if_iwn.c revision 1.60 1 /* $NetBSD: if_iwn.c,v 1.60 2011/10/08 10:21:16 mbalmer Exp $ */
2 /* $OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $ */
3
4 /*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.60 2011/10/08 10:21:16 mbalmer Exp $");
26
27 #define IWN_USE_RBUF /* Use local storage for RX */
28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/conf.h>
40 #include <sys/kauth.h>
41 #include <sys/callout.h>
42
43 #include <dev/sysmon/sysmonvar.h>
44
45 #include <sys/bus.h>
46 #include <machine/endian.h>
47 #include <machine/intr.h>
48
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pcidevs.h>
52
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <net/if_ether.h>
64 #include <netinet/ip.h>
65
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_amrr.h>
68 #include <net80211/ieee80211_radiotap.h>
69
70 #include <dev/firmload.h>
71
72 #include <dev/pci/if_iwnreg.h>
73 #include <dev/pci/if_iwnvar.h>
74
75 static const pci_product_id_t iwn_devices[] = {
76 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
77 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
78 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
79 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
80 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
81 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
82 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
83 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
84 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
85 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
86 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
87 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
88 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
89 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
90 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
91 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
92 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
93 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
94 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
95 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
96 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
97 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
98 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
99 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
100 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
101 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
102 };
103
104 /*
105 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
106 */
107 static const struct ieee80211_rateset iwn_rateset_11a =
108 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
109
110 static const struct ieee80211_rateset iwn_rateset_11b =
111 { 4, { 2, 4, 11, 22 } };
112
113 static const struct ieee80211_rateset iwn_rateset_11g =
114 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
115
116 static int iwn_match(device_t , struct cfdata *, void *);
117 static void iwn_attach(device_t , device_t , void *);
118 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t);
119 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t);
120 static void iwn_radiotap_attach(struct iwn_softc *);
121 static int iwn_detach(device_t , int);
122 #if 0
123 static void iwn_power(int, void *);
124 #endif
125 static bool iwn_resume(device_t, const pmf_qual_t *);
126 static int iwn_nic_lock(struct iwn_softc *);
127 static int iwn_eeprom_lock(struct iwn_softc *);
128 static int iwn_init_otprom(struct iwn_softc *);
129 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
130 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
131 void **, bus_size_t, bus_size_t);
132 static void iwn_dma_contig_free(struct iwn_dma_info *);
133 static int iwn_alloc_sched(struct iwn_softc *);
134 static void iwn_free_sched(struct iwn_softc *);
135 static int iwn_alloc_kw(struct iwn_softc *);
136 static void iwn_free_kw(struct iwn_softc *);
137 static int iwn_alloc_ict(struct iwn_softc *);
138 static void iwn_free_ict(struct iwn_softc *);
139 static int iwn_alloc_fwmem(struct iwn_softc *);
140 static void iwn_free_fwmem(struct iwn_softc *);
141 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
142 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
143 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
144 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
145 int);
146 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
147 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
148 static void iwn5000_ict_reset(struct iwn_softc *);
149 static int iwn_read_eeprom(struct iwn_softc *);
150 static void iwn4965_read_eeprom(struct iwn_softc *);
151
152 #ifdef IWN_DEBUG
153 static void iwn4965_print_power_group(struct iwn_softc *, int);
154 #endif
155 static void iwn5000_read_eeprom(struct iwn_softc *);
156 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
157 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
158 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
159 static void iwn_newassoc(struct ieee80211_node *, int);
160 static int iwn_media_change(struct ifnet *);
161 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
162 static void iwn_iter_func(void *, struct ieee80211_node *);
163 static void iwn_calib_timeout(void *);
164 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
165 struct iwn_rx_data *);
166 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
167 struct iwn_rx_data *);
168 #ifndef IEEE80211_NO_HT
169 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
170 struct iwn_rx_data *);
171 #endif
172 static void iwn5000_rx_calib_results(struct iwn_softc *,
173 struct iwn_rx_desc *, struct iwn_rx_data *);
174 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
175 struct iwn_rx_data *);
176 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
177 struct iwn_rx_data *);
178 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
179 struct iwn_rx_data *);
180 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
181 uint8_t);
182 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
183 static void iwn_notif_intr(struct iwn_softc *);
184 static void iwn_wakeup_intr(struct iwn_softc *);
185 static void iwn_fatal_intr(struct iwn_softc *);
186 static int iwn_intr(void *);
187 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
188 uint16_t);
189 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
190 uint16_t);
191 #ifdef notyet
192 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
193 #endif
194 static int iwn_tx(struct iwn_softc *, struct mbuf *,
195 struct ieee80211_node *, int);
196 static void iwn_start(struct ifnet *);
197 static void iwn_watchdog(struct ifnet *);
198 static int iwn_ioctl(struct ifnet *, u_long, void *);
199 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
200 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
201 int);
202 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
203 int);
204 static int iwn_set_link_quality(struct iwn_softc *,
205 struct ieee80211_node *);
206 static int iwn_add_broadcast_node(struct iwn_softc *, int);
207 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
208 static int iwn_set_critical_temp(struct iwn_softc *);
209 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
210 static void iwn4965_power_calibration(struct iwn_softc *, int);
211 static int iwn4965_set_txpower(struct iwn_softc *, int);
212 static int iwn5000_set_txpower(struct iwn_softc *, int);
213 static int iwn4965_get_rssi(const struct iwn_rx_stat *);
214 static int iwn5000_get_rssi(const struct iwn_rx_stat *);
215 static int iwn_get_noise(const struct iwn_rx_general_stats *);
216 static int iwn4965_get_temperature(struct iwn_softc *);
217 static int iwn5000_get_temperature(struct iwn_softc *);
218 static int iwn_init_sensitivity(struct iwn_softc *);
219 static void iwn_collect_noise(struct iwn_softc *,
220 const struct iwn_rx_general_stats *);
221 static int iwn4965_init_gains(struct iwn_softc *);
222 static int iwn5000_init_gains(struct iwn_softc *);
223 static int iwn4965_set_gains(struct iwn_softc *);
224 static int iwn5000_set_gains(struct iwn_softc *);
225 static void iwn_tune_sensitivity(struct iwn_softc *,
226 const struct iwn_rx_stats *);
227 static int iwn_send_sensitivity(struct iwn_softc *);
228 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
229 static int iwn5000_runtime_calib(struct iwn_softc *);
230 static int iwn_config(struct iwn_softc *);
231 static int iwn_scan(struct iwn_softc *, uint16_t);
232 static int iwn_auth(struct iwn_softc *);
233 static int iwn_run(struct iwn_softc *);
234 #ifdef IWN_HWCRYPTO
235 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
236 struct ieee80211_key *);
237 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
238 struct ieee80211_key *);
239 #endif
240 static int iwn_wme_update(struct ieee80211com *);
241 #ifndef IEEE80211_NO_HT
242 static int iwn_ampdu_rx_start(struct ieee80211com *,
243 struct ieee80211_node *, uint8_t);
244 static void iwn_ampdu_rx_stop(struct ieee80211com *,
245 struct ieee80211_node *, uint8_t);
246 static int iwn_ampdu_tx_start(struct ieee80211com *,
247 struct ieee80211_node *, uint8_t);
248 static void iwn_ampdu_tx_stop(struct ieee80211com *,
249 struct ieee80211_node *, uint8_t);
250 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
251 struct ieee80211_node *, uint8_t, uint16_t);
252 static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
253 uint8_t, uint16_t);
254 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
255 struct ieee80211_node *, uint8_t, uint16_t);
256 static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
257 uint8_t, uint16_t);
258 #endif
259 static int iwn5000_query_calibration(struct iwn_softc *);
260 static int iwn5000_send_calibration(struct iwn_softc *);
261 static int iwn5000_send_wimax_coex(struct iwn_softc *);
262 static int iwn4965_post_alive(struct iwn_softc *);
263 static int iwn5000_post_alive(struct iwn_softc *);
264 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
265 int);
266 static int iwn4965_load_firmware(struct iwn_softc *);
267 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
268 const uint8_t *, int);
269 static int iwn5000_load_firmware(struct iwn_softc *);
270 static int iwn_read_firmware_leg(struct iwn_softc *,
271 struct iwn_fw_info *);
272 static int iwn_read_firmware_tlv(struct iwn_softc *,
273 struct iwn_fw_info *, uint16_t);
274 static int iwn_read_firmware(struct iwn_softc *);
275 static int iwn_clock_wait(struct iwn_softc *);
276 static int iwn_apm_init(struct iwn_softc *);
277 static void iwn_apm_stop_master(struct iwn_softc *);
278 static void iwn_apm_stop(struct iwn_softc *);
279 static int iwn4965_nic_config(struct iwn_softc *);
280 static int iwn5000_nic_config(struct iwn_softc *);
281 static int iwn_hw_prepare(struct iwn_softc *);
282 static int iwn_hw_init(struct iwn_softc *);
283 static void iwn_hw_stop(struct iwn_softc *);
284 static int iwn_init(struct ifnet *);
285 static void iwn_stop(struct ifnet *, int);
286
287 /* XXX MCLGETI alternative */
288 static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
289 struct ifnet *, u_int);
290 #ifdef IWN_USE_RBUF
291 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
292 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
293 static int iwn_alloc_rpool(struct iwn_softc *);
294 static void iwn_free_rpool(struct iwn_softc *);
295 #endif
296
297 /* XXX needed by iwn_scan */
298 static u_int8_t *ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
299 static u_int8_t *ieee80211_add_rates(u_int8_t *,
300 const struct ieee80211_rateset *);
301 static u_int8_t *ieee80211_add_xrates(u_int8_t *,
302 const struct ieee80211_rateset *);
303
304 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *);
305
306 #ifdef IWN_DEBUG
307 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
308 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
309 int iwn_debug = 0;
310 #else
311 #define DPRINTF(x)
312 #define DPRINTFN(n, x)
313 #endif
314
315 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
316 iwn_detach, NULL);
317
318 static int
319 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
320 {
321 struct pci_attach_args *pa = aux;
322 size_t i;
323
324 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
325 return 0;
326
327 for (i = 0; i < __arraycount(iwn_devices); i++)
328 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
329 return 1;
330
331 return 0;
332 }
333
334 static void
335 iwn_attach(device_t parent __unused, device_t self, void *aux)
336 {
337 struct iwn_softc *sc = device_private(self);
338 struct ieee80211com *ic = &sc->sc_ic;
339 struct ifnet *ifp = &sc->sc_ec.ec_if;
340 struct pci_attach_args *pa = aux;
341 const char *intrstr;
342 char devinfo[256];
343 pci_intr_handle_t ih;
344 pcireg_t memtype, reg;
345 int i, error;
346 int revision;
347
348 sc->sc_dev = self;
349 sc->sc_pct = pa->pa_pc;
350 sc->sc_pcitag = pa->pa_tag;
351 sc->sc_dmat = pa->pa_dmat;
352 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
353
354 callout_init(&sc->calib_to, 0);
355 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
356
357 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
358 revision = PCI_REVISION(pa->pa_class);
359 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
360
361 /*
362 * Get the offset of the PCI Express Capability Structure in PCI
363 * Configuration Space.
364 */
365 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
366 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
367 if (error == 0) {
368 aprint_error(": PCIe capability structure not found!\n");
369 return;
370 }
371
372 /* Clear device-specific "PCI retry timeout" register (41h). */
373 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
374 if (reg & 0xff00)
375 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
376
377 /* Enable bus-mastering and hardware bug workaround. */
378 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */
379 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
380 reg |= PCI_COMMAND_MASTER_ENABLE;
381 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
382 DPRINTF(("PCIe INTx Disable set\n"));
383 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
384 }
385 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
386
387 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
388 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
389 &sc->sc_sh, NULL, &sc->sc_sz);
390 if (error != 0) {
391 aprint_error(": can't map mem space\n");
392 return;
393 }
394
395 /* Install interrupt handler. */
396 if (pci_intr_map(pa, &ih) != 0) {
397 aprint_error(": can't map interrupt\n");
398 return;
399 }
400 intrstr = pci_intr_string(sc->sc_pct, ih);
401 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
402 if (sc->sc_ih == NULL) {
403 aprint_error(": can't establish interrupt");
404 if (intrstr != NULL)
405 aprint_error(" at %s", intrstr);
406 aprint_error("\n");
407 return;
408 }
409 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
410
411 /* Read hardware revision and attach. */
412 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
413 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
414 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
415 else
416 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
417 if (error != 0) {
418 aprint_error(": could not attach device\n");
419 return;
420 }
421
422 if ((error = iwn_hw_prepare(sc)) != 0) {
423 aprint_error(": hardware not ready\n");
424 return;
425 }
426
427 /* Read MAC address, channels, etc from EEPROM. */
428 if ((error = iwn_read_eeprom(sc)) != 0) {
429 aprint_error(": could not read EEPROM\n");
430 return;
431 }
432
433 /* Allocate DMA memory for firmware transfers. */
434 if ((error = iwn_alloc_fwmem(sc)) != 0) {
435 aprint_error(": could not allocate memory for firmware\n");
436 return;
437 }
438
439 /* Allocate "Keep Warm" page. */
440 if ((error = iwn_alloc_kw(sc)) != 0) {
441 aprint_error(": could not allocate keep warm page\n");
442 goto fail1;
443 }
444
445 /* Allocate ICT table for 5000 Series. */
446 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
447 (error = iwn_alloc_ict(sc)) != 0) {
448 aprint_error(": could not allocate ICT table\n");
449 goto fail2;
450 }
451
452 /* Allocate TX scheduler "rings". */
453 if ((error = iwn_alloc_sched(sc)) != 0) {
454 aprint_error(": could not allocate TX scheduler rings\n");
455 goto fail3;
456 }
457
458 #ifdef IWN_USE_RBUF
459 /* Allocate RX buffers. */
460 if ((error = iwn_alloc_rpool(sc)) != 0) {
461 aprint_error_dev(self, "could not allocate RX buffers\n");
462 goto fail3;
463 }
464 #endif
465
466 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
467 for (i = 0; i < sc->ntxqs; i++) {
468 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
469 aprint_error(": could not allocate TX ring %d\n", i);
470 goto fail4;
471 }
472 }
473
474 /* Allocate RX ring. */
475 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
476 aprint_error(": could not allocate RX ring\n");
477 goto fail4;
478 }
479
480 /* Clear pending interrupts. */
481 IWN_WRITE(sc, IWN_INT, 0xffffffff);
482
483 /* Count the number of available chains. */
484 sc->ntxchains =
485 ((sc->txchainmask >> 2) & 1) +
486 ((sc->txchainmask >> 1) & 1) +
487 ((sc->txchainmask >> 0) & 1);
488 sc->nrxchains =
489 ((sc->rxchainmask >> 2) & 1) +
490 ((sc->rxchainmask >> 1) & 1) +
491 ((sc->rxchainmask >> 0) & 1);
492 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
493 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
494 ether_sprintf(ic->ic_myaddr));
495
496 ic->ic_ifp = ifp;
497 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
498 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
499 ic->ic_state = IEEE80211_S_INIT;
500
501 /* Set device capabilities. */
502 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
503 * and IEEE80211_C_PMGT too. */
504 ic->ic_caps =
505 IEEE80211_C_IBSS | /* IBSS mode support */
506 IEEE80211_C_WPA | /* 802.11i */
507 IEEE80211_C_MONITOR | /* monitor mode supported */
508 IEEE80211_C_TXPMGT | /* tx power management */
509 IEEE80211_C_SHSLOT | /* short slot time supported */
510 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
511 IEEE80211_C_WME; /* 802.11e */
512
513 #ifndef IEEE80211_NO_HT
514 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
515 /* Set HT capabilities. */
516 ic->ic_htcaps =
517 #if IWN_RBUF_SIZE == 8192
518 IEEE80211_HTCAP_AMSDU7935 |
519 #endif
520 IEEE80211_HTCAP_CBW20_40 |
521 IEEE80211_HTCAP_SGI20 |
522 IEEE80211_HTCAP_SGI40;
523 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
524 ic->ic_htcaps |= IEEE80211_HTCAP_GF;
525 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
526 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
527 else
528 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
529 }
530 #endif /* !IEEE80211_NO_HT */
531
532 /* Set supported legacy rates. */
533 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
534 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
535 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
536 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
537 }
538 #ifndef IEEE80211_NO_HT
539 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
540 /* Set supported HT rates. */
541 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
542 if (sc->nrxchains > 1)
543 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
544 if (sc->nrxchains > 2)
545 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
546 }
547 #endif
548
549 /* IBSS channel undefined for now. */
550 ic->ic_ibss_chan = &ic->ic_channels[0];
551
552 ifp->if_softc = sc;
553 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
554 ifp->if_init = iwn_init;
555 ifp->if_ioctl = iwn_ioctl;
556 ifp->if_start = iwn_start;
557 ifp->if_stop = iwn_stop;
558 ifp->if_watchdog = iwn_watchdog;
559 IFQ_SET_READY(&ifp->if_snd);
560 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
561
562 if_attach(ifp);
563 ieee80211_ifattach(ic);
564 ic->ic_node_alloc = iwn_node_alloc;
565 ic->ic_newassoc = iwn_newassoc;
566 #ifdef IWN_HWCRYPTO
567 ic->ic_crypto.cs_key_set = iwn_set_key;
568 ic->ic_crypto.cs_key_delete = iwn_delete_key;
569 #endif
570 ic->ic_wme.wme_update = iwn_wme_update;
571 #ifndef IEEE80211_NO_HT
572 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
573 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
574 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
575 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
576 #endif
577
578 /* Override 802.11 state transition machine. */
579 sc->sc_newstate = ic->ic_newstate;
580 ic->ic_newstate = iwn_newstate;
581 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
582
583 sc->amrr.amrr_min_success_threshold = 1;
584 sc->amrr.amrr_max_success_threshold = 15;
585
586 iwn_radiotap_attach(sc);
587
588 /*
589 * XXX for NetBSD, OpenBSD timeout_set replaced by
590 * callout_init and callout_setfunc, above.
591 */
592
593 if (pmf_device_register(self, NULL, iwn_resume))
594 pmf_class_network_register(self, ifp);
595 else
596 aprint_error_dev(self, "couldn't establish power handler\n");
597
598 /* XXX NetBSD add call to ieee80211_announce for dmesg. */
599 ieee80211_announce(ic);
600
601 return;
602
603 /* Free allocated memory if something failed during attachment. */
604 fail4: while (--i >= 0)
605 iwn_free_tx_ring(sc, &sc->txq[i]);
606 #ifdef IWN_USE_RBUF
607 iwn_free_rpool(sc);
608 #endif
609 iwn_free_sched(sc);
610 fail3: if (sc->ict != NULL)
611 iwn_free_ict(sc);
612 fail2: iwn_free_kw(sc);
613 fail1: iwn_free_fwmem(sc);
614 }
615
616 int
617 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
618 {
619 struct iwn_ops *ops = &sc->ops;
620
621 ops->load_firmware = iwn4965_load_firmware;
622 ops->read_eeprom = iwn4965_read_eeprom;
623 ops->post_alive = iwn4965_post_alive;
624 ops->nic_config = iwn4965_nic_config;
625 ops->update_sched = iwn4965_update_sched;
626 ops->get_temperature = iwn4965_get_temperature;
627 ops->get_rssi = iwn4965_get_rssi;
628 ops->set_txpower = iwn4965_set_txpower;
629 ops->init_gains = iwn4965_init_gains;
630 ops->set_gains = iwn4965_set_gains;
631 ops->add_node = iwn4965_add_node;
632 ops->tx_done = iwn4965_tx_done;
633 #ifndef IEEE80211_NO_HT
634 ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
635 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
636 #endif
637 sc->ntxqs = IWN4965_NTXQUEUES;
638 sc->ndmachnls = IWN4965_NDMACHNLS;
639 sc->broadcast_id = IWN4965_ID_BROADCAST;
640 sc->rxonsz = IWN4965_RXONSZ;
641 sc->schedsz = IWN4965_SCHEDSZ;
642 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
643 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
644 sc->fwsz = IWN4965_FWSZ;
645 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
646 sc->limits = &iwn4965_sensitivity_limits;
647 sc->fwname = "iwlwifi-4965-2.ucode";
648 /* Override chains masks, ROM is known to be broken. */
649 sc->txchainmask = IWN_ANT_AB;
650 sc->rxchainmask = IWN_ANT_ABC;
651
652 return 0;
653 }
654
655 int
656 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
657 {
658 struct iwn_ops *ops = &sc->ops;
659
660 ops->load_firmware = iwn5000_load_firmware;
661 ops->read_eeprom = iwn5000_read_eeprom;
662 ops->post_alive = iwn5000_post_alive;
663 ops->nic_config = iwn5000_nic_config;
664 ops->update_sched = iwn5000_update_sched;
665 ops->get_temperature = iwn5000_get_temperature;
666 ops->get_rssi = iwn5000_get_rssi;
667 ops->set_txpower = iwn5000_set_txpower;
668 ops->init_gains = iwn5000_init_gains;
669 ops->set_gains = iwn5000_set_gains;
670 ops->add_node = iwn5000_add_node;
671 ops->tx_done = iwn5000_tx_done;
672 #ifndef IEEE80211_NO_HT
673 ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
674 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
675 #endif
676 sc->ntxqs = IWN5000_NTXQUEUES;
677 sc->ndmachnls = IWN5000_NDMACHNLS;
678 sc->broadcast_id = IWN5000_ID_BROADCAST;
679 sc->rxonsz = IWN5000_RXONSZ;
680 sc->schedsz = IWN5000_SCHEDSZ;
681 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
682 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
683 sc->fwsz = IWN5000_FWSZ;
684 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
685
686 switch (sc->hw_type) {
687 case IWN_HW_REV_TYPE_5100:
688 sc->limits = &iwn5000_sensitivity_limits;
689 sc->fwname = "iwlwifi-5000-2.ucode";
690 /* Override chains masks, ROM is known to be broken. */
691 sc->txchainmask = IWN_ANT_B;
692 sc->rxchainmask = IWN_ANT_AB;
693 break;
694 case IWN_HW_REV_TYPE_5150:
695 sc->limits = &iwn5150_sensitivity_limits;
696 sc->fwname = "iwlwifi-5150-2.ucode";
697 break;
698 case IWN_HW_REV_TYPE_5300:
699 case IWN_HW_REV_TYPE_5350:
700 sc->limits = &iwn5000_sensitivity_limits;
701 sc->fwname = "iwlwifi-5000-2.ucode";
702 break;
703 case IWN_HW_REV_TYPE_1000:
704 sc->limits = &iwn1000_sensitivity_limits;
705 sc->fwname = "iwlwifi-1000-3.ucode";
706 break;
707 case IWN_HW_REV_TYPE_6000:
708 sc->limits = &iwn6000_sensitivity_limits;
709 sc->fwname = "iwlwifi-6000-4.ucode";
710 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
711 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
712 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
713 /* Override chains masks, ROM is known to be broken. */
714 sc->txchainmask = IWN_ANT_BC;
715 sc->rxchainmask = IWN_ANT_BC;
716 }
717 break;
718 case IWN_HW_REV_TYPE_6050:
719 sc->limits = &iwn6000_sensitivity_limits;
720 sc->fwname = "iwlwifi-6050-5.ucode";
721 break;
722 case IWN_HW_REV_TYPE_6005:
723 sc->limits = &iwn6000_sensitivity_limits;
724 sc->fwname = "iwlwifi-6000g2a-5.ucode";
725 break;
726 default:
727 aprint_normal(": adapter type %d not supported\n", sc->hw_type);
728 return ENOTSUP;
729 }
730 return 0;
731 }
732
733 /*
734 * Attach the interface to 802.11 radiotap.
735 */
736 static void
737 iwn_radiotap_attach(struct iwn_softc *sc)
738 {
739 struct ifnet *ifp = sc->sc_ic.ic_ifp;
740
741 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
742 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
743 &sc->sc_drvbpf);
744
745 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
746 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
747 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
748
749 sc->sc_txtap_len = sizeof sc->sc_txtapu;
750 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
751 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
752 }
753
754 static int
755 iwn_detach(device_t self, int flags __unused)
756 {
757 struct iwn_softc *sc = device_private(self);
758 struct ifnet *ifp = sc->sc_ic.ic_ifp;
759 int qid;
760
761 callout_stop(&sc->calib_to);
762
763 /* Uninstall interrupt handler. */
764 if (sc->sc_ih != NULL)
765 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
766
767 /* Free DMA resources. */
768 iwn_free_rx_ring(sc, &sc->rxq);
769 for (qid = 0; qid < sc->ntxqs; qid++)
770 iwn_free_tx_ring(sc, &sc->txq[qid]);
771 #ifdef IWN_USE_RBUF
772 iwn_free_rpool(sc);
773 #endif
774 iwn_free_sched(sc);
775 iwn_free_kw(sc);
776 if (sc->ict != NULL)
777 iwn_free_ict(sc);
778 iwn_free_fwmem(sc);
779
780 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
781
782 ieee80211_ifdetach(&sc->sc_ic);
783 if_detach(ifp);
784
785 return 0;
786 }
787
788 #if 0
789 /*
790 * XXX Investigate if clearing the PCI retry timeout could eliminate
791 * the repeated scan calls. Also the calls to if_init and if_start
792 * are similar to the effect of adding the call to ifioctl_common .
793 */
794 static void
795 iwn_power(int why, void *arg)
796 {
797 struct iwn_softc *sc = arg;
798 struct ifnet *ifp;
799 pcireg_t reg;
800 int s;
801
802 if (why != PWR_RESUME)
803 return;
804
805 /* Clear device-specific "PCI retry timeout" register (41h). */
806 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
807 if (reg & 0xff00)
808 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
809
810 s = splnet();
811 ifp = &sc->sc_ic.ic_if;
812 if (ifp->if_flags & IFF_UP) {
813 ifp->if_init(ifp);
814 if (ifp->if_flags & IFF_RUNNING)
815 ifp->if_start(ifp);
816 }
817 splx(s);
818 }
819 #endif
820
821 static bool
822 iwn_resume(device_t dv, const pmf_qual_t *qual)
823 {
824 return true;
825 }
826
827 static int
828 iwn_nic_lock(struct iwn_softc *sc)
829 {
830 int ntries;
831
832 /* Request exclusive access to NIC. */
833 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
834
835 /* Spin until we actually get the lock. */
836 for (ntries = 0; ntries < 1000; ntries++) {
837 if ((IWN_READ(sc, IWN_GP_CNTRL) &
838 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
839 IWN_GP_CNTRL_MAC_ACCESS_ENA)
840 return 0;
841 DELAY(10);
842 }
843 return ETIMEDOUT;
844 }
845
846 static __inline void
847 iwn_nic_unlock(struct iwn_softc *sc)
848 {
849 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
850 }
851
852 static __inline uint32_t
853 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
854 {
855 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
856 IWN_BARRIER_READ_WRITE(sc);
857 return IWN_READ(sc, IWN_PRPH_RDATA);
858 }
859
860 static __inline void
861 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
862 {
863 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
864 IWN_BARRIER_WRITE(sc);
865 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
866 }
867
868 static __inline void
869 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
870 {
871 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
872 }
873
874 static __inline void
875 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
876 {
877 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
878 }
879
880 static __inline void
881 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
882 const uint32_t *data, int count)
883 {
884 for (; count > 0; count--, data++, addr += 4)
885 iwn_prph_write(sc, addr, *data);
886 }
887
888 static __inline uint32_t
889 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
890 {
891 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
892 IWN_BARRIER_READ_WRITE(sc);
893 return IWN_READ(sc, IWN_MEM_RDATA);
894 }
895
896 static __inline void
897 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
898 {
899 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
900 IWN_BARRIER_WRITE(sc);
901 IWN_WRITE(sc, IWN_MEM_WDATA, data);
902 }
903
904 static __inline void
905 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
906 {
907 uint32_t tmp;
908
909 tmp = iwn_mem_read(sc, addr & ~3);
910 if (addr & 3)
911 tmp = (tmp & 0x0000ffff) | data << 16;
912 else
913 tmp = (tmp & 0xffff0000) | data;
914 iwn_mem_write(sc, addr & ~3, tmp);
915 }
916
917 static __inline void
918 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
919 int count)
920 {
921 for (; count > 0; count--, addr += 4)
922 *data++ = iwn_mem_read(sc, addr);
923 }
924
925 static __inline void
926 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
927 int count)
928 {
929 for (; count > 0; count--, addr += 4)
930 iwn_mem_write(sc, addr, val);
931 }
932
933 static int
934 iwn_eeprom_lock(struct iwn_softc *sc)
935 {
936 int i, ntries;
937
938 for (i = 0; i < 100; i++) {
939 /* Request exclusive access to EEPROM. */
940 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
941 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
942
943 /* Spin until we actually get the lock. */
944 for (ntries = 0; ntries < 100; ntries++) {
945 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
946 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
947 return 0;
948 DELAY(10);
949 }
950 }
951 return ETIMEDOUT;
952 }
953
954 static __inline void
955 iwn_eeprom_unlock(struct iwn_softc *sc)
956 {
957 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
958 }
959
960 /*
961 * Initialize access by host to One Time Programmable ROM.
962 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
963 */
964 static int
965 iwn_init_otprom(struct iwn_softc *sc)
966 {
967 uint16_t prev = 0, base, next;
968 int count, error;
969
970 /* Wait for clock stabilization before accessing prph. */
971 if ((error = iwn_clock_wait(sc)) != 0)
972 return error;
973
974 if ((error = iwn_nic_lock(sc)) != 0)
975 return error;
976 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
977 DELAY(5);
978 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
979 iwn_nic_unlock(sc);
980
981 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
982 if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
983 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
984 IWN_RESET_LINK_PWR_MGMT_DIS);
985 }
986 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
987 /* Clear ECC status. */
988 IWN_SETBITS(sc, IWN_OTP_GP,
989 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
990
991 /*
992 * Find the block before last block (contains the EEPROM image)
993 * for HW without OTP shadow RAM.
994 */
995 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
996 /* Switch to absolute addressing mode. */
997 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
998 base = 0;
999 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1000 error = iwn_read_prom_data(sc, base, &next, 2);
1001 if (error != 0)
1002 return error;
1003 if (next == 0) /* End of linked-list. */
1004 break;
1005 prev = base;
1006 base = le16toh(next);
1007 }
1008 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1009 return EIO;
1010 /* Skip "next" word. */
1011 sc->prom_base = prev + 1;
1012 }
1013 return 0;
1014 }
1015
1016 static int
1017 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1018 {
1019 uint8_t *out = data;
1020 uint32_t val, tmp;
1021 int ntries;
1022
1023 addr += sc->prom_base;
1024 for (; count > 0; count -= 2, addr++) {
1025 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1026 for (ntries = 0; ntries < 10; ntries++) {
1027 val = IWN_READ(sc, IWN_EEPROM);
1028 if (val & IWN_EEPROM_READ_VALID)
1029 break;
1030 DELAY(5);
1031 }
1032 if (ntries == 10) {
1033 aprint_error_dev(sc->sc_dev,
1034 "timeout reading ROM at 0x%x\n", addr);
1035 return ETIMEDOUT;
1036 }
1037 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1038 /* OTPROM, check for ECC errors. */
1039 tmp = IWN_READ(sc, IWN_OTP_GP);
1040 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1041 aprint_error_dev(sc->sc_dev,
1042 "OTPROM ECC error at 0x%x\n", addr);
1043 return EIO;
1044 }
1045 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1046 /* Correctable ECC error, clear bit. */
1047 IWN_SETBITS(sc, IWN_OTP_GP,
1048 IWN_OTP_GP_ECC_CORR_STTS);
1049 }
1050 }
1051 *out++ = val >> 16;
1052 if (count > 1)
1053 *out++ = val >> 24;
1054 }
1055 return 0;
1056 }
1057
1058 static int
1059 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1060 bus_size_t size, bus_size_t alignment)
1061 {
1062 int nsegs, error;
1063
1064 dma->tag = tag;
1065 dma->size = size;
1066
1067 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1068 &dma->map);
1069 if (error != 0)
1070 goto fail;
1071
1072 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1073 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1074 if (error != 0)
1075 goto fail;
1076
1077 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1078 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1079 if (error != 0)
1080 goto fail;
1081
1082 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1083 BUS_DMA_NOWAIT);
1084 if (error != 0)
1085 goto fail;
1086
1087 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1088 memset(dma->vaddr, 0, size);
1089 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1090
1091 dma->paddr = dma->map->dm_segs[0].ds_addr;
1092 if (kvap != NULL)
1093 *kvap = dma->vaddr;
1094
1095 return 0;
1096
1097 fail: iwn_dma_contig_free(dma);
1098 return error;
1099 }
1100
1101 static void
1102 iwn_dma_contig_free(struct iwn_dma_info *dma)
1103 {
1104 if (dma->map != NULL) {
1105 if (dma->vaddr != NULL) {
1106 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1107 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1108 bus_dmamap_unload(dma->tag, dma->map);
1109 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1110 bus_dmamem_free(dma->tag, &dma->seg, 1);
1111 dma->vaddr = NULL;
1112 }
1113 bus_dmamap_destroy(dma->tag, dma->map);
1114 dma->map = NULL;
1115 }
1116 }
1117
1118 static int
1119 iwn_alloc_sched(struct iwn_softc *sc)
1120 {
1121 /* TX scheduler rings must be aligned on a 1KB boundary. */
1122 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1123 (void **)&sc->sched, sc->schedsz, 1024);
1124 }
1125
1126 static void
1127 iwn_free_sched(struct iwn_softc *sc)
1128 {
1129 iwn_dma_contig_free(&sc->sched_dma);
1130 }
1131
1132 static int
1133 iwn_alloc_kw(struct iwn_softc *sc)
1134 {
1135 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1136 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1137 4096);
1138 }
1139
1140 static void
1141 iwn_free_kw(struct iwn_softc *sc)
1142 {
1143 iwn_dma_contig_free(&sc->kw_dma);
1144 }
1145
1146 static int
1147 iwn_alloc_ict(struct iwn_softc *sc)
1148 {
1149 /* ICT table must be aligned on a 4KB boundary. */
1150 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1151 (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1152 }
1153
1154 static void
1155 iwn_free_ict(struct iwn_softc *sc)
1156 {
1157 iwn_dma_contig_free(&sc->ict_dma);
1158 }
1159
1160 static int
1161 iwn_alloc_fwmem(struct iwn_softc *sc)
1162 {
1163 /* Must be aligned on a 16-byte boundary. */
1164 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1165 sc->fwsz, 16);
1166 }
1167
1168 static void
1169 iwn_free_fwmem(struct iwn_softc *sc)
1170 {
1171 iwn_dma_contig_free(&sc->fw_dma);
1172 }
1173
1174 static int
1175 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1176 {
1177 bus_size_t size;
1178 int i, error;
1179
1180 ring->cur = 0;
1181
1182 /* Allocate RX descriptors (256-byte aligned). */
1183 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1184 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1185 (void **)&ring->desc, size, 256);
1186 if (error != 0) {
1187 aprint_error_dev(sc->sc_dev,
1188 "could not allocate RX ring DMA memory\n");
1189 goto fail;
1190 }
1191
1192 /* Allocate RX status area (16-byte aligned). */
1193 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1194 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1195 if (error != 0) {
1196 aprint_error_dev(sc->sc_dev,
1197 "could not allocate RX status DMA memory\n");
1198 goto fail;
1199 }
1200
1201 /*
1202 * Allocate and map RX buffers.
1203 */
1204 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1205 struct iwn_rx_data *data = &ring->data[i];
1206
1207 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1208 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1209 &data->map);
1210 if (error != 0) {
1211 aprint_error_dev(sc->sc_dev,
1212 "could not create RX buf DMA map\n");
1213 goto fail;
1214 }
1215
1216 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1217 if (data->m == NULL) {
1218 aprint_error_dev(sc->sc_dev,
1219 "could not allocate RX mbuf\n");
1220 error = ENOBUFS;
1221 goto fail;
1222 }
1223
1224 error = bus_dmamap_load(sc->sc_dmat, data->map,
1225 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1226 BUS_DMA_NOWAIT | BUS_DMA_READ);
1227 if (error != 0) {
1228 aprint_error_dev(sc->sc_dev,
1229 "can't not map mbuf (error %d)\n", error);
1230 goto fail;
1231 }
1232
1233 /* Set physical address of RX buffer (256-byte aligned). */
1234 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1235 }
1236
1237 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1238 BUS_DMASYNC_PREWRITE);
1239
1240 return 0;
1241
1242 fail: iwn_free_rx_ring(sc, ring);
1243 return error;
1244 }
1245
1246 static void
1247 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1248 {
1249 int ntries;
1250
1251 if (iwn_nic_lock(sc) == 0) {
1252 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1253 for (ntries = 0; ntries < 1000; ntries++) {
1254 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1255 IWN_FH_RX_STATUS_IDLE)
1256 break;
1257 DELAY(10);
1258 }
1259 iwn_nic_unlock(sc);
1260 }
1261 ring->cur = 0;
1262 sc->last_rx_valid = 0;
1263 }
1264
1265 static void
1266 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1267 {
1268 int i;
1269
1270 iwn_dma_contig_free(&ring->desc_dma);
1271 iwn_dma_contig_free(&ring->stat_dma);
1272
1273 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1274 struct iwn_rx_data *data = &ring->data[i];
1275
1276 if (data->m != NULL) {
1277 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1278 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1279 bus_dmamap_unload(sc->sc_dmat, data->map);
1280 m_freem(data->m);
1281 }
1282 if (data->map != NULL)
1283 bus_dmamap_destroy(sc->sc_dmat, data->map);
1284 }
1285 }
1286
1287 static int
1288 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1289 {
1290 bus_addr_t paddr;
1291 bus_size_t size;
1292 int i, error;
1293
1294 ring->qid = qid;
1295 ring->queued = 0;
1296 ring->cur = 0;
1297
1298 /* Allocate TX descriptors (256-byte aligned). */
1299 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1300 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1301 (void **)&ring->desc, size, 256);
1302 if (error != 0) {
1303 aprint_error_dev(sc->sc_dev,
1304 "could not allocate TX ring DMA memory\n");
1305 goto fail;
1306 }
1307 /*
1308 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1309 * to allocate commands space for other rings.
1310 * XXX Do we really need to allocate descriptors for other rings?
1311 */
1312 if (qid > 4)
1313 return 0;
1314
1315 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1316 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1317 (void **)&ring->cmd, size, 4);
1318 if (error != 0) {
1319 aprint_error_dev(sc->sc_dev,
1320 "could not allocate TX cmd DMA memory\n");
1321 goto fail;
1322 }
1323
1324 paddr = ring->cmd_dma.paddr;
1325 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1326 struct iwn_tx_data *data = &ring->data[i];
1327
1328 data->cmd_paddr = paddr;
1329 data->scratch_paddr = paddr + 12;
1330 paddr += sizeof (struct iwn_tx_cmd);
1331
1332 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1333 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1334 &data->map);
1335 if (error != 0) {
1336 aprint_error_dev(sc->sc_dev,
1337 "could not create TX buf DMA map\n");
1338 goto fail;
1339 }
1340 }
1341 return 0;
1342
1343 fail: iwn_free_tx_ring(sc, ring);
1344 return error;
1345 }
1346
1347 static void
1348 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1349 {
1350 int i;
1351
1352 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1353 struct iwn_tx_data *data = &ring->data[i];
1354
1355 if (data->m != NULL) {
1356 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1357 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1358 bus_dmamap_unload(sc->sc_dmat, data->map);
1359 m_freem(data->m);
1360 data->m = NULL;
1361 }
1362 }
1363 /* Clear TX descriptors. */
1364 memset(ring->desc, 0, ring->desc_dma.size);
1365 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1366 ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1367 sc->qfullmsk &= ~(1 << ring->qid);
1368 ring->queued = 0;
1369 ring->cur = 0;
1370 }
1371
1372 static void
1373 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1374 {
1375 int i;
1376
1377 iwn_dma_contig_free(&ring->desc_dma);
1378 iwn_dma_contig_free(&ring->cmd_dma);
1379
1380 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1381 struct iwn_tx_data *data = &ring->data[i];
1382
1383 if (data->m != NULL) {
1384 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1385 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1386 bus_dmamap_unload(sc->sc_dmat, data->map);
1387 m_freem(data->m);
1388 }
1389 if (data->map != NULL)
1390 bus_dmamap_destroy(sc->sc_dmat, data->map);
1391 }
1392 }
1393
1394 static void
1395 iwn5000_ict_reset(struct iwn_softc *sc)
1396 {
1397 /* Disable interrupts. */
1398 IWN_WRITE(sc, IWN_INT_MASK, 0);
1399
1400 /* Reset ICT table. */
1401 memset(sc->ict, 0, IWN_ICT_SIZE);
1402 sc->ict_cur = 0;
1403
1404 /* Set physical address of ICT table (4KB aligned). */
1405 DPRINTF(("enabling ICT\n"));
1406 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1407 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1408
1409 /* Enable periodic RX interrupt. */
1410 sc->int_mask |= IWN_INT_RX_PERIODIC;
1411 /* Switch to ICT interrupt mode in driver. */
1412 sc->sc_flags |= IWN_FLAG_USE_ICT;
1413
1414 /* Re-enable interrupts. */
1415 IWN_WRITE(sc, IWN_INT, 0xffffffff);
1416 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1417 }
1418
1419 static int
1420 iwn_read_eeprom(struct iwn_softc *sc)
1421 {
1422 struct iwn_ops *ops = &sc->ops;
1423 struct ieee80211com *ic = &sc->sc_ic;
1424 uint16_t val;
1425 int error;
1426
1427 /* Check whether adapter has an EEPROM or an OTPROM. */
1428 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1429 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1430 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1431 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1432 "OTPROM" : "EEPROM"));
1433
1434 /* Adapter has to be powered on for EEPROM access to work. */
1435 if ((error = iwn_apm_init(sc)) != 0) {
1436 aprint_error_dev(sc->sc_dev,
1437 "could not power ON adapter\n");
1438 return error;
1439 }
1440
1441 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1442 aprint_error_dev(sc->sc_dev,
1443 "bad ROM signature\n");
1444 return EIO;
1445 }
1446 if ((error = iwn_eeprom_lock(sc)) != 0) {
1447 aprint_error_dev(sc->sc_dev,
1448 "could not lock ROM (error=%d)\n", error);
1449 return error;
1450 }
1451 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1452 if ((error = iwn_init_otprom(sc)) != 0) {
1453 aprint_error_dev(sc->sc_dev,
1454 "could not initialize OTPROM\n");
1455 return error;
1456 }
1457 }
1458
1459 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1460 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1461 /* Check if HT support is bonded out. */
1462 if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1463 sc->sc_flags |= IWN_FLAG_HAS_11N;
1464
1465 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1466 sc->rfcfg = le16toh(val);
1467 DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1468 /* Read Tx/Rx chains from ROM unless it's known to be broken. */
1469 if (sc->txchainmask == 0)
1470 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1471 if (sc->rxchainmask == 0)
1472 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1473
1474 /* Read MAC address. */
1475 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1476
1477 /* Read adapter-specific information from EEPROM. */
1478 ops->read_eeprom(sc);
1479
1480 iwn_apm_stop(sc); /* Power OFF adapter. */
1481
1482 iwn_eeprom_unlock(sc);
1483 return 0;
1484 }
1485
1486 static void
1487 iwn4965_read_eeprom(struct iwn_softc *sc)
1488 {
1489 uint32_t addr;
1490 uint16_t val;
1491 int i;
1492
1493 /* Read regulatory domain (4 ASCII characters). */
1494 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1495
1496 /* Read the list of authorized channels (20MHz ones only). */
1497 for (i = 0; i < 5; i++) {
1498 addr = iwn4965_regulatory_bands[i];
1499 iwn_read_eeprom_channels(sc, i, addr);
1500 }
1501
1502 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1503 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1504 sc->maxpwr2GHz = val & 0xff;
1505 sc->maxpwr5GHz = val >> 8;
1506 /* Check that EEPROM values are within valid range. */
1507 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1508 sc->maxpwr5GHz = 38;
1509 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1510 sc->maxpwr2GHz = 38;
1511 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1512
1513 /* Read samples for each TX power group. */
1514 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1515 sizeof sc->bands);
1516
1517 /* Read voltage at which samples were taken. */
1518 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1519 sc->eeprom_voltage = (int16_t)le16toh(val);
1520 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1521
1522 #ifdef IWN_DEBUG
1523 /* Print samples. */
1524 if (iwn_debug > 0) {
1525 for (i = 0; i < IWN_NBANDS; i++)
1526 iwn4965_print_power_group(sc, i);
1527 }
1528 #endif
1529 }
1530
1531 #ifdef IWN_DEBUG
1532 static void
1533 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1534 {
1535 struct iwn4965_eeprom_band *band = &sc->bands[i];
1536 struct iwn4965_eeprom_chan_samples *chans = band->chans;
1537 int j, c;
1538
1539 aprint_normal("===band %d===\n", i);
1540 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1541 aprint_normal("chan1 num=%d\n", chans[0].num);
1542 for (c = 0; c < 2; c++) {
1543 for (j = 0; j < IWN_NSAMPLES; j++) {
1544 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1545 "power=%d pa_det=%d\n", c, j,
1546 chans[0].samples[c][j].temp,
1547 chans[0].samples[c][j].gain,
1548 chans[0].samples[c][j].power,
1549 chans[0].samples[c][j].pa_det);
1550 }
1551 }
1552 aprint_normal("chan2 num=%d\n", chans[1].num);
1553 for (c = 0; c < 2; c++) {
1554 for (j = 0; j < IWN_NSAMPLES; j++) {
1555 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1556 "power=%d pa_det=%d\n", c, j,
1557 chans[1].samples[c][j].temp,
1558 chans[1].samples[c][j].gain,
1559 chans[1].samples[c][j].power,
1560 chans[1].samples[c][j].pa_det);
1561 }
1562 }
1563 }
1564 #endif
1565
1566 static void
1567 iwn5000_read_eeprom(struct iwn_softc *sc)
1568 {
1569 struct iwn5000_eeprom_calib_hdr hdr;
1570 int32_t volt;
1571 uint32_t base, addr;
1572 uint16_t val;
1573 int i;
1574
1575 /* Read regulatory domain (4 ASCII characters). */
1576 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1577 base = le16toh(val);
1578 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1579 sc->eeprom_domain, 4);
1580
1581 /* Read the list of authorized channels (20MHz ones only). */
1582 for (i = 0; i < 5; i++) {
1583 addr = base + iwn5000_regulatory_bands[i];
1584 iwn_read_eeprom_channels(sc, i, addr);
1585 }
1586
1587 /* Read enhanced TX power information for 6000 Series. */
1588 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1589 iwn_read_eeprom_enhinfo(sc);
1590
1591 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1592 base = le16toh(val);
1593 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1594 DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1595 hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1596 sc->calib_ver = hdr.version;
1597
1598 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1599 /* Compute temperature offset. */
1600 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1601 sc->eeprom_temp = le16toh(val);
1602 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1603 volt = le16toh(val);
1604 sc->temp_off = sc->eeprom_temp - (volt / -5);
1605 DPRINTF(("temp=%d volt=%d offset=%dK\n",
1606 sc->eeprom_temp, volt, sc->temp_off));
1607 } else {
1608 /* Read crystal calibration. */
1609 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1610 &sc->eeprom_crystal, sizeof (uint32_t));
1611 DPRINTF(("crystal calibration 0x%08x\n",
1612 le32toh(sc->eeprom_crystal)));
1613 }
1614 }
1615
1616 static void
1617 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1618 {
1619 struct ieee80211com *ic = &sc->sc_ic;
1620 const struct iwn_chan_band *band = &iwn_bands[n];
1621 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1622 uint8_t chan;
1623 int i;
1624
1625 iwn_read_prom_data(sc, addr, channels,
1626 band->nchan * sizeof (struct iwn_eeprom_chan));
1627
1628 for (i = 0; i < band->nchan; i++) {
1629 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1630 continue;
1631
1632 chan = band->chan[i];
1633
1634 if (n == 0) { /* 2GHz band */
1635 ic->ic_channels[chan].ic_freq =
1636 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1637 ic->ic_channels[chan].ic_flags =
1638 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1639 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1640
1641 } else { /* 5GHz band */
1642 /*
1643 * Some adapters support channels 7, 8, 11 and 12
1644 * both in the 2GHz and 4.9GHz bands.
1645 * Because of limitations in our net80211 layer,
1646 * we don't support them in the 4.9GHz band.
1647 */
1648 if (chan <= 14)
1649 continue;
1650
1651 ic->ic_channels[chan].ic_freq =
1652 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1653 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1654 /* We have at least one valid 5GHz channel. */
1655 sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1656 }
1657
1658 /* Is active scan allowed on this channel? */
1659 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1660 ic->ic_channels[chan].ic_flags |=
1661 IEEE80211_CHAN_PASSIVE;
1662 }
1663
1664 /* Save maximum allowed TX power for this channel. */
1665 sc->maxpwr[chan] = channels[i].maxpwr;
1666
1667 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1668 chan, channels[i].flags, sc->maxpwr[chan]));
1669 }
1670 }
1671
1672 static void
1673 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1674 {
1675 struct iwn_eeprom_enhinfo enhinfo[35];
1676 uint16_t val, base;
1677 int8_t maxpwr;
1678 int i;
1679
1680 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1681 base = le16toh(val);
1682 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1683 enhinfo, sizeof enhinfo);
1684
1685 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1686 for (i = 0; i < __arraycount(enhinfo); i++) {
1687 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1688 continue; /* Skip invalid entries. */
1689
1690 maxpwr = 0;
1691 if (sc->txchainmask & IWN_ANT_A)
1692 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1693 if (sc->txchainmask & IWN_ANT_B)
1694 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1695 if (sc->txchainmask & IWN_ANT_C)
1696 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1697 if (sc->ntxchains == 2)
1698 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1699 else if (sc->ntxchains == 3)
1700 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1701 maxpwr /= 2; /* Convert half-dBm to dBm. */
1702
1703 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1704 sc->enh_maxpwr[i] = maxpwr;
1705 }
1706 }
1707
1708 static struct ieee80211_node *
1709 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1710 {
1711 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1712 }
1713
1714 static void
1715 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1716 {
1717 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1718 struct iwn_node *wn = (void *)ni;
1719 uint8_t rate;
1720 int ridx, i;
1721
1722 ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1723 /* Start at lowest available bit-rate, AMRR will raise. */
1724 ni->ni_txrate = 0;
1725
1726 for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1727 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1728 /* Map 802.11 rate to HW rate index. */
1729 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1730 if (iwn_rates[ridx].rate == rate)
1731 break;
1732 wn->ridx[i] = ridx;
1733 }
1734 }
1735
1736 static int
1737 iwn_media_change(struct ifnet *ifp)
1738 {
1739 struct iwn_softc *sc = ifp->if_softc;
1740 struct ieee80211com *ic = &sc->sc_ic;
1741 uint8_t rate, ridx;
1742 int error;
1743
1744 error = ieee80211_media_change(ifp);
1745 if (error != ENETRESET)
1746 return error;
1747
1748 if (ic->ic_fixed_rate != -1) {
1749 rate = ic->ic_sup_rates[ic->ic_curmode].
1750 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1751 /* Map 802.11 rate to HW rate index. */
1752 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1753 if (iwn_rates[ridx].rate == rate)
1754 break;
1755 sc->fixed_ridx = ridx;
1756 }
1757
1758 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1759 (IFF_UP | IFF_RUNNING)) {
1760 iwn_stop(ifp, 0);
1761 error = iwn_init(ifp);
1762 }
1763 return error;
1764 }
1765
1766 static int
1767 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1768 {
1769 struct ifnet *ifp = ic->ic_ifp;
1770 struct iwn_softc *sc = ifp->if_softc;
1771 int error;
1772
1773 callout_stop(&sc->calib_to);
1774
1775 switch (nstate) {
1776 case IEEE80211_S_SCAN:
1777 /* XXX Do not abort a running scan. */
1778 if (sc->sc_flags & IWN_FLAG_SCANNING) {
1779 if (ic->ic_state != nstate)
1780 aprint_error_dev(sc->sc_dev, "scan request(%d) "
1781 "while scanning(%d) ignored\n", nstate,
1782 ic->ic_state);
1783 break;
1784 }
1785
1786 /* XXX Not sure if call and flags are needed. */
1787 ieee80211_node_table_reset(&ic->ic_scan);
1788 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1789 sc->sc_flags |= IWN_FLAG_SCANNING;
1790
1791 /* Make the link LED blink while we're scanning. */
1792 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1793
1794 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1795 aprint_error_dev(sc->sc_dev,
1796 "could not initiate scan\n");
1797 return error;
1798 }
1799 ic->ic_state = nstate;
1800 return 0;
1801
1802 case IEEE80211_S_ASSOC:
1803 if (ic->ic_state != IEEE80211_S_RUN)
1804 break;
1805 /* FALLTHROUGH */
1806 case IEEE80211_S_AUTH:
1807 /* Reset state to handle reassociations correctly. */
1808 sc->rxon.associd = 0;
1809 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1810 sc->calib.state = IWN_CALIB_STATE_INIT;
1811
1812 if ((error = iwn_auth(sc)) != 0) {
1813 aprint_error_dev(sc->sc_dev,
1814 "could not move to auth state\n");
1815 return error;
1816 }
1817 break;
1818
1819 case IEEE80211_S_RUN:
1820 if ((error = iwn_run(sc)) != 0) {
1821 aprint_error_dev(sc->sc_dev,
1822 "could not move to run state\n");
1823 return error;
1824 }
1825 break;
1826
1827 case IEEE80211_S_INIT:
1828 sc->sc_flags &= ~IWN_FLAG_SCANNING;
1829 sc->calib.state = IWN_CALIB_STATE_INIT;
1830 break;
1831 }
1832
1833 return sc->sc_newstate(ic, nstate, arg);
1834 }
1835
1836 static void
1837 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1838 {
1839 struct iwn_softc *sc = arg;
1840 struct iwn_node *wn = (struct iwn_node *)ni;
1841
1842 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1843 }
1844
1845 static void
1846 iwn_calib_timeout(void *arg)
1847 {
1848 struct iwn_softc *sc = arg;
1849 struct ieee80211com *ic = &sc->sc_ic;
1850 int s;
1851
1852 s = splnet();
1853 if (ic->ic_fixed_rate == -1) {
1854 if (ic->ic_opmode == IEEE80211_M_STA)
1855 iwn_iter_func(sc, ic->ic_bss);
1856 else
1857 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1858 }
1859 /* Force automatic TX power calibration every 60 secs. */
1860 if (++sc->calib_cnt >= 120) {
1861 uint32_t flags = 0;
1862
1863 DPRINTF(("sending request for statistics\n"));
1864 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1865 sizeof flags, 1);
1866 sc->calib_cnt = 0;
1867 }
1868 splx(s);
1869
1870 /* Automatic rate control triggered every 500ms. */
1871 callout_schedule(&sc->calib_to, hz/2);
1872 }
1873
1874 /*
1875 * Process an RX_PHY firmware notification. This is usually immediately
1876 * followed by an MPDU_RX_DONE notification.
1877 */
1878 static void
1879 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1880 struct iwn_rx_data *data)
1881 {
1882 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1883
1884 DPRINTFN(2, ("received PHY stats\n"));
1885 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1886 sizeof (*stat), BUS_DMASYNC_POSTREAD);
1887
1888 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
1889 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1890 sc->last_rx_valid = 1;
1891 }
1892
1893 /*
1894 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1895 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1896 */
1897 static void
1898 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1899 struct iwn_rx_data *data)
1900 {
1901 struct iwn_ops *ops = &sc->ops;
1902 struct ieee80211com *ic = &sc->sc_ic;
1903 struct ifnet *ifp = ic->ic_ifp;
1904 struct iwn_rx_ring *ring = &sc->rxq;
1905 struct ieee80211_frame *wh;
1906 struct ieee80211_node *ni;
1907 struct mbuf *m, *m1;
1908 struct iwn_rx_stat *stat;
1909 char *head;
1910 uint32_t flags;
1911 int error, len, rssi;
1912
1913 if (desc->type == IWN_MPDU_RX_DONE) {
1914 /* Check for prior RX_PHY notification. */
1915 if (!sc->last_rx_valid) {
1916 DPRINTF(("missing RX_PHY\n"));
1917 return;
1918 }
1919 sc->last_rx_valid = 0;
1920 stat = &sc->last_rx_stat;
1921 } else
1922 stat = (struct iwn_rx_stat *)(desc + 1);
1923
1924 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1925 BUS_DMASYNC_POSTREAD);
1926
1927 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1928 aprint_error_dev(sc->sc_dev,
1929 "invalid RX statistic header\n");
1930 return;
1931 }
1932 if (desc->type == IWN_MPDU_RX_DONE) {
1933 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1934 head = (char *)(mpdu + 1);
1935 len = le16toh(mpdu->len);
1936 } else {
1937 head = (char *)(stat + 1) + stat->cfg_phy_len;
1938 len = le16toh(stat->len);
1939 }
1940
1941 flags = le32toh(*(uint32_t *)(head + len));
1942
1943 /* Discard frames with a bad FCS early. */
1944 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1945 DPRINTFN(2, ("RX flags error %x\n", flags));
1946 ifp->if_ierrors++;
1947 return;
1948 }
1949 /* Discard frames that are too short. */
1950 if (len < sizeof (*wh)) {
1951 DPRINTF(("frame too short: %d\n", len));
1952 ic->ic_stats.is_rx_tooshort++;
1953 ifp->if_ierrors++;
1954 return;
1955 }
1956
1957 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1958 if (m1 == NULL) {
1959 ic->ic_stats.is_rx_nobuf++;
1960 ifp->if_ierrors++;
1961 return;
1962 }
1963 bus_dmamap_unload(sc->sc_dmat, data->map);
1964
1965 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1966 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1967 if (error != 0) {
1968 m_freem(m1);
1969
1970 /* Try to reload the old mbuf. */
1971 error = bus_dmamap_load(sc->sc_dmat, data->map,
1972 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1973 BUS_DMA_NOWAIT | BUS_DMA_READ);
1974 if (error != 0) {
1975 panic("%s: could not load old RX mbuf",
1976 device_xname(sc->sc_dev));
1977 }
1978 /* Physical address may have changed. */
1979 ring->desc[ring->cur] =
1980 htole32(data->map->dm_segs[0].ds_addr >> 8);
1981 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1982 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1983 BUS_DMASYNC_PREWRITE);
1984 ifp->if_ierrors++;
1985 return;
1986 }
1987
1988 m = data->m;
1989 data->m = m1;
1990 /* Update RX descriptor. */
1991 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1992 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1993 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1994 BUS_DMASYNC_PREWRITE);
1995
1996 /* Finalize mbuf. */
1997 m->m_pkthdr.rcvif = ifp;
1998 m->m_data = head;
1999 m->m_pkthdr.len = m->m_len = len;
2000
2001 /* Grab a reference to the source node. */
2002 wh = mtod(m, struct ieee80211_frame *);
2003 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2004
2005 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2006 /* NetBSD does decryption in ieee80211_input. */
2007
2008 rssi = ops->get_rssi(stat);
2009
2010 /* XXX Added for NetBSD: scans never stop without it */
2011 if (ic->ic_state == IEEE80211_S_SCAN)
2012 iwn_fix_channel(ic, m);
2013
2014 if (sc->sc_drvbpf != NULL) {
2015 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2016
2017 tap->wr_flags = 0;
2018 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2019 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2020 tap->wr_chan_freq =
2021 htole16(ic->ic_channels[stat->chan].ic_freq);
2022 tap->wr_chan_flags =
2023 htole16(ic->ic_channels[stat->chan].ic_flags);
2024 tap->wr_dbm_antsignal = (int8_t)rssi;
2025 tap->wr_dbm_antnoise = (int8_t)sc->noise;
2026 tap->wr_tsft = stat->tstamp;
2027 switch (stat->rate) {
2028 /* CCK rates. */
2029 case 10: tap->wr_rate = 2; break;
2030 case 20: tap->wr_rate = 4; break;
2031 case 55: tap->wr_rate = 11; break;
2032 case 110: tap->wr_rate = 22; break;
2033 /* OFDM rates. */
2034 case 0xd: tap->wr_rate = 12; break;
2035 case 0xf: tap->wr_rate = 18; break;
2036 case 0x5: tap->wr_rate = 24; break;
2037 case 0x7: tap->wr_rate = 36; break;
2038 case 0x9: tap->wr_rate = 48; break;
2039 case 0xb: tap->wr_rate = 72; break;
2040 case 0x1: tap->wr_rate = 96; break;
2041 case 0x3: tap->wr_rate = 108; break;
2042 /* Unknown rate: should not happen. */
2043 default: tap->wr_rate = 0;
2044 }
2045
2046 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2047 }
2048
2049 /* Send the frame to the 802.11 layer. */
2050 ieee80211_input(ic, m, ni, rssi, 0);
2051
2052 /* Node is no longer needed. */
2053 ieee80211_free_node(ni);
2054 }
2055
2056 #ifndef IEEE80211_NO_HT
2057 /* Process an incoming Compressed BlockAck. */
2058 static void
2059 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2060 struct iwn_rx_data *data)
2061 {
2062 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2063 struct iwn_tx_ring *txq;
2064
2065 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2066 BUS_DMASYNC_POSTREAD);
2067
2068 txq = &sc->txq[le16toh(ba->qid)];
2069 /* XXX TBD */
2070 }
2071 #endif
2072
2073 /*
2074 * Process a CALIBRATION_RESULT notification sent by the initialization
2075 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2076 */
2077 static void
2078 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2079 struct iwn_rx_data *data)
2080 {
2081 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2082 int len, idx = -1;
2083
2084 /* Runtime firmware should not send such a notification. */
2085 if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2086 return;
2087
2088 len = (le32toh(desc->len) & 0x3fff) - 4;
2089 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2090 BUS_DMASYNC_POSTREAD);
2091
2092 switch (calib->code) {
2093 case IWN5000_PHY_CALIB_DC:
2094 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
2095 idx = 0;
2096 break;
2097 case IWN5000_PHY_CALIB_LO:
2098 idx = 1;
2099 break;
2100 case IWN5000_PHY_CALIB_TX_IQ:
2101 idx = 2;
2102 break;
2103 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2104 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2105 sc->hw_type != IWN_HW_REV_TYPE_5150)
2106 idx = 3;
2107 break;
2108 case IWN5000_PHY_CALIB_BASE_BAND:
2109 idx = 4;
2110 break;
2111 }
2112 if (idx == -1) /* Ignore other results. */
2113 return;
2114
2115 /* Save calibration result. */
2116 if (sc->calibcmd[idx].buf != NULL)
2117 free(sc->calibcmd[idx].buf, M_DEVBUF);
2118 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2119 if (sc->calibcmd[idx].buf == NULL) {
2120 DPRINTF(("not enough memory for calibration result %d\n",
2121 calib->code));
2122 return;
2123 }
2124 DPRINTF(("saving calibration result code=%d len=%d\n",
2125 calib->code, len));
2126 sc->calibcmd[idx].len = len;
2127 memcpy(sc->calibcmd[idx].buf, calib, len);
2128 }
2129
2130 /*
2131 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2132 * The latter is sent by the firmware after each received beacon.
2133 */
2134 static void
2135 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2136 struct iwn_rx_data *data)
2137 {
2138 struct iwn_ops *ops = &sc->ops;
2139 struct ieee80211com *ic = &sc->sc_ic;
2140 struct iwn_calib_state *calib = &sc->calib;
2141 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2142 int temp;
2143
2144 /* Ignore statistics received during a scan. */
2145 if (ic->ic_state != IEEE80211_S_RUN)
2146 return;
2147
2148 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2149 sizeof (*stats), BUS_DMASYNC_POSTREAD);
2150
2151 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2152 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2153
2154 /* Test if temperature has changed. */
2155 if (stats->general.temp != sc->rawtemp) {
2156 /* Convert "raw" temperature to degC. */
2157 sc->rawtemp = stats->general.temp;
2158 temp = ops->get_temperature(sc);
2159 DPRINTFN(2, ("temperature=%dC\n", temp));
2160
2161 /* Update TX power if need be (4965AGN only). */
2162 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2163 iwn4965_power_calibration(sc, temp);
2164 }
2165
2166 if (desc->type != IWN_BEACON_STATISTICS)
2167 return; /* Reply to a statistics request. */
2168
2169 sc->noise = iwn_get_noise(&stats->rx.general);
2170
2171 /* Test that RSSI and noise are present in stats report. */
2172 if (le32toh(stats->rx.general.flags) != 1) {
2173 DPRINTF(("received statistics without RSSI\n"));
2174 return;
2175 }
2176
2177 /*
2178 * XXX Differential gain calibration makes the 6005 firmware
2179 * crap out, so skip it for now. This effectively disables
2180 * sensitivity tuning as well.
2181 */
2182 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2183 return;
2184
2185 if (calib->state == IWN_CALIB_STATE_ASSOC)
2186 iwn_collect_noise(sc, &stats->rx.general);
2187 else if (calib->state == IWN_CALIB_STATE_RUN)
2188 iwn_tune_sensitivity(sc, &stats->rx);
2189 }
2190
2191 /*
2192 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2193 * and 5000 adapters have different incompatible TX status formats.
2194 */
2195 static void
2196 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2197 struct iwn_rx_data *data)
2198 {
2199 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2200
2201 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2202 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2203 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2204 }
2205
2206 static void
2207 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2208 struct iwn_rx_data *data)
2209 {
2210 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2211
2212 #ifdef notyet
2213 /* Reset TX scheduler slot. */
2214 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2215 #endif
2216
2217 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2218 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2219 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2220 }
2221
2222 /*
2223 * Adapter-independent backend for TX_DONE firmware notifications.
2224 */
2225 static void
2226 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2227 uint8_t status)
2228 {
2229 struct ieee80211com *ic = &sc->sc_ic;
2230 struct ifnet *ifp = ic->ic_ifp;
2231 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2232 struct iwn_tx_data *data = &ring->data[desc->idx];
2233 struct iwn_node *wn = (struct iwn_node *)data->ni;
2234
2235 /* Update rate control statistics. */
2236 wn->amn.amn_txcnt++;
2237 if (ackfailcnt > 0)
2238 wn->amn.amn_retrycnt++;
2239
2240 if (status != 1 && status != 2)
2241 ifp->if_oerrors++;
2242 else
2243 ifp->if_opackets++;
2244
2245 /* Unmap and free mbuf. */
2246 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2247 BUS_DMASYNC_POSTWRITE);
2248 bus_dmamap_unload(sc->sc_dmat, data->map);
2249 m_freem(data->m);
2250 data->m = NULL;
2251 ieee80211_free_node(data->ni);
2252 data->ni = NULL;
2253
2254 sc->sc_tx_timer = 0;
2255 if (--ring->queued < IWN_TX_RING_LOMARK) {
2256 sc->qfullmsk &= ~(1 << ring->qid);
2257 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2258 ifp->if_flags &= ~IFF_OACTIVE;
2259 (*ifp->if_start)(ifp);
2260 }
2261 }
2262 }
2263
2264 /*
2265 * Process a "command done" firmware notification. This is where we wakeup
2266 * processes waiting for a synchronous command completion.
2267 */
2268 static void
2269 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2270 {
2271 struct iwn_tx_ring *ring = &sc->txq[4];
2272 struct iwn_tx_data *data;
2273
2274 if ((desc->qid & 0xf) != 4)
2275 return; /* Not a command ack. */
2276
2277 data = &ring->data[desc->idx];
2278
2279 /* If the command was mapped in an mbuf, free it. */
2280 if (data->m != NULL) {
2281 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2282 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2283 bus_dmamap_unload(sc->sc_dmat, data->map);
2284 m_freem(data->m);
2285 data->m = NULL;
2286 }
2287 wakeup(&ring->desc[desc->idx]);
2288 }
2289
2290 /*
2291 * Process an INT_FH_RX or INT_SW_RX interrupt.
2292 */
2293 static void
2294 iwn_notif_intr(struct iwn_softc *sc)
2295 {
2296 struct iwn_ops *ops = &sc->ops;
2297 struct ieee80211com *ic = &sc->sc_ic;
2298 struct ifnet *ifp = ic->ic_ifp;
2299 uint16_t hw;
2300
2301 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2302 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2303
2304 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2305 while (sc->rxq.cur != hw) {
2306 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2307 struct iwn_rx_desc *desc;
2308
2309 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2310 BUS_DMASYNC_POSTREAD);
2311 desc = mtod(data->m, struct iwn_rx_desc *);
2312
2313 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2314 desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2315
2316 if (!(desc->qid & 0x80)) /* Reply to a command. */
2317 iwn_cmd_done(sc, desc);
2318
2319 switch (desc->type) {
2320 case IWN_RX_PHY:
2321 iwn_rx_phy(sc, desc, data);
2322 break;
2323
2324 case IWN_RX_DONE: /* 4965AGN only. */
2325 case IWN_MPDU_RX_DONE:
2326 /* An 802.11 frame has been received. */
2327 iwn_rx_done(sc, desc, data);
2328 break;
2329 #ifndef IEEE80211_NO_HT
2330 case IWN_RX_COMPRESSED_BA:
2331 /* A Compressed BlockAck has been received. */
2332 iwn_rx_compressed_ba(sc, desc, data);
2333 break;
2334 #endif
2335 case IWN_TX_DONE:
2336 /* An 802.11 frame has been transmitted. */
2337 ops->tx_done(sc, desc, data);
2338 break;
2339
2340 case IWN_RX_STATISTICS:
2341 case IWN_BEACON_STATISTICS:
2342 iwn_rx_statistics(sc, desc, data);
2343 break;
2344
2345 case IWN_BEACON_MISSED:
2346 {
2347 struct iwn_beacon_missed *miss =
2348 (struct iwn_beacon_missed *)(desc + 1);
2349
2350 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2351 sizeof (*miss), BUS_DMASYNC_POSTREAD);
2352 /*
2353 * If more than 5 consecutive beacons are missed,
2354 * reinitialize the sensitivity state machine.
2355 */
2356 DPRINTF(("beacons missed %d/%d\n",
2357 le32toh(miss->consecutive), le32toh(miss->total)));
2358 if (ic->ic_state == IEEE80211_S_RUN &&
2359 le32toh(miss->consecutive) > 5)
2360 (void)iwn_init_sensitivity(sc);
2361 break;
2362 }
2363 case IWN_UC_READY:
2364 {
2365 struct iwn_ucode_info *uc =
2366 (struct iwn_ucode_info *)(desc + 1);
2367
2368 /* The microcontroller is ready. */
2369 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2370 sizeof (*uc), BUS_DMASYNC_POSTREAD);
2371 DPRINTF(("microcode alive notification version=%d.%d "
2372 "subtype=%x alive=%x\n", uc->major, uc->minor,
2373 uc->subtype, le32toh(uc->valid)));
2374
2375 if (le32toh(uc->valid) != 1) {
2376 aprint_error_dev(sc->sc_dev,
2377 "microcontroller initialization "
2378 "failed\n");
2379 break;
2380 }
2381 if (uc->subtype == IWN_UCODE_INIT) {
2382 /* Save microcontroller report. */
2383 memcpy(&sc->ucode_info, uc, sizeof (*uc));
2384 }
2385 /* Save the address of the error log in SRAM. */
2386 sc->errptr = le32toh(uc->errptr);
2387 break;
2388 }
2389 case IWN_STATE_CHANGED:
2390 {
2391 uint32_t *status = (uint32_t *)(desc + 1);
2392
2393 /* Enabled/disabled notification. */
2394 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2395 sizeof (*status), BUS_DMASYNC_POSTREAD);
2396 DPRINTF(("state changed to %x\n", le32toh(*status)));
2397
2398 if (le32toh(*status) & 1) {
2399 /* The radio button has to be pushed. */
2400 aprint_error_dev(sc->sc_dev,
2401 "Radio transmitter is off\n");
2402 /* Turn the interface down. */
2403 ifp->if_flags &= ~IFF_UP;
2404 iwn_stop(ifp, 1);
2405 return; /* No further processing. */
2406 }
2407 break;
2408 }
2409 case IWN_START_SCAN:
2410 {
2411 struct iwn_start_scan *scan =
2412 (struct iwn_start_scan *)(desc + 1);
2413
2414 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2415 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2416 DPRINTFN(2, ("scanning channel %d status %x\n",
2417 scan->chan, le32toh(scan->status)));
2418
2419 /* Fix current channel. */
2420 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2421 break;
2422 }
2423 case IWN_STOP_SCAN:
2424 {
2425 struct iwn_stop_scan *scan =
2426 (struct iwn_stop_scan *)(desc + 1);
2427
2428 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2429 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2430 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2431 scan->nchan, scan->status, scan->chan));
2432
2433 if (scan->status == 1 && scan->chan <= 14 &&
2434 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2435 /*
2436 * We just finished scanning 2GHz channels,
2437 * start scanning 5GHz ones.
2438 */
2439 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2440 break;
2441 }
2442 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2443 ieee80211_end_scan(ic);
2444 break;
2445 }
2446 case IWN5000_CALIBRATION_RESULT:
2447 iwn5000_rx_calib_results(sc, desc, data);
2448 break;
2449
2450 case IWN5000_CALIBRATION_DONE:
2451 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2452 wakeup(sc);
2453 break;
2454 }
2455
2456 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2457 }
2458
2459 /* Tell the firmware what we have processed. */
2460 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2461 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2462 }
2463
2464 /*
2465 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2466 * from power-down sleep mode.
2467 */
2468 static void
2469 iwn_wakeup_intr(struct iwn_softc *sc)
2470 {
2471 int qid;
2472
2473 DPRINTF(("ucode wakeup from power-down sleep\n"));
2474
2475 /* Wakeup RX and TX rings. */
2476 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2477 for (qid = 0; qid < sc->ntxqs; qid++) {
2478 struct iwn_tx_ring *ring = &sc->txq[qid];
2479 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2480 }
2481 }
2482
2483 /*
2484 * Dump the error log of the firmware when a firmware panic occurs. Although
2485 * we can't debug the firmware because it is neither open source nor free, it
2486 * can help us to identify certain classes of problems.
2487 */
2488 static void
2489 iwn_fatal_intr(struct iwn_softc *sc)
2490 {
2491 struct iwn_fw_dump dump;
2492 int i;
2493
2494 /* Force a complete recalibration on next init. */
2495 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2496
2497 /* Check that the error log address is valid. */
2498 if (sc->errptr < IWN_FW_DATA_BASE ||
2499 sc->errptr + sizeof (dump) >
2500 IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2501 aprint_error_dev(sc->sc_dev,
2502 "bad firmware error log address 0x%08x\n", sc->errptr);
2503 return;
2504 }
2505 if (iwn_nic_lock(sc) != 0) {
2506 aprint_error_dev(sc->sc_dev,
2507 "could not read firmware error log\n");
2508 return;
2509 }
2510 /* Read firmware error log from SRAM. */
2511 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2512 sizeof (dump) / sizeof (uint32_t));
2513 iwn_nic_unlock(sc);
2514
2515 if (dump.valid == 0) {
2516 aprint_error_dev(sc->sc_dev,
2517 "firmware error log is empty\n");
2518 return;
2519 }
2520 aprint_error("firmware error log:\n");
2521 aprint_error(" error type = \"%s\" (0x%08X)\n",
2522 (dump.id < __arraycount(iwn_fw_errmsg)) ?
2523 iwn_fw_errmsg[dump.id] : "UNKNOWN",
2524 dump.id);
2525 aprint_error(" program counter = 0x%08X\n", dump.pc);
2526 aprint_error(" source line = 0x%08X\n", dump.src_line);
2527 aprint_error(" error data = 0x%08X%08X\n",
2528 dump.error_data[0], dump.error_data[1]);
2529 aprint_error(" branch link = 0x%08X%08X\n",
2530 dump.branch_link[0], dump.branch_link[1]);
2531 aprint_error(" interrupt link = 0x%08X%08X\n",
2532 dump.interrupt_link[0], dump.interrupt_link[1]);
2533 aprint_error(" time = %u\n", dump.time[0]);
2534
2535 /* Dump driver status (TX and RX rings) while we're here. */
2536 aprint_error("driver status:\n");
2537 for (i = 0; i < sc->ntxqs; i++) {
2538 struct iwn_tx_ring *ring = &sc->txq[i];
2539 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2540 i, ring->qid, ring->cur, ring->queued);
2541 }
2542 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
2543 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
2544 }
2545
2546 static int
2547 iwn_intr(void *arg)
2548 {
2549 struct iwn_softc *sc = arg;
2550 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2551 uint32_t r1, r2, tmp;
2552
2553 /* Disable interrupts. */
2554 IWN_WRITE(sc, IWN_INT_MASK, 0);
2555
2556 /* Read interrupts from ICT (fast) or from registers (slow). */
2557 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2558 tmp = 0;
2559 while (sc->ict[sc->ict_cur] != 0) {
2560 tmp |= sc->ict[sc->ict_cur];
2561 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2562 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2563 }
2564 tmp = le32toh(tmp);
2565 if (tmp == 0xffffffff) /* Shouldn't happen. */
2566 tmp = 0;
2567 else if (tmp & 0xc0000) /* Workaround a HW bug. */
2568 tmp |= 0x8000;
2569 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2570 r2 = 0; /* Unused. */
2571 } else {
2572 r1 = IWN_READ(sc, IWN_INT);
2573 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2574 return 0; /* Hardware gone! */
2575 r2 = IWN_READ(sc, IWN_FH_INT);
2576 }
2577 if (r1 == 0 && r2 == 0) {
2578 if (ifp->if_flags & IFF_UP)
2579 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2580 return 0; /* Interrupt not for us. */
2581 }
2582
2583 /* Acknowledge interrupts. */
2584 IWN_WRITE(sc, IWN_INT, r1);
2585 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2586 IWN_WRITE(sc, IWN_FH_INT, r2);
2587
2588 if (r1 & IWN_INT_RF_TOGGLED) {
2589 tmp = IWN_READ(sc, IWN_GP_CNTRL);
2590 aprint_error_dev(sc->sc_dev,
2591 "RF switch: radio %s\n",
2592 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2593 }
2594 if (r1 & IWN_INT_CT_REACHED) {
2595 aprint_error_dev(sc->sc_dev,
2596 "critical temperature reached!\n");
2597 }
2598 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2599 aprint_error_dev(sc->sc_dev,
2600 "fatal firmware error\n");
2601 /* Dump firmware error log and stop. */
2602 iwn_fatal_intr(sc);
2603 ifp->if_flags &= ~IFF_UP;
2604 iwn_stop(ifp, 1);
2605 return 1;
2606 }
2607 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2608 (r2 & IWN_FH_INT_RX)) {
2609 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2610 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2611 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2612 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2613 IWN_INT_PERIODIC_DIS);
2614 iwn_notif_intr(sc);
2615 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2616 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2617 IWN_INT_PERIODIC_ENA);
2618 }
2619 } else
2620 iwn_notif_intr(sc);
2621 }
2622
2623 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2624 if (sc->sc_flags & IWN_FLAG_USE_ICT)
2625 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2626 wakeup(sc); /* FH DMA transfer completed. */
2627 }
2628
2629 if (r1 & IWN_INT_ALIVE)
2630 wakeup(sc); /* Firmware is alive. */
2631
2632 if (r1 & IWN_INT_WAKEUP)
2633 iwn_wakeup_intr(sc);
2634
2635 /* Re-enable interrupts. */
2636 if (ifp->if_flags & IFF_UP)
2637 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2638
2639 return 1;
2640 }
2641
2642 /*
2643 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2644 * 5000 adapters use a slightly different format).
2645 */
2646 static void
2647 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2648 uint16_t len)
2649 {
2650 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2651
2652 *w = htole16(len + 8);
2653 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2654 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2655 sizeof (uint16_t),
2656 BUS_DMASYNC_PREWRITE);
2657 if (idx < IWN_SCHED_WINSZ) {
2658 *(w + IWN_TX_RING_COUNT) = *w;
2659 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2660 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2661 (char *)(void *)sc->sched_dma.vaddr,
2662 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2663 }
2664 }
2665
2666 static void
2667 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2668 uint16_t len)
2669 {
2670 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2671
2672 *w = htole16(id << 12 | (len + 8));
2673 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2674 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2675 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2676 if (idx < IWN_SCHED_WINSZ) {
2677 *(w + IWN_TX_RING_COUNT) = *w;
2678 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2679 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2680 (char *)(void *)sc->sched_dma.vaddr,
2681 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2682 }
2683 }
2684
2685 #ifdef notyet
2686 static void
2687 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2688 {
2689 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2690
2691 *w = (*w & htole16(0xf000)) | htole16(1);
2692 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2693 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2694 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2695 if (idx < IWN_SCHED_WINSZ) {
2696 *(w + IWN_TX_RING_COUNT) = *w;
2697 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2698 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2699 (char *)(void *)sc->sched_dma.vaddr,
2700 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2701 }
2702 }
2703 #endif
2704
2705 static int
2706 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2707 {
2708 struct ieee80211com *ic = &sc->sc_ic;
2709 struct iwn_node *wn = (void *)ni;
2710 struct iwn_tx_ring *ring;
2711 struct iwn_tx_desc *desc;
2712 struct iwn_tx_data *data;
2713 struct iwn_tx_cmd *cmd;
2714 struct iwn_cmd_data *tx;
2715 const struct iwn_rate *rinfo;
2716 struct ieee80211_frame *wh;
2717 struct ieee80211_key *k = NULL;
2718 struct mbuf *m1;
2719 uint32_t flags;
2720 u_int hdrlen;
2721 bus_dma_segment_t *seg;
2722 uint8_t tid, ridx, txant, type;
2723 int i, totlen, error, pad;
2724
2725 const struct chanAccParams *cap;
2726 int noack;
2727 int hdrlen2;
2728
2729 wh = mtod(m, struct ieee80211_frame *);
2730 hdrlen = ieee80211_anyhdrsize(wh);
2731 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2732
2733 hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
2734 sizeof (struct ieee80211_qosframe) :
2735 sizeof (struct ieee80211_frame);
2736
2737 if (hdrlen != hdrlen2)
2738 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2739 hdrlen, hdrlen2);
2740
2741 /* XXX OpenBSD sets a different tid when using QOS */
2742 tid = 0;
2743 if (IEEE80211_QOS_HAS_SEQ(wh)) {
2744 cap = &ic->ic_wme.wme_chanParams;
2745 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2746 }
2747 else
2748 noack = 0;
2749
2750 ring = &sc->txq[ac];
2751 desc = &ring->desc[ring->cur];
2752 data = &ring->data[ring->cur];
2753
2754 /* Choose a TX rate index. */
2755 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2756 type != IEEE80211_FC0_TYPE_DATA) {
2757 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2758 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2759 } else if (ic->ic_fixed_rate != -1) {
2760 ridx = sc->fixed_ridx;
2761 } else
2762 ridx = wn->ridx[ni->ni_txrate];
2763 rinfo = &iwn_rates[ridx];
2764
2765 /* Encrypt the frame if need be. */
2766 /*
2767 * XXX For now, NetBSD swaps the encryption and bpf sections
2768 * in order to match old code and other drivers. Tests with
2769 * tcpdump indicates that the order is irrelevant, however,
2770 * as bpf produces unencrypted data for both ordering choices.
2771 */
2772 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2773 k = ieee80211_crypto_encap(ic, ni, m);
2774 if (k == NULL) {
2775 m_freem(m);
2776 return ENOBUFS;
2777 }
2778 /* Packet header may have moved, reset our local pointer. */
2779 wh = mtod(m, struct ieee80211_frame *);
2780 }
2781 totlen = m->m_pkthdr.len;
2782
2783 if (sc->sc_drvbpf != NULL) {
2784 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2785
2786 tap->wt_flags = 0;
2787 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2788 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2789 tap->wt_rate = rinfo->rate;
2790 tap->wt_hwqueue = ac;
2791 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2792 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2793
2794 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2795 }
2796
2797 /* Prepare TX firmware command. */
2798 cmd = &ring->cmd[ring->cur];
2799 cmd->code = IWN_CMD_TX_DATA;
2800 cmd->flags = 0;
2801 cmd->qid = ring->qid;
2802 cmd->idx = ring->cur;
2803
2804 tx = (struct iwn_cmd_data *)cmd->data;
2805 /* NB: No need to clear tx, all fields are reinitialized here. */
2806 tx->scratch = 0; /* clear "scratch" area */
2807
2808 flags = 0;
2809 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2810 /* Unicast frame, check if an ACK is expected. */
2811 if (!noack)
2812 flags |= IWN_TX_NEED_ACK;
2813 }
2814
2815 #ifdef notyet
2816 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2817 if ((wh->i_fc[0] &
2818 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2819 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2820 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
2821 #endif
2822
2823 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2824 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
2825
2826 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2827 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2828 /* NB: Group frames are sent using CCK in 802.11b/g. */
2829 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2830 flags |= IWN_TX_NEED_RTS;
2831 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2832 ridx >= IWN_RIDX_OFDM6) {
2833 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2834 flags |= IWN_TX_NEED_CTS;
2835 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2836 flags |= IWN_TX_NEED_RTS;
2837 }
2838 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2839 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2840 /* 5000 autoselects RTS/CTS or CTS-to-self. */
2841 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2842 flags |= IWN_TX_NEED_PROTECTION;
2843 } else
2844 flags |= IWN_TX_FULL_TXOP;
2845 }
2846 }
2847
2848 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2849 type != IEEE80211_FC0_TYPE_DATA)
2850 tx->id = sc->broadcast_id;
2851 else
2852 tx->id = wn->id;
2853
2854 if (type == IEEE80211_FC0_TYPE_MGT) {
2855 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2856
2857 #ifndef IEEE80211_STA_ONLY
2858 /* Tell HW to set timestamp in probe responses. */
2859 /* XXX NetBSD rev 1.11 added probe requests here but */
2860 /* probe requests do not take timestamps (from Bergamini). */
2861 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2862 flags |= IWN_TX_INSERT_TSTAMP;
2863 #endif
2864 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2865 /* changes here. These are not needed (from Bergamini). */
2866 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2867 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2868 tx->timeout = htole16(3);
2869 else
2870 tx->timeout = htole16(2);
2871 } else
2872 tx->timeout = htole16(0);
2873
2874 if (hdrlen & 3) {
2875 /* First segment length must be a multiple of 4. */
2876 flags |= IWN_TX_NEED_PADDING;
2877 pad = 4 - (hdrlen & 3);
2878 } else
2879 pad = 0;
2880
2881 tx->len = htole16(totlen);
2882 tx->tid = tid;
2883 tx->rts_ntries = 60;
2884 tx->data_ntries = 15;
2885 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2886 tx->plcp = rinfo->plcp;
2887 tx->rflags = rinfo->flags;
2888 if (tx->id == sc->broadcast_id) {
2889 /* Group or management frame. */
2890 tx->linkq = 0;
2891 /* XXX Alternate between antenna A and B? */
2892 txant = IWN_LSB(sc->txchainmask);
2893 tx->rflags |= IWN_RFLAG_ANT(txant);
2894 } else {
2895 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2896 flags |= IWN_TX_LINKQ; /* enable MRR */
2897 }
2898 /* Set physical address of "scratch area". */
2899 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2900 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2901
2902 /* Copy 802.11 header in TX command. */
2903 /* XXX NetBSD changed this in rev 1.20 */
2904 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2905
2906 /* Trim 802.11 header. */
2907 m_adj(m, hdrlen);
2908 tx->security = 0;
2909 tx->flags = htole32(flags);
2910
2911 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2912 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2913 if (error != 0) {
2914 if (error != EFBIG) {
2915 aprint_error_dev(sc->sc_dev,
2916 "can't map mbuf (error %d)\n", error);
2917 m_freem(m);
2918 return error;
2919 }
2920 /* Too many DMA segments, linearize mbuf. */
2921 MGETHDR(m1, M_DONTWAIT, MT_DATA);
2922 if (m1 == NULL) {
2923 m_freem(m);
2924 return ENOBUFS;
2925 }
2926 if (m->m_pkthdr.len > MHLEN) {
2927 MCLGET(m1, M_DONTWAIT);
2928 if (!(m1->m_flags & M_EXT)) {
2929 m_freem(m);
2930 m_freem(m1);
2931 return ENOBUFS;
2932 }
2933 }
2934 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2935 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2936 m_freem(m);
2937 m = m1;
2938
2939 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2940 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2941 if (error != 0) {
2942 aprint_error_dev(sc->sc_dev,
2943 "can't map mbuf (error %d)\n", error);
2944 m_freem(m);
2945 return error;
2946 }
2947 }
2948
2949 data->m = m;
2950 data->ni = ni;
2951
2952 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2953 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
2954
2955 /* Fill TX descriptor. */
2956 desc->nsegs = 1 + data->map->dm_nsegs;
2957 /* First DMA segment is used by the TX command. */
2958 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
2959 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
2960 (4 + sizeof (*tx) + hdrlen + pad) << 4);
2961 /* Other DMA segments are for data payload. */
2962 seg = data->map->dm_segs;
2963 for (i = 1; i <= data->map->dm_nsegs; i++) {
2964 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
2965 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
2966 seg->ds_len << 4);
2967 seg++;
2968 }
2969
2970 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2971 BUS_DMASYNC_PREWRITE);
2972 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2973 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
2974 sizeof (*cmd), BUS_DMASYNC_PREWRITE);
2975 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2976 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
2977 sizeof (*desc), BUS_DMASYNC_PREWRITE);
2978
2979 #ifdef notyet
2980 /* Update TX scheduler. */
2981 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
2982 #endif
2983
2984 /* Kick TX ring. */
2985 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2986 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2987
2988 /* Mark TX ring as full if we reach a certain threshold. */
2989 if (++ring->queued > IWN_TX_RING_HIMARK)
2990 sc->qfullmsk |= 1 << ring->qid;
2991
2992 return 0;
2993 }
2994
2995 static void
2996 iwn_start(struct ifnet *ifp)
2997 {
2998 struct iwn_softc *sc = ifp->if_softc;
2999 struct ieee80211com *ic = &sc->sc_ic;
3000 struct ieee80211_node *ni;
3001 struct ether_header *eh;
3002 struct mbuf *m;
3003 int ac;
3004
3005 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3006 return;
3007
3008 for (;;) {
3009 if (sc->qfullmsk != 0) {
3010 ifp->if_flags |= IFF_OACTIVE;
3011 break;
3012 }
3013 /* Send pending management frames first. */
3014 IF_DEQUEUE(&ic->ic_mgtq, m);
3015 if (m != NULL) {
3016 ni = (void *)m->m_pkthdr.rcvif;
3017 ac = 0;
3018 goto sendit;
3019 }
3020 if (ic->ic_state != IEEE80211_S_RUN)
3021 break;
3022
3023 /* Encapsulate and send data frames. */
3024 IFQ_DEQUEUE(&ifp->if_snd, m);
3025 if (m == NULL)
3026 break;
3027 if (m->m_len < sizeof (*eh) &&
3028 (m = m_pullup(m, sizeof (*eh))) == NULL) {
3029 ifp->if_oerrors++;
3030 continue;
3031 }
3032 eh = mtod(m, struct ether_header *);
3033 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3034 if (ni == NULL) {
3035 m_freem(m);
3036 ifp->if_oerrors++;
3037 continue;
3038 }
3039 /* classify mbuf so we can find which tx ring to use */
3040 if (ieee80211_classify(ic, m, ni) != 0) {
3041 m_freem(m);
3042 ieee80211_free_node(ni);
3043 ifp->if_oerrors++;
3044 continue;
3045 }
3046
3047 /* No QoS encapsulation for EAPOL frames. */
3048 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3049 M_WME_GETAC(m) : WME_AC_BE;
3050
3051 bpf_mtap(ifp, m);
3052
3053 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3054 ieee80211_free_node(ni);
3055 ifp->if_oerrors++;
3056 continue;
3057 }
3058 sendit:
3059 bpf_mtap3(ic->ic_rawbpf, m);
3060
3061 if (iwn_tx(sc, m, ni, ac) != 0) {
3062 ieee80211_free_node(ni);
3063 ifp->if_oerrors++;
3064 continue;
3065 }
3066
3067 sc->sc_tx_timer = 5;
3068 ifp->if_timer = 1;
3069 }
3070 }
3071
3072 static void
3073 iwn_watchdog(struct ifnet *ifp)
3074 {
3075 struct iwn_softc *sc = ifp->if_softc;
3076
3077 ifp->if_timer = 0;
3078
3079 if (sc->sc_tx_timer > 0) {
3080 if (--sc->sc_tx_timer == 0) {
3081 aprint_error_dev(sc->sc_dev,
3082 "device timeout\n");
3083 ifp->if_flags &= ~IFF_UP;
3084 iwn_stop(ifp, 1);
3085 ifp->if_oerrors++;
3086 return;
3087 }
3088 ifp->if_timer = 1;
3089 }
3090
3091 ieee80211_watchdog(&sc->sc_ic);
3092 }
3093
3094 static int
3095 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3096 {
3097 struct iwn_softc *sc = ifp->if_softc;
3098 struct ieee80211com *ic = &sc->sc_ic;
3099 struct ifaddr *ifa;
3100 const struct sockaddr *sa;
3101 int s, error = 0;
3102
3103 s = splnet();
3104
3105 switch (cmd) {
3106 case SIOCSIFADDR:
3107 ifa = (struct ifaddr *)data;
3108 ifp->if_flags |= IFF_UP;
3109 #ifdef INET
3110 if (ifa->ifa_addr->sa_family == AF_INET)
3111 arp_ifinit(&ic->ic_ac, ifa);
3112 #endif
3113 /* FALLTHROUGH */
3114 case SIOCSIFFLAGS:
3115 /* XXX Added as it is in every NetBSD driver */
3116 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3117 break;
3118 if (ifp->if_flags & IFF_UP) {
3119 if (!(ifp->if_flags & IFF_RUNNING))
3120 error = iwn_init(ifp);
3121 } else {
3122 if (ifp->if_flags & IFF_RUNNING)
3123 iwn_stop(ifp, 1);
3124 }
3125 break;
3126
3127 case SIOCADDMULTI:
3128 case SIOCDELMULTI:
3129 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3130 error = (cmd == SIOCADDMULTI) ?
3131 ether_addmulti(sa, &sc->sc_ec) :
3132 ether_delmulti(sa, &sc->sc_ec);
3133
3134 if (error == ENETRESET)
3135 error = 0;
3136 break;
3137
3138 default:
3139 error = ieee80211_ioctl(ic, cmd, data);
3140 }
3141
3142 if (error == ENETRESET) {
3143 error = 0;
3144 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3145 (IFF_UP | IFF_RUNNING)) {
3146 iwn_stop(ifp, 0);
3147 error = iwn_init(ifp);
3148 }
3149 }
3150
3151 splx(s);
3152 return error;
3153 }
3154
3155 /*
3156 * Send a command to the firmware.
3157 */
3158 static int
3159 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3160 {
3161 struct iwn_tx_ring *ring = &sc->txq[4];
3162 struct iwn_tx_desc *desc;
3163 struct iwn_tx_data *data;
3164 struct iwn_tx_cmd *cmd;
3165 struct mbuf *m;
3166 bus_addr_t paddr;
3167 int totlen, error;
3168
3169 desc = &ring->desc[ring->cur];
3170 data = &ring->data[ring->cur];
3171 totlen = 4 + size;
3172
3173 if (size > sizeof cmd->data) {
3174 /* Command is too large to fit in a descriptor. */
3175 if (totlen > MCLBYTES)
3176 return EINVAL;
3177 MGETHDR(m, M_DONTWAIT, MT_DATA);
3178 if (m == NULL)
3179 return ENOMEM;
3180 if (totlen > MHLEN) {
3181 MCLGET(m, M_DONTWAIT);
3182 if (!(m->m_flags & M_EXT)) {
3183 m_freem(m);
3184 return ENOMEM;
3185 }
3186 }
3187 cmd = mtod(m, struct iwn_tx_cmd *);
3188 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3189 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3190 if (error != 0) {
3191 m_freem(m);
3192 return error;
3193 }
3194 data->m = m;
3195 paddr = data->map->dm_segs[0].ds_addr;
3196 } else {
3197 cmd = &ring->cmd[ring->cur];
3198 paddr = data->cmd_paddr;
3199 }
3200
3201 cmd->code = code;
3202 cmd->flags = 0;
3203 cmd->qid = ring->qid;
3204 cmd->idx = ring->cur;
3205 memcpy(cmd->data, buf, size);
3206
3207 desc->nsegs = 1;
3208 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3209 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3210
3211 if (size > sizeof cmd->data) {
3212 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3213 BUS_DMASYNC_PREWRITE);
3214 } else {
3215 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3216 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3217 totlen, BUS_DMASYNC_PREWRITE);
3218 }
3219 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3220 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3221 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3222
3223 #ifdef notyet
3224 /* Update TX scheduler. */
3225 ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3226 #endif
3227 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3228
3229 /* Kick command ring. */
3230 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3231 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3232
3233 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3234 }
3235
3236 static int
3237 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3238 {
3239 struct iwn4965_node_info hnode;
3240 char *src, *dst;
3241
3242 /*
3243 * We use the node structure for 5000 Series internally (it is
3244 * a superset of the one for 4965AGN). We thus copy the common
3245 * fields before sending the command.
3246 */
3247 src = (char *)node;
3248 dst = (char *)&hnode;
3249 memcpy(dst, src, 48);
3250 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3251 memcpy(dst + 48, src + 72, 20);
3252 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3253 }
3254
3255 static int
3256 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3257 {
3258 /* Direct mapping. */
3259 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3260 }
3261
3262 static int
3263 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3264 {
3265 struct iwn_node *wn = (void *)ni;
3266 struct ieee80211_rateset *rs = &ni->ni_rates;
3267 struct iwn_cmd_link_quality linkq;
3268 const struct iwn_rate *rinfo;
3269 uint8_t txant;
3270 int i, txrate;
3271
3272 /* Use the first valid TX antenna. */
3273 txant = IWN_LSB(sc->txchainmask);
3274
3275 memset(&linkq, 0, sizeof linkq);
3276 linkq.id = wn->id;
3277 linkq.antmsk_1stream = txant;
3278 linkq.antmsk_2stream = IWN_ANT_AB;
3279 linkq.ampdu_max = 31;
3280 linkq.ampdu_threshold = 3;
3281 linkq.ampdu_limit = htole16(4000); /* 4ms */
3282
3283 /* Start at highest available bit-rate. */
3284 txrate = rs->rs_nrates - 1;
3285 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3286 rinfo = &iwn_rates[wn->ridx[txrate]];
3287 linkq.retry[i].plcp = rinfo->plcp;
3288 linkq.retry[i].rflags = rinfo->flags;
3289 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3290 /* Next retry at immediate lower bit-rate. */
3291 if (txrate > 0)
3292 txrate--;
3293 }
3294 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3295 }
3296
3297 /*
3298 * Broadcast node is used to send group-addressed and management frames.
3299 */
3300 static int
3301 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3302 {
3303 struct iwn_ops *ops = &sc->ops;
3304 struct iwn_node_info node;
3305 struct iwn_cmd_link_quality linkq;
3306 const struct iwn_rate *rinfo;
3307 uint8_t txant;
3308 int i, error;
3309
3310 memset(&node, 0, sizeof node);
3311 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3312 node.id = sc->broadcast_id;
3313 DPRINTF(("adding broadcast node\n"));
3314 if ((error = ops->add_node(sc, &node, async)) != 0)
3315 return error;
3316
3317 /* Use the first valid TX antenna. */
3318 txant = IWN_LSB(sc->txchainmask);
3319
3320 memset(&linkq, 0, sizeof linkq);
3321 linkq.id = sc->broadcast_id;
3322 linkq.antmsk_1stream = txant;
3323 linkq.antmsk_2stream = IWN_ANT_AB;
3324 linkq.ampdu_max = 64;
3325 linkq.ampdu_threshold = 3;
3326 linkq.ampdu_limit = htole16(4000); /* 4ms */
3327
3328 /* Use lowest mandatory bit-rate. */
3329 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3330 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3331 linkq.retry[0].plcp = rinfo->plcp;
3332 linkq.retry[0].rflags = rinfo->flags;
3333 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3334 /* Use same bit-rate for all TX retries. */
3335 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3336 linkq.retry[i].plcp = linkq.retry[0].plcp;
3337 linkq.retry[i].rflags = linkq.retry[0].rflags;
3338 }
3339 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3340 }
3341
3342 static void
3343 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3344 {
3345 struct iwn_cmd_led led;
3346
3347 /* Clear microcode LED ownership. */
3348 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3349
3350 led.which = which;
3351 led.unit = htole32(10000); /* on/off in unit of 100ms */
3352 led.off = off;
3353 led.on = on;
3354 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3355 }
3356
3357 /*
3358 * Set the critical temperature at which the firmware will stop the radio
3359 * and notify us.
3360 */
3361 static int
3362 iwn_set_critical_temp(struct iwn_softc *sc)
3363 {
3364 struct iwn_critical_temp crit;
3365 int32_t temp;
3366
3367 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3368
3369 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3370 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3371 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3372 temp = IWN_CTOK(110);
3373 else
3374 temp = 110;
3375 memset(&crit, 0, sizeof crit);
3376 crit.tempR = htole32(temp);
3377 DPRINTF(("setting critical temperature to %d\n", temp));
3378 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3379 }
3380
3381 static int
3382 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3383 {
3384 struct iwn_cmd_timing cmd;
3385 uint64_t val, mod;
3386
3387 memset(&cmd, 0, sizeof cmd);
3388 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3389 cmd.bintval = htole16(ni->ni_intval);
3390 cmd.lintval = htole16(10);
3391
3392 /* Compute remaining time until next beacon. */
3393 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
3394 mod = le64toh(cmd.tstamp) % val;
3395 cmd.binitval = htole32((uint32_t)(val - mod));
3396
3397 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3398 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3399
3400 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3401 }
3402
3403 static void
3404 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3405 {
3406 /* Adjust TX power if need be (delta >= 3 degC). */
3407 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3408 if (abs(temp - sc->temp) >= 3) {
3409 /* Record temperature of last calibration. */
3410 sc->temp = temp;
3411 (void)iwn4965_set_txpower(sc, 1);
3412 }
3413 }
3414
3415 /*
3416 * Set TX power for current channel (each rate has its own power settings).
3417 * This function takes into account the regulatory information from EEPROM,
3418 * the current temperature and the current voltage.
3419 */
3420 static int
3421 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3422 {
3423 /* Fixed-point arithmetic division using a n-bit fractional part. */
3424 #define fdivround(a, b, n) \
3425 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3426 /* Linear interpolation. */
3427 #define interpolate(x, x1, y1, x2, y2, n) \
3428 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3429
3430 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3431 struct ieee80211com *ic = &sc->sc_ic;
3432 struct iwn_ucode_info *uc = &sc->ucode_info;
3433 struct ieee80211_channel *ch;
3434 struct iwn4965_cmd_txpower cmd;
3435 struct iwn4965_eeprom_chan_samples *chans;
3436 const uint8_t *rf_gain, *dsp_gain;
3437 int32_t vdiff, tdiff;
3438 int i, c, grp, maxpwr;
3439 uint8_t chan;
3440
3441 /* Retrieve current channel from last RXON. */
3442 chan = sc->rxon.chan;
3443 DPRINTF(("setting TX power for channel %d\n", chan));
3444 ch = &ic->ic_channels[chan];
3445
3446 memset(&cmd, 0, sizeof cmd);
3447 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3448 cmd.chan = chan;
3449
3450 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3451 maxpwr = sc->maxpwr5GHz;
3452 rf_gain = iwn4965_rf_gain_5ghz;
3453 dsp_gain = iwn4965_dsp_gain_5ghz;
3454 } else {
3455 maxpwr = sc->maxpwr2GHz;
3456 rf_gain = iwn4965_rf_gain_2ghz;
3457 dsp_gain = iwn4965_dsp_gain_2ghz;
3458 }
3459
3460 /* Compute voltage compensation. */
3461 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3462 if (vdiff > 0)
3463 vdiff *= 2;
3464 if (abs(vdiff) > 2)
3465 vdiff = 0;
3466 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3467 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3468
3469 /* Get channel attenuation group. */
3470 if (chan <= 20) /* 1-20 */
3471 grp = 4;
3472 else if (chan <= 43) /* 34-43 */
3473 grp = 0;
3474 else if (chan <= 70) /* 44-70 */
3475 grp = 1;
3476 else if (chan <= 124) /* 71-124 */
3477 grp = 2;
3478 else /* 125-200 */
3479 grp = 3;
3480 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3481
3482 /* Get channel sub-band. */
3483 for (i = 0; i < IWN_NBANDS; i++)
3484 if (sc->bands[i].lo != 0 &&
3485 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3486 break;
3487 if (i == IWN_NBANDS) /* Can't happen in real-life. */
3488 return EINVAL;
3489 chans = sc->bands[i].chans;
3490 DPRINTF(("chan %d sub-band=%d\n", chan, i));
3491
3492 for (c = 0; c < 2; c++) {
3493 uint8_t power, gain, temp;
3494 int maxchpwr, pwr, ridx, idx;
3495
3496 power = interpolate(chan,
3497 chans[0].num, chans[0].samples[c][1].power,
3498 chans[1].num, chans[1].samples[c][1].power, 1);
3499 gain = interpolate(chan,
3500 chans[0].num, chans[0].samples[c][1].gain,
3501 chans[1].num, chans[1].samples[c][1].gain, 1);
3502 temp = interpolate(chan,
3503 chans[0].num, chans[0].samples[c][1].temp,
3504 chans[1].num, chans[1].samples[c][1].temp, 1);
3505 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3506 c, power, gain, temp));
3507
3508 /* Compute temperature compensation. */
3509 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3510 DPRINTF(("temperature compensation=%d (current=%d, "
3511 "EEPROM=%d)\n", tdiff, sc->temp, temp));
3512
3513 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3514 /* Convert dBm to half-dBm. */
3515 maxchpwr = sc->maxpwr[chan] * 2;
3516 if ((ridx / 8) & 1)
3517 maxchpwr -= 6; /* MIMO 2T: -3dB */
3518
3519 pwr = maxpwr;
3520
3521 /* Adjust TX power based on rate. */
3522 if ((ridx % 8) == 5)
3523 pwr -= 15; /* OFDM48: -7.5dB */
3524 else if ((ridx % 8) == 6)
3525 pwr -= 17; /* OFDM54: -8.5dB */
3526 else if ((ridx % 8) == 7)
3527 pwr -= 20; /* OFDM60: -10dB */
3528 else
3529 pwr -= 10; /* Others: -5dB */
3530
3531 /* Do not exceed channel max TX power. */
3532 if (pwr > maxchpwr)
3533 pwr = maxchpwr;
3534
3535 idx = gain - (pwr - power) - tdiff - vdiff;
3536 if ((ridx / 8) & 1) /* MIMO */
3537 idx += (int32_t)le32toh(uc->atten[grp][c]);
3538
3539 if (cmd.band == 0)
3540 idx += 9; /* 5GHz */
3541 if (ridx == IWN_RIDX_MAX)
3542 idx += 5; /* CCK */
3543
3544 /* Make sure idx stays in a valid range. */
3545 if (idx < 0)
3546 idx = 0;
3547 else if (idx > IWN4965_MAX_PWR_INDEX)
3548 idx = IWN4965_MAX_PWR_INDEX;
3549
3550 DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3551 c, ridx, idx));
3552 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3553 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3554 }
3555 }
3556
3557 DPRINTF(("setting TX power for chan %d\n", chan));
3558 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3559
3560 #undef interpolate
3561 #undef fdivround
3562 }
3563
3564 static int
3565 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3566 {
3567 struct iwn5000_cmd_txpower cmd;
3568
3569 /*
3570 * TX power calibration is handled automatically by the firmware
3571 * for 5000 Series.
3572 */
3573 memset(&cmd, 0, sizeof cmd);
3574 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3575 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3576 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3577 DPRINTF(("setting TX power\n"));
3578 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3579 }
3580
3581 /*
3582 * Retrieve the maximum RSSI (in dBm) among receivers.
3583 */
3584 static int
3585 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3586 {
3587 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3588 uint8_t mask, agc;
3589 int rssi;
3590
3591 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3592 agc = (le16toh(phy->agc) >> 7) & 0x7f;
3593
3594 rssi = 0;
3595 if (mask & IWN_ANT_A)
3596 rssi = MAX(rssi, phy->rssi[0]);
3597 if (mask & IWN_ANT_B)
3598 rssi = MAX(rssi, phy->rssi[2]);
3599 if (mask & IWN_ANT_C)
3600 rssi = MAX(rssi, phy->rssi[4]);
3601
3602 return rssi - agc - IWN_RSSI_TO_DBM;
3603 }
3604
3605 static int
3606 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3607 {
3608 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3609 uint8_t agc;
3610 int rssi;
3611
3612 agc = (le32toh(phy->agc) >> 9) & 0x7f;
3613
3614 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3615 le16toh(phy->rssi[1]) & 0xff);
3616 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3617
3618 return rssi - agc - IWN_RSSI_TO_DBM;
3619 }
3620
3621 /*
3622 * Retrieve the average noise (in dBm) among receivers.
3623 */
3624 static int
3625 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3626 {
3627 int i, total, nbant, noise;
3628
3629 total = nbant = 0;
3630 for (i = 0; i < 3; i++) {
3631 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3632 continue;
3633 total += noise;
3634 nbant++;
3635 }
3636 /* There should be at least one antenna but check anyway. */
3637 return (nbant == 0) ? -127 : (total / nbant) - 107;
3638 }
3639
3640 /*
3641 * Compute temperature (in degC) from last received statistics.
3642 */
3643 static int
3644 iwn4965_get_temperature(struct iwn_softc *sc)
3645 {
3646 struct iwn_ucode_info *uc = &sc->ucode_info;
3647 int32_t r1, r2, r3, r4, temp;
3648
3649 r1 = le32toh(uc->temp[0].chan20MHz);
3650 r2 = le32toh(uc->temp[1].chan20MHz);
3651 r3 = le32toh(uc->temp[2].chan20MHz);
3652 r4 = le32toh(sc->rawtemp);
3653
3654 if (r1 == r3) /* Prevents division by 0 (should not happen). */
3655 return 0;
3656
3657 /* Sign-extend 23-bit R4 value to 32-bit. */
3658 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3659 /* Compute temperature in Kelvin. */
3660 temp = (259 * (r4 - r2)) / (r3 - r1);
3661 temp = (temp * 97) / 100 + 8;
3662
3663 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3664 return IWN_KTOC(temp);
3665 }
3666
3667 static int
3668 iwn5000_get_temperature(struct iwn_softc *sc)
3669 {
3670 int32_t temp;
3671
3672 /*
3673 * Temperature is not used by the driver for 5000 Series because
3674 * TX power calibration is handled by firmware. We export it to
3675 * users through the sensor framework though.
3676 */
3677 temp = le32toh(sc->rawtemp);
3678 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3679 temp = (temp / -5) + sc->temp_off;
3680 temp = IWN_KTOC(temp);
3681 }
3682 return temp;
3683 }
3684
3685 /*
3686 * Initialize sensitivity calibration state machine.
3687 */
3688 static int
3689 iwn_init_sensitivity(struct iwn_softc *sc)
3690 {
3691 struct iwn_ops *ops = &sc->ops;
3692 struct iwn_calib_state *calib = &sc->calib;
3693 uint32_t flags;
3694 int error;
3695
3696 /* Reset calibration state machine. */
3697 memset(calib, 0, sizeof (*calib));
3698 calib->state = IWN_CALIB_STATE_INIT;
3699 calib->cck_state = IWN_CCK_STATE_HIFA;
3700 /* Set initial correlation values. */
3701 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3702 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3703 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3704 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3705 calib->cck_x4 = 125;
3706 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3707 calib->energy_cck = sc->limits->energy_cck;
3708
3709 /* Write initial sensitivity. */
3710 if ((error = iwn_send_sensitivity(sc)) != 0)
3711 return error;
3712
3713 /* Write initial gains. */
3714 if ((error = ops->init_gains(sc)) != 0)
3715 return error;
3716
3717 /* Request statistics at each beacon interval. */
3718 flags = 0;
3719 DPRINTF(("sending request for statistics\n"));
3720 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3721 }
3722
3723 /*
3724 * Collect noise and RSSI statistics for the first 20 beacons received
3725 * after association and use them to determine connected antennas and
3726 * to set differential gains.
3727 */
3728 static void
3729 iwn_collect_noise(struct iwn_softc *sc,
3730 const struct iwn_rx_general_stats *stats)
3731 {
3732 struct iwn_ops *ops = &sc->ops;
3733 struct iwn_calib_state *calib = &sc->calib;
3734 uint32_t val;
3735 int i;
3736
3737 /* Accumulate RSSI and noise for all 3 antennas. */
3738 for (i = 0; i < 3; i++) {
3739 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3740 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3741 }
3742 /* NB: We update differential gains only once after 20 beacons. */
3743 if (++calib->nbeacons < 20)
3744 return;
3745
3746 /* Determine highest average RSSI. */
3747 val = MAX(calib->rssi[0], calib->rssi[1]);
3748 val = MAX(calib->rssi[2], val);
3749
3750 /* Determine which antennas are connected. */
3751 sc->chainmask = sc->rxchainmask;
3752 for (i = 0; i < 3; i++)
3753 if (val - calib->rssi[i] > 15 * 20)
3754 sc->chainmask &= ~(1 << i);
3755 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3756 sc->rxchainmask, sc->chainmask));
3757
3758 /* If none of the TX antennas are connected, keep at least one. */
3759 if ((sc->chainmask & sc->txchainmask) == 0)
3760 sc->chainmask |= IWN_LSB(sc->txchainmask);
3761
3762 (void)ops->set_gains(sc);
3763 calib->state = IWN_CALIB_STATE_RUN;
3764
3765 #ifdef notyet
3766 /* XXX Disable RX chains with no antennas connected. */
3767 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3768 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3769 #endif
3770
3771 /* Enable power-saving mode if requested by user. */
3772 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3773 (void)iwn_set_pslevel(sc, 0, 3, 1);
3774 }
3775
3776 static int
3777 iwn4965_init_gains(struct iwn_softc *sc)
3778 {
3779 struct iwn_phy_calib_gain cmd;
3780
3781 memset(&cmd, 0, sizeof cmd);
3782 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3783 /* Differential gains initially set to 0 for all 3 antennas. */
3784 DPRINTF(("setting initial differential gains\n"));
3785 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3786 }
3787
3788 static int
3789 iwn5000_init_gains(struct iwn_softc *sc)
3790 {
3791 struct iwn_phy_calib cmd;
3792
3793 memset(&cmd, 0, sizeof cmd);
3794 cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3795 cmd.ngroups = 1;
3796 cmd.isvalid = 1;
3797 DPRINTF(("setting initial differential gains\n"));
3798 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3799 }
3800
3801 static int
3802 iwn4965_set_gains(struct iwn_softc *sc)
3803 {
3804 struct iwn_calib_state *calib = &sc->calib;
3805 struct iwn_phy_calib_gain cmd;
3806 int i, delta, noise;
3807
3808 /* Get minimal noise among connected antennas. */
3809 noise = INT_MAX; /* NB: There's at least one antenna. */
3810 for (i = 0; i < 3; i++)
3811 if (sc->chainmask & (1 << i))
3812 noise = MIN(calib->noise[i], noise);
3813
3814 memset(&cmd, 0, sizeof cmd);
3815 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3816 /* Set differential gains for connected antennas. */
3817 for (i = 0; i < 3; i++) {
3818 if (sc->chainmask & (1 << i)) {
3819 /* Compute attenuation (in unit of 1.5dB). */
3820 delta = (noise - (int32_t)calib->noise[i]) / 30;
3821 /* NB: delta <= 0 */
3822 /* Limit to [-4.5dB,0]. */
3823 cmd.gain[i] = MIN(abs(delta), 3);
3824 if (delta < 0)
3825 cmd.gain[i] |= 1 << 2; /* sign bit */
3826 }
3827 }
3828 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3829 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3830 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3831 }
3832
3833 static int
3834 iwn5000_set_gains(struct iwn_softc *sc)
3835 {
3836 struct iwn_calib_state *calib = &sc->calib;
3837 struct iwn_phy_calib_gain cmd;
3838 int i, ant, div, delta;
3839
3840 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
3841 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3842
3843 memset(&cmd, 0, sizeof cmd);
3844 cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3845 cmd.ngroups = 1;
3846 cmd.isvalid = 1;
3847 /* Get first available RX antenna as referential. */
3848 ant = IWN_LSB(sc->rxchainmask);
3849 /* Set differential gains for other antennas. */
3850 for (i = ant + 1; i < 3; i++) {
3851 if (sc->chainmask & (1 << i)) {
3852 /* The delta is relative to antenna "ant". */
3853 delta = ((int32_t)calib->noise[ant] -
3854 (int32_t)calib->noise[i]) / div;
3855 /* Limit to [-4.5dB,+4.5dB]. */
3856 cmd.gain[i - 1] = MIN(abs(delta), 3);
3857 if (delta < 0)
3858 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
3859 }
3860 }
3861 DPRINTF(("setting differential gains: %x/%x (%x)\n",
3862 cmd.gain[0], cmd.gain[1], sc->chainmask));
3863 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3864 }
3865
3866 /*
3867 * Tune RF RX sensitivity based on the number of false alarms detected
3868 * during the last beacon period.
3869 */
3870 static void
3871 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3872 {
3873 #define inc(val, inc, max) \
3874 if ((val) < (max)) { \
3875 if ((val) < (max) - (inc)) \
3876 (val) += (inc); \
3877 else \
3878 (val) = (max); \
3879 needs_update = 1; \
3880 }
3881 #define dec(val, dec, min) \
3882 if ((val) > (min)) { \
3883 if ((val) > (min) + (dec)) \
3884 (val) -= (dec); \
3885 else \
3886 (val) = (min); \
3887 needs_update = 1; \
3888 }
3889
3890 const struct iwn_sensitivity_limits *limits = sc->limits;
3891 struct iwn_calib_state *calib = &sc->calib;
3892 uint32_t val, rxena, fa;
3893 uint32_t energy[3], energy_min;
3894 uint8_t noise[3], noise_ref;
3895 int i, needs_update = 0;
3896
3897 /* Check that we've been enabled long enough. */
3898 if ((rxena = le32toh(stats->general.load)) == 0)
3899 return;
3900
3901 /* Compute number of false alarms since last call for OFDM. */
3902 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3903 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3904 fa *= 200 * 1024; /* 200TU */
3905
3906 /* Save counters values for next call. */
3907 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3908 calib->fa_ofdm = le32toh(stats->ofdm.fa);
3909
3910 if (fa > 50 * rxena) {
3911 /* High false alarm count, decrease sensitivity. */
3912 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3913 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
3914 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3915 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
3916 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3917
3918 } else if (fa < 5 * rxena) {
3919 /* Low false alarm count, increase sensitivity. */
3920 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3921 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
3922 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3923 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
3924 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3925 }
3926
3927 /* Compute maximum noise among 3 receivers. */
3928 for (i = 0; i < 3; i++)
3929 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3930 val = MAX(noise[0], noise[1]);
3931 val = MAX(noise[2], val);
3932 /* Insert it into our samples table. */
3933 calib->noise_samples[calib->cur_noise_sample] = val;
3934 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3935
3936 /* Compute maximum noise among last 20 samples. */
3937 noise_ref = calib->noise_samples[0];
3938 for (i = 1; i < 20; i++)
3939 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
3940
3941 /* Compute maximum energy among 3 receivers. */
3942 for (i = 0; i < 3; i++)
3943 energy[i] = le32toh(stats->general.energy[i]);
3944 val = MIN(energy[0], energy[1]);
3945 val = MIN(energy[2], val);
3946 /* Insert it into our samples table. */
3947 calib->energy_samples[calib->cur_energy_sample] = val;
3948 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3949
3950 /* Compute minimum energy among last 10 samples. */
3951 energy_min = calib->energy_samples[0];
3952 for (i = 1; i < 10; i++)
3953 energy_min = MAX(energy_min, calib->energy_samples[i]);
3954 energy_min += 6;
3955
3956 /* Compute number of false alarms since last call for CCK. */
3957 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3958 fa += le32toh(stats->cck.fa) - calib->fa_cck;
3959 fa *= 200 * 1024; /* 200TU */
3960
3961 /* Save counters values for next call. */
3962 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3963 calib->fa_cck = le32toh(stats->cck.fa);
3964
3965 if (fa > 50 * rxena) {
3966 /* High false alarm count, decrease sensitivity. */
3967 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
3968 calib->cck_state = IWN_CCK_STATE_HIFA;
3969 calib->low_fa = 0;
3970
3971 if (calib->cck_x4 > 160) {
3972 calib->noise_ref = noise_ref;
3973 if (calib->energy_cck > 2)
3974 dec(calib->energy_cck, 2, energy_min);
3975 }
3976 if (calib->cck_x4 < 160) {
3977 calib->cck_x4 = 161;
3978 needs_update = 1;
3979 } else
3980 inc(calib->cck_x4, 3, limits->max_cck_x4);
3981
3982 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
3983
3984 } else if (fa < 5 * rxena) {
3985 /* Low false alarm count, increase sensitivity. */
3986 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
3987 calib->cck_state = IWN_CCK_STATE_LOFA;
3988 calib->low_fa++;
3989
3990 if (calib->cck_state != IWN_CCK_STATE_INIT &&
3991 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
3992 calib->low_fa > 100)) {
3993 inc(calib->energy_cck, 2, limits->min_energy_cck);
3994 dec(calib->cck_x4, 3, limits->min_cck_x4);
3995 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
3996 }
3997 } else {
3998 /* Not worth to increase or decrease sensitivity. */
3999 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4000 calib->low_fa = 0;
4001 calib->noise_ref = noise_ref;
4002
4003 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4004 /* Previous interval had many false alarms. */
4005 dec(calib->energy_cck, 8, energy_min);
4006 }
4007 calib->cck_state = IWN_CCK_STATE_INIT;
4008 }
4009
4010 if (needs_update)
4011 (void)iwn_send_sensitivity(sc);
4012 #undef dec
4013 #undef inc
4014 }
4015
4016 static int
4017 iwn_send_sensitivity(struct iwn_softc *sc)
4018 {
4019 struct iwn_calib_state *calib = &sc->calib;
4020 struct iwn_sensitivity_cmd cmd;
4021
4022 memset(&cmd, 0, sizeof cmd);
4023 cmd.which = IWN_SENSITIVITY_WORKTBL;
4024 /* OFDM modulation. */
4025 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4026 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4027 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4028 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4029 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4030 cmd.energy_ofdm_th = htole16(62);
4031 /* CCK modulation. */
4032 cmd.corr_cck_x4 = htole16(calib->cck_x4);
4033 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4034 cmd.energy_cck = htole16(calib->energy_cck);
4035 /* Barker modulation: use default values. */
4036 cmd.corr_barker = htole16(190);
4037 cmd.corr_barker_mrc = htole16(390);
4038
4039 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4040 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4041 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4042 calib->energy_cck));
4043 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4044 }
4045
4046 /*
4047 * Set STA mode power saving level (between 0 and 5).
4048 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4049 */
4050 static int
4051 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4052 {
4053 struct iwn_pmgt_cmd cmd;
4054 const struct iwn_pmgt *pmgt;
4055 uint32_t maxp, skip_dtim;
4056 pcireg_t reg;
4057 int i;
4058
4059 /* Select which PS parameters to use. */
4060 if (dtim <= 2)
4061 pmgt = &iwn_pmgt[0][level];
4062 else if (dtim <= 10)
4063 pmgt = &iwn_pmgt[1][level];
4064 else
4065 pmgt = &iwn_pmgt[2][level];
4066
4067 memset(&cmd, 0, sizeof cmd);
4068 if (level != 0) /* not CAM */
4069 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4070 if (level == 5)
4071 cmd.flags |= htole16(IWN_PS_FAST_PD);
4072 /* Retrieve PCIe Active State Power Management (ASPM). */
4073 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4074 sc->sc_cap_off + PCI_PCIE_LCSR);
4075 if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4076 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4077 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4078 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4079
4080 if (dtim == 0) {
4081 dtim = 1;
4082 skip_dtim = 0;
4083 } else
4084 skip_dtim = pmgt->skip_dtim;
4085 if (skip_dtim != 0) {
4086 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4087 maxp = pmgt->intval[4];
4088 if (maxp == (uint32_t)-1)
4089 maxp = dtim * (skip_dtim + 1);
4090 else if (maxp > dtim)
4091 maxp = (maxp / dtim) * dtim;
4092 } else
4093 maxp = dtim;
4094 for (i = 0; i < 5; i++)
4095 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4096
4097 DPRINTF(("setting power saving level to %d\n", level));
4098 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4099 }
4100
4101 int
4102 iwn5000_runtime_calib(struct iwn_softc *sc)
4103 {
4104 struct iwn5000_calib_config cmd;
4105
4106 memset(&cmd, 0, sizeof cmd);
4107 cmd.ucode.once.enable = 0xffffffff;
4108 cmd.ucode.once.start = IWN5000_CALIB_DC;
4109 DPRINTF(("configuring runtime calibration\n"));
4110 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4111 }
4112
4113 static int
4114 iwn_config(struct iwn_softc *sc)
4115 {
4116 struct iwn_ops *ops = &sc->ops;
4117 struct ieee80211com *ic = &sc->sc_ic;
4118 struct ifnet *ifp = ic->ic_ifp;
4119 struct iwn_bluetooth bluetooth;
4120 uint32_t txmask;
4121 uint16_t rxchain;
4122 int error;
4123
4124 if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4125 sc->hw_type == IWN_HW_REV_TYPE_6005) {
4126 /* Configure runtime DC calibration. */
4127 error = iwn5000_runtime_calib(sc);
4128 if (error != 0) {
4129 printf("%s: could not configure runtime calibration\n",
4130 device_xname(sc->sc_dev));
4131 return error;
4132 }
4133 }
4134
4135 /* Configure valid TX chains for 5000 Series. */
4136 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4137 txmask = htole32(sc->txchainmask);
4138 DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4139 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4140 sizeof txmask, 0);
4141 if (error != 0) {
4142 aprint_error_dev(sc->sc_dev,
4143 "could not configure valid TX chains\n");
4144 return error;
4145 }
4146 }
4147
4148 /* Configure bluetooth coexistence. */
4149 memset(&bluetooth, 0, sizeof bluetooth);
4150 bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4151 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4152 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4153 DPRINTF(("configuring bluetooth coexistence\n"));
4154 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4155 if (error != 0) {
4156 aprint_error_dev(sc->sc_dev,
4157 "could not configure bluetooth coexistence\n");
4158 return error;
4159 }
4160
4161 /* Set mode, channel, RX filter and enable RX. */
4162 memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4163 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4164 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4165 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4166 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4167 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4168 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4169 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4170 switch (ic->ic_opmode) {
4171 case IEEE80211_M_STA:
4172 sc->rxon.mode = IWN_MODE_STA;
4173 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4174 break;
4175 case IEEE80211_M_MONITOR:
4176 sc->rxon.mode = IWN_MODE_MONITOR;
4177 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4178 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4179 break;
4180 default:
4181 /* Should not get there. */
4182 break;
4183 }
4184 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4185 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4186 sc->rxon.ht_single_mask = 0xff;
4187 sc->rxon.ht_dual_mask = 0xff;
4188 sc->rxon.ht_triple_mask = 0xff;
4189 rxchain =
4190 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4191 IWN_RXCHAIN_MIMO_COUNT(2) |
4192 IWN_RXCHAIN_IDLE_COUNT(2);
4193 sc->rxon.rxchain = htole16(rxchain);
4194 DPRINTF(("setting configuration\n"));
4195 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4196 if (error != 0) {
4197 aprint_error_dev(sc->sc_dev,
4198 "RXON command failed\n");
4199 return error;
4200 }
4201
4202 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4203 aprint_error_dev(sc->sc_dev,
4204 "could not add broadcast node\n");
4205 return error;
4206 }
4207
4208 /* Configuration has changed, set TX power accordingly. */
4209 if ((error = ops->set_txpower(sc, 0)) != 0) {
4210 aprint_error_dev(sc->sc_dev,
4211 "could not set TX power\n");
4212 return error;
4213 }
4214
4215 if ((error = iwn_set_critical_temp(sc)) != 0) {
4216 aprint_error_dev(sc->sc_dev,
4217 "could not set critical temperature\n");
4218 return error;
4219 }
4220
4221 /* Set power saving level to CAM during initialization. */
4222 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4223 aprint_error_dev(sc->sc_dev,
4224 "could not set power saving level\n");
4225 return error;
4226 }
4227 return 0;
4228 }
4229
4230 static int
4231 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4232 {
4233 struct ieee80211com *ic = &sc->sc_ic;
4234 struct iwn_scan_hdr *hdr;
4235 struct iwn_cmd_data *tx;
4236 struct iwn_scan_essid *essid;
4237 struct iwn_scan_chan *chan;
4238 struct ieee80211_frame *wh;
4239 struct ieee80211_rateset *rs;
4240 struct ieee80211_channel *c;
4241 uint8_t *buf, *frm;
4242 uint16_t rxchain;
4243 uint8_t txant;
4244 int buflen, error;
4245
4246 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4247 if (buf == NULL) {
4248 aprint_error_dev(sc->sc_dev,
4249 "could not allocate buffer for scan command\n");
4250 return ENOMEM;
4251 }
4252 hdr = (struct iwn_scan_hdr *)buf;
4253 /*
4254 * Move to the next channel if no frames are received within 10ms
4255 * after sending the probe request.
4256 */
4257 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4258 hdr->quiet_threshold = htole16(1); /* min # of packets */
4259
4260 /* Select antennas for scanning. */
4261 rxchain =
4262 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4263 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4264 IWN_RXCHAIN_DRIVER_FORCE;
4265 if ((flags & IEEE80211_CHAN_5GHZ) &&
4266 sc->hw_type == IWN_HW_REV_TYPE_4965) {
4267 /* Ant A must be avoided in 5GHz because of an HW bug. */
4268 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4269 } else /* Use all available RX antennas. */
4270 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4271 hdr->rxchain = htole16(rxchain);
4272 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4273
4274 tx = (struct iwn_cmd_data *)(hdr + 1);
4275 tx->flags = htole32(IWN_TX_AUTO_SEQ);
4276 tx->id = sc->broadcast_id;
4277 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4278
4279 if (flags & IEEE80211_CHAN_5GHZ) {
4280 hdr->crc_threshold = 0xffff;
4281 /* Send probe requests at 6Mbps. */
4282 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4283 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4284 } else {
4285 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4286 /* Send probe requests at 1Mbps. */
4287 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4288 tx->rflags = IWN_RFLAG_CCK;
4289 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4290 }
4291 /* Use the first valid TX antenna. */
4292 txant = IWN_LSB(sc->txchainmask);
4293 tx->rflags |= IWN_RFLAG_ANT(txant);
4294
4295 essid = (struct iwn_scan_essid *)(tx + 1);
4296 if (ic->ic_des_esslen != 0) {
4297 essid[0].id = IEEE80211_ELEMID_SSID;
4298 essid[0].len = ic->ic_des_esslen;
4299 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4300 }
4301 /*
4302 * Build a probe request frame. Most of the following code is a
4303 * copy & paste of what is done in net80211.
4304 */
4305 wh = (struct ieee80211_frame *)(essid + 20);
4306 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4307 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4308 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4309 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4310 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4311 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4312 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4313 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4314
4315 frm = (uint8_t *)(wh + 1);
4316 frm = ieee80211_add_ssid(frm, NULL, 0);
4317 frm = ieee80211_add_rates(frm, rs);
4318 #ifndef IEEE80211_NO_HT
4319 if (ic->ic_flags & IEEE80211_F_HTON)
4320 frm = ieee80211_add_htcaps(frm, ic);
4321 #endif
4322 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4323 frm = ieee80211_add_xrates(frm, rs);
4324
4325 /* Set length of probe request. */
4326 tx->len = htole16(frm - (uint8_t *)wh);
4327
4328 chan = (struct iwn_scan_chan *)frm;
4329 for (c = &ic->ic_channels[1];
4330 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4331 if ((c->ic_flags & flags) != flags)
4332 continue;
4333
4334 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4335 DPRINTFN(2, ("adding channel %d\n", chan->chan));
4336 chan->flags = 0;
4337 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4338 chan->flags |= htole32(IWN_CHAN_ACTIVE);
4339 if (ic->ic_des_esslen != 0)
4340 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4341 chan->dsp_gain = 0x6e;
4342 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4343 chan->rf_gain = 0x3b;
4344 chan->active = htole16(24);
4345 chan->passive = htole16(110);
4346 } else {
4347 chan->rf_gain = 0x28;
4348 chan->active = htole16(36);
4349 chan->passive = htole16(120);
4350 }
4351 hdr->nchan++;
4352 chan++;
4353 }
4354
4355 buflen = (uint8_t *)chan - buf;
4356 hdr->len = htole16(buflen);
4357
4358 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4359 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4360 free(buf, M_DEVBUF);
4361 return error;
4362 }
4363
4364 static int
4365 iwn_auth(struct iwn_softc *sc)
4366 {
4367 struct iwn_ops *ops = &sc->ops;
4368 struct ieee80211com *ic = &sc->sc_ic;
4369 struct ieee80211_node *ni = ic->ic_bss;
4370 int error;
4371
4372 /* Update adapter configuration. */
4373 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4374 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4375 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4376 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4377 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4378 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4379 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4380 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4381 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4382 switch (ic->ic_curmode) {
4383 case IEEE80211_MODE_11A:
4384 sc->rxon.cck_mask = 0;
4385 sc->rxon.ofdm_mask = 0x15;
4386 break;
4387 case IEEE80211_MODE_11B:
4388 sc->rxon.cck_mask = 0x03;
4389 sc->rxon.ofdm_mask = 0;
4390 break;
4391 default: /* Assume 802.11b/g. */
4392 sc->rxon.cck_mask = 0x0f;
4393 sc->rxon.ofdm_mask = 0x15;
4394 }
4395 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4396 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4397 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4398 if (error != 0) {
4399 aprint_error_dev(sc->sc_dev,
4400 "RXON command failed\n");
4401 return error;
4402 }
4403
4404 /* Configuration has changed, set TX power accordingly. */
4405 if ((error = ops->set_txpower(sc, 1)) != 0) {
4406 aprint_error_dev(sc->sc_dev,
4407 "could not set TX power\n");
4408 return error;
4409 }
4410 /*
4411 * Reconfiguring RXON clears the firmware nodes table so we must
4412 * add the broadcast node again.
4413 */
4414 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4415 aprint_error_dev(sc->sc_dev,
4416 "could not add broadcast node\n");
4417 return error;
4418 }
4419 return 0;
4420 }
4421
4422 static int
4423 iwn_run(struct iwn_softc *sc)
4424 {
4425 struct iwn_ops *ops = &sc->ops;
4426 struct ieee80211com *ic = &sc->sc_ic;
4427 struct ieee80211_node *ni = ic->ic_bss;
4428 struct iwn_node_info node;
4429 int error;
4430
4431 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4432 /* Link LED blinks while monitoring. */
4433 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4434 return 0;
4435 }
4436 if ((error = iwn_set_timing(sc, ni)) != 0) {
4437 aprint_error_dev(sc->sc_dev,
4438 "could not set timing\n");
4439 return error;
4440 }
4441
4442 /* Update adapter configuration. */
4443 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4444 /* Short preamble and slot time are negotiated when associating. */
4445 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4446 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4447 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4448 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4449 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4450 sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4451 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4452 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4453 if (error != 0) {
4454 aprint_error_dev(sc->sc_dev,
4455 "could not update configuration\n");
4456 return error;
4457 }
4458
4459 /* Configuration has changed, set TX power accordingly. */
4460 if ((error = ops->set_txpower(sc, 1)) != 0) {
4461 aprint_error_dev(sc->sc_dev,
4462 "could not set TX power\n");
4463 return error;
4464 }
4465
4466 /* Fake a join to initialize the TX rate. */
4467 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
4468 iwn_newassoc(ni, 1);
4469
4470 /* Add BSS node. */
4471 memset(&node, 0, sizeof node);
4472 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4473 node.id = IWN_ID_BSS;
4474 #ifdef notyet
4475 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4476 IWN_AMDPU_DENSITY(5)); /* 2us */
4477 #endif
4478 DPRINTF(("adding BSS node\n"));
4479 error = ops->add_node(sc, &node, 1);
4480 if (error != 0) {
4481 aprint_error_dev(sc->sc_dev,
4482 "could not add BSS node\n");
4483 return error;
4484 }
4485 DPRINTF(("setting link quality for node %d\n", node.id));
4486 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4487 aprint_error_dev(sc->sc_dev,
4488 "could not setup link quality for node %d\n", node.id);
4489 return error;
4490 }
4491
4492 if ((error = iwn_init_sensitivity(sc)) != 0) {
4493 aprint_error_dev(sc->sc_dev,
4494 "could not set sensitivity\n");
4495 return error;
4496 }
4497 /* Start periodic calibration timer. */
4498 sc->calib.state = IWN_CALIB_STATE_ASSOC;
4499 sc->calib_cnt = 0;
4500 callout_schedule(&sc->calib_to, hz/2);
4501
4502 /* Link LED always on while associated. */
4503 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4504 return 0;
4505 }
4506
4507 #ifdef IWN_HWCRYPTO
4508 /*
4509 * We support CCMP hardware encryption/decryption of unicast frames only.
4510 * HW support for TKIP really sucks. We should let TKIP die anyway.
4511 */
4512 static int
4513 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4514 struct ieee80211_key *k)
4515 {
4516 struct iwn_softc *sc = ic->ic_softc;
4517 struct iwn_ops *ops = &sc->ops;
4518 struct iwn_node *wn = (void *)ni;
4519 struct iwn_node_info node;
4520 uint16_t kflags;
4521
4522 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4523 k->k_cipher != IEEE80211_CIPHER_CCMP)
4524 return ieee80211_set_key(ic, ni, k);
4525
4526 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4527 if (k->k_flags & IEEE80211_KEY_GROUP)
4528 kflags |= IWN_KFLAG_GROUP;
4529
4530 memset(&node, 0, sizeof node);
4531 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4532 sc->broadcast_id : wn->id;
4533 node.control = IWN_NODE_UPDATE;
4534 node.flags = IWN_FLAG_SET_KEY;
4535 node.kflags = htole16(kflags);
4536 node.kid = k->k_id;
4537 memcpy(node.key, k->k_key, k->k_len);
4538 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4539 return ops->add_node(sc, &node, 1);
4540 }
4541
4542 static void
4543 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4544 struct ieee80211_key *k)
4545 {
4546 struct iwn_softc *sc = ic->ic_softc;
4547 struct iwn_ops *ops = &sc->ops;
4548 struct iwn_node *wn = (void *)ni;
4549 struct iwn_node_info node;
4550
4551 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4552 k->k_cipher != IEEE80211_CIPHER_CCMP) {
4553 /* See comment about other ciphers above. */
4554 ieee80211_delete_key(ic, ni, k);
4555 return;
4556 }
4557 if (ic->ic_state != IEEE80211_S_RUN)
4558 return; /* Nothing to do. */
4559 memset(&node, 0, sizeof node);
4560 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4561 sc->broadcast_id : wn->id;
4562 node.control = IWN_NODE_UPDATE;
4563 node.flags = IWN_FLAG_SET_KEY;
4564 node.kflags = htole16(IWN_KFLAG_INVALID);
4565 node.kid = 0xff;
4566 DPRINTF(("delete keys for node %d\n", node.id));
4567 (void)ops->add_node(sc, &node, 1);
4568 }
4569 #endif
4570
4571 /* XXX Added for NetBSD (copied from rev 1.39). */
4572
4573 static int
4574 iwn_wme_update(struct ieee80211com *ic)
4575 {
4576 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
4577 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
4578 struct iwn_softc *sc = ic->ic_ifp->if_softc;
4579 const struct wmeParams *wmep;
4580 struct iwn_edca_params cmd;
4581 int ac;
4582
4583 /* don't override default WME values if WME is not actually enabled */
4584 if (!(ic->ic_flags & IEEE80211_F_WME))
4585 return 0;
4586 cmd.flags = 0;
4587 for (ac = 0; ac < WME_NUM_AC; ac++) {
4588 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4589 cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4590 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4591 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4592 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
4593
4594 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4595 "txop=%d\n", ac, cmd.ac[ac].aifsn,
4596 cmd.ac[ac].cwmin,
4597 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4598 }
4599 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4600 #undef IWN_USEC
4601 #undef IWN_EXP2
4602 }
4603
4604 #ifndef IEEE80211_NO_HT
4605 /*
4606 * This function is called by upper layer when an ADDBA request is received
4607 * from another STA and before the ADDBA response is sent.
4608 */
4609 static int
4610 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4611 uint8_t tid)
4612 {
4613 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4614 struct iwn_softc *sc = ic->ic_softc;
4615 struct iwn_ops *ops = &sc->ops;
4616 struct iwn_node *wn = (void *)ni;
4617 struct iwn_node_info node;
4618
4619 memset(&node, 0, sizeof node);
4620 node.id = wn->id;
4621 node.control = IWN_NODE_UPDATE;
4622 node.flags = IWN_FLAG_SET_ADDBA;
4623 node.addba_tid = tid;
4624 node.addba_ssn = htole16(ba->ba_winstart);
4625 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4626 ba->ba_winstart));
4627 return ops->add_node(sc, &node, 1);
4628 }
4629
4630 /*
4631 * This function is called by upper layer on teardown of an HT-immediate
4632 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
4633 */
4634 static void
4635 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4636 uint8_t tid)
4637 {
4638 struct iwn_softc *sc = ic->ic_softc;
4639 struct iwn_ops *ops = &sc->ops;
4640 struct iwn_node *wn = (void *)ni;
4641 struct iwn_node_info node;
4642
4643 memset(&node, 0, sizeof node);
4644 node.id = wn->id;
4645 node.control = IWN_NODE_UPDATE;
4646 node.flags = IWN_FLAG_SET_DELBA;
4647 node.delba_tid = tid;
4648 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4649 (void)ops->add_node(sc, &node, 1);
4650 }
4651
4652 /*
4653 * This function is called by upper layer when an ADDBA response is received
4654 * from another STA.
4655 */
4656 static int
4657 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4658 uint8_t tid)
4659 {
4660 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4661 struct iwn_softc *sc = ic->ic_softc;
4662 struct iwn_ops *ops = &sc->ops;
4663 struct iwn_node *wn = (void *)ni;
4664 struct iwn_node_info node;
4665 int error;
4666
4667 /* Enable TX for the specified RA/TID. */
4668 wn->disable_tid &= ~(1 << tid);
4669 memset(&node, 0, sizeof node);
4670 node.id = wn->id;
4671 node.control = IWN_NODE_UPDATE;
4672 node.flags = IWN_FLAG_SET_DISABLE_TID;
4673 node.disable_tid = htole16(wn->disable_tid);
4674 error = ops->add_node(sc, &node, 1);
4675 if (error != 0)
4676 return error;
4677
4678 if ((error = iwn_nic_lock(sc)) != 0)
4679 return error;
4680 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4681 iwn_nic_unlock(sc);
4682 return 0;
4683 }
4684
4685 static void
4686 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4687 uint8_t tid)
4688 {
4689 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4690 struct iwn_softc *sc = ic->ic_softc;
4691 struct iwn_ops *ops = &sc->ops;
4692
4693 if (iwn_nic_lock(sc) != 0)
4694 return;
4695 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4696 iwn_nic_unlock(sc);
4697 }
4698
4699 static void
4700 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4701 uint8_t tid, uint16_t ssn)
4702 {
4703 struct iwn_node *wn = (void *)ni;
4704 int qid = 7 + tid;
4705
4706 /* Stop TX scheduler while we're changing its configuration. */
4707 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4708 IWN4965_TXQ_STATUS_CHGACT);
4709
4710 /* Assign RA/TID translation to the queue. */
4711 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4712 wn->id << 4 | tid);
4713
4714 /* Enable chain-building mode for the queue. */
4715 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4716
4717 /* Set starting sequence number from the ADDBA request. */
4718 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4719 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4720
4721 /* Set scheduler window size. */
4722 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4723 IWN_SCHED_WINSZ);
4724 /* Set scheduler frame limit. */
4725 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4726 IWN_SCHED_LIMIT << 16);
4727
4728 /* Enable interrupts for the queue. */
4729 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4730
4731 /* Mark the queue as active. */
4732 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4733 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4734 iwn_tid2fifo[tid] << 1);
4735 }
4736
4737 static void
4738 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4739 {
4740 int qid = 7 + tid;
4741
4742 /* Stop TX scheduler while we're changing its configuration. */
4743 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4744 IWN4965_TXQ_STATUS_CHGACT);
4745
4746 /* Set starting sequence number from the ADDBA request. */
4747 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4748 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4749
4750 /* Disable interrupts for the queue. */
4751 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4752
4753 /* Mark the queue as inactive. */
4754 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4755 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4756 }
4757
4758 static void
4759 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4760 uint8_t tid, uint16_t ssn)
4761 {
4762 struct iwn_node *wn = (void *)ni;
4763 int qid = 10 + tid;
4764
4765 /* Stop TX scheduler while we're changing its configuration. */
4766 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4767 IWN5000_TXQ_STATUS_CHGACT);
4768
4769 /* Assign RA/TID translation to the queue. */
4770 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4771 wn->id << 4 | tid);
4772
4773 /* Enable chain-building mode for the queue. */
4774 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4775
4776 /* Enable aggregation for the queue. */
4777 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4778
4779 /* Set starting sequence number from the ADDBA request. */
4780 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4781 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4782
4783 /* Set scheduler window size and frame limit. */
4784 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4785 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4786
4787 /* Enable interrupts for the queue. */
4788 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4789
4790 /* Mark the queue as active. */
4791 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4792 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4793 }
4794
4795 static void
4796 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4797 {
4798 int qid = 10 + tid;
4799
4800 /* Stop TX scheduler while we're changing its configuration. */
4801 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4802 IWN5000_TXQ_STATUS_CHGACT);
4803
4804 /* Disable aggregation for the queue. */
4805 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4806
4807 /* Set starting sequence number from the ADDBA request. */
4808 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4809 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4810
4811 /* Disable interrupts for the queue. */
4812 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4813
4814 /* Mark the queue as inactive. */
4815 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4816 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4817 }
4818 #endif /* !IEEE80211_NO_HT */
4819
4820 /*
4821 * Query calibration tables from the initialization firmware. We do this
4822 * only once at first boot. Called from a process context.
4823 */
4824 static int
4825 iwn5000_query_calibration(struct iwn_softc *sc)
4826 {
4827 struct iwn5000_calib_config cmd;
4828 int error;
4829
4830 memset(&cmd, 0, sizeof cmd);
4831 cmd.ucode.once.enable = 0xffffffff;
4832 cmd.ucode.once.start = 0xffffffff;
4833 cmd.ucode.once.send = 0xffffffff;
4834 cmd.ucode.flags = 0xffffffff;
4835 DPRINTF(("sending calibration query\n"));
4836 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4837 if (error != 0)
4838 return error;
4839
4840 /* Wait at most two seconds for calibration to complete. */
4841 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4842 error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4843 return error;
4844 }
4845
4846 /*
4847 * Send calibration results to the runtime firmware. These results were
4848 * obtained on first boot from the initialization firmware.
4849 */
4850 static int
4851 iwn5000_send_calibration(struct iwn_softc *sc)
4852 {
4853 int idx, error;
4854
4855 for (idx = 0; idx < 5; idx++) {
4856 if (sc->calibcmd[idx].buf == NULL)
4857 continue; /* No results available. */
4858 DPRINTF(("send calibration result idx=%d len=%d\n",
4859 idx, sc->calibcmd[idx].len));
4860 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4861 sc->calibcmd[idx].len, 0);
4862 if (error != 0) {
4863 aprint_error_dev(sc->sc_dev,
4864 "could not send calibration result\n");
4865 return error;
4866 }
4867 }
4868 return 0;
4869 }
4870
4871 static int
4872 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4873 {
4874 struct iwn5000_wimax_coex wimax;
4875
4876 #ifdef notyet
4877 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4878 /* Enable WiMAX coexistence for combo adapters. */
4879 wimax.flags =
4880 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4881 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4882 IWN_WIMAX_COEX_STA_TABLE_VALID |
4883 IWN_WIMAX_COEX_ENABLE;
4884 memcpy(wimax.events, iwn6050_wimax_events,
4885 sizeof iwn6050_wimax_events);
4886 } else
4887 #endif
4888 {
4889 /* Disable WiMAX coexistence. */
4890 wimax.flags = 0;
4891 memset(wimax.events, 0, sizeof wimax.events);
4892 }
4893 DPRINTF(("Configuring WiMAX coexistence\n"));
4894 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4895 }
4896
4897 /*
4898 * This function is called after the runtime firmware notifies us of its
4899 * readiness (called in a process context).
4900 */
4901 static int
4902 iwn4965_post_alive(struct iwn_softc *sc)
4903 {
4904 int error, qid;
4905
4906 if ((error = iwn_nic_lock(sc)) != 0)
4907 return error;
4908
4909 /* Clear TX scheduler state in SRAM. */
4910 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4911 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
4912 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
4913
4914 /* Set physical address of TX scheduler rings (1KB aligned). */
4915 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4916
4917 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4918
4919 /* Disable chain mode for all our 16 queues. */
4920 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
4921
4922 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
4923 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
4924 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4925
4926 /* Set scheduler window size. */
4927 iwn_mem_write(sc, sc->sched_base +
4928 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
4929 /* Set scheduler frame limit. */
4930 iwn_mem_write(sc, sc->sched_base +
4931 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4932 IWN_SCHED_LIMIT << 16);
4933 }
4934
4935 /* Enable interrupts for all our 16 queues. */
4936 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
4937 /* Identify TX FIFO rings (0-7). */
4938 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
4939
4940 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4941 for (qid = 0; qid < 7; qid++) {
4942 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
4943 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4944 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
4945 }
4946 iwn_nic_unlock(sc);
4947 return 0;
4948 }
4949
4950 /*
4951 * This function is called after the initialization or runtime firmware
4952 * notifies us of its readiness (called in a process context).
4953 */
4954 static int
4955 iwn5000_post_alive(struct iwn_softc *sc)
4956 {
4957 int error, qid;
4958
4959 /* Switch to using ICT interrupt mode. */
4960 iwn5000_ict_reset(sc);
4961
4962 if ((error = iwn_nic_lock(sc)) != 0)
4963 return error;
4964
4965 /* Clear TX scheduler state in SRAM. */
4966 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4967 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
4968 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
4969
4970 /* Set physical address of TX scheduler rings (1KB aligned). */
4971 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4972
4973 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4974
4975 /* Enable chain mode for all queues, except command queue. */
4976 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
4977 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
4978
4979 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
4980 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
4981 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4982
4983 iwn_mem_write(sc, sc->sched_base +
4984 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
4985 /* Set scheduler window size and frame limit. */
4986 iwn_mem_write(sc, sc->sched_base +
4987 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4988 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4989 }
4990
4991 /* Enable interrupts for all our 20 queues. */
4992 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
4993 /* Identify TX FIFO rings (0-7). */
4994 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
4995
4996 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4997 for (qid = 0; qid < 7; qid++) {
4998 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
4999 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5000 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5001 }
5002 iwn_nic_unlock(sc);
5003
5004 /* Configure WiMAX coexistence for combo adapters. */
5005 error = iwn5000_send_wimax_coex(sc);
5006 if (error != 0) {
5007 aprint_error_dev(sc->sc_dev,
5008 "could not configure WiMAX coexistence\n");
5009 return error;
5010 }
5011 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5012 struct iwn5000_phy_calib_crystal cmd;
5013
5014 /* Perform crystal calibration. */
5015 memset(&cmd, 0, sizeof cmd);
5016 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5017 cmd.ngroups = 1;
5018 cmd.isvalid = 1;
5019 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5020 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5021 DPRINTF(("sending crystal calibration %d, %d\n",
5022 cmd.cap_pin[0], cmd.cap_pin[1]));
5023 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5024 if (error != 0) {
5025 aprint_error_dev(sc->sc_dev,
5026 "crystal calibration failed\n");
5027 return error;
5028 }
5029 }
5030 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5031 /* Query calibration from the initialization firmware. */
5032 if ((error = iwn5000_query_calibration(sc)) != 0) {
5033 aprint_error_dev(sc->sc_dev,
5034 "could not query calibration\n");
5035 return error;
5036 }
5037 /*
5038 * We have the calibration results now, reboot with the
5039 * runtime firmware (call ourselves recursively!)
5040 */
5041 iwn_hw_stop(sc);
5042 error = iwn_hw_init(sc);
5043 } else {
5044 /* Send calibration results to runtime firmware. */
5045 error = iwn5000_send_calibration(sc);
5046 }
5047 return error;
5048 }
5049
5050 /*
5051 * The firmware boot code is small and is intended to be copied directly into
5052 * the NIC internal memory (no DMA transfer).
5053 */
5054 static int
5055 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5056 {
5057 int error, ntries;
5058
5059 size /= sizeof (uint32_t);
5060
5061 if ((error = iwn_nic_lock(sc)) != 0)
5062 return error;
5063
5064 /* Copy microcode image into NIC memory. */
5065 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5066 (const uint32_t *)ucode, size);
5067
5068 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5069 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5070 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5071
5072 /* Start boot load now. */
5073 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5074
5075 /* Wait for transfer to complete. */
5076 for (ntries = 0; ntries < 1000; ntries++) {
5077 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5078 IWN_BSM_WR_CTRL_START))
5079 break;
5080 DELAY(10);
5081 }
5082 if (ntries == 1000) {
5083 aprint_error_dev(sc->sc_dev,
5084 "could not load boot firmware\n");
5085 iwn_nic_unlock(sc);
5086 return ETIMEDOUT;
5087 }
5088
5089 /* Enable boot after power up. */
5090 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5091
5092 iwn_nic_unlock(sc);
5093 return 0;
5094 }
5095
5096 static int
5097 iwn4965_load_firmware(struct iwn_softc *sc)
5098 {
5099 struct iwn_fw_info *fw = &sc->fw;
5100 struct iwn_dma_info *dma = &sc->fw_dma;
5101 int error;
5102
5103 /* Copy initialization sections into pre-allocated DMA-safe memory. */
5104 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5105 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5106 BUS_DMASYNC_PREWRITE);
5107 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5108 fw->init.text, fw->init.textsz);
5109 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5110 fw->init.textsz, BUS_DMASYNC_PREWRITE);
5111
5112 /* Tell adapter where to find initialization sections. */
5113 if ((error = iwn_nic_lock(sc)) != 0)
5114 return error;
5115 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5116 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5117 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5118 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5119 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5120 iwn_nic_unlock(sc);
5121
5122 /* Load firmware boot code. */
5123 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5124 if (error != 0) {
5125 aprint_error_dev(sc->sc_dev,
5126 "could not load boot firmware\n");
5127 return error;
5128 }
5129 /* Now press "execute". */
5130 IWN_WRITE(sc, IWN_RESET, 0);
5131
5132 /* Wait at most one second for first alive notification. */
5133 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5134 aprint_error_dev(sc->sc_dev,
5135 "timeout waiting for adapter to initialize\n");
5136 return error;
5137 }
5138
5139 /* Retrieve current temperature for initial TX power calibration. */
5140 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5141 sc->temp = iwn4965_get_temperature(sc);
5142
5143 /* Copy runtime sections into pre-allocated DMA-safe memory. */
5144 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5145 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5146 BUS_DMASYNC_PREWRITE);
5147 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5148 fw->main.text, fw->main.textsz);
5149 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5150 fw->main.textsz, BUS_DMASYNC_PREWRITE);
5151
5152 /* Tell adapter where to find runtime sections. */
5153 if ((error = iwn_nic_lock(sc)) != 0)
5154 return error;
5155 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5156 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5157 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5158 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5159 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5160 IWN_FW_UPDATED | fw->main.textsz);
5161 iwn_nic_unlock(sc);
5162
5163 return 0;
5164 }
5165
5166 static int
5167 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5168 const uint8_t *section, int size)
5169 {
5170 struct iwn_dma_info *dma = &sc->fw_dma;
5171 int error;
5172
5173 /* Copy firmware section into pre-allocated DMA-safe memory. */
5174 memcpy(dma->vaddr, section, size);
5175 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5176
5177 if ((error = iwn_nic_lock(sc)) != 0)
5178 return error;
5179
5180 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5181 IWN_FH_TX_CONFIG_DMA_PAUSE);
5182
5183 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5184 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5185 IWN_LOADDR(dma->paddr));
5186 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5187 IWN_HIADDR(dma->paddr) << 28 | size);
5188 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5189 IWN_FH_TXBUF_STATUS_TBNUM(1) |
5190 IWN_FH_TXBUF_STATUS_TBIDX(1) |
5191 IWN_FH_TXBUF_STATUS_TFBD_VALID);
5192
5193 /* Kick Flow Handler to start DMA transfer. */
5194 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5195 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5196
5197 iwn_nic_unlock(sc);
5198
5199 /* Wait at most five seconds for FH DMA transfer to complete. */
5200 return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5201 }
5202
5203 static int
5204 iwn5000_load_firmware(struct iwn_softc *sc)
5205 {
5206 struct iwn_fw_part *fw;
5207 int error;
5208
5209 /* Load the initialization firmware on first boot only. */
5210 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5211 &sc->fw.main : &sc->fw.init;
5212
5213 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5214 fw->text, fw->textsz);
5215 if (error != 0) {
5216 aprint_error_dev(sc->sc_dev,
5217 "could not load firmware %s section\n", ".text");
5218 return error;
5219 }
5220 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5221 fw->data, fw->datasz);
5222 if (error != 0) {
5223 aprint_error_dev(sc->sc_dev,
5224 "could not load firmware %s section\n", ".data");
5225 return error;
5226 }
5227
5228 /* Now press "execute". */
5229 IWN_WRITE(sc, IWN_RESET, 0);
5230 return 0;
5231 }
5232
5233 /*
5234 * Extract text and data sections from a legacy firmware image.
5235 */
5236 static int
5237 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5238 {
5239 const uint32_t *ptr;
5240 size_t hdrlen = 24;
5241 uint32_t rev;
5242
5243 ptr = (const uint32_t *)fw->data;
5244 rev = le32toh(*ptr++);
5245
5246 /* Check firmware API version. */
5247 if (IWN_FW_API(rev) <= 1) {
5248 aprint_error_dev(sc->sc_dev,
5249 "bad firmware, need API version >=2\n");
5250 return EINVAL;
5251 }
5252 if (IWN_FW_API(rev) >= 3) {
5253 /* Skip build number (version 2 header). */
5254 hdrlen += 4;
5255 ptr++;
5256 }
5257 if (fw->size < hdrlen) {
5258 aprint_error_dev(sc->sc_dev,
5259 "firmware too short: %zd bytes\n", fw->size);
5260 return EINVAL;
5261 }
5262 fw->main.textsz = le32toh(*ptr++);
5263 fw->main.datasz = le32toh(*ptr++);
5264 fw->init.textsz = le32toh(*ptr++);
5265 fw->init.datasz = le32toh(*ptr++);
5266 fw->boot.textsz = le32toh(*ptr++);
5267
5268 /* Check that all firmware sections fit. */
5269 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5270 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5271 aprint_error_dev(sc->sc_dev,
5272 "firmware too short: %zd bytes\n", fw->size);
5273 return EINVAL;
5274 }
5275
5276 /* Get pointers to firmware sections. */
5277 fw->main.text = (const uint8_t *)ptr;
5278 fw->main.data = fw->main.text + fw->main.textsz;
5279 fw->init.text = fw->main.data + fw->main.datasz;
5280 fw->init.data = fw->init.text + fw->init.textsz;
5281 fw->boot.text = fw->init.data + fw->init.datasz;
5282 return 0;
5283 }
5284
5285 /*
5286 * Extract text and data sections from a TLV firmware image.
5287 */
5288 static int
5289 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5290 uint16_t alt)
5291 {
5292 const struct iwn_fw_tlv_hdr *hdr;
5293 const struct iwn_fw_tlv *tlv;
5294 const uint8_t *ptr, *end;
5295 uint64_t altmask;
5296 uint32_t len;
5297
5298 if (fw->size < sizeof (*hdr)) {
5299 aprint_error_dev(sc->sc_dev,
5300 "firmware too short: %zd bytes\n", fw->size);
5301 return EINVAL;
5302 }
5303 hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5304 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5305 aprint_error_dev(sc->sc_dev,
5306 "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5307 return EINVAL;
5308 }
5309 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5310 le32toh(hdr->build)));
5311
5312 /*
5313 * Select the closest supported alternative that is less than
5314 * or equal to the specified one.
5315 */
5316 altmask = le64toh(hdr->altmask);
5317 while (alt > 0 && !(altmask & (1ULL << alt)))
5318 alt--; /* Downgrade. */
5319 DPRINTF(("using alternative %d\n", alt));
5320
5321 ptr = (const uint8_t *)(hdr + 1);
5322 end = (const uint8_t *)(fw->data + fw->size);
5323
5324 /* Parse type-length-value fields. */
5325 while (ptr + sizeof (*tlv) <= end) {
5326 tlv = (const struct iwn_fw_tlv *)ptr;
5327 len = le32toh(tlv->len);
5328
5329 ptr += sizeof (*tlv);
5330 if (ptr + len > end) {
5331 aprint_error_dev(sc->sc_dev,
5332 "firmware too short: %zd bytes\n", fw->size);
5333 return EINVAL;
5334 }
5335 /* Skip other alternatives. */
5336 if (tlv->alt != 0 && tlv->alt != htole16(alt))
5337 goto next;
5338
5339 switch (le16toh(tlv->type)) {
5340 case IWN_FW_TLV_MAIN_TEXT:
5341 fw->main.text = ptr;
5342 fw->main.textsz = len;
5343 break;
5344 case IWN_FW_TLV_MAIN_DATA:
5345 fw->main.data = ptr;
5346 fw->main.datasz = len;
5347 break;
5348 case IWN_FW_TLV_INIT_TEXT:
5349 fw->init.text = ptr;
5350 fw->init.textsz = len;
5351 break;
5352 case IWN_FW_TLV_INIT_DATA:
5353 fw->init.data = ptr;
5354 fw->init.datasz = len;
5355 break;
5356 case IWN_FW_TLV_BOOT_TEXT:
5357 fw->boot.text = ptr;
5358 fw->boot.textsz = len;
5359 break;
5360 default:
5361 DPRINTF(("TLV type %d not handled\n",
5362 le16toh(tlv->type)));
5363 break;
5364 }
5365 next: /* TLV fields are 32-bit aligned. */
5366 ptr += (len + 3) & ~3;
5367 }
5368 return 0;
5369 }
5370
5371 static int
5372 iwn_read_firmware(struct iwn_softc *sc)
5373 {
5374 struct iwn_fw_info *fw = &sc->fw;
5375 firmware_handle_t fwh;
5376 int error;
5377
5378 /* Initialize for error returns */
5379 fw->data = NULL;
5380 fw->size = 0;
5381
5382 /* Open firmware image. */
5383 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5384 aprint_error_dev(sc->sc_dev,
5385 "could not get firmware handle %s\n", sc->fwname);
5386 return error;
5387 }
5388 fw->size = firmware_get_size(fwh);
5389 if (fw->size < sizeof (uint32_t)) {
5390 aprint_error_dev(sc->sc_dev,
5391 "firmware too short: %zd bytes\n", fw->size);
5392 firmware_close(fwh);
5393 return EINVAL;
5394 }
5395
5396 /* Read the firmware. */
5397 fw->data = firmware_malloc(fw->size);
5398 if (fw->data == NULL) {
5399 aprint_error_dev(sc->sc_dev,
5400 "not enough memory to stock firmware %s\n", sc->fwname);
5401 firmware_close(fwh);
5402 return ENOMEM;
5403 }
5404 error = firmware_read(fwh, 0, fw->data, fw->size);
5405 firmware_close(fwh);
5406 if (error != 0) {
5407 aprint_error_dev(sc->sc_dev,
5408 "could not read firmware %s\n", sc->fwname);
5409 goto out;
5410 }
5411
5412 /* Retrieve text and data sections. */
5413 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
5414 error = iwn_read_firmware_leg(sc, fw);
5415 else
5416 error = iwn_read_firmware_tlv(sc, fw, 1);
5417 if (error != 0) {
5418 aprint_error_dev(sc->sc_dev,
5419 "could not read firmware sections\n");
5420 goto out;
5421 }
5422
5423 /* Make sure text and data sections fit in hardware memory. */
5424 if (fw->main.textsz > sc->fw_text_maxsz ||
5425 fw->main.datasz > sc->fw_data_maxsz ||
5426 fw->init.textsz > sc->fw_text_maxsz ||
5427 fw->init.datasz > sc->fw_data_maxsz ||
5428 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5429 (fw->boot.textsz & 3) != 0) {
5430 aprint_error_dev(sc->sc_dev,
5431 "firmware sections too large\n");
5432 goto out;
5433 }
5434
5435 /* We can proceed with loading the firmware. */
5436 return 0;
5437 out:
5438 firmware_free(fw->data, fw->size);
5439 fw->data = NULL;
5440 fw->size = 0;
5441 return error ? error : EINVAL;
5442 }
5443
5444 static int
5445 iwn_clock_wait(struct iwn_softc *sc)
5446 {
5447 int ntries;
5448
5449 /* Set "initialization complete" bit. */
5450 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5451
5452 /* Wait for clock stabilization. */
5453 for (ntries = 0; ntries < 2500; ntries++) {
5454 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5455 return 0;
5456 DELAY(10);
5457 }
5458 aprint_error_dev(sc->sc_dev,
5459 "timeout waiting for clock stabilization\n");
5460 return ETIMEDOUT;
5461 }
5462
5463 static int
5464 iwn_apm_init(struct iwn_softc *sc)
5465 {
5466 pcireg_t reg;
5467 int error;
5468
5469 /* Disable L0s exit timer (NMI bug workaround). */
5470 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5471 /* Don't wait for ICH L0s (ICH bug workaround). */
5472 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5473
5474 /* Set FH wait threshold to max (HW bug under stress workaround). */
5475 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5476
5477 /* Enable HAP INTA to move adapter from L1a to L0s. */
5478 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5479
5480 /* Retrieve PCIe Active State Power Management (ASPM). */
5481 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5482 sc->sc_cap_off + PCI_PCIE_LCSR);
5483 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5484 if (reg & PCI_PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
5485 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5486 else
5487 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5488
5489 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5490 sc->hw_type <= IWN_HW_REV_TYPE_1000)
5491 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5492
5493 /* Wait for clock stabilization before accessing prph. */
5494 if ((error = iwn_clock_wait(sc)) != 0)
5495 return error;
5496
5497 if ((error = iwn_nic_lock(sc)) != 0)
5498 return error;
5499 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5500 /* Enable DMA and BSM (Bootstrap State Machine). */
5501 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5502 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5503 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5504 } else {
5505 /* Enable DMA. */
5506 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5507 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5508 }
5509 DELAY(20);
5510 /* Disable L1-Active. */
5511 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5512 iwn_nic_unlock(sc);
5513
5514 return 0;
5515 }
5516
5517 static void
5518 iwn_apm_stop_master(struct iwn_softc *sc)
5519 {
5520 int ntries;
5521
5522 /* Stop busmaster DMA activity. */
5523 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5524 for (ntries = 0; ntries < 100; ntries++) {
5525 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5526 return;
5527 DELAY(10);
5528 }
5529 aprint_error_dev(sc->sc_dev,
5530 "timeout waiting for master\n");
5531 }
5532
5533 static void
5534 iwn_apm_stop(struct iwn_softc *sc)
5535 {
5536 iwn_apm_stop_master(sc);
5537
5538 /* Reset the entire device. */
5539 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5540 DELAY(10);
5541 /* Clear "initialization complete" bit. */
5542 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5543 }
5544
5545 static int
5546 iwn4965_nic_config(struct iwn_softc *sc)
5547 {
5548 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5549 /*
5550 * I don't believe this to be correct but this is what the
5551 * vendor driver is doing. Probably the bits should not be
5552 * shifted in IWN_RFCFG_*.
5553 */
5554 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5555 IWN_RFCFG_TYPE(sc->rfcfg) |
5556 IWN_RFCFG_STEP(sc->rfcfg) |
5557 IWN_RFCFG_DASH(sc->rfcfg));
5558 }
5559 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5560 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5561 return 0;
5562 }
5563
5564 static int
5565 iwn5000_nic_config(struct iwn_softc *sc)
5566 {
5567 uint32_t tmp;
5568 int error;
5569
5570 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5571 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5572 IWN_RFCFG_TYPE(sc->rfcfg) |
5573 IWN_RFCFG_STEP(sc->rfcfg) |
5574 IWN_RFCFG_DASH(sc->rfcfg));
5575 }
5576 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5577 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5578
5579 if ((error = iwn_nic_lock(sc)) != 0)
5580 return error;
5581 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5582
5583 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5584 /*
5585 * Select first Switching Voltage Regulator (1.32V) to
5586 * solve a stability issue related to noisy DC2DC line
5587 * in the silicon of 1000 Series.
5588 */
5589 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5590 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5591 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5592 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5593 }
5594 iwn_nic_unlock(sc);
5595
5596 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5597 /* Use internal power amplifier only. */
5598 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5599 }
5600 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
5601 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
5602 /* Indicate that ROM calibration version is >=6. */
5603 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5604 }
5605 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
5606 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
5607 return 0;
5608 }
5609
5610 /*
5611 * Take NIC ownership over Intel Active Management Technology (AMT).
5612 */
5613 static int
5614 iwn_hw_prepare(struct iwn_softc *sc)
5615 {
5616 int ntries;
5617
5618 /* Check if hardware is ready. */
5619 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5620 for (ntries = 0; ntries < 5; ntries++) {
5621 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5622 IWN_HW_IF_CONFIG_NIC_READY)
5623 return 0;
5624 DELAY(10);
5625 }
5626
5627 /* Hardware not ready, force into ready state. */
5628 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5629 for (ntries = 0; ntries < 15000; ntries++) {
5630 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5631 IWN_HW_IF_CONFIG_PREPARE_DONE))
5632 break;
5633 DELAY(10);
5634 }
5635 if (ntries == 15000)
5636 return ETIMEDOUT;
5637
5638 /* Hardware should be ready now. */
5639 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5640 for (ntries = 0; ntries < 5; ntries++) {
5641 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5642 IWN_HW_IF_CONFIG_NIC_READY)
5643 return 0;
5644 DELAY(10);
5645 }
5646 return ETIMEDOUT;
5647 }
5648
5649 static int
5650 iwn_hw_init(struct iwn_softc *sc)
5651 {
5652 struct iwn_ops *ops = &sc->ops;
5653 int error, chnl, qid;
5654
5655 /* Clear pending interrupts. */
5656 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5657
5658 if ((error = iwn_apm_init(sc)) != 0) {
5659 aprint_error_dev(sc->sc_dev,
5660 "could not power ON adapter\n");
5661 return error;
5662 }
5663
5664 /* Select VMAIN power source. */
5665 if ((error = iwn_nic_lock(sc)) != 0)
5666 return error;
5667 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5668 iwn_nic_unlock(sc);
5669
5670 /* Perform adapter-specific initialization. */
5671 if ((error = ops->nic_config(sc)) != 0)
5672 return error;
5673
5674 /* Initialize RX ring. */
5675 if ((error = iwn_nic_lock(sc)) != 0)
5676 return error;
5677 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5678 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5679 /* Set physical address of RX ring (256-byte aligned). */
5680 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5681 /* Set physical address of RX status (16-byte aligned). */
5682 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5683 /* Enable RX. */
5684 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5685 IWN_FH_RX_CONFIG_ENA |
5686 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
5687 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
5688 IWN_FH_RX_CONFIG_SINGLE_FRAME |
5689 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5690 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5691 iwn_nic_unlock(sc);
5692 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5693
5694 if ((error = iwn_nic_lock(sc)) != 0)
5695 return error;
5696
5697 /* Initialize TX scheduler. */
5698 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5699
5700 /* Set physical address of "keep warm" page (16-byte aligned). */
5701 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5702
5703 /* Initialize TX rings. */
5704 for (qid = 0; qid < sc->ntxqs; qid++) {
5705 struct iwn_tx_ring *txq = &sc->txq[qid];
5706
5707 /* Set physical address of TX ring (256-byte aligned). */
5708 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5709 txq->desc_dma.paddr >> 8);
5710 }
5711 iwn_nic_unlock(sc);
5712
5713 /* Enable DMA channels. */
5714 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5715 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5716 IWN_FH_TX_CONFIG_DMA_ENA |
5717 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5718 }
5719
5720 /* Clear "radio off" and "commands blocked" bits. */
5721 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5722 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5723
5724 /* Clear pending interrupts. */
5725 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5726 /* Enable interrupt coalescing. */
5727 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5728 /* Enable interrupts. */
5729 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5730
5731 /* _Really_ make sure "radio off" bit is cleared! */
5732 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5733 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5734
5735 /* Enable shadow registers. */
5736 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
5737 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
5738
5739 if ((error = ops->load_firmware(sc)) != 0) {
5740 aprint_error_dev(sc->sc_dev,
5741 "could not load firmware\n");
5742 return error;
5743 }
5744 /* Wait at most one second for firmware alive notification. */
5745 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5746 aprint_error_dev(sc->sc_dev,
5747 "timeout waiting for adapter to initialize\n");
5748 return error;
5749 }
5750 /* Do post-firmware initialization. */
5751 return ops->post_alive(sc);
5752 }
5753
5754 static void
5755 iwn_hw_stop(struct iwn_softc *sc)
5756 {
5757 int chnl, qid, ntries;
5758
5759 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5760
5761 /* Disable interrupts. */
5762 IWN_WRITE(sc, IWN_INT_MASK, 0);
5763 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5764 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5765 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5766
5767 /* Make sure we no longer hold the NIC lock. */
5768 iwn_nic_unlock(sc);
5769
5770 /* Stop TX scheduler. */
5771 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5772
5773 /* Stop all DMA channels. */
5774 if (iwn_nic_lock(sc) == 0) {
5775 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5776 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5777 for (ntries = 0; ntries < 200; ntries++) {
5778 if (IWN_READ(sc, IWN_FH_TX_STATUS) &
5779 IWN_FH_TX_STATUS_IDLE(chnl))
5780 break;
5781 DELAY(10);
5782 }
5783 }
5784 iwn_nic_unlock(sc);
5785 }
5786
5787 /* Stop RX ring. */
5788 iwn_reset_rx_ring(sc, &sc->rxq);
5789
5790 /* Reset all TX rings. */
5791 for (qid = 0; qid < sc->ntxqs; qid++)
5792 iwn_reset_tx_ring(sc, &sc->txq[qid]);
5793
5794 if (iwn_nic_lock(sc) == 0) {
5795 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5796 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5797 iwn_nic_unlock(sc);
5798 }
5799 DELAY(5);
5800 /* Power OFF adapter. */
5801 iwn_apm_stop(sc);
5802 }
5803
5804 static int
5805 iwn_init(struct ifnet *ifp)
5806 {
5807 struct iwn_softc *sc = ifp->if_softc;
5808 struct ieee80211com *ic = &sc->sc_ic;
5809 int error;
5810
5811 mutex_enter(&sc->sc_mtx);
5812 if (sc->sc_flags & IWN_FLAG_HW_INITED)
5813 goto out;
5814 if ((error = iwn_hw_prepare(sc)) != 0) {
5815 aprint_error_dev(sc->sc_dev,
5816 "hardware not ready\n");
5817 goto fail;
5818 }
5819
5820 /* Check that the radio is not disabled by hardware switch. */
5821 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5822 aprint_error_dev(sc->sc_dev,
5823 "radio is disabled by hardware switch\n");
5824 error = EPERM; /* :-) */
5825 goto fail;
5826 }
5827
5828 /* Read firmware images from the filesystem. */
5829 if ((error = iwn_read_firmware(sc)) != 0) {
5830 aprint_error_dev(sc->sc_dev,
5831 "could not read firmware\n");
5832 goto fail;
5833 }
5834
5835 /* Initialize interrupt mask to default value. */
5836 sc->int_mask = IWN_INT_MASK_DEF;
5837 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5838
5839 /* Initialize hardware and upload firmware. */
5840 KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
5841 error = iwn_hw_init(sc);
5842 firmware_free(sc->fw.data, sc->fw.size);
5843 sc->fw.data = NULL;
5844 sc->fw.size = 0;
5845 if (error != 0) {
5846 aprint_error_dev(sc->sc_dev,
5847 "could not initialize hardware\n");
5848 goto fail;
5849 }
5850
5851 /* Configure adapter now that it is ready. */
5852 if ((error = iwn_config(sc)) != 0) {
5853 aprint_error_dev(sc->sc_dev,
5854 "could not configure device\n");
5855 goto fail;
5856 }
5857
5858 ifp->if_flags &= ~IFF_OACTIVE;
5859 ifp->if_flags |= IFF_RUNNING;
5860
5861 if (ic->ic_opmode != IEEE80211_M_MONITOR)
5862 ieee80211_begin_scan(ic, 0);
5863 else
5864 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5865
5866 sc->sc_flags |= IWN_FLAG_HW_INITED;
5867 out:
5868 mutex_exit(&sc->sc_mtx);
5869 return 0;
5870
5871 fail: mutex_exit(&sc->sc_mtx);
5872 iwn_stop(ifp, 1);
5873 return error;
5874 }
5875
5876 static void
5877 iwn_stop(struct ifnet *ifp, int disable)
5878 {
5879 struct iwn_softc *sc = ifp->if_softc;
5880 struct ieee80211com *ic = &sc->sc_ic;
5881
5882 if (!disable)
5883 mutex_enter(&sc->sc_mtx);
5884 sc->sc_flags &= ~IWN_FLAG_HW_INITED;
5885 ifp->if_timer = sc->sc_tx_timer = 0;
5886 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5887
5888 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5889
5890 /* Power OFF hardware. */
5891 iwn_hw_stop(sc);
5892
5893 if (!disable)
5894 mutex_exit(&sc->sc_mtx);
5895 }
5896
5897 /*
5898 * XXX MCLGETI alternative
5899 *
5900 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
5901 * as long as there are available free buffers then it uses MEXTMALLOC.,
5902 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
5903 * The MCLGET4K code is used for testing an alternative mbuf cache.
5904 */
5905
5906 static struct mbuf *
5907 MCLGETIalt(struct iwn_softc *sc, int how,
5908 struct ifnet *ifp __unused, u_int size)
5909 {
5910 struct mbuf *m;
5911 #ifdef IWN_USE_RBUF
5912 struct iwn_rbuf *rbuf;
5913 #endif
5914
5915 MGETHDR(m, how, MT_DATA);
5916 if (m == NULL)
5917 return NULL;
5918
5919 #ifdef IWN_USE_RBUF
5920 if (sc->rxq.nb_free_entries > 0 &&
5921 (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
5922 /* Attach buffer to mbuf header. */
5923 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
5924 m->m_flags |= M_EXT_RW;
5925 }
5926 else {
5927 MEXTMALLOC(m, size, how);
5928 if ((m->m_flags & M_EXT) == 0) {
5929 m_freem(m);
5930 return NULL;
5931 }
5932 }
5933
5934 #else
5935 #ifdef MCLGET4K
5936 if (size == 4096)
5937 MCLGET4K(m, how);
5938 else
5939 panic("size must be 4k");
5940 #else
5941 MEXTMALLOC(m, size, how);
5942 #endif
5943 if ((m->m_flags & M_EXT) == 0) {
5944 m_freem(m);
5945 return NULL;
5946 }
5947 #endif
5948
5949 return m;
5950 }
5951
5952 #ifdef IWN_USE_RBUF
5953 static struct iwn_rbuf *
5954 iwn_alloc_rbuf(struct iwn_softc *sc)
5955 {
5956 struct iwn_rbuf *rbuf;
5957 mutex_enter(&sc->rxq.freelist_mtx);
5958
5959 rbuf = SLIST_FIRST(&sc->rxq.freelist);
5960 if (rbuf != NULL) {
5961 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
5962 sc->rxq.nb_free_entries --;
5963 }
5964 mutex_exit(&sc->rxq.freelist_mtx);
5965 return rbuf;
5966 }
5967
5968 /*
5969 * This is called automatically by the network stack when the mbuf to which
5970 * our RX buffer is attached is freed.
5971 */
5972 static void
5973 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
5974 {
5975 struct iwn_rbuf *rbuf = arg;
5976 struct iwn_softc *sc = rbuf->sc;
5977
5978 /* Put the RX buffer back in the free list. */
5979 mutex_enter(&sc->rxq.freelist_mtx);
5980 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
5981 mutex_exit(&sc->rxq.freelist_mtx);
5982
5983 sc->rxq.nb_free_entries ++;
5984 if (__predict_true(m != NULL))
5985 pool_cache_put(mb_cache, m);
5986 }
5987
5988 static int
5989 iwn_alloc_rpool(struct iwn_softc *sc)
5990 {
5991 struct iwn_rx_ring *ring = &sc->rxq;
5992 struct iwn_rbuf *rbuf;
5993 int i, error;
5994
5995 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
5996
5997 /* Allocate a big chunk of DMA'able memory... */
5998 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
5999 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6000 if (error != 0) {
6001 aprint_error_dev(sc->sc_dev,
6002 "could not allocate RX buffers DMA memory\n");
6003 return error;
6004 }
6005 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6006 SLIST_INIT(&ring->freelist);
6007 for (i = 0; i < IWN_RBUF_COUNT; i++) {
6008 rbuf = &ring->rbuf[i];
6009
6010 rbuf->sc = sc; /* Backpointer for callbacks. */
6011 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6012 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6013
6014 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6015 }
6016 ring->nb_free_entries = IWN_RBUF_COUNT;
6017 return 0;
6018 }
6019
6020 static void
6021 iwn_free_rpool(struct iwn_softc *sc)
6022 {
6023 iwn_dma_contig_free(&sc->rxq.buf_dma);
6024 }
6025 #endif
6026
6027 /*
6028 * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6029 * Copyright (c) 2001 Atsushi Onoe
6030 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6031 * Copyright (c) 2007-2009 Damien Bergamini
6032 * All rights reserved.
6033 */
6034
6035 /*
6036 * Add an SSID element to a frame (see 7.3.2.1).
6037 */
6038 static u_int8_t *
6039 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6040 {
6041 *frm++ = IEEE80211_ELEMID_SSID;
6042 *frm++ = len;
6043 memcpy(frm, ssid, len);
6044 return frm + len;
6045 }
6046
6047 /*
6048 * Add a supported rates element to a frame (see 7.3.2.2).
6049 */
6050 static u_int8_t *
6051 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6052 {
6053 int nrates;
6054
6055 *frm++ = IEEE80211_ELEMID_RATES;
6056 nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6057 *frm++ = nrates;
6058 memcpy(frm, rs->rs_rates, nrates);
6059 return frm + nrates;
6060 }
6061
6062 /*
6063 * Add an extended supported rates element to a frame (see 7.3.2.14).
6064 */
6065 static u_int8_t *
6066 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6067 {
6068 int nrates;
6069
6070 KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6071
6072 *frm++ = IEEE80211_ELEMID_XRATES;
6073 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6074 *frm++ = nrates;
6075 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6076 return frm + nrates;
6077 }
6078
6079 /*
6080 * XXX: Hack to set the current channel to the value advertised in beacons or
6081 * probe responses. Only used during AP detection.
6082 * XXX: Duplicated from if_iwi.c
6083 */
6084 static void
6085 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6086 {
6087 struct ieee80211_frame *wh;
6088 uint8_t subtype;
6089 uint8_t *frm, *efrm;
6090
6091 wh = mtod(m, struct ieee80211_frame *);
6092
6093 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6094 return;
6095
6096 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6097
6098 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6099 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6100 return;
6101
6102 frm = (uint8_t *)(wh + 1);
6103 efrm = mtod(m, uint8_t *) + m->m_len;
6104
6105 frm += 12; /* skip tstamp, bintval and capinfo fields */
6106 while (frm < efrm) {
6107 if (*frm == IEEE80211_ELEMID_DSPARMS)
6108 #if IEEE80211_CHAN_MAX < 255
6109 if (frm[2] <= IEEE80211_CHAN_MAX)
6110 #endif
6111 ic->ic_curchan = &ic->ic_channels[frm[2]];
6112
6113 frm += frm[1] + 2;
6114 }
6115 }
6116
6117