_softc *sc = arg;
   1847 	struct iwn_node *wn = (struct iwn_node *)ni;
   1848 
   1849 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1850 }
   1851 
   1852 static void
   1853 iwn_calib_timeout(void *arg)
   1854 {
   1855 	struct iwn_softc *sc = arg;
   1856 	struct ieee80211com *ic = &sc->sc_ic;
   1857 	int s;
   1858 
   1859 	s = splnet();
   1860 	if (ic->ic_fixed_rate == -1) {
   1861 		if (ic->ic_opmode == IEEE80211_M_STA)
   1862 			iwn_iter_func(sc, ic->ic_bss);
   1863 		else
   1864 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1865 	}
   1866 	/* Force automatic TX power calibration every 60 secs. */
   1867 	if (++sc->calib_cnt >= 120) {
   1868 		uint32_t flags = 0;
   1869 
   1870 		DPRINTF(("sending request for statistics\n"));
   1871 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   1872 		    sizeof flags, 1);
   1873 		sc->calib_cnt = 0;
   1874 	}
   1875 	splx(s);
   1876 
   1877 	/* Automatic rate control triggered every 500ms. */
   1878 	callout_schedule(&sc->calib_to, hz/2);
   1879 }
   1880 
   1881 /*
   1882  * Process an RX_PHY firmware notification.  This is usually immediately
   1883  * followed by an MPDU_RX_DONE notification.
   1884  */
   1885 static void
   1886 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1887     struct iwn_rx_data *data)
   1888 {
   1889 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   1890 
   1891 	DPRINTFN(2, ("received PHY stats\n"));
   1892 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   1893 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   1894 
   1895 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   1896 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   1897 	sc->last_rx_valid = 1;
   1898 }
   1899 
   1900 /*
   1901  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   1902  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   1903  */
   1904 static void
   1905 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1906     struct iwn_rx_data *data)
   1907 {
   1908 	struct iwn_ops *ops = &sc->ops;
   1909 	struct ieee80211com *ic = &sc->sc_ic;
   1910 	struct ifnet *ifp = ic->ic_ifp;
   1911 	struct iwn_rx_ring *ring = &sc->rxq;
   1912 	struct ieee80211_frame *wh;
   1913 	struct ieee80211_node *ni;
   1914 	struct mbuf *m, *m1;
   1915 	struct iwn_rx_stat *stat;
   1916 	char	*head;
   1917 	uint32_t flags;
   1918 	int error, len, rssi;
   1919 
   1920 	if (desc->type == IWN_MPDU_RX_DONE) {
   1921 		/* Check for prior RX_PHY notification. */
   1922 		if (!sc->last_rx_valid) {
   1923 			DPRINTF(("missing RX_PHY\n"));
   1924 			return;
   1925 		}
   1926 		sc->last_rx_valid = 0;
   1927 		stat = &sc->last_rx_stat;
   1928 	} else
   1929 		stat = (struct iwn_rx_stat *)(desc + 1);
   1930 
   1931 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   1932 	    BUS_DMASYNC_POSTREAD);
   1933 
   1934 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   1935 		aprint_error_dev(sc->sc_dev,
   1936 		    "invalid RX statistic header\n");
   1937 		return;
   1938 	}
   1939 	if (desc->type == IWN_MPDU_RX_DONE) {
   1940 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   1941 		head = (char *)(mpdu + 1);
   1942 		len = le16toh(mpdu->len);
   1943 	} else {
   1944 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   1945 		len = le16toh(stat->len);
   1946 	}
   1947 
   1948 	flags = le32toh(*(uint32_t *)(head + len));
   1949 
   1950 	/* Discard frames with a bad FCS early. */
   1951 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   1952 		DPRINTFN(2, ("RX flags error %x\n", flags));
   1953 		ifp->if_ierrors++;
   1954 		return;
   1955 	}
   1956 	/* Discard frames that are too short. */
   1957 	if (len < sizeof (*wh)) {
   1958 		DPRINTF(("frame too short: %d\n", len));
   1959 		ic->ic_stats.is_rx_tooshort++;
   1960 		ifp->if_ierrors++;
   1961 		return;
   1962 	}
   1963 
   1964 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1965 	if (m1 == NULL) {
   1966 		ic->ic_stats.is_rx_nobuf++;
   1967 		ifp->if_ierrors++;
   1968 		return;
   1969 	}
   1970 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1971 
   1972 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   1973 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   1974 	if (error != 0) {
   1975 		m_freem(m1);
   1976 
   1977 		/* Try to reload the old mbuf. */
   1978 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1979 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1980 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1981 		if (error != 0) {
   1982 			panic("%s: could not load old RX mbuf",
   1983 			    device_xname(sc->sc_dev));
   1984 		}
   1985 		/* Physical address may have changed. */
   1986 		ring->desc[ring->cur] =
   1987 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   1988 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   1989 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   1990 		    BUS_DMASYNC_PREWRITE);
   1991 		ifp->if_ierrors++;
   1992 		return;
   1993 	}
   1994 
   1995 	m = data->m;
   1996 	data->m = m1;
   1997 	/* Update RX descriptor. */
   1998 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1999 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2000 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2001 	    BUS_DMASYNC_PREWRITE);
   2002 
   2003 	/* Finalize mbuf. */
   2004 	m->m_pkthdr.rcvif = ifp;
   2005 	m->m_data = head;
   2006 	m->m_pkthdr.len = m->m_len = len;
   2007 
   2008 	/* Grab a reference to the source node. */
   2009 	wh = mtod(m, struct ieee80211_frame *);
   2010 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2011 
   2012 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2013 	/* NetBSD does decryption in ieee80211_input. */
   2014 
   2015 	rssi = ops->get_rssi(stat);
   2016 
   2017 	/* XXX Added for NetBSD: scans never stop without it */
   2018 	if (ic->ic_state == IEEE80211_S_SCAN)
   2019 		iwn_fix_channel(ic, m);
   2020 
   2021 	if (sc->sc_drvbpf != NULL) {
   2022 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2023 
   2024 		tap->wr_flags = 0;
   2025 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2026 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2027 		tap->wr_chan_freq =
   2028 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2029 		tap->wr_chan_flags =
   2030 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2031 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2032 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2033 		tap->wr_tsft = stat->tstamp;
   2034 		switch (stat->rate) {
   2035 		/* CCK rates. */
   2036 		case  10: tap->wr_rate =   2; break;
   2037 		case  20: tap->wr_rate =   4; break;
   2038 		case  55: tap->wr_rate =  11; break;
   2039 		case 110: tap->wr_rate =  22; break;
   2040 		/* OFDM rates. */
   2041 		case 0xd: tap->wr_rate =  12; break;
   2042 		case 0xf: tap->wr_rate =  18; break;
   2043 		case 0x5: tap->wr_rate =  24; break;
   2044 		case 0x7: tap->wr_rate =  36; break;
   2045 		case 0x9: tap->wr_rate =  48; break;
   2046 		case 0xb: tap->wr_rate =  72; break;
   2047 		case 0x1: tap->wr_rate =  96; break;
   2048 		case 0x3: tap->wr_rate = 108; break;
   2049 		/* Unknown rate: should not happen. */
   2050 		default:  tap->wr_rate =   0;
   2051 		}
   2052 
   2053 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   2054 	}
   2055 
   2056 	/* Send the frame to the 802.11 layer. */
   2057 	ieee80211_input(ic, m, ni, rssi, 0);
   2058 
   2059 	/* Node is no longer needed. */
   2060 	ieee80211_free_node(ni);
   2061 }
   2062 
   2063 #ifndef IEEE80211_NO_HT
   2064 /* Process an incoming Compressed BlockAck. */
   2065 static void
   2066 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2067     struct iwn_rx_data *data)
   2068 {
   2069 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2070 	struct iwn_tx_ring *txq;
   2071 
   2072 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2073 	    BUS_DMASYNC_POSTREAD);
   2074 
   2075 	txq = &sc->txq[le16toh(ba->qid)];
   2076 	/* XXX TBD */
   2077 }
   2078 #endif
   2079 
   2080 /*
   2081  * Process a CALIBRATION_RESULT notification sent by the initialization
   2082  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
   2083  */
   2084 static void
   2085 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2086     struct iwn_rx_data *data)
   2087 {
   2088 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2089 	int len, idx = -1;
   2090 
   2091 	/* Runtime firmware should not send such a notification. */
   2092 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2093 		return;
   2094 
   2095 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2096 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2097 	    BUS_DMASYNC_POSTREAD);
   2098 
   2099 	switch (calib->code) {
   2100 	case IWN5000_PHY_CALIB_DC:
   2101 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   2102 			idx = 0;
   2103 		break;
   2104 	case IWN5000_PHY_CALIB_LO:
   2105 		idx = 1;
   2106 		break;
   2107 	case IWN5000_PHY_CALIB_TX_IQ:
   2108 		idx = 2;
   2109 		break;
   2110 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2111 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2112 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2113 			idx = 3;
   2114 		break;
   2115 	case IWN5000_PHY_CALIB_BASE_BAND:
   2116 		idx = 4;
   2117 		break;
   2118 	}
   2119 	if (idx == -1)	/* Ignore other results. */
   2120 		return;
   2121 
   2122 	/* Save calibration result. */
   2123 	if (sc->calibcmd[idx].buf != NULL)
   2124 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2125 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2126 	if (sc->calibcmd[idx].buf == NULL) {
   2127 		DPRINTF(("not enough memory for calibration result %d\n",
   2128 		    calib->code));
   2129 		return;
   2130 	}
   2131 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2132 	    calib->code, len));
   2133 	sc->calibcmd[idx].len = len;
   2134 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2135 }
   2136 
   2137 /*
   2138  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2139  * The latter is sent by the firmware after each received beacon.
   2140  */
   2141 static void
   2142 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2143     struct iwn_rx_data *data)
   2144 {
   2145 	struct iwn_ops *ops = &sc->ops;
   2146 	struct ieee80211com *ic = &sc->sc_ic;
   2147 	struct iwn_calib_state *calib = &sc->calib;
   2148 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2149 	int temp;
   2150 
   2151 	/* Ignore statistics received during a scan. */
   2152 	if (ic->ic_state != IEEE80211_S_RUN)
   2153 		return;
   2154 
   2155 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2156 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2157 
   2158 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2159 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2160 
   2161 	/* Test if temperature has changed. */
   2162 	if (stats->general.temp != sc->rawtemp) {
   2163 		/* Convert "raw" temperature to degC. */
   2164 		sc->rawtemp = stats->general.temp;
   2165 		temp = ops->get_temperature(sc);
   2166 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2167 
   2168 		/* Update TX power if need be (4965AGN only). */
   2169 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2170 			iwn4965_power_calibration(sc, temp);
   2171 	}
   2172 
   2173 	if (desc->type != IWN_BEACON_STATISTICS)
   2174 		return;	/* Reply to a statistics request. */
   2175 
   2176 	sc->noise = iwn_get_noise(&stats->rx.general);
   2177 
   2178 	/* Test that RSSI and noise are present in stats report. */
   2179 	if (le32toh(stats->rx.general.flags) != 1) {
   2180 		DPRINTF(("received statistics without RSSI\n"));
   2181 		return;
   2182 	}
   2183 
   2184 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2185 		iwn_collect_noise(sc, &stats->rx.general);
   2186 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2187 		iwn_tune_sensitivity(sc, &stats->rx);
   2188 }
   2189 
   2190 /*
   2191  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2192  * and 5000 adapters have different incompatible TX status formats.
   2193  */
   2194 static void
   2195 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2196     struct iwn_rx_data *data)
   2197 {
   2198 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2199 
   2200 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2201 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2202 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2203 }
   2204 
   2205 static void
   2206 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2207     struct iwn_rx_data *data)
   2208 {
   2209 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2210 
   2211 #ifdef notyet
   2212 	/* Reset TX scheduler slot. */
   2213 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2214 #endif
   2215 
   2216 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2217 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2218 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2219 }
   2220 
   2221 /*
   2222  * Adapter-independent backend for TX_DONE firmware notifications.
   2223  */
   2224 static void
   2225 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2226     uint8_t status)
   2227 {
   2228 	struct ieee80211com *ic = &sc->sc_ic;
   2229 	struct ifnet *ifp = ic->ic_ifp;
   2230 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2231 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2232 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2233 
   2234 	/* Update rate control statistics. */
   2235 	wn->amn.amn_txcnt++;
   2236 	if (ackfailcnt > 0)
   2237 		wn->amn.amn_retrycnt++;
   2238 
   2239 	if (status != 1 && status != 2)
   2240 		ifp->if_oerrors++;
   2241 	else
   2242 		ifp->if_opackets++;
   2243 
   2244 	/* Unmap and free mbuf. */
   2245 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2246 	    BUS_DMASYNC_POSTWRITE);
   2247 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2248 	m_freem(data->m);
   2249 	data->m = NULL;
   2250 	ieee80211_free_node(data->ni);
   2251 	data->ni = NULL;
   2252 
   2253 	sc->sc_tx_timer = 0;
   2254 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2255 		sc->qfullmsk &= ~(1 << ring->qid);
   2256 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2257 			ifp->if_flags &= ~IFF_OACTIVE;
   2258 			(*ifp->if_start)(ifp);
   2259 		}
   2260 	}
   2261 }
   2262 
   2263 /*
   2264  * Process a "command done" firmware notification.  This is where we wakeup
   2265  * processes waiting for a synchronous command completion.
   2266  */
   2267 static void
   2268 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2269 {
   2270 	struct iwn_tx_ring *ring = &sc->txq[4];
   2271 	struct iwn_tx_data *data;
   2272 
   2273 	if ((desc->qid & 0xf) != 4)
   2274 		return;	/* Not a command ack. */
   2275 
   2276 	data = &ring->data[desc->idx];
   2277 
   2278 	/* If the command was mapped in an mbuf, free it. */
   2279 	if (data->m != NULL) {
   2280 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2281 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2282 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2283 		m_freem(data->m);
   2284 		data->m = NULL;
   2285 	}
   2286 	wakeup(&ring->desc[desc->idx]);
   2287 }
   2288 
   2289 /*
   2290  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2291  */
   2292 static void
   2293 iwn_notif_intr(struct iwn_softc *sc)
   2294 {
   2295 	struct iwn_ops *ops = &sc->ops;
   2296 	struct ieee80211com *ic = &sc->sc_ic;
   2297 	struct ifnet *ifp = ic->ic_ifp;
   2298 	uint16_t hw;
   2299 
   2300 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2301 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2302 
   2303 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2304 	while (sc->rxq.cur != hw) {
   2305 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2306 		struct iwn_rx_desc *desc;
   2307 
   2308 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2309 		    BUS_DMASYNC_POSTREAD);
   2310 		desc = mtod(data->m, struct iwn_rx_desc *);
   2311 
   2312 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2313 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2314 
   2315 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2316 			iwn_cmd_done(sc, desc);
   2317 
   2318 		switch (desc->type) {
   2319 		case IWN_RX_PHY:
   2320 			iwn_rx_phy(sc, desc, data);
   2321 			break;
   2322 
   2323 		case IWN_RX_DONE:		/* 4965AGN only. */
   2324 		case IWN_MPDU_RX_DONE:
   2325 			/* An 802.11 frame has been received. */
   2326 			iwn_rx_done(sc, desc, data);
   2327 			break;
   2328 #ifndef IEEE80211_NO_HT
   2329 		case IWN_RX_COMPRESSED_BA:
   2330 			/* A Compressed BlockAck has been received. */
   2331 			iwn_rx_compressed_ba(sc, desc, data);
   2332 			break;
   2333 #endif
   2334 		case IWN_TX_DONE:
   2335 			/* An 802.11 frame has been transmitted. */
   2336 			ops->tx_done(sc, desc, data);
   2337 			break;
   2338 
   2339 		case IWN_RX_STATISTICS:
   2340 		case IWN_BEACON_STATISTICS:
   2341 			iwn_rx_statistics(sc, desc, data);
   2342 			break;
   2343 
   2344 		case IWN_BEACON_MISSED:
   2345 		{
   2346 			struct iwn_beacon_missed *miss =
   2347 			    (struct iwn_beacon_missed *)(desc + 1);
   2348 
   2349 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2350 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2351 			/*
   2352 			 * If more than 5 consecutive beacons are missed,
   2353 			 * reinitialize the sensitivity state machine.
   2354 			 */
   2355 			DPRINTF(("beacons missed %d/%d\n",
   2356 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2357 			if (ic->ic_state == IEEE80211_S_RUN &&
   2358 			    le32toh(miss->consecutive) > 5)
   2359 				(void)iwn_init_sensitivity(sc);
   2360 			break;
   2361 		}
   2362 		case IWN_UC_READY:
   2363 		{
   2364 			struct iwn_ucode_info *uc =
   2365 			    (struct iwn_ucode_info *)(desc + 1);
   2366 
   2367 			/* The microcontroller is ready. */
   2368 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2369 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2370 			DPRINTF(("microcode alive notification version=%d.%d "
   2371 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2372 			    uc->subtype, le32toh(uc->valid)));
   2373 
   2374 			if (le32toh(uc->valid) != 1) {
   2375 				aprint_error_dev(sc->sc_dev,
   2376 				    "microcontroller initialization "
   2377 				    "failed\n");
   2378 				break;
   2379 			}
   2380 			if (uc->subtype == IWN_UCODE_INIT) {
   2381 				/* Save microcontroller report. */
   2382 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2383 			}
   2384 			/* Save the address of the error log in SRAM. */
   2385 			sc->errptr = le32toh(uc->errptr);
   2386 			break;
   2387 		}
   2388 		case IWN_STATE_CHANGED:
   2389 		{
   2390 			uint32_t *status = (uint32_t *)(desc + 1);
   2391 
   2392 			/* Enabled/disabled notification. */
   2393 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2394 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2395 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2396 
   2397 			if (le32toh(*status) & 1) {
   2398 				/* The radio button has to be pushed. */
   2399 				aprint_error_dev(sc->sc_dev,
   2400 				    "Radio transmitter is off\n");
   2401 				/* Turn the interface down. */
   2402 				ifp->if_flags &= ~IFF_UP;
   2403 				iwn_stop(ifp, 1);
   2404 				return;	/* No further processing. */
   2405 			}
   2406 			break;
   2407 		}
   2408 		case IWN_START_SCAN:
   2409 		{
   2410 			struct iwn_start_scan *scan =
   2411 			    (struct iwn_start_scan *)(desc + 1);
   2412 
   2413 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2414 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2415 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2416 			    scan->chan, le32toh(scan->status)));
   2417 
   2418 			/* Fix current channel. */
   2419 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2420 			break;
   2421 		}
   2422 		case IWN_STOP_SCAN:
   2423 		{
   2424 			struct iwn_stop_scan *scan =
   2425 			    (struct iwn_stop_scan *)(desc + 1);
   2426 
   2427 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2428 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2429 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2430 			    scan->nchan, scan->status, scan->chan));
   2431 
   2432 			if (scan->status == 1 && scan->chan <= 14 &&
   2433 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2434 				/*
   2435 				 * We just finished scanning 2GHz channels,
   2436 				 * start scanning 5GHz ones.
   2437 				 */
   2438 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2439 					break;
   2440 			}
   2441 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2442 			ieee80211_end_scan(ic);
   2443 			break;
   2444 		}
   2445 		case IWN5000_CALIBRATION_RESULT:
   2446 			iwn5000_rx_calib_results(sc, desc, data);
   2447 			break;
   2448 
   2449 		case IWN5000_CALIBRATION_DONE:
   2450 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2451 			wakeup(sc);
   2452 			break;
   2453 		}
   2454 
   2455 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2456 	}
   2457 
   2458 	/* Tell the firmware what we have processed. */
   2459 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2460 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2461 }
   2462 
   2463 /*
   2464  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2465  * from power-down sleep mode.
   2466  */
   2467 static void
   2468 iwn_wakeup_intr(struct iwn_softc *sc)
   2469 {
   2470 	int qid;
   2471 
   2472 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2473 
   2474 	/* Wakeup RX and TX rings. */
   2475 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2476 	for (qid = 0; qid < sc->ntxqs; qid++) {
   2477 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2478 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2479 	}
   2480 }
   2481 
   2482 /*
   2483  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2484  * we can't debug the firmware because it is neither open source nor free, it
   2485  * can help us to identify certain classes of problems.
   2486  */
   2487 static void
   2488 iwn_fatal_intr(struct iwn_softc *sc)
   2489 {
   2490 	struct iwn_fw_dump dump;
   2491 	int i;
   2492 
   2493 	/* Force a complete recalibration on next init. */
   2494 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2495 
   2496 	/* Check that the error log address is valid. */
   2497 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2498 	    sc->errptr + sizeof (dump) >
   2499 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
   2500 		aprint_error_dev(sc->sc_dev,
   2501 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2502 		return;
   2503 	}
   2504 	if (iwn_nic_lock(sc) != 0) {
   2505 		aprint_error_dev(sc->sc_dev,
   2506 		    "could not read firmware error log\n");
   2507 		return;
   2508 	}
   2509 	/* Read firmware error log from SRAM. */
   2510 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2511 	    sizeof (dump) / sizeof (uint32_t));
   2512 	iwn_nic_unlock(sc);
   2513 
   2514 	if (dump.valid == 0) {
   2515 		aprint_error_dev(sc->sc_dev,
   2516 		    "firmware error log is empty\n");
   2517 		return;
   2518 	}
   2519 	aprint_error("firmware error log:\n");
   2520 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2521 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2522 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2523 	    dump.id);
   2524 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2525 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2526 	aprint_error("  error data      = 0x%08X%08X\n",
   2527 	    dump.error_data[0], dump.error_data[1]);
   2528 	aprint_error("  branch link     = 0x%08X%08X\n",
   2529 	    dump.branch_link[0], dump.branch_link[1]);
   2530 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2531 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2532 	aprint_error("  time            = %u\n", dump.time[0]);
   2533 
   2534 	/* Dump driver status (TX and RX rings) while we're here. */
   2535 	aprint_error("driver status:\n");
   2536 	for (i = 0; i < sc->ntxqs; i++) {
   2537 		struct iwn_tx_ring *ring = &sc->txq[i];
   2538 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2539 		    i, ring->qid, ring->cur, ring->queued);
   2540 	}
   2541 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2542 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2543 }
   2544 
   2545 static int
   2546 iwn_intr(void *arg)
   2547 {
   2548 	struct iwn_softc *sc = arg;
   2549 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2550 	uint32_t r1, r2, tmp;
   2551 
   2552 	/* Disable interrupts. */
   2553 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2554 
   2555 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2556 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2557 		tmp = 0;
   2558 		while (sc->ict[sc->ict_cur] != 0) {
   2559 			tmp |= sc->ict[sc->ict_cur];
   2560 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2561 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2562 		}
   2563 		tmp = le32toh(tmp);
   2564 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2565 			tmp = 0;
   2566 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2567 			tmp |= 0x8000;
   2568 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2569 		r2 = 0;	/* Unused. */
   2570 	} else {
   2571 		r1 = IWN_READ(sc, IWN_INT);
   2572 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2573 			return 0;	/* Hardware gone! */
   2574 		r2 = IWN_READ(sc, IWN_FH_INT);
   2575 	}
   2576 	if (r1 == 0 && r2 == 0) {
   2577 		if (ifp->if_flags & IFF_UP)
   2578 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2579 		return 0;	/* Interrupt not for us. */
   2580 	}
   2581 
   2582 	/* Acknowledge interrupts. */
   2583 	IWN_WRITE(sc, IWN_INT, r1);
   2584 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2585 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2586 
   2587 	if (r1 & IWN_INT_RF_TOGGLED) {
   2588 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2589 		aprint_error_dev(sc->sc_dev,
   2590 		    "RF switch: radio %s\n",
   2591 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2592 	}
   2593 	if (r1 & IWN_INT_CT_REACHED) {
   2594 		aprint_error_dev(sc->sc_dev,
   2595 		    "critical temperature reached!\n");
   2596 	}
   2597 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2598 		aprint_error_dev(sc->sc_dev,
   2599 		    "fatal firmware error\n");
   2600 		/* Dump firmware error log and stop. */
   2601 		iwn_fatal_intr(sc);
   2602 		ifp->if_flags &= ~IFF_UP;
   2603 		iwn_stop(ifp, 1);
   2604 		return 1;
   2605 	}
   2606 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2607 	    (r2 & IWN_FH_INT_RX)) {
   2608 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2609 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2610 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2611 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2612 			    IWN_INT_PERIODIC_DIS);
   2613 			iwn_notif_intr(sc);
   2614 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2615 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2616 				    IWN_INT_PERIODIC_ENA);
   2617 			}
   2618 		} else
   2619 			iwn_notif_intr(sc);
   2620 	}
   2621 
   2622 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2623 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2624 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2625 		wakeup(sc);	/* FH DMA transfer completed. */
   2626 	}
   2627 
   2628 	if (r1 & IWN_INT_ALIVE)
   2629 		wakeup(sc);	/* Firmware is alive. */
   2630 
   2631 	if (r1 & IWN_INT_WAKEUP)
   2632 		iwn_wakeup_intr(sc);
   2633 
   2634 	/* Re-enable interrupts. */
   2635 	if (ifp->if_flags & IFF_UP)
   2636 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2637 
   2638 	return 1;
   2639 }
   2640 
   2641 /*
   2642  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2643  * 5000 adapters use a slightly different format).
   2644  */
   2645 static void
   2646 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2647     uint16_t len)
   2648 {
   2649 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2650 
   2651 	*w = htole16(len + 8);
   2652 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2653 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2654 	    sizeof (uint16_t),
   2655 	    BUS_DMASYNC_PREWRITE);
   2656 	if (idx < IWN_SCHED_WINSZ) {
   2657 		*(w + IWN_TX_RING_COUNT) = *w;
   2658 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2659 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2660 		    (char *)(void *)sc->sched_dma.vaddr,
   2661 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2662 	}
   2663 }
   2664 
   2665 static void
   2666 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2667     uint16_t len)
   2668 {
   2669 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2670 
   2671 	*w = htole16(id << 12 | (len + 8));
   2672 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2673 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2674 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2675 	if (idx < IWN_SCHED_WINSZ) {
   2676 		*(w + IWN_TX_RING_COUNT) = *w;
   2677 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2678 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2679 		    (char *)(void *)sc->sched_dma.vaddr,
   2680 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2681 	}
   2682 }
   2683 
   2684 #ifdef notyet
   2685 static void
   2686 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2687 {
   2688 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2689 
   2690 	*w = (*w & htole16(0xf000)) | htole16(1);
   2691 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2692 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2693 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2694 	if (idx < IWN_SCHED_WINSZ) {
   2695 		*(w + IWN_TX_RING_COUNT) = *w;
   2696 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2697 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2698 		    (char *)(void *)sc->sched_dma.vaddr,
   2699 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2700 	}
   2701 }
   2702 #endif
   2703 
   2704 static int
   2705 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2706 {
   2707 	struct ieee80211com *ic = &sc->sc_ic;
   2708 	struct iwn_node *wn = (void *)ni;
   2709 	struct iwn_tx_ring *ring;
   2710 	struct iwn_tx_desc *desc;
   2711 	struct iwn_tx_data *data;
   2712 	struct iwn_tx_cmd *cmd;
   2713 	struct iwn_cmd_data *tx;
   2714 	const struct iwn_rate *rinfo;
   2715 	struct ieee80211_frame *wh;
   2716 	struct ieee80211_key *k = NULL;
   2717 	struct mbuf *m1;
   2718 	uint32_t flags;
   2719 	u_int hdrlen;
   2720 	bus_dma_segment_t *seg;
   2721 	uint8_t tid, ridx, txant, type;
   2722 	int i, totlen, error, pad;
   2723 
   2724 	const struct chanAccParams *cap;
   2725 	int noack;
   2726 	int hdrlen2;
   2727 
   2728 	wh = mtod(m, struct ieee80211_frame *);
   2729 	hdrlen = ieee80211_anyhdrsize(wh);
   2730 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2731 
   2732 	hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
   2733 	    sizeof (struct ieee80211_qosframe) :
   2734 	    sizeof (struct ieee80211_frame);
   2735 
   2736 	if (hdrlen != hdrlen2)
   2737 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2738 		hdrlen, hdrlen2);
   2739 
   2740 	/* XXX OpenBSD sets a different tid when using QOS */
   2741 	tid = 0;
   2742 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   2743 		cap = &ic->ic_wme.wme_chanParams;
   2744 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2745 	}
   2746 	else
   2747 		noack = 0;
   2748 
   2749 	ring = &sc->txq[ac];
   2750 	desc = &ring->desc[ring->cur];
   2751 	data = &ring->data[ring->cur];
   2752 
   2753 	/* Choose a TX rate index. */
   2754 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2755 	    type != IEEE80211_FC0_TYPE_DATA) {
   2756 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2757 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2758 	} else if (ic->ic_fixed_rate != -1) {
   2759 		ridx = sc->fixed_ridx;
   2760 	} else
   2761 		ridx = wn->ridx[ni->ni_txrate];
   2762 	rinfo = &iwn_rates[ridx];
   2763 
   2764 	/* Encrypt the frame if need be. */
   2765 	/*
   2766 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   2767 	 * in order to match old code and other drivers. Tests with
   2768 	 * tcpdump indicates that the order is irrelevant, however,
   2769 	 * as bpf produces unencrypted data for both ordering choices.
   2770 	 */
   2771 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2772 		k = ieee80211_crypto_encap(ic, ni, m);
   2773 		if (k == NULL) {
   2774 			m_freem(m);
   2775 			return ENOBUFS;
   2776 		}
   2777 		/* Packet header may have moved, reset our local pointer. */
   2778 		wh = mtod(m, struct ieee80211_frame *);
   2779 	}
   2780 	totlen = m->m_pkthdr.len;
   2781 
   2782 	if (sc->sc_drvbpf != NULL) {
   2783 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2784 
   2785 		tap->wt_flags = 0;
   2786 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2787 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2788 		tap->wt_rate = rinfo->rate;
   2789 		tap->wt_hwqueue = ac;
   2790 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2791 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2792 
   2793 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   2794 	}
   2795 
   2796 	/* Prepare TX firmware command. */
   2797 	cmd = &ring->cmd[ring->cur];
   2798 	cmd->code = IWN_CMD_TX_DATA;
   2799 	cmd->flags = 0;
   2800 	cmd->qid = ring->qid;
   2801 	cmd->idx = ring->cur;
   2802 
   2803 	tx = (struct iwn_cmd_data *)cmd->data;
   2804 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2805 	tx->scratch = 0;	/* clear "scratch" area */
   2806 
   2807 	flags = 0;
   2808 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2809 		/* Unicast frame, check if an ACK is expected. */
   2810 		if (!noack)
   2811 			flags |= IWN_TX_NEED_ACK;
   2812 	}
   2813 
   2814 #ifdef notyet
   2815 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   2816 	if ((wh->i_fc[0] &
   2817 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   2818 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   2819 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   2820 #endif
   2821 
   2822 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   2823 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   2824 
   2825 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   2826 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2827 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   2828 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   2829 			flags |= IWN_TX_NEED_RTS;
   2830 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   2831 		    ridx >= IWN_RIDX_OFDM6) {
   2832 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   2833 				flags |= IWN_TX_NEED_CTS;
   2834 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   2835 				flags |= IWN_TX_NEED_RTS;
   2836 		}
   2837 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   2838 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   2839 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   2840 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   2841 				flags |= IWN_TX_NEED_PROTECTION;
   2842 			} else
   2843 				flags |= IWN_TX_FULL_TXOP;
   2844 		}
   2845 	}
   2846 
   2847 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2848 	    type != IEEE80211_FC0_TYPE_DATA)
   2849 		tx->id = sc->broadcast_id;
   2850 	else
   2851 		tx->id = wn->id;
   2852 
   2853 	if (type == IEEE80211_FC0_TYPE_MGT) {
   2854 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2855 
   2856 #ifndef IEEE80211_STA_ONLY
   2857 		/* Tell HW to set timestamp in probe responses. */
   2858 		/* XXX NetBSD rev 1.11 added probe requests here but */
   2859 		/* probe requests do not take timestamps (from Bergamini). */
   2860 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   2861 			flags |= IWN_TX_INSERT_TSTAMP;
   2862 #endif
   2863 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   2864 		/* changes here. These are not needed (from Bergamini). */
   2865 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   2866 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   2867 			tx->timeout = htole16(3);
   2868 		else
   2869 			tx->timeout = htole16(2);
   2870 	} else
   2871 		tx->timeout = htole16(0);
   2872 
   2873 	if (hdrlen & 3) {
   2874 		/* First segment length must be a multiple of 4. */
   2875 		flags |= IWN_TX_NEED_PADDING;
   2876 		pad = 4 - (hdrlen & 3);
   2877 	} else
   2878 		pad = 0;
   2879 
   2880 	tx->len = htole16(totlen);
   2881 	tx->tid = tid;
   2882 	tx->rts_ntries = 60;
   2883 	tx->data_ntries = 15;
   2884 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   2885 	tx->plcp = rinfo->plcp;
   2886 	tx->rflags = rinfo->flags;
   2887 	if (tx->id == sc->broadcast_id) {
   2888 		/* Group or management frame. */
   2889 		tx->linkq = 0;
   2890 		/* XXX Alternate between antenna A and B? */
   2891 		txant = IWN_LSB(sc->txchainmask);
   2892 		tx->rflags |= IWN_RFLAG_ANT(txant);
   2893 	} else {
   2894 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   2895 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   2896 	}
   2897 	/* Set physical address of "scratch area". */
   2898 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   2899 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   2900 
   2901 	/* Copy 802.11 header in TX command. */
   2902 	/* XXX NetBSD changed this in rev 1.20 */
   2903 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   2904 
   2905 	/* Trim 802.11 header. */
   2906 	m_adj(m, hdrlen);
   2907 	tx->security = 0;
   2908 	tx->flags = htole32(flags);
   2909 
   2910 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2911 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2912 	if (error != 0) {
   2913 		if (error != EFBIG) {
   2914 			aprint_error_dev(sc->sc_dev,
   2915 			    "can't map mbuf (error %d)\n", error);
   2916 			m_freem(m);
   2917 			return error;
   2918 		}
   2919 		/* Too many DMA segments, linearize mbuf. */
   2920 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   2921 		if (m1 == NULL) {
   2922 			m_freem(m);
   2923 			return ENOBUFS;
   2924 		}
   2925 		if (m->m_pkthdr.len > MHLEN) {
   2926 			MCLGET(m1, M_DONTWAIT);
   2927 			if (!(m1->m_flags & M_EXT)) {
   2928 				m_freem(m);
   2929 				m_freem(m1);
   2930 				return ENOBUFS;
   2931 			}
   2932 		}
   2933 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   2934 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   2935 		m_freem(m);
   2936 		m = m1;
   2937 
   2938 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2939 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2940 		if (error != 0) {
   2941 			aprint_error_dev(sc->sc_dev,
   2942 			    "can't map mbuf (error %d)\n", error);
   2943 			m_freem(m);
   2944 			return error;
   2945 		}
   2946 	}
   2947 
   2948 	data->m = m;
   2949 	data->ni = ni;
   2950 
   2951 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   2952 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   2953 
   2954 	/* Fill TX descriptor. */
   2955 	desc->nsegs = 1 + data->map->dm_nsegs;
   2956 	/* First DMA segment is used by the TX command. */
   2957 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   2958 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   2959 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   2960 	/* Other DMA segments are for data payload. */
   2961 	seg = data->map->dm_segs;
   2962 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   2963 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   2964 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   2965 		    seg->ds_len << 4);
   2966 		seg++;
   2967 	}
   2968 
   2969 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2970 	    BUS_DMASYNC_PREWRITE);
   2971 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   2972 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   2973 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   2974 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2975 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   2976 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   2977 
   2978 #ifdef notyet
   2979 	/* Update TX scheduler. */
   2980 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   2981 #endif
   2982 
   2983 	/* Kick TX ring. */
   2984 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   2985 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   2986 
   2987 	/* Mark TX ring as full if we reach a certain threshold. */
   2988 	if (++ring->queued > IWN_TX_RING_HIMARK)
   2989 		sc->qfullmsk |= 1 << ring->qid;
   2990 
   2991 	return 0;
   2992 }
   2993 
   2994 static void
   2995 iwn_start(struct ifnet *ifp)
   2996 {
   2997 	struct iwn_softc *sc = ifp->if_softc;
   2998 	struct ieee80211com *ic = &sc->sc_ic;
   2999 	struct ieee80211_node *ni;
   3000 	struct ether_header *eh;
   3001 	struct mbuf *m;
   3002 	int ac;
   3003 
   3004 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3005 		return;
   3006 
   3007 	for (;;) {
   3008 		if (sc->qfullmsk != 0) {
   3009 			ifp->if_flags |= IFF_OACTIVE;
   3010 			break;
   3011 		}
   3012 		/* Send pending management frames first. */
   3013 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3014 		if (m != NULL) {
   3015 			ni = (void *)m->m_pkthdr.rcvif;
   3016 			ac = 0;
   3017 			goto sendit;
   3018 		}
   3019 		if (ic->ic_state != IEEE80211_S_RUN)
   3020 			break;
   3021 
   3022 		/* Encapsulate and send data frames. */
   3023 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3024 		if (m == NULL)
   3025 			break;
   3026 		if (m->m_len < sizeof (*eh) &&
   3027 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3028 			ifp->if_oerrors++;
   3029 			continue;
   3030 		}
   3031 		eh = mtod(m, struct ether_header *);
   3032 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3033 		if (ni == NULL) {
   3034 			m_freem(m);
   3035 			ifp->if_oerrors++;
   3036 			continue;
   3037 		}
   3038 		/* classify mbuf so we can find which tx ring to use */
   3039 		if (ieee80211_classify(ic, m, ni) != 0) {
   3040 			m_freem(m);
   3041 			ieee80211_free_node(ni);
   3042 			ifp->if_oerrors++;
   3043 			continue;
   3044 		}
   3045 
   3046 		/* No QoS encapsulation for EAPOL frames. */
   3047 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3048 		    M_WME_GETAC(m) : WME_AC_BE;
   3049 
   3050 		bpf_mtap(ifp, m);
   3051 
   3052 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3053 			ieee80211_free_node(ni);
   3054 			ifp->if_oerrors++;
   3055 			continue;
   3056 		}
   3057 sendit:
   3058 		bpf_mtap3(ic->ic_rawbpf, m);
   3059 
   3060 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3061 			ieee80211_free_node(ni);
   3062 			ifp->if_oerrors++;
   3063 			continue;
   3064 		}
   3065 
   3066 		sc->sc_tx_timer = 5;
   3067 		ifp->if_timer = 1;
   3068 	}
   3069 }
   3070 
   3071 static void
   3072 iwn_watchdog(struct ifnet *ifp)
   3073 {
   3074 	struct iwn_softc *sc = ifp->if_softc;
   3075 
   3076 	ifp->if_timer = 0;
   3077 
   3078 	if (sc->sc_tx_timer > 0) {
   3079 		if (--sc->sc_tx_timer == 0) {
   3080 			aprint_error_dev(sc->sc_dev,
   3081 			    "device timeout\n");
   3082 			ifp->if_flags &= ~IFF_UP;
   3083 			iwn_stop(ifp, 1);
   3084 			ifp->if_oerrors++;
   3085 			return;
   3086 		}
   3087 		ifp->if_timer = 1;
   3088 	}
   3089 
   3090 	ieee80211_watchdog(&sc->sc_ic);
   3091 }
   3092 
   3093 static int
   3094 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3095 {
   3096 	struct iwn_softc *sc = ifp->if_softc;
   3097 	struct ieee80211com *ic = &sc->sc_ic;
   3098 	struct ifaddr *ifa;
   3099 	const struct sockaddr *sa;
   3100 	int s, error = 0;
   3101 
   3102 	s = splnet();
   3103 
   3104 	switch (cmd) {
   3105 	case SIOCSIFADDR:
   3106 		ifa = (struct ifaddr *)data;
   3107 		ifp->if_flags |= IFF_UP;
   3108 #ifdef INET
   3109 		if (ifa->ifa_addr->sa_family == AF_INET)
   3110 			arp_ifinit(&ic->ic_ac, ifa);
   3111 #endif
   3112 		/* FALLTHROUGH */
   3113 	case SIOCSIFFLAGS:
   3114 		/* XXX Added as it is in every NetBSD driver */
   3115 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3116 			break;
   3117 		if (ifp->if_flags & IFF_UP) {
   3118 			if (!(ifp->if_flags & IFF_RUNNING))
   3119 				error = iwn_init(ifp);
   3120 		} else {
   3121 			if (ifp->if_flags & IFF_RUNNING)
   3122 				iwn_stop(ifp, 1);
   3123 		}
   3124 		break;
   3125 
   3126 	case SIOCADDMULTI:
   3127 	case SIOCDELMULTI:
   3128 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3129 		error = (cmd == SIOCADDMULTI) ?
   3130 		    ether_addmulti(sa, &sc->sc_ec) :
   3131 		    ether_delmulti(sa, &sc->sc_ec);
   3132 
   3133 		if (error == ENETRESET)
   3134 			error = 0;
   3135 		break;
   3136 
   3137 	default:
   3138 		error = ieee80211_ioctl(ic, cmd, data);
   3139 	}
   3140 
   3141 	if (error == ENETRESET) {
   3142 		error = 0;
   3143 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3144 		    (IFF_UP | IFF_RUNNING)) {
   3145 			iwn_stop(ifp, 0);
   3146 			error = iwn_init(ifp);
   3147 		}
   3148 	}
   3149 
   3150 	splx(s);
   3151 	return error;
   3152 }
   3153 
   3154 /*
   3155  * Send a command to the firmware.
   3156  */
   3157 static int
   3158 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3159 {
   3160 	struct iwn_tx_ring *ring = &sc->txq[4];
   3161 	struct iwn_tx_desc *desc;
   3162 	struct iwn_tx_data *data;
   3163 	struct iwn_tx_cmd *cmd;
   3164 	struct mbuf *m;
   3165 	bus_addr_t paddr;
   3166 	int totlen, error;
   3167 
   3168 	desc = &ring->desc[ring->cur];
   3169 	data = &ring->data[ring->cur];
   3170 	totlen = 4 + size;
   3171 
   3172 	if (size > sizeof cmd->data) {
   3173 		/* Command is too large to fit in a descriptor. */
   3174 		if (totlen > MCLBYTES)
   3175 			return EINVAL;
   3176 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3177 		if (m == NULL)
   3178 			return ENOMEM;
   3179 		if (totlen > MHLEN) {
   3180 			MCLGET(m, M_DONTWAIT);
   3181 			if (!(m->m_flags & M_EXT)) {
   3182 				m_freem(m);
   3183 				return ENOMEM;
   3184 			}
   3185 		}
   3186 		cmd = mtod(m, struct iwn_tx_cmd *);
   3187 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3188 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3189 		if (error != 0) {
   3190 			m_freem(m);
   3191 			return error;
   3192 		}
   3193 		data->m = m;
   3194 		paddr = data->map->dm_segs[0].ds_addr;
   3195 	} else {
   3196 		cmd = &ring->cmd[ring->cur];
   3197 		paddr = data->cmd_paddr;
   3198 	}
   3199 
   3200 	cmd->code = code;
   3201 	cmd->flags = 0;
   3202 	cmd->qid = ring->qid;
   3203 	cmd->idx = ring->cur;
   3204 	memcpy(cmd->data, buf, size);
   3205 
   3206 	desc->nsegs = 1;
   3207 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3208 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3209 
   3210 	if (size > sizeof cmd->data) {
   3211 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3212 		    BUS_DMASYNC_PREWRITE);
   3213 	} else {
   3214 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3215 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3216 		    totlen, BUS_DMASYNC_PREWRITE);
   3217 	}
   3218 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3219 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3220 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3221 
   3222 #ifdef notyet
   3223 	/* Update TX scheduler. */
   3224 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3225 #endif
   3226 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3227 
   3228 	/* Kick command ring. */
   3229 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3230 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3231 
   3232 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3233 }
   3234 
   3235 static int
   3236 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3237 {
   3238 	struct iwn4965_node_info hnode;
   3239 	char *src, *dst;
   3240 
   3241 	/*
   3242 	 * We use the node structure for 5000 Series internally (it is
   3243 	 * a superset of the one for 4965AGN). We thus copy the common
   3244 	 * fields before sending the command.
   3245 	 */
   3246 	src = (char *)node;
   3247 	dst = (char *)&hnode;
   3248 	memcpy(dst, src, 48);
   3249 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3250 	memcpy(dst + 48, src + 72, 20);
   3251 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3252 }
   3253 
   3254 static int
   3255 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3256 {
   3257 	/* Direct mapping. */
   3258 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3259 }
   3260 
   3261 static int
   3262 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3263 {
   3264 	struct iwn_node *wn = (void *)ni;
   3265 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3266 	struct iwn_cmd_link_quality linkq;
   3267 	const struct iwn_rate *rinfo;
   3268 	uint8_t txant;
   3269 	int i, txrate;
   3270 
   3271 	/* Use the first valid TX antenna. */
   3272 	txant = IWN_LSB(sc->txchainmask);
   3273 
   3274 	memset(&linkq, 0, sizeof linkq);
   3275 	linkq.id = wn->id;
   3276 	linkq.antmsk_1stream = txant;
   3277 	linkq.antmsk_2stream = IWN_ANT_AB;
   3278 	linkq.ampdu_max = 31;
   3279 	linkq.ampdu_threshold = 3;
   3280 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3281 
   3282 	/* Start at highest available bit-rate. */
   3283 	txrate = rs->rs_nrates - 1;
   3284 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3285 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3286 		linkq.retry[i].plcp = rinfo->plcp;
   3287 		linkq.retry[i].rflags = rinfo->flags;
   3288 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3289 		/* Next retry at immediate lower bit-rate. */
   3290 		if (txrate > 0)
   3291 			txrate--;
   3292 	}
   3293 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3294 }
   3295 
   3296 /*
   3297  * Broadcast node is used to send group-addressed and management frames.
   3298  */
   3299 static int
   3300 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3301 {
   3302 	struct iwn_ops *ops = &sc->ops;
   3303 	struct iwn_node_info node;
   3304 	struct iwn_cmd_link_quality linkq;
   3305 	const struct iwn_rate *rinfo;
   3306 	uint8_t txant;
   3307 	int i, error;
   3308 
   3309 	memset(&node, 0, sizeof node);
   3310 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3311 	node.id = sc->broadcast_id;
   3312 	DPRINTF(("adding broadcast node\n"));
   3313 	if ((error = ops->add_node(sc, &node, async)) != 0)
   3314 		return error;
   3315 
   3316 	/* Use the first valid TX antenna. */
   3317 	txant = IWN_LSB(sc->txchainmask);
   3318 
   3319 	memset(&linkq, 0, sizeof linkq);
   3320 	linkq.id = sc->broadcast_id;
   3321 	linkq.antmsk_1stream = txant;
   3322 	linkq.antmsk_2stream = IWN_ANT_AB;
   3323 	linkq.ampdu_max = 64;
   3324 	linkq.ampdu_threshold = 3;
   3325 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3326 
   3327 	/* Use lowest mandatory bit-rate. */
   3328 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3329 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3330 	linkq.retry[0].plcp = rinfo->plcp;
   3331 	linkq.retry[0].rflags = rinfo->flags;
   3332 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3333 	/* Use same bit-rate for all TX retries. */
   3334 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3335 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3336 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3337 	}
   3338 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3339 }
   3340 
   3341 static void
   3342 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3343 {
   3344 	struct iwn_cmd_led led;
   3345 
   3346 	/* Clear microcode LED ownership. */
   3347 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3348 
   3349 	led.which = which;
   3350 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3351 	led.off = off;
   3352 	led.on = on;
   3353 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3354 }
   3355 
   3356 /*
   3357  * Set the critical temperature at which the firmware will stop the radio
   3358  * and notify us.
   3359  */
   3360 static int
   3361 iwn_set_critical_temp(struct iwn_softc *sc)
   3362 {
   3363 	struct iwn_critical_temp crit;
   3364 	int32_t temp;
   3365 
   3366 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3367 
   3368 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3369 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3370 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3371 		temp = IWN_CTOK(110);
   3372 	else
   3373 		temp = 110;
   3374 	memset(&crit, 0, sizeof crit);
   3375 	crit.tempR = htole32(temp);
   3376 	DPRINTF(("setting critical temperature to %d\n", temp));
   3377 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3378 }
   3379 
   3380 static int
   3381 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3382 {
   3383 	struct iwn_cmd_timing cmd;
   3384 	uint64_t val, mod;
   3385 
   3386 	memset(&cmd, 0, sizeof cmd);
   3387 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3388 	cmd.bintval = htole16(ni->ni_intval);
   3389 	cmd.lintval = htole16(10);
   3390 
   3391 	/* Compute remaining time until next beacon. */
   3392 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3393 	mod = le64toh(cmd.tstamp) % val;
   3394 	cmd.binitval = htole32((uint32_t)(val - mod));
   3395 
   3396 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
   3397 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3398 
   3399 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3400 }
   3401 
   3402 static void
   3403 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3404 {
   3405 	/* Adjust TX power if need be (delta >= 3 degC). */
   3406 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3407 	if (abs(temp - sc->temp) >= 3) {
   3408 		/* Record temperature of last calibration. */
   3409 		sc->temp = temp;
   3410 		(void)iwn4965_set_txpower(sc, 1);
   3411 	}
   3412 }
   3413 
   3414 /*
   3415  * Set TX power for current channel (each rate has its own power settings).
   3416  * This function takes into account the regulatory information from EEPROM,
   3417  * the current temperature and the current voltage.
   3418  */
   3419 static int
   3420 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3421 {
   3422 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3423 #define fdivround(a, b, n)	\
   3424 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3425 /* Linear interpolation. */
   3426 #define interpolate(x, x1, y1, x2, y2, n)	\
   3427 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3428 
   3429 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3430 	struct ieee80211com *ic = &sc->sc_ic;
   3431 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3432 	struct ieee80211_channel *ch;
   3433 	struct iwn4965_cmd_txpower cmd;
   3434 	struct iwn4965_eeprom_chan_samples *chans;
   3435 	const uint8_t *rf_gain, *dsp_gain;
   3436 	int32_t vdiff, tdiff;
   3437 	int i, c, grp, maxpwr;
   3438 	uint8_t chan;
   3439 
   3440 	/* Retrieve current channel from last RXON. */
   3441 	chan = sc->rxon.chan;
   3442 	DPRINTF(("setting TX power for channel %d\n", chan));
   3443 	ch = &ic->ic_channels[chan];
   3444 
   3445 	memset(&cmd, 0, sizeof cmd);
   3446 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3447 	cmd.chan = chan;
   3448 
   3449 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3450 		maxpwr   = sc->maxpwr5GHz;
   3451 		rf_gain  = iwn4965_rf_gain_5ghz;
   3452 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3453 	} else {
   3454 		maxpwr   = sc->maxpwr2GHz;
   3455 		rf_gain  = iwn4965_rf_gain_2ghz;
   3456 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3457 	}
   3458 
   3459 	/* Compute voltage compensation. */
   3460 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3461 	if (vdiff > 0)
   3462 		vdiff *= 2;
   3463 	if (abs(vdiff) > 2)
   3464 		vdiff = 0;
   3465 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3466 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3467 
   3468 	/* Get channel attenuation group. */
   3469 	if (chan <= 20)		/* 1-20 */
   3470 		grp = 4;
   3471 	else if (chan <= 43)	/* 34-43 */
   3472 		grp = 0;
   3473 	else if (chan <= 70)	/* 44-70 */
   3474 		grp = 1;
   3475 	else if (chan <= 124)	/* 71-124 */
   3476 		grp = 2;
   3477 	else			/* 125-200 */
   3478 		grp = 3;
   3479 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3480 
   3481 	/* Get channel sub-band. */
   3482 	for (i = 0; i < IWN_NBANDS; i++)
   3483 		if (sc->bands[i].lo != 0 &&
   3484 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3485 			break;
   3486 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3487 		return EINVAL;
   3488 	chans = sc->bands[i].chans;
   3489 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3490 
   3491 	for (c = 0; c < 2; c++) {
   3492 		uint8_t power, gain, temp;
   3493 		int maxchpwr, pwr, ridx, idx;
   3494 
   3495 		power = interpolate(chan,
   3496 		    chans[0].num, chans[0].samples[c][1].power,
   3497 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3498 		gain  = interpolate(chan,
   3499 		    chans[0].num, chans[0].samples[c][1].gain,
   3500 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3501 		temp  = interpolate(chan,
   3502 		    chans[0].num, chans[0].samples[c][1].temp,
   3503 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3504 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3505 		    c, power, gain, temp));
   3506 
   3507 		/* Compute temperature compensation. */
   3508 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3509 		DPRINTF(("temperature compensation=%d (current=%d, "
   3510 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3511 
   3512 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3513 			/* Convert dBm to half-dBm. */
   3514 			maxchpwr = sc->maxpwr[chan] * 2;
   3515 			if ((ridx / 8) & 1)
   3516 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3517 
   3518 			pwr = maxpwr;
   3519 
   3520 			/* Adjust TX power based on rate. */
   3521 			if ((ridx % 8) == 5)
   3522 				pwr -= 15;	/* OFDM48: -7.5dB */
   3523 			else if ((ridx % 8) == 6)
   3524 				pwr -= 17;	/* OFDM54: -8.5dB */
   3525 			else if ((ridx % 8) == 7)
   3526 				pwr -= 20;	/* OFDM60: -10dB */
   3527 			else
   3528 				pwr -= 10;	/* Others: -5dB */
   3529 
   3530 			/* Do not exceed channel max TX power. */
   3531 			if (pwr > maxchpwr)
   3532 				pwr = maxchpwr;
   3533 
   3534 			idx = gain - (pwr - power) - tdiff - vdiff;
   3535 			if ((ridx / 8) & 1)	/* MIMO */
   3536 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3537 
   3538 			if (cmd.band == 0)
   3539 				idx += 9;	/* 5GHz */
   3540 			if (ridx == IWN_RIDX_MAX)
   3541 				idx += 5;	/* CCK */
   3542 
   3543 			/* Make sure idx stays in a valid range. */
   3544 			if (idx < 0)
   3545 				idx = 0;
   3546 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3547 				idx = IWN4965_MAX_PWR_INDEX;
   3548 
   3549 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3550 			    c, ridx, idx));
   3551 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3552 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3553 		}
   3554 	}
   3555 
   3556 	DPRINTF(("setting TX power for chan %d\n", chan));
   3557 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3558 
   3559 #undef interpolate
   3560 #undef fdivround
   3561 }
   3562 
   3563 static int
   3564 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3565 {
   3566 	struct iwn5000_cmd_txpower cmd;
   3567 
   3568 	/*
   3569 	 * TX power calibration is handled automatically by the firmware
   3570 	 * for 5000 Series.
   3571 	 */
   3572 	memset(&cmd, 0, sizeof cmd);
   3573 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3574 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3575 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3576 	DPRINTF(("setting TX power\n"));
   3577 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
   3578 }
   3579 
   3580 /*
   3581  * Retrieve the maximum RSSI (in dBm) among receivers.
   3582  */
   3583 static int
   3584 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3585 {
   3586 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3587 	uint8_t mask, agc;
   3588 	int rssi;
   3589 
   3590 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3591 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3592 
   3593 	rssi = 0;
   3594 	if (mask & IWN_ANT_A)
   3595 		rssi = MAX(rssi, phy->rssi[0]);
   3596 	if (mask & IWN_ANT_B)
   3597 		rssi = MAX(rssi, phy->rssi[2]);
   3598 	if (mask & IWN_ANT_C)
   3599 		rssi = MAX(rssi, phy->rssi[4]);
   3600 
   3601 	return rssi - agc - IWN_RSSI_TO_DBM;
   3602 }
   3603 
   3604 static int
   3605 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3606 {
   3607 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3608 	uint8_t agc;
   3609 	int rssi;
   3610 
   3611 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3612 
   3613 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3614 		   le16toh(phy->rssi[1]) & 0xff);
   3615 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3616 
   3617 	return rssi - agc - IWN_RSSI_TO_DBM;
   3618 }
   3619 
   3620 /*
   3621  * Retrieve the average noise (in dBm) among receivers.
   3622  */
   3623 static int
   3624 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3625 {
   3626 	int i, total, nbant, noise;
   3627 
   3628 	total = nbant = 0;
   3629 	for (i = 0; i < 3; i++) {
   3630 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3631 			continue;
   3632 		total += noise;
   3633 		nbant++;
   3634 	}
   3635 	/* There should be at least one antenna but check anyway. */
   3636 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3637 }
   3638 
   3639 /*
   3640  * Compute temperature (in degC) from last received statistics.
   3641  */
   3642 static int
   3643 iwn4965_get_temperature(struct iwn_softc *sc)
   3644 {
   3645 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3646 	int32_t r1, r2, r3, r4, temp;
   3647 
   3648 	r1 = le32toh(uc->temp[0].chan20MHz);
   3649 	r2 = le32toh(uc->temp[1].chan20MHz);
   3650 	r3 = le32toh(uc->temp[2].chan20MHz);
   3651 	r4 = le32toh(sc->rawtemp);
   3652 
   3653 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
   3654 		return 0;
   3655 
   3656 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3657 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
   3658 	/* Compute temperature in Kelvin. */
   3659 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3660 	temp = (temp * 97) / 100 + 8;
   3661 
   3662 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3663 	return IWN_KTOC(temp);
   3664 }
   3665 
   3666 static int
   3667 iwn5000_get_temperature(struct iwn_softc *sc)
   3668 {
   3669 	int32_t temp;
   3670 
   3671 	/*
   3672 	 * Temperature is not used by the driver for 5000 Series because
   3673 	 * TX power calibration is handled by firmware.  We export it to
   3674 	 * users through the sensor framework though.
   3675 	 */
   3676 	temp = le32toh(sc->rawtemp);
   3677 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3678 		temp = (temp / -5) + sc->temp_off;
   3679 		temp = IWN_KTOC(temp);
   3680 	}
   3681 	return temp;
   3682 }
   3683 
   3684 /*
   3685  * Initialize sensitivity calibration state machine.
   3686  */
   3687 static int
   3688 iwn_init_sensitivity(struct iwn_softc *sc)
   3689 {
   3690 	struct iwn_ops *ops = &sc->ops;
   3691 	struct iwn_calib_state *calib = &sc->calib;
   3692 	uint32_t flags;
   3693 	int error;
   3694 
   3695 	/* Reset calibration state machine. */
   3696 	memset(calib, 0, sizeof (*calib));
   3697 	calib->state = IWN_CALIB_STATE_INIT;
   3698 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3699 	/* Set initial correlation values. */
   3700 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3701 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3702 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3703 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3704 	calib->cck_x4      = 125;
   3705 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3706 	calib->energy_cck  = sc->limits->energy_cck;
   3707 
   3708 	/* Write initial sensitivity. */
   3709 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3710 		return error;
   3711 
   3712 	/* Write initial gains. */
   3713 	if ((error = ops->init_gains(sc)) != 0)
   3714 		return error;
   3715 
   3716 	/* Request statistics at each beacon interval. */
   3717 	flags = 0;
   3718 	DPRINTF(("sending request for statistics\n"));
   3719 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3720 }
   3721 
   3722 /*
   3723  * Collect noise and RSSI statistics for the first 20 beacons received
   3724  * after association and use them to determine connected antennas and
   3725  * to set differential gains.
   3726  */
   3727 static void
   3728 iwn_collect_noise(struct iwn_softc *sc,
   3729     const struct iwn_rx_general_stats *stats)
   3730 {
   3731 	struct iwn_ops *ops = &sc->ops;
   3732 	struct iwn_calib_state *calib = &sc->calib;
   3733 	uint32_t val;
   3734 	int i;
   3735 
   3736 	/* Accumulate RSSI and noise for all 3 antennas. */
   3737 	for (i = 0; i < 3; i++) {
   3738 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3739 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3740 	}
   3741 	/* NB: We update differential gains only once after 20 beacons. */
   3742 	if (++calib->nbeacons < 20)
   3743 		return;
   3744 
   3745 	/* Determine highest average RSSI. */
   3746 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3747 	val = MAX(calib->rssi[2], val);
   3748 
   3749 	/* Determine which antennas are connected. */
   3750 	sc->chainmask = sc->rxchainmask;
   3751 	for (i = 0; i < 3; i++)
   3752 		if (val - calib->rssi[i] > 15 * 20)
   3753 			sc->chainmask &= ~(1 << i);
   3754 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   3755 	    sc->rxchainmask, sc->chainmask));
   3756 
   3757 	/* If none of the TX antennas are connected, keep at least one. */
   3758 	if ((sc->chainmask & sc->txchainmask) == 0)
   3759 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   3760 
   3761 	(void)ops->set_gains(sc);
   3762 	calib->state = IWN_CALIB_STATE_RUN;
   3763 
   3764 #ifdef notyet
   3765 	/* XXX Disable RX chains with no antennas connected. */
   3766 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   3767 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   3768 #endif
   3769 
   3770 	/* Enable power-saving mode if requested by user. */
   3771 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3772 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3773 }
   3774 
   3775 static int
   3776 iwn4965_init_gains(struct iwn_softc *sc)
   3777 {
   3778 	struct iwn_phy_calib_gain cmd;
   3779 
   3780 	memset(&cmd, 0, sizeof cmd);
   3781 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3782 	/* Differential gains initially set to 0 for all 3 antennas. */
   3783 	DPRINTF(("setting initial differential gains\n"));
   3784 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3785 }
   3786 
   3787 static int
   3788 iwn5000_init_gains(struct iwn_softc *sc)
   3789 {
   3790 	struct iwn_phy_calib cmd;
   3791 
   3792 	memset(&cmd, 0, sizeof cmd);
   3793 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   3794 	cmd.ngroups = 1;
   3795 	cmd.isvalid = 1;
   3796 	DPRINTF(("setting initial differential gains\n"));
   3797 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3798 }
   3799 
   3800 static int
   3801 iwn4965_set_gains(struct iwn_softc *sc)
   3802 {
   3803 	struct iwn_calib_state *calib = &sc->calib;
   3804 	struct iwn_phy_calib_gain cmd;
   3805 	int i, delta, noise;
   3806 
   3807 	/* Get minimal noise among connected antennas. */
   3808 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   3809 	for (i = 0; i < 3; i++)
   3810 		if (sc->chainmask & (1 << i))
   3811 			noise = MIN(calib->noise[i], noise);
   3812 
   3813 	memset(&cmd, 0, sizeof cmd);
   3814 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3815 	/* Set differential gains for connected antennas. */
   3816 	for (i = 0; i < 3; i++) {
   3817 		if (sc->chainmask & (1 << i)) {
   3818 			/* Compute attenuation (in unit of 1.5dB). */
   3819 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   3820 			/* NB: delta <= 0 */
   3821 			/* Limit to [-4.5dB,0]. */
   3822 			cmd.gain[i] = MIN(abs(delta), 3);
   3823 			if (delta < 0)
   3824 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   3825 		}
   3826 	}
   3827 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   3828 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   3829 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3830 }
   3831 
   3832 static int
   3833 iwn5000_set_gains(struct iwn_softc *sc)
   3834 {
   3835 	struct iwn_calib_state *calib = &sc->calib;
   3836 	struct iwn_phy_calib_gain cmd;
   3837 	int i, ant, div, delta;
   3838 
   3839 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   3840 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   3841 
   3842 	memset(&cmd, 0, sizeof cmd);
   3843 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
   3844 	cmd.ngroups = 1;
   3845 	cmd.isvalid = 1;
   3846 	/* Get first available RX antenna as referential. */
   3847 	ant = IWN_LSB(sc->rxchainmask);
   3848 	/* Set differential gains for other antennas. */
   3849 	for (i = ant + 1; i < 3; i++) {
   3850 		if (sc->chainmask & (1 << i)) {
   3851 			/* The delta is relative to antenna "ant". */
   3852 			delta = ((int32_t)calib->noise[ant] -
   3853 			    (int32_t)calib->noise[i]) / div;
   3854 			/* Limit to [-4.5dB,+4.5dB]. */
   3855 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   3856 			if (delta < 0)
   3857 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   3858 		}
   3859 	}
   3860 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   3861 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   3862 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3863 }
   3864 
   3865 /*
   3866  * Tune RF RX sensitivity based on the number of false alarms detected
   3867  * during the last beacon period.
   3868  */
   3869 static void
   3870 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   3871 {
   3872 #define inc(val, inc, max)			\
   3873 	if ((val) < (max)) {			\
   3874 		if ((val) < (max) - (inc))	\
   3875 			(val) += (inc);		\
   3876 		else				\
   3877 			(val) = (max);		\
   3878 		needs_update = 1;		\
   3879 	}
   3880 #define dec(val, dec, min)			\
   3881 	if ((val) > (min)) {			\
   3882 		if ((val) > (min) + (dec))	\
   3883 			(val) -= (dec);		\
   3884 		else				\
   3885 			(val) = (min);		\
   3886 		needs_update = 1;		\
   3887 	}
   3888 
   3889 	const struct iwn_sensitivity_limits *limits = sc->limits;
   3890 	struct iwn_calib_state *calib = &sc->calib;
   3891 	uint32_t val, rxena, fa;
   3892 	uint32_t energy[3], energy_min;
   3893 	uint8_t noise[3], noise_ref;
   3894 	int i, needs_update = 0;
   3895 
   3896 	/* Check that we've been enabled long enough. */
   3897 	if ((rxena = le32toh(stats->general.load)) == 0)
   3898 		return;
   3899 
   3900 	/* Compute number of false alarms since last call for OFDM. */
   3901 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   3902 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   3903 	fa *= 200 * 1024;	/* 200TU */
   3904 
   3905 	/* Save counters values for next call. */
   3906 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   3907 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   3908 
   3909 	if (fa > 50 * rxena) {
   3910 		/* High false alarm count, decrease sensitivity. */
   3911 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   3912 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   3913 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   3914 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   3915 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   3916 
   3917 	} else if (fa < 5 * rxena) {
   3918 		/* Low false alarm count, increase sensitivity. */
   3919 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   3920 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   3921 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   3922 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   3923 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   3924 	}
   3925 
   3926 	/* Compute maximum noise among 3 receivers. */
   3927 	for (i = 0; i < 3; i++)
   3928 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   3929 	val = MAX(noise[0], noise[1]);
   3930 	val = MAX(noise[2], val);
   3931 	/* Insert it into our samples table. */
   3932 	calib->noise_samples[calib->cur_noise_sample] = val;
   3933 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   3934 
   3935 	/* Compute maximum noise among last 20 samples. */
   3936 	noise_ref = calib->noise_samples[0];
   3937 	for (i = 1; i < 20; i++)
   3938 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   3939 
   3940 	/* Compute maximum energy among 3 receivers. */
   3941 	for (i = 0; i < 3; i++)
   3942 		energy[i] = le32toh(stats->general.energy[i]);
   3943 	val = MIN(energy[0], energy[1]);
   3944 	val = MIN(energy[2], val);
   3945 	/* Insert it into our samples table. */
   3946 	calib->energy_samples[calib->cur_energy_sample] = val;
   3947 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   3948 
   3949 	/* Compute minimum energy among last 10 samples. */
   3950 	energy_min = calib->energy_samples[0];
   3951 	for (i = 1; i < 10; i++)
   3952 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   3953 	energy_min += 6;
   3954 
   3955 	/* Compute number of false alarms since last call for CCK. */
   3956 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   3957 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   3958 	fa *= 200 * 1024;	/* 200TU */
   3959 
   3960 	/* Save counters values for next call. */
   3961 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   3962 	calib->fa_cck = le32toh(stats->cck.fa);
   3963 
   3964 	if (fa > 50 * rxena) {
   3965 		/* High false alarm count, decrease sensitivity. */
   3966 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   3967 		calib->cck_state = IWN_CCK_STATE_HIFA;
   3968 		calib->low_fa = 0;
   3969 
   3970 		if (calib->cck_x4 > 160) {
   3971 			calib->noise_ref = noise_ref;
   3972 			if (calib->energy_cck > 2)
   3973 				dec(calib->energy_cck, 2, energy_min);
   3974 		}
   3975 		if (calib->cck_x4 < 160) {
   3976 			calib->cck_x4 = 161;
   3977 			needs_update = 1;
   3978 		} else
   3979 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   3980 
   3981 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   3982 
   3983 	} else if (fa < 5 * rxena) {
   3984 		/* Low false alarm count, increase sensitivity. */
   3985 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   3986 		calib->cck_state = IWN_CCK_STATE_LOFA;
   3987 		calib->low_fa++;
   3988 
   3989 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   3990 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   3991 		     calib->low_fa > 100)) {
   3992 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   3993 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   3994 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   3995 		}
   3996 	} else {
   3997 		/* Not worth to increase or decrease sensitivity. */
   3998 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   3999 		calib->low_fa = 0;
   4000 		calib->noise_ref = noise_ref;
   4001 
   4002 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4003 			/* Previous interval had many false alarms. */
   4004 			dec(calib->energy_cck, 8, energy_min);
   4005 		}
   4006 		calib->cck_state = IWN_CCK_STATE_INIT;
   4007 	}
   4008 
   4009 	if (needs_update)
   4010 		(void)iwn_send_sensitivity(sc);
   4011 #undef dec
   4012 #undef inc
   4013 }
   4014 
   4015 static int
   4016 iwn_send_sensitivity(struct iwn_softc *sc)
   4017 {
   4018 	struct iwn_calib_state *calib = &sc->calib;
   4019 	struct iwn_sensitivity_cmd cmd;
   4020 
   4021 	memset(&cmd, 0, sizeof cmd);
   4022 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4023 	/* OFDM modulation. */
   4024 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4025 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4026 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4027 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4028 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4029 	cmd.energy_ofdm_th   = htole16(62);
   4030 	/* CCK modulation. */
   4031 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4032 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4033 	cmd.energy_cck       = htole16(calib->energy_cck);
   4034 	/* Barker modulation: use default values. */
   4035 	cmd.corr_barker      = htole16(190);
   4036 	cmd.corr_barker_mrc  = htole16(390);
   4037 
   4038 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4039 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4040 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4041 	    calib->energy_cck));
   4042 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
   4043 }
   4044 
   4045 /*
   4046  * Set STA mode power saving level (between 0 and 5).
   4047  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4048  */
   4049 static int
   4050 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4051 {
   4052 	struct iwn_pmgt_cmd cmd;
   4053 	const struct iwn_pmgt *pmgt;
   4054 	uint32_t maxp, skip_dtim;
   4055 	pcireg_t reg;
   4056 	int i;
   4057 
   4058 	/* Select which PS parameters to use. */
   4059 	if (dtim <= 2)
   4060 		pmgt = &iwn_pmgt[0][level];
   4061 	else if (dtim <= 10)
   4062 		pmgt = &iwn_pmgt[1][level];
   4063 	else
   4064 		pmgt = &iwn_pmgt[2][level];
   4065 
   4066 	memset(&cmd, 0, sizeof cmd);
   4067 	if (level != 0)	/* not CAM */
   4068 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4069 	if (level == 5)
   4070 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4071 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4072 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4073 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   4074 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4075 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4076 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4077 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4078 
   4079 	if (dtim == 0) {
   4080 		dtim = 1;
   4081 		skip_dtim = 0;
   4082 	} else
   4083 		skip_dtim = pmgt->skip_dtim;
   4084 	if (skip_dtim != 0) {
   4085 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4086 		maxp = pmgt->intval[4];
   4087 		if (maxp == (uint32_t)-1)
   4088 			maxp = dtim * (skip_dtim + 1);
   4089 		else if (maxp > dtim)
   4090 			maxp = (maxp / dtim) * dtim;
   4091 	} else
   4092 		maxp = dtim;
   4093 	for (i = 0; i < 5; i++)
   4094 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4095 
   4096 	DPRINTF(("setting power saving level to %d\n", level));
   4097 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4098 }
   4099 
   4100 static int
   4101 iwn_config(struct iwn_softc *sc)
   4102 {
   4103 	struct iwn_ops *ops = &sc->ops;
   4104 	struct ieee80211com *ic = &sc->sc_ic;
   4105 	struct ifnet *ifp = ic->ic_ifp;
   4106 	struct iwn_bluetooth bluetooth;
   4107 	uint32_t txmask;
   4108 	uint16_t rxchain;
   4109 	int error;
   4110 
   4111 	/* Configure valid TX chains for 5000 Series. */
   4112 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4113 		txmask = htole32(sc->txchainmask);
   4114 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4115 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4116 		    sizeof txmask, 0);
   4117 		if (error != 0) {
   4118 			aprint_error_dev(sc->sc_dev,
   4119 			    "could not configure valid TX chains\n");
   4120 			return error;
   4121 		}
   4122 	}
   4123 
   4124 	/* Configure bluetooth coexistence. */
   4125 	memset(&bluetooth, 0, sizeof bluetooth);
   4126 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
   4127 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4128 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4129 	DPRINTF(("configuring bluetooth coexistence\n"));
   4130 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4131 	if (error != 0) {
   4132 		aprint_error_dev(sc->sc_dev,
   4133 		    "could not configure bluetooth coexistence\n");
   4134 		return error;
   4135 	}
   4136 
   4137 	/* Set mode, channel, RX filter and enable RX. */
   4138 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4139 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4140 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4141 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4142 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4143 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4144 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4145 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4146 	switch (ic->ic_opmode) {
   4147 	case IEEE80211_M_STA:
   4148 		sc->rxon.mode = IWN_MODE_STA;
   4149 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4150 		break;
   4151 	case IEEE80211_M_MONITOR:
   4152 		sc->rxon.mode = IWN_MODE_MONITOR;
   4153 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4154 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4155 		break;
   4156 	default:
   4157 		/* Should not get there. */
   4158 		break;
   4159 	}
   4160 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4161 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4162 	sc->rxon.ht_single_mask = 0xff;
   4163 	sc->rxon.ht_dual_mask = 0xff;
   4164 	sc->rxon.ht_triple_mask = 0xff;
   4165 	rxchain =
   4166 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4167 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4168 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4169 	sc->rxon.rxchain = htole16(rxchain);
   4170 	DPRINTF(("setting configuration\n"));
   4171 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
   4172 	if (error != 0) {
   4173 		aprint_error_dev(sc->sc_dev,
   4174 		    "RXON command failed\n");
   4175 		return error;
   4176 	}
   4177 
   4178 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4179 		aprint_error_dev(sc->sc_dev,
   4180 		    "could not add broadcast node\n");
   4181 		return error;
   4182 	}
   4183 
   4184 	/* Configuration has changed, set TX power accordingly. */
   4185 	if ((error = ops->set_txpower(sc, 0)) != 0) {
   4186 		aprint_error_dev(sc->sc_dev,
   4187 		    "could not set TX power\n");
   4188 		return error;
   4189 	}
   4190 
   4191 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4192 		aprint_error_dev(sc->sc_dev,
   4193 		    "could not set critical temperature\n");
   4194 		return error;
   4195 	}
   4196 
   4197 	/* Set power saving level to CAM during initialization. */
   4198 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4199 		aprint_error_dev(sc->sc_dev,
   4200 		    "could not set power saving level\n");
   4201 		return error;
   4202 	}
   4203 	return 0;
   4204 }
   4205 
   4206 static int
   4207 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4208 {
   4209 	struct ieee80211com *ic = &sc->sc_ic;
   4210 	struct iwn_scan_hdr *hdr;
   4211 	struct iwn_cmd_data *tx;
   4212 	struct iwn_scan_essid *essid;
   4213 	struct iwn_scan_chan *chan;
   4214 	struct ieee80211_frame *wh;
   4215 	struct ieee80211_rateset *rs;
   4216 	struct ieee80211_channel *c;
   4217 	uint8_t *buf, *frm;
   4218 	uint16_t rxchain;
   4219 	uint8_t txant;
   4220 	int buflen, error;
   4221 
   4222 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4223 	if (buf == NULL) {
   4224 		aprint_error_dev(sc->sc_dev,
   4225 		    "could not allocate buffer for scan command\n");
   4226 		return ENOMEM;
   4227 	}
   4228 	hdr = (struct iwn_scan_hdr *)buf;
   4229 	/*
   4230 	 * Move to the next channel if no frames are received within 10ms
   4231 	 * after sending the probe request.
   4232 	 */
   4233 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4234 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4235 
   4236 	/* Select antennas for scanning. */
   4237 	rxchain =
   4238 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4239 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4240 	    IWN_RXCHAIN_DRIVER_FORCE;
   4241 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4242 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4243 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4244 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4245 	} else	/* Use all available RX antennas. */
   4246 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4247 	hdr->rxchain = htole16(rxchain);
   4248 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4249 
   4250 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4251 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4252 	tx->id = sc->broadcast_id;
   4253 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4254 
   4255 	if (flags & IEEE80211_CHAN_5GHZ) {
   4256 		hdr->crc_threshold = 0xffff;
   4257 		/* Send probe requests at 6Mbps. */
   4258 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4259 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4260 	} else {
   4261 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4262 		/* Send probe requests at 1Mbps. */
   4263 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4264 		tx->rflags = IWN_RFLAG_CCK;
   4265 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4266 	}
   4267 	/* Use the first valid TX antenna. */
   4268 	txant = IWN_LSB(sc->txchainmask);
   4269 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4270 
   4271 	essid = (struct iwn_scan_essid *)(tx + 1);
   4272 	if (ic->ic_des_esslen != 0) {
   4273 		essid[0].id = IEEE80211_ELEMID_SSID;
   4274 		essid[0].len = ic->ic_des_esslen;
   4275 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4276 	}
   4277 	/*
   4278 	 * Build a probe request frame.  Most of the following code is a
   4279 	 * copy & paste of what is done in net80211.
   4280 	 */
   4281 	wh = (struct ieee80211_frame *)(essid + 20);
   4282 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4283 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4284 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4285 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4286 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4287 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4288 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4289 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4290 
   4291 	frm = (uint8_t *)(wh + 1);
   4292 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4293 	frm = ieee80211_add_rates(frm, rs);
   4294 #ifndef IEEE80211_NO_HT
   4295 	if (ic->ic_flags & IEEE80211_F_HTON)
   4296 		frm = ieee80211_add_htcaps(frm, ic);
   4297 #endif
   4298 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4299 		frm = ieee80211_add_xrates(frm, rs);
   4300 
   4301 	/* Set length of probe request. */
   4302 	tx->len = htole16(frm - (uint8_t *)wh);
   4303 
   4304 	chan = (struct iwn_scan_chan *)frm;
   4305 	for (c  = &ic->ic_channels[1];
   4306 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4307 		if ((c->ic_flags & flags) != flags)
   4308 			continue;
   4309 
   4310 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4311 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4312 		chan->flags = 0;
   4313 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4314 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4315 		if (ic->ic_des_esslen != 0)
   4316 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4317 		chan->dsp_gain = 0x6e;
   4318 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4319 			chan->rf_gain = 0x3b;
   4320 			chan->active  = htole16(24);
   4321 			chan->passive = htole16(110);
   4322 		} else {
   4323 			chan->rf_gain = 0x28;
   4324 			chan->active  = htole16(36);
   4325 			chan->passive = htole16(120);
   4326 		}
   4327 		hdr->nchan++;
   4328 		chan++;
   4329 	}
   4330 
   4331 	buflen = (uint8_t *)chan - buf;
   4332 	hdr->len = htole16(buflen);
   4333 
   4334 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4335 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4336 	free(buf, M_DEVBUF);
   4337 	return error;
   4338 }
   4339 
   4340 static int
   4341 iwn_auth(struct iwn_softc *sc)
   4342 {
   4343 	struct iwn_ops *ops = &sc->ops;
   4344 	struct ieee80211com *ic = &sc->sc_ic;
   4345 	struct ieee80211_node *ni = ic->ic_bss;
   4346 	int error;
   4347 
   4348 	/* Update adapter configuration. */
   4349 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4350 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4351 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4352 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4353 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4354 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4355 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4356 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4357 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4358 	switch (ic->ic_curmode) {
   4359 	case IEEE80211_MODE_11A:
   4360 		sc->rxon.cck_mask  = 0;
   4361 		sc->rxon.ofdm_mask = 0x15;
   4362 		break;
   4363 	case IEEE80211_MODE_11B:
   4364 		sc->rxon.cck_mask  = 0x03;
   4365 		sc->rxon.ofdm_mask = 0;
   4366 		break;
   4367 	default:	/* Assume 802.11b/g. */
   4368 		sc->rxon.cck_mask  = 0x0f;
   4369 		sc->rxon.ofdm_mask = 0x15;
   4370 	}
   4371 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4372 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4373 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4374 	if (error != 0) {
   4375 		aprint_error_dev(sc->sc_dev,
   4376 		    "RXON command failed\n");
   4377 		return error;
   4378 	}
   4379 
   4380 	/* Configuration has changed, set TX power accordingly. */
   4381 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4382 		aprint_error_dev(sc->sc_dev,
   4383 		    "could not set TX power\n");
   4384 		return error;
   4385 	}
   4386 	/*
   4387 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4388 	 * add the broadcast node again.
   4389 	 */
   4390 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4391 		aprint_error_dev(sc->sc_dev,
   4392 		    "could not add broadcast node\n");
   4393 		return error;
   4394 	}
   4395 	return 0;
   4396 }
   4397 
   4398 static int
   4399 iwn_run(struct iwn_softc *sc)
   4400 {
   4401 	struct iwn_ops *ops = &sc->ops;
   4402 	struct ieee80211com *ic = &sc->sc_ic;
   4403 	struct ieee80211_node *ni = ic->ic_bss;
   4404 	struct iwn_node_info node;
   4405 	int error;
   4406 
   4407 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4408 		/* Link LED blinks while monitoring. */
   4409 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4410 		return 0;
   4411 	}
   4412 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4413 		aprint_error_dev(sc->sc_dev,
   4414 		    "could not set timing\n");
   4415 		return error;
   4416 	}
   4417 
   4418 	/* Update adapter configuration. */
   4419 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4420 	/* Short preamble and slot time are negotiated when associating. */
   4421 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4422 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4423 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4424 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4425 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4426 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4427 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4428 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4429 	if (error != 0) {
   4430 		aprint_error_dev(sc->sc_dev,
   4431 		    "could not update configuration\n");
   4432 		return error;
   4433 	}
   4434 
   4435 	/* Configuration has changed, set TX power accordingly. */
   4436 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4437 		aprint_error_dev(sc->sc_dev,
   4438 		    "could not set TX power\n");
   4439 		return error;
   4440 	}
   4441 
   4442 	/* Fake a join to initialize the TX rate. */
   4443 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4444 	iwn_newassoc(ni, 1);
   4445 
   4446 	/* Add BSS node. */
   4447 	memset(&node, 0, sizeof node);
   4448 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4449 	node.id = IWN_ID_BSS;
   4450 #ifdef notyet
   4451 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4452 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4453 #endif
   4454 	DPRINTF(("adding BSS node\n"));
   4455 	error = ops->add_node(sc, &node, 1);
   4456 	if (error != 0) {
   4457 		aprint_error_dev(sc->sc_dev,
   4458 		    "could not add BSS node\n");
   4459 		return error;
   4460 	}
   4461 	DPRINTF(("setting link quality for node %d\n", node.id));
   4462 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4463 		aprint_error_dev(sc->sc_dev,
   4464 		    "could not setup link quality for node %d\n", node.id);
   4465 		return error;
   4466 	}
   4467 
   4468 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4469 		aprint_error_dev(sc->sc_dev,
   4470 		    "could not set sensitivity\n");
   4471 		return error;
   4472 	}
   4473 	/* Start periodic calibration timer. */
   4474 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4475 	sc->calib_cnt = 0;
   4476 	callout_schedule(&sc->calib_to, hz/2);
   4477 
   4478 	/* Link LED always on while associated. */
   4479 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4480 	return 0;
   4481 }
   4482 
   4483 #ifdef IWN_HWCRYPTO
   4484 /*
   4485  * We support CCMP hardware encryption/decryption of unicast frames only.
   4486  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4487  */
   4488 static int
   4489 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4490     struct ieee80211_key *k)
   4491 {
   4492 	struct iwn_softc *sc = ic->ic_softc;
   4493 	struct iwn_ops *ops = &sc->ops;
   4494 	struct iwn_node *wn = (void *)ni;
   4495 	struct iwn_node_info node;
   4496 	uint16_t kflags;
   4497 
   4498 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4499 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4500 		return ieee80211_set_key(ic, ni, k);
   4501 
   4502 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4503 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4504 		kflags |= IWN_KFLAG_GROUP;
   4505 
   4506 	memset(&node, 0, sizeof node);
   4507 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4508 	    sc->broadcast_id : wn->id;
   4509 	node.control = IWN_NODE_UPDATE;
   4510 	node.flags = IWN_FLAG_SET_KEY;
   4511 	node.kflags = htole16(kflags);
   4512 	node.kid = k->k_id;
   4513 	memcpy(node.key, k->k_key, k->k_len);
   4514 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   4515 	return ops->add_node(sc, &node, 1);
   4516 }
   4517 
   4518 static void
   4519 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4520     struct ieee80211_key *k)
   4521 {
   4522 	struct iwn_softc *sc = ic->ic_softc;
   4523 	struct iwn_ops *ops = &sc->ops;
   4524 	struct iwn_node *wn = (void *)ni;
   4525 	struct iwn_node_info node;
   4526 
   4527 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4528 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   4529 		/* See comment about other ciphers above. */
   4530 		ieee80211_delete_key(ic, ni, k);
   4531 		return;
   4532 	}
   4533 	if (ic->ic_state != IEEE80211_S_RUN)
   4534 		return;	/* Nothing to do. */
   4535 	memset(&node, 0, sizeof node);
   4536 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4537 	    sc->broadcast_id : wn->id;
   4538 	node.control = IWN_NODE_UPDATE;
   4539 	node.flags = IWN_FLAG_SET_KEY;
   4540 	node.kflags = htole16(IWN_KFLAG_INVALID);
   4541 	node.kid = 0xff;
   4542 	DPRINTF(("delete keys for node %d\n", node.id));
   4543 	(void)ops->add_node(sc, &node, 1);
   4544 }
   4545 #endif
   4546 
   4547 /* XXX Added for NetBSD (copied from rev 1.39). */
   4548 
   4549 static int
   4550 iwn_wme_update(struct ieee80211com *ic)
   4551 {
   4552 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   4553 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   4554 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   4555 	const struct wmeParams *wmep;
   4556 	struct iwn_edca_params cmd;
   4557 	int ac;
   4558 
   4559 	/* don't override default WME values if WME is not actually enabled */
   4560 	if (!(ic->ic_flags & IEEE80211_F_WME))
   4561 		return 0;
   4562 	cmd.flags = 0;
   4563 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   4564 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   4565 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   4566 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   4567 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   4568 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   4569 
   4570 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   4571 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   4572 					cmd.ac[ac].cwmin,
   4573 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   4574 	}
   4575 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   4576 #undef IWN_USEC
   4577 #undef IWN_EXP2
   4578 }
   4579 
   4580 #ifndef IEEE80211_NO_HT
   4581 /*
   4582  * This function is called by upper layer when an ADDBA request is received
   4583  * from another STA and before the ADDBA response is sent.
   4584  */
   4585 static int
   4586 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4587     uint8_t tid)
   4588 {
   4589 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   4590 	struct iwn_softc *sc = ic->ic_softc;
   4591 	struct iwn_ops *ops = &sc->ops;
   4592 	struct iwn_node *wn = (void *)ni;
   4593 	struct iwn_node_info node;
   4594 
   4595 	memset(&node, 0, sizeof node);
   4596 	node.id = wn->id;
   4597 	node.control = IWN_NODE_UPDATE;
   4598 	node.flags = IWN_FLAG_SET_ADDBA;
   4599 	node.addba_tid = tid;
   4600 	node.addba_ssn = htole16(ba->ba_winstart);
   4601 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   4602 	    ba->ba_winstart));
   4603 	return ops->add_node(sc, &node, 1);
   4604 }
   4605 
   4606 /*
   4607  * This function is called by upper layer on teardown of an HT-immediate
   4608  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
   4609  */
   4610 static void
   4611 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4612     uint8_t tid)
   4613 {
   4614 	struct iwn_softc *sc = ic->ic_softc;
   4615 	struct iwn_ops *ops = &sc->ops;
   4616 	struct iwn_node *wn = (void *)ni;
   4617 	struct iwn_node_info node;
   4618 
   4619 	memset(&node, 0, sizeof node);
   4620 	node.id = wn->id;
   4621 	node.control = IWN_NODE_UPDATE;
   4622 	node.flags = IWN_FLAG_SET_DELBA;
   4623 	node.delba_tid = tid;
   4624 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   4625 	(void)ops->add_node(sc, &node, 1);
   4626 }
   4627 
   4628 /*
   4629  * This function is called by upper layer when an ADDBA response is received
   4630  * from another STA.
   4631  */
   4632 static int
   4633 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4634     uint8_t tid)
   4635 {
   4636 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4637 	struct iwn_softc *sc = ic->ic_softc;
   4638 	struct iwn_ops *ops = &sc->ops;
   4639 	struct iwn_node *wn = (void *)ni;
   4640 	struct iwn_node_info node;
   4641 	int error;
   4642 
   4643 	/* Enable TX for the specified RA/TID. */
   4644 	wn->disable_tid &= ~(1 << tid);
   4645 	memset(&node, 0, sizeof node);
   4646 	node.id = wn->id;
   4647 	node.control = IWN_NODE_UPDATE;
   4648 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   4649 	node.disable_tid = htole16(wn->disable_tid);
   4650 	error = ops->add_node(sc, &node, 1);
   4651 	if (error != 0)
   4652 		return error;
   4653 
   4654 	if ((error = iwn_nic_lock(sc)) != 0)
   4655 		return error;
   4656 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   4657 	iwn_nic_unlock(sc);
   4658 	return 0;
   4659 }
   4660 
   4661 static void
   4662 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4663     uint8_t tid)
   4664 {
   4665 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4666 	struct iwn_softc *sc = ic->ic_softc;
   4667 	struct iwn_ops *ops = &sc->ops;
   4668 
   4669 	if (iwn_nic_lock(sc) != 0)
   4670 		return;
   4671 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   4672 	iwn_nic_unlock(sc);
   4673 }
   4674 
   4675 static void
   4676 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4677     uint8_t tid, uint16_t ssn)
   4678 {
   4679 	struct iwn_node *wn = (void *)ni;
   4680 	int qid = 7 + tid;
   4681 
   4682 	/* Stop TX scheduler while we're changing its configuration. */
   4683 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4684 	    IWN4965_TXQ_STATUS_CHGACT);
   4685 
   4686 	/* Assign RA/TID translation to the queue. */
   4687 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   4688 	    wn->id << 4 | tid);
   4689 
   4690 	/* Enable chain-building mode for the queue. */
   4691 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   4692 
   4693 	/* Set starting sequence number from the ADDBA request. */
   4694 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4695 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4696 
   4697 	/* Set scheduler window size. */
   4698 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   4699 	    IWN_SCHED_WINSZ);
   4700 	/* Set scheduler frame limit. */
   4701 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4702 	    IWN_SCHED_LIMIT << 16);
   4703 
   4704 	/* Enable interrupts for the queue. */
   4705 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4706 
   4707 	/* Mark the queue as active. */
   4708 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4709 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   4710 	    iwn_tid2fifo[tid] << 1);
   4711 }
   4712 
   4713 static void
   4714 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4715 {
   4716 	int qid = 7 + tid;
   4717 
   4718 	/* Stop TX scheduler while we're changing its configuration. */
   4719 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4720 	    IWN4965_TXQ_STATUS_CHGACT);
   4721 
   4722 	/* Set starting sequence number from the ADDBA request. */
   4723 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4724 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4725 
   4726 	/* Disable interrupts for the queue. */
   4727 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4728 
   4729 	/* Mark the queue as inactive. */
   4730 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4731 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   4732 }
   4733 
   4734 static void
   4735 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4736     uint8_t tid, uint16_t ssn)
   4737 {
   4738 	struct iwn_node *wn = (void *)ni;
   4739 	int qid = 10 + tid;
   4740 
   4741 	/* Stop TX scheduler while we're changing its configuration. */
   4742 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4743 	    IWN5000_TXQ_STATUS_CHGACT);
   4744 
   4745 	/* Assign RA/TID translation to the queue. */
   4746 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   4747 	    wn->id << 4 | tid);
   4748 
   4749 	/* Enable chain-building mode for the queue. */
   4750 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   4751 
   4752 	/* Enable aggregation for the queue. */
   4753 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4754 
   4755 	/* Set starting sequence number from the ADDBA request. */
   4756 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4757 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4758 
   4759 	/* Set scheduler window size and frame limit. */
   4760 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   4761 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   4762 
   4763 	/* Enable interrupts for the queue. */
   4764 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4765 
   4766 	/* Mark the queue as active. */
   4767 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4768 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   4769 }
   4770 
   4771 static void
   4772 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4773 {
   4774 	int qid = 10 + tid;
   4775 
   4776 	/* Stop TX scheduler while we're changing its configuration. */
   4777 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4778 	    IWN5000_TXQ_STATUS_CHGACT);
   4779 
   4780 	/* Disable aggregation for the queue. */
   4781 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4782 
   4783 	/* Set starting sequence number from the ADDBA request. */
   4784 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4785 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4786 
   4787 	/* Disable interrupts for the queue. */
   4788 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4789 
   4790 	/* Mark the queue as inactive. */
   4791 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4792 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   4793 }
   4794 #endif	/* !IEEE80211_NO_HT */
   4795 
   4796 /*
   4797  * Query calibration tables from the initialization firmware.  We do this
   4798  * only once at first boot.  Called from a process context.
   4799  */
   4800 static int
   4801 iwn5000_query_calibration(struct iwn_softc *sc)
   4802 {
   4803 	struct iwn5000_calib_config cmd;
   4804 	int error;
   4805 
   4806 	memset(&cmd, 0, sizeof cmd);
   4807 	cmd.ucode.once.enable = 0xffffffff;
   4808 	cmd.ucode.once.start  = 0xffffffff;
   4809 	cmd.ucode.once.send   = 0xffffffff;
   4810 	cmd.ucode.flags       = 0xffffffff;
   4811 	DPRINTF(("sending calibration query\n"));
   4812 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   4813 	if (error != 0)
   4814 		return error;
   4815 
   4816 	/* Wait at most two seconds for calibration to complete. */
   4817 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   4818 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   4819 	return error;
   4820 }
   4821 
   4822 /*
   4823  * Send calibration results to the runtime firmware.  These results were
   4824  * obtained on first boot from the initialization firmware.
   4825  */
   4826 static int
   4827 iwn5000_send_calibration(struct iwn_softc *sc)
   4828 {
   4829 	int idx, error;
   4830 
   4831 	for (idx = 0; idx < 5; idx++) {
   4832 		if (sc->calibcmd[idx].buf == NULL)
   4833 			continue;	/* No results available. */
   4834 		DPRINTF(("send calibration result idx=%d len=%d\n",
   4835 		    idx, sc->calibcmd[idx].len));
   4836 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   4837 		    sc->calibcmd[idx].len, 0);
   4838 		if (error != 0) {
   4839 			aprint_error_dev(sc->sc_dev,
   4840 			    "could not send calibration result\n");
   4841 			return error;
   4842 		}
   4843 	}
   4844 	return 0;
   4845 }
   4846 
   4847 static int
   4848 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   4849 {
   4850 	struct iwn5000_wimax_coex wimax;
   4851 
   4852 #ifdef notyet
   4853 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   4854 		/* Enable WiMAX coexistence for combo adapters. */
   4855 		wimax.flags =
   4856 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   4857 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   4858 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   4859 		    IWN_WIMAX_COEX_ENABLE;
   4860 		memcpy(wimax.events, iwn6050_wimax_events,
   4861 		    sizeof iwn6050_wimax_events);
   4862 	} else
   4863 #endif
   4864 	{
   4865 		/* Disable WiMAX coexistence. */
   4866 		wimax.flags = 0;
   4867 		memset(wimax.events, 0, sizeof wimax.events);
   4868 	}
   4869 	DPRINTF(("Configuring WiMAX coexistence\n"));
   4870 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   4871 }
   4872 
   4873 /*
   4874  * This function is called after the runtime firmware notifies us of its
   4875  * readiness (called in a process context).
   4876  */
   4877 static int
   4878 iwn4965_post_alive(struct iwn_softc *sc)
   4879 {
   4880 	int error, qid;
   4881 
   4882 	if ((error = iwn_nic_lock(sc)) != 0)
   4883 		return error;
   4884 
   4885 	/* Clear TX scheduler state in SRAM. */
   4886 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   4887 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   4888 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   4889 
   4890 	/* Set physical address of TX scheduler rings (1KB aligned). */
   4891 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   4892 
   4893 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   4894 
   4895 	/* Disable chain mode for all our 16 queues. */
   4896 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   4897 
   4898 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   4899 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   4900 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   4901 
   4902 		/* Set scheduler window size. */
   4903 		iwn_mem_write(sc, sc->sched_base +
   4904 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   4905 		/* Set scheduler frame limit. */
   4906 		iwn_mem_write(sc, sc->sched_base +
   4907 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4908 		    IWN_SCHED_LIMIT << 16);
   4909 	}
   4910 
   4911 	/* Enable interrupts for all our 16 queues. */
   4912 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   4913 	/* Identify TX FIFO rings (0-7). */
   4914 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   4915 
   4916 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   4917 	for (qid = 0; qid < 7; qid++) {
   4918 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   4919 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4920 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   4921 	}
   4922 	iwn_nic_unlock(sc);
   4923 	return 0;
   4924 }
   4925 
   4926 /*
   4927  * This function is called after the initialization or runtime firmware
   4928  * notifies us of its readiness (called in a process context).
   4929  */
   4930 static int
   4931 iwn5000_post_alive(struct iwn_softc *sc)
   4932 {
   4933 	int error, qid;
   4934 
   4935 	/* Switch to using ICT interrupt mode. */
   4936 	iwn5000_ict_reset(sc);
   4937 
   4938 	if ((error = iwn_nic_lock(sc)) != 0)
   4939 		return error;
   4940 
   4941 	/* Clear TX scheduler state in SRAM. */
   4942 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   4943 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   4944 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   4945 
   4946 	/* Set physical address of TX scheduler rings (1KB aligned). */
   4947 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   4948 
   4949 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   4950 
   4951 	/* Enable chain mode for all queues, except command queue. */
   4952 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   4953 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   4954 
   4955 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   4956 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   4957 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   4958 
   4959 		iwn_mem_write(sc, sc->sched_base +
   4960 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   4961 		/* Set scheduler window size and frame limit. */
   4962 		iwn_mem_write(sc, sc->sched_base +
   4963 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   4964 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   4965 	}
   4966 
   4967 	/* Enable interrupts for all our 20 queues. */
   4968 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   4969 	/* Identify TX FIFO rings (0-7). */
   4970 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   4971 
   4972 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   4973 	for (qid = 0; qid < 7; qid++) {
   4974 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   4975 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4976 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   4977 	}
   4978 	iwn_nic_unlock(sc);
   4979 
   4980 	/* Configure WiMAX coexistence for combo adapters. */
   4981 	error = iwn5000_send_wimax_coex(sc);
   4982 	if (error != 0) {
   4983 		aprint_error_dev(sc->sc_dev,
   4984 		    "could not configure WiMAX coexistence\n");
   4985 		return error;
   4986 	}
   4987 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   4988 		struct iwn5000_phy_calib_crystal cmd;
   4989 
   4990 		/* Perform crystal calibration. */
   4991 		memset(&cmd, 0, sizeof cmd);
   4992 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   4993 		cmd.ngroups = 1;
   4994 		cmd.isvalid = 1;
   4995 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   4996 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   4997 		DPRINTF(("sending crystal calibration %d, %d\n",
   4998 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   4999 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5000 		if (error != 0) {
   5001 			aprint_error_dev(sc->sc_dev,
   5002 			    "crystal calibration failed\n");
   5003 			return error;
   5004 		}
   5005 	}
   5006 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5007 		/* Query calibration from the initialization firmware. */
   5008 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5009 			aprint_error_dev(sc->sc_dev,
   5010 			    "could not query calibration\n");
   5011 			return error;
   5012 		}
   5013 		/*
   5014 		 * We have the calibration results now, reboot with the
   5015 		 * runtime firmware (call ourselves recursively!)
   5016 		 */
   5017 		iwn_hw_stop(sc);
   5018 		error = iwn_hw_init(sc);
   5019 	} else {
   5020 		/* Send calibration results to runtime firmware. */
   5021 		error = iwn5000_send_calibration(sc);
   5022 	}
   5023 	return error;
   5024 }
   5025 
   5026 /*
   5027  * The firmware boot code is small and is intended to be copied directly into
   5028  * the NIC internal memory (no DMA transfer).
   5029  */
   5030 static int
   5031 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5032 {
   5033 	int error, ntries;
   5034 
   5035 	size /= sizeof (uint32_t);
   5036 
   5037 	if ((error = iwn_nic_lock(sc)) != 0)
   5038 		return error;
   5039 
   5040 	/* Copy microcode image into NIC memory. */
   5041 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5042 	    (const uint32_t *)ucode, size);
   5043 
   5044 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5045 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5046 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5047 
   5048 	/* Start boot load now. */
   5049 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5050 
   5051 	/* Wait for transfer to complete. */
   5052 	for (ntries = 0; ntries < 1000; ntries++) {
   5053 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5054 		    IWN_BSM_WR_CTRL_START))
   5055 			break;
   5056 		DELAY(10);
   5057 	}
   5058 	if (ntries == 1000) {
   5059 		aprint_error_dev(sc->sc_dev,
   5060 		    "could not load boot firmware\n");
   5061 		iwn_nic_unlock(sc);
   5062 		return ETIMEDOUT;
   5063 	}
   5064 
   5065 	/* Enable boot after power up. */
   5066 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5067 
   5068 	iwn_nic_unlock(sc);
   5069 	return 0;
   5070 }
   5071 
   5072 static int
   5073 iwn4965_load_firmware(struct iwn_softc *sc)
   5074 {
   5075 	struct iwn_fw_info *fw = &sc->fw;
   5076 	struct iwn_dma_info *dma = &sc->fw_dma;
   5077 	int error;
   5078 
   5079 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5080 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5081 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5082 	    BUS_DMASYNC_PREWRITE);
   5083 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5084 	    fw->init.text, fw->init.textsz);
   5085 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5086 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5087 
   5088 	/* Tell adapter where to find initialization sections. */
   5089 	if ((error = iwn_nic_lock(sc)) != 0)
   5090 		return error;
   5091 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5092 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5093 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5094 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5095 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5096 	iwn_nic_unlock(sc);
   5097 
   5098 	/* Load firmware boot code. */
   5099 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5100 	if (error != 0) {
   5101 		aprint_error_dev(sc->sc_dev,
   5102 		    "could not load boot firmware\n");
   5103 		return error;
   5104 	}
   5105 	/* Now press "execute". */
   5106 	IWN_WRITE(sc, IWN_RESET, 0);
   5107 
   5108 	/* Wait at most one second for first alive notification. */
   5109 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5110 		aprint_error_dev(sc->sc_dev,
   5111 		    "timeout waiting for adapter to initialize\n");
   5112 		return error;
   5113 	}
   5114 
   5115 	/* Retrieve current temperature for initial TX power calibration. */
   5116 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5117 	sc->temp = iwn4965_get_temperature(sc);
   5118 
   5119 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5120 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5121 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5122 	    BUS_DMASYNC_PREWRITE);
   5123 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5124 	    fw->main.text, fw->main.textsz);
   5125 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5126 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5127 
   5128 	/* Tell adapter where to find runtime sections. */
   5129 	if ((error = iwn_nic_lock(sc)) != 0)
   5130 		return error;
   5131 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5132 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5133 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5134 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5135 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5136 	    IWN_FW_UPDATED | fw->main.textsz);
   5137 	iwn_nic_unlock(sc);
   5138 
   5139 	return 0;
   5140 }
   5141 
   5142 static int
   5143 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5144     const uint8_t *section, int size)
   5145 {
   5146 	struct iwn_dma_info *dma = &sc->fw_dma;
   5147 	int error;
   5148 
   5149 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5150 	memcpy(dma->vaddr, section, size);
   5151 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5152 
   5153 	if ((error = iwn_nic_lock(sc)) != 0)
   5154 		return error;
   5155 
   5156 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5157 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5158 
   5159 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5160 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5161 	    IWN_LOADDR(dma->paddr));
   5162 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5163 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5164 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5165 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5166 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5167 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5168 
   5169 	/* Kick Flow Handler to start DMA transfer. */
   5170 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5171 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5172 
   5173 	iwn_nic_unlock(sc);
   5174 
   5175 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5176 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5177 }
   5178 
   5179 static int
   5180 iwn5000_load_firmware(struct iwn_softc *sc)
   5181 {
   5182 	struct iwn_fw_part *fw;
   5183 	int error;
   5184 
   5185 	/* Load the initialization firmware on first boot only. */
   5186 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5187 	    &sc->fw.main : &sc->fw.init;
   5188 
   5189 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5190 	    fw->text, fw->textsz);
   5191 	if (error != 0) {
   5192 		aprint_error_dev(sc->sc_dev,
   5193 		    "could not load firmware %s section\n", ".text");
   5194 		return error;
   5195 	}
   5196 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5197 	    fw->data, fw->datasz);
   5198 	if (error != 0) {
   5199 		aprint_error_dev(sc->sc_dev,
   5200 		    "could not load firmware %s section\n", ".data");
   5201 		return error;
   5202 	}
   5203 
   5204 	/* Now press "execute". */
   5205 	IWN_WRITE(sc, IWN_RESET, 0);
   5206 	return 0;
   5207 }
   5208 
   5209 /*
   5210  * Extract text and data sections from a legacy firmware image.
   5211  */
   5212 static int
   5213 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
   5214 {
   5215 	const uint32_t *ptr;
   5216 	size_t hdrlen = 24;
   5217 	uint32_t rev;
   5218 
   5219 	ptr = (const uint32_t *)fw->data;
   5220 	rev = le32toh(*ptr++);
   5221 
   5222 	/* Check firmware API version. */
   5223 	if (IWN_FW_API(rev) <= 1) {
   5224 		aprint_error_dev(sc->sc_dev,
   5225 		    "bad firmware, need API version >=2\n");
   5226 		return EINVAL;
   5227 	}
   5228 	if (IWN_FW_API(rev) >= 3) {
   5229 		/* Skip build number (version 2 header). */
   5230 		hdrlen += 4;
   5231 		ptr++;
   5232 	}
   5233 	if (fw->size < hdrlen) {
   5234 		aprint_error_dev(sc->sc_dev,
   5235 		    "firmware too short: %zd bytes\n", fw->size);
   5236 		return EINVAL;
   5237 	}
   5238 	fw->main.textsz = le32toh(*ptr++);
   5239 	fw->main.datasz = le32toh(*ptr++);
   5240 	fw->init.textsz = le32toh(*ptr++);
   5241 	fw->init.datasz = le32toh(*ptr++);
   5242 	fw->boot.textsz = le32toh(*ptr++);
   5243 
   5244 	/* Check that all firmware sections fit. */
   5245 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
   5246 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
   5247 		aprint_error_dev(sc->sc_dev,
   5248 		    "firmware too short: %zd bytes\n", fw->size);
   5249 		return EINVAL;
   5250 	}
   5251 
   5252 	/* Get pointers to firmware sections. */
   5253 	fw->main.text = (const uint8_t *)ptr;
   5254 	fw->main.data = fw->main.text + fw->main.textsz;
   5255 	fw->init.text = fw->main.data + fw->main.datasz;
   5256 	fw->init.data = fw->init.text + fw->init.textsz;
   5257 	fw->boot.text = fw->init.data + fw->init.datasz;
   5258 	return 0;
   5259 }
   5260 
   5261 /*
   5262  * Extract text and data sections from a TLV firmware image.
   5263  */
   5264 static int
   5265 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
   5266     uint16_t alt)
   5267 {
   5268 	const struct iwn_fw_tlv_hdr *hdr;
   5269 	const struct iwn_fw_tlv *tlv;
   5270 	const uint8_t *ptr, *end;
   5271 	uint64_t altmask;
   5272 	uint32_t len;
   5273 
   5274 	if (fw->size < sizeof (*hdr)) {
   5275 		aprint_error_dev(sc->sc_dev,
   5276 		    "firmware too short: %zd bytes\n", fw->size);
   5277 		return EINVAL;
   5278 	}
   5279 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
   5280 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
   5281 		aprint_error_dev(sc->sc_dev,
   5282 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
   5283 		return EINVAL;
   5284 	}
   5285 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
   5286 	    le32toh(hdr->build)));
   5287 
   5288 	/*
   5289 	 * Select the closest supported alternative that is less than
   5290 	 * or equal to the specified one.
   5291 	 */
   5292 	altmask = le64toh(hdr->altmask);
   5293 	while (alt > 0 && !(altmask & (1ULL << alt)))
   5294 		alt--;	/* Downgrade. */
   5295 	DPRINTF(("using alternative %d\n", alt));
   5296 
   5297 	ptr = (const uint8_t *)(hdr + 1);
   5298 	end = (const uint8_t *)(fw->data + fw->size);
   5299 
   5300 	/* Parse type-length-value fields. */
   5301 	while (ptr + sizeof (*tlv) <= end) {
   5302 		tlv = (const struct iwn_fw_tlv *)ptr;
   5303 		len = le32toh(tlv->len);
   5304 
   5305 		ptr += sizeof (*tlv);
   5306 		if (ptr + len > end) {
   5307 			aprint_error_dev(sc->sc_dev,
   5308 			    "firmware too short: %zd bytes\n", fw->size);
   5309 			return EINVAL;
   5310 		}
   5311 		/* Skip other alternatives. */
   5312 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
   5313 			goto next;
   5314 
   5315 		switch (le16toh(tlv->type)) {
   5316 		case IWN_FW_TLV_MAIN_TEXT:
   5317 			fw->main.text = ptr;
   5318 			fw->main.textsz = len;
   5319 			break;
   5320 		case IWN_FW_TLV_MAIN_DATA:
   5321 			fw->main.data = ptr;
   5322 			fw->main.datasz = len;
   5323 			break;
   5324 		case IWN_FW_TLV_INIT_TEXT:
   5325 			fw->init.text = ptr;
   5326 			fw->init.textsz = len;
   5327 			break;
   5328 		case IWN_FW_TLV_INIT_DATA:
   5329 			fw->init.data = ptr;
   5330 			fw->init.datasz = len;
   5331 			break;
   5332 		case IWN_FW_TLV_BOOT_TEXT:
   5333 			fw->boot.text = ptr;
   5334 			fw->boot.textsz = len;
   5335 			break;
   5336 		default:
   5337 			DPRINTF(("TLV type %d not handled\n",
   5338 			    le16toh(tlv->type)));
   5339 			break;
   5340 		}
   5341  next:		/* TLV fields are 32-bit aligned. */
   5342 		ptr += (len + 3) & ~3;
   5343 	}
   5344 	return 0;
   5345 }
   5346 
   5347 static int
   5348 iwn_read_firmware(struct iwn_softc *sc)
   5349 {
   5350 	struct iwn_fw_info *fw = &sc->fw;
   5351 	firmware_handle_t fwh;
   5352 	int error;
   5353 
   5354 	/* Initialize for error returns */
   5355 	fw->data = NULL;
   5356 	fw->size = 0;
   5357 
   5358 	/* Open firmware image. */
   5359 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5360 		aprint_error_dev(sc->sc_dev,
   5361 		    "could not get firmware handle %s\n", sc->fwname);
   5362 		return error;
   5363 	}
   5364 	fw->size = firmware_get_size(fwh);
   5365 	if (fw->size < sizeof (uint32_t)) {
   5366 		aprint_error_dev(sc->sc_dev,
   5367 		    "firmware too short: %zd bytes\n", fw->size);
   5368 		firmware_close(fwh);
   5369 		return EINVAL;
   5370 	}
   5371 
   5372 	/* Read the firmware. */
   5373 	fw->data = firmware_malloc(fw->size);
   5374 	if (fw->data == NULL) {
   5375 		aprint_error_dev(sc->sc_dev,
   5376 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5377 		firmware_close(fwh);
   5378 		return ENOMEM;
   5379 	}
   5380 	error = firmware_read(fwh, 0, fw->data, fw->size);
   5381 	firmware_close(fwh);
   5382 	if (error != 0) {
   5383 		aprint_error_dev(sc->sc_dev,
   5384 		    "could not read firmware %s\n", sc->fwname);
   5385 		goto out;
   5386 	}
   5387 
   5388 	/* Retrieve text and data sections. */
   5389 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
   5390 		error = iwn_read_firmware_leg(sc, fw);
   5391 	else
   5392 		error = iwn_read_firmware_tlv(sc, fw, 1);
   5393 	if (error != 0) {
   5394 		aprint_error_dev(sc->sc_dev,
   5395 		    "could not read firmware sections\n");
   5396 		goto out;
   5397 	}
   5398 
   5399 	/* Make sure text and data sections fit in hardware memory. */
   5400 	if (fw->main.textsz > sc->fw_text_maxsz ||
   5401 	    fw->main.datasz > sc->fw_data_maxsz ||
   5402 	    fw->init.textsz > sc->fw_text_maxsz ||
   5403 	    fw->init.datasz > sc->fw_data_maxsz ||
   5404 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5405 	    (fw->boot.textsz & 3) != 0) {
   5406 		aprint_error_dev(sc->sc_dev,
   5407 		    "firmware sections too large\n");
   5408 		goto out;
   5409 	}
   5410 
   5411 	/* We can proceed with loading the firmware. */
   5412 	return 0;
   5413 out:
   5414 	firmware_free(fw->data, fw->size);
   5415 	fw->data = NULL;
   5416 	fw->size = 0;
   5417 	return error ? error : EINVAL;
   5418 }
   5419 
   5420 static int
   5421 iwn_clock_wait(struct iwn_softc *sc)
   5422 {
   5423 	int ntries;
   5424 
   5425 	/* Set "initialization complete" bit. */
   5426 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5427 
   5428 	/* Wait for clock stabilization. */
   5429 	for (ntries = 0; ntries < 2500; ntries++) {
   5430 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5431 			return 0;
   5432 		DELAY(10);
   5433 	}
   5434 	aprint_error_dev(sc->sc_dev,
   5435 	    "timeout waiting for clock stabilization\n");
   5436 	return ETIMEDOUT;
   5437 }
   5438 
   5439 static int
   5440 iwn_apm_init(struct iwn_softc *sc)
   5441 {
   5442 	pcireg_t reg;
   5443 	int error;
   5444 
   5445 	/* Disable L0s exit timer (NMI bug workaround). */
   5446 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   5447 	/* Don't wait for ICH L0s (ICH bug workaround). */
   5448 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   5449 
   5450 	/* Set FH wait threshold to max (HW bug under stress workaround). */
   5451 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   5452 
   5453 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   5454 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   5455 
   5456 	/* Retrieve PCIe Active State Power Management (ASPM). */
   5457 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   5458 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   5459 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   5460 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   5461 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5462 	else
   5463 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5464 
   5465 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   5466 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   5467 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   5468 
   5469 	/* Wait for clock stabilization before accessing prph. */
   5470 	if ((error = iwn_clock_wait(sc)) != 0)
   5471 		return error;
   5472 
   5473 	if ((error = iwn_nic_lock(sc)) != 0)
   5474 		return error;
   5475 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   5476 		/* Enable DMA and BSM (Bootstrap State Machine). */
   5477 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5478 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   5479 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   5480 	} else {
   5481 		/* Enable DMA. */
   5482 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5483 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5484 	}
   5485 	DELAY(20);
   5486 	/* Disable L1-Active. */
   5487 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   5488 	iwn_nic_unlock(sc);
   5489 
   5490 	return 0;
   5491 }
   5492 
   5493 static void
   5494 iwn_apm_stop_master(struct iwn_softc *sc)
   5495 {
   5496 	int ntries;
   5497 
   5498 	/* Stop busmaster DMA activity. */
   5499 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   5500 	for (ntries = 0; ntries < 100; ntries++) {
   5501 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   5502 			return;
   5503 		DELAY(10);
   5504 	}
   5505 	aprint_error_dev(sc->sc_dev,
   5506 	    "timeout waiting for master\n");
   5507 }
   5508 
   5509 static void
   5510 iwn_apm_stop(struct iwn_softc *sc)
   5511 {
   5512 	iwn_apm_stop_master(sc);
   5513 
   5514 	/* Reset the entire device. */
   5515 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   5516 	DELAY(10);
   5517 	/* Clear "initialization complete" bit. */
   5518 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5519 }
   5520 
   5521 static int
   5522 iwn4965_nic_config(struct iwn_softc *sc)
   5523 {
   5524 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   5525 		/*
   5526 		 * I don't believe this to be correct but this is what the
   5527 		 * vendor driver is doing. Probably the bits should not be
   5528 		 * shifted in IWN_RFCFG_*.
   5529 		 */
   5530 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5531 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5532 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5533 		    IWN_RFCFG_DASH(sc->rfcfg));
   5534 	}
   5535 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5536 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5537 	return 0;
   5538 }
   5539 
   5540 static int
   5541 iwn5000_nic_config(struct iwn_softc *sc)
   5542 {
   5543 	uint32_t tmp;
   5544 	int error;
   5545 
   5546 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   5547 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5548 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5549 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5550 		    IWN_RFCFG_DASH(sc->rfcfg));
   5551 	}
   5552 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5553 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5554 
   5555 	if ((error = iwn_nic_lock(sc)) != 0)
   5556 		return error;
   5557 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   5558 
   5559 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   5560 		/*
   5561 		 * Select first Switching Voltage Regulator (1.32V) to
   5562 		 * solve a stability issue related to noisy DC2DC line
   5563 		 * in the silicon of 1000 Series.
   5564 		 */
   5565 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   5566 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   5567 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   5568 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   5569 	}
   5570 	iwn_nic_unlock(sc);
   5571 
   5572 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   5573 		/* Use internal power amplifier only. */
   5574 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   5575 	}
   5576 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   5577 		sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
   5578 		/* Indicate that ROM calibration version is >=6. */
   5579 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   5580 	}
   5581 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   5582 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
   5583 	return 0;
   5584 }
   5585 
   5586 /*
   5587  * Take NIC ownership over Intel Active Management Technology (AMT).
   5588  */
   5589 static int
   5590 iwn_hw_prepare(struct iwn_softc *sc)
   5591 {
   5592 	int ntries;
   5593 
   5594 	/* Check if hardware is ready. */
   5595 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5596 	for (ntries = 0; ntries < 5; ntries++) {
   5597 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5598 		    IWN_HW_IF_CONFIG_NIC_READY)
   5599 			return 0;
   5600 		DELAY(10);
   5601 	}
   5602 
   5603 	/* Hardware not ready, force into ready state. */
   5604 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   5605 	for (ntries = 0; ntries < 15000; ntries++) {
   5606 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5607 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   5608 			break;
   5609 		DELAY(10);
   5610 	}
   5611 	if (ntries == 15000)
   5612 		return ETIMEDOUT;
   5613 
   5614 	/* Hardware should be ready now. */
   5615 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5616 	for (ntries = 0; ntries < 5; ntries++) {
   5617 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5618 		    IWN_HW_IF_CONFIG_NIC_READY)
   5619 			return 0;
   5620 		DELAY(10);
   5621 	}
   5622 	return ETIMEDOUT;
   5623 }
   5624 
   5625 static int
   5626 iwn_hw_init(struct iwn_softc *sc)
   5627 {
   5628 	struct iwn_ops *ops = &sc->ops;
   5629 	int error, chnl, qid;
   5630 
   5631 	/* Clear pending interrupts. */
   5632 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5633 
   5634 	if ((error = iwn_apm_init(sc)) != 0) {
   5635 		aprint_error_dev(sc->sc_dev,
   5636 		    "could not power ON adapter\n");
   5637 		return error;
   5638 	}
   5639 
   5640 	/* Select VMAIN power source. */
   5641 	if ((error = iwn_nic_lock(sc)) != 0)
   5642 		return error;
   5643 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   5644 	iwn_nic_unlock(sc);
   5645 
   5646 	/* Perform adapter-specific initialization. */
   5647 	if ((error = ops->nic_config(sc)) != 0)
   5648 		return error;
   5649 
   5650 	/* Initialize RX ring. */
   5651 	if ((error = iwn_nic_lock(sc)) != 0)
   5652 		return error;
   5653 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   5654 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   5655 	/* Set physical address of RX ring (256-byte aligned). */
   5656 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   5657 	/* Set physical address of RX status (16-byte aligned). */
   5658 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   5659 	/* Enable RX. */
   5660 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   5661 	    IWN_FH_RX_CONFIG_ENA           |
   5662 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   5663 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   5664 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   5665 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   5666 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   5667 	iwn_nic_unlock(sc);
   5668 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   5669 
   5670 	if ((error = iwn_nic_lock(sc)) != 0)
   5671 		return error;
   5672 
   5673 	/* Initialize TX scheduler. */
   5674 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   5675 
   5676 	/* Set physical address of "keep warm" page (16-byte aligned). */
   5677 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   5678 
   5679 	/* Initialize TX rings. */
   5680 	for (qid = 0; qid < sc->ntxqs; qid++) {
   5681 		struct iwn_tx_ring *txq = &sc->txq[qid];
   5682 
   5683 		/* Set physical address of TX ring (256-byte aligned). */
   5684 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   5685 		    txq->desc_dma.paddr >> 8);
   5686 	}
   5687 	iwn_nic_unlock(sc);
   5688 
   5689 	/* Enable DMA channels. */
   5690 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   5691 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   5692 		    IWN_FH_TX_CONFIG_DMA_ENA |
   5693 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   5694 	}
   5695 
   5696 	/* Clear "radio off" and "commands blocked" bits. */
   5697 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5698 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   5699 
   5700 	/* Clear pending interrupts. */
   5701 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5702 	/* Enable interrupt coalescing. */
   5703 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   5704 	/* Enable interrupts. */
   5705 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   5706 
   5707 	/* _Really_ make sure "radio off" bit is cleared! */
   5708 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5709 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5710 
   5711 	/* Enable shadow registers. */
   5712 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   5713 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
   5714 
   5715 	if ((error = ops->load_firmware(sc)) != 0) {
   5716 		aprint_error_dev(sc->sc_dev,
   5717 		    "could not load firmware\n");
   5718 		return error;
   5719 	}
   5720 	/* Wait at most one second for firmware alive notification. */
   5721 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5722 		aprint_error_dev(sc->sc_dev,
   5723 		    "timeout waiting for adapter to initialize\n");
   5724 		return error;
   5725 	}
   5726 	/* Do post-firmware initialization. */
   5727 	return ops->post_alive(sc);
   5728 }
   5729 
   5730 static void
   5731 iwn_hw_stop(struct iwn_softc *sc)
   5732 {
   5733 	int chnl, qid, ntries;
   5734 
   5735 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   5736 
   5737 	/* Disable interrupts. */
   5738 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   5739 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5740 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   5741 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5742 
   5743 	/* Make sure we no longer hold the NIC lock. */
   5744 	iwn_nic_unlock(sc);
   5745 
   5746 	/* Stop TX scheduler. */
   5747 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   5748 
   5749 	/* Stop all DMA channels. */
   5750 	if (iwn_nic_lock(sc) == 0) {
   5751 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   5752 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   5753 			for (ntries = 0; ntries < 200; ntries++) {
   5754 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
   5755 				    IWN_FH_TX_STATUS_IDLE(chnl))
   5756 					break;
   5757 				DELAY(10);
   5758 			}
   5759 		}
   5760 		iwn_nic_unlock(sc);
   5761 	}
   5762 
   5763 	/* Stop RX ring. */
   5764 	iwn_reset_rx_ring(sc, &sc->rxq);
   5765 
   5766 	/* Reset all TX rings. */
   5767 	for (qid = 0; qid < sc->ntxqs; qid++)
   5768 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   5769 
   5770 	if (iwn_nic_lock(sc) == 0) {
   5771 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   5772 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5773 		iwn_nic_unlock(sc);
   5774 	}
   5775 	DELAY(5);
   5776 	/* Power OFF adapter. */
   5777 	iwn_apm_stop(sc);
   5778 }
   5779 
   5780 static int
   5781 iwn_init(struct ifnet *ifp)
   5782 {
   5783 	struct iwn_softc *sc = ifp->if_softc;
   5784 	struct ieee80211com *ic = &sc->sc_ic;
   5785 	int error;
   5786 
   5787 	mutex_enter(&sc->sc_mtx);
   5788 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
   5789 		goto out;
   5790 	if ((error = iwn_hw_prepare(sc)) != 0) {
   5791 		aprint_error_dev(sc->sc_dev,
   5792 		    "hardware not ready\n");
   5793 		goto fail;
   5794 	}
   5795 
   5796 	/* Check that the radio is not disabled by hardware switch. */
   5797 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   5798 		aprint_error_dev(sc->sc_dev,
   5799 		    "radio is disabled by hardware switch\n");
   5800 		error = EPERM;	/* :-) */
   5801 		goto fail;
   5802 	}
   5803 
   5804 	/* Read firmware images from the filesystem. */
   5805 	if ((error = iwn_read_firmware(sc)) != 0) {
   5806 		aprint_error_dev(sc->sc_dev,
   5807 		    "could not read firmware\n");
   5808 		goto fail;
   5809 	}
   5810 
   5811 	/* Initialize interrupt mask to default value. */
   5812 	sc->int_mask = IWN_INT_MASK_DEF;
   5813 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5814 
   5815 	/* Initialize hardware and upload firmware. */
   5816 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
   5817 	error = iwn_hw_init(sc);
   5818 	firmware_free(sc->fw.data, sc->fw.size);
   5819 	sc->fw.data = NULL;
   5820 	sc->fw.size = 0;
   5821 	if (error != 0) {
   5822 		aprint_error_dev(sc->sc_dev,
   5823 		    "could not initialize hardware\n");
   5824 		goto fail;
   5825 	}
   5826 
   5827 	/* Configure adapter now that it is ready. */
   5828 	if ((error = iwn_config(sc)) != 0) {
   5829 		aprint_error_dev(sc->sc_dev,
   5830 		    "could not configure device\n");
   5831 		goto fail;
   5832 	}
   5833 
   5834 	ifp->if_flags &= ~IFF_OACTIVE;
   5835 	ifp->if_flags |= IFF_RUNNING;
   5836 
   5837 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   5838 		ieee80211_begin_scan(ic, 0);
   5839 	else
   5840 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   5841 
   5842 	sc->sc_flags |= IWN_FLAG_HW_INITED;
   5843 out:
   5844 	mutex_exit(&sc->sc_mtx);
   5845 	return 0;
   5846 
   5847 fail:	mutex_exit(&sc->sc_mtx);
   5848 	iwn_stop(ifp, 1);
   5849 	return error;
   5850 }
   5851 
   5852 static void
   5853 iwn_stop(struct ifnet *ifp, int disable)
   5854 {
   5855 	struct iwn_softc *sc = ifp->if_softc;
   5856 	struct ieee80211com *ic = &sc->sc_ic;
   5857 
   5858 	if (!disable)
   5859 		mutex_enter(&sc->sc_mtx);
   5860 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
   5861 	ifp->if_timer = sc->sc_tx_timer = 0;
   5862 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5863 
   5864 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   5865 
   5866 	/* Power OFF hardware. */
   5867 	iwn_hw_stop(sc);
   5868 
   5869 	if (!disable)
   5870 		mutex_exit(&sc->sc_mtx);
   5871 }
   5872 
   5873 /*
   5874  * XXX MCLGETI alternative
   5875  *
   5876  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   5877  * as long as there are available free buffers then it uses MEXTMALLOC.,
   5878  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   5879  * The MCLGET4K code is used for testing an alternative mbuf cache.
   5880  */
   5881 
   5882 static struct mbuf *
   5883 MCLGETIalt(struct iwn_softc *sc, int how,
   5884     struct ifnet *ifp __unused, u_int size)
   5885 {
   5886 	struct mbuf *m;
   5887 #ifdef IWN_USE_RBUF
   5888 	struct iwn_rbuf *rbuf;
   5889 #endif
   5890 
   5891 	MGETHDR(m, how, MT_DATA);
   5892 	if (m == NULL)
   5893 		return NULL;
   5894 
   5895 #ifdef IWN_USE_RBUF
   5896 	if (sc->rxq.nb_free_entries > 0 &&
   5897 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   5898 		/* Attach buffer to mbuf header. */
   5899 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   5900 		m->m_flags |= M_EXT_RW;
   5901 	}
   5902 	else {
   5903 		MEXTMALLOC(m, size, how);
   5904 		if ((m->m_flags & M_EXT) == 0) {
   5905 			m_freem(m);
   5906 			return NULL;
   5907 		}
   5908 	}
   5909 
   5910 #else
   5911 #ifdef MCLGET4K
   5912 	if (size == 4096)
   5913 		MCLGET4K(m, how);
   5914 	else
   5915 		panic("size must be 4k");
   5916 #else
   5917 	MEXTMALLOC(m, size, how);
   5918 #endif
   5919 	if ((m->m_flags & M_EXT) == 0) {
   5920 		m_freem(m);
   5921 		return NULL;
   5922 	}
   5923 #endif
   5924 
   5925 	return m;
   5926 }
   5927 
   5928 #ifdef IWN_USE_RBUF
   5929 static struct iwn_rbuf *
   5930 iwn_alloc_rbuf(struct iwn_softc *sc)
   5931 {
   5932 	struct iwn_rbuf *rbuf;
   5933 	mutex_enter(&sc->rxq.freelist_mtx);
   5934 
   5935 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   5936 	if (rbuf != NULL) {
   5937 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   5938 		sc->rxq.nb_free_entries --;
   5939 	}
   5940 	mutex_exit(&sc->rxq.freelist_mtx);
   5941 	return rbuf;
   5942 }
   5943 
   5944 /*
   5945  * This is called automatically by the network stack when the mbuf to which
   5946  * our RX buffer is attached is freed.
   5947  */
   5948 static void
   5949 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   5950 {
   5951 	struct iwn_rbuf *rbuf = arg;
   5952 	struct iwn_softc *sc = rbuf->sc;
   5953 
   5954 	/* Put the RX buffer back in the free list. */
   5955 	mutex_enter(&sc->rxq.freelist_mtx);
   5956 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   5957 	mutex_exit(&sc->rxq.freelist_mtx);
   5958 
   5959 	sc->rxq.nb_free_entries ++;
   5960 	if (__predict_true(m != NULL))
   5961 		pool_cache_put(mb_cache, m);
   5962 }
   5963 
   5964 static int
   5965 iwn_alloc_rpool(struct iwn_softc *sc)
   5966 {
   5967 	struct iwn_rx_ring *ring = &sc->rxq;
   5968 	struct iwn_rbuf *rbuf;
   5969 	int i, error;
   5970 
   5971 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   5972 
   5973 	/* Allocate a big chunk of DMA'able memory... */
   5974 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   5975 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   5976 	if (error != 0) {
   5977 		aprint_error_dev(sc->sc_dev,
   5978 		    "could not allocate RX buffers DMA memory\n");
   5979 		return error;
   5980 	}
   5981 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   5982 	SLIST_INIT(&ring->freelist);
   5983 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   5984 		rbuf = &ring->rbuf[i];
   5985 
   5986 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   5987 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   5988 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   5989 
   5990 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   5991 	}
   5992 	ring->nb_free_entries = IWN_RBUF_COUNT;
   5993 	return 0;
   5994 }
   5995 
   5996 static void
   5997 iwn_free_rpool(struct iwn_softc *sc)
   5998 {
   5999 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   6000 }
   6001 #endif
   6002 
   6003 /*
   6004  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
   6005  * Copyright (c) 2001 Atsushi Onoe
   6006  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
   6007  * Copyright (c) 2007-2009 Damien Bergamini
   6008  * All rights reserved.
   6009  */
   6010 
   6011 /*
   6012  * Add an SSID element to a frame (see 7.3.2.1).
   6013  */
   6014 static u_int8_t *
   6015 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
   6016 {
   6017 	*frm++ = IEEE80211_ELEMID_SSID;
   6018 	*frm++ = len;
   6019 	memcpy(frm, ssid, len);
   6020 	return frm + len;
   6021 }
   6022 
   6023 /*
   6024  * Add a supported rates element to a frame (see 7.3.2.2).
   6025  */
   6026 static u_int8_t *
   6027 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6028 {
   6029 	int nrates;
   6030 
   6031 	*frm++ = IEEE80211_ELEMID_RATES;
   6032 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
   6033 	*frm++ = nrates;
   6034 	memcpy(frm, rs->rs_rates, nrates);
   6035 	return frm + nrates;
   6036 }
   6037 
   6038 /*
   6039  * Add an extended supported rates element to a frame (see 7.3.2.14).
   6040  */
   6041 static u_int8_t *
   6042 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6043 {
   6044 	int nrates;
   6045 
   6046 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
   6047 
   6048 	*frm++ = IEEE80211_ELEMID_XRATES;
   6049 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   6050 	*frm++ = nrates;
   6051 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   6052 	return frm + nrates;
   6053 }
   6054 
   6055 /*
   6056  * XXX: Hack to set the current channel to the value advertised in beacons or
   6057  * probe responses. Only used during AP detection.
   6058  * XXX: Duplicated from if_iwi.c
   6059  */
   6060 static void
   6061 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
   6062 {
   6063 	struct ieee80211_frame *wh;
   6064 	uint8_t subtype;
   6065 	uint8_t *frm, *efrm;
   6066 
   6067 	wh = mtod(m, struct ieee80211_frame *);
   6068 
   6069 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6070 		return;
   6071 
   6072 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6073 
   6074 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6075 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6076 		return;
   6077 
   6078 	frm = (uint8_t *)(wh + 1);
   6079 	efrm = mtod(m, uint8_t *) + m->m_len;
   6080 
   6081 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6082 	while (frm < efrm) {
   6083 		if (*frm == IEEE80211_ELEMID_DSPARMS)
   6084 #if IEEE80211_CHAN_MAX < 255
   6085 		if (frm[2] <= IEEE80211_CHAN_MAX)
   6086 #endif
   6087 			ic->ic_curchan = &ic->ic_channels[frm[2]];
   6088 
   6089 		frm += frm[1] + 2;
   6090 	}
   6091 }
   6092 
   6093