Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.60
      1 /*	$NetBSD: if_iwn.c,v 1.60 2011/10/08 10:21:16 mbalmer Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.60 2011/10/08 10:21:16 mbalmer Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/proc.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #include <sys/mutex.h>
     39 #include <sys/conf.h>
     40 #include <sys/kauth.h>
     41 #include <sys/callout.h>
     42 
     43 #include <dev/sysmon/sysmonvar.h>
     44 
     45 #include <sys/bus.h>
     46 #include <machine/endian.h>
     47 #include <machine/intr.h>
     48 
     49 #include <dev/pci/pcireg.h>
     50 #include <dev/pci/pcivar.h>
     51 #include <dev/pci/pcidevs.h>
     52 
     53 #include <net/bpf.h>
     54 #include <net/if.h>
     55 #include <net/if_arp.h>
     56 #include <net/if_dl.h>
     57 #include <net/if_media.h>
     58 #include <net/if_types.h>
     59 
     60 #include <netinet/in.h>
     61 #include <netinet/in_systm.h>
     62 #include <netinet/in_var.h>
     63 #include <net/if_ether.h>
     64 #include <netinet/ip.h>
     65 
     66 #include <net80211/ieee80211_var.h>
     67 #include <net80211/ieee80211_amrr.h>
     68 #include <net80211/ieee80211_radiotap.h>
     69 
     70 #include <dev/firmload.h>
     71 
     72 #include <dev/pci/if_iwnreg.h>
     73 #include <dev/pci/if_iwnvar.h>
     74 
     75 static const pci_product_id_t iwn_devices[] = {
     76 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
     77 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
     78 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     79 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     80 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
     81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
     82 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     83 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     84 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     85 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     86 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     87 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
     89 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
     90 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
     99 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
    100 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
    101 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
    102 };
    103 
    104 /*
    105  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    106  */
    107 static const struct ieee80211_rateset iwn_rateset_11a =
    108 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    109 
    110 static const struct ieee80211_rateset iwn_rateset_11b =
    111 	{ 4, { 2, 4, 11, 22 } };
    112 
    113 static const struct ieee80211_rateset iwn_rateset_11g =
    114 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    115 
    116 static int	iwn_match(device_t , struct cfdata *, void *);
    117 static void	iwn_attach(device_t , device_t , void *);
    118 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
    119 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
    120 static void	iwn_radiotap_attach(struct iwn_softc *);
    121 static int	iwn_detach(device_t , int);
    122 #if 0
    123 static void	iwn_power(int, void *);
    124 #endif
    125 static bool	iwn_resume(device_t, const pmf_qual_t *);
    126 static int	iwn_nic_lock(struct iwn_softc *);
    127 static int	iwn_eeprom_lock(struct iwn_softc *);
    128 static int	iwn_init_otprom(struct iwn_softc *);
    129 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    130 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    131 		    void **, bus_size_t, bus_size_t);
    132 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    133 static int	iwn_alloc_sched(struct iwn_softc *);
    134 static void	iwn_free_sched(struct iwn_softc *);
    135 static int	iwn_alloc_kw(struct iwn_softc *);
    136 static void	iwn_free_kw(struct iwn_softc *);
    137 static int	iwn_alloc_ict(struct iwn_softc *);
    138 static void	iwn_free_ict(struct iwn_softc *);
    139 static int	iwn_alloc_fwmem(struct iwn_softc *);
    140 static void	iwn_free_fwmem(struct iwn_softc *);
    141 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    142 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    143 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    144 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    145 		    int);
    146 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    147 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    148 static void	iwn5000_ict_reset(struct iwn_softc *);
    149 static int	iwn_read_eeprom(struct iwn_softc *);
    150 static void	iwn4965_read_eeprom(struct iwn_softc *);
    151 
    152 #ifdef IWN_DEBUG
    153 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    154 #endif
    155 static void	iwn5000_read_eeprom(struct iwn_softc *);
    156 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    157 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    158 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    159 static void	iwn_newassoc(struct ieee80211_node *, int);
    160 static int	iwn_media_change(struct ifnet *);
    161 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    162 static void	iwn_iter_func(void *, struct ieee80211_node *);
    163 static void	iwn_calib_timeout(void *);
    164 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    165 		    struct iwn_rx_data *);
    166 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    167 		    struct iwn_rx_data *);
    168 #ifndef IEEE80211_NO_HT
    169 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    170 		    struct iwn_rx_data *);
    171 #endif
    172 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    173 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    174 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    175 		    struct iwn_rx_data *);
    176 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    177 		    struct iwn_rx_data *);
    178 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    179 		    struct iwn_rx_data *);
    180 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    181 		    uint8_t);
    182 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    183 static void	iwn_notif_intr(struct iwn_softc *);
    184 static void	iwn_wakeup_intr(struct iwn_softc *);
    185 static void	iwn_fatal_intr(struct iwn_softc *);
    186 static int	iwn_intr(void *);
    187 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    188 		    uint16_t);
    189 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    190 		    uint16_t);
    191 #ifdef notyet
    192 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    193 #endif
    194 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    195 		    struct ieee80211_node *, int);
    196 static void	iwn_start(struct ifnet *);
    197 static void	iwn_watchdog(struct ifnet *);
    198 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    199 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    200 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    201 		    int);
    202 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    203 		    int);
    204 static int	iwn_set_link_quality(struct iwn_softc *,
    205 		    struct ieee80211_node *);
    206 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    207 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    208 static int	iwn_set_critical_temp(struct iwn_softc *);
    209 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    210 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    211 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    212 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    213 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    214 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    215 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    216 static int	iwn4965_get_temperature(struct iwn_softc *);
    217 static int	iwn5000_get_temperature(struct iwn_softc *);
    218 static int	iwn_init_sensitivity(struct iwn_softc *);
    219 static void	iwn_collect_noise(struct iwn_softc *,
    220 		    const struct iwn_rx_general_stats *);
    221 static int	iwn4965_init_gains(struct iwn_softc *);
    222 static int	iwn5000_init_gains(struct iwn_softc *);
    223 static int	iwn4965_set_gains(struct iwn_softc *);
    224 static int	iwn5000_set_gains(struct iwn_softc *);
    225 static void	iwn_tune_sensitivity(struct iwn_softc *,
    226 		    const struct iwn_rx_stats *);
    227 static int	iwn_send_sensitivity(struct iwn_softc *);
    228 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    229 static int	iwn5000_runtime_calib(struct iwn_softc *);
    230 static int	iwn_config(struct iwn_softc *);
    231 static int	iwn_scan(struct iwn_softc *, uint16_t);
    232 static int	iwn_auth(struct iwn_softc *);
    233 static int	iwn_run(struct iwn_softc *);
    234 #ifdef IWN_HWCRYPTO
    235 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    236 		    struct ieee80211_key *);
    237 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    238 		    struct ieee80211_key *);
    239 #endif
    240 static int	iwn_wme_update(struct ieee80211com *);
    241 #ifndef IEEE80211_NO_HT
    242 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    243 		    struct ieee80211_node *, uint8_t);
    244 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    245 		    struct ieee80211_node *, uint8_t);
    246 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    247 		    struct ieee80211_node *, uint8_t);
    248 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    249 		    struct ieee80211_node *, uint8_t);
    250 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    251 		    struct ieee80211_node *, uint8_t, uint16_t);
    252 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    253 		    uint8_t, uint16_t);
    254 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    255 		    struct ieee80211_node *, uint8_t, uint16_t);
    256 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    257 		    uint8_t, uint16_t);
    258 #endif
    259 static int	iwn5000_query_calibration(struct iwn_softc *);
    260 static int	iwn5000_send_calibration(struct iwn_softc *);
    261 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    262 static int	iwn4965_post_alive(struct iwn_softc *);
    263 static int	iwn5000_post_alive(struct iwn_softc *);
    264 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    265 		    int);
    266 static int	iwn4965_load_firmware(struct iwn_softc *);
    267 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    268 		    const uint8_t *, int);
    269 static int	iwn5000_load_firmware(struct iwn_softc *);
    270 static int	iwn_read_firmware_leg(struct iwn_softc *,
    271 		    struct iwn_fw_info *);
    272 static int	iwn_read_firmware_tlv(struct iwn_softc *,
    273 		    struct iwn_fw_info *, uint16_t);
    274 static int	iwn_read_firmware(struct iwn_softc *);
    275 static int	iwn_clock_wait(struct iwn_softc *);
    276 static int	iwn_apm_init(struct iwn_softc *);
    277 static void	iwn_apm_stop_master(struct iwn_softc *);
    278 static void	iwn_apm_stop(struct iwn_softc *);
    279 static int	iwn4965_nic_config(struct iwn_softc *);
    280 static int	iwn5000_nic_config(struct iwn_softc *);
    281 static int	iwn_hw_prepare(struct iwn_softc *);
    282 static int	iwn_hw_init(struct iwn_softc *);
    283 static void	iwn_hw_stop(struct iwn_softc *);
    284 static int	iwn_init(struct ifnet *);
    285 static void	iwn_stop(struct ifnet *, int);
    286 
    287 /* XXX MCLGETI alternative */
    288 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    289 		    struct ifnet *, u_int);
    290 #ifdef IWN_USE_RBUF
    291 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    292 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    293 static int	iwn_alloc_rpool(struct iwn_softc *);
    294 static void	iwn_free_rpool(struct iwn_softc *);
    295 #endif
    296 
    297 /* XXX needed by iwn_scan */
    298 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
    299 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
    300     const struct ieee80211_rateset *);
    301 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
    302     const struct ieee80211_rateset *);
    303 
    304 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
    305 
    306 #ifdef IWN_DEBUG
    307 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    308 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    309 int iwn_debug = 0;
    310 #else
    311 #define DPRINTF(x)
    312 #define DPRINTFN(n, x)
    313 #endif
    314 
    315 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    316 	iwn_detach, NULL);
    317 
    318 static int
    319 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    320 {
    321 	struct pci_attach_args *pa = aux;
    322 	size_t i;
    323 
    324 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    325 		return 0;
    326 
    327 	for (i = 0; i < __arraycount(iwn_devices); i++)
    328 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    329 			return 1;
    330 
    331 	return 0;
    332 }
    333 
    334 static void
    335 iwn_attach(device_t parent __unused, device_t self, void *aux)
    336 {
    337 	struct iwn_softc *sc = device_private(self);
    338 	struct ieee80211com *ic = &sc->sc_ic;
    339 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    340 	struct pci_attach_args *pa = aux;
    341 	const char *intrstr;
    342 	char devinfo[256];
    343 	pci_intr_handle_t ih;
    344 	pcireg_t memtype, reg;
    345 	int i, error;
    346 	int revision;
    347 
    348 	sc->sc_dev = self;
    349 	sc->sc_pct = pa->pa_pc;
    350 	sc->sc_pcitag = pa->pa_tag;
    351 	sc->sc_dmat = pa->pa_dmat;
    352 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
    353 
    354 	callout_init(&sc->calib_to, 0);
    355 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    356 
    357 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
    358 	revision = PCI_REVISION(pa->pa_class);
    359 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
    360 
    361 	/*
    362 	 * Get the offset of the PCI Express Capability Structure in PCI
    363 	 * Configuration Space.
    364 	 */
    365 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    366 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    367 	if (error == 0) {
    368 		aprint_error(": PCIe capability structure not found!\n");
    369 		return;
    370 	}
    371 
    372 	/* Clear device-specific "PCI retry timeout" register (41h). */
    373 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    374 	if (reg & 0xff00)
    375 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    376 
    377 	/* Enable bus-mastering and hardware bug workaround. */
    378 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    379 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    380 	reg |= PCI_COMMAND_MASTER_ENABLE;
    381 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
    382 		DPRINTF(("PCIe INTx Disable set\n"));
    383 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
    384 	}
    385 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    386 
    387 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    388 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    389 	    &sc->sc_sh, NULL, &sc->sc_sz);
    390 	if (error != 0) {
    391 		aprint_error(": can't map mem space\n");
    392 		return;
    393 	}
    394 
    395 	/* Install interrupt handler. */
    396 	if (pci_intr_map(pa, &ih) != 0) {
    397 		aprint_error(": can't map interrupt\n");
    398 		return;
    399 	}
    400 	intrstr = pci_intr_string(sc->sc_pct, ih);
    401 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
    402 	if (sc->sc_ih == NULL) {
    403 		aprint_error(": can't establish interrupt");
    404 		if (intrstr != NULL)
    405 			aprint_error(" at %s", intrstr);
    406 		aprint_error("\n");
    407 		return;
    408 	}
    409 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    410 
    411 	/* Read hardware revision and attach. */
    412 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
    413 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
    414 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
    415 	else
    416 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
    417 	if (error != 0) {
    418 		aprint_error(": could not attach device\n");
    419 		return;
    420 	}
    421 
    422 	if ((error = iwn_hw_prepare(sc)) != 0) {
    423 		aprint_error(": hardware not ready\n");
    424 		return;
    425 	}
    426 
    427 	/* Read MAC address, channels, etc from EEPROM. */
    428 	if ((error = iwn_read_eeprom(sc)) != 0) {
    429 		aprint_error(": could not read EEPROM\n");
    430 		return;
    431 	}
    432 
    433 	/* Allocate DMA memory for firmware transfers. */
    434 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    435 		aprint_error(": could not allocate memory for firmware\n");
    436 		return;
    437 	}
    438 
    439 	/* Allocate "Keep Warm" page. */
    440 	if ((error = iwn_alloc_kw(sc)) != 0) {
    441 		aprint_error(": could not allocate keep warm page\n");
    442 		goto fail1;
    443 	}
    444 
    445 	/* Allocate ICT table for 5000 Series. */
    446 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    447 	    (error = iwn_alloc_ict(sc)) != 0) {
    448 		aprint_error(": could not allocate ICT table\n");
    449 		goto fail2;
    450 	}
    451 
    452 	/* Allocate TX scheduler "rings". */
    453 	if ((error = iwn_alloc_sched(sc)) != 0) {
    454 		aprint_error(": could not allocate TX scheduler rings\n");
    455 		goto fail3;
    456 	}
    457 
    458 #ifdef IWN_USE_RBUF
    459 	/* Allocate RX buffers. */
    460 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    461 		aprint_error_dev(self, "could not allocate RX buffers\n");
    462 		goto fail3;
    463 	}
    464 #endif
    465 
    466 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
    467 	for (i = 0; i < sc->ntxqs; i++) {
    468 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    469 			aprint_error(": could not allocate TX ring %d\n", i);
    470 			goto fail4;
    471 		}
    472 	}
    473 
    474 	/* Allocate RX ring. */
    475 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    476 		aprint_error(": could not allocate RX ring\n");
    477 		goto fail4;
    478 	}
    479 
    480 	/* Clear pending interrupts. */
    481 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    482 
    483 	/* Count the number of available chains. */
    484 	sc->ntxchains =
    485 	    ((sc->txchainmask >> 2) & 1) +
    486 	    ((sc->txchainmask >> 1) & 1) +
    487 	    ((sc->txchainmask >> 0) & 1);
    488 	sc->nrxchains =
    489 	    ((sc->rxchainmask >> 2) & 1) +
    490 	    ((sc->rxchainmask >> 1) & 1) +
    491 	    ((sc->rxchainmask >> 0) & 1);
    492 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    493 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    494 	    ether_sprintf(ic->ic_myaddr));
    495 
    496 	ic->ic_ifp = ifp;
    497 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    498 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    499 	ic->ic_state = IEEE80211_S_INIT;
    500 
    501 	/* Set device capabilities. */
    502 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
    503 	 * and IEEE80211_C_PMGT too. */
    504 	ic->ic_caps =
    505 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    506 	    IEEE80211_C_WPA |		/* 802.11i */
    507 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    508 	    IEEE80211_C_TXPMGT |	/* tx power management */
    509 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    510 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    511 	    IEEE80211_C_WME;		/* 802.11e */
    512 
    513 #ifndef IEEE80211_NO_HT
    514 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    515 		/* Set HT capabilities. */
    516 		ic->ic_htcaps =
    517 #if IWN_RBUF_SIZE == 8192
    518 		    IEEE80211_HTCAP_AMSDU7935 |
    519 #endif
    520 		    IEEE80211_HTCAP_CBW20_40 |
    521 		    IEEE80211_HTCAP_SGI20 |
    522 		    IEEE80211_HTCAP_SGI40;
    523 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    524 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    525 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    526 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    527 		else
    528 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    529 	}
    530 #endif	/* !IEEE80211_NO_HT */
    531 
    532 	/* Set supported legacy rates. */
    533 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
    534 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
    535 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    536 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
    537 	}
    538 #ifndef IEEE80211_NO_HT
    539 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    540 		/* Set supported HT rates. */
    541 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
    542 		if (sc->nrxchains > 1)
    543 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    544 		if (sc->nrxchains > 2)
    545 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    546 	}
    547 #endif
    548 
    549 	/* IBSS channel undefined for now. */
    550 	ic->ic_ibss_chan = &ic->ic_channels[0];
    551 
    552 	ifp->if_softc = sc;
    553 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    554 	ifp->if_init = iwn_init;
    555 	ifp->if_ioctl = iwn_ioctl;
    556 	ifp->if_start = iwn_start;
    557 	ifp->if_stop = iwn_stop;
    558 	ifp->if_watchdog = iwn_watchdog;
    559 	IFQ_SET_READY(&ifp->if_snd);
    560 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    561 
    562 	if_attach(ifp);
    563 	ieee80211_ifattach(ic);
    564 	ic->ic_node_alloc = iwn_node_alloc;
    565 	ic->ic_newassoc = iwn_newassoc;
    566 #ifdef IWN_HWCRYPTO
    567 	ic->ic_crypto.cs_key_set = iwn_set_key;
    568 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    569 #endif
    570 	ic->ic_wme.wme_update = iwn_wme_update;
    571 #ifndef IEEE80211_NO_HT
    572 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    573 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    574 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    575 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    576 #endif
    577 
    578 	/* Override 802.11 state transition machine. */
    579 	sc->sc_newstate = ic->ic_newstate;
    580 	ic->ic_newstate = iwn_newstate;
    581 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    582 
    583 	sc->amrr.amrr_min_success_threshold =  1;
    584 	sc->amrr.amrr_max_success_threshold = 15;
    585 
    586 	iwn_radiotap_attach(sc);
    587 
    588 	/*
    589 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    590 	 * callout_init and callout_setfunc, above.
    591 	*/
    592 
    593 	if (pmf_device_register(self, NULL, iwn_resume))
    594 		pmf_class_network_register(self, ifp);
    595 	else
    596 		aprint_error_dev(self, "couldn't establish power handler\n");
    597 
    598 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    599 	ieee80211_announce(ic);
    600 
    601 	return;
    602 
    603 	/* Free allocated memory if something failed during attachment. */
    604 fail4:	while (--i >= 0)
    605 		iwn_free_tx_ring(sc, &sc->txq[i]);
    606 #ifdef IWN_USE_RBUF
    607 	iwn_free_rpool(sc);
    608 #endif
    609 	iwn_free_sched(sc);
    610 fail3:	if (sc->ict != NULL)
    611 		iwn_free_ict(sc);
    612 fail2:	iwn_free_kw(sc);
    613 fail1:	iwn_free_fwmem(sc);
    614 }
    615 
    616 int
    617 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
    618 {
    619 	struct iwn_ops *ops = &sc->ops;
    620 
    621 	ops->load_firmware = iwn4965_load_firmware;
    622 	ops->read_eeprom = iwn4965_read_eeprom;
    623 	ops->post_alive = iwn4965_post_alive;
    624 	ops->nic_config = iwn4965_nic_config;
    625 	ops->update_sched = iwn4965_update_sched;
    626 	ops->get_temperature = iwn4965_get_temperature;
    627 	ops->get_rssi = iwn4965_get_rssi;
    628 	ops->set_txpower = iwn4965_set_txpower;
    629 	ops->init_gains = iwn4965_init_gains;
    630 	ops->set_gains = iwn4965_set_gains;
    631 	ops->add_node = iwn4965_add_node;
    632 	ops->tx_done = iwn4965_tx_done;
    633 #ifndef IEEE80211_NO_HT
    634 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
    635 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
    636 #endif
    637 	sc->ntxqs = IWN4965_NTXQUEUES;
    638 	sc->ndmachnls = IWN4965_NDMACHNLS;
    639 	sc->broadcast_id = IWN4965_ID_BROADCAST;
    640 	sc->rxonsz = IWN4965_RXONSZ;
    641 	sc->schedsz = IWN4965_SCHEDSZ;
    642 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
    643 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
    644 	sc->fwsz = IWN4965_FWSZ;
    645 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
    646 	sc->limits = &iwn4965_sensitivity_limits;
    647 	sc->fwname = "iwlwifi-4965-2.ucode";
    648 	/* Override chains masks, ROM is known to be broken. */
    649 	sc->txchainmask = IWN_ANT_AB;
    650 	sc->rxchainmask = IWN_ANT_ABC;
    651 
    652 	return 0;
    653 }
    654 
    655 int
    656 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
    657 {
    658 	struct iwn_ops *ops = &sc->ops;
    659 
    660 	ops->load_firmware = iwn5000_load_firmware;
    661 	ops->read_eeprom = iwn5000_read_eeprom;
    662 	ops->post_alive = iwn5000_post_alive;
    663 	ops->nic_config = iwn5000_nic_config;
    664 	ops->update_sched = iwn5000_update_sched;
    665 	ops->get_temperature = iwn5000_get_temperature;
    666 	ops->get_rssi = iwn5000_get_rssi;
    667 	ops->set_txpower = iwn5000_set_txpower;
    668 	ops->init_gains = iwn5000_init_gains;
    669 	ops->set_gains = iwn5000_set_gains;
    670 	ops->add_node = iwn5000_add_node;
    671 	ops->tx_done = iwn5000_tx_done;
    672 #ifndef IEEE80211_NO_HT
    673 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
    674 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
    675 #endif
    676 	sc->ntxqs = IWN5000_NTXQUEUES;
    677 	sc->ndmachnls = IWN5000_NDMACHNLS;
    678 	sc->broadcast_id = IWN5000_ID_BROADCAST;
    679 	sc->rxonsz = IWN5000_RXONSZ;
    680 	sc->schedsz = IWN5000_SCHEDSZ;
    681 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
    682 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
    683 	sc->fwsz = IWN5000_FWSZ;
    684 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
    685 
    686 	switch (sc->hw_type) {
    687 	case IWN_HW_REV_TYPE_5100:
    688 		sc->limits = &iwn5000_sensitivity_limits;
    689 		sc->fwname = "iwlwifi-5000-2.ucode";
    690 		/* Override chains masks, ROM is known to be broken. */
    691 		sc->txchainmask = IWN_ANT_B;
    692 		sc->rxchainmask = IWN_ANT_AB;
    693 		break;
    694 	case IWN_HW_REV_TYPE_5150:
    695 		sc->limits = &iwn5150_sensitivity_limits;
    696 		sc->fwname = "iwlwifi-5150-2.ucode";
    697 		break;
    698 	case IWN_HW_REV_TYPE_5300:
    699 	case IWN_HW_REV_TYPE_5350:
    700 		sc->limits = &iwn5000_sensitivity_limits;
    701 		sc->fwname = "iwlwifi-5000-2.ucode";
    702 		break;
    703 	case IWN_HW_REV_TYPE_1000:
    704 		sc->limits = &iwn1000_sensitivity_limits;
    705 		sc->fwname = "iwlwifi-1000-3.ucode";
    706 		break;
    707 	case IWN_HW_REV_TYPE_6000:
    708 		sc->limits = &iwn6000_sensitivity_limits;
    709 		sc->fwname = "iwlwifi-6000-4.ucode";
    710 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
    711 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
    712 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    713 			/* Override chains masks, ROM is known to be broken. */
    714 			sc->txchainmask = IWN_ANT_BC;
    715 			sc->rxchainmask = IWN_ANT_BC;
    716 		}
    717 		break;
    718 	case IWN_HW_REV_TYPE_6050:
    719 		sc->limits = &iwn6000_sensitivity_limits;
    720 		sc->fwname = "iwlwifi-6050-5.ucode";
    721 		break;
    722 	case IWN_HW_REV_TYPE_6005:
    723 		sc->limits = &iwn6000_sensitivity_limits;
    724 		sc->fwname = "iwlwifi-6000g2a-5.ucode";
    725 		break;
    726 	default:
    727 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    728 		return ENOTSUP;
    729 	}
    730 	return 0;
    731 }
    732 
    733 /*
    734  * Attach the interface to 802.11 radiotap.
    735  */
    736 static void
    737 iwn_radiotap_attach(struct iwn_softc *sc)
    738 {
    739 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    740 
    741 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    742 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    743 	    &sc->sc_drvbpf);
    744 
    745 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    746 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    747 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    748 
    749 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    750 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    751 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    752 }
    753 
    754 static int
    755 iwn_detach(device_t self, int flags __unused)
    756 {
    757 	struct iwn_softc *sc = device_private(self);
    758 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    759 	int qid;
    760 
    761 	callout_stop(&sc->calib_to);
    762 
    763 	/* Uninstall interrupt handler. */
    764 	if (sc->sc_ih != NULL)
    765 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    766 
    767 	/* Free DMA resources. */
    768 	iwn_free_rx_ring(sc, &sc->rxq);
    769 	for (qid = 0; qid < sc->ntxqs; qid++)
    770 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    771 #ifdef IWN_USE_RBUF
    772 	iwn_free_rpool(sc);
    773 #endif
    774 	iwn_free_sched(sc);
    775 	iwn_free_kw(sc);
    776 	if (sc->ict != NULL)
    777 		iwn_free_ict(sc);
    778 	iwn_free_fwmem(sc);
    779 
    780 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    781 
    782 	ieee80211_ifdetach(&sc->sc_ic);
    783 	if_detach(ifp);
    784 
    785 	return 0;
    786 }
    787 
    788 #if 0
    789 /*
    790  * XXX Investigate if clearing the PCI retry timeout could eliminate
    791  * the repeated scan calls.  Also the calls to if_init and if_start
    792  * are similar to the effect of adding the call to ifioctl_common .
    793  */
    794 static void
    795 iwn_power(int why, void *arg)
    796 {
    797 	struct iwn_softc *sc = arg;
    798 	struct ifnet *ifp;
    799 	pcireg_t reg;
    800 	int s;
    801 
    802 	if (why != PWR_RESUME)
    803 		return;
    804 
    805 	/* Clear device-specific "PCI retry timeout" register (41h). */
    806 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    807 	if (reg & 0xff00)
    808 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    809 
    810 	s = splnet();
    811 	ifp = &sc->sc_ic.ic_if;
    812 	if (ifp->if_flags & IFF_UP) {
    813 		ifp->if_init(ifp);
    814 		if (ifp->if_flags & IFF_RUNNING)
    815 			ifp->if_start(ifp);
    816 	}
    817 	splx(s);
    818 }
    819 #endif
    820 
    821 static bool
    822 iwn_resume(device_t dv, const pmf_qual_t *qual)
    823 {
    824 	return true;
    825 }
    826 
    827 static int
    828 iwn_nic_lock(struct iwn_softc *sc)
    829 {
    830 	int ntries;
    831 
    832 	/* Request exclusive access to NIC. */
    833 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    834 
    835 	/* Spin until we actually get the lock. */
    836 	for (ntries = 0; ntries < 1000; ntries++) {
    837 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    838 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    839 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    840 			return 0;
    841 		DELAY(10);
    842 	}
    843 	return ETIMEDOUT;
    844 }
    845 
    846 static __inline void
    847 iwn_nic_unlock(struct iwn_softc *sc)
    848 {
    849 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    850 }
    851 
    852 static __inline uint32_t
    853 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    854 {
    855 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    856 	IWN_BARRIER_READ_WRITE(sc);
    857 	return IWN_READ(sc, IWN_PRPH_RDATA);
    858 }
    859 
    860 static __inline void
    861 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    862 {
    863 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    864 	IWN_BARRIER_WRITE(sc);
    865 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    866 }
    867 
    868 static __inline void
    869 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    870 {
    871 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    872 }
    873 
    874 static __inline void
    875 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    876 {
    877 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    878 }
    879 
    880 static __inline void
    881 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    882     const uint32_t *data, int count)
    883 {
    884 	for (; count > 0; count--, data++, addr += 4)
    885 		iwn_prph_write(sc, addr, *data);
    886 }
    887 
    888 static __inline uint32_t
    889 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    890 {
    891 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    892 	IWN_BARRIER_READ_WRITE(sc);
    893 	return IWN_READ(sc, IWN_MEM_RDATA);
    894 }
    895 
    896 static __inline void
    897 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    898 {
    899 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    900 	IWN_BARRIER_WRITE(sc);
    901 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    902 }
    903 
    904 static __inline void
    905 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
    906 {
    907 	uint32_t tmp;
    908 
    909 	tmp = iwn_mem_read(sc, addr & ~3);
    910 	if (addr & 3)
    911 		tmp = (tmp & 0x0000ffff) | data << 16;
    912 	else
    913 		tmp = (tmp & 0xffff0000) | data;
    914 	iwn_mem_write(sc, addr & ~3, tmp);
    915 }
    916 
    917 static __inline void
    918 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
    919     int count)
    920 {
    921 	for (; count > 0; count--, addr += 4)
    922 		*data++ = iwn_mem_read(sc, addr);
    923 }
    924 
    925 static __inline void
    926 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
    927     int count)
    928 {
    929 	for (; count > 0; count--, addr += 4)
    930 		iwn_mem_write(sc, addr, val);
    931 }
    932 
    933 static int
    934 iwn_eeprom_lock(struct iwn_softc *sc)
    935 {
    936 	int i, ntries;
    937 
    938 	for (i = 0; i < 100; i++) {
    939 		/* Request exclusive access to EEPROM. */
    940 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
    941 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
    942 
    943 		/* Spin until we actually get the lock. */
    944 		for (ntries = 0; ntries < 100; ntries++) {
    945 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
    946 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
    947 				return 0;
    948 			DELAY(10);
    949 		}
    950 	}
    951 	return ETIMEDOUT;
    952 }
    953 
    954 static __inline void
    955 iwn_eeprom_unlock(struct iwn_softc *sc)
    956 {
    957 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
    958 }
    959 
    960 /*
    961  * Initialize access by host to One Time Programmable ROM.
    962  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
    963  */
    964 static int
    965 iwn_init_otprom(struct iwn_softc *sc)
    966 {
    967 	uint16_t prev = 0, base, next;
    968 	int count, error;
    969 
    970 	/* Wait for clock stabilization before accessing prph. */
    971 	if ((error = iwn_clock_wait(sc)) != 0)
    972 		return error;
    973 
    974 	if ((error = iwn_nic_lock(sc)) != 0)
    975 		return error;
    976 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
    977 	DELAY(5);
    978 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
    979 	iwn_nic_unlock(sc);
    980 
    981 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
    982 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
    983 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
    984 		    IWN_RESET_LINK_PWR_MGMT_DIS);
    985 	}
    986 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
    987 	/* Clear ECC status. */
    988 	IWN_SETBITS(sc, IWN_OTP_GP,
    989 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
    990 
    991 	/*
    992 	 * Find the block before last block (contains the EEPROM image)
    993 	 * for HW without OTP shadow RAM.
    994 	 */
    995 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
    996 		/* Switch to absolute addressing mode. */
    997 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
    998 		base = 0;
    999 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
   1000 			error = iwn_read_prom_data(sc, base, &next, 2);
   1001 			if (error != 0)
   1002 				return error;
   1003 			if (next == 0)	/* End of linked-list. */
   1004 				break;
   1005 			prev = base;
   1006 			base = le16toh(next);
   1007 		}
   1008 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1009 			return EIO;
   1010 		/* Skip "next" word. */
   1011 		sc->prom_base = prev + 1;
   1012 	}
   1013 	return 0;
   1014 }
   1015 
   1016 static int
   1017 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1018 {
   1019 	uint8_t *out = data;
   1020 	uint32_t val, tmp;
   1021 	int ntries;
   1022 
   1023 	addr += sc->prom_base;
   1024 	for (; count > 0; count -= 2, addr++) {
   1025 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1026 		for (ntries = 0; ntries < 10; ntries++) {
   1027 			val = IWN_READ(sc, IWN_EEPROM);
   1028 			if (val & IWN_EEPROM_READ_VALID)
   1029 				break;
   1030 			DELAY(5);
   1031 		}
   1032 		if (ntries == 10) {
   1033 			aprint_error_dev(sc->sc_dev,
   1034 			    "timeout reading ROM at 0x%x\n", addr);
   1035 			return ETIMEDOUT;
   1036 		}
   1037 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1038 			/* OTPROM, check for ECC errors. */
   1039 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1040 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1041 				aprint_error_dev(sc->sc_dev,
   1042 				    "OTPROM ECC error at 0x%x\n", addr);
   1043 				return EIO;
   1044 			}
   1045 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1046 				/* Correctable ECC error, clear bit. */
   1047 				IWN_SETBITS(sc, IWN_OTP_GP,
   1048 				    IWN_OTP_GP_ECC_CORR_STTS);
   1049 			}
   1050 		}
   1051 		*out++ = val >> 16;
   1052 		if (count > 1)
   1053 			*out++ = val >> 24;
   1054 	}
   1055 	return 0;
   1056 }
   1057 
   1058 static int
   1059 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1060     bus_size_t size, bus_size_t alignment)
   1061 {
   1062 	int nsegs, error;
   1063 
   1064 	dma->tag = tag;
   1065 	dma->size = size;
   1066 
   1067 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1068 	    &dma->map);
   1069 	if (error != 0)
   1070 		goto fail;
   1071 
   1072 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1073 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1074 	if (error != 0)
   1075 		goto fail;
   1076 
   1077 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1078 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1079 	if (error != 0)
   1080 		goto fail;
   1081 
   1082 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1083 	    BUS_DMA_NOWAIT);
   1084 	if (error != 0)
   1085 		goto fail;
   1086 
   1087 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1088 	memset(dma->vaddr, 0, size);
   1089 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1090 
   1091 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1092 	if (kvap != NULL)
   1093 		*kvap = dma->vaddr;
   1094 
   1095 	return 0;
   1096 
   1097 fail:	iwn_dma_contig_free(dma);
   1098 	return error;
   1099 }
   1100 
   1101 static void
   1102 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1103 {
   1104 	if (dma->map != NULL) {
   1105 		if (dma->vaddr != NULL) {
   1106 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1107 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1108 			bus_dmamap_unload(dma->tag, dma->map);
   1109 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1110 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1111 			dma->vaddr = NULL;
   1112 		}
   1113 		bus_dmamap_destroy(dma->tag, dma->map);
   1114 		dma->map = NULL;
   1115 	}
   1116 }
   1117 
   1118 static int
   1119 iwn_alloc_sched(struct iwn_softc *sc)
   1120 {
   1121 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1122 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1123 	    (void **)&sc->sched, sc->schedsz, 1024);
   1124 }
   1125 
   1126 static void
   1127 iwn_free_sched(struct iwn_softc *sc)
   1128 {
   1129 	iwn_dma_contig_free(&sc->sched_dma);
   1130 }
   1131 
   1132 static int
   1133 iwn_alloc_kw(struct iwn_softc *sc)
   1134 {
   1135 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1136 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1137 	    4096);
   1138 }
   1139 
   1140 static void
   1141 iwn_free_kw(struct iwn_softc *sc)
   1142 {
   1143 	iwn_dma_contig_free(&sc->kw_dma);
   1144 }
   1145 
   1146 static int
   1147 iwn_alloc_ict(struct iwn_softc *sc)
   1148 {
   1149 	/* ICT table must be aligned on a 4KB boundary. */
   1150 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1151 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1152 }
   1153 
   1154 static void
   1155 iwn_free_ict(struct iwn_softc *sc)
   1156 {
   1157 	iwn_dma_contig_free(&sc->ict_dma);
   1158 }
   1159 
   1160 static int
   1161 iwn_alloc_fwmem(struct iwn_softc *sc)
   1162 {
   1163 	/* Must be aligned on a 16-byte boundary. */
   1164 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1165 	    sc->fwsz, 16);
   1166 }
   1167 
   1168 static void
   1169 iwn_free_fwmem(struct iwn_softc *sc)
   1170 {
   1171 	iwn_dma_contig_free(&sc->fw_dma);
   1172 }
   1173 
   1174 static int
   1175 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1176 {
   1177 	bus_size_t size;
   1178 	int i, error;
   1179 
   1180 	ring->cur = 0;
   1181 
   1182 	/* Allocate RX descriptors (256-byte aligned). */
   1183 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1184 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1185 	    (void **)&ring->desc, size, 256);
   1186 	if (error != 0) {
   1187 		aprint_error_dev(sc->sc_dev,
   1188 		    "could not allocate RX ring DMA memory\n");
   1189 		goto fail;
   1190 	}
   1191 
   1192 	/* Allocate RX status area (16-byte aligned). */
   1193 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1194 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1195 	if (error != 0) {
   1196 		aprint_error_dev(sc->sc_dev,
   1197 		    "could not allocate RX status DMA memory\n");
   1198 		goto fail;
   1199 	}
   1200 
   1201 	/*
   1202 	 * Allocate and map RX buffers.
   1203 	 */
   1204 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1205 		struct iwn_rx_data *data = &ring->data[i];
   1206 
   1207 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1208 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1209 		    &data->map);
   1210 		if (error != 0) {
   1211 			aprint_error_dev(sc->sc_dev,
   1212 			    "could not create RX buf DMA map\n");
   1213 			goto fail;
   1214 		}
   1215 
   1216 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1217 		if (data->m == NULL) {
   1218 			aprint_error_dev(sc->sc_dev,
   1219 			    "could not allocate RX mbuf\n");
   1220 			error = ENOBUFS;
   1221 			goto fail;
   1222 		}
   1223 
   1224 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1225 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1226 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1227 		if (error != 0) {
   1228 			aprint_error_dev(sc->sc_dev,
   1229 			    "can't not map mbuf (error %d)\n", error);
   1230 			goto fail;
   1231 		}
   1232 
   1233 		/* Set physical address of RX buffer (256-byte aligned). */
   1234 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1235 	}
   1236 
   1237 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1238 	    BUS_DMASYNC_PREWRITE);
   1239 
   1240 	return 0;
   1241 
   1242 fail:	iwn_free_rx_ring(sc, ring);
   1243 	return error;
   1244 }
   1245 
   1246 static void
   1247 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1248 {
   1249 	int ntries;
   1250 
   1251 	if (iwn_nic_lock(sc) == 0) {
   1252 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1253 		for (ntries = 0; ntries < 1000; ntries++) {
   1254 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1255 			    IWN_FH_RX_STATUS_IDLE)
   1256 				break;
   1257 			DELAY(10);
   1258 		}
   1259 		iwn_nic_unlock(sc);
   1260 	}
   1261 	ring->cur = 0;
   1262 	sc->last_rx_valid = 0;
   1263 }
   1264 
   1265 static void
   1266 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1267 {
   1268 	int i;
   1269 
   1270 	iwn_dma_contig_free(&ring->desc_dma);
   1271 	iwn_dma_contig_free(&ring->stat_dma);
   1272 
   1273 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1274 		struct iwn_rx_data *data = &ring->data[i];
   1275 
   1276 		if (data->m != NULL) {
   1277 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1278 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1279 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1280 			m_freem(data->m);
   1281 		}
   1282 		if (data->map != NULL)
   1283 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1284 	}
   1285 }
   1286 
   1287 static int
   1288 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1289 {
   1290 	bus_addr_t paddr;
   1291 	bus_size_t size;
   1292 	int i, error;
   1293 
   1294 	ring->qid = qid;
   1295 	ring->queued = 0;
   1296 	ring->cur = 0;
   1297 
   1298 	/* Allocate TX descriptors (256-byte aligned). */
   1299 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1300 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1301 	    (void **)&ring->desc, size, 256);
   1302 	if (error != 0) {
   1303 		aprint_error_dev(sc->sc_dev,
   1304 		    "could not allocate TX ring DMA memory\n");
   1305 		goto fail;
   1306 	}
   1307 	/*
   1308 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1309 	 * to allocate commands space for other rings.
   1310 	 * XXX Do we really need to allocate descriptors for other rings?
   1311 	 */
   1312 	if (qid > 4)
   1313 		return 0;
   1314 
   1315 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1316 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1317 	    (void **)&ring->cmd, size, 4);
   1318 	if (error != 0) {
   1319 		aprint_error_dev(sc->sc_dev,
   1320 		    "could not allocate TX cmd DMA memory\n");
   1321 		goto fail;
   1322 	}
   1323 
   1324 	paddr = ring->cmd_dma.paddr;
   1325 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1326 		struct iwn_tx_data *data = &ring->data[i];
   1327 
   1328 		data->cmd_paddr = paddr;
   1329 		data->scratch_paddr = paddr + 12;
   1330 		paddr += sizeof (struct iwn_tx_cmd);
   1331 
   1332 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1333 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1334 		    &data->map);
   1335 		if (error != 0) {
   1336 			aprint_error_dev(sc->sc_dev,
   1337 			    "could not create TX buf DMA map\n");
   1338 			goto fail;
   1339 		}
   1340 	}
   1341 	return 0;
   1342 
   1343 fail:	iwn_free_tx_ring(sc, ring);
   1344 	return error;
   1345 }
   1346 
   1347 static void
   1348 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1349 {
   1350 	int i;
   1351 
   1352 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1353 		struct iwn_tx_data *data = &ring->data[i];
   1354 
   1355 		if (data->m != NULL) {
   1356 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1357 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1358 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1359 			m_freem(data->m);
   1360 			data->m = NULL;
   1361 		}
   1362 	}
   1363 	/* Clear TX descriptors. */
   1364 	memset(ring->desc, 0, ring->desc_dma.size);
   1365 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1366 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1367 	sc->qfullmsk &= ~(1 << ring->qid);
   1368 	ring->queued = 0;
   1369 	ring->cur = 0;
   1370 }
   1371 
   1372 static void
   1373 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1374 {
   1375 	int i;
   1376 
   1377 	iwn_dma_contig_free(&ring->desc_dma);
   1378 	iwn_dma_contig_free(&ring->cmd_dma);
   1379 
   1380 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1381 		struct iwn_tx_data *data = &ring->data[i];
   1382 
   1383 		if (data->m != NULL) {
   1384 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1385 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1386 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1387 			m_freem(data->m);
   1388 		}
   1389 		if (data->map != NULL)
   1390 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1391 	}
   1392 }
   1393 
   1394 static void
   1395 iwn5000_ict_reset(struct iwn_softc *sc)
   1396 {
   1397 	/* Disable interrupts. */
   1398 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1399 
   1400 	/* Reset ICT table. */
   1401 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1402 	sc->ict_cur = 0;
   1403 
   1404 	/* Set physical address of ICT table (4KB aligned). */
   1405 	DPRINTF(("enabling ICT\n"));
   1406 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1407 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1408 
   1409 	/* Enable periodic RX interrupt. */
   1410 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1411 	/* Switch to ICT interrupt mode in driver. */
   1412 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1413 
   1414 	/* Re-enable interrupts. */
   1415 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1416 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1417 }
   1418 
   1419 static int
   1420 iwn_read_eeprom(struct iwn_softc *sc)
   1421 {
   1422 	struct iwn_ops *ops = &sc->ops;
   1423 	struct ieee80211com *ic = &sc->sc_ic;
   1424 	uint16_t val;
   1425 	int error;
   1426 
   1427 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1428 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1429 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1430 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1431 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1432 	    "OTPROM" : "EEPROM"));
   1433 
   1434 	/* Adapter has to be powered on for EEPROM access to work. */
   1435 	if ((error = iwn_apm_init(sc)) != 0) {
   1436 		aprint_error_dev(sc->sc_dev,
   1437 		    "could not power ON adapter\n");
   1438 		return error;
   1439 	}
   1440 
   1441 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1442 		aprint_error_dev(sc->sc_dev,
   1443 		    "bad ROM signature\n");
   1444 		return EIO;
   1445 	}
   1446 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1447 		aprint_error_dev(sc->sc_dev,
   1448 		    "could not lock ROM (error=%d)\n", error);
   1449 		return error;
   1450 	}
   1451 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1452 		if ((error = iwn_init_otprom(sc)) != 0) {
   1453 			aprint_error_dev(sc->sc_dev,
   1454 			    "could not initialize OTPROM\n");
   1455 			return error;
   1456 		}
   1457 	}
   1458 
   1459 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
   1460 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
   1461 	/* Check if HT support is bonded out. */
   1462 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
   1463 		sc->sc_flags |= IWN_FLAG_HAS_11N;
   1464 
   1465 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1466 	sc->rfcfg = le16toh(val);
   1467 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1468 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
   1469 	if (sc->txchainmask == 0)
   1470 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
   1471 	if (sc->rxchainmask == 0)
   1472 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
   1473 
   1474 	/* Read MAC address. */
   1475 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1476 
   1477 	/* Read adapter-specific information from EEPROM. */
   1478 	ops->read_eeprom(sc);
   1479 
   1480 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1481 
   1482 	iwn_eeprom_unlock(sc);
   1483 	return 0;
   1484 }
   1485 
   1486 static void
   1487 iwn4965_read_eeprom(struct iwn_softc *sc)
   1488 {
   1489 	uint32_t addr;
   1490 	uint16_t val;
   1491 	int i;
   1492 
   1493 	/* Read regulatory domain (4 ASCII characters). */
   1494 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1495 
   1496 	/* Read the list of authorized channels (20MHz ones only). */
   1497 	for (i = 0; i < 5; i++) {
   1498 		addr = iwn4965_regulatory_bands[i];
   1499 		iwn_read_eeprom_channels(sc, i, addr);
   1500 	}
   1501 
   1502 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1503 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1504 	sc->maxpwr2GHz = val & 0xff;
   1505 	sc->maxpwr5GHz = val >> 8;
   1506 	/* Check that EEPROM values are within valid range. */
   1507 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1508 		sc->maxpwr5GHz = 38;
   1509 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1510 		sc->maxpwr2GHz = 38;
   1511 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1512 
   1513 	/* Read samples for each TX power group. */
   1514 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1515 	    sizeof sc->bands);
   1516 
   1517 	/* Read voltage at which samples were taken. */
   1518 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1519 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1520 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1521 
   1522 #ifdef IWN_DEBUG
   1523 	/* Print samples. */
   1524 	if (iwn_debug > 0) {
   1525 		for (i = 0; i < IWN_NBANDS; i++)
   1526 			iwn4965_print_power_group(sc, i);
   1527 	}
   1528 #endif
   1529 }
   1530 
   1531 #ifdef IWN_DEBUG
   1532 static void
   1533 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1534 {
   1535 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1536 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1537 	int j, c;
   1538 
   1539 	aprint_normal("===band %d===\n", i);
   1540 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1541 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1542 	for (c = 0; c < 2; c++) {
   1543 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1544 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1545 			    "power=%d pa_det=%d\n", c, j,
   1546 			    chans[0].samples[c][j].temp,
   1547 			    chans[0].samples[c][j].gain,
   1548 			    chans[0].samples[c][j].power,
   1549 			    chans[0].samples[c][j].pa_det);
   1550 		}
   1551 	}
   1552 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1553 	for (c = 0; c < 2; c++) {
   1554 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1555 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1556 			    "power=%d pa_det=%d\n", c, j,
   1557 			    chans[1].samples[c][j].temp,
   1558 			    chans[1].samples[c][j].gain,
   1559 			    chans[1].samples[c][j].power,
   1560 			    chans[1].samples[c][j].pa_det);
   1561 		}
   1562 	}
   1563 }
   1564 #endif
   1565 
   1566 static void
   1567 iwn5000_read_eeprom(struct iwn_softc *sc)
   1568 {
   1569 	struct iwn5000_eeprom_calib_hdr hdr;
   1570 	int32_t volt;
   1571 	uint32_t base, addr;
   1572 	uint16_t val;
   1573 	int i;
   1574 
   1575 	/* Read regulatory domain (4 ASCII characters). */
   1576 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1577 	base = le16toh(val);
   1578 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1579 	    sc->eeprom_domain, 4);
   1580 
   1581 	/* Read the list of authorized channels (20MHz ones only). */
   1582 	for (i = 0; i < 5; i++) {
   1583 		addr = base + iwn5000_regulatory_bands[i];
   1584 		iwn_read_eeprom_channels(sc, i, addr);
   1585 	}
   1586 
   1587 	/* Read enhanced TX power information for 6000 Series. */
   1588 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1589 		iwn_read_eeprom_enhinfo(sc);
   1590 
   1591 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1592 	base = le16toh(val);
   1593 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1594 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1595 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1596 	sc->calib_ver = hdr.version;
   1597 
   1598 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1599 		/* Compute temperature offset. */
   1600 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1601 		sc->eeprom_temp = le16toh(val);
   1602 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1603 		volt = le16toh(val);
   1604 		sc->temp_off = sc->eeprom_temp - (volt / -5);
   1605 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1606 		    sc->eeprom_temp, volt, sc->temp_off));
   1607 	} else {
   1608 		/* Read crystal calibration. */
   1609 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1610 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1611 		DPRINTF(("crystal calibration 0x%08x\n",
   1612 		    le32toh(sc->eeprom_crystal)));
   1613 	}
   1614 }
   1615 
   1616 static void
   1617 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1618 {
   1619 	struct ieee80211com *ic = &sc->sc_ic;
   1620 	const struct iwn_chan_band *band = &iwn_bands[n];
   1621 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1622 	uint8_t chan;
   1623 	int i;
   1624 
   1625 	iwn_read_prom_data(sc, addr, channels,
   1626 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1627 
   1628 	for (i = 0; i < band->nchan; i++) {
   1629 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1630 			continue;
   1631 
   1632 		chan = band->chan[i];
   1633 
   1634 		if (n == 0) {	/* 2GHz band */
   1635 			ic->ic_channels[chan].ic_freq =
   1636 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1637 			ic->ic_channels[chan].ic_flags =
   1638 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1639 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1640 
   1641 		} else {	/* 5GHz band */
   1642 			/*
   1643 			 * Some adapters support channels 7, 8, 11 and 12
   1644 			 * both in the 2GHz and 4.9GHz bands.
   1645 			 * Because of limitations in our net80211 layer,
   1646 			 * we don't support them in the 4.9GHz band.
   1647 			 */
   1648 			if (chan <= 14)
   1649 				continue;
   1650 
   1651 			ic->ic_channels[chan].ic_freq =
   1652 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1653 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1654 			/* We have at least one valid 5GHz channel. */
   1655 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1656 		}
   1657 
   1658 		/* Is active scan allowed on this channel? */
   1659 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1660 			ic->ic_channels[chan].ic_flags |=
   1661 			    IEEE80211_CHAN_PASSIVE;
   1662 		}
   1663 
   1664 		/* Save maximum allowed TX power for this channel. */
   1665 		sc->maxpwr[chan] = channels[i].maxpwr;
   1666 
   1667 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1668 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1669 	}
   1670 }
   1671 
   1672 static void
   1673 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1674 {
   1675 	struct iwn_eeprom_enhinfo enhinfo[35];
   1676 	uint16_t val, base;
   1677 	int8_t maxpwr;
   1678 	int i;
   1679 
   1680 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1681 	base = le16toh(val);
   1682 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1683 	    enhinfo, sizeof enhinfo);
   1684 
   1685 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1686 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1687 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
   1688 			continue;	/* Skip invalid entries. */
   1689 
   1690 		maxpwr = 0;
   1691 		if (sc->txchainmask & IWN_ANT_A)
   1692 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1693 		if (sc->txchainmask & IWN_ANT_B)
   1694 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1695 		if (sc->txchainmask & IWN_ANT_C)
   1696 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1697 		if (sc->ntxchains == 2)
   1698 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1699 		else if (sc->ntxchains == 3)
   1700 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1701 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1702 
   1703 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1704 		sc->enh_maxpwr[i] = maxpwr;
   1705 	}
   1706 }
   1707 
   1708 static struct ieee80211_node *
   1709 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1710 {
   1711 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1712 }
   1713 
   1714 static void
   1715 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1716 {
   1717 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1718 	struct iwn_node *wn = (void *)ni;
   1719 	uint8_t rate;
   1720 	int ridx, i;
   1721 
   1722 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1723 	/* Start at lowest available bit-rate, AMRR will raise. */
   1724 	ni->ni_txrate = 0;
   1725 
   1726 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1727 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1728 		/* Map 802.11 rate to HW rate index. */
   1729 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1730 			if (iwn_rates[ridx].rate == rate)
   1731 				break;
   1732 		wn->ridx[i] = ridx;
   1733 	}
   1734 }
   1735 
   1736 static int
   1737 iwn_media_change(struct ifnet *ifp)
   1738 {
   1739 	struct iwn_softc *sc = ifp->if_softc;
   1740 	struct ieee80211com *ic = &sc->sc_ic;
   1741 	uint8_t rate, ridx;
   1742 	int error;
   1743 
   1744 	error = ieee80211_media_change(ifp);
   1745 	if (error != ENETRESET)
   1746 		return error;
   1747 
   1748 	if (ic->ic_fixed_rate != -1) {
   1749 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1750 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1751 		/* Map 802.11 rate to HW rate index. */
   1752 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1753 			if (iwn_rates[ridx].rate == rate)
   1754 				break;
   1755 		sc->fixed_ridx = ridx;
   1756 	}
   1757 
   1758 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1759 	    (IFF_UP | IFF_RUNNING)) {
   1760 		iwn_stop(ifp, 0);
   1761 		error = iwn_init(ifp);
   1762 	}
   1763 	return error;
   1764 }
   1765 
   1766 static int
   1767 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1768 {
   1769 	struct ifnet *ifp = ic->ic_ifp;
   1770 	struct iwn_softc *sc = ifp->if_softc;
   1771 	int error;
   1772 
   1773 	callout_stop(&sc->calib_to);
   1774 
   1775 	switch (nstate) {
   1776 	case IEEE80211_S_SCAN:
   1777 		/* XXX Do not abort a running scan. */
   1778 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1779 			if (ic->ic_state != nstate)
   1780 				aprint_error_dev(sc->sc_dev, "scan request(%d) "
   1781 				    "while scanning(%d) ignored\n", nstate,
   1782 				    ic->ic_state);
   1783 			break;
   1784 		}
   1785 
   1786 		/* XXX Not sure if call and flags are needed. */
   1787 		ieee80211_node_table_reset(&ic->ic_scan);
   1788 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1789 		sc->sc_flags |= IWN_FLAG_SCANNING;
   1790 
   1791 		/* Make the link LED blink while we're scanning. */
   1792 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1793 
   1794 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1795 			aprint_error_dev(sc->sc_dev,
   1796 			    "could not initiate scan\n");
   1797 			return error;
   1798 		}
   1799 		ic->ic_state = nstate;
   1800 		return 0;
   1801 
   1802 	case IEEE80211_S_ASSOC:
   1803 		if (ic->ic_state != IEEE80211_S_RUN)
   1804 			break;
   1805 		/* FALLTHROUGH */
   1806 	case IEEE80211_S_AUTH:
   1807 		/* Reset state to handle reassociations correctly. */
   1808 		sc->rxon.associd = 0;
   1809 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1810 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1811 
   1812 		if ((error = iwn_auth(sc)) != 0) {
   1813 			aprint_error_dev(sc->sc_dev,
   1814 			    "could not move to auth state\n");
   1815 			return error;
   1816 		}
   1817 		break;
   1818 
   1819 	case IEEE80211_S_RUN:
   1820 		if ((error = iwn_run(sc)) != 0) {
   1821 			aprint_error_dev(sc->sc_dev,
   1822 			    "could not move to run state\n");
   1823 			return error;
   1824 		}
   1825 		break;
   1826 
   1827 	case IEEE80211_S_INIT:
   1828 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1829 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1830 		break;
   1831 	}
   1832 
   1833 	return sc->sc_newstate(ic, nstate, arg);
   1834 }
   1835 
   1836 static void
   1837 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1838 {
   1839 	struct iwn_softc *sc = arg;
   1840 	struct iwn_node *wn = (struct iwn_node *)ni;
   1841 
   1842 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1843 }
   1844 
   1845 static void
   1846 iwn_calib_timeout(void *arg)
   1847 {
   1848 	struct iwn_softc *sc = arg;
   1849 	struct ieee80211com *ic = &sc->sc_ic;
   1850 	int s;
   1851 
   1852 	s = splnet();
   1853 	if (ic->ic_fixed_rate == -1) {
   1854 		if (ic->ic_opmode == IEEE80211_M_STA)
   1855 			iwn_iter_func(sc, ic->ic_bss);
   1856 		else
   1857 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1858 	}
   1859 	/* Force automatic TX power calibration every 60 secs. */
   1860 	if (++sc->calib_cnt >= 120) {
   1861 		uint32_t flags = 0;
   1862 
   1863 		DPRINTF(("sending request for statistics\n"));
   1864 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   1865 		    sizeof flags, 1);
   1866 		sc->calib_cnt = 0;
   1867 	}
   1868 	splx(s);
   1869 
   1870 	/* Automatic rate control triggered every 500ms. */
   1871 	callout_schedule(&sc->calib_to, hz/2);
   1872 }
   1873 
   1874 /*
   1875  * Process an RX_PHY firmware notification.  This is usually immediately
   1876  * followed by an MPDU_RX_DONE notification.
   1877  */
   1878 static void
   1879 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1880     struct iwn_rx_data *data)
   1881 {
   1882 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   1883 
   1884 	DPRINTFN(2, ("received PHY stats\n"));
   1885 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   1886 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   1887 
   1888 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   1889 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   1890 	sc->last_rx_valid = 1;
   1891 }
   1892 
   1893 /*
   1894  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   1895  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   1896  */
   1897 static void
   1898 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1899     struct iwn_rx_data *data)
   1900 {
   1901 	struct iwn_ops *ops = &sc->ops;
   1902 	struct ieee80211com *ic = &sc->sc_ic;
   1903 	struct ifnet *ifp = ic->ic_ifp;
   1904 	struct iwn_rx_ring *ring = &sc->rxq;
   1905 	struct ieee80211_frame *wh;
   1906 	struct ieee80211_node *ni;
   1907 	struct mbuf *m, *m1;
   1908 	struct iwn_rx_stat *stat;
   1909 	char	*head;
   1910 	uint32_t flags;
   1911 	int error, len, rssi;
   1912 
   1913 	if (desc->type == IWN_MPDU_RX_DONE) {
   1914 		/* Check for prior RX_PHY notification. */
   1915 		if (!sc->last_rx_valid) {
   1916 			DPRINTF(("missing RX_PHY\n"));
   1917 			return;
   1918 		}
   1919 		sc->last_rx_valid = 0;
   1920 		stat = &sc->last_rx_stat;
   1921 	} else
   1922 		stat = (struct iwn_rx_stat *)(desc + 1);
   1923 
   1924 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   1925 	    BUS_DMASYNC_POSTREAD);
   1926 
   1927 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   1928 		aprint_error_dev(sc->sc_dev,
   1929 		    "invalid RX statistic header\n");
   1930 		return;
   1931 	}
   1932 	if (desc->type == IWN_MPDU_RX_DONE) {
   1933 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   1934 		head = (char *)(mpdu + 1);
   1935 		len = le16toh(mpdu->len);
   1936 	} else {
   1937 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   1938 		len = le16toh(stat->len);
   1939 	}
   1940 
   1941 	flags = le32toh(*(uint32_t *)(head + len));
   1942 
   1943 	/* Discard frames with a bad FCS early. */
   1944 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   1945 		DPRINTFN(2, ("RX flags error %x\n", flags));
   1946 		ifp->if_ierrors++;
   1947 		return;
   1948 	}
   1949 	/* Discard frames that are too short. */
   1950 	if (len < sizeof (*wh)) {
   1951 		DPRINTF(("frame too short: %d\n", len));
   1952 		ic->ic_stats.is_rx_tooshort++;
   1953 		ifp->if_ierrors++;
   1954 		return;
   1955 	}
   1956 
   1957 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1958 	if (m1 == NULL) {
   1959 		ic->ic_stats.is_rx_nobuf++;
   1960 		ifp->if_ierrors++;
   1961 		return;
   1962 	}
   1963 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1964 
   1965 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   1966 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   1967 	if (error != 0) {
   1968 		m_freem(m1);
   1969 
   1970 		/* Try to reload the old mbuf. */
   1971 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1972 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1973 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1974 		if (error != 0) {
   1975 			panic("%s: could not load old RX mbuf",
   1976 			    device_xname(sc->sc_dev));
   1977 		}
   1978 		/* Physical address may have changed. */
   1979 		ring->desc[ring->cur] =
   1980 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   1981 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   1982 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   1983 		    BUS_DMASYNC_PREWRITE);
   1984 		ifp->if_ierrors++;
   1985 		return;
   1986 	}
   1987 
   1988 	m = data->m;
   1989 	data->m = m1;
   1990 	/* Update RX descriptor. */
   1991 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1992 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   1993 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   1994 	    BUS_DMASYNC_PREWRITE);
   1995 
   1996 	/* Finalize mbuf. */
   1997 	m->m_pkthdr.rcvif = ifp;
   1998 	m->m_data = head;
   1999 	m->m_pkthdr.len = m->m_len = len;
   2000 
   2001 	/* Grab a reference to the source node. */
   2002 	wh = mtod(m, struct ieee80211_frame *);
   2003 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2004 
   2005 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2006 	/* NetBSD does decryption in ieee80211_input. */
   2007 
   2008 	rssi = ops->get_rssi(stat);
   2009 
   2010 	/* XXX Added for NetBSD: scans never stop without it */
   2011 	if (ic->ic_state == IEEE80211_S_SCAN)
   2012 		iwn_fix_channel(ic, m);
   2013 
   2014 	if (sc->sc_drvbpf != NULL) {
   2015 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2016 
   2017 		tap->wr_flags = 0;
   2018 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2019 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2020 		tap->wr_chan_freq =
   2021 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2022 		tap->wr_chan_flags =
   2023 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2024 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2025 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2026 		tap->wr_tsft = stat->tstamp;
   2027 		switch (stat->rate) {
   2028 		/* CCK rates. */
   2029 		case  10: tap->wr_rate =   2; break;
   2030 		case  20: tap->wr_rate =   4; break;
   2031 		case  55: tap->wr_rate =  11; break;
   2032 		case 110: tap->wr_rate =  22; break;
   2033 		/* OFDM rates. */
   2034 		case 0xd: tap->wr_rate =  12; break;
   2035 		case 0xf: tap->wr_rate =  18; break;
   2036 		case 0x5: tap->wr_rate =  24; break;
   2037 		case 0x7: tap->wr_rate =  36; break;
   2038 		case 0x9: tap->wr_rate =  48; break;
   2039 		case 0xb: tap->wr_rate =  72; break;
   2040 		case 0x1: tap->wr_rate =  96; break;
   2041 		case 0x3: tap->wr_rate = 108; break;
   2042 		/* Unknown rate: should not happen. */
   2043 		default:  tap->wr_rate =   0;
   2044 		}
   2045 
   2046 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   2047 	}
   2048 
   2049 	/* Send the frame to the 802.11 layer. */
   2050 	ieee80211_input(ic, m, ni, rssi, 0);
   2051 
   2052 	/* Node is no longer needed. */
   2053 	ieee80211_free_node(ni);
   2054 }
   2055 
   2056 #ifndef IEEE80211_NO_HT
   2057 /* Process an incoming Compressed BlockAck. */
   2058 static void
   2059 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2060     struct iwn_rx_data *data)
   2061 {
   2062 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2063 	struct iwn_tx_ring *txq;
   2064 
   2065 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2066 	    BUS_DMASYNC_POSTREAD);
   2067 
   2068 	txq = &sc->txq[le16toh(ba->qid)];
   2069 	/* XXX TBD */
   2070 }
   2071 #endif
   2072 
   2073 /*
   2074  * Process a CALIBRATION_RESULT notification sent by the initialization
   2075  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
   2076  */
   2077 static void
   2078 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2079     struct iwn_rx_data *data)
   2080 {
   2081 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2082 	int len, idx = -1;
   2083 
   2084 	/* Runtime firmware should not send such a notification. */
   2085 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2086 		return;
   2087 
   2088 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2089 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2090 	    BUS_DMASYNC_POSTREAD);
   2091 
   2092 	switch (calib->code) {
   2093 	case IWN5000_PHY_CALIB_DC:
   2094 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   2095 			idx = 0;
   2096 		break;
   2097 	case IWN5000_PHY_CALIB_LO:
   2098 		idx = 1;
   2099 		break;
   2100 	case IWN5000_PHY_CALIB_TX_IQ:
   2101 		idx = 2;
   2102 		break;
   2103 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2104 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2105 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2106 			idx = 3;
   2107 		break;
   2108 	case IWN5000_PHY_CALIB_BASE_BAND:
   2109 		idx = 4;
   2110 		break;
   2111 	}
   2112 	if (idx == -1)	/* Ignore other results. */
   2113 		return;
   2114 
   2115 	/* Save calibration result. */
   2116 	if (sc->calibcmd[idx].buf != NULL)
   2117 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2118 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2119 	if (sc->calibcmd[idx].buf == NULL) {
   2120 		DPRINTF(("not enough memory for calibration result %d\n",
   2121 		    calib->code));
   2122 		return;
   2123 	}
   2124 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2125 	    calib->code, len));
   2126 	sc->calibcmd[idx].len = len;
   2127 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2128 }
   2129 
   2130 /*
   2131  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2132  * The latter is sent by the firmware after each received beacon.
   2133  */
   2134 static void
   2135 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2136     struct iwn_rx_data *data)
   2137 {
   2138 	struct iwn_ops *ops = &sc->ops;
   2139 	struct ieee80211com *ic = &sc->sc_ic;
   2140 	struct iwn_calib_state *calib = &sc->calib;
   2141 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2142 	int temp;
   2143 
   2144 	/* Ignore statistics received during a scan. */
   2145 	if (ic->ic_state != IEEE80211_S_RUN)
   2146 		return;
   2147 
   2148 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2149 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2150 
   2151 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2152 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2153 
   2154 	/* Test if temperature has changed. */
   2155 	if (stats->general.temp != sc->rawtemp) {
   2156 		/* Convert "raw" temperature to degC. */
   2157 		sc->rawtemp = stats->general.temp;
   2158 		temp = ops->get_temperature(sc);
   2159 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2160 
   2161 		/* Update TX power if need be (4965AGN only). */
   2162 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2163 			iwn4965_power_calibration(sc, temp);
   2164 	}
   2165 
   2166 	if (desc->type != IWN_BEACON_STATISTICS)
   2167 		return;	/* Reply to a statistics request. */
   2168 
   2169 	sc->noise = iwn_get_noise(&stats->rx.general);
   2170 
   2171 	/* Test that RSSI and noise are present in stats report. */
   2172 	if (le32toh(stats->rx.general.flags) != 1) {
   2173 		DPRINTF(("received statistics without RSSI\n"));
   2174 		return;
   2175 	}
   2176 
   2177 	/*
   2178 	 * XXX Differential gain calibration makes the 6005 firmware
   2179 	 * crap out, so skip it for now.  This effectively disables
   2180 	 * sensitivity tuning as well.
   2181 	 */
   2182 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   2183 		return;
   2184 
   2185 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2186 		iwn_collect_noise(sc, &stats->rx.general);
   2187 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2188 		iwn_tune_sensitivity(sc, &stats->rx);
   2189 }
   2190 
   2191 /*
   2192  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2193  * and 5000 adapters have different incompatible TX status formats.
   2194  */
   2195 static void
   2196 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2197     struct iwn_rx_data *data)
   2198 {
   2199 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2200 
   2201 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2202 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2203 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2204 }
   2205 
   2206 static void
   2207 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2208     struct iwn_rx_data *data)
   2209 {
   2210 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2211 
   2212 #ifdef notyet
   2213 	/* Reset TX scheduler slot. */
   2214 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2215 #endif
   2216 
   2217 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2218 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2219 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2220 }
   2221 
   2222 /*
   2223  * Adapter-independent backend for TX_DONE firmware notifications.
   2224  */
   2225 static void
   2226 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2227     uint8_t status)
   2228 {
   2229 	struct ieee80211com *ic = &sc->sc_ic;
   2230 	struct ifnet *ifp = ic->ic_ifp;
   2231 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2232 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2233 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2234 
   2235 	/* Update rate control statistics. */
   2236 	wn->amn.amn_txcnt++;
   2237 	if (ackfailcnt > 0)
   2238 		wn->amn.amn_retrycnt++;
   2239 
   2240 	if (status != 1 && status != 2)
   2241 		ifp->if_oerrors++;
   2242 	else
   2243 		ifp->if_opackets++;
   2244 
   2245 	/* Unmap and free mbuf. */
   2246 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2247 	    BUS_DMASYNC_POSTWRITE);
   2248 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2249 	m_freem(data->m);
   2250 	data->m = NULL;
   2251 	ieee80211_free_node(data->ni);
   2252 	data->ni = NULL;
   2253 
   2254 	sc->sc_tx_timer = 0;
   2255 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2256 		sc->qfullmsk &= ~(1 << ring->qid);
   2257 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2258 			ifp->if_flags &= ~IFF_OACTIVE;
   2259 			(*ifp->if_start)(ifp);
   2260 		}
   2261 	}
   2262 }
   2263 
   2264 /*
   2265  * Process a "command done" firmware notification.  This is where we wakeup
   2266  * processes waiting for a synchronous command completion.
   2267  */
   2268 static void
   2269 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2270 {
   2271 	struct iwn_tx_ring *ring = &sc->txq[4];
   2272 	struct iwn_tx_data *data;
   2273 
   2274 	if ((desc->qid & 0xf) != 4)
   2275 		return;	/* Not a command ack. */
   2276 
   2277 	data = &ring->data[desc->idx];
   2278 
   2279 	/* If the command was mapped in an mbuf, free it. */
   2280 	if (data->m != NULL) {
   2281 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2282 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2283 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2284 		m_freem(data->m);
   2285 		data->m = NULL;
   2286 	}
   2287 	wakeup(&ring->desc[desc->idx]);
   2288 }
   2289 
   2290 /*
   2291  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2292  */
   2293 static void
   2294 iwn_notif_intr(struct iwn_softc *sc)
   2295 {
   2296 	struct iwn_ops *ops = &sc->ops;
   2297 	struct ieee80211com *ic = &sc->sc_ic;
   2298 	struct ifnet *ifp = ic->ic_ifp;
   2299 	uint16_t hw;
   2300 
   2301 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2302 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2303 
   2304 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2305 	while (sc->rxq.cur != hw) {
   2306 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2307 		struct iwn_rx_desc *desc;
   2308 
   2309 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2310 		    BUS_DMASYNC_POSTREAD);
   2311 		desc = mtod(data->m, struct iwn_rx_desc *);
   2312 
   2313 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2314 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2315 
   2316 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2317 			iwn_cmd_done(sc, desc);
   2318 
   2319 		switch (desc->type) {
   2320 		case IWN_RX_PHY:
   2321 			iwn_rx_phy(sc, desc, data);
   2322 			break;
   2323 
   2324 		case IWN_RX_DONE:		/* 4965AGN only. */
   2325 		case IWN_MPDU_RX_DONE:
   2326 			/* An 802.11 frame has been received. */
   2327 			iwn_rx_done(sc, desc, data);
   2328 			break;
   2329 #ifndef IEEE80211_NO_HT
   2330 		case IWN_RX_COMPRESSED_BA:
   2331 			/* A Compressed BlockAck has been received. */
   2332 			iwn_rx_compressed_ba(sc, desc, data);
   2333 			break;
   2334 #endif
   2335 		case IWN_TX_DONE:
   2336 			/* An 802.11 frame has been transmitted. */
   2337 			ops->tx_done(sc, desc, data);
   2338 			break;
   2339 
   2340 		case IWN_RX_STATISTICS:
   2341 		case IWN_BEACON_STATISTICS:
   2342 			iwn_rx_statistics(sc, desc, data);
   2343 			break;
   2344 
   2345 		case IWN_BEACON_MISSED:
   2346 		{
   2347 			struct iwn_beacon_missed *miss =
   2348 			    (struct iwn_beacon_missed *)(desc + 1);
   2349 
   2350 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2351 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2352 			/*
   2353 			 * If more than 5 consecutive beacons are missed,
   2354 			 * reinitialize the sensitivity state machine.
   2355 			 */
   2356 			DPRINTF(("beacons missed %d/%d\n",
   2357 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2358 			if (ic->ic_state == IEEE80211_S_RUN &&
   2359 			    le32toh(miss->consecutive) > 5)
   2360 				(void)iwn_init_sensitivity(sc);
   2361 			break;
   2362 		}
   2363 		case IWN_UC_READY:
   2364 		{
   2365 			struct iwn_ucode_info *uc =
   2366 			    (struct iwn_ucode_info *)(desc + 1);
   2367 
   2368 			/* The microcontroller is ready. */
   2369 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2370 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2371 			DPRINTF(("microcode alive notification version=%d.%d "
   2372 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2373 			    uc->subtype, le32toh(uc->valid)));
   2374 
   2375 			if (le32toh(uc->valid) != 1) {
   2376 				aprint_error_dev(sc->sc_dev,
   2377 				    "microcontroller initialization "
   2378 				    "failed\n");
   2379 				break;
   2380 			}
   2381 			if (uc->subtype == IWN_UCODE_INIT) {
   2382 				/* Save microcontroller report. */
   2383 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2384 			}
   2385 			/* Save the address of the error log in SRAM. */
   2386 			sc->errptr = le32toh(uc->errptr);
   2387 			break;
   2388 		}
   2389 		case IWN_STATE_CHANGED:
   2390 		{
   2391 			uint32_t *status = (uint32_t *)(desc + 1);
   2392 
   2393 			/* Enabled/disabled notification. */
   2394 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2395 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2396 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2397 
   2398 			if (le32toh(*status) & 1) {
   2399 				/* The radio button has to be pushed. */
   2400 				aprint_error_dev(sc->sc_dev,
   2401 				    "Radio transmitter is off\n");
   2402 				/* Turn the interface down. */
   2403 				ifp->if_flags &= ~IFF_UP;
   2404 				iwn_stop(ifp, 1);
   2405 				return;	/* No further processing. */
   2406 			}
   2407 			break;
   2408 		}
   2409 		case IWN_START_SCAN:
   2410 		{
   2411 			struct iwn_start_scan *scan =
   2412 			    (struct iwn_start_scan *)(desc + 1);
   2413 
   2414 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2415 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2416 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2417 			    scan->chan, le32toh(scan->status)));
   2418 
   2419 			/* Fix current channel. */
   2420 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2421 			break;
   2422 		}
   2423 		case IWN_STOP_SCAN:
   2424 		{
   2425 			struct iwn_stop_scan *scan =
   2426 			    (struct iwn_stop_scan *)(desc + 1);
   2427 
   2428 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2429 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2430 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2431 			    scan->nchan, scan->status, scan->chan));
   2432 
   2433 			if (scan->status == 1 && scan->chan <= 14 &&
   2434 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2435 				/*
   2436 				 * We just finished scanning 2GHz channels,
   2437 				 * start scanning 5GHz ones.
   2438 				 */
   2439 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2440 					break;
   2441 			}
   2442 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2443 			ieee80211_end_scan(ic);
   2444 			break;
   2445 		}
   2446 		case IWN5000_CALIBRATION_RESULT:
   2447 			iwn5000_rx_calib_results(sc, desc, data);
   2448 			break;
   2449 
   2450 		case IWN5000_CALIBRATION_DONE:
   2451 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2452 			wakeup(sc);
   2453 			break;
   2454 		}
   2455 
   2456 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2457 	}
   2458 
   2459 	/* Tell the firmware what we have processed. */
   2460 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2461 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2462 }
   2463 
   2464 /*
   2465  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2466  * from power-down sleep mode.
   2467  */
   2468 static void
   2469 iwn_wakeup_intr(struct iwn_softc *sc)
   2470 {
   2471 	int qid;
   2472 
   2473 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2474 
   2475 	/* Wakeup RX and TX rings. */
   2476 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2477 	for (qid = 0; qid < sc->ntxqs; qid++) {
   2478 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2479 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2480 	}
   2481 }
   2482 
   2483 /*
   2484  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2485  * we can't debug the firmware because it is neither open source nor free, it
   2486  * can help us to identify certain classes of problems.
   2487  */
   2488 static void
   2489 iwn_fatal_intr(struct iwn_softc *sc)
   2490 {
   2491 	struct iwn_fw_dump dump;
   2492 	int i;
   2493 
   2494 	/* Force a complete recalibration on next init. */
   2495 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2496 
   2497 	/* Check that the error log address is valid. */
   2498 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2499 	    sc->errptr + sizeof (dump) >
   2500 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
   2501 		aprint_error_dev(sc->sc_dev,
   2502 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2503 		return;
   2504 	}
   2505 	if (iwn_nic_lock(sc) != 0) {
   2506 		aprint_error_dev(sc->sc_dev,
   2507 		    "could not read firmware error log\n");
   2508 		return;
   2509 	}
   2510 	/* Read firmware error log from SRAM. */
   2511 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2512 	    sizeof (dump) / sizeof (uint32_t));
   2513 	iwn_nic_unlock(sc);
   2514 
   2515 	if (dump.valid == 0) {
   2516 		aprint_error_dev(sc->sc_dev,
   2517 		    "firmware error log is empty\n");
   2518 		return;
   2519 	}
   2520 	aprint_error("firmware error log:\n");
   2521 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2522 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2523 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2524 	    dump.id);
   2525 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2526 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2527 	aprint_error("  error data      = 0x%08X%08X\n",
   2528 	    dump.error_data[0], dump.error_data[1]);
   2529 	aprint_error("  branch link     = 0x%08X%08X\n",
   2530 	    dump.branch_link[0], dump.branch_link[1]);
   2531 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2532 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2533 	aprint_error("  time            = %u\n", dump.time[0]);
   2534 
   2535 	/* Dump driver status (TX and RX rings) while we're here. */
   2536 	aprint_error("driver status:\n");
   2537 	for (i = 0; i < sc->ntxqs; i++) {
   2538 		struct iwn_tx_ring *ring = &sc->txq[i];
   2539 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2540 		    i, ring->qid, ring->cur, ring->queued);
   2541 	}
   2542 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2543 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2544 }
   2545 
   2546 static int
   2547 iwn_intr(void *arg)
   2548 {
   2549 	struct iwn_softc *sc = arg;
   2550 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2551 	uint32_t r1, r2, tmp;
   2552 
   2553 	/* Disable interrupts. */
   2554 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2555 
   2556 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2557 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2558 		tmp = 0;
   2559 		while (sc->ict[sc->ict_cur] != 0) {
   2560 			tmp |= sc->ict[sc->ict_cur];
   2561 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2562 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2563 		}
   2564 		tmp = le32toh(tmp);
   2565 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2566 			tmp = 0;
   2567 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2568 			tmp |= 0x8000;
   2569 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2570 		r2 = 0;	/* Unused. */
   2571 	} else {
   2572 		r1 = IWN_READ(sc, IWN_INT);
   2573 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2574 			return 0;	/* Hardware gone! */
   2575 		r2 = IWN_READ(sc, IWN_FH_INT);
   2576 	}
   2577 	if (r1 == 0 && r2 == 0) {
   2578 		if (ifp->if_flags & IFF_UP)
   2579 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2580 		return 0;	/* Interrupt not for us. */
   2581 	}
   2582 
   2583 	/* Acknowledge interrupts. */
   2584 	IWN_WRITE(sc, IWN_INT, r1);
   2585 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2586 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2587 
   2588 	if (r1 & IWN_INT_RF_TOGGLED) {
   2589 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2590 		aprint_error_dev(sc->sc_dev,
   2591 		    "RF switch: radio %s\n",
   2592 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2593 	}
   2594 	if (r1 & IWN_INT_CT_REACHED) {
   2595 		aprint_error_dev(sc->sc_dev,
   2596 		    "critical temperature reached!\n");
   2597 	}
   2598 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2599 		aprint_error_dev(sc->sc_dev,
   2600 		    "fatal firmware error\n");
   2601 		/* Dump firmware error log and stop. */
   2602 		iwn_fatal_intr(sc);
   2603 		ifp->if_flags &= ~IFF_UP;
   2604 		iwn_stop(ifp, 1);
   2605 		return 1;
   2606 	}
   2607 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2608 	    (r2 & IWN_FH_INT_RX)) {
   2609 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2610 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2611 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2612 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2613 			    IWN_INT_PERIODIC_DIS);
   2614 			iwn_notif_intr(sc);
   2615 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2616 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2617 				    IWN_INT_PERIODIC_ENA);
   2618 			}
   2619 		} else
   2620 			iwn_notif_intr(sc);
   2621 	}
   2622 
   2623 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2624 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2625 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2626 		wakeup(sc);	/* FH DMA transfer completed. */
   2627 	}
   2628 
   2629 	if (r1 & IWN_INT_ALIVE)
   2630 		wakeup(sc);	/* Firmware is alive. */
   2631 
   2632 	if (r1 & IWN_INT_WAKEUP)
   2633 		iwn_wakeup_intr(sc);
   2634 
   2635 	/* Re-enable interrupts. */
   2636 	if (ifp->if_flags & IFF_UP)
   2637 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2638 
   2639 	return 1;
   2640 }
   2641 
   2642 /*
   2643  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2644  * 5000 adapters use a slightly different format).
   2645  */
   2646 static void
   2647 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2648     uint16_t len)
   2649 {
   2650 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2651 
   2652 	*w = htole16(len + 8);
   2653 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2654 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2655 	    sizeof (uint16_t),
   2656 	    BUS_DMASYNC_PREWRITE);
   2657 	if (idx < IWN_SCHED_WINSZ) {
   2658 		*(w + IWN_TX_RING_COUNT) = *w;
   2659 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2660 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2661 		    (char *)(void *)sc->sched_dma.vaddr,
   2662 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2663 	}
   2664 }
   2665 
   2666 static void
   2667 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2668     uint16_t len)
   2669 {
   2670 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2671 
   2672 	*w = htole16(id << 12 | (len + 8));
   2673 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2674 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2675 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2676 	if (idx < IWN_SCHED_WINSZ) {
   2677 		*(w + IWN_TX_RING_COUNT) = *w;
   2678 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2679 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2680 		    (char *)(void *)sc->sched_dma.vaddr,
   2681 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2682 	}
   2683 }
   2684 
   2685 #ifdef notyet
   2686 static void
   2687 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2688 {
   2689 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2690 
   2691 	*w = (*w & htole16(0xf000)) | htole16(1);
   2692 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2693 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2694 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2695 	if (idx < IWN_SCHED_WINSZ) {
   2696 		*(w + IWN_TX_RING_COUNT) = *w;
   2697 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2698 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2699 		    (char *)(void *)sc->sched_dma.vaddr,
   2700 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2701 	}
   2702 }
   2703 #endif
   2704 
   2705 static int
   2706 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2707 {
   2708 	struct ieee80211com *ic = &sc->sc_ic;
   2709 	struct iwn_node *wn = (void *)ni;
   2710 	struct iwn_tx_ring *ring;
   2711 	struct iwn_tx_desc *desc;
   2712 	struct iwn_tx_data *data;
   2713 	struct iwn_tx_cmd *cmd;
   2714 	struct iwn_cmd_data *tx;
   2715 	const struct iwn_rate *rinfo;
   2716 	struct ieee80211_frame *wh;
   2717 	struct ieee80211_key *k = NULL;
   2718 	struct mbuf *m1;
   2719 	uint32_t flags;
   2720 	u_int hdrlen;
   2721 	bus_dma_segment_t *seg;
   2722 	uint8_t tid, ridx, txant, type;
   2723 	int i, totlen, error, pad;
   2724 
   2725 	const struct chanAccParams *cap;
   2726 	int noack;
   2727 	int hdrlen2;
   2728 
   2729 	wh = mtod(m, struct ieee80211_frame *);
   2730 	hdrlen = ieee80211_anyhdrsize(wh);
   2731 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2732 
   2733 	hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
   2734 	    sizeof (struct ieee80211_qosframe) :
   2735 	    sizeof (struct ieee80211_frame);
   2736 
   2737 	if (hdrlen != hdrlen2)
   2738 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2739 		hdrlen, hdrlen2);
   2740 
   2741 	/* XXX OpenBSD sets a different tid when using QOS */
   2742 	tid = 0;
   2743 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   2744 		cap = &ic->ic_wme.wme_chanParams;
   2745 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2746 	}
   2747 	else
   2748 		noack = 0;
   2749 
   2750 	ring = &sc->txq[ac];
   2751 	desc = &ring->desc[ring->cur];
   2752 	data = &ring->data[ring->cur];
   2753 
   2754 	/* Choose a TX rate index. */
   2755 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2756 	    type != IEEE80211_FC0_TYPE_DATA) {
   2757 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2758 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2759 	} else if (ic->ic_fixed_rate != -1) {
   2760 		ridx = sc->fixed_ridx;
   2761 	} else
   2762 		ridx = wn->ridx[ni->ni_txrate];
   2763 	rinfo = &iwn_rates[ridx];
   2764 
   2765 	/* Encrypt the frame if need be. */
   2766 	/*
   2767 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   2768 	 * in order to match old code and other drivers. Tests with
   2769 	 * tcpdump indicates that the order is irrelevant, however,
   2770 	 * as bpf produces unencrypted data for both ordering choices.
   2771 	 */
   2772 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2773 		k = ieee80211_crypto_encap(ic, ni, m);
   2774 		if (k == NULL) {
   2775 			m_freem(m);
   2776 			return ENOBUFS;
   2777 		}
   2778 		/* Packet header may have moved, reset our local pointer. */
   2779 		wh = mtod(m, struct ieee80211_frame *);
   2780 	}
   2781 	totlen = m->m_pkthdr.len;
   2782 
   2783 	if (sc->sc_drvbpf != NULL) {
   2784 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2785 
   2786 		tap->wt_flags = 0;
   2787 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2788 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2789 		tap->wt_rate = rinfo->rate;
   2790 		tap->wt_hwqueue = ac;
   2791 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2792 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2793 
   2794 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   2795 	}
   2796 
   2797 	/* Prepare TX firmware command. */
   2798 	cmd = &ring->cmd[ring->cur];
   2799 	cmd->code = IWN_CMD_TX_DATA;
   2800 	cmd->flags = 0;
   2801 	cmd->qid = ring->qid;
   2802 	cmd->idx = ring->cur;
   2803 
   2804 	tx = (struct iwn_cmd_data *)cmd->data;
   2805 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2806 	tx->scratch = 0;	/* clear "scratch" area */
   2807 
   2808 	flags = 0;
   2809 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2810 		/* Unicast frame, check if an ACK is expected. */
   2811 		if (!noack)
   2812 			flags |= IWN_TX_NEED_ACK;
   2813 	}
   2814 
   2815 #ifdef notyet
   2816 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   2817 	if ((wh->i_fc[0] &
   2818 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   2819 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   2820 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   2821 #endif
   2822 
   2823 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   2824 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   2825 
   2826 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   2827 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2828 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   2829 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   2830 			flags |= IWN_TX_NEED_RTS;
   2831 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   2832 		    ridx >= IWN_RIDX_OFDM6) {
   2833 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   2834 				flags |= IWN_TX_NEED_CTS;
   2835 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   2836 				flags |= IWN_TX_NEED_RTS;
   2837 		}
   2838 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   2839 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   2840 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   2841 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   2842 				flags |= IWN_TX_NEED_PROTECTION;
   2843 			} else
   2844 				flags |= IWN_TX_FULL_TXOP;
   2845 		}
   2846 	}
   2847 
   2848 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2849 	    type != IEEE80211_FC0_TYPE_DATA)
   2850 		tx->id = sc->broadcast_id;
   2851 	else
   2852 		tx->id = wn->id;
   2853 
   2854 	if (type == IEEE80211_FC0_TYPE_MGT) {
   2855 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2856 
   2857 #ifndef IEEE80211_STA_ONLY
   2858 		/* Tell HW to set timestamp in probe responses. */
   2859 		/* XXX NetBSD rev 1.11 added probe requests here but */
   2860 		/* probe requests do not take timestamps (from Bergamini). */
   2861 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   2862 			flags |= IWN_TX_INSERT_TSTAMP;
   2863 #endif
   2864 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   2865 		/* changes here. These are not needed (from Bergamini). */
   2866 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   2867 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   2868 			tx->timeout = htole16(3);
   2869 		else
   2870 			tx->timeout = htole16(2);
   2871 	} else
   2872 		tx->timeout = htole16(0);
   2873 
   2874 	if (hdrlen & 3) {
   2875 		/* First segment length must be a multiple of 4. */
   2876 		flags |= IWN_TX_NEED_PADDING;
   2877 		pad = 4 - (hdrlen & 3);
   2878 	} else
   2879 		pad = 0;
   2880 
   2881 	tx->len = htole16(totlen);
   2882 	tx->tid = tid;
   2883 	tx->rts_ntries = 60;
   2884 	tx->data_ntries = 15;
   2885 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   2886 	tx->plcp = rinfo->plcp;
   2887 	tx->rflags = rinfo->flags;
   2888 	if (tx->id == sc->broadcast_id) {
   2889 		/* Group or management frame. */
   2890 		tx->linkq = 0;
   2891 		/* XXX Alternate between antenna A and B? */
   2892 		txant = IWN_LSB(sc->txchainmask);
   2893 		tx->rflags |= IWN_RFLAG_ANT(txant);
   2894 	} else {
   2895 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   2896 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   2897 	}
   2898 	/* Set physical address of "scratch area". */
   2899 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   2900 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   2901 
   2902 	/* Copy 802.11 header in TX command. */
   2903 	/* XXX NetBSD changed this in rev 1.20 */
   2904 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   2905 
   2906 	/* Trim 802.11 header. */
   2907 	m_adj(m, hdrlen);
   2908 	tx->security = 0;
   2909 	tx->flags = htole32(flags);
   2910 
   2911 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2912 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2913 	if (error != 0) {
   2914 		if (error != EFBIG) {
   2915 			aprint_error_dev(sc->sc_dev,
   2916 			    "can't map mbuf (error %d)\n", error);
   2917 			m_freem(m);
   2918 			return error;
   2919 		}
   2920 		/* Too many DMA segments, linearize mbuf. */
   2921 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   2922 		if (m1 == NULL) {
   2923 			m_freem(m);
   2924 			return ENOBUFS;
   2925 		}
   2926 		if (m->m_pkthdr.len > MHLEN) {
   2927 			MCLGET(m1, M_DONTWAIT);
   2928 			if (!(m1->m_flags & M_EXT)) {
   2929 				m_freem(m);
   2930 				m_freem(m1);
   2931 				return ENOBUFS;
   2932 			}
   2933 		}
   2934 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   2935 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   2936 		m_freem(m);
   2937 		m = m1;
   2938 
   2939 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2940 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2941 		if (error != 0) {
   2942 			aprint_error_dev(sc->sc_dev,
   2943 			    "can't map mbuf (error %d)\n", error);
   2944 			m_freem(m);
   2945 			return error;
   2946 		}
   2947 	}
   2948 
   2949 	data->m = m;
   2950 	data->ni = ni;
   2951 
   2952 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   2953 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   2954 
   2955 	/* Fill TX descriptor. */
   2956 	desc->nsegs = 1 + data->map->dm_nsegs;
   2957 	/* First DMA segment is used by the TX command. */
   2958 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   2959 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   2960 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   2961 	/* Other DMA segments are for data payload. */
   2962 	seg = data->map->dm_segs;
   2963 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   2964 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   2965 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   2966 		    seg->ds_len << 4);
   2967 		seg++;
   2968 	}
   2969 
   2970 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2971 	    BUS_DMASYNC_PREWRITE);
   2972 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   2973 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   2974 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   2975 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2976 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   2977 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   2978 
   2979 #ifdef notyet
   2980 	/* Update TX scheduler. */
   2981 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   2982 #endif
   2983 
   2984 	/* Kick TX ring. */
   2985 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   2986 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   2987 
   2988 	/* Mark TX ring as full if we reach a certain threshold. */
   2989 	if (++ring->queued > IWN_TX_RING_HIMARK)
   2990 		sc->qfullmsk |= 1 << ring->qid;
   2991 
   2992 	return 0;
   2993 }
   2994 
   2995 static void
   2996 iwn_start(struct ifnet *ifp)
   2997 {
   2998 	struct iwn_softc *sc = ifp->if_softc;
   2999 	struct ieee80211com *ic = &sc->sc_ic;
   3000 	struct ieee80211_node *ni;
   3001 	struct ether_header *eh;
   3002 	struct mbuf *m;
   3003 	int ac;
   3004 
   3005 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3006 		return;
   3007 
   3008 	for (;;) {
   3009 		if (sc->qfullmsk != 0) {
   3010 			ifp->if_flags |= IFF_OACTIVE;
   3011 			break;
   3012 		}
   3013 		/* Send pending management frames first. */
   3014 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3015 		if (m != NULL) {
   3016 			ni = (void *)m->m_pkthdr.rcvif;
   3017 			ac = 0;
   3018 			goto sendit;
   3019 		}
   3020 		if (ic->ic_state != IEEE80211_S_RUN)
   3021 			break;
   3022 
   3023 		/* Encapsulate and send data frames. */
   3024 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3025 		if (m == NULL)
   3026 			break;
   3027 		if (m->m_len < sizeof (*eh) &&
   3028 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3029 			ifp->if_oerrors++;
   3030 			continue;
   3031 		}
   3032 		eh = mtod(m, struct ether_header *);
   3033 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3034 		if (ni == NULL) {
   3035 			m_freem(m);
   3036 			ifp->if_oerrors++;
   3037 			continue;
   3038 		}
   3039 		/* classify mbuf so we can find which tx ring to use */
   3040 		if (ieee80211_classify(ic, m, ni) != 0) {
   3041 			m_freem(m);
   3042 			ieee80211_free_node(ni);
   3043 			ifp->if_oerrors++;
   3044 			continue;
   3045 		}
   3046 
   3047 		/* No QoS encapsulation for EAPOL frames. */
   3048 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3049 		    M_WME_GETAC(m) : WME_AC_BE;
   3050 
   3051 		bpf_mtap(ifp, m);
   3052 
   3053 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3054 			ieee80211_free_node(ni);
   3055 			ifp->if_oerrors++;
   3056 			continue;
   3057 		}
   3058 sendit:
   3059 		bpf_mtap3(ic->ic_rawbpf, m);
   3060 
   3061 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3062 			ieee80211_free_node(ni);
   3063 			ifp->if_oerrors++;
   3064 			continue;
   3065 		}
   3066 
   3067 		sc->sc_tx_timer = 5;
   3068 		ifp->if_timer = 1;
   3069 	}
   3070 }
   3071 
   3072 static void
   3073 iwn_watchdog(struct ifnet *ifp)
   3074 {
   3075 	struct iwn_softc *sc = ifp->if_softc;
   3076 
   3077 	ifp->if_timer = 0;
   3078 
   3079 	if (sc->sc_tx_timer > 0) {
   3080 		if (--sc->sc_tx_timer == 0) {
   3081 			aprint_error_dev(sc->sc_dev,
   3082 			    "device timeout\n");
   3083 			ifp->if_flags &= ~IFF_UP;
   3084 			iwn_stop(ifp, 1);
   3085 			ifp->if_oerrors++;
   3086 			return;
   3087 		}
   3088 		ifp->if_timer = 1;
   3089 	}
   3090 
   3091 	ieee80211_watchdog(&sc->sc_ic);
   3092 }
   3093 
   3094 static int
   3095 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3096 {
   3097 	struct iwn_softc *sc = ifp->if_softc;
   3098 	struct ieee80211com *ic = &sc->sc_ic;
   3099 	struct ifaddr *ifa;
   3100 	const struct sockaddr *sa;
   3101 	int s, error = 0;
   3102 
   3103 	s = splnet();
   3104 
   3105 	switch (cmd) {
   3106 	case SIOCSIFADDR:
   3107 		ifa = (struct ifaddr *)data;
   3108 		ifp->if_flags |= IFF_UP;
   3109 #ifdef INET
   3110 		if (ifa->ifa_addr->sa_family == AF_INET)
   3111 			arp_ifinit(&ic->ic_ac, ifa);
   3112 #endif
   3113 		/* FALLTHROUGH */
   3114 	case SIOCSIFFLAGS:
   3115 		/* XXX Added as it is in every NetBSD driver */
   3116 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3117 			break;
   3118 		if (ifp->if_flags & IFF_UP) {
   3119 			if (!(ifp->if_flags & IFF_RUNNING))
   3120 				error = iwn_init(ifp);
   3121 		} else {
   3122 			if (ifp->if_flags & IFF_RUNNING)
   3123 				iwn_stop(ifp, 1);
   3124 		}
   3125 		break;
   3126 
   3127 	case SIOCADDMULTI:
   3128 	case SIOCDELMULTI:
   3129 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3130 		error = (cmd == SIOCADDMULTI) ?
   3131 		    ether_addmulti(sa, &sc->sc_ec) :
   3132 		    ether_delmulti(sa, &sc->sc_ec);
   3133 
   3134 		if (error == ENETRESET)
   3135 			error = 0;
   3136 		break;
   3137 
   3138 	default:
   3139 		error = ieee80211_ioctl(ic, cmd, data);
   3140 	}
   3141 
   3142 	if (error == ENETRESET) {
   3143 		error = 0;
   3144 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3145 		    (IFF_UP | IFF_RUNNING)) {
   3146 			iwn_stop(ifp, 0);
   3147 			error = iwn_init(ifp);
   3148 		}
   3149 	}
   3150 
   3151 	splx(s);
   3152 	return error;
   3153 }
   3154 
   3155 /*
   3156  * Send a command to the firmware.
   3157  */
   3158 static int
   3159 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3160 {
   3161 	struct iwn_tx_ring *ring = &sc->txq[4];
   3162 	struct iwn_tx_desc *desc;
   3163 	struct iwn_tx_data *data;
   3164 	struct iwn_tx_cmd *cmd;
   3165 	struct mbuf *m;
   3166 	bus_addr_t paddr;
   3167 	int totlen, error;
   3168 
   3169 	desc = &ring->desc[ring->cur];
   3170 	data = &ring->data[ring->cur];
   3171 	totlen = 4 + size;
   3172 
   3173 	if (size > sizeof cmd->data) {
   3174 		/* Command is too large to fit in a descriptor. */
   3175 		if (totlen > MCLBYTES)
   3176 			return EINVAL;
   3177 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3178 		if (m == NULL)
   3179 			return ENOMEM;
   3180 		if (totlen > MHLEN) {
   3181 			MCLGET(m, M_DONTWAIT);
   3182 			if (!(m->m_flags & M_EXT)) {
   3183 				m_freem(m);
   3184 				return ENOMEM;
   3185 			}
   3186 		}
   3187 		cmd = mtod(m, struct iwn_tx_cmd *);
   3188 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3189 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3190 		if (error != 0) {
   3191 			m_freem(m);
   3192 			return error;
   3193 		}
   3194 		data->m = m;
   3195 		paddr = data->map->dm_segs[0].ds_addr;
   3196 	} else {
   3197 		cmd = &ring->cmd[ring->cur];
   3198 		paddr = data->cmd_paddr;
   3199 	}
   3200 
   3201 	cmd->code = code;
   3202 	cmd->flags = 0;
   3203 	cmd->qid = ring->qid;
   3204 	cmd->idx = ring->cur;
   3205 	memcpy(cmd->data, buf, size);
   3206 
   3207 	desc->nsegs = 1;
   3208 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3209 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3210 
   3211 	if (size > sizeof cmd->data) {
   3212 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3213 		    BUS_DMASYNC_PREWRITE);
   3214 	} else {
   3215 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3216 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3217 		    totlen, BUS_DMASYNC_PREWRITE);
   3218 	}
   3219 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3220 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3221 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3222 
   3223 #ifdef notyet
   3224 	/* Update TX scheduler. */
   3225 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3226 #endif
   3227 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3228 
   3229 	/* Kick command ring. */
   3230 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3231 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3232 
   3233 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3234 }
   3235 
   3236 static int
   3237 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3238 {
   3239 	struct iwn4965_node_info hnode;
   3240 	char *src, *dst;
   3241 
   3242 	/*
   3243 	 * We use the node structure for 5000 Series internally (it is
   3244 	 * a superset of the one for 4965AGN). We thus copy the common
   3245 	 * fields before sending the command.
   3246 	 */
   3247 	src = (char *)node;
   3248 	dst = (char *)&hnode;
   3249 	memcpy(dst, src, 48);
   3250 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3251 	memcpy(dst + 48, src + 72, 20);
   3252 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3253 }
   3254 
   3255 static int
   3256 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3257 {
   3258 	/* Direct mapping. */
   3259 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3260 }
   3261 
   3262 static int
   3263 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3264 {
   3265 	struct iwn_node *wn = (void *)ni;
   3266 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3267 	struct iwn_cmd_link_quality linkq;
   3268 	const struct iwn_rate *rinfo;
   3269 	uint8_t txant;
   3270 	int i, txrate;
   3271 
   3272 	/* Use the first valid TX antenna. */
   3273 	txant = IWN_LSB(sc->txchainmask);
   3274 
   3275 	memset(&linkq, 0, sizeof linkq);
   3276 	linkq.id = wn->id;
   3277 	linkq.antmsk_1stream = txant;
   3278 	linkq.antmsk_2stream = IWN_ANT_AB;
   3279 	linkq.ampdu_max = 31;
   3280 	linkq.ampdu_threshold = 3;
   3281 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3282 
   3283 	/* Start at highest available bit-rate. */
   3284 	txrate = rs->rs_nrates - 1;
   3285 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3286 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3287 		linkq.retry[i].plcp = rinfo->plcp;
   3288 		linkq.retry[i].rflags = rinfo->flags;
   3289 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3290 		/* Next retry at immediate lower bit-rate. */
   3291 		if (txrate > 0)
   3292 			txrate--;
   3293 	}
   3294 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3295 }
   3296 
   3297 /*
   3298  * Broadcast node is used to send group-addressed and management frames.
   3299  */
   3300 static int
   3301 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3302 {
   3303 	struct iwn_ops *ops = &sc->ops;
   3304 	struct iwn_node_info node;
   3305 	struct iwn_cmd_link_quality linkq;
   3306 	const struct iwn_rate *rinfo;
   3307 	uint8_t txant;
   3308 	int i, error;
   3309 
   3310 	memset(&node, 0, sizeof node);
   3311 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3312 	node.id = sc->broadcast_id;
   3313 	DPRINTF(("adding broadcast node\n"));
   3314 	if ((error = ops->add_node(sc, &node, async)) != 0)
   3315 		return error;
   3316 
   3317 	/* Use the first valid TX antenna. */
   3318 	txant = IWN_LSB(sc->txchainmask);
   3319 
   3320 	memset(&linkq, 0, sizeof linkq);
   3321 	linkq.id = sc->broadcast_id;
   3322 	linkq.antmsk_1stream = txant;
   3323 	linkq.antmsk_2stream = IWN_ANT_AB;
   3324 	linkq.ampdu_max = 64;
   3325 	linkq.ampdu_threshold = 3;
   3326 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3327 
   3328 	/* Use lowest mandatory bit-rate. */
   3329 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3330 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3331 	linkq.retry[0].plcp = rinfo->plcp;
   3332 	linkq.retry[0].rflags = rinfo->flags;
   3333 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3334 	/* Use same bit-rate for all TX retries. */
   3335 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3336 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3337 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3338 	}
   3339 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3340 }
   3341 
   3342 static void
   3343 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3344 {
   3345 	struct iwn_cmd_led led;
   3346 
   3347 	/* Clear microcode LED ownership. */
   3348 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3349 
   3350 	led.which = which;
   3351 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3352 	led.off = off;
   3353 	led.on = on;
   3354 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3355 }
   3356 
   3357 /*
   3358  * Set the critical temperature at which the firmware will stop the radio
   3359  * and notify us.
   3360  */
   3361 static int
   3362 iwn_set_critical_temp(struct iwn_softc *sc)
   3363 {
   3364 	struct iwn_critical_temp crit;
   3365 	int32_t temp;
   3366 
   3367 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3368 
   3369 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3370 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3371 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3372 		temp = IWN_CTOK(110);
   3373 	else
   3374 		temp = 110;
   3375 	memset(&crit, 0, sizeof crit);
   3376 	crit.tempR = htole32(temp);
   3377 	DPRINTF(("setting critical temperature to %d\n", temp));
   3378 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3379 }
   3380 
   3381 static int
   3382 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3383 {
   3384 	struct iwn_cmd_timing cmd;
   3385 	uint64_t val, mod;
   3386 
   3387 	memset(&cmd, 0, sizeof cmd);
   3388 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3389 	cmd.bintval = htole16(ni->ni_intval);
   3390 	cmd.lintval = htole16(10);
   3391 
   3392 	/* Compute remaining time until next beacon. */
   3393 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3394 	mod = le64toh(cmd.tstamp) % val;
   3395 	cmd.binitval = htole32((uint32_t)(val - mod));
   3396 
   3397 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
   3398 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3399 
   3400 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3401 }
   3402 
   3403 static void
   3404 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3405 {
   3406 	/* Adjust TX power if need be (delta >= 3 degC). */
   3407 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3408 	if (abs(temp - sc->temp) >= 3) {
   3409 		/* Record temperature of last calibration. */
   3410 		sc->temp = temp;
   3411 		(void)iwn4965_set_txpower(sc, 1);
   3412 	}
   3413 }
   3414 
   3415 /*
   3416  * Set TX power for current channel (each rate has its own power settings).
   3417  * This function takes into account the regulatory information from EEPROM,
   3418  * the current temperature and the current voltage.
   3419  */
   3420 static int
   3421 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3422 {
   3423 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3424 #define fdivround(a, b, n)	\
   3425 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3426 /* Linear interpolation. */
   3427 #define interpolate(x, x1, y1, x2, y2, n)	\
   3428 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3429 
   3430 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3431 	struct ieee80211com *ic = &sc->sc_ic;
   3432 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3433 	struct ieee80211_channel *ch;
   3434 	struct iwn4965_cmd_txpower cmd;
   3435 	struct iwn4965_eeprom_chan_samples *chans;
   3436 	const uint8_t *rf_gain, *dsp_gain;
   3437 	int32_t vdiff, tdiff;
   3438 	int i, c, grp, maxpwr;
   3439 	uint8_t chan;
   3440 
   3441 	/* Retrieve current channel from last RXON. */
   3442 	chan = sc->rxon.chan;
   3443 	DPRINTF(("setting TX power for channel %d\n", chan));
   3444 	ch = &ic->ic_channels[chan];
   3445 
   3446 	memset(&cmd, 0, sizeof cmd);
   3447 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3448 	cmd.chan = chan;
   3449 
   3450 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3451 		maxpwr   = sc->maxpwr5GHz;
   3452 		rf_gain  = iwn4965_rf_gain_5ghz;
   3453 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3454 	} else {
   3455 		maxpwr   = sc->maxpwr2GHz;
   3456 		rf_gain  = iwn4965_rf_gain_2ghz;
   3457 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3458 	}
   3459 
   3460 	/* Compute voltage compensation. */
   3461 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3462 	if (vdiff > 0)
   3463 		vdiff *= 2;
   3464 	if (abs(vdiff) > 2)
   3465 		vdiff = 0;
   3466 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3467 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3468 
   3469 	/* Get channel attenuation group. */
   3470 	if (chan <= 20)		/* 1-20 */
   3471 		grp = 4;
   3472 	else if (chan <= 43)	/* 34-43 */
   3473 		grp = 0;
   3474 	else if (chan <= 70)	/* 44-70 */
   3475 		grp = 1;
   3476 	else if (chan <= 124)	/* 71-124 */
   3477 		grp = 2;
   3478 	else			/* 125-200 */
   3479 		grp = 3;
   3480 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3481 
   3482 	/* Get channel sub-band. */
   3483 	for (i = 0; i < IWN_NBANDS; i++)
   3484 		if (sc->bands[i].lo != 0 &&
   3485 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3486 			break;
   3487 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3488 		return EINVAL;
   3489 	chans = sc->bands[i].chans;
   3490 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3491 
   3492 	for (c = 0; c < 2; c++) {
   3493 		uint8_t power, gain, temp;
   3494 		int maxchpwr, pwr, ridx, idx;
   3495 
   3496 		power = interpolate(chan,
   3497 		    chans[0].num, chans[0].samples[c][1].power,
   3498 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3499 		gain  = interpolate(chan,
   3500 		    chans[0].num, chans[0].samples[c][1].gain,
   3501 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3502 		temp  = interpolate(chan,
   3503 		    chans[0].num, chans[0].samples[c][1].temp,
   3504 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3505 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3506 		    c, power, gain, temp));
   3507 
   3508 		/* Compute temperature compensation. */
   3509 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3510 		DPRINTF(("temperature compensation=%d (current=%d, "
   3511 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3512 
   3513 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3514 			/* Convert dBm to half-dBm. */
   3515 			maxchpwr = sc->maxpwr[chan] * 2;
   3516 			if ((ridx / 8) & 1)
   3517 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3518 
   3519 			pwr = maxpwr;
   3520 
   3521 			/* Adjust TX power based on rate. */
   3522 			if ((ridx % 8) == 5)
   3523 				pwr -= 15;	/* OFDM48: -7.5dB */
   3524 			else if ((ridx % 8) == 6)
   3525 				pwr -= 17;	/* OFDM54: -8.5dB */
   3526 			else if ((ridx % 8) == 7)
   3527 				pwr -= 20;	/* OFDM60: -10dB */
   3528 			else
   3529 				pwr -= 10;	/* Others: -5dB */
   3530 
   3531 			/* Do not exceed channel max TX power. */
   3532 			if (pwr > maxchpwr)
   3533 				pwr = maxchpwr;
   3534 
   3535 			idx = gain - (pwr - power) - tdiff - vdiff;
   3536 			if ((ridx / 8) & 1)	/* MIMO */
   3537 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3538 
   3539 			if (cmd.band == 0)
   3540 				idx += 9;	/* 5GHz */
   3541 			if (ridx == IWN_RIDX_MAX)
   3542 				idx += 5;	/* CCK */
   3543 
   3544 			/* Make sure idx stays in a valid range. */
   3545 			if (idx < 0)
   3546 				idx = 0;
   3547 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3548 				idx = IWN4965_MAX_PWR_INDEX;
   3549 
   3550 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3551 			    c, ridx, idx));
   3552 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3553 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3554 		}
   3555 	}
   3556 
   3557 	DPRINTF(("setting TX power for chan %d\n", chan));
   3558 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3559 
   3560 #undef interpolate
   3561 #undef fdivround
   3562 }
   3563 
   3564 static int
   3565 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3566 {
   3567 	struct iwn5000_cmd_txpower cmd;
   3568 
   3569 	/*
   3570 	 * TX power calibration is handled automatically by the firmware
   3571 	 * for 5000 Series.
   3572 	 */
   3573 	memset(&cmd, 0, sizeof cmd);
   3574 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3575 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3576 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3577 	DPRINTF(("setting TX power\n"));
   3578 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
   3579 }
   3580 
   3581 /*
   3582  * Retrieve the maximum RSSI (in dBm) among receivers.
   3583  */
   3584 static int
   3585 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3586 {
   3587 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3588 	uint8_t mask, agc;
   3589 	int rssi;
   3590 
   3591 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3592 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3593 
   3594 	rssi = 0;
   3595 	if (mask & IWN_ANT_A)
   3596 		rssi = MAX(rssi, phy->rssi[0]);
   3597 	if (mask & IWN_ANT_B)
   3598 		rssi = MAX(rssi, phy->rssi[2]);
   3599 	if (mask & IWN_ANT_C)
   3600 		rssi = MAX(rssi, phy->rssi[4]);
   3601 
   3602 	return rssi - agc - IWN_RSSI_TO_DBM;
   3603 }
   3604 
   3605 static int
   3606 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3607 {
   3608 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3609 	uint8_t agc;
   3610 	int rssi;
   3611 
   3612 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3613 
   3614 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3615 		   le16toh(phy->rssi[1]) & 0xff);
   3616 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3617 
   3618 	return rssi - agc - IWN_RSSI_TO_DBM;
   3619 }
   3620 
   3621 /*
   3622  * Retrieve the average noise (in dBm) among receivers.
   3623  */
   3624 static int
   3625 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3626 {
   3627 	int i, total, nbant, noise;
   3628 
   3629 	total = nbant = 0;
   3630 	for (i = 0; i < 3; i++) {
   3631 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3632 			continue;
   3633 		total += noise;
   3634 		nbant++;
   3635 	}
   3636 	/* There should be at least one antenna but check anyway. */
   3637 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3638 }
   3639 
   3640 /*
   3641  * Compute temperature (in degC) from last received statistics.
   3642  */
   3643 static int
   3644 iwn4965_get_temperature(struct iwn_softc *sc)
   3645 {
   3646 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3647 	int32_t r1, r2, r3, r4, temp;
   3648 
   3649 	r1 = le32toh(uc->temp[0].chan20MHz);
   3650 	r2 = le32toh(uc->temp[1].chan20MHz);
   3651 	r3 = le32toh(uc->temp[2].chan20MHz);
   3652 	r4 = le32toh(sc->rawtemp);
   3653 
   3654 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
   3655 		return 0;
   3656 
   3657 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3658 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
   3659 	/* Compute temperature in Kelvin. */
   3660 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3661 	temp = (temp * 97) / 100 + 8;
   3662 
   3663 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3664 	return IWN_KTOC(temp);
   3665 }
   3666 
   3667 static int
   3668 iwn5000_get_temperature(struct iwn_softc *sc)
   3669 {
   3670 	int32_t temp;
   3671 
   3672 	/*
   3673 	 * Temperature is not used by the driver for 5000 Series because
   3674 	 * TX power calibration is handled by firmware.  We export it to
   3675 	 * users through the sensor framework though.
   3676 	 */
   3677 	temp = le32toh(sc->rawtemp);
   3678 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3679 		temp = (temp / -5) + sc->temp_off;
   3680 		temp = IWN_KTOC(temp);
   3681 	}
   3682 	return temp;
   3683 }
   3684 
   3685 /*
   3686  * Initialize sensitivity calibration state machine.
   3687  */
   3688 static int
   3689 iwn_init_sensitivity(struct iwn_softc *sc)
   3690 {
   3691 	struct iwn_ops *ops = &sc->ops;
   3692 	struct iwn_calib_state *calib = &sc->calib;
   3693 	uint32_t flags;
   3694 	int error;
   3695 
   3696 	/* Reset calibration state machine. */
   3697 	memset(calib, 0, sizeof (*calib));
   3698 	calib->state = IWN_CALIB_STATE_INIT;
   3699 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3700 	/* Set initial correlation values. */
   3701 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3702 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3703 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3704 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3705 	calib->cck_x4      = 125;
   3706 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3707 	calib->energy_cck  = sc->limits->energy_cck;
   3708 
   3709 	/* Write initial sensitivity. */
   3710 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3711 		return error;
   3712 
   3713 	/* Write initial gains. */
   3714 	if ((error = ops->init_gains(sc)) != 0)
   3715 		return error;
   3716 
   3717 	/* Request statistics at each beacon interval. */
   3718 	flags = 0;
   3719 	DPRINTF(("sending request for statistics\n"));
   3720 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3721 }
   3722 
   3723 /*
   3724  * Collect noise and RSSI statistics for the first 20 beacons received
   3725  * after association and use them to determine connected antennas and
   3726  * to set differential gains.
   3727  */
   3728 static void
   3729 iwn_collect_noise(struct iwn_softc *sc,
   3730     const struct iwn_rx_general_stats *stats)
   3731 {
   3732 	struct iwn_ops *ops = &sc->ops;
   3733 	struct iwn_calib_state *calib = &sc->calib;
   3734 	uint32_t val;
   3735 	int i;
   3736 
   3737 	/* Accumulate RSSI and noise for all 3 antennas. */
   3738 	for (i = 0; i < 3; i++) {
   3739 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3740 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3741 	}
   3742 	/* NB: We update differential gains only once after 20 beacons. */
   3743 	if (++calib->nbeacons < 20)
   3744 		return;
   3745 
   3746 	/* Determine highest average RSSI. */
   3747 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3748 	val = MAX(calib->rssi[2], val);
   3749 
   3750 	/* Determine which antennas are connected. */
   3751 	sc->chainmask = sc->rxchainmask;
   3752 	for (i = 0; i < 3; i++)
   3753 		if (val - calib->rssi[i] > 15 * 20)
   3754 			sc->chainmask &= ~(1 << i);
   3755 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   3756 	    sc->rxchainmask, sc->chainmask));
   3757 
   3758 	/* If none of the TX antennas are connected, keep at least one. */
   3759 	if ((sc->chainmask & sc->txchainmask) == 0)
   3760 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   3761 
   3762 	(void)ops->set_gains(sc);
   3763 	calib->state = IWN_CALIB_STATE_RUN;
   3764 
   3765 #ifdef notyet
   3766 	/* XXX Disable RX chains with no antennas connected. */
   3767 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   3768 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   3769 #endif
   3770 
   3771 	/* Enable power-saving mode if requested by user. */
   3772 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3773 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3774 }
   3775 
   3776 static int
   3777 iwn4965_init_gains(struct iwn_softc *sc)
   3778 {
   3779 	struct iwn_phy_calib_gain cmd;
   3780 
   3781 	memset(&cmd, 0, sizeof cmd);
   3782 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3783 	/* Differential gains initially set to 0 for all 3 antennas. */
   3784 	DPRINTF(("setting initial differential gains\n"));
   3785 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3786 }
   3787 
   3788 static int
   3789 iwn5000_init_gains(struct iwn_softc *sc)
   3790 {
   3791 	struct iwn_phy_calib cmd;
   3792 
   3793 	memset(&cmd, 0, sizeof cmd);
   3794 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   3795 	cmd.ngroups = 1;
   3796 	cmd.isvalid = 1;
   3797 	DPRINTF(("setting initial differential gains\n"));
   3798 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3799 }
   3800 
   3801 static int
   3802 iwn4965_set_gains(struct iwn_softc *sc)
   3803 {
   3804 	struct iwn_calib_state *calib = &sc->calib;
   3805 	struct iwn_phy_calib_gain cmd;
   3806 	int i, delta, noise;
   3807 
   3808 	/* Get minimal noise among connected antennas. */
   3809 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   3810 	for (i = 0; i < 3; i++)
   3811 		if (sc->chainmask & (1 << i))
   3812 			noise = MIN(calib->noise[i], noise);
   3813 
   3814 	memset(&cmd, 0, sizeof cmd);
   3815 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3816 	/* Set differential gains for connected antennas. */
   3817 	for (i = 0; i < 3; i++) {
   3818 		if (sc->chainmask & (1 << i)) {
   3819 			/* Compute attenuation (in unit of 1.5dB). */
   3820 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   3821 			/* NB: delta <= 0 */
   3822 			/* Limit to [-4.5dB,0]. */
   3823 			cmd.gain[i] = MIN(abs(delta), 3);
   3824 			if (delta < 0)
   3825 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   3826 		}
   3827 	}
   3828 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   3829 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   3830 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3831 }
   3832 
   3833 static int
   3834 iwn5000_set_gains(struct iwn_softc *sc)
   3835 {
   3836 	struct iwn_calib_state *calib = &sc->calib;
   3837 	struct iwn_phy_calib_gain cmd;
   3838 	int i, ant, div, delta;
   3839 
   3840 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   3841 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   3842 
   3843 	memset(&cmd, 0, sizeof cmd);
   3844 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
   3845 	cmd.ngroups = 1;
   3846 	cmd.isvalid = 1;
   3847 	/* Get first available RX antenna as referential. */
   3848 	ant = IWN_LSB(sc->rxchainmask);
   3849 	/* Set differential gains for other antennas. */
   3850 	for (i = ant + 1; i < 3; i++) {
   3851 		if (sc->chainmask & (1 << i)) {
   3852 			/* The delta is relative to antenna "ant". */
   3853 			delta = ((int32_t)calib->noise[ant] -
   3854 			    (int32_t)calib->noise[i]) / div;
   3855 			/* Limit to [-4.5dB,+4.5dB]. */
   3856 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   3857 			if (delta < 0)
   3858 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   3859 		}
   3860 	}
   3861 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   3862 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   3863 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3864 }
   3865 
   3866 /*
   3867  * Tune RF RX sensitivity based on the number of false alarms detected
   3868  * during the last beacon period.
   3869  */
   3870 static void
   3871 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   3872 {
   3873 #define inc(val, inc, max)			\
   3874 	if ((val) < (max)) {			\
   3875 		if ((val) < (max) - (inc))	\
   3876 			(val) += (inc);		\
   3877 		else				\
   3878 			(val) = (max);		\
   3879 		needs_update = 1;		\
   3880 	}
   3881 #define dec(val, dec, min)			\
   3882 	if ((val) > (min)) {			\
   3883 		if ((val) > (min) + (dec))	\
   3884 			(val) -= (dec);		\
   3885 		else				\
   3886 			(val) = (min);		\
   3887 		needs_update = 1;		\
   3888 	}
   3889 
   3890 	const struct iwn_sensitivity_limits *limits = sc->limits;
   3891 	struct iwn_calib_state *calib = &sc->calib;
   3892 	uint32_t val, rxena, fa;
   3893 	uint32_t energy[3], energy_min;
   3894 	uint8_t noise[3], noise_ref;
   3895 	int i, needs_update = 0;
   3896 
   3897 	/* Check that we've been enabled long enough. */
   3898 	if ((rxena = le32toh(stats->general.load)) == 0)
   3899 		return;
   3900 
   3901 	/* Compute number of false alarms since last call for OFDM. */
   3902 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   3903 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   3904 	fa *= 200 * 1024;	/* 200TU */
   3905 
   3906 	/* Save counters values for next call. */
   3907 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   3908 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   3909 
   3910 	if (fa > 50 * rxena) {
   3911 		/* High false alarm count, decrease sensitivity. */
   3912 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   3913 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   3914 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   3915 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   3916 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   3917 
   3918 	} else if (fa < 5 * rxena) {
   3919 		/* Low false alarm count, increase sensitivity. */
   3920 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   3921 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   3922 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   3923 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   3924 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   3925 	}
   3926 
   3927 	/* Compute maximum noise among 3 receivers. */
   3928 	for (i = 0; i < 3; i++)
   3929 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   3930 	val = MAX(noise[0], noise[1]);
   3931 	val = MAX(noise[2], val);
   3932 	/* Insert it into our samples table. */
   3933 	calib->noise_samples[calib->cur_noise_sample] = val;
   3934 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   3935 
   3936 	/* Compute maximum noise among last 20 samples. */
   3937 	noise_ref = calib->noise_samples[0];
   3938 	for (i = 1; i < 20; i++)
   3939 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   3940 
   3941 	/* Compute maximum energy among 3 receivers. */
   3942 	for (i = 0; i < 3; i++)
   3943 		energy[i] = le32toh(stats->general.energy[i]);
   3944 	val = MIN(energy[0], energy[1]);
   3945 	val = MIN(energy[2], val);
   3946 	/* Insert it into our samples table. */
   3947 	calib->energy_samples[calib->cur_energy_sample] = val;
   3948 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   3949 
   3950 	/* Compute minimum energy among last 10 samples. */
   3951 	energy_min = calib->energy_samples[0];
   3952 	for (i = 1; i < 10; i++)
   3953 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   3954 	energy_min += 6;
   3955 
   3956 	/* Compute number of false alarms since last call for CCK. */
   3957 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   3958 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   3959 	fa *= 200 * 1024;	/* 200TU */
   3960 
   3961 	/* Save counters values for next call. */
   3962 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   3963 	calib->fa_cck = le32toh(stats->cck.fa);
   3964 
   3965 	if (fa > 50 * rxena) {
   3966 		/* High false alarm count, decrease sensitivity. */
   3967 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   3968 		calib->cck_state = IWN_CCK_STATE_HIFA;
   3969 		calib->low_fa = 0;
   3970 
   3971 		if (calib->cck_x4 > 160) {
   3972 			calib->noise_ref = noise_ref;
   3973 			if (calib->energy_cck > 2)
   3974 				dec(calib->energy_cck, 2, energy_min);
   3975 		}
   3976 		if (calib->cck_x4 < 160) {
   3977 			calib->cck_x4 = 161;
   3978 			needs_update = 1;
   3979 		} else
   3980 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   3981 
   3982 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   3983 
   3984 	} else if (fa < 5 * rxena) {
   3985 		/* Low false alarm count, increase sensitivity. */
   3986 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   3987 		calib->cck_state = IWN_CCK_STATE_LOFA;
   3988 		calib->low_fa++;
   3989 
   3990 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   3991 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   3992 		     calib->low_fa > 100)) {
   3993 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   3994 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   3995 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   3996 		}
   3997 	} else {
   3998 		/* Not worth to increase or decrease sensitivity. */
   3999 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   4000 		calib->low_fa = 0;
   4001 		calib->noise_ref = noise_ref;
   4002 
   4003 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4004 			/* Previous interval had many false alarms. */
   4005 			dec(calib->energy_cck, 8, energy_min);
   4006 		}
   4007 		calib->cck_state = IWN_CCK_STATE_INIT;
   4008 	}
   4009 
   4010 	if (needs_update)
   4011 		(void)iwn_send_sensitivity(sc);
   4012 #undef dec
   4013 #undef inc
   4014 }
   4015 
   4016 static int
   4017 iwn_send_sensitivity(struct iwn_softc *sc)
   4018 {
   4019 	struct iwn_calib_state *calib = &sc->calib;
   4020 	struct iwn_sensitivity_cmd cmd;
   4021 
   4022 	memset(&cmd, 0, sizeof cmd);
   4023 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4024 	/* OFDM modulation. */
   4025 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4026 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4027 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4028 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4029 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4030 	cmd.energy_ofdm_th   = htole16(62);
   4031 	/* CCK modulation. */
   4032 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4033 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4034 	cmd.energy_cck       = htole16(calib->energy_cck);
   4035 	/* Barker modulation: use default values. */
   4036 	cmd.corr_barker      = htole16(190);
   4037 	cmd.corr_barker_mrc  = htole16(390);
   4038 
   4039 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4040 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4041 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4042 	    calib->energy_cck));
   4043 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
   4044 }
   4045 
   4046 /*
   4047  * Set STA mode power saving level (between 0 and 5).
   4048  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4049  */
   4050 static int
   4051 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4052 {
   4053 	struct iwn_pmgt_cmd cmd;
   4054 	const struct iwn_pmgt *pmgt;
   4055 	uint32_t maxp, skip_dtim;
   4056 	pcireg_t reg;
   4057 	int i;
   4058 
   4059 	/* Select which PS parameters to use. */
   4060 	if (dtim <= 2)
   4061 		pmgt = &iwn_pmgt[0][level];
   4062 	else if (dtim <= 10)
   4063 		pmgt = &iwn_pmgt[1][level];
   4064 	else
   4065 		pmgt = &iwn_pmgt[2][level];
   4066 
   4067 	memset(&cmd, 0, sizeof cmd);
   4068 	if (level != 0)	/* not CAM */
   4069 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4070 	if (level == 5)
   4071 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4072 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4073 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4074 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   4075 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4076 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4077 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4078 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4079 
   4080 	if (dtim == 0) {
   4081 		dtim = 1;
   4082 		skip_dtim = 0;
   4083 	} else
   4084 		skip_dtim = pmgt->skip_dtim;
   4085 	if (skip_dtim != 0) {
   4086 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4087 		maxp = pmgt->intval[4];
   4088 		if (maxp == (uint32_t)-1)
   4089 			maxp = dtim * (skip_dtim + 1);
   4090 		else if (maxp > dtim)
   4091 			maxp = (maxp / dtim) * dtim;
   4092 	} else
   4093 		maxp = dtim;
   4094 	for (i = 0; i < 5; i++)
   4095 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4096 
   4097 	DPRINTF(("setting power saving level to %d\n", level));
   4098 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4099 }
   4100 
   4101 int
   4102 iwn5000_runtime_calib(struct iwn_softc *sc)
   4103 {
   4104 	struct iwn5000_calib_config cmd;
   4105 
   4106 	memset(&cmd, 0, sizeof cmd);
   4107 	cmd.ucode.once.enable = 0xffffffff;
   4108 	cmd.ucode.once.start = IWN5000_CALIB_DC;
   4109 	DPRINTF(("configuring runtime calibration\n"));
   4110 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
   4111 }
   4112 
   4113 static int
   4114 iwn_config(struct iwn_softc *sc)
   4115 {
   4116 	struct iwn_ops *ops = &sc->ops;
   4117 	struct ieee80211com *ic = &sc->sc_ic;
   4118 	struct ifnet *ifp = ic->ic_ifp;
   4119 	struct iwn_bluetooth bluetooth;
   4120 	uint32_t txmask;
   4121 	uint16_t rxchain;
   4122 	int error;
   4123 
   4124 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   4125 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4126 		/* Configure runtime DC calibration. */
   4127 		error = iwn5000_runtime_calib(sc);
   4128 		if (error != 0) {
   4129 			printf("%s: could not configure runtime calibration\n",
   4130 			    device_xname(sc->sc_dev));
   4131 			return error;
   4132 		}
   4133 	}
   4134 
   4135 	/* Configure valid TX chains for 5000 Series. */
   4136 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4137 		txmask = htole32(sc->txchainmask);
   4138 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4139 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4140 		    sizeof txmask, 0);
   4141 		if (error != 0) {
   4142 			aprint_error_dev(sc->sc_dev,
   4143 			    "could not configure valid TX chains\n");
   4144 			return error;
   4145 		}
   4146 	}
   4147 
   4148 	/* Configure bluetooth coexistence. */
   4149 	memset(&bluetooth, 0, sizeof bluetooth);
   4150 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
   4151 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4152 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4153 	DPRINTF(("configuring bluetooth coexistence\n"));
   4154 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4155 	if (error != 0) {
   4156 		aprint_error_dev(sc->sc_dev,
   4157 		    "could not configure bluetooth coexistence\n");
   4158 		return error;
   4159 	}
   4160 
   4161 	/* Set mode, channel, RX filter and enable RX. */
   4162 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4163 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4164 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4165 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4166 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4167 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4168 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4169 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4170 	switch (ic->ic_opmode) {
   4171 	case IEEE80211_M_STA:
   4172 		sc->rxon.mode = IWN_MODE_STA;
   4173 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4174 		break;
   4175 	case IEEE80211_M_MONITOR:
   4176 		sc->rxon.mode = IWN_MODE_MONITOR;
   4177 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4178 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4179 		break;
   4180 	default:
   4181 		/* Should not get there. */
   4182 		break;
   4183 	}
   4184 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4185 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4186 	sc->rxon.ht_single_mask = 0xff;
   4187 	sc->rxon.ht_dual_mask = 0xff;
   4188 	sc->rxon.ht_triple_mask = 0xff;
   4189 	rxchain =
   4190 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4191 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4192 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4193 	sc->rxon.rxchain = htole16(rxchain);
   4194 	DPRINTF(("setting configuration\n"));
   4195 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
   4196 	if (error != 0) {
   4197 		aprint_error_dev(sc->sc_dev,
   4198 		    "RXON command failed\n");
   4199 		return error;
   4200 	}
   4201 
   4202 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4203 		aprint_error_dev(sc->sc_dev,
   4204 		    "could not add broadcast node\n");
   4205 		return error;
   4206 	}
   4207 
   4208 	/* Configuration has changed, set TX power accordingly. */
   4209 	if ((error = ops->set_txpower(sc, 0)) != 0) {
   4210 		aprint_error_dev(sc->sc_dev,
   4211 		    "could not set TX power\n");
   4212 		return error;
   4213 	}
   4214 
   4215 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4216 		aprint_error_dev(sc->sc_dev,
   4217 		    "could not set critical temperature\n");
   4218 		return error;
   4219 	}
   4220 
   4221 	/* Set power saving level to CAM during initialization. */
   4222 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4223 		aprint_error_dev(sc->sc_dev,
   4224 		    "could not set power saving level\n");
   4225 		return error;
   4226 	}
   4227 	return 0;
   4228 }
   4229 
   4230 static int
   4231 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4232 {
   4233 	struct ieee80211com *ic = &sc->sc_ic;
   4234 	struct iwn_scan_hdr *hdr;
   4235 	struct iwn_cmd_data *tx;
   4236 	struct iwn_scan_essid *essid;
   4237 	struct iwn_scan_chan *chan;
   4238 	struct ieee80211_frame *wh;
   4239 	struct ieee80211_rateset *rs;
   4240 	struct ieee80211_channel *c;
   4241 	uint8_t *buf, *frm;
   4242 	uint16_t rxchain;
   4243 	uint8_t txant;
   4244 	int buflen, error;
   4245 
   4246 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4247 	if (buf == NULL) {
   4248 		aprint_error_dev(sc->sc_dev,
   4249 		    "could not allocate buffer for scan command\n");
   4250 		return ENOMEM;
   4251 	}
   4252 	hdr = (struct iwn_scan_hdr *)buf;
   4253 	/*
   4254 	 * Move to the next channel if no frames are received within 10ms
   4255 	 * after sending the probe request.
   4256 	 */
   4257 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4258 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4259 
   4260 	/* Select antennas for scanning. */
   4261 	rxchain =
   4262 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4263 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4264 	    IWN_RXCHAIN_DRIVER_FORCE;
   4265 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4266 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4267 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4268 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4269 	} else	/* Use all available RX antennas. */
   4270 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4271 	hdr->rxchain = htole16(rxchain);
   4272 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4273 
   4274 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4275 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4276 	tx->id = sc->broadcast_id;
   4277 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4278 
   4279 	if (flags & IEEE80211_CHAN_5GHZ) {
   4280 		hdr->crc_threshold = 0xffff;
   4281 		/* Send probe requests at 6Mbps. */
   4282 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4283 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4284 	} else {
   4285 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4286 		/* Send probe requests at 1Mbps. */
   4287 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4288 		tx->rflags = IWN_RFLAG_CCK;
   4289 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4290 	}
   4291 	/* Use the first valid TX antenna. */
   4292 	txant = IWN_LSB(sc->txchainmask);
   4293 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4294 
   4295 	essid = (struct iwn_scan_essid *)(tx + 1);
   4296 	if (ic->ic_des_esslen != 0) {
   4297 		essid[0].id = IEEE80211_ELEMID_SSID;
   4298 		essid[0].len = ic->ic_des_esslen;
   4299 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4300 	}
   4301 	/*
   4302 	 * Build a probe request frame.  Most of the following code is a
   4303 	 * copy & paste of what is done in net80211.
   4304 	 */
   4305 	wh = (struct ieee80211_frame *)(essid + 20);
   4306 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4307 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4308 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4309 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4310 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4311 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4312 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4313 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4314 
   4315 	frm = (uint8_t *)(wh + 1);
   4316 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4317 	frm = ieee80211_add_rates(frm, rs);
   4318 #ifndef IEEE80211_NO_HT
   4319 	if (ic->ic_flags & IEEE80211_F_HTON)
   4320 		frm = ieee80211_add_htcaps(frm, ic);
   4321 #endif
   4322 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4323 		frm = ieee80211_add_xrates(frm, rs);
   4324 
   4325 	/* Set length of probe request. */
   4326 	tx->len = htole16(frm - (uint8_t *)wh);
   4327 
   4328 	chan = (struct iwn_scan_chan *)frm;
   4329 	for (c  = &ic->ic_channels[1];
   4330 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4331 		if ((c->ic_flags & flags) != flags)
   4332 			continue;
   4333 
   4334 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4335 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4336 		chan->flags = 0;
   4337 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4338 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4339 		if (ic->ic_des_esslen != 0)
   4340 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4341 		chan->dsp_gain = 0x6e;
   4342 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4343 			chan->rf_gain = 0x3b;
   4344 			chan->active  = htole16(24);
   4345 			chan->passive = htole16(110);
   4346 		} else {
   4347 			chan->rf_gain = 0x28;
   4348 			chan->active  = htole16(36);
   4349 			chan->passive = htole16(120);
   4350 		}
   4351 		hdr->nchan++;
   4352 		chan++;
   4353 	}
   4354 
   4355 	buflen = (uint8_t *)chan - buf;
   4356 	hdr->len = htole16(buflen);
   4357 
   4358 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4359 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4360 	free(buf, M_DEVBUF);
   4361 	return error;
   4362 }
   4363 
   4364 static int
   4365 iwn_auth(struct iwn_softc *sc)
   4366 {
   4367 	struct iwn_ops *ops = &sc->ops;
   4368 	struct ieee80211com *ic = &sc->sc_ic;
   4369 	struct ieee80211_node *ni = ic->ic_bss;
   4370 	int error;
   4371 
   4372 	/* Update adapter configuration. */
   4373 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4374 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4375 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4376 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4377 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4378 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4379 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4380 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4381 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4382 	switch (ic->ic_curmode) {
   4383 	case IEEE80211_MODE_11A:
   4384 		sc->rxon.cck_mask  = 0;
   4385 		sc->rxon.ofdm_mask = 0x15;
   4386 		break;
   4387 	case IEEE80211_MODE_11B:
   4388 		sc->rxon.cck_mask  = 0x03;
   4389 		sc->rxon.ofdm_mask = 0;
   4390 		break;
   4391 	default:	/* Assume 802.11b/g. */
   4392 		sc->rxon.cck_mask  = 0x0f;
   4393 		sc->rxon.ofdm_mask = 0x15;
   4394 	}
   4395 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4396 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4397 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4398 	if (error != 0) {
   4399 		aprint_error_dev(sc->sc_dev,
   4400 		    "RXON command failed\n");
   4401 		return error;
   4402 	}
   4403 
   4404 	/* Configuration has changed, set TX power accordingly. */
   4405 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4406 		aprint_error_dev(sc->sc_dev,
   4407 		    "could not set TX power\n");
   4408 		return error;
   4409 	}
   4410 	/*
   4411 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4412 	 * add the broadcast node again.
   4413 	 */
   4414 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4415 		aprint_error_dev(sc->sc_dev,
   4416 		    "could not add broadcast node\n");
   4417 		return error;
   4418 	}
   4419 	return 0;
   4420 }
   4421 
   4422 static int
   4423 iwn_run(struct iwn_softc *sc)
   4424 {
   4425 	struct iwn_ops *ops = &sc->ops;
   4426 	struct ieee80211com *ic = &sc->sc_ic;
   4427 	struct ieee80211_node *ni = ic->ic_bss;
   4428 	struct iwn_node_info node;
   4429 	int error;
   4430 
   4431 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4432 		/* Link LED blinks while monitoring. */
   4433 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4434 		return 0;
   4435 	}
   4436 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4437 		aprint_error_dev(sc->sc_dev,
   4438 		    "could not set timing\n");
   4439 		return error;
   4440 	}
   4441 
   4442 	/* Update adapter configuration. */
   4443 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4444 	/* Short preamble and slot time are negotiated when associating. */
   4445 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4446 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4447 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4448 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4449 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4450 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4451 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4452 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4453 	if (error != 0) {
   4454 		aprint_error_dev(sc->sc_dev,
   4455 		    "could not update configuration\n");
   4456 		return error;
   4457 	}
   4458 
   4459 	/* Configuration has changed, set TX power accordingly. */
   4460 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4461 		aprint_error_dev(sc->sc_dev,
   4462 		    "could not set TX power\n");
   4463 		return error;
   4464 	}
   4465 
   4466 	/* Fake a join to initialize the TX rate. */
   4467 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4468 	iwn_newassoc(ni, 1);
   4469 
   4470 	/* Add BSS node. */
   4471 	memset(&node, 0, sizeof node);
   4472 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4473 	node.id = IWN_ID_BSS;
   4474 #ifdef notyet
   4475 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4476 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4477 #endif
   4478 	DPRINTF(("adding BSS node\n"));
   4479 	error = ops->add_node(sc, &node, 1);
   4480 	if (error != 0) {
   4481 		aprint_error_dev(sc->sc_dev,
   4482 		    "could not add BSS node\n");
   4483 		return error;
   4484 	}
   4485 	DPRINTF(("setting link quality for node %d\n", node.id));
   4486 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4487 		aprint_error_dev(sc->sc_dev,
   4488 		    "could not setup link quality for node %d\n", node.id);
   4489 		return error;
   4490 	}
   4491 
   4492 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4493 		aprint_error_dev(sc->sc_dev,
   4494 		    "could not set sensitivity\n");
   4495 		return error;
   4496 	}
   4497 	/* Start periodic calibration timer. */
   4498 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4499 	sc->calib_cnt = 0;
   4500 	callout_schedule(&sc->calib_to, hz/2);
   4501 
   4502 	/* Link LED always on while associated. */
   4503 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4504 	return 0;
   4505 }
   4506 
   4507 #ifdef IWN_HWCRYPTO
   4508 /*
   4509  * We support CCMP hardware encryption/decryption of unicast frames only.
   4510  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4511  */
   4512 static int
   4513 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4514     struct ieee80211_key *k)
   4515 {
   4516 	struct iwn_softc *sc = ic->ic_softc;
   4517 	struct iwn_ops *ops = &sc->ops;
   4518 	struct iwn_node *wn = (void *)ni;
   4519 	struct iwn_node_info node;
   4520 	uint16_t kflags;
   4521 
   4522 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4523 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4524 		return ieee80211_set_key(ic, ni, k);
   4525 
   4526 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4527 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4528 		kflags |= IWN_KFLAG_GROUP;
   4529 
   4530 	memset(&node, 0, sizeof node);
   4531 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4532 	    sc->broadcast_id : wn->id;
   4533 	node.control = IWN_NODE_UPDATE;
   4534 	node.flags = IWN_FLAG_SET_KEY;
   4535 	node.kflags = htole16(kflags);
   4536 	node.kid = k->k_id;
   4537 	memcpy(node.key, k->k_key, k->k_len);
   4538 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   4539 	return ops->add_node(sc, &node, 1);
   4540 }
   4541 
   4542 static void
   4543 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4544     struct ieee80211_key *k)
   4545 {
   4546 	struct iwn_softc *sc = ic->ic_softc;
   4547 	struct iwn_ops *ops = &sc->ops;
   4548 	struct iwn_node *wn = (void *)ni;
   4549 	struct iwn_node_info node;
   4550 
   4551 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4552 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   4553 		/* See comment about other ciphers above. */
   4554 		ieee80211_delete_key(ic, ni, k);
   4555 		return;
   4556 	}
   4557 	if (ic->ic_state != IEEE80211_S_RUN)
   4558 		return;	/* Nothing to do. */
   4559 	memset(&node, 0, sizeof node);
   4560 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4561 	    sc->broadcast_id : wn->id;
   4562 	node.control = IWN_NODE_UPDATE;
   4563 	node.flags = IWN_FLAG_SET_KEY;
   4564 	node.kflags = htole16(IWN_KFLAG_INVALID);
   4565 	node.kid = 0xff;
   4566 	DPRINTF(("delete keys for node %d\n", node.id));
   4567 	(void)ops->add_node(sc, &node, 1);
   4568 }
   4569 #endif
   4570 
   4571 /* XXX Added for NetBSD (copied from rev 1.39). */
   4572 
   4573 static int
   4574 iwn_wme_update(struct ieee80211com *ic)
   4575 {
   4576 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   4577 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   4578 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   4579 	const struct wmeParams *wmep;
   4580 	struct iwn_edca_params cmd;
   4581 	int ac;
   4582 
   4583 	/* don't override default WME values if WME is not actually enabled */
   4584 	if (!(ic->ic_flags & IEEE80211_F_WME))
   4585 		return 0;
   4586 	cmd.flags = 0;
   4587 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   4588 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   4589 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   4590 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   4591 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   4592 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   4593 
   4594 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   4595 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   4596 					cmd.ac[ac].cwmin,
   4597 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   4598 	}
   4599 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   4600 #undef IWN_USEC
   4601 #undef IWN_EXP2
   4602 }
   4603 
   4604 #ifndef IEEE80211_NO_HT
   4605 /*
   4606  * This function is called by upper layer when an ADDBA request is received
   4607  * from another STA and before the ADDBA response is sent.
   4608  */
   4609 static int
   4610 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4611     uint8_t tid)
   4612 {
   4613 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   4614 	struct iwn_softc *sc = ic->ic_softc;
   4615 	struct iwn_ops *ops = &sc->ops;
   4616 	struct iwn_node *wn = (void *)ni;
   4617 	struct iwn_node_info node;
   4618 
   4619 	memset(&node, 0, sizeof node);
   4620 	node.id = wn->id;
   4621 	node.control = IWN_NODE_UPDATE;
   4622 	node.flags = IWN_FLAG_SET_ADDBA;
   4623 	node.addba_tid = tid;
   4624 	node.addba_ssn = htole16(ba->ba_winstart);
   4625 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   4626 	    ba->ba_winstart));
   4627 	return ops->add_node(sc, &node, 1);
   4628 }
   4629 
   4630 /*
   4631  * This function is called by upper layer on teardown of an HT-immediate
   4632  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
   4633  */
   4634 static void
   4635 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4636     uint8_t tid)
   4637 {
   4638 	struct iwn_softc *sc = ic->ic_softc;
   4639 	struct iwn_ops *ops = &sc->ops;
   4640 	struct iwn_node *wn = (void *)ni;
   4641 	struct iwn_node_info node;
   4642 
   4643 	memset(&node, 0, sizeof node);
   4644 	node.id = wn->id;
   4645 	node.control = IWN_NODE_UPDATE;
   4646 	node.flags = IWN_FLAG_SET_DELBA;
   4647 	node.delba_tid = tid;
   4648 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   4649 	(void)ops->add_node(sc, &node, 1);
   4650 }
   4651 
   4652 /*
   4653  * This function is called by upper layer when an ADDBA response is received
   4654  * from another STA.
   4655  */
   4656 static int
   4657 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4658     uint8_t tid)
   4659 {
   4660 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4661 	struct iwn_softc *sc = ic->ic_softc;
   4662 	struct iwn_ops *ops = &sc->ops;
   4663 	struct iwn_node *wn = (void *)ni;
   4664 	struct iwn_node_info node;
   4665 	int error;
   4666 
   4667 	/* Enable TX for the specified RA/TID. */
   4668 	wn->disable_tid &= ~(1 << tid);
   4669 	memset(&node, 0, sizeof node);
   4670 	node.id = wn->id;
   4671 	node.control = IWN_NODE_UPDATE;
   4672 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   4673 	node.disable_tid = htole16(wn->disable_tid);
   4674 	error = ops->add_node(sc, &node, 1);
   4675 	if (error != 0)
   4676 		return error;
   4677 
   4678 	if ((error = iwn_nic_lock(sc)) != 0)
   4679 		return error;
   4680 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   4681 	iwn_nic_unlock(sc);
   4682 	return 0;
   4683 }
   4684 
   4685 static void
   4686 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4687     uint8_t tid)
   4688 {
   4689 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4690 	struct iwn_softc *sc = ic->ic_softc;
   4691 	struct iwn_ops *ops = &sc->ops;
   4692 
   4693 	if (iwn_nic_lock(sc) != 0)
   4694 		return;
   4695 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   4696 	iwn_nic_unlock(sc);
   4697 }
   4698 
   4699 static void
   4700 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4701     uint8_t tid, uint16_t ssn)
   4702 {
   4703 	struct iwn_node *wn = (void *)ni;
   4704 	int qid = 7 + tid;
   4705 
   4706 	/* Stop TX scheduler while we're changing its configuration. */
   4707 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4708 	    IWN4965_TXQ_STATUS_CHGACT);
   4709 
   4710 	/* Assign RA/TID translation to the queue. */
   4711 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   4712 	    wn->id << 4 | tid);
   4713 
   4714 	/* Enable chain-building mode for the queue. */
   4715 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   4716 
   4717 	/* Set starting sequence number from the ADDBA request. */
   4718 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4719 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4720 
   4721 	/* Set scheduler window size. */
   4722 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   4723 	    IWN_SCHED_WINSZ);
   4724 	/* Set scheduler frame limit. */
   4725 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4726 	    IWN_SCHED_LIMIT << 16);
   4727 
   4728 	/* Enable interrupts for the queue. */
   4729 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4730 
   4731 	/* Mark the queue as active. */
   4732 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4733 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   4734 	    iwn_tid2fifo[tid] << 1);
   4735 }
   4736 
   4737 static void
   4738 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4739 {
   4740 	int qid = 7 + tid;
   4741 
   4742 	/* Stop TX scheduler while we're changing its configuration. */
   4743 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4744 	    IWN4965_TXQ_STATUS_CHGACT);
   4745 
   4746 	/* Set starting sequence number from the ADDBA request. */
   4747 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4748 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4749 
   4750 	/* Disable interrupts for the queue. */
   4751 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4752 
   4753 	/* Mark the queue as inactive. */
   4754 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4755 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   4756 }
   4757 
   4758 static void
   4759 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4760     uint8_t tid, uint16_t ssn)
   4761 {
   4762 	struct iwn_node *wn = (void *)ni;
   4763 	int qid = 10 + tid;
   4764 
   4765 	/* Stop TX scheduler while we're changing its configuration. */
   4766 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4767 	    IWN5000_TXQ_STATUS_CHGACT);
   4768 
   4769 	/* Assign RA/TID translation to the queue. */
   4770 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   4771 	    wn->id << 4 | tid);
   4772 
   4773 	/* Enable chain-building mode for the queue. */
   4774 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   4775 
   4776 	/* Enable aggregation for the queue. */
   4777 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4778 
   4779 	/* Set starting sequence number from the ADDBA request. */
   4780 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4781 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4782 
   4783 	/* Set scheduler window size and frame limit. */
   4784 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   4785 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   4786 
   4787 	/* Enable interrupts for the queue. */
   4788 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4789 
   4790 	/* Mark the queue as active. */
   4791 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4792 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   4793 }
   4794 
   4795 static void
   4796 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4797 {
   4798 	int qid = 10 + tid;
   4799 
   4800 	/* Stop TX scheduler while we're changing its configuration. */
   4801 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4802 	    IWN5000_TXQ_STATUS_CHGACT);
   4803 
   4804 	/* Disable aggregation for the queue. */
   4805 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4806 
   4807 	/* Set starting sequence number from the ADDBA request. */
   4808 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4809 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4810 
   4811 	/* Disable interrupts for the queue. */
   4812 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4813 
   4814 	/* Mark the queue as inactive. */
   4815 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4816 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   4817 }
   4818 #endif	/* !IEEE80211_NO_HT */
   4819 
   4820 /*
   4821  * Query calibration tables from the initialization firmware.  We do this
   4822  * only once at first boot.  Called from a process context.
   4823  */
   4824 static int
   4825 iwn5000_query_calibration(struct iwn_softc *sc)
   4826 {
   4827 	struct iwn5000_calib_config cmd;
   4828 	int error;
   4829 
   4830 	memset(&cmd, 0, sizeof cmd);
   4831 	cmd.ucode.once.enable = 0xffffffff;
   4832 	cmd.ucode.once.start  = 0xffffffff;
   4833 	cmd.ucode.once.send   = 0xffffffff;
   4834 	cmd.ucode.flags       = 0xffffffff;
   4835 	DPRINTF(("sending calibration query\n"));
   4836 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   4837 	if (error != 0)
   4838 		return error;
   4839 
   4840 	/* Wait at most two seconds for calibration to complete. */
   4841 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   4842 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   4843 	return error;
   4844 }
   4845 
   4846 /*
   4847  * Send calibration results to the runtime firmware.  These results were
   4848  * obtained on first boot from the initialization firmware.
   4849  */
   4850 static int
   4851 iwn5000_send_calibration(struct iwn_softc *sc)
   4852 {
   4853 	int idx, error;
   4854 
   4855 	for (idx = 0; idx < 5; idx++) {
   4856 		if (sc->calibcmd[idx].buf == NULL)
   4857 			continue;	/* No results available. */
   4858 		DPRINTF(("send calibration result idx=%d len=%d\n",
   4859 		    idx, sc->calibcmd[idx].len));
   4860 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   4861 		    sc->calibcmd[idx].len, 0);
   4862 		if (error != 0) {
   4863 			aprint_error_dev(sc->sc_dev,
   4864 			    "could not send calibration result\n");
   4865 			return error;
   4866 		}
   4867 	}
   4868 	return 0;
   4869 }
   4870 
   4871 static int
   4872 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   4873 {
   4874 	struct iwn5000_wimax_coex wimax;
   4875 
   4876 #ifdef notyet
   4877 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   4878 		/* Enable WiMAX coexistence for combo adapters. */
   4879 		wimax.flags =
   4880 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   4881 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   4882 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   4883 		    IWN_WIMAX_COEX_ENABLE;
   4884 		memcpy(wimax.events, iwn6050_wimax_events,
   4885 		    sizeof iwn6050_wimax_events);
   4886 	} else
   4887 #endif
   4888 	{
   4889 		/* Disable WiMAX coexistence. */
   4890 		wimax.flags = 0;
   4891 		memset(wimax.events, 0, sizeof wimax.events);
   4892 	}
   4893 	DPRINTF(("Configuring WiMAX coexistence\n"));
   4894 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   4895 }
   4896 
   4897 /*
   4898  * This function is called after the runtime firmware notifies us of its
   4899  * readiness (called in a process context).
   4900  */
   4901 static int
   4902 iwn4965_post_alive(struct iwn_softc *sc)
   4903 {
   4904 	int error, qid;
   4905 
   4906 	if ((error = iwn_nic_lock(sc)) != 0)
   4907 		return error;
   4908 
   4909 	/* Clear TX scheduler state in SRAM. */
   4910 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   4911 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   4912 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   4913 
   4914 	/* Set physical address of TX scheduler rings (1KB aligned). */
   4915 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   4916 
   4917 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   4918 
   4919 	/* Disable chain mode for all our 16 queues. */
   4920 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   4921 
   4922 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   4923 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   4924 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   4925 
   4926 		/* Set scheduler window size. */
   4927 		iwn_mem_write(sc, sc->sched_base +
   4928 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   4929 		/* Set scheduler frame limit. */
   4930 		iwn_mem_write(sc, sc->sched_base +
   4931 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4932 		    IWN_SCHED_LIMIT << 16);
   4933 	}
   4934 
   4935 	/* Enable interrupts for all our 16 queues. */
   4936 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   4937 	/* Identify TX FIFO rings (0-7). */
   4938 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   4939 
   4940 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   4941 	for (qid = 0; qid < 7; qid++) {
   4942 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   4943 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4944 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   4945 	}
   4946 	iwn_nic_unlock(sc);
   4947 	return 0;
   4948 }
   4949 
   4950 /*
   4951  * This function is called after the initialization or runtime firmware
   4952  * notifies us of its readiness (called in a process context).
   4953  */
   4954 static int
   4955 iwn5000_post_alive(struct iwn_softc *sc)
   4956 {
   4957 	int error, qid;
   4958 
   4959 	/* Switch to using ICT interrupt mode. */
   4960 	iwn5000_ict_reset(sc);
   4961 
   4962 	if ((error = iwn_nic_lock(sc)) != 0)
   4963 		return error;
   4964 
   4965 	/* Clear TX scheduler state in SRAM. */
   4966 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   4967 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   4968 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   4969 
   4970 	/* Set physical address of TX scheduler rings (1KB aligned). */
   4971 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   4972 
   4973 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   4974 
   4975 	/* Enable chain mode for all queues, except command queue. */
   4976 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   4977 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   4978 
   4979 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   4980 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   4981 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   4982 
   4983 		iwn_mem_write(sc, sc->sched_base +
   4984 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   4985 		/* Set scheduler window size and frame limit. */
   4986 		iwn_mem_write(sc, sc->sched_base +
   4987 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   4988 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   4989 	}
   4990 
   4991 	/* Enable interrupts for all our 20 queues. */
   4992 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   4993 	/* Identify TX FIFO rings (0-7). */
   4994 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   4995 
   4996 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   4997 	for (qid = 0; qid < 7; qid++) {
   4998 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   4999 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5000 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   5001 	}
   5002 	iwn_nic_unlock(sc);
   5003 
   5004 	/* Configure WiMAX coexistence for combo adapters. */
   5005 	error = iwn5000_send_wimax_coex(sc);
   5006 	if (error != 0) {
   5007 		aprint_error_dev(sc->sc_dev,
   5008 		    "could not configure WiMAX coexistence\n");
   5009 		return error;
   5010 	}
   5011 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5012 		struct iwn5000_phy_calib_crystal cmd;
   5013 
   5014 		/* Perform crystal calibration. */
   5015 		memset(&cmd, 0, sizeof cmd);
   5016 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5017 		cmd.ngroups = 1;
   5018 		cmd.isvalid = 1;
   5019 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5020 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5021 		DPRINTF(("sending crystal calibration %d, %d\n",
   5022 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5023 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5024 		if (error != 0) {
   5025 			aprint_error_dev(sc->sc_dev,
   5026 			    "crystal calibration failed\n");
   5027 			return error;
   5028 		}
   5029 	}
   5030 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5031 		/* Query calibration from the initialization firmware. */
   5032 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5033 			aprint_error_dev(sc->sc_dev,
   5034 			    "could not query calibration\n");
   5035 			return error;
   5036 		}
   5037 		/*
   5038 		 * We have the calibration results now, reboot with the
   5039 		 * runtime firmware (call ourselves recursively!)
   5040 		 */
   5041 		iwn_hw_stop(sc);
   5042 		error = iwn_hw_init(sc);
   5043 	} else {
   5044 		/* Send calibration results to runtime firmware. */
   5045 		error = iwn5000_send_calibration(sc);
   5046 	}
   5047 	return error;
   5048 }
   5049 
   5050 /*
   5051  * The firmware boot code is small and is intended to be copied directly into
   5052  * the NIC internal memory (no DMA transfer).
   5053  */
   5054 static int
   5055 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5056 {
   5057 	int error, ntries;
   5058 
   5059 	size /= sizeof (uint32_t);
   5060 
   5061 	if ((error = iwn_nic_lock(sc)) != 0)
   5062 		return error;
   5063 
   5064 	/* Copy microcode image into NIC memory. */
   5065 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5066 	    (const uint32_t *)ucode, size);
   5067 
   5068 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5069 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5070 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5071 
   5072 	/* Start boot load now. */
   5073 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5074 
   5075 	/* Wait for transfer to complete. */
   5076 	for (ntries = 0; ntries < 1000; ntries++) {
   5077 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5078 		    IWN_BSM_WR_CTRL_START))
   5079 			break;
   5080 		DELAY(10);
   5081 	}
   5082 	if (ntries == 1000) {
   5083 		aprint_error_dev(sc->sc_dev,
   5084 		    "could not load boot firmware\n");
   5085 		iwn_nic_unlock(sc);
   5086 		return ETIMEDOUT;
   5087 	}
   5088 
   5089 	/* Enable boot after power up. */
   5090 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5091 
   5092 	iwn_nic_unlock(sc);
   5093 	return 0;
   5094 }
   5095 
   5096 static int
   5097 iwn4965_load_firmware(struct iwn_softc *sc)
   5098 {
   5099 	struct iwn_fw_info *fw = &sc->fw;
   5100 	struct iwn_dma_info *dma = &sc->fw_dma;
   5101 	int error;
   5102 
   5103 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5104 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5105 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5106 	    BUS_DMASYNC_PREWRITE);
   5107 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5108 	    fw->init.text, fw->init.textsz);
   5109 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5110 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5111 
   5112 	/* Tell adapter where to find initialization sections. */
   5113 	if ((error = iwn_nic_lock(sc)) != 0)
   5114 		return error;
   5115 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5116 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5117 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5118 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5119 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5120 	iwn_nic_unlock(sc);
   5121 
   5122 	/* Load firmware boot code. */
   5123 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5124 	if (error != 0) {
   5125 		aprint_error_dev(sc->sc_dev,
   5126 		    "could not load boot firmware\n");
   5127 		return error;
   5128 	}
   5129 	/* Now press "execute". */
   5130 	IWN_WRITE(sc, IWN_RESET, 0);
   5131 
   5132 	/* Wait at most one second for first alive notification. */
   5133 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5134 		aprint_error_dev(sc->sc_dev,
   5135 		    "timeout waiting for adapter to initialize\n");
   5136 		return error;
   5137 	}
   5138 
   5139 	/* Retrieve current temperature for initial TX power calibration. */
   5140 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5141 	sc->temp = iwn4965_get_temperature(sc);
   5142 
   5143 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5144 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5145 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5146 	    BUS_DMASYNC_PREWRITE);
   5147 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5148 	    fw->main.text, fw->main.textsz);
   5149 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5150 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5151 
   5152 	/* Tell adapter where to find runtime sections. */
   5153 	if ((error = iwn_nic_lock(sc)) != 0)
   5154 		return error;
   5155 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5156 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5157 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5158 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5159 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5160 	    IWN_FW_UPDATED | fw->main.textsz);
   5161 	iwn_nic_unlock(sc);
   5162 
   5163 	return 0;
   5164 }
   5165 
   5166 static int
   5167 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5168     const uint8_t *section, int size)
   5169 {
   5170 	struct iwn_dma_info *dma = &sc->fw_dma;
   5171 	int error;
   5172 
   5173 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5174 	memcpy(dma->vaddr, section, size);
   5175 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5176 
   5177 	if ((error = iwn_nic_lock(sc)) != 0)
   5178 		return error;
   5179 
   5180 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5181 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5182 
   5183 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5184 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5185 	    IWN_LOADDR(dma->paddr));
   5186 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5187 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5188 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5189 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5190 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5191 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5192 
   5193 	/* Kick Flow Handler to start DMA transfer. */
   5194 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5195 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5196 
   5197 	iwn_nic_unlock(sc);
   5198 
   5199 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5200 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5201 }
   5202 
   5203 static int
   5204 iwn5000_load_firmware(struct iwn_softc *sc)
   5205 {
   5206 	struct iwn_fw_part *fw;
   5207 	int error;
   5208 
   5209 	/* Load the initialization firmware on first boot only. */
   5210 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5211 	    &sc->fw.main : &sc->fw.init;
   5212 
   5213 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5214 	    fw->text, fw->textsz);
   5215 	if (error != 0) {
   5216 		aprint_error_dev(sc->sc_dev,
   5217 		    "could not load firmware %s section\n", ".text");
   5218 		return error;
   5219 	}
   5220 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5221 	    fw->data, fw->datasz);
   5222 	if (error != 0) {
   5223 		aprint_error_dev(sc->sc_dev,
   5224 		    "could not load firmware %s section\n", ".data");
   5225 		return error;
   5226 	}
   5227 
   5228 	/* Now press "execute". */
   5229 	IWN_WRITE(sc, IWN_RESET, 0);
   5230 	return 0;
   5231 }
   5232 
   5233 /*
   5234  * Extract text and data sections from a legacy firmware image.
   5235  */
   5236 static int
   5237 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
   5238 {
   5239 	const uint32_t *ptr;
   5240 	size_t hdrlen = 24;
   5241 	uint32_t rev;
   5242 
   5243 	ptr = (const uint32_t *)fw->data;
   5244 	rev = le32toh(*ptr++);
   5245 
   5246 	/* Check firmware API version. */
   5247 	if (IWN_FW_API(rev) <= 1) {
   5248 		aprint_error_dev(sc->sc_dev,
   5249 		    "bad firmware, need API version >=2\n");
   5250 		return EINVAL;
   5251 	}
   5252 	if (IWN_FW_API(rev) >= 3) {
   5253 		/* Skip build number (version 2 header). */
   5254 		hdrlen += 4;
   5255 		ptr++;
   5256 	}
   5257 	if (fw->size < hdrlen) {
   5258 		aprint_error_dev(sc->sc_dev,
   5259 		    "firmware too short: %zd bytes\n", fw->size);
   5260 		return EINVAL;
   5261 	}
   5262 	fw->main.textsz = le32toh(*ptr++);
   5263 	fw->main.datasz = le32toh(*ptr++);
   5264 	fw->init.textsz = le32toh(*ptr++);
   5265 	fw->init.datasz = le32toh(*ptr++);
   5266 	fw->boot.textsz = le32toh(*ptr++);
   5267 
   5268 	/* Check that all firmware sections fit. */
   5269 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
   5270 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
   5271 		aprint_error_dev(sc->sc_dev,
   5272 		    "firmware too short: %zd bytes\n", fw->size);
   5273 		return EINVAL;
   5274 	}
   5275 
   5276 	/* Get pointers to firmware sections. */
   5277 	fw->main.text = (const uint8_t *)ptr;
   5278 	fw->main.data = fw->main.text + fw->main.textsz;
   5279 	fw->init.text = fw->main.data + fw->main.datasz;
   5280 	fw->init.data = fw->init.text + fw->init.textsz;
   5281 	fw->boot.text = fw->init.data + fw->init.datasz;
   5282 	return 0;
   5283 }
   5284 
   5285 /*
   5286  * Extract text and data sections from a TLV firmware image.
   5287  */
   5288 static int
   5289 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
   5290     uint16_t alt)
   5291 {
   5292 	const struct iwn_fw_tlv_hdr *hdr;
   5293 	const struct iwn_fw_tlv *tlv;
   5294 	const uint8_t *ptr, *end;
   5295 	uint64_t altmask;
   5296 	uint32_t len;
   5297 
   5298 	if (fw->size < sizeof (*hdr)) {
   5299 		aprint_error_dev(sc->sc_dev,
   5300 		    "firmware too short: %zd bytes\n", fw->size);
   5301 		return EINVAL;
   5302 	}
   5303 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
   5304 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
   5305 		aprint_error_dev(sc->sc_dev,
   5306 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
   5307 		return EINVAL;
   5308 	}
   5309 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
   5310 	    le32toh(hdr->build)));
   5311 
   5312 	/*
   5313 	 * Select the closest supported alternative that is less than
   5314 	 * or equal to the specified one.
   5315 	 */
   5316 	altmask = le64toh(hdr->altmask);
   5317 	while (alt > 0 && !(altmask & (1ULL << alt)))
   5318 		alt--;	/* Downgrade. */
   5319 	DPRINTF(("using alternative %d\n", alt));
   5320 
   5321 	ptr = (const uint8_t *)(hdr + 1);
   5322 	end = (const uint8_t *)(fw->data + fw->size);
   5323 
   5324 	/* Parse type-length-value fields. */
   5325 	while (ptr + sizeof (*tlv) <= end) {
   5326 		tlv = (const struct iwn_fw_tlv *)ptr;
   5327 		len = le32toh(tlv->len);
   5328 
   5329 		ptr += sizeof (*tlv);
   5330 		if (ptr + len > end) {
   5331 			aprint_error_dev(sc->sc_dev,
   5332 			    "firmware too short: %zd bytes\n", fw->size);
   5333 			return EINVAL;
   5334 		}
   5335 		/* Skip other alternatives. */
   5336 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
   5337 			goto next;
   5338 
   5339 		switch (le16toh(tlv->type)) {
   5340 		case IWN_FW_TLV_MAIN_TEXT:
   5341 			fw->main.text = ptr;
   5342 			fw->main.textsz = len;
   5343 			break;
   5344 		case IWN_FW_TLV_MAIN_DATA:
   5345 			fw->main.data = ptr;
   5346 			fw->main.datasz = len;
   5347 			break;
   5348 		case IWN_FW_TLV_INIT_TEXT:
   5349 			fw->init.text = ptr;
   5350 			fw->init.textsz = len;
   5351 			break;
   5352 		case IWN_FW_TLV_INIT_DATA:
   5353 			fw->init.data = ptr;
   5354 			fw->init.datasz = len;
   5355 			break;
   5356 		case IWN_FW_TLV_BOOT_TEXT:
   5357 			fw->boot.text = ptr;
   5358 			fw->boot.textsz = len;
   5359 			break;
   5360 		default:
   5361 			DPRINTF(("TLV type %d not handled\n",
   5362 			    le16toh(tlv->type)));
   5363 			break;
   5364 		}
   5365  next:		/* TLV fields are 32-bit aligned. */
   5366 		ptr += (len + 3) & ~3;
   5367 	}
   5368 	return 0;
   5369 }
   5370 
   5371 static int
   5372 iwn_read_firmware(struct iwn_softc *sc)
   5373 {
   5374 	struct iwn_fw_info *fw = &sc->fw;
   5375 	firmware_handle_t fwh;
   5376 	int error;
   5377 
   5378 	/* Initialize for error returns */
   5379 	fw->data = NULL;
   5380 	fw->size = 0;
   5381 
   5382 	/* Open firmware image. */
   5383 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5384 		aprint_error_dev(sc->sc_dev,
   5385 		    "could not get firmware handle %s\n", sc->fwname);
   5386 		return error;
   5387 	}
   5388 	fw->size = firmware_get_size(fwh);
   5389 	if (fw->size < sizeof (uint32_t)) {
   5390 		aprint_error_dev(sc->sc_dev,
   5391 		    "firmware too short: %zd bytes\n", fw->size);
   5392 		firmware_close(fwh);
   5393 		return EINVAL;
   5394 	}
   5395 
   5396 	/* Read the firmware. */
   5397 	fw->data = firmware_malloc(fw->size);
   5398 	if (fw->data == NULL) {
   5399 		aprint_error_dev(sc->sc_dev,
   5400 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5401 		firmware_close(fwh);
   5402 		return ENOMEM;
   5403 	}
   5404 	error = firmware_read(fwh, 0, fw->data, fw->size);
   5405 	firmware_close(fwh);
   5406 	if (error != 0) {
   5407 		aprint_error_dev(sc->sc_dev,
   5408 		    "could not read firmware %s\n", sc->fwname);
   5409 		goto out;
   5410 	}
   5411 
   5412 	/* Retrieve text and data sections. */
   5413 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
   5414 		error = iwn_read_firmware_leg(sc, fw);
   5415 	else
   5416 		error = iwn_read_firmware_tlv(sc, fw, 1);
   5417 	if (error != 0) {
   5418 		aprint_error_dev(sc->sc_dev,
   5419 		    "could not read firmware sections\n");
   5420 		goto out;
   5421 	}
   5422 
   5423 	/* Make sure text and data sections fit in hardware memory. */
   5424 	if (fw->main.textsz > sc->fw_text_maxsz ||
   5425 	    fw->main.datasz > sc->fw_data_maxsz ||
   5426 	    fw->init.textsz > sc->fw_text_maxsz ||
   5427 	    fw->init.datasz > sc->fw_data_maxsz ||
   5428 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5429 	    (fw->boot.textsz & 3) != 0) {
   5430 		aprint_error_dev(sc->sc_dev,
   5431 		    "firmware sections too large\n");
   5432 		goto out;
   5433 	}
   5434 
   5435 	/* We can proceed with loading the firmware. */
   5436 	return 0;
   5437 out:
   5438 	firmware_free(fw->data, fw->size);
   5439 	fw->data = NULL;
   5440 	fw->size = 0;
   5441 	return error ? error : EINVAL;
   5442 }
   5443 
   5444 static int
   5445 iwn_clock_wait(struct iwn_softc *sc)
   5446 {
   5447 	int ntries;
   5448 
   5449 	/* Set "initialization complete" bit. */
   5450 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5451 
   5452 	/* Wait for clock stabilization. */
   5453 	for (ntries = 0; ntries < 2500; ntries++) {
   5454 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5455 			return 0;
   5456 		DELAY(10);
   5457 	}
   5458 	aprint_error_dev(sc->sc_dev,
   5459 	    "timeout waiting for clock stabilization\n");
   5460 	return ETIMEDOUT;
   5461 }
   5462 
   5463 static int
   5464 iwn_apm_init(struct iwn_softc *sc)
   5465 {
   5466 	pcireg_t reg;
   5467 	int error;
   5468 
   5469 	/* Disable L0s exit timer (NMI bug workaround). */
   5470 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   5471 	/* Don't wait for ICH L0s (ICH bug workaround). */
   5472 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   5473 
   5474 	/* Set FH wait threshold to max (HW bug under stress workaround). */
   5475 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   5476 
   5477 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   5478 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   5479 
   5480 	/* Retrieve PCIe Active State Power Management (ASPM). */
   5481 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   5482 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   5483 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   5484 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   5485 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5486 	else
   5487 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5488 
   5489 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   5490 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   5491 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   5492 
   5493 	/* Wait for clock stabilization before accessing prph. */
   5494 	if ((error = iwn_clock_wait(sc)) != 0)
   5495 		return error;
   5496 
   5497 	if ((error = iwn_nic_lock(sc)) != 0)
   5498 		return error;
   5499 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   5500 		/* Enable DMA and BSM (Bootstrap State Machine). */
   5501 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5502 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   5503 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   5504 	} else {
   5505 		/* Enable DMA. */
   5506 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5507 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5508 	}
   5509 	DELAY(20);
   5510 	/* Disable L1-Active. */
   5511 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   5512 	iwn_nic_unlock(sc);
   5513 
   5514 	return 0;
   5515 }
   5516 
   5517 static void
   5518 iwn_apm_stop_master(struct iwn_softc *sc)
   5519 {
   5520 	int ntries;
   5521 
   5522 	/* Stop busmaster DMA activity. */
   5523 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   5524 	for (ntries = 0; ntries < 100; ntries++) {
   5525 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   5526 			return;
   5527 		DELAY(10);
   5528 	}
   5529 	aprint_error_dev(sc->sc_dev,
   5530 	    "timeout waiting for master\n");
   5531 }
   5532 
   5533 static void
   5534 iwn_apm_stop(struct iwn_softc *sc)
   5535 {
   5536 	iwn_apm_stop_master(sc);
   5537 
   5538 	/* Reset the entire device. */
   5539 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   5540 	DELAY(10);
   5541 	/* Clear "initialization complete" bit. */
   5542 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5543 }
   5544 
   5545 static int
   5546 iwn4965_nic_config(struct iwn_softc *sc)
   5547 {
   5548 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   5549 		/*
   5550 		 * I don't believe this to be correct but this is what the
   5551 		 * vendor driver is doing. Probably the bits should not be
   5552 		 * shifted in IWN_RFCFG_*.
   5553 		 */
   5554 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5555 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5556 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5557 		    IWN_RFCFG_DASH(sc->rfcfg));
   5558 	}
   5559 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5560 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5561 	return 0;
   5562 }
   5563 
   5564 static int
   5565 iwn5000_nic_config(struct iwn_softc *sc)
   5566 {
   5567 	uint32_t tmp;
   5568 	int error;
   5569 
   5570 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   5571 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5572 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5573 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5574 		    IWN_RFCFG_DASH(sc->rfcfg));
   5575 	}
   5576 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5577 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5578 
   5579 	if ((error = iwn_nic_lock(sc)) != 0)
   5580 		return error;
   5581 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   5582 
   5583 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   5584 		/*
   5585 		 * Select first Switching Voltage Regulator (1.32V) to
   5586 		 * solve a stability issue related to noisy DC2DC line
   5587 		 * in the silicon of 1000 Series.
   5588 		 */
   5589 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   5590 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   5591 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   5592 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   5593 	}
   5594 	iwn_nic_unlock(sc);
   5595 
   5596 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   5597 		/* Use internal power amplifier only. */
   5598 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   5599 	}
   5600 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   5601 		sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
   5602 		/* Indicate that ROM calibration version is >=6. */
   5603 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   5604 	}
   5605 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   5606 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
   5607 	return 0;
   5608 }
   5609 
   5610 /*
   5611  * Take NIC ownership over Intel Active Management Technology (AMT).
   5612  */
   5613 static int
   5614 iwn_hw_prepare(struct iwn_softc *sc)
   5615 {
   5616 	int ntries;
   5617 
   5618 	/* Check if hardware is ready. */
   5619 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5620 	for (ntries = 0; ntries < 5; ntries++) {
   5621 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5622 		    IWN_HW_IF_CONFIG_NIC_READY)
   5623 			return 0;
   5624 		DELAY(10);
   5625 	}
   5626 
   5627 	/* Hardware not ready, force into ready state. */
   5628 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   5629 	for (ntries = 0; ntries < 15000; ntries++) {
   5630 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5631 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   5632 			break;
   5633 		DELAY(10);
   5634 	}
   5635 	if (ntries == 15000)
   5636 		return ETIMEDOUT;
   5637 
   5638 	/* Hardware should be ready now. */
   5639 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5640 	for (ntries = 0; ntries < 5; ntries++) {
   5641 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5642 		    IWN_HW_IF_CONFIG_NIC_READY)
   5643 			return 0;
   5644 		DELAY(10);
   5645 	}
   5646 	return ETIMEDOUT;
   5647 }
   5648 
   5649 static int
   5650 iwn_hw_init(struct iwn_softc *sc)
   5651 {
   5652 	struct iwn_ops *ops = &sc->ops;
   5653 	int error, chnl, qid;
   5654 
   5655 	/* Clear pending interrupts. */
   5656 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5657 
   5658 	if ((error = iwn_apm_init(sc)) != 0) {
   5659 		aprint_error_dev(sc->sc_dev,
   5660 		    "could not power ON adapter\n");
   5661 		return error;
   5662 	}
   5663 
   5664 	/* Select VMAIN power source. */
   5665 	if ((error = iwn_nic_lock(sc)) != 0)
   5666 		return error;
   5667 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   5668 	iwn_nic_unlock(sc);
   5669 
   5670 	/* Perform adapter-specific initialization. */
   5671 	if ((error = ops->nic_config(sc)) != 0)
   5672 		return error;
   5673 
   5674 	/* Initialize RX ring. */
   5675 	if ((error = iwn_nic_lock(sc)) != 0)
   5676 		return error;
   5677 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   5678 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   5679 	/* Set physical address of RX ring (256-byte aligned). */
   5680 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   5681 	/* Set physical address of RX status (16-byte aligned). */
   5682 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   5683 	/* Enable RX. */
   5684 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   5685 	    IWN_FH_RX_CONFIG_ENA           |
   5686 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   5687 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   5688 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   5689 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   5690 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   5691 	iwn_nic_unlock(sc);
   5692 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   5693 
   5694 	if ((error = iwn_nic_lock(sc)) != 0)
   5695 		return error;
   5696 
   5697 	/* Initialize TX scheduler. */
   5698 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   5699 
   5700 	/* Set physical address of "keep warm" page (16-byte aligned). */
   5701 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   5702 
   5703 	/* Initialize TX rings. */
   5704 	for (qid = 0; qid < sc->ntxqs; qid++) {
   5705 		struct iwn_tx_ring *txq = &sc->txq[qid];
   5706 
   5707 		/* Set physical address of TX ring (256-byte aligned). */
   5708 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   5709 		    txq->desc_dma.paddr >> 8);
   5710 	}
   5711 	iwn_nic_unlock(sc);
   5712 
   5713 	/* Enable DMA channels. */
   5714 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   5715 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   5716 		    IWN_FH_TX_CONFIG_DMA_ENA |
   5717 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   5718 	}
   5719 
   5720 	/* Clear "radio off" and "commands blocked" bits. */
   5721 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5722 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   5723 
   5724 	/* Clear pending interrupts. */
   5725 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5726 	/* Enable interrupt coalescing. */
   5727 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   5728 	/* Enable interrupts. */
   5729 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   5730 
   5731 	/* _Really_ make sure "radio off" bit is cleared! */
   5732 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5733 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5734 
   5735 	/* Enable shadow registers. */
   5736 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   5737 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
   5738 
   5739 	if ((error = ops->load_firmware(sc)) != 0) {
   5740 		aprint_error_dev(sc->sc_dev,
   5741 		    "could not load firmware\n");
   5742 		return error;
   5743 	}
   5744 	/* Wait at most one second for firmware alive notification. */
   5745 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5746 		aprint_error_dev(sc->sc_dev,
   5747 		    "timeout waiting for adapter to initialize\n");
   5748 		return error;
   5749 	}
   5750 	/* Do post-firmware initialization. */
   5751 	return ops->post_alive(sc);
   5752 }
   5753 
   5754 static void
   5755 iwn_hw_stop(struct iwn_softc *sc)
   5756 {
   5757 	int chnl, qid, ntries;
   5758 
   5759 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   5760 
   5761 	/* Disable interrupts. */
   5762 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   5763 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5764 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   5765 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5766 
   5767 	/* Make sure we no longer hold the NIC lock. */
   5768 	iwn_nic_unlock(sc);
   5769 
   5770 	/* Stop TX scheduler. */
   5771 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   5772 
   5773 	/* Stop all DMA channels. */
   5774 	if (iwn_nic_lock(sc) == 0) {
   5775 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   5776 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   5777 			for (ntries = 0; ntries < 200; ntries++) {
   5778 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
   5779 				    IWN_FH_TX_STATUS_IDLE(chnl))
   5780 					break;
   5781 				DELAY(10);
   5782 			}
   5783 		}
   5784 		iwn_nic_unlock(sc);
   5785 	}
   5786 
   5787 	/* Stop RX ring. */
   5788 	iwn_reset_rx_ring(sc, &sc->rxq);
   5789 
   5790 	/* Reset all TX rings. */
   5791 	for (qid = 0; qid < sc->ntxqs; qid++)
   5792 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   5793 
   5794 	if (iwn_nic_lock(sc) == 0) {
   5795 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   5796 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5797 		iwn_nic_unlock(sc);
   5798 	}
   5799 	DELAY(5);
   5800 	/* Power OFF adapter. */
   5801 	iwn_apm_stop(sc);
   5802 }
   5803 
   5804 static int
   5805 iwn_init(struct ifnet *ifp)
   5806 {
   5807 	struct iwn_softc *sc = ifp->if_softc;
   5808 	struct ieee80211com *ic = &sc->sc_ic;
   5809 	int error;
   5810 
   5811 	mutex_enter(&sc->sc_mtx);
   5812 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
   5813 		goto out;
   5814 	if ((error = iwn_hw_prepare(sc)) != 0) {
   5815 		aprint_error_dev(sc->sc_dev,
   5816 		    "hardware not ready\n");
   5817 		goto fail;
   5818 	}
   5819 
   5820 	/* Check that the radio is not disabled by hardware switch. */
   5821 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   5822 		aprint_error_dev(sc->sc_dev,
   5823 		    "radio is disabled by hardware switch\n");
   5824 		error = EPERM;	/* :-) */
   5825 		goto fail;
   5826 	}
   5827 
   5828 	/* Read firmware images from the filesystem. */
   5829 	if ((error = iwn_read_firmware(sc)) != 0) {
   5830 		aprint_error_dev(sc->sc_dev,
   5831 		    "could not read firmware\n");
   5832 		goto fail;
   5833 	}
   5834 
   5835 	/* Initialize interrupt mask to default value. */
   5836 	sc->int_mask = IWN_INT_MASK_DEF;
   5837 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5838 
   5839 	/* Initialize hardware and upload firmware. */
   5840 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
   5841 	error = iwn_hw_init(sc);
   5842 	firmware_free(sc->fw.data, sc->fw.size);
   5843 	sc->fw.data = NULL;
   5844 	sc->fw.size = 0;
   5845 	if (error != 0) {
   5846 		aprint_error_dev(sc->sc_dev,
   5847 		    "could not initialize hardware\n");
   5848 		goto fail;
   5849 	}
   5850 
   5851 	/* Configure adapter now that it is ready. */
   5852 	if ((error = iwn_config(sc)) != 0) {
   5853 		aprint_error_dev(sc->sc_dev,
   5854 		    "could not configure device\n");
   5855 		goto fail;
   5856 	}
   5857 
   5858 	ifp->if_flags &= ~IFF_OACTIVE;
   5859 	ifp->if_flags |= IFF_RUNNING;
   5860 
   5861 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   5862 		ieee80211_begin_scan(ic, 0);
   5863 	else
   5864 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   5865 
   5866 	sc->sc_flags |= IWN_FLAG_HW_INITED;
   5867 out:
   5868 	mutex_exit(&sc->sc_mtx);
   5869 	return 0;
   5870 
   5871 fail:	mutex_exit(&sc->sc_mtx);
   5872 	iwn_stop(ifp, 1);
   5873 	return error;
   5874 }
   5875 
   5876 static void
   5877 iwn_stop(struct ifnet *ifp, int disable)
   5878 {
   5879 	struct iwn_softc *sc = ifp->if_softc;
   5880 	struct ieee80211com *ic = &sc->sc_ic;
   5881 
   5882 	if (!disable)
   5883 		mutex_enter(&sc->sc_mtx);
   5884 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
   5885 	ifp->if_timer = sc->sc_tx_timer = 0;
   5886 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5887 
   5888 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   5889 
   5890 	/* Power OFF hardware. */
   5891 	iwn_hw_stop(sc);
   5892 
   5893 	if (!disable)
   5894 		mutex_exit(&sc->sc_mtx);
   5895 }
   5896 
   5897 /*
   5898  * XXX MCLGETI alternative
   5899  *
   5900  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   5901  * as long as there are available free buffers then it uses MEXTMALLOC.,
   5902  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   5903  * The MCLGET4K code is used for testing an alternative mbuf cache.
   5904  */
   5905 
   5906 static struct mbuf *
   5907 MCLGETIalt(struct iwn_softc *sc, int how,
   5908     struct ifnet *ifp __unused, u_int size)
   5909 {
   5910 	struct mbuf *m;
   5911 #ifdef IWN_USE_RBUF
   5912 	struct iwn_rbuf *rbuf;
   5913 #endif
   5914 
   5915 	MGETHDR(m, how, MT_DATA);
   5916 	if (m == NULL)
   5917 		return NULL;
   5918 
   5919 #ifdef IWN_USE_RBUF
   5920 	if (sc->rxq.nb_free_entries > 0 &&
   5921 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   5922 		/* Attach buffer to mbuf header. */
   5923 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   5924 		m->m_flags |= M_EXT_RW;
   5925 	}
   5926 	else {
   5927 		MEXTMALLOC(m, size, how);
   5928 		if ((m->m_flags & M_EXT) == 0) {
   5929 			m_freem(m);
   5930 			return NULL;
   5931 		}
   5932 	}
   5933 
   5934 #else
   5935 #ifdef MCLGET4K
   5936 	if (size == 4096)
   5937 		MCLGET4K(m, how);
   5938 	else
   5939 		panic("size must be 4k");
   5940 #else
   5941 	MEXTMALLOC(m, size, how);
   5942 #endif
   5943 	if ((m->m_flags & M_EXT) == 0) {
   5944 		m_freem(m);
   5945 		return NULL;
   5946 	}
   5947 #endif
   5948 
   5949 	return m;
   5950 }
   5951 
   5952 #ifdef IWN_USE_RBUF
   5953 static struct iwn_rbuf *
   5954 iwn_alloc_rbuf(struct iwn_softc *sc)
   5955 {
   5956 	struct iwn_rbuf *rbuf;
   5957 	mutex_enter(&sc->rxq.freelist_mtx);
   5958 
   5959 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   5960 	if (rbuf != NULL) {
   5961 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   5962 		sc->rxq.nb_free_entries --;
   5963 	}
   5964 	mutex_exit(&sc->rxq.freelist_mtx);
   5965 	return rbuf;
   5966 }
   5967 
   5968 /*
   5969  * This is called automatically by the network stack when the mbuf to which
   5970  * our RX buffer is attached is freed.
   5971  */
   5972 static void
   5973 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   5974 {
   5975 	struct iwn_rbuf *rbuf = arg;
   5976 	struct iwn_softc *sc = rbuf->sc;
   5977 
   5978 	/* Put the RX buffer back in the free list. */
   5979 	mutex_enter(&sc->rxq.freelist_mtx);
   5980 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   5981 	mutex_exit(&sc->rxq.freelist_mtx);
   5982 
   5983 	sc->rxq.nb_free_entries ++;
   5984 	if (__predict_true(m != NULL))
   5985 		pool_cache_put(mb_cache, m);
   5986 }
   5987 
   5988 static int
   5989 iwn_alloc_rpool(struct iwn_softc *sc)
   5990 {
   5991 	struct iwn_rx_ring *ring = &sc->rxq;
   5992 	struct iwn_rbuf *rbuf;
   5993 	int i, error;
   5994 
   5995 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   5996 
   5997 	/* Allocate a big chunk of DMA'able memory... */
   5998 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   5999 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   6000 	if (error != 0) {
   6001 		aprint_error_dev(sc->sc_dev,
   6002 		    "could not allocate RX buffers DMA memory\n");
   6003 		return error;
   6004 	}
   6005 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   6006 	SLIST_INIT(&ring->freelist);
   6007 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   6008 		rbuf = &ring->rbuf[i];
   6009 
   6010 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   6011 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   6012 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   6013 
   6014 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   6015 	}
   6016 	ring->nb_free_entries = IWN_RBUF_COUNT;
   6017 	return 0;
   6018 }
   6019 
   6020 static void
   6021 iwn_free_rpool(struct iwn_softc *sc)
   6022 {
   6023 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   6024 }
   6025 #endif
   6026 
   6027 /*
   6028  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
   6029  * Copyright (c) 2001 Atsushi Onoe
   6030  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
   6031  * Copyright (c) 2007-2009 Damien Bergamini
   6032  * All rights reserved.
   6033  */
   6034 
   6035 /*
   6036  * Add an SSID element to a frame (see 7.3.2.1).
   6037  */
   6038 static u_int8_t *
   6039 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
   6040 {
   6041 	*frm++ = IEEE80211_ELEMID_SSID;
   6042 	*frm++ = len;
   6043 	memcpy(frm, ssid, len);
   6044 	return frm + len;
   6045 }
   6046 
   6047 /*
   6048  * Add a supported rates element to a frame (see 7.3.2.2).
   6049  */
   6050 static u_int8_t *
   6051 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6052 {
   6053 	int nrates;
   6054 
   6055 	*frm++ = IEEE80211_ELEMID_RATES;
   6056 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
   6057 	*frm++ = nrates;
   6058 	memcpy(frm, rs->rs_rates, nrates);
   6059 	return frm + nrates;
   6060 }
   6061 
   6062 /*
   6063  * Add an extended supported rates element to a frame (see 7.3.2.14).
   6064  */
   6065 static u_int8_t *
   6066 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6067 {
   6068 	int nrates;
   6069 
   6070 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
   6071 
   6072 	*frm++ = IEEE80211_ELEMID_XRATES;
   6073 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   6074 	*frm++ = nrates;
   6075 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   6076 	return frm + nrates;
   6077 }
   6078 
   6079 /*
   6080  * XXX: Hack to set the current channel to the value advertised in beacons or
   6081  * probe responses. Only used during AP detection.
   6082  * XXX: Duplicated from if_iwi.c
   6083  */
   6084 static void
   6085 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
   6086 {
   6087 	struct ieee80211_frame *wh;
   6088 	uint8_t subtype;
   6089 	uint8_t *frm, *efrm;
   6090 
   6091 	wh = mtod(m, struct ieee80211_frame *);
   6092 
   6093 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6094 		return;
   6095 
   6096 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6097 
   6098 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6099 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6100 		return;
   6101 
   6102 	frm = (uint8_t *)(wh + 1);
   6103 	efrm = mtod(m, uint8_t *) + m->m_len;
   6104 
   6105 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6106 	while (frm < efrm) {
   6107 		if (*frm == IEEE80211_ELEMID_DSPARMS)
   6108 #if IEEE80211_CHAN_MAX < 255
   6109 		if (frm[2] <= IEEE80211_CHAN_MAX)
   6110 #endif
   6111 			ic->ic_curchan = &ic->ic_channels[frm[2]];
   6112 
   6113 		frm += frm[1] + 2;
   6114 	}
   6115 }
   6116 
   6117