Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.58
      1 /*	$NetBSD: if_iwn.c,v 1.58 2011/08/28 16:33:51 elric Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.58 2011/08/28 16:33:51 elric Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/proc.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #include <sys/mutex.h>
     39 #include <sys/conf.h>
     40 #include <sys/kauth.h>
     41 #include <sys/callout.h>
     42 
     43 #include <dev/sysmon/sysmonvar.h>
     44 
     45 #include <sys/bus.h>
     46 #include <machine/endian.h>
     47 #include <machine/intr.h>
     48 
     49 #include <dev/pci/pcireg.h>
     50 #include <dev/pci/pcivar.h>
     51 #include <dev/pci/pcidevs.h>
     52 
     53 #include <net/bpf.h>
     54 #include <net/if.h>
     55 #include <net/if_arp.h>
     56 #include <net/if_dl.h>
     57 #include <net/if_media.h>
     58 #include <net/if_types.h>
     59 
     60 #include <netinet/in.h>
     61 #include <netinet/in_systm.h>
     62 #include <netinet/in_var.h>
     63 #include <net/if_ether.h>
     64 #include <netinet/ip.h>
     65 
     66 #include <net80211/ieee80211_var.h>
     67 #include <net80211/ieee80211_amrr.h>
     68 #include <net80211/ieee80211_radiotap.h>
     69 
     70 #include <dev/firmload.h>
     71 
     72 #include <dev/pci/if_iwnreg.h>
     73 #include <dev/pci/if_iwnvar.h>
     74 
     75 static const pci_product_id_t iwn_devices[] = {
     76 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
     77 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
     78 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     79 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     80 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
     81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
     82 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     83 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     84 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     85 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     86 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     87 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
     89 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
     90 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
     99 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
    100 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
    101 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
    102 };
    103 
    104 /*
    105  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    106  */
    107 static const struct ieee80211_rateset iwn_rateset_11a =
    108 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    109 
    110 static const struct ieee80211_rateset iwn_rateset_11b =
    111 	{ 4, { 2, 4, 11, 22 } };
    112 
    113 static const struct ieee80211_rateset iwn_rateset_11g =
    114 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    115 
    116 static int	iwn_match(device_t , struct cfdata *, void *);
    117 static void	iwn_attach(device_t , device_t , void *);
    118 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
    119 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
    120 static void	iwn_radiotap_attach(struct iwn_softc *);
    121 static int	iwn_detach(device_t , int);
    122 #if 0
    123 static void	iwn_power(int, void *);
    124 #endif
    125 static bool	iwn_resume(device_t, const pmf_qual_t *);
    126 static int	iwn_nic_lock(struct iwn_softc *);
    127 static int	iwn_eeprom_lock(struct iwn_softc *);
    128 static int	iwn_init_otprom(struct iwn_softc *);
    129 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    130 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    131 		    void **, bus_size_t, bus_size_t);
    132 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    133 static int	iwn_alloc_sched(struct iwn_softc *);
    134 static void	iwn_free_sched(struct iwn_softc *);
    135 static int	iwn_alloc_kw(struct iwn_softc *);
    136 static void	iwn_free_kw(struct iwn_softc *);
    137 static int	iwn_alloc_ict(struct iwn_softc *);
    138 static void	iwn_free_ict(struct iwn_softc *);
    139 static int	iwn_alloc_fwmem(struct iwn_softc *);
    140 static void	iwn_free_fwmem(struct iwn_softc *);
    141 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    142 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    143 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    144 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    145 		    int);
    146 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    147 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    148 static void	iwn5000_ict_reset(struct iwn_softc *);
    149 static int	iwn_read_eeprom(struct iwn_softc *);
    150 static void	iwn4965_read_eeprom(struct iwn_softc *);
    151 
    152 #ifdef IWN_DEBUG
    153 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    154 #endif
    155 static void	iwn5000_read_eeprom(struct iwn_softc *);
    156 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    157 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    158 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    159 static void	iwn_newassoc(struct ieee80211_node *, int);
    160 static int	iwn_media_change(struct ifnet *);
    161 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    162 static void	iwn_iter_func(void *, struct ieee80211_node *);
    163 static void	iwn_calib_timeout(void *);
    164 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    165 		    struct iwn_rx_data *);
    166 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    167 		    struct iwn_rx_data *);
    168 #ifndef IEEE80211_NO_HT
    169 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    170 		    struct iwn_rx_data *);
    171 #endif
    172 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    173 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    174 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    175 		    struct iwn_rx_data *);
    176 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    177 		    struct iwn_rx_data *);
    178 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    179 		    struct iwn_rx_data *);
    180 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    181 		    uint8_t);
    182 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    183 static void	iwn_notif_intr(struct iwn_softc *);
    184 static void	iwn_wakeup_intr(struct iwn_softc *);
    185 static void	iwn_fatal_intr(struct iwn_softc *);
    186 static int	iwn_intr(void *);
    187 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    188 		    uint16_t);
    189 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    190 		    uint16_t);
    191 #ifdef notyet
    192 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    193 #endif
    194 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    195 		    struct ieee80211_node *, int);
    196 static void	iwn_start(struct ifnet *);
    197 static void	iwn_watchdog(struct ifnet *);
    198 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    199 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    200 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    201 		    int);
    202 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    203 		    int);
    204 static int	iwn_set_link_quality(struct iwn_softc *,
    205 		    struct ieee80211_node *);
    206 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    207 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    208 static int	iwn_set_critical_temp(struct iwn_softc *);
    209 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    210 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    211 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    212 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    213 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    214 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    215 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    216 static int	iwn4965_get_temperature(struct iwn_softc *);
    217 static int	iwn5000_get_temperature(struct iwn_softc *);
    218 static int	iwn_init_sensitivity(struct iwn_softc *);
    219 static void	iwn_collect_noise(struct iwn_softc *,
    220 		    const struct iwn_rx_general_stats *);
    221 static int	iwn4965_init_gains(struct iwn_softc *);
    222 static int	iwn5000_init_gains(struct iwn_softc *);
    223 static int	iwn4965_set_gains(struct iwn_softc *);
    224 static int	iwn5000_set_gains(struct iwn_softc *);
    225 static void	iwn_tune_sensitivity(struct iwn_softc *,
    226 		    const struct iwn_rx_stats *);
    227 static int	iwn_send_sensitivity(struct iwn_softc *);
    228 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    229 static int	iwn_config(struct iwn_softc *);
    230 static int	iwn_scan(struct iwn_softc *, uint16_t);
    231 static int	iwn_auth(struct iwn_softc *);
    232 static int	iwn_run(struct iwn_softc *);
    233 #ifdef IWN_HWCRYPTO
    234 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    235 		    struct ieee80211_key *);
    236 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    237 		    struct ieee80211_key *);
    238 #endif
    239 static int	iwn_wme_update(struct ieee80211com *);
    240 #ifndef IEEE80211_NO_HT
    241 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    242 		    struct ieee80211_node *, uint8_t);
    243 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    244 		    struct ieee80211_node *, uint8_t);
    245 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    246 		    struct ieee80211_node *, uint8_t);
    247 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    248 		    struct ieee80211_node *, uint8_t);
    249 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    250 		    struct ieee80211_node *, uint8_t, uint16_t);
    251 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    252 		    uint8_t, uint16_t);
    253 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    254 		    struct ieee80211_node *, uint8_t, uint16_t);
    255 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    256 		    uint8_t, uint16_t);
    257 #endif
    258 static int	iwn5000_query_calibration(struct iwn_softc *);
    259 static int	iwn5000_send_calibration(struct iwn_softc *);
    260 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    261 static int	iwn4965_post_alive(struct iwn_softc *);
    262 static int	iwn5000_post_alive(struct iwn_softc *);
    263 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    264 		    int);
    265 static int	iwn4965_load_firmware(struct iwn_softc *);
    266 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    267 		    const uint8_t *, int);
    268 static int	iwn5000_load_firmware(struct iwn_softc *);
    269 static int	iwn_read_firmware_leg(struct iwn_softc *,
    270 		    struct iwn_fw_info *);
    271 static int	iwn_read_firmware_tlv(struct iwn_softc *,
    272 		    struct iwn_fw_info *, uint16_t);
    273 static int	iwn_read_firmware(struct iwn_softc *);
    274 static int	iwn_clock_wait(struct iwn_softc *);
    275 static int	iwn_apm_init(struct iwn_softc *);
    276 static void	iwn_apm_stop_master(struct iwn_softc *);
    277 static void	iwn_apm_stop(struct iwn_softc *);
    278 static int	iwn4965_nic_config(struct iwn_softc *);
    279 static int	iwn5000_nic_config(struct iwn_softc *);
    280 static int	iwn_hw_prepare(struct iwn_softc *);
    281 static int	iwn_hw_init(struct iwn_softc *);
    282 static void	iwn_hw_stop(struct iwn_softc *);
    283 static int	iwn_init(struct ifnet *);
    284 static void	iwn_stop(struct ifnet *, int);
    285 
    286 /* XXX MCLGETI alternative */
    287 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    288 		    struct ifnet *, u_int);
    289 #ifdef IWN_USE_RBUF
    290 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    291 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    292 static int	iwn_alloc_rpool(struct iwn_softc *);
    293 static void	iwn_free_rpool(struct iwn_softc *);
    294 #endif
    295 
    296 /* XXX needed by iwn_scan */
    297 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
    298 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
    299     const struct ieee80211_rateset *);
    300 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
    301     const struct ieee80211_rateset *);
    302 
    303 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
    304 
    305 #ifdef IWN_DEBUG
    306 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    307 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    308 int iwn_debug = 0;
    309 #else
    310 #define DPRINTF(x)
    311 #define DPRINTFN(n, x)
    312 #endif
    313 
    314 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    315 	iwn_detach, NULL);
    316 
    317 static int
    318 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    319 {
    320 	struct pci_attach_args *pa = aux;
    321 	size_t i;
    322 
    323 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    324 		return 0;
    325 
    326 	for (i = 0; i < __arraycount(iwn_devices); i++)
    327 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    328 			return 1;
    329 
    330 	return 0;
    331 }
    332 
    333 static void
    334 iwn_attach(device_t parent __unused, device_t self, void *aux)
    335 {
    336 	struct iwn_softc *sc = device_private(self);
    337 	struct ieee80211com *ic = &sc->sc_ic;
    338 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    339 	struct pci_attach_args *pa = aux;
    340 	const char *intrstr;
    341 	char devinfo[256];
    342 	pci_intr_handle_t ih;
    343 	pcireg_t memtype, reg;
    344 	int i, error;
    345 	int revision;
    346 
    347 	sc->sc_dev = self;
    348 	sc->sc_pct = pa->pa_pc;
    349 	sc->sc_pcitag = pa->pa_tag;
    350 	sc->sc_dmat = pa->pa_dmat;
    351 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
    352 
    353 	callout_init(&sc->calib_to, 0);
    354 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    355 
    356 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
    357 	revision = PCI_REVISION(pa->pa_class);
    358 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
    359 
    360 	/*
    361 	 * Get the offset of the PCI Express Capability Structure in PCI
    362 	 * Configuration Space.
    363 	 */
    364 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    365 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    366 	if (error == 0) {
    367 		aprint_error(": PCIe capability structure not found!\n");
    368 		return;
    369 	}
    370 
    371 	/* Clear device-specific "PCI retry timeout" register (41h). */
    372 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    373 	if (reg & 0xff00)
    374 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    375 
    376 	/* Enable bus-mastering and hardware bug workaround. */
    377 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    378 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    379 	reg |= PCI_COMMAND_MASTER_ENABLE;
    380 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
    381 		DPRINTF(("PCIe INTx Disable set\n"));
    382 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
    383 	}
    384 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    385 
    386 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    387 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    388 	    &sc->sc_sh, NULL, &sc->sc_sz);
    389 	if (error != 0) {
    390 		aprint_error(": can't map mem space\n");
    391 		return;
    392 	}
    393 
    394 	/* Install interrupt handler. */
    395 	if (pci_intr_map(pa, &ih) != 0) {
    396 		aprint_error(": can't map interrupt\n");
    397 		return;
    398 	}
    399 	intrstr = pci_intr_string(sc->sc_pct, ih);
    400 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
    401 	if (sc->sc_ih == NULL) {
    402 		aprint_error(": can't establish interrupt");
    403 		if (intrstr != NULL)
    404 			aprint_error(" at %s", intrstr);
    405 		aprint_error("\n");
    406 		return;
    407 	}
    408 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    409 
    410 	/* Read hardware revision and attach. */
    411 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
    412 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
    413 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
    414 	else
    415 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
    416 	if (error != 0) {
    417 		aprint_error(": could not attach device\n");
    418 		return;
    419 	}
    420 
    421 	if ((error = iwn_hw_prepare(sc)) != 0) {
    422 		aprint_error(": hardware not ready\n");
    423 		return;
    424 	}
    425 
    426 	/* Read MAC address, channels, etc from EEPROM. */
    427 	if ((error = iwn_read_eeprom(sc)) != 0) {
    428 		aprint_error(": could not read EEPROM\n");
    429 		return;
    430 	}
    431 
    432 	/* Allocate DMA memory for firmware transfers. */
    433 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    434 		aprint_error(": could not allocate memory for firmware\n");
    435 		return;
    436 	}
    437 
    438 	/* Allocate "Keep Warm" page. */
    439 	if ((error = iwn_alloc_kw(sc)) != 0) {
    440 		aprint_error(": could not allocate keep warm page\n");
    441 		goto fail1;
    442 	}
    443 
    444 	/* Allocate ICT table for 5000 Series. */
    445 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    446 	    (error = iwn_alloc_ict(sc)) != 0) {
    447 		aprint_error(": could not allocate ICT table\n");
    448 		goto fail2;
    449 	}
    450 
    451 	/* Allocate TX scheduler "rings". */
    452 	if ((error = iwn_alloc_sched(sc)) != 0) {
    453 		aprint_error(": could not allocate TX scheduler rings\n");
    454 		goto fail3;
    455 	}
    456 
    457 #ifdef IWN_USE_RBUF
    458 	/* Allocate RX buffers. */
    459 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    460 		aprint_error_dev(self, "could not allocate RX buffers\n");
    461 		goto fail3;
    462 	}
    463 #endif
    464 
    465 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
    466 	for (i = 0; i < sc->ntxqs; i++) {
    467 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    468 			aprint_error(": could not allocate TX ring %d\n", i);
    469 			goto fail4;
    470 		}
    471 	}
    472 
    473 	/* Allocate RX ring. */
    474 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    475 		aprint_error(": could not allocate RX ring\n");
    476 		goto fail4;
    477 	}
    478 
    479 	/* Clear pending interrupts. */
    480 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    481 
    482 	/* Count the number of available chains. */
    483 	sc->ntxchains =
    484 	    ((sc->txchainmask >> 2) & 1) +
    485 	    ((sc->txchainmask >> 1) & 1) +
    486 	    ((sc->txchainmask >> 0) & 1);
    487 	sc->nrxchains =
    488 	    ((sc->rxchainmask >> 2) & 1) +
    489 	    ((sc->rxchainmask >> 1) & 1) +
    490 	    ((sc->rxchainmask >> 0) & 1);
    491 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    492 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    493 	    ether_sprintf(ic->ic_myaddr));
    494 
    495 	ic->ic_ifp = ifp;
    496 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    497 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    498 	ic->ic_state = IEEE80211_S_INIT;
    499 
    500 	/* Set device capabilities. */
    501 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
    502 	 * and IEEE80211_C_PMGT too. */
    503 	ic->ic_caps =
    504 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    505 	    IEEE80211_C_WPA |		/* 802.11i */
    506 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    507 	    IEEE80211_C_TXPMGT |	/* tx power management */
    508 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    509 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    510 	    IEEE80211_C_WME;		/* 802.11e */
    511 
    512 #ifndef IEEE80211_NO_HT
    513 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    514 		/* Set HT capabilities. */
    515 		ic->ic_htcaps =
    516 #if IWN_RBUF_SIZE == 8192
    517 		    IEEE80211_HTCAP_AMSDU7935 |
    518 #endif
    519 		    IEEE80211_HTCAP_CBW20_40 |
    520 		    IEEE80211_HTCAP_SGI20 |
    521 		    IEEE80211_HTCAP_SGI40;
    522 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    523 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    524 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    525 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    526 		else
    527 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    528 	}
    529 #endif	/* !IEEE80211_NO_HT */
    530 
    531 	/* Set supported legacy rates. */
    532 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
    533 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
    534 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    535 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
    536 	}
    537 #ifndef IEEE80211_NO_HT
    538 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    539 		/* Set supported HT rates. */
    540 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
    541 		if (sc->nrxchains > 1)
    542 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    543 		if (sc->nrxchains > 2)
    544 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    545 	}
    546 #endif
    547 
    548 	/* IBSS channel undefined for now. */
    549 	ic->ic_ibss_chan = &ic->ic_channels[0];
    550 
    551 	ifp->if_softc = sc;
    552 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    553 	ifp->if_init = iwn_init;
    554 	ifp->if_ioctl = iwn_ioctl;
    555 	ifp->if_start = iwn_start;
    556 	ifp->if_stop = iwn_stop;
    557 	ifp->if_watchdog = iwn_watchdog;
    558 	IFQ_SET_READY(&ifp->if_snd);
    559 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    560 
    561 	if_attach(ifp);
    562 	ieee80211_ifattach(ic);
    563 	ic->ic_node_alloc = iwn_node_alloc;
    564 	ic->ic_newassoc = iwn_newassoc;
    565 #ifdef IWN_HWCRYPTO
    566 	ic->ic_crypto.cs_key_set = iwn_set_key;
    567 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    568 #endif
    569 	ic->ic_wme.wme_update = iwn_wme_update;
    570 #ifndef IEEE80211_NO_HT
    571 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    572 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    573 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    574 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    575 #endif
    576 
    577 	/* Override 802.11 state transition machine. */
    578 	sc->sc_newstate = ic->ic_newstate;
    579 	ic->ic_newstate = iwn_newstate;
    580 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    581 
    582 	sc->amrr.amrr_min_success_threshold =  1;
    583 	sc->amrr.amrr_max_success_threshold = 15;
    584 
    585 	iwn_radiotap_attach(sc);
    586 
    587 	/*
    588 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    589 	 * callout_init and callout_setfunc, above.
    590 	*/
    591 
    592 	if (pmf_device_register(self, NULL, iwn_resume))
    593 		pmf_class_network_register(self, ifp);
    594 	else
    595 		aprint_error_dev(self, "couldn't establish power handler\n");
    596 
    597 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    598 	ieee80211_announce(ic);
    599 
    600 	return;
    601 
    602 	/* Free allocated memory if something failed during attachment. */
    603 fail4:	while (--i >= 0)
    604 		iwn_free_tx_ring(sc, &sc->txq[i]);
    605 #ifdef IWN_USE_RBUF
    606 	iwn_free_rpool(sc);
    607 #endif
    608 	iwn_free_sched(sc);
    609 fail3:	if (sc->ict != NULL)
    610 		iwn_free_ict(sc);
    611 fail2:	iwn_free_kw(sc);
    612 fail1:	iwn_free_fwmem(sc);
    613 }
    614 
    615 int
    616 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
    617 {
    618 	struct iwn_ops *ops = &sc->ops;
    619 
    620 	ops->load_firmware = iwn4965_load_firmware;
    621 	ops->read_eeprom = iwn4965_read_eeprom;
    622 	ops->post_alive = iwn4965_post_alive;
    623 	ops->nic_config = iwn4965_nic_config;
    624 	ops->update_sched = iwn4965_update_sched;
    625 	ops->get_temperature = iwn4965_get_temperature;
    626 	ops->get_rssi = iwn4965_get_rssi;
    627 	ops->set_txpower = iwn4965_set_txpower;
    628 	ops->init_gains = iwn4965_init_gains;
    629 	ops->set_gains = iwn4965_set_gains;
    630 	ops->add_node = iwn4965_add_node;
    631 	ops->tx_done = iwn4965_tx_done;
    632 #ifndef IEEE80211_NO_HT
    633 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
    634 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
    635 #endif
    636 	sc->ntxqs = IWN4965_NTXQUEUES;
    637 	sc->ndmachnls = IWN4965_NDMACHNLS;
    638 	sc->broadcast_id = IWN4965_ID_BROADCAST;
    639 	sc->rxonsz = IWN4965_RXONSZ;
    640 	sc->schedsz = IWN4965_SCHEDSZ;
    641 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
    642 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
    643 	sc->fwsz = IWN4965_FWSZ;
    644 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
    645 	sc->limits = &iwn4965_sensitivity_limits;
    646 	sc->fwname = "iwlwifi-4965-2.ucode";
    647 	/* Override chains masks, ROM is known to be broken. */
    648 	sc->txchainmask = IWN_ANT_AB;
    649 	sc->rxchainmask = IWN_ANT_ABC;
    650 
    651 	return 0;
    652 }
    653 
    654 int
    655 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
    656 {
    657 	struct iwn_ops *ops = &sc->ops;
    658 
    659 	ops->load_firmware = iwn5000_load_firmware;
    660 	ops->read_eeprom = iwn5000_read_eeprom;
    661 	ops->post_alive = iwn5000_post_alive;
    662 	ops->nic_config = iwn5000_nic_config;
    663 	ops->update_sched = iwn5000_update_sched;
    664 	ops->get_temperature = iwn5000_get_temperature;
    665 	ops->get_rssi = iwn5000_get_rssi;
    666 	ops->set_txpower = iwn5000_set_txpower;
    667 	ops->init_gains = iwn5000_init_gains;
    668 	ops->set_gains = iwn5000_set_gains;
    669 	ops->add_node = iwn5000_add_node;
    670 	ops->tx_done = iwn5000_tx_done;
    671 #ifndef IEEE80211_NO_HT
    672 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
    673 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
    674 #endif
    675 	sc->ntxqs = IWN5000_NTXQUEUES;
    676 	sc->ndmachnls = IWN5000_NDMACHNLS;
    677 	sc->broadcast_id = IWN5000_ID_BROADCAST;
    678 	sc->rxonsz = IWN5000_RXONSZ;
    679 	sc->schedsz = IWN5000_SCHEDSZ;
    680 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
    681 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
    682 	sc->fwsz = IWN5000_FWSZ;
    683 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
    684 
    685 	switch (sc->hw_type) {
    686 	case IWN_HW_REV_TYPE_5100:
    687 		sc->limits = &iwn5000_sensitivity_limits;
    688 		sc->fwname = "iwlwifi-5000-2.ucode";
    689 		/* Override chains masks, ROM is known to be broken. */
    690 		sc->txchainmask = IWN_ANT_B;
    691 		sc->rxchainmask = IWN_ANT_AB;
    692 		break;
    693 	case IWN_HW_REV_TYPE_5150:
    694 		sc->limits = &iwn5150_sensitivity_limits;
    695 		sc->fwname = "iwlwifi-5150-2.ucode";
    696 		break;
    697 	case IWN_HW_REV_TYPE_5300:
    698 	case IWN_HW_REV_TYPE_5350:
    699 		sc->limits = &iwn5000_sensitivity_limits;
    700 		sc->fwname = "iwlwifi-5000-2.ucode";
    701 		break;
    702 	case IWN_HW_REV_TYPE_1000:
    703 		sc->limits = &iwn1000_sensitivity_limits;
    704 		sc->fwname = "iwlwifi-1000-3.ucode";
    705 		break;
    706 	case IWN_HW_REV_TYPE_6000:
    707 		sc->limits = &iwn6000_sensitivity_limits;
    708 		sc->fwname = "iwlwifi-6000-4.ucode";
    709 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
    710 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
    711 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    712 			/* Override chains masks, ROM is known to be broken. */
    713 			sc->txchainmask = IWN_ANT_BC;
    714 			sc->rxchainmask = IWN_ANT_BC;
    715 		}
    716 		break;
    717 	case IWN_HW_REV_TYPE_6050:
    718 		sc->limits = &iwn6000_sensitivity_limits;
    719 		sc->fwname = "iwlwifi-6050-5.ucode";
    720 		break;
    721 	case IWN_HW_REV_TYPE_6005:
    722 		sc->limits = &iwn6000_sensitivity_limits;
    723 		sc->fwname = "iwlwifi-6000g2a-5.ucode";
    724 		break;
    725 	default:
    726 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    727 		return ENOTSUP;
    728 	}
    729 	return 0;
    730 }
    731 
    732 /*
    733  * Attach the interface to 802.11 radiotap.
    734  */
    735 static void
    736 iwn_radiotap_attach(struct iwn_softc *sc)
    737 {
    738 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    739 
    740 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    741 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    742 	    &sc->sc_drvbpf);
    743 
    744 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    745 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    746 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    747 
    748 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    749 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    750 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    751 }
    752 
    753 static int
    754 iwn_detach(device_t self, int flags __unused)
    755 {
    756 	struct iwn_softc *sc = device_private(self);
    757 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    758 	int qid;
    759 
    760 	callout_stop(&sc->calib_to);
    761 
    762 	/* Uninstall interrupt handler. */
    763 	if (sc->sc_ih != NULL)
    764 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    765 
    766 	/* Free DMA resources. */
    767 	iwn_free_rx_ring(sc, &sc->rxq);
    768 	for (qid = 0; qid < sc->ntxqs; qid++)
    769 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    770 #ifdef IWN_USE_RBUF
    771 	iwn_free_rpool(sc);
    772 #endif
    773 	iwn_free_sched(sc);
    774 	iwn_free_kw(sc);
    775 	if (sc->ict != NULL)
    776 		iwn_free_ict(sc);
    777 	iwn_free_fwmem(sc);
    778 
    779 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    780 
    781 	ieee80211_ifdetach(&sc->sc_ic);
    782 	if_detach(ifp);
    783 
    784 	return 0;
    785 }
    786 
    787 #if 0
    788 /*
    789  * XXX Investigate if clearing the PCI retry timeout could eliminate
    790  * the repeated scan calls.  Also the calls to if_init and if_start
    791  * are similar to the effect of adding the call to ifioctl_common .
    792  */
    793 static void
    794 iwn_power(int why, void *arg)
    795 {
    796 	struct iwn_softc *sc = arg;
    797 	struct ifnet *ifp;
    798 	pcireg_t reg;
    799 	int s;
    800 
    801 	if (why != PWR_RESUME)
    802 		return;
    803 
    804 	/* Clear device-specific "PCI retry timeout" register (41h). */
    805 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    806 	if (reg & 0xff00)
    807 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    808 
    809 	s = splnet();
    810 	ifp = &sc->sc_ic.ic_if;
    811 	if (ifp->if_flags & IFF_UP) {
    812 		ifp->if_init(ifp);
    813 		if (ifp->if_flags & IFF_RUNNING)
    814 			ifp->if_start(ifp);
    815 	}
    816 	splx(s);
    817 }
    818 #endif
    819 
    820 static bool
    821 iwn_resume(device_t dv, const pmf_qual_t *qual)
    822 {
    823 	return true;
    824 }
    825 
    826 static int
    827 iwn_nic_lock(struct iwn_softc *sc)
    828 {
    829 	int ntries;
    830 
    831 	/* Request exclusive access to NIC. */
    832 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    833 
    834 	/* Spin until we actually get the lock. */
    835 	for (ntries = 0; ntries < 1000; ntries++) {
    836 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    837 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    838 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    839 			return 0;
    840 		DELAY(10);
    841 	}
    842 	return ETIMEDOUT;
    843 }
    844 
    845 static __inline void
    846 iwn_nic_unlock(struct iwn_softc *sc)
    847 {
    848 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    849 }
    850 
    851 static __inline uint32_t
    852 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    853 {
    854 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    855 	IWN_BARRIER_READ_WRITE(sc);
    856 	return IWN_READ(sc, IWN_PRPH_RDATA);
    857 }
    858 
    859 static __inline void
    860 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    861 {
    862 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    863 	IWN_BARRIER_WRITE(sc);
    864 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    865 }
    866 
    867 static __inline void
    868 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    869 {
    870 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    871 }
    872 
    873 static __inline void
    874 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    875 {
    876 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    877 }
    878 
    879 static __inline void
    880 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    881     const uint32_t *data, int count)
    882 {
    883 	for (; count > 0; count--, data++, addr += 4)
    884 		iwn_prph_write(sc, addr, *data);
    885 }
    886 
    887 static __inline uint32_t
    888 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    889 {
    890 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    891 	IWN_BARRIER_READ_WRITE(sc);
    892 	return IWN_READ(sc, IWN_MEM_RDATA);
    893 }
    894 
    895 static __inline void
    896 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    897 {
    898 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    899 	IWN_BARRIER_WRITE(sc);
    900 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    901 }
    902 
    903 static __inline void
    904 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
    905 {
    906 	uint32_t tmp;
    907 
    908 	tmp = iwn_mem_read(sc, addr & ~3);
    909 	if (addr & 3)
    910 		tmp = (tmp & 0x0000ffff) | data << 16;
    911 	else
    912 		tmp = (tmp & 0xffff0000) | data;
    913 	iwn_mem_write(sc, addr & ~3, tmp);
    914 }
    915 
    916 static __inline void
    917 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
    918     int count)
    919 {
    920 	for (; count > 0; count--, addr += 4)
    921 		*data++ = iwn_mem_read(sc, addr);
    922 }
    923 
    924 static __inline void
    925 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
    926     int count)
    927 {
    928 	for (; count > 0; count--, addr += 4)
    929 		iwn_mem_write(sc, addr, val);
    930 }
    931 
    932 static int
    933 iwn_eeprom_lock(struct iwn_softc *sc)
    934 {
    935 	int i, ntries;
    936 
    937 	for (i = 0; i < 100; i++) {
    938 		/* Request exclusive access to EEPROM. */
    939 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
    940 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
    941 
    942 		/* Spin until we actually get the lock. */
    943 		for (ntries = 0; ntries < 100; ntries++) {
    944 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
    945 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
    946 				return 0;
    947 			DELAY(10);
    948 		}
    949 	}
    950 	return ETIMEDOUT;
    951 }
    952 
    953 static __inline void
    954 iwn_eeprom_unlock(struct iwn_softc *sc)
    955 {
    956 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
    957 }
    958 
    959 /*
    960  * Initialize access by host to One Time Programmable ROM.
    961  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
    962  */
    963 static int
    964 iwn_init_otprom(struct iwn_softc *sc)
    965 {
    966 	uint16_t prev = 0, base, next;
    967 	int count, error;
    968 
    969 	/* Wait for clock stabilization before accessing prph. */
    970 	if ((error = iwn_clock_wait(sc)) != 0)
    971 		return error;
    972 
    973 	if ((error = iwn_nic_lock(sc)) != 0)
    974 		return error;
    975 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
    976 	DELAY(5);
    977 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
    978 	iwn_nic_unlock(sc);
    979 
    980 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
    981 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
    982 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
    983 		    IWN_RESET_LINK_PWR_MGMT_DIS);
    984 	}
    985 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
    986 	/* Clear ECC status. */
    987 	IWN_SETBITS(sc, IWN_OTP_GP,
    988 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
    989 
    990 	/*
    991 	 * Find the block before last block (contains the EEPROM image)
    992 	 * for HW without OTP shadow RAM.
    993 	 */
    994 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
    995 		/* Switch to absolute addressing mode. */
    996 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
    997 		base = 0;
    998 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
    999 			error = iwn_read_prom_data(sc, base, &next, 2);
   1000 			if (error != 0)
   1001 				return error;
   1002 			if (next == 0)	/* End of linked-list. */
   1003 				break;
   1004 			prev = base;
   1005 			base = le16toh(next);
   1006 		}
   1007 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1008 			return EIO;
   1009 		/* Skip "next" word. */
   1010 		sc->prom_base = prev + 1;
   1011 	}
   1012 	return 0;
   1013 }
   1014 
   1015 static int
   1016 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1017 {
   1018 	uint8_t *out = data;
   1019 	uint32_t val, tmp;
   1020 	int ntries;
   1021 
   1022 	addr += sc->prom_base;
   1023 	for (; count > 0; count -= 2, addr++) {
   1024 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1025 		for (ntries = 0; ntries < 10; ntries++) {
   1026 			val = IWN_READ(sc, IWN_EEPROM);
   1027 			if (val & IWN_EEPROM_READ_VALID)
   1028 				break;
   1029 			DELAY(5);
   1030 		}
   1031 		if (ntries == 10) {
   1032 			aprint_error_dev(sc->sc_dev,
   1033 			    "timeout reading ROM at 0x%x\n", addr);
   1034 			return ETIMEDOUT;
   1035 		}
   1036 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1037 			/* OTPROM, check for ECC errors. */
   1038 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1039 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1040 				aprint_error_dev(sc->sc_dev,
   1041 				    "OTPROM ECC error at 0x%x\n", addr);
   1042 				return EIO;
   1043 			}
   1044 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1045 				/* Correctable ECC error, clear bit. */
   1046 				IWN_SETBITS(sc, IWN_OTP_GP,
   1047 				    IWN_OTP_GP_ECC_CORR_STTS);
   1048 			}
   1049 		}
   1050 		*out++ = val >> 16;
   1051 		if (count > 1)
   1052 			*out++ = val >> 24;
   1053 	}
   1054 	return 0;
   1055 }
   1056 
   1057 static int
   1058 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1059     bus_size_t size, bus_size_t alignment)
   1060 {
   1061 	int nsegs, error;
   1062 
   1063 	dma->tag = tag;
   1064 	dma->size = size;
   1065 
   1066 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1067 	    &dma->map);
   1068 	if (error != 0)
   1069 		goto fail;
   1070 
   1071 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1072 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1073 	if (error != 0)
   1074 		goto fail;
   1075 
   1076 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1077 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1078 	if (error != 0)
   1079 		goto fail;
   1080 
   1081 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1082 	    BUS_DMA_NOWAIT);
   1083 	if (error != 0)
   1084 		goto fail;
   1085 
   1086 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1087 	memset(dma->vaddr, 0, size);
   1088 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1089 
   1090 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1091 	if (kvap != NULL)
   1092 		*kvap = dma->vaddr;
   1093 
   1094 	return 0;
   1095 
   1096 fail:	iwn_dma_contig_free(dma);
   1097 	return error;
   1098 }
   1099 
   1100 static void
   1101 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1102 {
   1103 	if (dma->map != NULL) {
   1104 		if (dma->vaddr != NULL) {
   1105 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1106 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1107 			bus_dmamap_unload(dma->tag, dma->map);
   1108 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1109 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1110 			dma->vaddr = NULL;
   1111 		}
   1112 		bus_dmamap_destroy(dma->tag, dma->map);
   1113 		dma->map = NULL;
   1114 	}
   1115 }
   1116 
   1117 static int
   1118 iwn_alloc_sched(struct iwn_softc *sc)
   1119 {
   1120 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1121 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1122 	    (void **)&sc->sched, sc->schedsz, 1024);
   1123 }
   1124 
   1125 static void
   1126 iwn_free_sched(struct iwn_softc *sc)
   1127 {
   1128 	iwn_dma_contig_free(&sc->sched_dma);
   1129 }
   1130 
   1131 static int
   1132 iwn_alloc_kw(struct iwn_softc *sc)
   1133 {
   1134 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1135 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1136 	    4096);
   1137 }
   1138 
   1139 static void
   1140 iwn_free_kw(struct iwn_softc *sc)
   1141 {
   1142 	iwn_dma_contig_free(&sc->kw_dma);
   1143 }
   1144 
   1145 static int
   1146 iwn_alloc_ict(struct iwn_softc *sc)
   1147 {
   1148 	/* ICT table must be aligned on a 4KB boundary. */
   1149 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1150 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1151 }
   1152 
   1153 static void
   1154 iwn_free_ict(struct iwn_softc *sc)
   1155 {
   1156 	iwn_dma_contig_free(&sc->ict_dma);
   1157 }
   1158 
   1159 static int
   1160 iwn_alloc_fwmem(struct iwn_softc *sc)
   1161 {
   1162 	/* Must be aligned on a 16-byte boundary. */
   1163 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1164 	    sc->fwsz, 16);
   1165 }
   1166 
   1167 static void
   1168 iwn_free_fwmem(struct iwn_softc *sc)
   1169 {
   1170 	iwn_dma_contig_free(&sc->fw_dma);
   1171 }
   1172 
   1173 static int
   1174 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1175 {
   1176 	bus_size_t size;
   1177 	int i, error;
   1178 
   1179 	ring->cur = 0;
   1180 
   1181 	/* Allocate RX descriptors (256-byte aligned). */
   1182 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1183 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1184 	    (void **)&ring->desc, size, 256);
   1185 	if (error != 0) {
   1186 		aprint_error_dev(sc->sc_dev,
   1187 		    "could not allocate RX ring DMA memory\n");
   1188 		goto fail;
   1189 	}
   1190 
   1191 	/* Allocate RX status area (16-byte aligned). */
   1192 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1193 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1194 	if (error != 0) {
   1195 		aprint_error_dev(sc->sc_dev,
   1196 		    "could not allocate RX status DMA memory\n");
   1197 		goto fail;
   1198 	}
   1199 
   1200 	/*
   1201 	 * Allocate and map RX buffers.
   1202 	 */
   1203 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1204 		struct iwn_rx_data *data = &ring->data[i];
   1205 
   1206 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1207 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1208 		    &data->map);
   1209 		if (error != 0) {
   1210 			aprint_error_dev(sc->sc_dev,
   1211 			    "could not create RX buf DMA map\n");
   1212 			goto fail;
   1213 		}
   1214 
   1215 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1216 		if (data->m == NULL) {
   1217 			aprint_error_dev(sc->sc_dev,
   1218 			    "could not allocate RX mbuf\n");
   1219 			error = ENOBUFS;
   1220 			goto fail;
   1221 		}
   1222 
   1223 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1224 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1225 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1226 		if (error != 0) {
   1227 			aprint_error_dev(sc->sc_dev,
   1228 			    "can't not map mbuf (error %d)\n", error);
   1229 			goto fail;
   1230 		}
   1231 
   1232 		/* Set physical address of RX buffer (256-byte aligned). */
   1233 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1234 	}
   1235 
   1236 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1237 	    BUS_DMASYNC_PREWRITE);
   1238 
   1239 	return 0;
   1240 
   1241 fail:	iwn_free_rx_ring(sc, ring);
   1242 	return error;
   1243 }
   1244 
   1245 static void
   1246 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1247 {
   1248 	int ntries;
   1249 
   1250 	if (iwn_nic_lock(sc) == 0) {
   1251 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1252 		for (ntries = 0; ntries < 1000; ntries++) {
   1253 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1254 			    IWN_FH_RX_STATUS_IDLE)
   1255 				break;
   1256 			DELAY(10);
   1257 		}
   1258 		iwn_nic_unlock(sc);
   1259 	}
   1260 	ring->cur = 0;
   1261 	sc->last_rx_valid = 0;
   1262 }
   1263 
   1264 static void
   1265 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1266 {
   1267 	int i;
   1268 
   1269 	iwn_dma_contig_free(&ring->desc_dma);
   1270 	iwn_dma_contig_free(&ring->stat_dma);
   1271 
   1272 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1273 		struct iwn_rx_data *data = &ring->data[i];
   1274 
   1275 		if (data->m != NULL) {
   1276 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1277 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1278 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1279 			m_freem(data->m);
   1280 		}
   1281 		if (data->map != NULL)
   1282 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1283 	}
   1284 }
   1285 
   1286 static int
   1287 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1288 {
   1289 	bus_addr_t paddr;
   1290 	bus_size_t size;
   1291 	int i, error;
   1292 
   1293 	ring->qid = qid;
   1294 	ring->queued = 0;
   1295 	ring->cur = 0;
   1296 
   1297 	/* Allocate TX descriptors (256-byte aligned). */
   1298 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1299 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1300 	    (void **)&ring->desc, size, 256);
   1301 	if (error != 0) {
   1302 		aprint_error_dev(sc->sc_dev,
   1303 		    "could not allocate TX ring DMA memory\n");
   1304 		goto fail;
   1305 	}
   1306 	/*
   1307 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1308 	 * to allocate commands space for other rings.
   1309 	 * XXX Do we really need to allocate descriptors for other rings?
   1310 	 */
   1311 	if (qid > 4)
   1312 		return 0;
   1313 
   1314 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1315 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1316 	    (void **)&ring->cmd, size, 4);
   1317 	if (error != 0) {
   1318 		aprint_error_dev(sc->sc_dev,
   1319 		    "could not allocate TX cmd DMA memory\n");
   1320 		goto fail;
   1321 	}
   1322 
   1323 	paddr = ring->cmd_dma.paddr;
   1324 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1325 		struct iwn_tx_data *data = &ring->data[i];
   1326 
   1327 		data->cmd_paddr = paddr;
   1328 		data->scratch_paddr = paddr + 12;
   1329 		paddr += sizeof (struct iwn_tx_cmd);
   1330 
   1331 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1332 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1333 		    &data->map);
   1334 		if (error != 0) {
   1335 			aprint_error_dev(sc->sc_dev,
   1336 			    "could not create TX buf DMA map\n");
   1337 			goto fail;
   1338 		}
   1339 	}
   1340 	return 0;
   1341 
   1342 fail:	iwn_free_tx_ring(sc, ring);
   1343 	return error;
   1344 }
   1345 
   1346 static void
   1347 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1348 {
   1349 	int i;
   1350 
   1351 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1352 		struct iwn_tx_data *data = &ring->data[i];
   1353 
   1354 		if (data->m != NULL) {
   1355 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1356 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1357 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1358 			m_freem(data->m);
   1359 			data->m = NULL;
   1360 		}
   1361 	}
   1362 	/* Clear TX descriptors. */
   1363 	memset(ring->desc, 0, ring->desc_dma.size);
   1364 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1365 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1366 	sc->qfullmsk &= ~(1 << ring->qid);
   1367 	ring->queued = 0;
   1368 	ring->cur = 0;
   1369 }
   1370 
   1371 static void
   1372 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1373 {
   1374 	int i;
   1375 
   1376 	iwn_dma_contig_free(&ring->desc_dma);
   1377 	iwn_dma_contig_free(&ring->cmd_dma);
   1378 
   1379 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1380 		struct iwn_tx_data *data = &ring->data[i];
   1381 
   1382 		if (data->m != NULL) {
   1383 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1384 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1385 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1386 			m_freem(data->m);
   1387 		}
   1388 		if (data->map != NULL)
   1389 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1390 	}
   1391 }
   1392 
   1393 static void
   1394 iwn5000_ict_reset(struct iwn_softc *sc)
   1395 {
   1396 	/* Disable interrupts. */
   1397 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1398 
   1399 	/* Reset ICT table. */
   1400 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1401 	sc->ict_cur = 0;
   1402 
   1403 	/* Set physical address of ICT table (4KB aligned). */
   1404 	DPRINTF(("enabling ICT\n"));
   1405 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1406 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1407 
   1408 	/* Enable periodic RX interrupt. */
   1409 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1410 	/* Switch to ICT interrupt mode in driver. */
   1411 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1412 
   1413 	/* Re-enable interrupts. */
   1414 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1415 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1416 }
   1417 
   1418 static int
   1419 iwn_read_eeprom(struct iwn_softc *sc)
   1420 {
   1421 	struct iwn_ops *ops = &sc->ops;
   1422 	struct ieee80211com *ic = &sc->sc_ic;
   1423 	uint16_t val;
   1424 	int error;
   1425 
   1426 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1427 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1428 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1429 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1430 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1431 	    "OTPROM" : "EEPROM"));
   1432 
   1433 	/* Adapter has to be powered on for EEPROM access to work. */
   1434 	if ((error = iwn_apm_init(sc)) != 0) {
   1435 		aprint_error_dev(sc->sc_dev,
   1436 		    "could not power ON adapter\n");
   1437 		return error;
   1438 	}
   1439 
   1440 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1441 		aprint_error_dev(sc->sc_dev,
   1442 		    "bad ROM signature\n");
   1443 		return EIO;
   1444 	}
   1445 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1446 		aprint_error_dev(sc->sc_dev,
   1447 		    "could not lock ROM (error=%d)\n", error);
   1448 		return error;
   1449 	}
   1450 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1451 		if ((error = iwn_init_otprom(sc)) != 0) {
   1452 			aprint_error_dev(sc->sc_dev,
   1453 			    "could not initialize OTPROM\n");
   1454 			return error;
   1455 		}
   1456 	}
   1457 
   1458 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
   1459 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
   1460 	/* Check if HT support is bonded out. */
   1461 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
   1462 		sc->sc_flags |= IWN_FLAG_HAS_11N;
   1463 
   1464 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1465 	sc->rfcfg = le16toh(val);
   1466 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1467 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
   1468 	if (sc->txchainmask == 0)
   1469 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
   1470 	if (sc->rxchainmask == 0)
   1471 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
   1472 
   1473 	/* Read MAC address. */
   1474 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1475 
   1476 	/* Read adapter-specific information from EEPROM. */
   1477 	ops->read_eeprom(sc);
   1478 
   1479 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1480 
   1481 	iwn_eeprom_unlock(sc);
   1482 	return 0;
   1483 }
   1484 
   1485 static void
   1486 iwn4965_read_eeprom(struct iwn_softc *sc)
   1487 {
   1488 	uint32_t addr;
   1489 	uint16_t val;
   1490 	int i;
   1491 
   1492 	/* Read regulatory domain (4 ASCII characters). */
   1493 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1494 
   1495 	/* Read the list of authorized channels (20MHz ones only). */
   1496 	for (i = 0; i < 5; i++) {
   1497 		addr = iwn4965_regulatory_bands[i];
   1498 		iwn_read_eeprom_channels(sc, i, addr);
   1499 	}
   1500 
   1501 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1502 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1503 	sc->maxpwr2GHz = val & 0xff;
   1504 	sc->maxpwr5GHz = val >> 8;
   1505 	/* Check that EEPROM values are within valid range. */
   1506 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1507 		sc->maxpwr5GHz = 38;
   1508 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1509 		sc->maxpwr2GHz = 38;
   1510 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1511 
   1512 	/* Read samples for each TX power group. */
   1513 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1514 	    sizeof sc->bands);
   1515 
   1516 	/* Read voltage at which samples were taken. */
   1517 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1518 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1519 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1520 
   1521 #ifdef IWN_DEBUG
   1522 	/* Print samples. */
   1523 	if (iwn_debug > 0) {
   1524 		for (i = 0; i < IWN_NBANDS; i++)
   1525 			iwn4965_print_power_group(sc, i);
   1526 	}
   1527 #endif
   1528 }
   1529 
   1530 #ifdef IWN_DEBUG
   1531 static void
   1532 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1533 {
   1534 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1535 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1536 	int j, c;
   1537 
   1538 	aprint_normal("===band %d===\n", i);
   1539 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1540 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1541 	for (c = 0; c < 2; c++) {
   1542 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1543 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1544 			    "power=%d pa_det=%d\n", c, j,
   1545 			    chans[0].samples[c][j].temp,
   1546 			    chans[0].samples[c][j].gain,
   1547 			    chans[0].samples[c][j].power,
   1548 			    chans[0].samples[c][j].pa_det);
   1549 		}
   1550 	}
   1551 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1552 	for (c = 0; c < 2; c++) {
   1553 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1554 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1555 			    "power=%d pa_det=%d\n", c, j,
   1556 			    chans[1].samples[c][j].temp,
   1557 			    chans[1].samples[c][j].gain,
   1558 			    chans[1].samples[c][j].power,
   1559 			    chans[1].samples[c][j].pa_det);
   1560 		}
   1561 	}
   1562 }
   1563 #endif
   1564 
   1565 static void
   1566 iwn5000_read_eeprom(struct iwn_softc *sc)
   1567 {
   1568 	struct iwn5000_eeprom_calib_hdr hdr;
   1569 	int32_t volt;
   1570 	uint32_t base, addr;
   1571 	uint16_t val;
   1572 	int i;
   1573 
   1574 	/* Read regulatory domain (4 ASCII characters). */
   1575 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1576 	base = le16toh(val);
   1577 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1578 	    sc->eeprom_domain, 4);
   1579 
   1580 	/* Read the list of authorized channels (20MHz ones only). */
   1581 	for (i = 0; i < 5; i++) {
   1582 		addr = base + iwn5000_regulatory_bands[i];
   1583 		iwn_read_eeprom_channels(sc, i, addr);
   1584 	}
   1585 
   1586 	/* Read enhanced TX power information for 6000 Series. */
   1587 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1588 		iwn_read_eeprom_enhinfo(sc);
   1589 
   1590 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1591 	base = le16toh(val);
   1592 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1593 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1594 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1595 	sc->calib_ver = hdr.version;
   1596 
   1597 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1598 		/* Compute temperature offset. */
   1599 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1600 		sc->eeprom_temp = le16toh(val);
   1601 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1602 		volt = le16toh(val);
   1603 		sc->temp_off = sc->eeprom_temp - (volt / -5);
   1604 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1605 		    sc->eeprom_temp, volt, sc->temp_off));
   1606 	} else {
   1607 		/* Read crystal calibration. */
   1608 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1609 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1610 		DPRINTF(("crystal calibration 0x%08x\n",
   1611 		    le32toh(sc->eeprom_crystal)));
   1612 	}
   1613 }
   1614 
   1615 static void
   1616 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1617 {
   1618 	struct ieee80211com *ic = &sc->sc_ic;
   1619 	const struct iwn_chan_band *band = &iwn_bands[n];
   1620 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1621 	uint8_t chan;
   1622 	int i;
   1623 
   1624 	iwn_read_prom_data(sc, addr, channels,
   1625 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1626 
   1627 	for (i = 0; i < band->nchan; i++) {
   1628 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1629 			continue;
   1630 
   1631 		chan = band->chan[i];
   1632 
   1633 		if (n == 0) {	/* 2GHz band */
   1634 			ic->ic_channels[chan].ic_freq =
   1635 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1636 			ic->ic_channels[chan].ic_flags =
   1637 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1638 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1639 
   1640 		} else {	/* 5GHz band */
   1641 			/*
   1642 			 * Some adapters support channels 7, 8, 11 and 12
   1643 			 * both in the 2GHz and 4.9GHz bands.
   1644 			 * Because of limitations in our net80211 layer,
   1645 			 * we don't support them in the 4.9GHz band.
   1646 			 */
   1647 			if (chan <= 14)
   1648 				continue;
   1649 
   1650 			ic->ic_channels[chan].ic_freq =
   1651 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1652 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1653 			/* We have at least one valid 5GHz channel. */
   1654 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1655 		}
   1656 
   1657 		/* Is active scan allowed on this channel? */
   1658 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1659 			ic->ic_channels[chan].ic_flags |=
   1660 			    IEEE80211_CHAN_PASSIVE;
   1661 		}
   1662 
   1663 		/* Save maximum allowed TX power for this channel. */
   1664 		sc->maxpwr[chan] = channels[i].maxpwr;
   1665 
   1666 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1667 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1668 	}
   1669 }
   1670 
   1671 static void
   1672 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1673 {
   1674 	struct iwn_eeprom_enhinfo enhinfo[35];
   1675 	uint16_t val, base;
   1676 	int8_t maxpwr;
   1677 	int i;
   1678 
   1679 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1680 	base = le16toh(val);
   1681 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1682 	    enhinfo, sizeof enhinfo);
   1683 
   1684 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1685 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1686 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
   1687 			continue;	/* Skip invalid entries. */
   1688 
   1689 		maxpwr = 0;
   1690 		if (sc->txchainmask & IWN_ANT_A)
   1691 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1692 		if (sc->txchainmask & IWN_ANT_B)
   1693 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1694 		if (sc->txchainmask & IWN_ANT_C)
   1695 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1696 		if (sc->ntxchains == 2)
   1697 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1698 		else if (sc->ntxchains == 3)
   1699 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1700 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1701 
   1702 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1703 		sc->enh_maxpwr[i] = maxpwr;
   1704 	}
   1705 }
   1706 
   1707 static struct ieee80211_node *
   1708 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1709 {
   1710 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1711 }
   1712 
   1713 static void
   1714 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1715 {
   1716 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1717 	struct iwn_node *wn = (void *)ni;
   1718 	uint8_t rate;
   1719 	int ridx, i;
   1720 
   1721 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1722 	/* Start at lowest available bit-rate, AMRR will raise. */
   1723 	ni->ni_txrate = 0;
   1724 
   1725 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1726 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1727 		/* Map 802.11 rate to HW rate index. */
   1728 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1729 			if (iwn_rates[ridx].rate == rate)
   1730 				break;
   1731 		wn->ridx[i] = ridx;
   1732 	}
   1733 }
   1734 
   1735 static int
   1736 iwn_media_change(struct ifnet *ifp)
   1737 {
   1738 	struct iwn_softc *sc = ifp->if_softc;
   1739 	struct ieee80211com *ic = &sc->sc_ic;
   1740 	uint8_t rate, ridx;
   1741 	int error;
   1742 
   1743 	error = ieee80211_media_change(ifp);
   1744 	if (error != ENETRESET)
   1745 		return error;
   1746 
   1747 	if (ic->ic_fixed_rate != -1) {
   1748 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1749 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1750 		/* Map 802.11 rate to HW rate index. */
   1751 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1752 			if (iwn_rates[ridx].rate == rate)
   1753 				break;
   1754 		sc->fixed_ridx = ridx;
   1755 	}
   1756 
   1757 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1758 	    (IFF_UP | IFF_RUNNING)) {
   1759 		iwn_stop(ifp, 0);
   1760 		error = iwn_init(ifp);
   1761 	}
   1762 	return error;
   1763 }
   1764 
   1765 static int
   1766 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1767 {
   1768 	struct ifnet *ifp = ic->ic_ifp;
   1769 	struct iwn_softc *sc = ifp->if_softc;
   1770 	int error;
   1771 
   1772 	callout_stop(&sc->calib_to);
   1773 
   1774 	switch (nstate) {
   1775 	case IEEE80211_S_SCAN:
   1776 		/* XXX Do not abort a running scan. */
   1777 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1778 			if (ic->ic_state != nstate)
   1779 				aprint_error_dev(sc->sc_dev, "scan request(%d) "
   1780 				    "while scanning(%d) ignored\n", nstate,
   1781 				    ic->ic_state);
   1782 			break;
   1783 		}
   1784 
   1785 		/* XXX Not sure if call and flags are needed. */
   1786 		ieee80211_node_table_reset(&ic->ic_scan);
   1787 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1788 		sc->sc_flags |= IWN_FLAG_SCANNING;
   1789 
   1790 		/* Make the link LED blink while we're scanning. */
   1791 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1792 
   1793 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1794 			aprint_error_dev(sc->sc_dev,
   1795 			    "could not initiate scan\n");
   1796 			return error;
   1797 		}
   1798 		ic->ic_state = nstate;
   1799 		return 0;
   1800 
   1801 	case IEEE80211_S_ASSOC:
   1802 		if (ic->ic_state != IEEE80211_S_RUN)
   1803 			break;
   1804 		/* FALLTHROUGH */
   1805 	case IEEE80211_S_AUTH:
   1806 		/* Reset state to handle reassociations correctly. */
   1807 		sc->rxon.associd = 0;
   1808 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1809 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1810 
   1811 		if ((error = iwn_auth(sc)) != 0) {
   1812 			aprint_error_dev(sc->sc_dev,
   1813 			    "could not move to auth state\n");
   1814 			return error;
   1815 		}
   1816 		break;
   1817 
   1818 	case IEEE80211_S_RUN:
   1819 		if ((error = iwn_run(sc)) != 0) {
   1820 			aprint_error_dev(sc->sc_dev,
   1821 			    "could not move to run state\n");
   1822 			return error;
   1823 		}
   1824 		break;
   1825 
   1826 	case IEEE80211_S_INIT:
   1827 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1828 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1829 		break;
   1830 	}
   1831 
   1832 	return sc->sc_newstate(ic, nstate, arg);
   1833 }
   1834 
   1835 static void
   1836 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1837 {
   1838 	struct iwn_softc *sc = arg;
   1839 	struct iwn_node *wn = (struct iwn_node *)ni;
   1840 
   1841 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1842 }
   1843 
   1844 static void
   1845 iwn_calib_timeout(void *arg)
   1846 {
   1847 	struct iwn_softc *sc = arg;
   1848 	struct ieee80211com *ic = &sc->sc_ic;
   1849 	int s;
   1850 
   1851 	s = splnet();
   1852 	if (ic->ic_fixed_rate == -1) {
   1853 		if (ic->ic_opmode == IEEE80211_M_STA)
   1854 			iwn_iter_func(sc, ic->ic_bss);
   1855 		else
   1856 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1857 	}
   1858 	/* Force automatic TX power calibration every 60 secs. */
   1859 	if (++sc->calib_cnt >= 120) {
   1860 		uint32_t flags = 0;
   1861 
   1862 		DPRINTF(("sending request for statistics\n"));
   1863 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   1864 		    sizeof flags, 1);
   1865 		sc->calib_cnt = 0;
   1866 	}
   1867 	splx(s);
   1868 
   1869 	/* Automatic rate control triggered every 500ms. */
   1870 	callout_schedule(&sc->calib_to, hz/2);
   1871 }
   1872 
   1873 /*
   1874  * Process an RX_PHY firmware notification.  This is usually immediately
   1875  * followed by an MPDU_RX_DONE notification.
   1876  */
   1877 static void
   1878 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1879     struct iwn_rx_data *data)
   1880 {
   1881 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   1882 
   1883 	DPRINTFN(2, ("received PHY stats\n"));
   1884 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   1885 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   1886 
   1887 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   1888 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   1889 	sc->last_rx_valid = 1;
   1890 }
   1891 
   1892 /*
   1893  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   1894  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   1895  */
   1896 static void
   1897 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1898     struct iwn_rx_data *data)
   1899 {
   1900 	struct iwn_ops *ops = &sc->ops;
   1901 	struct ieee80211com *ic = &sc->sc_ic;
   1902 	struct ifnet *ifp = ic->ic_ifp;
   1903 	struct iwn_rx_ring *ring = &sc->rxq;
   1904 	struct ieee80211_frame *wh;
   1905 	struct ieee80211_node *ni;
   1906 	struct mbuf *m, *m1;
   1907 	struct iwn_rx_stat *stat;
   1908 	char	*head;
   1909 	uint32_t flags;
   1910 	int error, len, rssi;
   1911 
   1912 	if (desc->type == IWN_MPDU_RX_DONE) {
   1913 		/* Check for prior RX_PHY notification. */
   1914 		if (!sc->last_rx_valid) {
   1915 			DPRINTF(("missing RX_PHY\n"));
   1916 			return;
   1917 		}
   1918 		sc->last_rx_valid = 0;
   1919 		stat = &sc->last_rx_stat;
   1920 	} else
   1921 		stat = (struct iwn_rx_stat *)(desc + 1);
   1922 
   1923 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   1924 	    BUS_DMASYNC_POSTREAD);
   1925 
   1926 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   1927 		aprint_error_dev(sc->sc_dev,
   1928 		    "invalid RX statistic header\n");
   1929 		return;
   1930 	}
   1931 	if (desc->type == IWN_MPDU_RX_DONE) {
   1932 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   1933 		head = (char *)(mpdu + 1);
   1934 		len = le16toh(mpdu->len);
   1935 	} else {
   1936 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   1937 		len = le16toh(stat->len);
   1938 	}
   1939 
   1940 	flags = le32toh(*(uint32_t *)(head + len));
   1941 
   1942 	/* Discard frames with a bad FCS early. */
   1943 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   1944 		DPRINTFN(2, ("RX flags error %x\n", flags));
   1945 		ifp->if_ierrors++;
   1946 		return;
   1947 	}
   1948 	/* Discard frames that are too short. */
   1949 	if (len < sizeof (*wh)) {
   1950 		DPRINTF(("frame too short: %d\n", len));
   1951 		ic->ic_stats.is_rx_tooshort++;
   1952 		ifp->if_ierrors++;
   1953 		return;
   1954 	}
   1955 
   1956 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1957 	if (m1 == NULL) {
   1958 		ic->ic_stats.is_rx_nobuf++;
   1959 		ifp->if_ierrors++;
   1960 		return;
   1961 	}
   1962 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1963 
   1964 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   1965 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   1966 	if (error != 0) {
   1967 		m_freem(m1);
   1968 
   1969 		/* Try to reload the old mbuf. */
   1970 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1971 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1972 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1973 		if (error != 0) {
   1974 			panic("%s: could not load old RX mbuf",
   1975 			    device_xname(sc->sc_dev));
   1976 		}
   1977 		/* Physical address may have changed. */
   1978 		ring->desc[ring->cur] =
   1979 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   1980 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   1981 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   1982 		    BUS_DMASYNC_PREWRITE);
   1983 		ifp->if_ierrors++;
   1984 		return;
   1985 	}
   1986 
   1987 	m = data->m;
   1988 	data->m = m1;
   1989 	/* Update RX descriptor. */
   1990 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1991 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   1992 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   1993 	    BUS_DMASYNC_PREWRITE);
   1994 
   1995 	/* Finalize mbuf. */
   1996 	m->m_pkthdr.rcvif = ifp;
   1997 	m->m_data = head;
   1998 	m->m_pkthdr.len = m->m_len = len;
   1999 
   2000 	/* Grab a reference to the source node. */
   2001 	wh = mtod(m, struct ieee80211_frame *);
   2002 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2003 
   2004 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2005 	/* NetBSD does decryption in ieee80211_input. */
   2006 
   2007 	rssi = ops->get_rssi(stat);
   2008 
   2009 	/* XXX Added for NetBSD: scans never stop without it */
   2010 	if (ic->ic_state == IEEE80211_S_SCAN)
   2011 		iwn_fix_channel(ic, m);
   2012 
   2013 	if (sc->sc_drvbpf != NULL) {
   2014 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2015 
   2016 		tap->wr_flags = 0;
   2017 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2018 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2019 		tap->wr_chan_freq =
   2020 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2021 		tap->wr_chan_flags =
   2022 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2023 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2024 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2025 		tap->wr_tsft = stat->tstamp;
   2026 		switch (stat->rate) {
   2027 		/* CCK rates. */
   2028 		case  10: tap->wr_rate =   2; break;
   2029 		case  20: tap->wr_rate =   4; break;
   2030 		case  55: tap->wr_rate =  11; break;
   2031 		case 110: tap->wr_rate =  22; break;
   2032 		/* OFDM rates. */
   2033 		case 0xd: tap->wr_rate =  12; break;
   2034 		case 0xf: tap->wr_rate =  18; break;
   2035 		case 0x5: tap->wr_rate =  24; break;
   2036 		case 0x7: tap->wr_rate =  36; break;
   2037 		case 0x9: tap->wr_rate =  48; break;
   2038 		case 0xb: tap->wr_rate =  72; break;
   2039 		case 0x1: tap->wr_rate =  96; break;
   2040 		case 0x3: tap->wr_rate = 108; break;
   2041 		/* Unknown rate: should not happen. */
   2042 		default:  tap->wr_rate =   0;
   2043 		}
   2044 
   2045 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   2046 	}
   2047 
   2048 	/* Send the frame to the 802.11 layer. */
   2049 	ieee80211_input(ic, m, ni, rssi, 0);
   2050 
   2051 	/* Node is no longer needed. */
   2052 	ieee80211_free_node(ni);
   2053 }
   2054 
   2055 #ifndef IEEE80211_NO_HT
   2056 /* Process an incoming Compressed BlockAck. */
   2057 static void
   2058 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2059     struct iwn_rx_data *data)
   2060 {
   2061 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2062 	struct iwn_tx_ring *txq;
   2063 
   2064 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2065 	    BUS_DMASYNC_POSTREAD);
   2066 
   2067 	txq = &sc->txq[le16toh(ba->qid)];
   2068 	/* XXX TBD */
   2069 }
   2070 #endif
   2071 
   2072 /*
   2073  * Process a CALIBRATION_RESULT notification sent by the initialization
   2074  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
   2075  */
   2076 static void
   2077 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2078     struct iwn_rx_data *data)
   2079 {
   2080 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2081 	int len, idx = -1;
   2082 
   2083 	/* Runtime firmware should not send such a notification. */
   2084 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2085 		return;
   2086 
   2087 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2088 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2089 	    BUS_DMASYNC_POSTREAD);
   2090 
   2091 	switch (calib->code) {
   2092 	case IWN5000_PHY_CALIB_DC:
   2093 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   2094 			idx = 0;
   2095 		break;
   2096 	case IWN5000_PHY_CALIB_LO:
   2097 		idx = 1;
   2098 		break;
   2099 	case IWN5000_PHY_CALIB_TX_IQ:
   2100 		idx = 2;
   2101 		break;
   2102 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2103 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2104 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2105 			idx = 3;
   2106 		break;
   2107 	case IWN5000_PHY_CALIB_BASE_BAND:
   2108 		idx = 4;
   2109 		break;
   2110 	}
   2111 	if (idx == -1)	/* Ignore other results. */
   2112 		return;
   2113 
   2114 	/* Save calibration result. */
   2115 	if (sc->calibcmd[idx].buf != NULL)
   2116 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2117 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2118 	if (sc->calibcmd[idx].buf == NULL) {
   2119 		DPRINTF(("not enough memory for calibration result %d\n",
   2120 		    calib->code));
   2121 		return;
   2122 	}
   2123 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2124 	    calib->code, len));
   2125 	sc->calibcmd[idx].len = len;
   2126 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2127 }
   2128 
   2129 /*
   2130  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2131  * The latter is sent by the firmware after each received beacon.
   2132  */
   2133 static void
   2134 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2135     struct iwn_rx_data *data)
   2136 {
   2137 	struct iwn_ops *ops = &sc->ops;
   2138 	struct ieee80211com *ic = &sc->sc_ic;
   2139 	struct iwn_calib_state *calib = &sc->calib;
   2140 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2141 	int temp;
   2142 
   2143 	/* Ignore statistics received during a scan. */
   2144 	if (ic->ic_state != IEEE80211_S_RUN)
   2145 		return;
   2146 
   2147 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2148 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2149 
   2150 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2151 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2152 
   2153 	/* Test if temperature has changed. */
   2154 	if (stats->general.temp != sc->rawtemp) {
   2155 		/* Convert "raw" temperature to degC. */
   2156 		sc->rawtemp = stats->general.temp;
   2157 		temp = ops->get_temperature(sc);
   2158 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2159 
   2160 		/* Update TX power if need be (4965AGN only). */
   2161 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2162 			iwn4965_power_calibration(sc, temp);
   2163 	}
   2164 
   2165 	if (desc->type != IWN_BEACON_STATISTICS)
   2166 		return;	/* Reply to a statistics request. */
   2167 
   2168 	sc->noise = iwn_get_noise(&stats->rx.general);
   2169 
   2170 	/* Test that RSSI and noise are present in stats report. */
   2171 	if (le32toh(stats->rx.general.flags) != 1) {
   2172 		DPRINTF(("received statistics without RSSI\n"));
   2173 		return;
   2174 	}
   2175 
   2176 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2177 		iwn_collect_noise(sc, &stats->rx.general);
   2178 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2179 		iwn_tune_sensitivity(sc, &stats->rx);
   2180 }
   2181 
   2182 /*
   2183  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2184  * and 5000 adapters have different incompatible TX status formats.
   2185  */
   2186 static void
   2187 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2188     struct iwn_rx_data *data)
   2189 {
   2190 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2191 
   2192 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2193 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2194 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2195 }
   2196 
   2197 static void
   2198 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2199     struct iwn_rx_data *data)
   2200 {
   2201 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2202 
   2203 #ifdef notyet
   2204 	/* Reset TX scheduler slot. */
   2205 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2206 #endif
   2207 
   2208 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2209 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2210 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2211 }
   2212 
   2213 /*
   2214  * Adapter-independent backend for TX_DONE firmware notifications.
   2215  */
   2216 static void
   2217 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2218     uint8_t status)
   2219 {
   2220 	struct ieee80211com *ic = &sc->sc_ic;
   2221 	struct ifnet *ifp = ic->ic_ifp;
   2222 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2223 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2224 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2225 
   2226 	/* Update rate control statistics. */
   2227 	wn->amn.amn_txcnt++;
   2228 	if (ackfailcnt > 0)
   2229 		wn->amn.amn_retrycnt++;
   2230 
   2231 	if (status != 1 && status != 2)
   2232 		ifp->if_oerrors++;
   2233 	else
   2234 		ifp->if_opackets++;
   2235 
   2236 	/* Unmap and free mbuf. */
   2237 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2238 	    BUS_DMASYNC_POSTWRITE);
   2239 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2240 	m_freem(data->m);
   2241 	data->m = NULL;
   2242 	ieee80211_free_node(data->ni);
   2243 	data->ni = NULL;
   2244 
   2245 	sc->sc_tx_timer = 0;
   2246 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2247 		sc->qfullmsk &= ~(1 << ring->qid);
   2248 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2249 			ifp->if_flags &= ~IFF_OACTIVE;
   2250 			(*ifp->if_start)(ifp);
   2251 		}
   2252 	}
   2253 }
   2254 
   2255 /*
   2256  * Process a "command done" firmware notification.  This is where we wakeup
   2257  * processes waiting for a synchronous command completion.
   2258  */
   2259 static void
   2260 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2261 {
   2262 	struct iwn_tx_ring *ring = &sc->txq[4];
   2263 	struct iwn_tx_data *data;
   2264 
   2265 	if ((desc->qid & 0xf) != 4)
   2266 		return;	/* Not a command ack. */
   2267 
   2268 	data = &ring->data[desc->idx];
   2269 
   2270 	/* If the command was mapped in an mbuf, free it. */
   2271 	if (data->m != NULL) {
   2272 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2273 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2274 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2275 		m_freem(data->m);
   2276 		data->m = NULL;
   2277 	}
   2278 	wakeup(&ring->desc[desc->idx]);
   2279 }
   2280 
   2281 /*
   2282  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2283  */
   2284 static void
   2285 iwn_notif_intr(struct iwn_softc *sc)
   2286 {
   2287 	struct iwn_ops *ops = &sc->ops;
   2288 	struct ieee80211com *ic = &sc->sc_ic;
   2289 	struct ifnet *ifp = ic->ic_ifp;
   2290 	uint16_t hw;
   2291 
   2292 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2293 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2294 
   2295 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2296 	while (sc->rxq.cur != hw) {
   2297 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2298 		struct iwn_rx_desc *desc;
   2299 
   2300 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2301 		    BUS_DMASYNC_POSTREAD);
   2302 		desc = mtod(data->m, struct iwn_rx_desc *);
   2303 
   2304 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2305 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2306 
   2307 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2308 			iwn_cmd_done(sc, desc);
   2309 
   2310 		switch (desc->type) {
   2311 		case IWN_RX_PHY:
   2312 			iwn_rx_phy(sc, desc, data);
   2313 			break;
   2314 
   2315 		case IWN_RX_DONE:		/* 4965AGN only. */
   2316 		case IWN_MPDU_RX_DONE:
   2317 			/* An 802.11 frame has been received. */
   2318 			iwn_rx_done(sc, desc, data);
   2319 			break;
   2320 #ifndef IEEE80211_NO_HT
   2321 		case IWN_RX_COMPRESSED_BA:
   2322 			/* A Compressed BlockAck has been received. */
   2323 			iwn_rx_compressed_ba(sc, desc, data);
   2324 			break;
   2325 #endif
   2326 		case IWN_TX_DONE:
   2327 			/* An 802.11 frame has been transmitted. */
   2328 			ops->tx_done(sc, desc, data);
   2329 			break;
   2330 
   2331 		case IWN_RX_STATISTICS:
   2332 		case IWN_BEACON_STATISTICS:
   2333 			iwn_rx_statistics(sc, desc, data);
   2334 			break;
   2335 
   2336 		case IWN_BEACON_MISSED:
   2337 		{
   2338 			struct iwn_beacon_missed *miss =
   2339 			    (struct iwn_beacon_missed *)(desc + 1);
   2340 
   2341 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2342 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2343 			/*
   2344 			 * If more than 5 consecutive beacons are missed,
   2345 			 * reinitialize the sensitivity state machine.
   2346 			 */
   2347 			DPRINTF(("beacons missed %d/%d\n",
   2348 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2349 			if (ic->ic_state == IEEE80211_S_RUN &&
   2350 			    le32toh(miss->consecutive) > 5)
   2351 				(void)iwn_init_sensitivity(sc);
   2352 			break;
   2353 		}
   2354 		case IWN_UC_READY:
   2355 		{
   2356 			struct iwn_ucode_info *uc =
   2357 			    (struct iwn_ucode_info *)(desc + 1);
   2358 
   2359 			/* The microcontroller is ready. */
   2360 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2361 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2362 			DPRINTF(("microcode alive notification version=%d.%d "
   2363 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2364 			    uc->subtype, le32toh(uc->valid)));
   2365 
   2366 			if (le32toh(uc->valid) != 1) {
   2367 				aprint_error_dev(sc->sc_dev,
   2368 				    "microcontroller initialization "
   2369 				    "failed\n");
   2370 				break;
   2371 			}
   2372 			if (uc->subtype == IWN_UCODE_INIT) {
   2373 				/* Save microcontroller report. */
   2374 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2375 			}
   2376 			/* Save the address of the error log in SRAM. */
   2377 			sc->errptr = le32toh(uc->errptr);
   2378 			break;
   2379 		}
   2380 		case IWN_STATE_CHANGED:
   2381 		{
   2382 			uint32_t *status = (uint32_t *)(desc + 1);
   2383 
   2384 			/* Enabled/disabled notification. */
   2385 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2386 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2387 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2388 
   2389 			if (le32toh(*status) & 1) {
   2390 				/* The radio button has to be pushed. */
   2391 				aprint_error_dev(sc->sc_dev,
   2392 				    "Radio transmitter is off\n");
   2393 				/* Turn the interface down. */
   2394 				ifp->if_flags &= ~IFF_UP;
   2395 				iwn_stop(ifp, 1);
   2396 				return;	/* No further processing. */
   2397 			}
   2398 			break;
   2399 		}
   2400 		case IWN_START_SCAN:
   2401 		{
   2402 			struct iwn_start_scan *scan =
   2403 			    (struct iwn_start_scan *)(desc + 1);
   2404 
   2405 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2406 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2407 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2408 			    scan->chan, le32toh(scan->status)));
   2409 
   2410 			/* Fix current channel. */
   2411 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2412 			break;
   2413 		}
   2414 		case IWN_STOP_SCAN:
   2415 		{
   2416 			struct iwn_stop_scan *scan =
   2417 			    (struct iwn_stop_scan *)(desc + 1);
   2418 
   2419 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2420 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2421 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2422 			    scan->nchan, scan->status, scan->chan));
   2423 
   2424 			if (scan->status == 1 && scan->chan <= 14 &&
   2425 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2426 				/*
   2427 				 * We just finished scanning 2GHz channels,
   2428 				 * start scanning 5GHz ones.
   2429 				 */
   2430 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2431 					break;
   2432 			}
   2433 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2434 			ieee80211_end_scan(ic);
   2435 			break;
   2436 		}
   2437 		case IWN5000_CALIBRATION_RESULT:
   2438 			iwn5000_rx_calib_results(sc, desc, data);
   2439 			break;
   2440 
   2441 		case IWN5000_CALIBRATION_DONE:
   2442 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2443 			wakeup(sc);
   2444 			break;
   2445 		}
   2446 
   2447 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2448 	}
   2449 
   2450 	/* Tell the firmware what we have processed. */
   2451 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2452 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2453 }
   2454 
   2455 /*
   2456  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2457  * from power-down sleep mode.
   2458  */
   2459 static void
   2460 iwn_wakeup_intr(struct iwn_softc *sc)
   2461 {
   2462 	int qid;
   2463 
   2464 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2465 
   2466 	/* Wakeup RX and TX rings. */
   2467 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2468 	for (qid = 0; qid < sc->ntxqs; qid++) {
   2469 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2470 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2471 	}
   2472 }
   2473 
   2474 /*
   2475  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2476  * we can't debug the firmware because it is neither open source nor free, it
   2477  * can help us to identify certain classes of problems.
   2478  */
   2479 static void
   2480 iwn_fatal_intr(struct iwn_softc *sc)
   2481 {
   2482 	struct iwn_fw_dump dump;
   2483 	int i;
   2484 
   2485 	/* Force a complete recalibration on next init. */
   2486 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2487 
   2488 	/* Check that the error log address is valid. */
   2489 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2490 	    sc->errptr + sizeof (dump) >
   2491 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
   2492 		aprint_error_dev(sc->sc_dev,
   2493 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2494 		return;
   2495 	}
   2496 	if (iwn_nic_lock(sc) != 0) {
   2497 		aprint_error_dev(sc->sc_dev,
   2498 		    "could not read firmware error log\n");
   2499 		return;
   2500 	}
   2501 	/* Read firmware error log from SRAM. */
   2502 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2503 	    sizeof (dump) / sizeof (uint32_t));
   2504 	iwn_nic_unlock(sc);
   2505 
   2506 	if (dump.valid == 0) {
   2507 		aprint_error_dev(sc->sc_dev,
   2508 		    "firmware error log is empty\n");
   2509 		return;
   2510 	}
   2511 	aprint_error("firmware error log:\n");
   2512 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2513 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2514 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2515 	    dump.id);
   2516 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2517 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2518 	aprint_error("  error data      = 0x%08X%08X\n",
   2519 	    dump.error_data[0], dump.error_data[1]);
   2520 	aprint_error("  branch link     = 0x%08X%08X\n",
   2521 	    dump.branch_link[0], dump.branch_link[1]);
   2522 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2523 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2524 	aprint_error("  time            = %u\n", dump.time[0]);
   2525 
   2526 	/* Dump driver status (TX and RX rings) while we're here. */
   2527 	aprint_error("driver status:\n");
   2528 	for (i = 0; i < sc->ntxqs; i++) {
   2529 		struct iwn_tx_ring *ring = &sc->txq[i];
   2530 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2531 		    i, ring->qid, ring->cur, ring->queued);
   2532 	}
   2533 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2534 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2535 }
   2536 
   2537 static int
   2538 iwn_intr(void *arg)
   2539 {
   2540 	struct iwn_softc *sc = arg;
   2541 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2542 	uint32_t r1, r2, tmp;
   2543 
   2544 	/* Disable interrupts. */
   2545 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2546 
   2547 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2548 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2549 		tmp = 0;
   2550 		while (sc->ict[sc->ict_cur] != 0) {
   2551 			tmp |= sc->ict[sc->ict_cur];
   2552 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2553 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2554 		}
   2555 		tmp = le32toh(tmp);
   2556 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2557 			tmp = 0;
   2558 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2559 			tmp |= 0x8000;
   2560 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2561 		r2 = 0;	/* Unused. */
   2562 	} else {
   2563 		r1 = IWN_READ(sc, IWN_INT);
   2564 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2565 			return 0;	/* Hardware gone! */
   2566 		r2 = IWN_READ(sc, IWN_FH_INT);
   2567 	}
   2568 	if (r1 == 0 && r2 == 0) {
   2569 		if (ifp->if_flags & IFF_UP)
   2570 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2571 		return 0;	/* Interrupt not for us. */
   2572 	}
   2573 
   2574 	/* Acknowledge interrupts. */
   2575 	IWN_WRITE(sc, IWN_INT, r1);
   2576 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2577 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2578 
   2579 	if (r1 & IWN_INT_RF_TOGGLED) {
   2580 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2581 		aprint_error_dev(sc->sc_dev,
   2582 		    "RF switch: radio %s\n",
   2583 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2584 	}
   2585 	if (r1 & IWN_INT_CT_REACHED) {
   2586 		aprint_error_dev(sc->sc_dev,
   2587 		    "critical temperature reached!\n");
   2588 	}
   2589 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2590 		aprint_error_dev(sc->sc_dev,
   2591 		    "fatal firmware error\n");
   2592 		/* Dump firmware error log and stop. */
   2593 		iwn_fatal_intr(sc);
   2594 		ifp->if_flags &= ~IFF_UP;
   2595 		iwn_stop(ifp, 1);
   2596 		return 1;
   2597 	}
   2598 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2599 	    (r2 & IWN_FH_INT_RX)) {
   2600 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2601 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2602 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2603 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2604 			    IWN_INT_PERIODIC_DIS);
   2605 			iwn_notif_intr(sc);
   2606 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2607 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2608 				    IWN_INT_PERIODIC_ENA);
   2609 			}
   2610 		} else
   2611 			iwn_notif_intr(sc);
   2612 	}
   2613 
   2614 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2615 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2616 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2617 		wakeup(sc);	/* FH DMA transfer completed. */
   2618 	}
   2619 
   2620 	if (r1 & IWN_INT_ALIVE)
   2621 		wakeup(sc);	/* Firmware is alive. */
   2622 
   2623 	if (r1 & IWN_INT_WAKEUP)
   2624 		iwn_wakeup_intr(sc);
   2625 
   2626 	/* Re-enable interrupts. */
   2627 	if (ifp->if_flags & IFF_UP)
   2628 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2629 
   2630 	return 1;
   2631 }
   2632 
   2633 /*
   2634  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2635  * 5000 adapters use a slightly different format).
   2636  */
   2637 static void
   2638 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2639     uint16_t len)
   2640 {
   2641 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2642 
   2643 	*w = htole16(len + 8);
   2644 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2645 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2646 	    sizeof (uint16_t),
   2647 	    BUS_DMASYNC_PREWRITE);
   2648 	if (idx < IWN_SCHED_WINSZ) {
   2649 		*(w + IWN_TX_RING_COUNT) = *w;
   2650 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2651 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2652 		    (char *)(void *)sc->sched_dma.vaddr,
   2653 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2654 	}
   2655 }
   2656 
   2657 static void
   2658 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2659     uint16_t len)
   2660 {
   2661 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2662 
   2663 	*w = htole16(id << 12 | (len + 8));
   2664 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2665 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2666 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2667 	if (idx < IWN_SCHED_WINSZ) {
   2668 		*(w + IWN_TX_RING_COUNT) = *w;
   2669 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2670 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2671 		    (char *)(void *)sc->sched_dma.vaddr,
   2672 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2673 	}
   2674 }
   2675 
   2676 #ifdef notyet
   2677 static void
   2678 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2679 {
   2680 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2681 
   2682 	*w = (*w & htole16(0xf000)) | htole16(1);
   2683 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2684 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2685 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2686 	if (idx < IWN_SCHED_WINSZ) {
   2687 		*(w + IWN_TX_RING_COUNT) = *w;
   2688 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2689 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2690 		    (char *)(void *)sc->sched_dma.vaddr,
   2691 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2692 	}
   2693 }
   2694 #endif
   2695 
   2696 static int
   2697 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2698 {
   2699 	struct ieee80211com *ic = &sc->sc_ic;
   2700 	struct iwn_node *wn = (void *)ni;
   2701 	struct iwn_tx_ring *ring;
   2702 	struct iwn_tx_desc *desc;
   2703 	struct iwn_tx_data *data;
   2704 	struct iwn_tx_cmd *cmd;
   2705 	struct iwn_cmd_data *tx;
   2706 	const struct iwn_rate *rinfo;
   2707 	struct ieee80211_frame *wh;
   2708 	struct ieee80211_key *k = NULL;
   2709 	struct mbuf *m1;
   2710 	uint32_t flags;
   2711 	u_int hdrlen;
   2712 	bus_dma_segment_t *seg;
   2713 	uint8_t tid, ridx, txant, type;
   2714 	int i, totlen, error, pad;
   2715 
   2716 	const struct chanAccParams *cap;
   2717 	int noack;
   2718 	int hdrlen2;
   2719 
   2720 	wh = mtod(m, struct ieee80211_frame *);
   2721 	hdrlen = ieee80211_anyhdrsize(wh);
   2722 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2723 
   2724 	hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
   2725 	    sizeof (struct ieee80211_qosframe) :
   2726 	    sizeof (struct ieee80211_frame);
   2727 
   2728 	if (hdrlen != hdrlen2)
   2729 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2730 		hdrlen, hdrlen2);
   2731 
   2732 	/* XXX OpenBSD sets a different tid when using QOS */
   2733 	tid = 0;
   2734 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   2735 		cap = &ic->ic_wme.wme_chanParams;
   2736 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2737 	}
   2738 	else
   2739 		noack = 0;
   2740 
   2741 	ring = &sc->txq[ac];
   2742 	desc = &ring->desc[ring->cur];
   2743 	data = &ring->data[ring->cur];
   2744 
   2745 	/* Choose a TX rate index. */
   2746 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2747 	    type != IEEE80211_FC0_TYPE_DATA) {
   2748 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2749 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2750 	} else if (ic->ic_fixed_rate != -1) {
   2751 		ridx = sc->fixed_ridx;
   2752 	} else
   2753 		ridx = wn->ridx[ni->ni_txrate];
   2754 	rinfo = &iwn_rates[ridx];
   2755 
   2756 	/* Encrypt the frame if need be. */
   2757 	/*
   2758 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   2759 	 * in order to match old code and other drivers. Tests with
   2760 	 * tcpdump indicates that the order is irrelevant, however,
   2761 	 * as bpf produces unencrypted data for both ordering choices.
   2762 	 */
   2763 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2764 		k = ieee80211_crypto_encap(ic, ni, m);
   2765 		if (k == NULL) {
   2766 			m_freem(m);
   2767 			return ENOBUFS;
   2768 		}
   2769 		/* Packet header may have moved, reset our local pointer. */
   2770 		wh = mtod(m, struct ieee80211_frame *);
   2771 	}
   2772 	totlen = m->m_pkthdr.len;
   2773 
   2774 	if (sc->sc_drvbpf != NULL) {
   2775 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2776 
   2777 		tap->wt_flags = 0;
   2778 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2779 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2780 		tap->wt_rate = rinfo->rate;
   2781 		tap->wt_hwqueue = ac;
   2782 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2783 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2784 
   2785 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   2786 	}
   2787 
   2788 	/* Prepare TX firmware command. */
   2789 	cmd = &ring->cmd[ring->cur];
   2790 	cmd->code = IWN_CMD_TX_DATA;
   2791 	cmd->flags = 0;
   2792 	cmd->qid = ring->qid;
   2793 	cmd->idx = ring->cur;
   2794 
   2795 	tx = (struct iwn_cmd_data *)cmd->data;
   2796 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2797 	tx->scratch = 0;	/* clear "scratch" area */
   2798 
   2799 	flags = 0;
   2800 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2801 		/* Unicast frame, check if an ACK is expected. */
   2802 		if (!noack)
   2803 			flags |= IWN_TX_NEED_ACK;
   2804 	}
   2805 
   2806 #ifdef notyet
   2807 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   2808 	if ((wh->i_fc[0] &
   2809 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   2810 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   2811 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   2812 #endif
   2813 
   2814 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   2815 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   2816 
   2817 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   2818 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2819 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   2820 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   2821 			flags |= IWN_TX_NEED_RTS;
   2822 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   2823 		    ridx >= IWN_RIDX_OFDM6) {
   2824 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   2825 				flags |= IWN_TX_NEED_CTS;
   2826 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   2827 				flags |= IWN_TX_NEED_RTS;
   2828 		}
   2829 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   2830 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   2831 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   2832 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   2833 				flags |= IWN_TX_NEED_PROTECTION;
   2834 			} else
   2835 				flags |= IWN_TX_FULL_TXOP;
   2836 		}
   2837 	}
   2838 
   2839 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2840 	    type != IEEE80211_FC0_TYPE_DATA)
   2841 		tx->id = sc->broadcast_id;
   2842 	else
   2843 		tx->id = wn->id;
   2844 
   2845 	if (type == IEEE80211_FC0_TYPE_MGT) {
   2846 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2847 
   2848 #ifndef IEEE80211_STA_ONLY
   2849 		/* Tell HW to set timestamp in probe responses. */
   2850 		/* XXX NetBSD rev 1.11 added probe requests here but */
   2851 		/* probe requests do not take timestamps (from Bergamini). */
   2852 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   2853 			flags |= IWN_TX_INSERT_TSTAMP;
   2854 #endif
   2855 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   2856 		/* changes here. These are not needed (from Bergamini). */
   2857 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   2858 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   2859 			tx->timeout = htole16(3);
   2860 		else
   2861 			tx->timeout = htole16(2);
   2862 	} else
   2863 		tx->timeout = htole16(0);
   2864 
   2865 	if (hdrlen & 3) {
   2866 		/* First segment length must be a multiple of 4. */
   2867 		flags |= IWN_TX_NEED_PADDING;
   2868 		pad = 4 - (hdrlen & 3);
   2869 	} else
   2870 		pad = 0;
   2871 
   2872 	tx->len = htole16(totlen);
   2873 	tx->tid = tid;
   2874 	tx->rts_ntries = 60;
   2875 	tx->data_ntries = 15;
   2876 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   2877 	tx->plcp = rinfo->plcp;
   2878 	tx->rflags = rinfo->flags;
   2879 	if (tx->id == sc->broadcast_id) {
   2880 		/* Group or management frame. */
   2881 		tx->linkq = 0;
   2882 		/* XXX Alternate between antenna A and B? */
   2883 		txant = IWN_LSB(sc->txchainmask);
   2884 		tx->rflags |= IWN_RFLAG_ANT(txant);
   2885 	} else {
   2886 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   2887 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   2888 	}
   2889 	/* Set physical address of "scratch area". */
   2890 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   2891 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   2892 
   2893 	/* Copy 802.11 header in TX command. */
   2894 	/* XXX NetBSD changed this in rev 1.20 */
   2895 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   2896 
   2897 	/* Trim 802.11 header. */
   2898 	m_adj(m, hdrlen);
   2899 	tx->security = 0;
   2900 	tx->flags = htole32(flags);
   2901 
   2902 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2903 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2904 	if (error != 0) {
   2905 		if (error != EFBIG) {
   2906 			aprint_error_dev(sc->sc_dev,
   2907 			    "can't map mbuf (error %d)\n", error);
   2908 			m_freem(m);
   2909 			return error;
   2910 		}
   2911 		/* Too many DMA segments, linearize mbuf. */
   2912 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   2913 		if (m1 == NULL) {
   2914 			m_freem(m);
   2915 			return ENOBUFS;
   2916 		}
   2917 		if (m->m_pkthdr.len > MHLEN) {
   2918 			MCLGET(m1, M_DONTWAIT);
   2919 			if (!(m1->m_flags & M_EXT)) {
   2920 				m_freem(m);
   2921 				m_freem(m1);
   2922 				return ENOBUFS;
   2923 			}
   2924 		}
   2925 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   2926 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   2927 		m_freem(m);
   2928 		m = m1;
   2929 
   2930 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2931 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2932 		if (error != 0) {
   2933 			aprint_error_dev(sc->sc_dev,
   2934 			    "can't map mbuf (error %d)\n", error);
   2935 			m_freem(m);
   2936 			return error;
   2937 		}
   2938 	}
   2939 
   2940 	data->m = m;
   2941 	data->ni = ni;
   2942 
   2943 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   2944 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   2945 
   2946 	/* Fill TX descriptor. */
   2947 	desc->nsegs = 1 + data->map->dm_nsegs;
   2948 	/* First DMA segment is used by the TX command. */
   2949 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   2950 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   2951 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   2952 	/* Other DMA segments are for data payload. */
   2953 	seg = data->map->dm_segs;
   2954 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   2955 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   2956 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   2957 		    seg->ds_len << 4);
   2958 		seg++;
   2959 	}
   2960 
   2961 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2962 	    BUS_DMASYNC_PREWRITE);
   2963 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   2964 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   2965 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   2966 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2967 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   2968 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   2969 
   2970 #ifdef notyet
   2971 	/* Update TX scheduler. */
   2972 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   2973 #endif
   2974 
   2975 	/* Kick TX ring. */
   2976 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   2977 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   2978 
   2979 	/* Mark TX ring as full if we reach a certain threshold. */
   2980 	if (++ring->queued > IWN_TX_RING_HIMARK)
   2981 		sc->qfullmsk |= 1 << ring->qid;
   2982 
   2983 	return 0;
   2984 }
   2985 
   2986 static void
   2987 iwn_start(struct ifnet *ifp)
   2988 {
   2989 	struct iwn_softc *sc = ifp->if_softc;
   2990 	struct ieee80211com *ic = &sc->sc_ic;
   2991 	struct ieee80211_node *ni;
   2992 	struct ether_header *eh;
   2993 	struct mbuf *m;
   2994 	int ac;
   2995 
   2996 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   2997 		return;
   2998 
   2999 	for (;;) {
   3000 		if (sc->qfullmsk != 0) {
   3001 			ifp->if_flags |= IFF_OACTIVE;
   3002 			break;
   3003 		}
   3004 		/* Send pending management frames first. */
   3005 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3006 		if (m != NULL) {
   3007 			ni = (void *)m->m_pkthdr.rcvif;
   3008 			ac = 0;
   3009 			goto sendit;
   3010 		}
   3011 		if (ic->ic_state != IEEE80211_S_RUN)
   3012 			break;
   3013 
   3014 		/* Encapsulate and send data frames. */
   3015 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3016 		if (m == NULL)
   3017 			break;
   3018 		if (m->m_len < sizeof (*eh) &&
   3019 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3020 			ifp->if_oerrors++;
   3021 			continue;
   3022 		}
   3023 		eh = mtod(m, struct ether_header *);
   3024 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3025 		if (ni == NULL) {
   3026 			m_freem(m);
   3027 			ifp->if_oerrors++;
   3028 			continue;
   3029 		}
   3030 		/* classify mbuf so we can find which tx ring to use */
   3031 		if (ieee80211_classify(ic, m, ni) != 0) {
   3032 			m_freem(m);
   3033 			ieee80211_free_node(ni);
   3034 			ifp->if_oerrors++;
   3035 			continue;
   3036 		}
   3037 
   3038 		/* No QoS encapsulation for EAPOL frames. */
   3039 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3040 		    M_WME_GETAC(m) : WME_AC_BE;
   3041 
   3042 		bpf_mtap(ifp, m);
   3043 
   3044 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3045 			ieee80211_free_node(ni);
   3046 			ifp->if_oerrors++;
   3047 			continue;
   3048 		}
   3049 sendit:
   3050 		bpf_mtap3(ic->ic_rawbpf, m);
   3051 
   3052 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3053 			ieee80211_free_node(ni);
   3054 			ifp->if_oerrors++;
   3055 			continue;
   3056 		}
   3057 
   3058 		sc->sc_tx_timer = 5;
   3059 		ifp->if_timer = 1;
   3060 	}
   3061 }
   3062 
   3063 static void
   3064 iwn_watchdog(struct ifnet *ifp)
   3065 {
   3066 	struct iwn_softc *sc = ifp->if_softc;
   3067 
   3068 	ifp->if_timer = 0;
   3069 
   3070 	if (sc->sc_tx_timer > 0) {
   3071 		if (--sc->sc_tx_timer == 0) {
   3072 			aprint_error_dev(sc->sc_dev,
   3073 			    "device timeout\n");
   3074 			ifp->if_flags &= ~IFF_UP;
   3075 			iwn_stop(ifp, 1);
   3076 			ifp->if_oerrors++;
   3077 			return;
   3078 		}
   3079 		ifp->if_timer = 1;
   3080 	}
   3081 
   3082 	ieee80211_watchdog(&sc->sc_ic);
   3083 }
   3084 
   3085 static int
   3086 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3087 {
   3088 	struct iwn_softc *sc = ifp->if_softc;
   3089 	struct ieee80211com *ic = &sc->sc_ic;
   3090 	struct ifaddr *ifa;
   3091 	const struct sockaddr *sa;
   3092 	int s, error = 0;
   3093 
   3094 	s = splnet();
   3095 
   3096 	switch (cmd) {
   3097 	case SIOCSIFADDR:
   3098 		ifa = (struct ifaddr *)data;
   3099 		ifp->if_flags |= IFF_UP;
   3100 #ifdef INET
   3101 		if (ifa->ifa_addr->sa_family == AF_INET)
   3102 			arp_ifinit(&ic->ic_ac, ifa);
   3103 #endif
   3104 		/* FALLTHROUGH */
   3105 	case SIOCSIFFLAGS:
   3106 		/* XXX Added as it is in every NetBSD driver */
   3107 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3108 			break;
   3109 		if (ifp->if_flags & IFF_UP) {
   3110 			if (!(ifp->if_flags & IFF_RUNNING))
   3111 				error = iwn_init(ifp);
   3112 		} else {
   3113 			if (ifp->if_flags & IFF_RUNNING)
   3114 				iwn_stop(ifp, 1);
   3115 		}
   3116 		break;
   3117 
   3118 	case SIOCADDMULTI:
   3119 	case SIOCDELMULTI:
   3120 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3121 		error = (cmd == SIOCADDMULTI) ?
   3122 		    ether_addmulti(sa, &sc->sc_ec) :
   3123 		    ether_delmulti(sa, &sc->sc_ec);
   3124 
   3125 		if (error == ENETRESET)
   3126 			error = 0;
   3127 		break;
   3128 
   3129 	default:
   3130 		error = ieee80211_ioctl(ic, cmd, data);
   3131 	}
   3132 
   3133 	if (error == ENETRESET) {
   3134 		error = 0;
   3135 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3136 		    (IFF_UP | IFF_RUNNING)) {
   3137 			iwn_stop(ifp, 0);
   3138 			error = iwn_init(ifp);
   3139 		}
   3140 	}
   3141 
   3142 	splx(s);
   3143 	return error;
   3144 }
   3145 
   3146 /*
   3147  * Send a command to the firmware.
   3148  */
   3149 static int
   3150 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3151 {
   3152 	struct iwn_tx_ring *ring = &sc->txq[4];
   3153 	struct iwn_tx_desc *desc;
   3154 	struct iwn_tx_data *data;
   3155 	struct iwn_tx_cmd *cmd;
   3156 	struct mbuf *m;
   3157 	bus_addr_t paddr;
   3158 	int totlen, error;
   3159 
   3160 	desc = &ring->desc[ring->cur];
   3161 	data = &ring->data[ring->cur];
   3162 	totlen = 4 + size;
   3163 
   3164 	if (size > sizeof cmd->data) {
   3165 		/* Command is too large to fit in a descriptor. */
   3166 		if (totlen > MCLBYTES)
   3167 			return EINVAL;
   3168 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3169 		if (m == NULL)
   3170 			return ENOMEM;
   3171 		if (totlen > MHLEN) {
   3172 			MCLGET(m, M_DONTWAIT);
   3173 			if (!(m->m_flags & M_EXT)) {
   3174 				m_freem(m);
   3175 				return ENOMEM;
   3176 			}
   3177 		}
   3178 		cmd = mtod(m, struct iwn_tx_cmd *);
   3179 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3180 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3181 		if (error != 0) {
   3182 			m_freem(m);
   3183 			return error;
   3184 		}
   3185 		data->m = m;
   3186 		paddr = data->map->dm_segs[0].ds_addr;
   3187 	} else {
   3188 		cmd = &ring->cmd[ring->cur];
   3189 		paddr = data->cmd_paddr;
   3190 	}
   3191 
   3192 	cmd->code = code;
   3193 	cmd->flags = 0;
   3194 	cmd->qid = ring->qid;
   3195 	cmd->idx = ring->cur;
   3196 	memcpy(cmd->data, buf, size);
   3197 
   3198 	desc->nsegs = 1;
   3199 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3200 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3201 
   3202 	if (size > sizeof cmd->data) {
   3203 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3204 		    BUS_DMASYNC_PREWRITE);
   3205 	} else {
   3206 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3207 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3208 		    totlen, BUS_DMASYNC_PREWRITE);
   3209 	}
   3210 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3211 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3212 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3213 
   3214 #ifdef notyet
   3215 	/* Update TX scheduler. */
   3216 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3217 #endif
   3218 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3219 
   3220 	/* Kick command ring. */
   3221 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3222 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3223 
   3224 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3225 }
   3226 
   3227 static int
   3228 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3229 {
   3230 	struct iwn4965_node_info hnode;
   3231 	char *src, *dst;
   3232 
   3233 	/*
   3234 	 * We use the node structure for 5000 Series internally (it is
   3235 	 * a superset of the one for 4965AGN). We thus copy the common
   3236 	 * fields before sending the command.
   3237 	 */
   3238 	src = (char *)node;
   3239 	dst = (char *)&hnode;
   3240 	memcpy(dst, src, 48);
   3241 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3242 	memcpy(dst + 48, src + 72, 20);
   3243 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3244 }
   3245 
   3246 static int
   3247 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3248 {
   3249 	/* Direct mapping. */
   3250 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3251 }
   3252 
   3253 static int
   3254 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3255 {
   3256 	struct iwn_node *wn = (void *)ni;
   3257 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3258 	struct iwn_cmd_link_quality linkq;
   3259 	const struct iwn_rate *rinfo;
   3260 	uint8_t txant;
   3261 	int i, txrate;
   3262 
   3263 	/* Use the first valid TX antenna. */
   3264 	txant = IWN_LSB(sc->txchainmask);
   3265 
   3266 	memset(&linkq, 0, sizeof linkq);
   3267 	linkq.id = wn->id;
   3268 	linkq.antmsk_1stream = txant;
   3269 	linkq.antmsk_2stream = IWN_ANT_AB;
   3270 	linkq.ampdu_max = 31;
   3271 	linkq.ampdu_threshold = 3;
   3272 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3273 
   3274 	/* Start at highest available bit-rate. */
   3275 	txrate = rs->rs_nrates - 1;
   3276 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3277 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3278 		linkq.retry[i].plcp = rinfo->plcp;
   3279 		linkq.retry[i].rflags = rinfo->flags;
   3280 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3281 		/* Next retry at immediate lower bit-rate. */
   3282 		if (txrate > 0)
   3283 			txrate--;
   3284 	}
   3285 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3286 }
   3287 
   3288 /*
   3289  * Broadcast node is used to send group-addressed and management frames.
   3290  */
   3291 static int
   3292 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3293 {
   3294 	struct iwn_ops *ops = &sc->ops;
   3295 	struct iwn_node_info node;
   3296 	struct iwn_cmd_link_quality linkq;
   3297 	const struct iwn_rate *rinfo;
   3298 	uint8_t txant;
   3299 	int i, error;
   3300 
   3301 	memset(&node, 0, sizeof node);
   3302 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3303 	node.id = sc->broadcast_id;
   3304 	DPRINTF(("adding broadcast node\n"));
   3305 	if ((error = ops->add_node(sc, &node, async)) != 0)
   3306 		return error;
   3307 
   3308 	/* Use the first valid TX antenna. */
   3309 	txant = IWN_LSB(sc->txchainmask);
   3310 
   3311 	memset(&linkq, 0, sizeof linkq);
   3312 	linkq.id = sc->broadcast_id;
   3313 	linkq.antmsk_1stream = txant;
   3314 	linkq.antmsk_2stream = IWN_ANT_AB;
   3315 	linkq.ampdu_max = 64;
   3316 	linkq.ampdu_threshold = 3;
   3317 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3318 
   3319 	/* Use lowest mandatory bit-rate. */
   3320 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3321 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3322 	linkq.retry[0].plcp = rinfo->plcp;
   3323 	linkq.retry[0].rflags = rinfo->flags;
   3324 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3325 	/* Use same bit-rate for all TX retries. */
   3326 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3327 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3328 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3329 	}
   3330 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3331 }
   3332 
   3333 static void
   3334 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3335 {
   3336 	struct iwn_cmd_led led;
   3337 
   3338 	/* Clear microcode LED ownership. */
   3339 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3340 
   3341 	led.which = which;
   3342 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3343 	led.off = off;
   3344 	led.on = on;
   3345 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3346 }
   3347 
   3348 /*
   3349  * Set the critical temperature at which the firmware will stop the radio
   3350  * and notify us.
   3351  */
   3352 static int
   3353 iwn_set_critical_temp(struct iwn_softc *sc)
   3354 {
   3355 	struct iwn_critical_temp crit;
   3356 	int32_t temp;
   3357 
   3358 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3359 
   3360 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3361 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3362 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3363 		temp = IWN_CTOK(110);
   3364 	else
   3365 		temp = 110;
   3366 	memset(&crit, 0, sizeof crit);
   3367 	crit.tempR = htole32(temp);
   3368 	DPRINTF(("setting critical temperature to %d\n", temp));
   3369 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3370 }
   3371 
   3372 static int
   3373 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3374 {
   3375 	struct iwn_cmd_timing cmd;
   3376 	uint64_t val, mod;
   3377 
   3378 	memset(&cmd, 0, sizeof cmd);
   3379 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3380 	cmd.bintval = htole16(ni->ni_intval);
   3381 	cmd.lintval = htole16(10);
   3382 
   3383 	/* Compute remaining time until next beacon. */
   3384 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3385 	mod = le64toh(cmd.tstamp) % val;
   3386 	cmd.binitval = htole32((uint32_t)(val - mod));
   3387 
   3388 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
   3389 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3390 
   3391 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3392 }
   3393 
   3394 static void
   3395 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3396 {
   3397 	/* Adjust TX power if need be (delta >= 3 degC). */
   3398 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3399 	if (abs(temp - sc->temp) >= 3) {
   3400 		/* Record temperature of last calibration. */
   3401 		sc->temp = temp;
   3402 		(void)iwn4965_set_txpower(sc, 1);
   3403 	}
   3404 }
   3405 
   3406 /*
   3407  * Set TX power for current channel (each rate has its own power settings).
   3408  * This function takes into account the regulatory information from EEPROM,
   3409  * the current temperature and the current voltage.
   3410  */
   3411 static int
   3412 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3413 {
   3414 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3415 #define fdivround(a, b, n)	\
   3416 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3417 /* Linear interpolation. */
   3418 #define interpolate(x, x1, y1, x2, y2, n)	\
   3419 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3420 
   3421 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3422 	struct ieee80211com *ic = &sc->sc_ic;
   3423 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3424 	struct ieee80211_channel *ch;
   3425 	struct iwn4965_cmd_txpower cmd;
   3426 	struct iwn4965_eeprom_chan_samples *chans;
   3427 	const uint8_t *rf_gain, *dsp_gain;
   3428 	int32_t vdiff, tdiff;
   3429 	int i, c, grp, maxpwr;
   3430 	uint8_t chan;
   3431 
   3432 	/* Retrieve current channel from last RXON. */
   3433 	chan = sc->rxon.chan;
   3434 	DPRINTF(("setting TX power for channel %d\n", chan));
   3435 	ch = &ic->ic_channels[chan];
   3436 
   3437 	memset(&cmd, 0, sizeof cmd);
   3438 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3439 	cmd.chan = chan;
   3440 
   3441 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3442 		maxpwr   = sc->maxpwr5GHz;
   3443 		rf_gain  = iwn4965_rf_gain_5ghz;
   3444 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3445 	} else {
   3446 		maxpwr   = sc->maxpwr2GHz;
   3447 		rf_gain  = iwn4965_rf_gain_2ghz;
   3448 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3449 	}
   3450 
   3451 	/* Compute voltage compensation. */
   3452 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3453 	if (vdiff > 0)
   3454 		vdiff *= 2;
   3455 	if (abs(vdiff) > 2)
   3456 		vdiff = 0;
   3457 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3458 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3459 
   3460 	/* Get channel attenuation group. */
   3461 	if (chan <= 20)		/* 1-20 */
   3462 		grp = 4;
   3463 	else if (chan <= 43)	/* 34-43 */
   3464 		grp = 0;
   3465 	else if (chan <= 70)	/* 44-70 */
   3466 		grp = 1;
   3467 	else if (chan <= 124)	/* 71-124 */
   3468 		grp = 2;
   3469 	else			/* 125-200 */
   3470 		grp = 3;
   3471 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3472 
   3473 	/* Get channel sub-band. */
   3474 	for (i = 0; i < IWN_NBANDS; i++)
   3475 		if (sc->bands[i].lo != 0 &&
   3476 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3477 			break;
   3478 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3479 		return EINVAL;
   3480 	chans = sc->bands[i].chans;
   3481 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3482 
   3483 	for (c = 0; c < 2; c++) {
   3484 		uint8_t power, gain, temp;
   3485 		int maxchpwr, pwr, ridx, idx;
   3486 
   3487 		power = interpolate(chan,
   3488 		    chans[0].num, chans[0].samples[c][1].power,
   3489 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3490 		gain  = interpolate(chan,
   3491 		    chans[0].num, chans[0].samples[c][1].gain,
   3492 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3493 		temp  = interpolate(chan,
   3494 		    chans[0].num, chans[0].samples[c][1].temp,
   3495 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3496 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3497 		    c, power, gain, temp));
   3498 
   3499 		/* Compute temperature compensation. */
   3500 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3501 		DPRINTF(("temperature compensation=%d (current=%d, "
   3502 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3503 
   3504 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3505 			/* Convert dBm to half-dBm. */
   3506 			maxchpwr = sc->maxpwr[chan] * 2;
   3507 			if ((ridx / 8) & 1)
   3508 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3509 
   3510 			pwr = maxpwr;
   3511 
   3512 			/* Adjust TX power based on rate. */
   3513 			if ((ridx % 8) == 5)
   3514 				pwr -= 15;	/* OFDM48: -7.5dB */
   3515 			else if ((ridx % 8) == 6)
   3516 				pwr -= 17;	/* OFDM54: -8.5dB */
   3517 			else if ((ridx % 8) == 7)
   3518 				pwr -= 20;	/* OFDM60: -10dB */
   3519 			else
   3520 				pwr -= 10;	/* Others: -5dB */
   3521 
   3522 			/* Do not exceed channel max TX power. */
   3523 			if (pwr > maxchpwr)
   3524 				pwr = maxchpwr;
   3525 
   3526 			idx = gain - (pwr - power) - tdiff - vdiff;
   3527 			if ((ridx / 8) & 1)	/* MIMO */
   3528 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3529 
   3530 			if (cmd.band == 0)
   3531 				idx += 9;	/* 5GHz */
   3532 			if (ridx == IWN_RIDX_MAX)
   3533 				idx += 5;	/* CCK */
   3534 
   3535 			/* Make sure idx stays in a valid range. */
   3536 			if (idx < 0)
   3537 				idx = 0;
   3538 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3539 				idx = IWN4965_MAX_PWR_INDEX;
   3540 
   3541 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3542 			    c, ridx, idx));
   3543 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3544 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3545 		}
   3546 	}
   3547 
   3548 	DPRINTF(("setting TX power for chan %d\n", chan));
   3549 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3550 
   3551 #undef interpolate
   3552 #undef fdivround
   3553 }
   3554 
   3555 static int
   3556 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3557 {
   3558 	struct iwn5000_cmd_txpower cmd;
   3559 
   3560 	/*
   3561 	 * TX power calibration is handled automatically by the firmware
   3562 	 * for 5000 Series.
   3563 	 */
   3564 	memset(&cmd, 0, sizeof cmd);
   3565 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3566 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3567 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3568 	DPRINTF(("setting TX power\n"));
   3569 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
   3570 }
   3571 
   3572 /*
   3573  * Retrieve the maximum RSSI (in dBm) among receivers.
   3574  */
   3575 static int
   3576 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3577 {
   3578 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3579 	uint8_t mask, agc;
   3580 	int rssi;
   3581 
   3582 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3583 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3584 
   3585 	rssi = 0;
   3586 	if (mask & IWN_ANT_A)
   3587 		rssi = MAX(rssi, phy->rssi[0]);
   3588 	if (mask & IWN_ANT_B)
   3589 		rssi = MAX(rssi, phy->rssi[2]);
   3590 	if (mask & IWN_ANT_C)
   3591 		rssi = MAX(rssi, phy->rssi[4]);
   3592 
   3593 	return rssi - agc - IWN_RSSI_TO_DBM;
   3594 }
   3595 
   3596 static int
   3597 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3598 {
   3599 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3600 	uint8_t agc;
   3601 	int rssi;
   3602 
   3603 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3604 
   3605 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3606 		   le16toh(phy->rssi[1]) & 0xff);
   3607 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3608 
   3609 	return rssi - agc - IWN_RSSI_TO_DBM;
   3610 }
   3611 
   3612 /*
   3613  * Retrieve the average noise (in dBm) among receivers.
   3614  */
   3615 static int
   3616 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3617 {
   3618 	int i, total, nbant, noise;
   3619 
   3620 	total = nbant = 0;
   3621 	for (i = 0; i < 3; i++) {
   3622 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3623 			continue;
   3624 		total += noise;
   3625 		nbant++;
   3626 	}
   3627 	/* There should be at least one antenna but check anyway. */
   3628 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3629 }
   3630 
   3631 /*
   3632  * Compute temperature (in degC) from last received statistics.
   3633  */
   3634 static int
   3635 iwn4965_get_temperature(struct iwn_softc *sc)
   3636 {
   3637 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3638 	int32_t r1, r2, r3, r4, temp;
   3639 
   3640 	r1 = le32toh(uc->temp[0].chan20MHz);
   3641 	r2 = le32toh(uc->temp[1].chan20MHz);
   3642 	r3 = le32toh(uc->temp[2].chan20MHz);
   3643 	r4 = le32toh(sc->rawtemp);
   3644 
   3645 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
   3646 		return 0;
   3647 
   3648 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3649 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
   3650 	/* Compute temperature in Kelvin. */
   3651 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3652 	temp = (temp * 97) / 100 + 8;
   3653 
   3654 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3655 	return IWN_KTOC(temp);
   3656 }
   3657 
   3658 static int
   3659 iwn5000_get_temperature(struct iwn_softc *sc)
   3660 {
   3661 	int32_t temp;
   3662 
   3663 	/*
   3664 	 * Temperature is not used by the driver for 5000 Series because
   3665 	 * TX power calibration is handled by firmware.  We export it to
   3666 	 * users through the sensor framework though.
   3667 	 */
   3668 	temp = le32toh(sc->rawtemp);
   3669 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3670 		temp = (temp / -5) + sc->temp_off;
   3671 		temp = IWN_KTOC(temp);
   3672 	}
   3673 	return temp;
   3674 }
   3675 
   3676 /*
   3677  * Initialize sensitivity calibration state machine.
   3678  */
   3679 static int
   3680 iwn_init_sensitivity(struct iwn_softc *sc)
   3681 {
   3682 	struct iwn_ops *ops = &sc->ops;
   3683 	struct iwn_calib_state *calib = &sc->calib;
   3684 	uint32_t flags;
   3685 	int error;
   3686 
   3687 	/* Reset calibration state machine. */
   3688 	memset(calib, 0, sizeof (*calib));
   3689 	calib->state = IWN_CALIB_STATE_INIT;
   3690 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3691 	/* Set initial correlation values. */
   3692 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3693 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3694 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3695 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3696 	calib->cck_x4      = 125;
   3697 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3698 	calib->energy_cck  = sc->limits->energy_cck;
   3699 
   3700 	/* Write initial sensitivity. */
   3701 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3702 		return error;
   3703 
   3704 	/* Write initial gains. */
   3705 	if ((error = ops->init_gains(sc)) != 0)
   3706 		return error;
   3707 
   3708 	/* Request statistics at each beacon interval. */
   3709 	flags = 0;
   3710 	DPRINTF(("sending request for statistics\n"));
   3711 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3712 }
   3713 
   3714 /*
   3715  * Collect noise and RSSI statistics for the first 20 beacons received
   3716  * after association and use them to determine connected antennas and
   3717  * to set differential gains.
   3718  */
   3719 static void
   3720 iwn_collect_noise(struct iwn_softc *sc,
   3721     const struct iwn_rx_general_stats *stats)
   3722 {
   3723 	struct iwn_ops *ops = &sc->ops;
   3724 	struct iwn_calib_state *calib = &sc->calib;
   3725 	uint32_t val;
   3726 	int i;
   3727 
   3728 	/* Accumulate RSSI and noise for all 3 antennas. */
   3729 	for (i = 0; i < 3; i++) {
   3730 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3731 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3732 	}
   3733 	/* NB: We update differential gains only once after 20 beacons. */
   3734 	if (++calib->nbeacons < 20)
   3735 		return;
   3736 
   3737 	/* Determine highest average RSSI. */
   3738 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3739 	val = MAX(calib->rssi[2], val);
   3740 
   3741 	/* Determine which antennas are connected. */
   3742 	sc->chainmask = sc->rxchainmask;
   3743 	for (i = 0; i < 3; i++)
   3744 		if (val - calib->rssi[i] > 15 * 20)
   3745 			sc->chainmask &= ~(1 << i);
   3746 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   3747 	    sc->rxchainmask, sc->chainmask));
   3748 
   3749 	/* If none of the TX antennas are connected, keep at least one. */
   3750 	if ((sc->chainmask & sc->txchainmask) == 0)
   3751 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   3752 
   3753 	(void)ops->set_gains(sc);
   3754 	calib->state = IWN_CALIB_STATE_RUN;
   3755 
   3756 #ifdef notyet
   3757 	/* XXX Disable RX chains with no antennas connected. */
   3758 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   3759 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   3760 #endif
   3761 
   3762 	/* Enable power-saving mode if requested by user. */
   3763 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3764 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3765 }
   3766 
   3767 static int
   3768 iwn4965_init_gains(struct iwn_softc *sc)
   3769 {
   3770 	struct iwn_phy_calib_gain cmd;
   3771 
   3772 	memset(&cmd, 0, sizeof cmd);
   3773 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3774 	/* Differential gains initially set to 0 for all 3 antennas. */
   3775 	DPRINTF(("setting initial differential gains\n"));
   3776 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3777 }
   3778 
   3779 static int
   3780 iwn5000_init_gains(struct iwn_softc *sc)
   3781 {
   3782 	struct iwn_phy_calib cmd;
   3783 
   3784 	memset(&cmd, 0, sizeof cmd);
   3785 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   3786 	cmd.ngroups = 1;
   3787 	cmd.isvalid = 1;
   3788 	DPRINTF(("setting initial differential gains\n"));
   3789 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3790 }
   3791 
   3792 static int
   3793 iwn4965_set_gains(struct iwn_softc *sc)
   3794 {
   3795 	struct iwn_calib_state *calib = &sc->calib;
   3796 	struct iwn_phy_calib_gain cmd;
   3797 	int i, delta, noise;
   3798 
   3799 	/* Get minimal noise among connected antennas. */
   3800 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   3801 	for (i = 0; i < 3; i++)
   3802 		if (sc->chainmask & (1 << i))
   3803 			noise = MIN(calib->noise[i], noise);
   3804 
   3805 	memset(&cmd, 0, sizeof cmd);
   3806 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3807 	/* Set differential gains for connected antennas. */
   3808 	for (i = 0; i < 3; i++) {
   3809 		if (sc->chainmask & (1 << i)) {
   3810 			/* Compute attenuation (in unit of 1.5dB). */
   3811 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   3812 			/* NB: delta <= 0 */
   3813 			/* Limit to [-4.5dB,0]. */
   3814 			cmd.gain[i] = MIN(abs(delta), 3);
   3815 			if (delta < 0)
   3816 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   3817 		}
   3818 	}
   3819 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   3820 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   3821 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3822 }
   3823 
   3824 static int
   3825 iwn5000_set_gains(struct iwn_softc *sc)
   3826 {
   3827 	struct iwn_calib_state *calib = &sc->calib;
   3828 	struct iwn_phy_calib_gain cmd;
   3829 	int i, ant, div, delta;
   3830 
   3831 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   3832 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   3833 
   3834 	memset(&cmd, 0, sizeof cmd);
   3835 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
   3836 	cmd.ngroups = 1;
   3837 	cmd.isvalid = 1;
   3838 	/* Get first available RX antenna as referential. */
   3839 	ant = IWN_LSB(sc->rxchainmask);
   3840 	/* Set differential gains for other antennas. */
   3841 	for (i = ant + 1; i < 3; i++) {
   3842 		if (sc->chainmask & (1 << i)) {
   3843 			/* The delta is relative to antenna "ant". */
   3844 			delta = ((int32_t)calib->noise[ant] -
   3845 			    (int32_t)calib->noise[i]) / div;
   3846 			/* Limit to [-4.5dB,+4.5dB]. */
   3847 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   3848 			if (delta < 0)
   3849 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   3850 		}
   3851 	}
   3852 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   3853 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   3854 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3855 }
   3856 
   3857 /*
   3858  * Tune RF RX sensitivity based on the number of false alarms detected
   3859  * during the last beacon period.
   3860  */
   3861 static void
   3862 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   3863 {
   3864 #define inc(val, inc, max)			\
   3865 	if ((val) < (max)) {			\
   3866 		if ((val) < (max) - (inc))	\
   3867 			(val) += (inc);		\
   3868 		else				\
   3869 			(val) = (max);		\
   3870 		needs_update = 1;		\
   3871 	}
   3872 #define dec(val, dec, min)			\
   3873 	if ((val) > (min)) {			\
   3874 		if ((val) > (min) + (dec))	\
   3875 			(val) -= (dec);		\
   3876 		else				\
   3877 			(val) = (min);		\
   3878 		needs_update = 1;		\
   3879 	}
   3880 
   3881 	const struct iwn_sensitivity_limits *limits = sc->limits;
   3882 	struct iwn_calib_state *calib = &sc->calib;
   3883 	uint32_t val, rxena, fa;
   3884 	uint32_t energy[3], energy_min;
   3885 	uint8_t noise[3], noise_ref;
   3886 	int i, needs_update = 0;
   3887 
   3888 	/* Check that we've been enabled long enough. */
   3889 	if ((rxena = le32toh(stats->general.load)) == 0)
   3890 		return;
   3891 
   3892 	/* Compute number of false alarms since last call for OFDM. */
   3893 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   3894 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   3895 	fa *= 200 * 1024;	/* 200TU */
   3896 
   3897 	/* Save counters values for next call. */
   3898 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   3899 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   3900 
   3901 	if (fa > 50 * rxena) {
   3902 		/* High false alarm count, decrease sensitivity. */
   3903 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   3904 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   3905 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   3906 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   3907 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   3908 
   3909 	} else if (fa < 5 * rxena) {
   3910 		/* Low false alarm count, increase sensitivity. */
   3911 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   3912 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   3913 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   3914 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   3915 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   3916 	}
   3917 
   3918 	/* Compute maximum noise among 3 receivers. */
   3919 	for (i = 0; i < 3; i++)
   3920 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   3921 	val = MAX(noise[0], noise[1]);
   3922 	val = MAX(noise[2], val);
   3923 	/* Insert it into our samples table. */
   3924 	calib->noise_samples[calib->cur_noise_sample] = val;
   3925 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   3926 
   3927 	/* Compute maximum noise among last 20 samples. */
   3928 	noise_ref = calib->noise_samples[0];
   3929 	for (i = 1; i < 20; i++)
   3930 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   3931 
   3932 	/* Compute maximum energy among 3 receivers. */
   3933 	for (i = 0; i < 3; i++)
   3934 		energy[i] = le32toh(stats->general.energy[i]);
   3935 	val = MIN(energy[0], energy[1]);
   3936 	val = MIN(energy[2], val);
   3937 	/* Insert it into our samples table. */
   3938 	calib->energy_samples[calib->cur_energy_sample] = val;
   3939 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   3940 
   3941 	/* Compute minimum energy among last 10 samples. */
   3942 	energy_min = calib->energy_samples[0];
   3943 	for (i = 1; i < 10; i++)
   3944 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   3945 	energy_min += 6;
   3946 
   3947 	/* Compute number of false alarms since last call for CCK. */
   3948 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   3949 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   3950 	fa *= 200 * 1024;	/* 200TU */
   3951 
   3952 	/* Save counters values for next call. */
   3953 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   3954 	calib->fa_cck = le32toh(stats->cck.fa);
   3955 
   3956 	if (fa > 50 * rxena) {
   3957 		/* High false alarm count, decrease sensitivity. */
   3958 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   3959 		calib->cck_state = IWN_CCK_STATE_HIFA;
   3960 		calib->low_fa = 0;
   3961 
   3962 		if (calib->cck_x4 > 160) {
   3963 			calib->noise_ref = noise_ref;
   3964 			if (calib->energy_cck > 2)
   3965 				dec(calib->energy_cck, 2, energy_min);
   3966 		}
   3967 		if (calib->cck_x4 < 160) {
   3968 			calib->cck_x4 = 161;
   3969 			needs_update = 1;
   3970 		} else
   3971 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   3972 
   3973 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   3974 
   3975 	} else if (fa < 5 * rxena) {
   3976 		/* Low false alarm count, increase sensitivity. */
   3977 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   3978 		calib->cck_state = IWN_CCK_STATE_LOFA;
   3979 		calib->low_fa++;
   3980 
   3981 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   3982 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   3983 		     calib->low_fa > 100)) {
   3984 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   3985 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   3986 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   3987 		}
   3988 	} else {
   3989 		/* Not worth to increase or decrease sensitivity. */
   3990 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   3991 		calib->low_fa = 0;
   3992 		calib->noise_ref = noise_ref;
   3993 
   3994 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   3995 			/* Previous interval had many false alarms. */
   3996 			dec(calib->energy_cck, 8, energy_min);
   3997 		}
   3998 		calib->cck_state = IWN_CCK_STATE_INIT;
   3999 	}
   4000 
   4001 	if (needs_update)
   4002 		(void)iwn_send_sensitivity(sc);
   4003 #undef dec
   4004 #undef inc
   4005 }
   4006 
   4007 static int
   4008 iwn_send_sensitivity(struct iwn_softc *sc)
   4009 {
   4010 	struct iwn_calib_state *calib = &sc->calib;
   4011 	struct iwn_sensitivity_cmd cmd;
   4012 
   4013 	memset(&cmd, 0, sizeof cmd);
   4014 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4015 	/* OFDM modulation. */
   4016 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4017 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4018 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4019 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4020 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4021 	cmd.energy_ofdm_th   = htole16(62);
   4022 	/* CCK modulation. */
   4023 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4024 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4025 	cmd.energy_cck       = htole16(calib->energy_cck);
   4026 	/* Barker modulation: use default values. */
   4027 	cmd.corr_barker      = htole16(190);
   4028 	cmd.corr_barker_mrc  = htole16(390);
   4029 
   4030 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4031 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4032 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4033 	    calib->energy_cck));
   4034 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
   4035 }
   4036 
   4037 /*
   4038  * Set STA mode power saving level (between 0 and 5).
   4039  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4040  */
   4041 static int
   4042 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4043 {
   4044 	struct iwn_pmgt_cmd cmd;
   4045 	const struct iwn_pmgt *pmgt;
   4046 	uint32_t maxp, skip_dtim;
   4047 	pcireg_t reg;
   4048 	int i;
   4049 
   4050 	/* Select which PS parameters to use. */
   4051 	if (dtim <= 2)
   4052 		pmgt = &iwn_pmgt[0][level];
   4053 	else if (dtim <= 10)
   4054 		pmgt = &iwn_pmgt[1][level];
   4055 	else
   4056 		pmgt = &iwn_pmgt[2][level];
   4057 
   4058 	memset(&cmd, 0, sizeof cmd);
   4059 	if (level != 0)	/* not CAM */
   4060 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4061 	if (level == 5)
   4062 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4063 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4064 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4065 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   4066 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4067 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4068 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4069 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4070 
   4071 	if (dtim == 0) {
   4072 		dtim = 1;
   4073 		skip_dtim = 0;
   4074 	} else
   4075 		skip_dtim = pmgt->skip_dtim;
   4076 	if (skip_dtim != 0) {
   4077 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4078 		maxp = pmgt->intval[4];
   4079 		if (maxp == (uint32_t)-1)
   4080 			maxp = dtim * (skip_dtim + 1);
   4081 		else if (maxp > dtim)
   4082 			maxp = (maxp / dtim) * dtim;
   4083 	} else
   4084 		maxp = dtim;
   4085 	for (i = 0; i < 5; i++)
   4086 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4087 
   4088 	DPRINTF(("setting power saving level to %d\n", level));
   4089 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4090 }
   4091 
   4092 static int
   4093 iwn_config(struct iwn_softc *sc)
   4094 {
   4095 	struct iwn_ops *ops = &sc->ops;
   4096 	struct ieee80211com *ic = &sc->sc_ic;
   4097 	struct ifnet *ifp = ic->ic_ifp;
   4098 	struct iwn_bluetooth bluetooth;
   4099 	uint32_t txmask;
   4100 	uint16_t rxchain;
   4101 	int error;
   4102 
   4103 	/* Configure valid TX chains for 5000 Series. */
   4104 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4105 		txmask = htole32(sc->txchainmask);
   4106 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4107 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4108 		    sizeof txmask, 0);
   4109 		if (error != 0) {
   4110 			aprint_error_dev(sc->sc_dev,
   4111 			    "could not configure valid TX chains\n");
   4112 			return error;
   4113 		}
   4114 	}
   4115 
   4116 	/* Configure bluetooth coexistence. */
   4117 	memset(&bluetooth, 0, sizeof bluetooth);
   4118 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
   4119 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4120 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4121 	DPRINTF(("configuring bluetooth coexistence\n"));
   4122 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4123 	if (error != 0) {
   4124 		aprint_error_dev(sc->sc_dev,
   4125 		    "could not configure bluetooth coexistence\n");
   4126 		return error;
   4127 	}
   4128 
   4129 	/* Set mode, channel, RX filter and enable RX. */
   4130 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4131 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4132 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4133 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4134 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4135 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4136 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4137 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4138 	switch (ic->ic_opmode) {
   4139 	case IEEE80211_M_STA:
   4140 		sc->rxon.mode = IWN_MODE_STA;
   4141 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4142 		break;
   4143 	case IEEE80211_M_MONITOR:
   4144 		sc->rxon.mode = IWN_MODE_MONITOR;
   4145 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4146 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4147 		break;
   4148 	default:
   4149 		/* Should not get there. */
   4150 		break;
   4151 	}
   4152 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4153 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4154 	sc->rxon.ht_single_mask = 0xff;
   4155 	sc->rxon.ht_dual_mask = 0xff;
   4156 	sc->rxon.ht_triple_mask = 0xff;
   4157 	rxchain =
   4158 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4159 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4160 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4161 	sc->rxon.rxchain = htole16(rxchain);
   4162 	DPRINTF(("setting configuration\n"));
   4163 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
   4164 	if (error != 0) {
   4165 		aprint_error_dev(sc->sc_dev,
   4166 		    "RXON command failed\n");
   4167 		return error;
   4168 	}
   4169 
   4170 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4171 		aprint_error_dev(sc->sc_dev,
   4172 		    "could not add broadcast node\n");
   4173 		return error;
   4174 	}
   4175 
   4176 	/* Configuration has changed, set TX power accordingly. */
   4177 	if ((error = ops->set_txpower(sc, 0)) != 0) {
   4178 		aprint_error_dev(sc->sc_dev,
   4179 		    "could not set TX power\n");
   4180 		return error;
   4181 	}
   4182 
   4183 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4184 		aprint_error_dev(sc->sc_dev,
   4185 		    "could not set critical temperature\n");
   4186 		return error;
   4187 	}
   4188 
   4189 	/* Set power saving level to CAM during initialization. */
   4190 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4191 		aprint_error_dev(sc->sc_dev,
   4192 		    "could not set power saving level\n");
   4193 		return error;
   4194 	}
   4195 	return 0;
   4196 }
   4197 
   4198 static int
   4199 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4200 {
   4201 	struct ieee80211com *ic = &sc->sc_ic;
   4202 	struct iwn_scan_hdr *hdr;
   4203 	struct iwn_cmd_data *tx;
   4204 	struct iwn_scan_essid *essid;
   4205 	struct iwn_scan_chan *chan;
   4206 	struct ieee80211_frame *wh;
   4207 	struct ieee80211_rateset *rs;
   4208 	struct ieee80211_channel *c;
   4209 	uint8_t *buf, *frm;
   4210 	uint16_t rxchain;
   4211 	uint8_t txant;
   4212 	int buflen, error;
   4213 
   4214 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4215 	if (buf == NULL) {
   4216 		aprint_error_dev(sc->sc_dev,
   4217 		    "could not allocate buffer for scan command\n");
   4218 		return ENOMEM;
   4219 	}
   4220 	hdr = (struct iwn_scan_hdr *)buf;
   4221 	/*
   4222 	 * Move to the next channel if no frames are received within 10ms
   4223 	 * after sending the probe request.
   4224 	 */
   4225 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4226 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4227 
   4228 	/* Select antennas for scanning. */
   4229 	rxchain =
   4230 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4231 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4232 	    IWN_RXCHAIN_DRIVER_FORCE;
   4233 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4234 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4235 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4236 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4237 	} else	/* Use all available RX antennas. */
   4238 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4239 	hdr->rxchain = htole16(rxchain);
   4240 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4241 
   4242 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4243 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4244 	tx->id = sc->broadcast_id;
   4245 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4246 
   4247 	if (flags & IEEE80211_CHAN_5GHZ) {
   4248 		hdr->crc_threshold = 0xffff;
   4249 		/* Send probe requests at 6Mbps. */
   4250 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4251 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4252 	} else {
   4253 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4254 		/* Send probe requests at 1Mbps. */
   4255 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4256 		tx->rflags = IWN_RFLAG_CCK;
   4257 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4258 	}
   4259 	/* Use the first valid TX antenna. */
   4260 	txant = IWN_LSB(sc->txchainmask);
   4261 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4262 
   4263 	essid = (struct iwn_scan_essid *)(tx + 1);
   4264 	if (ic->ic_des_esslen != 0) {
   4265 		essid[0].id = IEEE80211_ELEMID_SSID;
   4266 		essid[0].len = ic->ic_des_esslen;
   4267 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4268 	}
   4269 	/*
   4270 	 * Build a probe request frame.  Most of the following code is a
   4271 	 * copy & paste of what is done in net80211.
   4272 	 */
   4273 	wh = (struct ieee80211_frame *)(essid + 20);
   4274 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4275 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4276 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4277 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4278 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4279 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4280 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4281 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4282 
   4283 	frm = (uint8_t *)(wh + 1);
   4284 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4285 	frm = ieee80211_add_rates(frm, rs);
   4286 #ifndef IEEE80211_NO_HT
   4287 	if (ic->ic_flags & IEEE80211_F_HTON)
   4288 		frm = ieee80211_add_htcaps(frm, ic);
   4289 #endif
   4290 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4291 		frm = ieee80211_add_xrates(frm, rs);
   4292 
   4293 	/* Set length of probe request. */
   4294 	tx->len = htole16(frm - (uint8_t *)wh);
   4295 
   4296 	chan = (struct iwn_scan_chan *)frm;
   4297 	for (c  = &ic->ic_channels[1];
   4298 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4299 		if ((c->ic_flags & flags) != flags)
   4300 			continue;
   4301 
   4302 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4303 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4304 		chan->flags = 0;
   4305 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4306 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4307 		if (ic->ic_des_esslen != 0)
   4308 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4309 		chan->dsp_gain = 0x6e;
   4310 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4311 			chan->rf_gain = 0x3b;
   4312 			chan->active  = htole16(24);
   4313 			chan->passive = htole16(110);
   4314 		} else {
   4315 			chan->rf_gain = 0x28;
   4316 			chan->active  = htole16(36);
   4317 			chan->passive = htole16(120);
   4318 		}
   4319 		hdr->nchan++;
   4320 		chan++;
   4321 	}
   4322 
   4323 	buflen = (uint8_t *)chan - buf;
   4324 	hdr->len = htole16(buflen);
   4325 
   4326 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4327 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4328 	free(buf, M_DEVBUF);
   4329 	return error;
   4330 }
   4331 
   4332 static int
   4333 iwn_auth(struct iwn_softc *sc)
   4334 {
   4335 	struct iwn_ops *ops = &sc->ops;
   4336 	struct ieee80211com *ic = &sc->sc_ic;
   4337 	struct ieee80211_node *ni = ic->ic_bss;
   4338 	int error;
   4339 
   4340 	/* Update adapter configuration. */
   4341 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4342 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4343 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4344 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4345 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4346 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4347 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4348 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4349 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4350 	switch (ic->ic_curmode) {
   4351 	case IEEE80211_MODE_11A:
   4352 		sc->rxon.cck_mask  = 0;
   4353 		sc->rxon.ofdm_mask = 0x15;
   4354 		break;
   4355 	case IEEE80211_MODE_11B:
   4356 		sc->rxon.cck_mask  = 0x03;
   4357 		sc->rxon.ofdm_mask = 0;
   4358 		break;
   4359 	default:	/* Assume 802.11b/g. */
   4360 		sc->rxon.cck_mask  = 0x0f;
   4361 		sc->rxon.ofdm_mask = 0x15;
   4362 	}
   4363 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4364 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4365 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4366 	if (error != 0) {
   4367 		aprint_error_dev(sc->sc_dev,
   4368 		    "RXON command failed\n");
   4369 		return error;
   4370 	}
   4371 
   4372 	/* Configuration has changed, set TX power accordingly. */
   4373 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4374 		aprint_error_dev(sc->sc_dev,
   4375 		    "could not set TX power\n");
   4376 		return error;
   4377 	}
   4378 	/*
   4379 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4380 	 * add the broadcast node again.
   4381 	 */
   4382 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4383 		aprint_error_dev(sc->sc_dev,
   4384 		    "could not add broadcast node\n");
   4385 		return error;
   4386 	}
   4387 	return 0;
   4388 }
   4389 
   4390 static int
   4391 iwn_run(struct iwn_softc *sc)
   4392 {
   4393 	struct iwn_ops *ops = &sc->ops;
   4394 	struct ieee80211com *ic = &sc->sc_ic;
   4395 	struct ieee80211_node *ni = ic->ic_bss;
   4396 	struct iwn_node_info node;
   4397 	int error;
   4398 
   4399 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4400 		/* Link LED blinks while monitoring. */
   4401 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4402 		return 0;
   4403 	}
   4404 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4405 		aprint_error_dev(sc->sc_dev,
   4406 		    "could not set timing\n");
   4407 		return error;
   4408 	}
   4409 
   4410 	/* Update adapter configuration. */
   4411 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4412 	/* Short preamble and slot time are negotiated when associating. */
   4413 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4414 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4415 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4416 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4417 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4418 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4419 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4420 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4421 	if (error != 0) {
   4422 		aprint_error_dev(sc->sc_dev,
   4423 		    "could not update configuration\n");
   4424 		return error;
   4425 	}
   4426 
   4427 	/* Configuration has changed, set TX power accordingly. */
   4428 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4429 		aprint_error_dev(sc->sc_dev,
   4430 		    "could not set TX power\n");
   4431 		return error;
   4432 	}
   4433 
   4434 	/* Fake a join to initialize the TX rate. */
   4435 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4436 	iwn_newassoc(ni, 1);
   4437 
   4438 	/* Add BSS node. */
   4439 	memset(&node, 0, sizeof node);
   4440 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4441 	node.id = IWN_ID_BSS;
   4442 #ifdef notyet
   4443 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4444 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4445 #endif
   4446 	DPRINTF(("adding BSS node\n"));
   4447 	error = ops->add_node(sc, &node, 1);
   4448 	if (error != 0) {
   4449 		aprint_error_dev(sc->sc_dev,
   4450 		    "could not add BSS node\n");
   4451 		return error;
   4452 	}
   4453 	DPRINTF(("setting link quality for node %d\n", node.id));
   4454 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4455 		aprint_error_dev(sc->sc_dev,
   4456 		    "could not setup link quality for node %d\n", node.id);
   4457 		return error;
   4458 	}
   4459 
   4460 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4461 		aprint_error_dev(sc->sc_dev,
   4462 		    "could not set sensitivity\n");
   4463 		return error;
   4464 	}
   4465 	/* Start periodic calibration timer. */
   4466 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4467 	sc->calib_cnt = 0;
   4468 	callout_schedule(&sc->calib_to, hz/2);
   4469 
   4470 	/* Link LED always on while associated. */
   4471 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4472 	return 0;
   4473 }
   4474 
   4475 #ifdef IWN_HWCRYPTO
   4476 /*
   4477  * We support CCMP hardware encryption/decryption of unicast frames only.
   4478  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4479  */
   4480 static int
   4481 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4482     struct ieee80211_key *k)
   4483 {
   4484 	struct iwn_softc *sc = ic->ic_softc;
   4485 	struct iwn_ops *ops = &sc->ops;
   4486 	struct iwn_node *wn = (void *)ni;
   4487 	struct iwn_node_info node;
   4488 	uint16_t kflags;
   4489 
   4490 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4491 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4492 		return ieee80211_set_key(ic, ni, k);
   4493 
   4494 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4495 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4496 		kflags |= IWN_KFLAG_GROUP;
   4497 
   4498 	memset(&node, 0, sizeof node);
   4499 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4500 	    sc->broadcast_id : wn->id;
   4501 	node.control = IWN_NODE_UPDATE;
   4502 	node.flags = IWN_FLAG_SET_KEY;
   4503 	node.kflags = htole16(kflags);
   4504 	node.kid = k->k_id;
   4505 	memcpy(node.key, k->k_key, k->k_len);
   4506 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   4507 	return ops->add_node(sc, &node, 1);
   4508 }
   4509 
   4510 static void
   4511 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4512     struct ieee80211_key *k)
   4513 {
   4514 	struct iwn_softc *sc = ic->ic_softc;
   4515 	struct iwn_ops *ops = &sc->ops;
   4516 	struct iwn_node *wn = (void *)ni;
   4517 	struct iwn_node_info node;
   4518 
   4519 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4520 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   4521 		/* See comment about other ciphers above. */
   4522 		ieee80211_delete_key(ic, ni, k);
   4523 		return;
   4524 	}
   4525 	if (ic->ic_state != IEEE80211_S_RUN)
   4526 		return;	/* Nothing to do. */
   4527 	memset(&node, 0, sizeof node);
   4528 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4529 	    sc->broadcast_id : wn->id;
   4530 	node.control = IWN_NODE_UPDATE;
   4531 	node.flags = IWN_FLAG_SET_KEY;
   4532 	node.kflags = htole16(IWN_KFLAG_INVALID);
   4533 	node.kid = 0xff;
   4534 	DPRINTF(("delete keys for node %d\n", node.id));
   4535 	(void)ops->add_node(sc, &node, 1);
   4536 }
   4537 #endif
   4538 
   4539 /* XXX Added for NetBSD (copied from rev 1.39). */
   4540 
   4541 static int
   4542 iwn_wme_update(struct ieee80211com *ic)
   4543 {
   4544 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   4545 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   4546 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   4547 	const struct wmeParams *wmep;
   4548 	struct iwn_edca_params cmd;
   4549 	int ac;
   4550 
   4551 	/* don't override default WME values if WME is not actually enabled */
   4552 	if (!(ic->ic_flags & IEEE80211_F_WME))
   4553 		return 0;
   4554 	cmd.flags = 0;
   4555 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   4556 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   4557 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   4558 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   4559 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   4560 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   4561 
   4562 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   4563 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   4564 					cmd.ac[ac].cwmin,
   4565 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   4566 	}
   4567 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   4568 #undef IWN_USEC
   4569 #undef IWN_EXP2
   4570 }
   4571 
   4572 #ifndef IEEE80211_NO_HT
   4573 /*
   4574  * This function is called by upper layer when an ADDBA request is received
   4575  * from another STA and before the ADDBA response is sent.
   4576  */
   4577 static int
   4578 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4579     uint8_t tid)
   4580 {
   4581 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   4582 	struct iwn_softc *sc = ic->ic_softc;
   4583 	struct iwn_ops *ops = &sc->ops;
   4584 	struct iwn_node *wn = (void *)ni;
   4585 	struct iwn_node_info node;
   4586 
   4587 	memset(&node, 0, sizeof node);
   4588 	node.id = wn->id;
   4589 	node.control = IWN_NODE_UPDATE;
   4590 	node.flags = IWN_FLAG_SET_ADDBA;
   4591 	node.addba_tid = tid;
   4592 	node.addba_ssn = htole16(ba->ba_winstart);
   4593 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   4594 	    ba->ba_winstart));
   4595 	return ops->add_node(sc, &node, 1);
   4596 }
   4597 
   4598 /*
   4599  * This function is called by upper layer on teardown of an HT-immediate
   4600  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
   4601  */
   4602 static void
   4603 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4604     uint8_t tid)
   4605 {
   4606 	struct iwn_softc *sc = ic->ic_softc;
   4607 	struct iwn_ops *ops = &sc->ops;
   4608 	struct iwn_node *wn = (void *)ni;
   4609 	struct iwn_node_info node;
   4610 
   4611 	memset(&node, 0, sizeof node);
   4612 	node.id = wn->id;
   4613 	node.control = IWN_NODE_UPDATE;
   4614 	node.flags = IWN_FLAG_SET_DELBA;
   4615 	node.delba_tid = tid;
   4616 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   4617 	(void)ops->add_node(sc, &node, 1);
   4618 }
   4619 
   4620 /*
   4621  * This function is called by upper layer when an ADDBA response is received
   4622  * from another STA.
   4623  */
   4624 static int
   4625 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4626     uint8_t tid)
   4627 {
   4628 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4629 	struct iwn_softc *sc = ic->ic_softc;
   4630 	struct iwn_ops *ops = &sc->ops;
   4631 	struct iwn_node *wn = (void *)ni;
   4632 	struct iwn_node_info node;
   4633 	int error;
   4634 
   4635 	/* Enable TX for the specified RA/TID. */
   4636 	wn->disable_tid &= ~(1 << tid);
   4637 	memset(&node, 0, sizeof node);
   4638 	node.id = wn->id;
   4639 	node.control = IWN_NODE_UPDATE;
   4640 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   4641 	node.disable_tid = htole16(wn->disable_tid);
   4642 	error = ops->add_node(sc, &node, 1);
   4643 	if (error != 0)
   4644 		return error;
   4645 
   4646 	if ((error = iwn_nic_lock(sc)) != 0)
   4647 		return error;
   4648 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   4649 	iwn_nic_unlock(sc);
   4650 	return 0;
   4651 }
   4652 
   4653 static void
   4654 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4655     uint8_t tid)
   4656 {
   4657 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4658 	struct iwn_softc *sc = ic->ic_softc;
   4659 	struct iwn_ops *ops = &sc->ops;
   4660 
   4661 	if (iwn_nic_lock(sc) != 0)
   4662 		return;
   4663 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   4664 	iwn_nic_unlock(sc);
   4665 }
   4666 
   4667 static void
   4668 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4669     uint8_t tid, uint16_t ssn)
   4670 {
   4671 	struct iwn_node *wn = (void *)ni;
   4672 	int qid = 7 + tid;
   4673 
   4674 	/* Stop TX scheduler while we're changing its configuration. */
   4675 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4676 	    IWN4965_TXQ_STATUS_CHGACT);
   4677 
   4678 	/* Assign RA/TID translation to the queue. */
   4679 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   4680 	    wn->id << 4 | tid);
   4681 
   4682 	/* Enable chain-building mode for the queue. */
   4683 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   4684 
   4685 	/* Set starting sequence number from the ADDBA request. */
   4686 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4687 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4688 
   4689 	/* Set scheduler window size. */
   4690 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   4691 	    IWN_SCHED_WINSZ);
   4692 	/* Set scheduler frame limit. */
   4693 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4694 	    IWN_SCHED_LIMIT << 16);
   4695 
   4696 	/* Enable interrupts for the queue. */
   4697 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4698 
   4699 	/* Mark the queue as active. */
   4700 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4701 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   4702 	    iwn_tid2fifo[tid] << 1);
   4703 }
   4704 
   4705 static void
   4706 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4707 {
   4708 	int qid = 7 + tid;
   4709 
   4710 	/* Stop TX scheduler while we're changing its configuration. */
   4711 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4712 	    IWN4965_TXQ_STATUS_CHGACT);
   4713 
   4714 	/* Set starting sequence number from the ADDBA request. */
   4715 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4716 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4717 
   4718 	/* Disable interrupts for the queue. */
   4719 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4720 
   4721 	/* Mark the queue as inactive. */
   4722 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4723 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   4724 }
   4725 
   4726 static void
   4727 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4728     uint8_t tid, uint16_t ssn)
   4729 {
   4730 	struct iwn_node *wn = (void *)ni;
   4731 	int qid = 10 + tid;
   4732 
   4733 	/* Stop TX scheduler while we're changing its configuration. */
   4734 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4735 	    IWN5000_TXQ_STATUS_CHGACT);
   4736 
   4737 	/* Assign RA/TID translation to the queue. */
   4738 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   4739 	    wn->id << 4 | tid);
   4740 
   4741 	/* Enable chain-building mode for the queue. */
   4742 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   4743 
   4744 	/* Enable aggregation for the queue. */
   4745 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4746 
   4747 	/* Set starting sequence number from the ADDBA request. */
   4748 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4749 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4750 
   4751 	/* Set scheduler window size and frame limit. */
   4752 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   4753 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   4754 
   4755 	/* Enable interrupts for the queue. */
   4756 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4757 
   4758 	/* Mark the queue as active. */
   4759 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4760 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   4761 }
   4762 
   4763 static void
   4764 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4765 {
   4766 	int qid = 10 + tid;
   4767 
   4768 	/* Stop TX scheduler while we're changing its configuration. */
   4769 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4770 	    IWN5000_TXQ_STATUS_CHGACT);
   4771 
   4772 	/* Disable aggregation for the queue. */
   4773 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4774 
   4775 	/* Set starting sequence number from the ADDBA request. */
   4776 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4777 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4778 
   4779 	/* Disable interrupts for the queue. */
   4780 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4781 
   4782 	/* Mark the queue as inactive. */
   4783 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4784 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   4785 }
   4786 #endif	/* !IEEE80211_NO_HT */
   4787 
   4788 /*
   4789  * Query calibration tables from the initialization firmware.  We do this
   4790  * only once at first boot.  Called from a process context.
   4791  */
   4792 static int
   4793 iwn5000_query_calibration(struct iwn_softc *sc)
   4794 {
   4795 	struct iwn5000_calib_config cmd;
   4796 	int error;
   4797 
   4798 	memset(&cmd, 0, sizeof cmd);
   4799 	cmd.ucode.once.enable = 0xffffffff;
   4800 	cmd.ucode.once.start  = 0xffffffff;
   4801 	cmd.ucode.once.send   = 0xffffffff;
   4802 	cmd.ucode.flags       = 0xffffffff;
   4803 	DPRINTF(("sending calibration query\n"));
   4804 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   4805 	if (error != 0)
   4806 		return error;
   4807 
   4808 	/* Wait at most two seconds for calibration to complete. */
   4809 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   4810 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   4811 	return error;
   4812 }
   4813 
   4814 /*
   4815  * Send calibration results to the runtime firmware.  These results were
   4816  * obtained on first boot from the initialization firmware.
   4817  */
   4818 static int
   4819 iwn5000_send_calibration(struct iwn_softc *sc)
   4820 {
   4821 	int idx, error;
   4822 
   4823 	for (idx = 0; idx < 5; idx++) {
   4824 		if (sc->calibcmd[idx].buf == NULL)
   4825 			continue;	/* No results available. */
   4826 		DPRINTF(("send calibration result idx=%d len=%d\n",
   4827 		    idx, sc->calibcmd[idx].len));
   4828 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   4829 		    sc->calibcmd[idx].len, 0);
   4830 		if (error != 0) {
   4831 			aprint_error_dev(sc->sc_dev,
   4832 			    "could not send calibration result\n");
   4833 			return error;
   4834 		}
   4835 	}
   4836 	return 0;
   4837 }
   4838 
   4839 static int
   4840 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   4841 {
   4842 	struct iwn5000_wimax_coex wimax;
   4843 
   4844 #ifdef notyet
   4845 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   4846 		/* Enable WiMAX coexistence for combo adapters. */
   4847 		wimax.flags =
   4848 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   4849 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   4850 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   4851 		    IWN_WIMAX_COEX_ENABLE;
   4852 		memcpy(wimax.events, iwn6050_wimax_events,
   4853 		    sizeof iwn6050_wimax_events);
   4854 	} else
   4855 #endif
   4856 	{
   4857 		/* Disable WiMAX coexistence. */
   4858 		wimax.flags = 0;
   4859 		memset(wimax.events, 0, sizeof wimax.events);
   4860 	}
   4861 	DPRINTF(("Configuring WiMAX coexistence\n"));
   4862 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   4863 }
   4864 
   4865 /*
   4866  * This function is called after the runtime firmware notifies us of its
   4867  * readiness (called in a process context).
   4868  */
   4869 static int
   4870 iwn4965_post_alive(struct iwn_softc *sc)
   4871 {
   4872 	int error, qid;
   4873 
   4874 	if ((error = iwn_nic_lock(sc)) != 0)
   4875 		return error;
   4876 
   4877 	/* Clear TX scheduler state in SRAM. */
   4878 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   4879 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   4880 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   4881 
   4882 	/* Set physical address of TX scheduler rings (1KB aligned). */
   4883 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   4884 
   4885 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   4886 
   4887 	/* Disable chain mode for all our 16 queues. */
   4888 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   4889 
   4890 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   4891 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   4892 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   4893 
   4894 		/* Set scheduler window size. */
   4895 		iwn_mem_write(sc, sc->sched_base +
   4896 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   4897 		/* Set scheduler frame limit. */
   4898 		iwn_mem_write(sc, sc->sched_base +
   4899 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4900 		    IWN_SCHED_LIMIT << 16);
   4901 	}
   4902 
   4903 	/* Enable interrupts for all our 16 queues. */
   4904 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   4905 	/* Identify TX FIFO rings (0-7). */
   4906 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   4907 
   4908 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   4909 	for (qid = 0; qid < 7; qid++) {
   4910 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   4911 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4912 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   4913 	}
   4914 	iwn_nic_unlock(sc);
   4915 	return 0;
   4916 }
   4917 
   4918 /*
   4919  * This function is called after the initialization or runtime firmware
   4920  * notifies us of its readiness (called in a process context).
   4921  */
   4922 static int
   4923 iwn5000_post_alive(struct iwn_softc *sc)
   4924 {
   4925 	int error, qid;
   4926 
   4927 	/* Switch to using ICT interrupt mode. */
   4928 	iwn5000_ict_reset(sc);
   4929 
   4930 	if ((error = iwn_nic_lock(sc)) != 0)
   4931 		return error;
   4932 
   4933 	/* Clear TX scheduler state in SRAM. */
   4934 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   4935 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   4936 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   4937 
   4938 	/* Set physical address of TX scheduler rings (1KB aligned). */
   4939 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   4940 
   4941 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   4942 
   4943 	/* Enable chain mode for all queues, except command queue. */
   4944 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   4945 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   4946 
   4947 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   4948 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   4949 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   4950 
   4951 		iwn_mem_write(sc, sc->sched_base +
   4952 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   4953 		/* Set scheduler window size and frame limit. */
   4954 		iwn_mem_write(sc, sc->sched_base +
   4955 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   4956 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   4957 	}
   4958 
   4959 	/* Enable interrupts for all our 20 queues. */
   4960 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   4961 	/* Identify TX FIFO rings (0-7). */
   4962 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   4963 
   4964 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   4965 	for (qid = 0; qid < 7; qid++) {
   4966 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   4967 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4968 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   4969 	}
   4970 	iwn_nic_unlock(sc);
   4971 
   4972 	/* Configure WiMAX coexistence for combo adapters. */
   4973 	error = iwn5000_send_wimax_coex(sc);
   4974 	if (error != 0) {
   4975 		aprint_error_dev(sc->sc_dev,
   4976 		    "could not configure WiMAX coexistence\n");
   4977 		return error;
   4978 	}
   4979 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   4980 		struct iwn5000_phy_calib_crystal cmd;
   4981 
   4982 		/* Perform crystal calibration. */
   4983 		memset(&cmd, 0, sizeof cmd);
   4984 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   4985 		cmd.ngroups = 1;
   4986 		cmd.isvalid = 1;
   4987 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   4988 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   4989 		DPRINTF(("sending crystal calibration %d, %d\n",
   4990 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   4991 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   4992 		if (error != 0) {
   4993 			aprint_error_dev(sc->sc_dev,
   4994 			    "crystal calibration failed\n");
   4995 			return error;
   4996 		}
   4997 	}
   4998 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   4999 		/* Query calibration from the initialization firmware. */
   5000 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5001 			aprint_error_dev(sc->sc_dev,
   5002 			    "could not query calibration\n");
   5003 			return error;
   5004 		}
   5005 		/*
   5006 		 * We have the calibration results now, reboot with the
   5007 		 * runtime firmware (call ourselves recursively!)
   5008 		 */
   5009 		iwn_hw_stop(sc);
   5010 		error = iwn_hw_init(sc);
   5011 	} else {
   5012 		/* Send calibration results to runtime firmware. */
   5013 		error = iwn5000_send_calibration(sc);
   5014 	}
   5015 	return error;
   5016 }
   5017 
   5018 /*
   5019  * The firmware boot code is small and is intended to be copied directly into
   5020  * the NIC internal memory (no DMA transfer).
   5021  */
   5022 static int
   5023 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5024 {
   5025 	int error, ntries;
   5026 
   5027 	size /= sizeof (uint32_t);
   5028 
   5029 	if ((error = iwn_nic_lock(sc)) != 0)
   5030 		return error;
   5031 
   5032 	/* Copy microcode image into NIC memory. */
   5033 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5034 	    (const uint32_t *)ucode, size);
   5035 
   5036 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5037 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5038 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5039 
   5040 	/* Start boot load now. */
   5041 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5042 
   5043 	/* Wait for transfer to complete. */
   5044 	for (ntries = 0; ntries < 1000; ntries++) {
   5045 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5046 		    IWN_BSM_WR_CTRL_START))
   5047 			break;
   5048 		DELAY(10);
   5049 	}
   5050 	if (ntries == 1000) {
   5051 		aprint_error_dev(sc->sc_dev,
   5052 		    "could not load boot firmware\n");
   5053 		iwn_nic_unlock(sc);
   5054 		return ETIMEDOUT;
   5055 	}
   5056 
   5057 	/* Enable boot after power up. */
   5058 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5059 
   5060 	iwn_nic_unlock(sc);
   5061 	return 0;
   5062 }
   5063 
   5064 static int
   5065 iwn4965_load_firmware(struct iwn_softc *sc)
   5066 {
   5067 	struct iwn_fw_info *fw = &sc->fw;
   5068 	struct iwn_dma_info *dma = &sc->fw_dma;
   5069 	int error;
   5070 
   5071 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5072 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5073 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5074 	    BUS_DMASYNC_PREWRITE);
   5075 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5076 	    fw->init.text, fw->init.textsz);
   5077 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5078 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5079 
   5080 	/* Tell adapter where to find initialization sections. */
   5081 	if ((error = iwn_nic_lock(sc)) != 0)
   5082 		return error;
   5083 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5084 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5085 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5086 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5087 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5088 	iwn_nic_unlock(sc);
   5089 
   5090 	/* Load firmware boot code. */
   5091 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5092 	if (error != 0) {
   5093 		aprint_error_dev(sc->sc_dev,
   5094 		    "could not load boot firmware\n");
   5095 		return error;
   5096 	}
   5097 	/* Now press "execute". */
   5098 	IWN_WRITE(sc, IWN_RESET, 0);
   5099 
   5100 	/* Wait at most one second for first alive notification. */
   5101 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5102 		aprint_error_dev(sc->sc_dev,
   5103 		    "timeout waiting for adapter to initialize\n");
   5104 		return error;
   5105 	}
   5106 
   5107 	/* Retrieve current temperature for initial TX power calibration. */
   5108 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5109 	sc->temp = iwn4965_get_temperature(sc);
   5110 
   5111 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5112 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5113 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5114 	    BUS_DMASYNC_PREWRITE);
   5115 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5116 	    fw->main.text, fw->main.textsz);
   5117 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5118 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5119 
   5120 	/* Tell adapter where to find runtime sections. */
   5121 	if ((error = iwn_nic_lock(sc)) != 0)
   5122 		return error;
   5123 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5124 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5125 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5126 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5127 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5128 	    IWN_FW_UPDATED | fw->main.textsz);
   5129 	iwn_nic_unlock(sc);
   5130 
   5131 	return 0;
   5132 }
   5133 
   5134 static int
   5135 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5136     const uint8_t *section, int size)
   5137 {
   5138 	struct iwn_dma_info *dma = &sc->fw_dma;
   5139 	int error;
   5140 
   5141 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5142 	memcpy(dma->vaddr, section, size);
   5143 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5144 
   5145 	if ((error = iwn_nic_lock(sc)) != 0)
   5146 		return error;
   5147 
   5148 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5149 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5150 
   5151 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5152 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5153 	    IWN_LOADDR(dma->paddr));
   5154 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5155 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5156 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5157 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5158 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5159 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5160 
   5161 	/* Kick Flow Handler to start DMA transfer. */
   5162 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5163 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5164 
   5165 	iwn_nic_unlock(sc);
   5166 
   5167 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5168 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5169 }
   5170 
   5171 static int
   5172 iwn5000_load_firmware(struct iwn_softc *sc)
   5173 {
   5174 	struct iwn_fw_part *fw;
   5175 	int error;
   5176 
   5177 	/* Load the initialization firmware on first boot only. */
   5178 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5179 	    &sc->fw.main : &sc->fw.init;
   5180 
   5181 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5182 	    fw->text, fw->textsz);
   5183 	if (error != 0) {
   5184 		aprint_error_dev(sc->sc_dev,
   5185 		    "could not load firmware %s section\n", ".text");
   5186 		return error;
   5187 	}
   5188 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5189 	    fw->data, fw->datasz);
   5190 	if (error != 0) {
   5191 		aprint_error_dev(sc->sc_dev,
   5192 		    "could not load firmware %s section\n", ".data");
   5193 		return error;
   5194 	}
   5195 
   5196 	/* Now press "execute". */
   5197 	IWN_WRITE(sc, IWN_RESET, 0);
   5198 	return 0;
   5199 }
   5200 
   5201 /*
   5202  * Extract text and data sections from a legacy firmware image.
   5203  */
   5204 static int
   5205 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
   5206 {
   5207 	const uint32_t *ptr;
   5208 	size_t hdrlen = 24;
   5209 	uint32_t rev;
   5210 
   5211 	ptr = (const uint32_t *)fw->data;
   5212 	rev = le32toh(*ptr++);
   5213 
   5214 	/* Check firmware API version. */
   5215 	if (IWN_FW_API(rev) <= 1) {
   5216 		aprint_error_dev(sc->sc_dev,
   5217 		    "bad firmware, need API version >=2\n");
   5218 		return EINVAL;
   5219 	}
   5220 	if (IWN_FW_API(rev) >= 3) {
   5221 		/* Skip build number (version 2 header). */
   5222 		hdrlen += 4;
   5223 		ptr++;
   5224 	}
   5225 	if (fw->size < hdrlen) {
   5226 		aprint_error_dev(sc->sc_dev,
   5227 		    "firmware too short: %zd bytes\n", fw->size);
   5228 		return EINVAL;
   5229 	}
   5230 	fw->main.textsz = le32toh(*ptr++);
   5231 	fw->main.datasz = le32toh(*ptr++);
   5232 	fw->init.textsz = le32toh(*ptr++);
   5233 	fw->init.datasz = le32toh(*ptr++);
   5234 	fw->boot.textsz = le32toh(*ptr++);
   5235 
   5236 	/* Check that all firmware sections fit. */
   5237 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
   5238 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
   5239 		aprint_error_dev(sc->sc_dev,
   5240 		    "firmware too short: %zd bytes\n", fw->size);
   5241 		return EINVAL;
   5242 	}
   5243 
   5244 	/* Get pointers to firmware sections. */
   5245 	fw->main.text = (const uint8_t *)ptr;
   5246 	fw->main.data = fw->main.text + fw->main.textsz;
   5247 	fw->init.text = fw->main.data + fw->main.datasz;
   5248 	fw->init.data = fw->init.text + fw->init.textsz;
   5249 	fw->boot.text = fw->init.data + fw->init.datasz;
   5250 	return 0;
   5251 }
   5252 
   5253 /*
   5254  * Extract text and data sections from a TLV firmware image.
   5255  */
   5256 static int
   5257 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
   5258     uint16_t alt)
   5259 {
   5260 	const struct iwn_fw_tlv_hdr *hdr;
   5261 	const struct iwn_fw_tlv *tlv;
   5262 	const uint8_t *ptr, *end;
   5263 	uint64_t altmask;
   5264 	uint32_t len;
   5265 
   5266 	if (fw->size < sizeof (*hdr)) {
   5267 		aprint_error_dev(sc->sc_dev,
   5268 		    "firmware too short: %zd bytes\n", fw->size);
   5269 		return EINVAL;
   5270 	}
   5271 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
   5272 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
   5273 		aprint_error_dev(sc->sc_dev,
   5274 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
   5275 		return EINVAL;
   5276 	}
   5277 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
   5278 	    le32toh(hdr->build)));
   5279 
   5280 	/*
   5281 	 * Select the closest supported alternative that is less than
   5282 	 * or equal to the specified one.
   5283 	 */
   5284 	altmask = le64toh(hdr->altmask);
   5285 	while (alt > 0 && !(altmask & (1ULL << alt)))
   5286 		alt--;	/* Downgrade. */
   5287 	DPRINTF(("using alternative %d\n", alt));
   5288 
   5289 	ptr = (const uint8_t *)(hdr + 1);
   5290 	end = (const uint8_t *)(fw->data + fw->size);
   5291 
   5292 	/* Parse type-length-value fields. */
   5293 	while (ptr + sizeof (*tlv) <= end) {
   5294 		tlv = (const struct iwn_fw_tlv *)ptr;
   5295 		len = le32toh(tlv->len);
   5296 
   5297 		ptr += sizeof (*tlv);
   5298 		if (ptr + len > end) {
   5299 			aprint_error_dev(sc->sc_dev,
   5300 			    "firmware too short: %zd bytes\n", fw->size);
   5301 			return EINVAL;
   5302 		}
   5303 		/* Skip other alternatives. */
   5304 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
   5305 			goto next;
   5306 
   5307 		switch (le16toh(tlv->type)) {
   5308 		case IWN_FW_TLV_MAIN_TEXT:
   5309 			fw->main.text = ptr;
   5310 			fw->main.textsz = len;
   5311 			break;
   5312 		case IWN_FW_TLV_MAIN_DATA:
   5313 			fw->main.data = ptr;
   5314 			fw->main.datasz = len;
   5315 			break;
   5316 		case IWN_FW_TLV_INIT_TEXT:
   5317 			fw->init.text = ptr;
   5318 			fw->init.textsz = len;
   5319 			break;
   5320 		case IWN_FW_TLV_INIT_DATA:
   5321 			fw->init.data = ptr;
   5322 			fw->init.datasz = len;
   5323 			break;
   5324 		case IWN_FW_TLV_BOOT_TEXT:
   5325 			fw->boot.text = ptr;
   5326 			fw->boot.textsz = len;
   5327 			break;
   5328 		default:
   5329 			DPRINTF(("TLV type %d not handled\n",
   5330 			    le16toh(tlv->type)));
   5331 			break;
   5332 		}
   5333  next:		/* TLV fields are 32-bit aligned. */
   5334 		ptr += (len + 3) & ~3;
   5335 	}
   5336 	return 0;
   5337 }
   5338 
   5339 static int
   5340 iwn_read_firmware(struct iwn_softc *sc)
   5341 {
   5342 	struct iwn_fw_info *fw = &sc->fw;
   5343 	firmware_handle_t fwh;
   5344 	int error;
   5345 
   5346 	/* Initialize for error returns */
   5347 	fw->data = NULL;
   5348 	fw->size = 0;
   5349 
   5350 	/* Open firmware image. */
   5351 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5352 		aprint_error_dev(sc->sc_dev,
   5353 		    "could not get firmware handle %s\n", sc->fwname);
   5354 		return error;
   5355 	}
   5356 	fw->size = firmware_get_size(fwh);
   5357 	if (fw->size < sizeof (uint32_t)) {
   5358 		aprint_error_dev(sc->sc_dev,
   5359 		    "firmware too short: %zd bytes\n", fw->size);
   5360 		firmware_close(fwh);
   5361 		return EINVAL;
   5362 	}
   5363 
   5364 	/* Read the firmware. */
   5365 	fw->data = firmware_malloc(fw->size);
   5366 	if (fw->data == NULL) {
   5367 		aprint_error_dev(sc->sc_dev,
   5368 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5369 		firmware_close(fwh);
   5370 		return ENOMEM;
   5371 	}
   5372 	error = firmware_read(fwh, 0, fw->data, fw->size);
   5373 	firmware_close(fwh);
   5374 	if (error != 0) {
   5375 		aprint_error_dev(sc->sc_dev,
   5376 		    "could not read firmware %s\n", sc->fwname);
   5377 		goto out;
   5378 	}
   5379 
   5380 	/* Retrieve text and data sections. */
   5381 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
   5382 		error = iwn_read_firmware_leg(sc, fw);
   5383 	else
   5384 		error = iwn_read_firmware_tlv(sc, fw, 1);
   5385 	if (error != 0) {
   5386 		aprint_error_dev(sc->sc_dev,
   5387 		    "could not read firmware sections\n");
   5388 		goto out;
   5389 	}
   5390 
   5391 	/* Make sure text and data sections fit in hardware memory. */
   5392 	if (fw->main.textsz > sc->fw_text_maxsz ||
   5393 	    fw->main.datasz > sc->fw_data_maxsz ||
   5394 	    fw->init.textsz > sc->fw_text_maxsz ||
   5395 	    fw->init.datasz > sc->fw_data_maxsz ||
   5396 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5397 	    (fw->boot.textsz & 3) != 0) {
   5398 		aprint_error_dev(sc->sc_dev,
   5399 		    "firmware sections too large\n");
   5400 		goto out;
   5401 	}
   5402 
   5403 	/* We can proceed with loading the firmware. */
   5404 	return 0;
   5405 out:
   5406 	firmware_free(fw->data, fw->size);
   5407 	fw->data = NULL;
   5408 	fw->size = 0;
   5409 	return error ? error : EINVAL;
   5410 }
   5411 
   5412 static int
   5413 iwn_clock_wait(struct iwn_softc *sc)
   5414 {
   5415 	int ntries;
   5416 
   5417 	/* Set "initialization complete" bit. */
   5418 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5419 
   5420 	/* Wait for clock stabilization. */
   5421 	for (ntries = 0; ntries < 2500; ntries++) {
   5422 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5423 			return 0;
   5424 		DELAY(10);
   5425 	}
   5426 	aprint_error_dev(sc->sc_dev,
   5427 	    "timeout waiting for clock stabilization\n");
   5428 	return ETIMEDOUT;
   5429 }
   5430 
   5431 static int
   5432 iwn_apm_init(struct iwn_softc *sc)
   5433 {
   5434 	pcireg_t reg;
   5435 	int error;
   5436 
   5437 	/* Disable L0s exit timer (NMI bug workaround). */
   5438 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   5439 	/* Don't wait for ICH L0s (ICH bug workaround). */
   5440 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   5441 
   5442 	/* Set FH wait threshold to max (HW bug under stress workaround). */
   5443 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   5444 
   5445 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   5446 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   5447 
   5448 	/* Retrieve PCIe Active State Power Management (ASPM). */
   5449 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   5450 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   5451 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   5452 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   5453 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5454 	else
   5455 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5456 
   5457 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   5458 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   5459 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   5460 
   5461 	/* Wait for clock stabilization before accessing prph. */
   5462 	if ((error = iwn_clock_wait(sc)) != 0)
   5463 		return error;
   5464 
   5465 	if ((error = iwn_nic_lock(sc)) != 0)
   5466 		return error;
   5467 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   5468 		/* Enable DMA and BSM (Bootstrap State Machine). */
   5469 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5470 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   5471 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   5472 	} else {
   5473 		/* Enable DMA. */
   5474 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5475 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5476 	}
   5477 	DELAY(20);
   5478 	/* Disable L1-Active. */
   5479 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   5480 	iwn_nic_unlock(sc);
   5481 
   5482 	return 0;
   5483 }
   5484 
   5485 static void
   5486 iwn_apm_stop_master(struct iwn_softc *sc)
   5487 {
   5488 	int ntries;
   5489 
   5490 	/* Stop busmaster DMA activity. */
   5491 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   5492 	for (ntries = 0; ntries < 100; ntries++) {
   5493 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   5494 			return;
   5495 		DELAY(10);
   5496 	}
   5497 	aprint_error_dev(sc->sc_dev,
   5498 	    "timeout waiting for master\n");
   5499 }
   5500 
   5501 static void
   5502 iwn_apm_stop(struct iwn_softc *sc)
   5503 {
   5504 	iwn_apm_stop_master(sc);
   5505 
   5506 	/* Reset the entire device. */
   5507 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   5508 	DELAY(10);
   5509 	/* Clear "initialization complete" bit. */
   5510 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5511 }
   5512 
   5513 static int
   5514 iwn4965_nic_config(struct iwn_softc *sc)
   5515 {
   5516 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   5517 		/*
   5518 		 * I don't believe this to be correct but this is what the
   5519 		 * vendor driver is doing. Probably the bits should not be
   5520 		 * shifted in IWN_RFCFG_*.
   5521 		 */
   5522 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5523 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5524 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5525 		    IWN_RFCFG_DASH(sc->rfcfg));
   5526 	}
   5527 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5528 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5529 	return 0;
   5530 }
   5531 
   5532 static int
   5533 iwn5000_nic_config(struct iwn_softc *sc)
   5534 {
   5535 	uint32_t tmp;
   5536 	int error;
   5537 
   5538 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   5539 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5540 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5541 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5542 		    IWN_RFCFG_DASH(sc->rfcfg));
   5543 	}
   5544 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5545 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5546 
   5547 	if ((error = iwn_nic_lock(sc)) != 0)
   5548 		return error;
   5549 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   5550 
   5551 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   5552 		/*
   5553 		 * Select first Switching Voltage Regulator (1.32V) to
   5554 		 * solve a stability issue related to noisy DC2DC line
   5555 		 * in the silicon of 1000 Series.
   5556 		 */
   5557 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   5558 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   5559 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   5560 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   5561 	}
   5562 	iwn_nic_unlock(sc);
   5563 
   5564 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   5565 		/* Use internal power amplifier only. */
   5566 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   5567 	}
   5568 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   5569 		sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
   5570 		/* Indicate that ROM calibration version is >=6. */
   5571 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   5572 	}
   5573 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   5574 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
   5575 	return 0;
   5576 }
   5577 
   5578 /*
   5579  * Take NIC ownership over Intel Active Management Technology (AMT).
   5580  */
   5581 static int
   5582 iwn_hw_prepare(struct iwn_softc *sc)
   5583 {
   5584 	int ntries;
   5585 
   5586 	/* Check if hardware is ready. */
   5587 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5588 	for (ntries = 0; ntries < 5; ntries++) {
   5589 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5590 		    IWN_HW_IF_CONFIG_NIC_READY)
   5591 			return 0;
   5592 		DELAY(10);
   5593 	}
   5594 
   5595 	/* Hardware not ready, force into ready state. */
   5596 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   5597 	for (ntries = 0; ntries < 15000; ntries++) {
   5598 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5599 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   5600 			break;
   5601 		DELAY(10);
   5602 	}
   5603 	if (ntries == 15000)
   5604 		return ETIMEDOUT;
   5605 
   5606 	/* Hardware should be ready now. */
   5607 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5608 	for (ntries = 0; ntries < 5; ntries++) {
   5609 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5610 		    IWN_HW_IF_CONFIG_NIC_READY)
   5611 			return 0;
   5612 		DELAY(10);
   5613 	}
   5614 	return ETIMEDOUT;
   5615 }
   5616 
   5617 static int
   5618 iwn_hw_init(struct iwn_softc *sc)
   5619 {
   5620 	struct iwn_ops *ops = &sc->ops;
   5621 	int error, chnl, qid;
   5622 
   5623 	/* Clear pending interrupts. */
   5624 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5625 
   5626 	if ((error = iwn_apm_init(sc)) != 0) {
   5627 		aprint_error_dev(sc->sc_dev,
   5628 		    "could not power ON adapter\n");
   5629 		return error;
   5630 	}
   5631 
   5632 	/* Select VMAIN power source. */
   5633 	if ((error = iwn_nic_lock(sc)) != 0)
   5634 		return error;
   5635 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   5636 	iwn_nic_unlock(sc);
   5637 
   5638 	/* Perform adapter-specific initialization. */
   5639 	if ((error = ops->nic_config(sc)) != 0)
   5640 		return error;
   5641 
   5642 	/* Initialize RX ring. */
   5643 	if ((error = iwn_nic_lock(sc)) != 0)
   5644 		return error;
   5645 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   5646 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   5647 	/* Set physical address of RX ring (256-byte aligned). */
   5648 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   5649 	/* Set physical address of RX status (16-byte aligned). */
   5650 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   5651 	/* Enable RX. */
   5652 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   5653 	    IWN_FH_RX_CONFIG_ENA           |
   5654 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   5655 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   5656 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   5657 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   5658 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   5659 	iwn_nic_unlock(sc);
   5660 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   5661 
   5662 	if ((error = iwn_nic_lock(sc)) != 0)
   5663 		return error;
   5664 
   5665 	/* Initialize TX scheduler. */
   5666 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   5667 
   5668 	/* Set physical address of "keep warm" page (16-byte aligned). */
   5669 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   5670 
   5671 	/* Initialize TX rings. */
   5672 	for (qid = 0; qid < sc->ntxqs; qid++) {
   5673 		struct iwn_tx_ring *txq = &sc->txq[qid];
   5674 
   5675 		/* Set physical address of TX ring (256-byte aligned). */
   5676 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   5677 		    txq->desc_dma.paddr >> 8);
   5678 	}
   5679 	iwn_nic_unlock(sc);
   5680 
   5681 	/* Enable DMA channels. */
   5682 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   5683 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   5684 		    IWN_FH_TX_CONFIG_DMA_ENA |
   5685 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   5686 	}
   5687 
   5688 	/* Clear "radio off" and "commands blocked" bits. */
   5689 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5690 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   5691 
   5692 	/* Clear pending interrupts. */
   5693 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5694 	/* Enable interrupt coalescing. */
   5695 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   5696 	/* Enable interrupts. */
   5697 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   5698 
   5699 	/* _Really_ make sure "radio off" bit is cleared! */
   5700 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5701 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5702 
   5703 	/* Enable shadow registers. */
   5704 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   5705 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
   5706 
   5707 	if ((error = ops->load_firmware(sc)) != 0) {
   5708 		aprint_error_dev(sc->sc_dev,
   5709 		    "could not load firmware\n");
   5710 		return error;
   5711 	}
   5712 	/* Wait at most one second for firmware alive notification. */
   5713 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5714 		aprint_error_dev(sc->sc_dev,
   5715 		    "timeout waiting for adapter to initialize\n");
   5716 		return error;
   5717 	}
   5718 	/* Do post-firmware initialization. */
   5719 	return ops->post_alive(sc);
   5720 }
   5721 
   5722 static void
   5723 iwn_hw_stop(struct iwn_softc *sc)
   5724 {
   5725 	int chnl, qid, ntries;
   5726 
   5727 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   5728 
   5729 	/* Disable interrupts. */
   5730 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   5731 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5732 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   5733 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5734 
   5735 	/* Make sure we no longer hold the NIC lock. */
   5736 	iwn_nic_unlock(sc);
   5737 
   5738 	/* Stop TX scheduler. */
   5739 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   5740 
   5741 	/* Stop all DMA channels. */
   5742 	if (iwn_nic_lock(sc) == 0) {
   5743 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   5744 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   5745 			for (ntries = 0; ntries < 200; ntries++) {
   5746 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
   5747 				    IWN_FH_TX_STATUS_IDLE(chnl))
   5748 					break;
   5749 				DELAY(10);
   5750 			}
   5751 		}
   5752 		iwn_nic_unlock(sc);
   5753 	}
   5754 
   5755 	/* Stop RX ring. */
   5756 	iwn_reset_rx_ring(sc, &sc->rxq);
   5757 
   5758 	/* Reset all TX rings. */
   5759 	for (qid = 0; qid < sc->ntxqs; qid++)
   5760 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   5761 
   5762 	if (iwn_nic_lock(sc) == 0) {
   5763 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   5764 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5765 		iwn_nic_unlock(sc);
   5766 	}
   5767 	DELAY(5);
   5768 	/* Power OFF adapter. */
   5769 	iwn_apm_stop(sc);
   5770 }
   5771 
   5772 static int
   5773 iwn_init(struct ifnet *ifp)
   5774 {
   5775 	struct iwn_softc *sc = ifp->if_softc;
   5776 	struct ieee80211com *ic = &sc->sc_ic;
   5777 	int error;
   5778 
   5779 	mutex_enter(&sc->sc_mtx);
   5780 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
   5781 		goto out;
   5782 	if ((error = iwn_hw_prepare(sc)) != 0) {
   5783 		aprint_error_dev(sc->sc_dev,
   5784 		    "hardware not ready\n");
   5785 		goto fail;
   5786 	}
   5787 
   5788 	/* Check that the radio is not disabled by hardware switch. */
   5789 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   5790 		aprint_error_dev(sc->sc_dev,
   5791 		    "radio is disabled by hardware switch\n");
   5792 		error = EPERM;	/* :-) */
   5793 		goto fail;
   5794 	}
   5795 
   5796 	/* Read firmware images from the filesystem. */
   5797 	if ((error = iwn_read_firmware(sc)) != 0) {
   5798 		aprint_error_dev(sc->sc_dev,
   5799 		    "could not read firmware\n");
   5800 		goto fail;
   5801 	}
   5802 
   5803 	/* Initialize interrupt mask to default value. */
   5804 	sc->int_mask = IWN_INT_MASK_DEF;
   5805 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5806 
   5807 	/* Initialize hardware and upload firmware. */
   5808 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
   5809 	error = iwn_hw_init(sc);
   5810 	firmware_free(sc->fw.data, sc->fw.size);
   5811 	sc->fw.data = NULL;
   5812 	sc->fw.size = 0;
   5813 	if (error != 0) {
   5814 		aprint_error_dev(sc->sc_dev,
   5815 		    "could not initialize hardware\n");
   5816 		goto fail;
   5817 	}
   5818 
   5819 	/* Configure adapter now that it is ready. */
   5820 	if ((error = iwn_config(sc)) != 0) {
   5821 		aprint_error_dev(sc->sc_dev,
   5822 		    "could not configure device\n");
   5823 		goto fail;
   5824 	}
   5825 
   5826 	ifp->if_flags &= ~IFF_OACTIVE;
   5827 	ifp->if_flags |= IFF_RUNNING;
   5828 
   5829 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   5830 		ieee80211_begin_scan(ic, 0);
   5831 	else
   5832 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   5833 
   5834 	sc->sc_flags |= IWN_FLAG_HW_INITED;
   5835 out:
   5836 	mutex_exit(&sc->sc_mtx);
   5837 	return 0;
   5838 
   5839 fail:	mutex_exit(&sc->sc_mtx);
   5840 	iwn_stop(ifp, 1);
   5841 	return error;
   5842 }
   5843 
   5844 static void
   5845 iwn_stop(struct ifnet *ifp, int disable)
   5846 {
   5847 	struct iwn_softc *sc = ifp->if_softc;
   5848 	struct ieee80211com *ic = &sc->sc_ic;
   5849 
   5850 	if (!disable)
   5851 		mutex_enter(&sc->sc_mtx);
   5852 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
   5853 	ifp->if_timer = sc->sc_tx_timer = 0;
   5854 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5855 
   5856 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   5857 
   5858 	/* Power OFF hardware. */
   5859 	iwn_hw_stop(sc);
   5860 
   5861 	if (!disable)
   5862 		mutex_exit(&sc->sc_mtx);
   5863 }
   5864 
   5865 /*
   5866  * XXX MCLGETI alternative
   5867  *
   5868  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   5869  * as long as there are available free buffers then it uses MEXTMALLOC.,
   5870  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   5871  * The MCLGET4K code is used for testing an alternative mbuf cache.
   5872  */
   5873 
   5874 static struct mbuf *
   5875 MCLGETIalt(struct iwn_softc *sc, int how,
   5876     struct ifnet *ifp __unused, u_int size)
   5877 {
   5878 	struct mbuf *m;
   5879 #ifdef IWN_USE_RBUF
   5880 	struct iwn_rbuf *rbuf;
   5881 #endif
   5882 
   5883 	MGETHDR(m, how, MT_DATA);
   5884 	if (m == NULL)
   5885 		return NULL;
   5886 
   5887 #ifdef IWN_USE_RBUF
   5888 	if (sc->rxq.nb_free_entries > 0 &&
   5889 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   5890 		/* Attach buffer to mbuf header. */
   5891 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   5892 		m->m_flags |= M_EXT_RW;
   5893 	}
   5894 	else {
   5895 		MEXTMALLOC(m, size, how);
   5896 		if ((m->m_flags & M_EXT) == 0) {
   5897 			m_freem(m);
   5898 			return NULL;
   5899 		}
   5900 	}
   5901 
   5902 #else
   5903 #ifdef MCLGET4K
   5904 	if (size == 4096)
   5905 		MCLGET4K(m, how);
   5906 	else
   5907 		panic("size must be 4k");
   5908 #else
   5909 	MEXTMALLOC(m, size, how);
   5910 #endif
   5911 	if ((m->m_flags & M_EXT) == 0) {
   5912 		m_freem(m);
   5913 		return NULL;
   5914 	}
   5915 #endif
   5916 
   5917 	return m;
   5918 }
   5919 
   5920 #ifdef IWN_USE_RBUF
   5921 static struct iwn_rbuf *
   5922 iwn_alloc_rbuf(struct iwn_softc *sc)
   5923 {
   5924 	struct iwn_rbuf *rbuf;
   5925 	mutex_enter(&sc->rxq.freelist_mtx);
   5926 
   5927 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   5928 	if (rbuf != NULL) {
   5929 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   5930 		sc->rxq.nb_free_entries --;
   5931 	}
   5932 	mutex_exit(&sc->rxq.freelist_mtx);
   5933 	return rbuf;
   5934 }
   5935 
   5936 /*
   5937  * This is called automatically by the network stack when the mbuf to which
   5938  * our RX buffer is attached is freed.
   5939  */
   5940 static void
   5941 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   5942 {
   5943 	struct iwn_rbuf *rbuf = arg;
   5944 	struct iwn_softc *sc = rbuf->sc;
   5945 
   5946 	/* Put the RX buffer back in the free list. */
   5947 	mutex_enter(&sc->rxq.freelist_mtx);
   5948 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   5949 	mutex_exit(&sc->rxq.freelist_mtx);
   5950 
   5951 	sc->rxq.nb_free_entries ++;
   5952 	if (__predict_true(m != NULL))
   5953 		pool_cache_put(mb_cache, m);
   5954 }
   5955 
   5956 static int
   5957 iwn_alloc_rpool(struct iwn_softc *sc)
   5958 {
   5959 	struct iwn_rx_ring *ring = &sc->rxq;
   5960 	struct iwn_rbuf *rbuf;
   5961 	int i, error;
   5962 
   5963 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   5964 
   5965 	/* Allocate a big chunk of DMA'able memory... */
   5966 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   5967 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   5968 	if (error != 0) {
   5969 		aprint_error_dev(sc->sc_dev,
   5970 		    "could not allocate RX buffers DMA memory\n");
   5971 		return error;
   5972 	}
   5973 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   5974 	SLIST_INIT(&ring->freelist);
   5975 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   5976 		rbuf = &ring->rbuf[i];
   5977 
   5978 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   5979 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   5980 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   5981 
   5982 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   5983 	}
   5984 	ring->nb_free_entries = IWN_RBUF_COUNT;
   5985 	return 0;
   5986 }
   5987 
   5988 static void
   5989 iwn_free_rpool(struct iwn_softc *sc)
   5990 {
   5991 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   5992 }
   5993 #endif
   5994 
   5995 /*
   5996  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
   5997  * Copyright (c) 2001 Atsushi Onoe
   5998  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
   5999  * Copyright (c) 2007-2009 Damien Bergamini
   6000  * All rights reserved.
   6001  */
   6002 
   6003 /*
   6004  * Add an SSID element to a frame (see 7.3.2.1).
   6005  */
   6006 static u_int8_t *
   6007 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
   6008 {
   6009 	*frm++ = IEEE80211_ELEMID_SSID;
   6010 	*frm++ = len;
   6011 	memcpy(frm, ssid, len);
   6012 	return frm + len;
   6013 }
   6014 
   6015 /*
   6016  * Add a supported rates element to a frame (see 7.3.2.2).
   6017  */
   6018 static u_int8_t *
   6019 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6020 {
   6021 	int nrates;
   6022 
   6023 	*frm++ = IEEE80211_ELEMID_RATES;
   6024 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
   6025 	*frm++ = nrates;
   6026 	memcpy(frm, rs->rs_rates, nrates);
   6027 	return frm + nrates;
   6028 }
   6029 
   6030 /*
   6031  * Add an extended supported rates element to a frame (see 7.3.2.14).
   6032  */
   6033 static u_int8_t *
   6034 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6035 {
   6036 	int nrates;
   6037 
   6038 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
   6039 
   6040 	*frm++ = IEEE80211_ELEMID_XRATES;
   6041 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   6042 	*frm++ = nrates;
   6043 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   6044 	return frm + nrates;
   6045 }
   6046 
   6047 /*
   6048  * XXX: Hack to set the current channel to the value advertised in beacons or
   6049  * probe responses. Only used during AP detection.
   6050  * XXX: Duplicated from if_iwi.c
   6051  */
   6052 static void
   6053 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
   6054 {
   6055 	struct ieee80211_frame *wh;
   6056 	uint8_t subtype;
   6057 	uint8_t *frm, *efrm;
   6058 
   6059 	wh = mtod(m, struct ieee80211_frame *);
   6060 
   6061 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6062 		return;
   6063 
   6064 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6065 
   6066 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6067 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6068 		return;
   6069 
   6070 	frm = (uint8_t *)(wh + 1);
   6071 	efrm = mtod(m, uint8_t *) + m->m_len;
   6072 
   6073 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6074 	while (frm < efrm) {
   6075 		if (*frm == IEEE80211_ELEMID_DSPARMS)
   6076 #if IEEE80211_CHAN_MAX < 255
   6077 		if (frm[2] <= IEEE80211_CHAN_MAX)
   6078 #endif
   6079 			ic->ic_curchan = &ic->ic_channels[frm[2]];
   6080 
   6081 		frm += frm[1] + 2;
   6082 	}
   6083 }
   6084 
   6085