Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.62.2.1
      1 /*	$NetBSD: if_iwn.c,v 1.62.2.1 2015/11/15 20:27:34 bouyer Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.62.2.1 2015/11/15 20:27:34 bouyer Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/proc.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #include <sys/mutex.h>
     39 #include <sys/conf.h>
     40 #include <sys/kauth.h>
     41 #include <sys/callout.h>
     42 
     43 #include <dev/sysmon/sysmonvar.h>
     44 
     45 #include <sys/bus.h>
     46 #include <machine/endian.h>
     47 #include <machine/intr.h>
     48 
     49 #include <dev/pci/pcireg.h>
     50 #include <dev/pci/pcivar.h>
     51 #include <dev/pci/pcidevs.h>
     52 
     53 #include <net/bpf.h>
     54 #include <net/if.h>
     55 #include <net/if_arp.h>
     56 #include <net/if_dl.h>
     57 #include <net/if_media.h>
     58 #include <net/if_types.h>
     59 
     60 #include <netinet/in.h>
     61 #include <netinet/in_systm.h>
     62 #include <netinet/in_var.h>
     63 #include <net/if_ether.h>
     64 #include <netinet/ip.h>
     65 
     66 #include <net80211/ieee80211_var.h>
     67 #include <net80211/ieee80211_amrr.h>
     68 #include <net80211/ieee80211_radiotap.h>
     69 
     70 #include <dev/firmload.h>
     71 
     72 #include <dev/pci/if_iwnreg.h>
     73 #include <dev/pci/if_iwnvar.h>
     74 
     75 static const pci_product_id_t iwn_devices[] = {
     76 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
     77 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
     78 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     79 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     80 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
     81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
     82 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     83 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     84 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     85 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     86 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     87 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
     89 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
     90 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
     99 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
    100 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
    101 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
    102 };
    103 
    104 /*
    105  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    106  */
    107 static const struct ieee80211_rateset iwn_rateset_11a =
    108 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    109 
    110 static const struct ieee80211_rateset iwn_rateset_11b =
    111 	{ 4, { 2, 4, 11, 22 } };
    112 
    113 static const struct ieee80211_rateset iwn_rateset_11g =
    114 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    115 
    116 static int	iwn_match(device_t , struct cfdata *, void *);
    117 static void	iwn_attach(device_t , device_t , void *);
    118 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
    119 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
    120 static void	iwn_radiotap_attach(struct iwn_softc *);
    121 static int	iwn_detach(device_t , int);
    122 #if 0
    123 static void	iwn_power(int, void *);
    124 #endif
    125 static bool	iwn_resume(device_t, const pmf_qual_t *);
    126 static int	iwn_nic_lock(struct iwn_softc *);
    127 static int	iwn_eeprom_lock(struct iwn_softc *);
    128 static int	iwn_init_otprom(struct iwn_softc *);
    129 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    130 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    131 		    void **, bus_size_t, bus_size_t);
    132 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    133 static int	iwn_alloc_sched(struct iwn_softc *);
    134 static void	iwn_free_sched(struct iwn_softc *);
    135 static int	iwn_alloc_kw(struct iwn_softc *);
    136 static void	iwn_free_kw(struct iwn_softc *);
    137 static int	iwn_alloc_ict(struct iwn_softc *);
    138 static void	iwn_free_ict(struct iwn_softc *);
    139 static int	iwn_alloc_fwmem(struct iwn_softc *);
    140 static void	iwn_free_fwmem(struct iwn_softc *);
    141 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    142 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    143 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    144 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    145 		    int);
    146 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    147 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    148 static void	iwn5000_ict_reset(struct iwn_softc *);
    149 static int	iwn_read_eeprom(struct iwn_softc *);
    150 static void	iwn4965_read_eeprom(struct iwn_softc *);
    151 
    152 #ifdef IWN_DEBUG
    153 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    154 #endif
    155 static void	iwn5000_read_eeprom(struct iwn_softc *);
    156 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    157 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    158 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    159 static void	iwn_newassoc(struct ieee80211_node *, int);
    160 static int	iwn_media_change(struct ifnet *);
    161 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    162 static void	iwn_iter_func(void *, struct ieee80211_node *);
    163 static void	iwn_calib_timeout(void *);
    164 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    165 		    struct iwn_rx_data *);
    166 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    167 		    struct iwn_rx_data *);
    168 #ifndef IEEE80211_NO_HT
    169 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    170 		    struct iwn_rx_data *);
    171 #endif
    172 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    173 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    174 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    175 		    struct iwn_rx_data *);
    176 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    177 		    struct iwn_rx_data *);
    178 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    179 		    struct iwn_rx_data *);
    180 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    181 		    uint8_t);
    182 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    183 static void	iwn_notif_intr(struct iwn_softc *);
    184 static void	iwn_wakeup_intr(struct iwn_softc *);
    185 static void	iwn_fatal_intr(struct iwn_softc *);
    186 static int	iwn_intr(void *);
    187 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    188 		    uint16_t);
    189 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    190 		    uint16_t);
    191 #ifdef notyet
    192 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    193 #endif
    194 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    195 		    struct ieee80211_node *, int);
    196 static void	iwn_start(struct ifnet *);
    197 static void	iwn_watchdog(struct ifnet *);
    198 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    199 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    200 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    201 		    int);
    202 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    203 		    int);
    204 static int	iwn_set_link_quality(struct iwn_softc *,
    205 		    struct ieee80211_node *);
    206 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    207 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    208 static int	iwn_set_critical_temp(struct iwn_softc *);
    209 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    210 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    211 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    212 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    213 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    214 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    215 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    216 static int	iwn4965_get_temperature(struct iwn_softc *);
    217 static int	iwn5000_get_temperature(struct iwn_softc *);
    218 static int	iwn_init_sensitivity(struct iwn_softc *);
    219 static void	iwn_collect_noise(struct iwn_softc *,
    220 		    const struct iwn_rx_general_stats *);
    221 static int	iwn4965_init_gains(struct iwn_softc *);
    222 static int	iwn5000_init_gains(struct iwn_softc *);
    223 static int	iwn4965_set_gains(struct iwn_softc *);
    224 static int	iwn5000_set_gains(struct iwn_softc *);
    225 static void	iwn_tune_sensitivity(struct iwn_softc *,
    226 		    const struct iwn_rx_stats *);
    227 static int	iwn_send_sensitivity(struct iwn_softc *);
    228 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    229 static int	iwn5000_runtime_calib(struct iwn_softc *);
    230 static int	iwn_config(struct iwn_softc *);
    231 static int	iwn_scan(struct iwn_softc *, uint16_t);
    232 static int	iwn_auth(struct iwn_softc *);
    233 static int	iwn_run(struct iwn_softc *);
    234 #ifdef IWN_HWCRYPTO
    235 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    236 		    struct ieee80211_key *);
    237 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    238 		    struct ieee80211_key *);
    239 #endif
    240 static int	iwn_wme_update(struct ieee80211com *);
    241 #ifndef IEEE80211_NO_HT
    242 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    243 		    struct ieee80211_node *, uint8_t);
    244 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    245 		    struct ieee80211_node *, uint8_t);
    246 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    247 		    struct ieee80211_node *, uint8_t);
    248 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    249 		    struct ieee80211_node *, uint8_t);
    250 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    251 		    struct ieee80211_node *, uint8_t, uint16_t);
    252 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    253 		    uint8_t, uint16_t);
    254 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    255 		    struct ieee80211_node *, uint8_t, uint16_t);
    256 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    257 		    uint8_t, uint16_t);
    258 #endif
    259 static int	iwn5000_query_calibration(struct iwn_softc *);
    260 static int	iwn5000_send_calibration(struct iwn_softc *);
    261 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    262 static int	iwn4965_post_alive(struct iwn_softc *);
    263 static int	iwn5000_post_alive(struct iwn_softc *);
    264 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    265 		    int);
    266 static int	iwn4965_load_firmware(struct iwn_softc *);
    267 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    268 		    const uint8_t *, int);
    269 static int	iwn5000_load_firmware(struct iwn_softc *);
    270 static int	iwn_read_firmware_leg(struct iwn_softc *,
    271 		    struct iwn_fw_info *);
    272 static int	iwn_read_firmware_tlv(struct iwn_softc *,
    273 		    struct iwn_fw_info *, uint16_t);
    274 static int	iwn_read_firmware(struct iwn_softc *);
    275 static int	iwn_clock_wait(struct iwn_softc *);
    276 static int	iwn_apm_init(struct iwn_softc *);
    277 static void	iwn_apm_stop_master(struct iwn_softc *);
    278 static void	iwn_apm_stop(struct iwn_softc *);
    279 static int	iwn4965_nic_config(struct iwn_softc *);
    280 static int	iwn5000_nic_config(struct iwn_softc *);
    281 static int	iwn_hw_prepare(struct iwn_softc *);
    282 static int	iwn_hw_init(struct iwn_softc *);
    283 static void	iwn_hw_stop(struct iwn_softc *);
    284 static int	iwn_init(struct ifnet *);
    285 static void	iwn_stop(struct ifnet *, int);
    286 
    287 /* XXX MCLGETI alternative */
    288 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    289 		    struct ifnet *, u_int);
    290 #ifdef IWN_USE_RBUF
    291 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    292 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    293 static int	iwn_alloc_rpool(struct iwn_softc *);
    294 static void	iwn_free_rpool(struct iwn_softc *);
    295 #endif
    296 
    297 /* XXX needed by iwn_scan */
    298 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
    299 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
    300     const struct ieee80211_rateset *);
    301 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
    302     const struct ieee80211_rateset *);
    303 
    304 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
    305 		    struct iwn_rx_stat *);
    306 
    307 #ifdef IWN_DEBUG
    308 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    309 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    310 int iwn_debug = 0;
    311 #else
    312 #define DPRINTF(x)
    313 #define DPRINTFN(n, x)
    314 #endif
    315 
    316 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    317 	iwn_detach, NULL);
    318 
    319 static int
    320 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    321 {
    322 	struct pci_attach_args *pa = aux;
    323 	size_t i;
    324 
    325 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    326 		return 0;
    327 
    328 	for (i = 0; i < __arraycount(iwn_devices); i++)
    329 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    330 			return 1;
    331 
    332 	return 0;
    333 }
    334 
    335 static void
    336 iwn_attach(device_t parent __unused, device_t self, void *aux)
    337 {
    338 	struct iwn_softc *sc = device_private(self);
    339 	struct ieee80211com *ic = &sc->sc_ic;
    340 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    341 	struct pci_attach_args *pa = aux;
    342 	const char *intrstr;
    343 	pci_intr_handle_t ih;
    344 	pcireg_t memtype, reg;
    345 	int i, error;
    346 
    347 	sc->sc_dev = self;
    348 	sc->sc_pct = pa->pa_pc;
    349 	sc->sc_pcitag = pa->pa_tag;
    350 	sc->sc_dmat = pa->pa_dmat;
    351 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
    352 
    353 	callout_init(&sc->calib_to, 0);
    354 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    355 
    356 	pci_aprint_devinfo(pa, NULL);
    357 
    358 	/*
    359 	 * Get the offset of the PCI Express Capability Structure in PCI
    360 	 * Configuration Space.
    361 	 */
    362 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    363 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    364 	if (error == 0) {
    365 		aprint_error(": PCIe capability structure not found!\n");
    366 		return;
    367 	}
    368 
    369 	/* Clear device-specific "PCI retry timeout" register (41h). */
    370 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    371 	if (reg & 0xff00)
    372 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    373 
    374 	/* Enable bus-mastering and hardware bug workaround. */
    375 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    376 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    377 	reg |= PCI_COMMAND_MASTER_ENABLE;
    378 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
    379 		DPRINTF(("PCIe INTx Disable set\n"));
    380 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
    381 	}
    382 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    383 
    384 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    385 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    386 	    &sc->sc_sh, NULL, &sc->sc_sz);
    387 	if (error != 0) {
    388 		aprint_error(": can't map mem space\n");
    389 		return;
    390 	}
    391 
    392 	/* Install interrupt handler. */
    393 	if (pci_intr_map(pa, &ih) != 0) {
    394 		aprint_error(": can't map interrupt\n");
    395 		return;
    396 	}
    397 	intrstr = pci_intr_string(sc->sc_pct, ih);
    398 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
    399 	if (sc->sc_ih == NULL) {
    400 		aprint_error(": can't establish interrupt");
    401 		if (intrstr != NULL)
    402 			aprint_error(" at %s", intrstr);
    403 		aprint_error("\n");
    404 		return;
    405 	}
    406 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    407 
    408 	/* Read hardware revision and attach. */
    409 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
    410 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
    411 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
    412 	else
    413 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
    414 	if (error != 0) {
    415 		aprint_error(": could not attach device\n");
    416 		return;
    417 	}
    418 
    419 	if ((error = iwn_hw_prepare(sc)) != 0) {
    420 		aprint_error(": hardware not ready\n");
    421 		return;
    422 	}
    423 
    424 	/* Read MAC address, channels, etc from EEPROM. */
    425 	if ((error = iwn_read_eeprom(sc)) != 0) {
    426 		aprint_error(": could not read EEPROM\n");
    427 		return;
    428 	}
    429 
    430 	/* Allocate DMA memory for firmware transfers. */
    431 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    432 		aprint_error(": could not allocate memory for firmware\n");
    433 		return;
    434 	}
    435 
    436 	/* Allocate "Keep Warm" page. */
    437 	if ((error = iwn_alloc_kw(sc)) != 0) {
    438 		aprint_error(": could not allocate keep warm page\n");
    439 		goto fail1;
    440 	}
    441 
    442 	/* Allocate ICT table for 5000 Series. */
    443 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    444 	    (error = iwn_alloc_ict(sc)) != 0) {
    445 		aprint_error(": could not allocate ICT table\n");
    446 		goto fail2;
    447 	}
    448 
    449 	/* Allocate TX scheduler "rings". */
    450 	if ((error = iwn_alloc_sched(sc)) != 0) {
    451 		aprint_error(": could not allocate TX scheduler rings\n");
    452 		goto fail3;
    453 	}
    454 
    455 #ifdef IWN_USE_RBUF
    456 	/* Allocate RX buffers. */
    457 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    458 		aprint_error_dev(self, "could not allocate RX buffers\n");
    459 		goto fail3;
    460 	}
    461 #endif
    462 
    463 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
    464 	for (i = 0; i < sc->ntxqs; i++) {
    465 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    466 			aprint_error(": could not allocate TX ring %d\n", i);
    467 			goto fail4;
    468 		}
    469 	}
    470 
    471 	/* Allocate RX ring. */
    472 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    473 		aprint_error(": could not allocate RX ring\n");
    474 		goto fail4;
    475 	}
    476 
    477 	/* Clear pending interrupts. */
    478 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    479 
    480 	/* Count the number of available chains. */
    481 	sc->ntxchains =
    482 	    ((sc->txchainmask >> 2) & 1) +
    483 	    ((sc->txchainmask >> 1) & 1) +
    484 	    ((sc->txchainmask >> 0) & 1);
    485 	sc->nrxchains =
    486 	    ((sc->rxchainmask >> 2) & 1) +
    487 	    ((sc->rxchainmask >> 1) & 1) +
    488 	    ((sc->rxchainmask >> 0) & 1);
    489 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    490 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    491 	    ether_sprintf(ic->ic_myaddr));
    492 
    493 	ic->ic_ifp = ifp;
    494 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    495 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    496 	ic->ic_state = IEEE80211_S_INIT;
    497 
    498 	/* Set device capabilities. */
    499 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
    500 	 * and IEEE80211_C_PMGT too. */
    501 	ic->ic_caps =
    502 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    503 	    IEEE80211_C_WPA |		/* 802.11i */
    504 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    505 	    IEEE80211_C_TXPMGT |	/* tx power management */
    506 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    507 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    508 	    IEEE80211_C_WME;		/* 802.11e */
    509 
    510 #ifndef IEEE80211_NO_HT
    511 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    512 		/* Set HT capabilities. */
    513 		ic->ic_htcaps =
    514 #if IWN_RBUF_SIZE == 8192
    515 		    IEEE80211_HTCAP_AMSDU7935 |
    516 #endif
    517 		    IEEE80211_HTCAP_CBW20_40 |
    518 		    IEEE80211_HTCAP_SGI20 |
    519 		    IEEE80211_HTCAP_SGI40;
    520 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    521 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    522 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    523 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    524 		else
    525 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    526 	}
    527 #endif	/* !IEEE80211_NO_HT */
    528 
    529 	/* Set supported legacy rates. */
    530 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
    531 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
    532 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    533 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
    534 	}
    535 #ifndef IEEE80211_NO_HT
    536 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    537 		/* Set supported HT rates. */
    538 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
    539 		if (sc->nrxchains > 1)
    540 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    541 		if (sc->nrxchains > 2)
    542 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    543 	}
    544 #endif
    545 
    546 	/* IBSS channel undefined for now. */
    547 	ic->ic_ibss_chan = &ic->ic_channels[0];
    548 
    549 	ifp->if_softc = sc;
    550 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    551 	ifp->if_init = iwn_init;
    552 	ifp->if_ioctl = iwn_ioctl;
    553 	ifp->if_start = iwn_start;
    554 	ifp->if_stop = iwn_stop;
    555 	ifp->if_watchdog = iwn_watchdog;
    556 	IFQ_SET_READY(&ifp->if_snd);
    557 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    558 
    559 	if_attach(ifp);
    560 	ieee80211_ifattach(ic);
    561 	ic->ic_node_alloc = iwn_node_alloc;
    562 	ic->ic_newassoc = iwn_newassoc;
    563 #ifdef IWN_HWCRYPTO
    564 	ic->ic_crypto.cs_key_set = iwn_set_key;
    565 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    566 #endif
    567 	ic->ic_wme.wme_update = iwn_wme_update;
    568 #ifndef IEEE80211_NO_HT
    569 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    570 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    571 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    572 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    573 #endif
    574 
    575 	/* Override 802.11 state transition machine. */
    576 	sc->sc_newstate = ic->ic_newstate;
    577 	ic->ic_newstate = iwn_newstate;
    578 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    579 
    580 	sc->amrr.amrr_min_success_threshold =  1;
    581 	sc->amrr.amrr_max_success_threshold = 15;
    582 
    583 	iwn_radiotap_attach(sc);
    584 
    585 	/*
    586 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    587 	 * callout_init and callout_setfunc, above.
    588 	*/
    589 
    590 	if (pmf_device_register(self, NULL, iwn_resume))
    591 		pmf_class_network_register(self, ifp);
    592 	else
    593 		aprint_error_dev(self, "couldn't establish power handler\n");
    594 
    595 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    596 	ieee80211_announce(ic);
    597 
    598 	return;
    599 
    600 	/* Free allocated memory if something failed during attachment. */
    601 fail4:	while (--i >= 0)
    602 		iwn_free_tx_ring(sc, &sc->txq[i]);
    603 #ifdef IWN_USE_RBUF
    604 	iwn_free_rpool(sc);
    605 #endif
    606 	iwn_free_sched(sc);
    607 fail3:	if (sc->ict != NULL)
    608 		iwn_free_ict(sc);
    609 fail2:	iwn_free_kw(sc);
    610 fail1:	iwn_free_fwmem(sc);
    611 }
    612 
    613 int
    614 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
    615 {
    616 	struct iwn_ops *ops = &sc->ops;
    617 
    618 	ops->load_firmware = iwn4965_load_firmware;
    619 	ops->read_eeprom = iwn4965_read_eeprom;
    620 	ops->post_alive = iwn4965_post_alive;
    621 	ops->nic_config = iwn4965_nic_config;
    622 	ops->update_sched = iwn4965_update_sched;
    623 	ops->get_temperature = iwn4965_get_temperature;
    624 	ops->get_rssi = iwn4965_get_rssi;
    625 	ops->set_txpower = iwn4965_set_txpower;
    626 	ops->init_gains = iwn4965_init_gains;
    627 	ops->set_gains = iwn4965_set_gains;
    628 	ops->add_node = iwn4965_add_node;
    629 	ops->tx_done = iwn4965_tx_done;
    630 #ifndef IEEE80211_NO_HT
    631 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
    632 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
    633 #endif
    634 	sc->ntxqs = IWN4965_NTXQUEUES;
    635 	sc->ndmachnls = IWN4965_NDMACHNLS;
    636 	sc->broadcast_id = IWN4965_ID_BROADCAST;
    637 	sc->rxonsz = IWN4965_RXONSZ;
    638 	sc->schedsz = IWN4965_SCHEDSZ;
    639 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
    640 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
    641 	sc->fwsz = IWN4965_FWSZ;
    642 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
    643 	sc->limits = &iwn4965_sensitivity_limits;
    644 	sc->fwname = "iwlwifi-4965-2.ucode";
    645 	/* Override chains masks, ROM is known to be broken. */
    646 	sc->txchainmask = IWN_ANT_AB;
    647 	sc->rxchainmask = IWN_ANT_ABC;
    648 
    649 	return 0;
    650 }
    651 
    652 int
    653 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
    654 {
    655 	struct iwn_ops *ops = &sc->ops;
    656 
    657 	ops->load_firmware = iwn5000_load_firmware;
    658 	ops->read_eeprom = iwn5000_read_eeprom;
    659 	ops->post_alive = iwn5000_post_alive;
    660 	ops->nic_config = iwn5000_nic_config;
    661 	ops->update_sched = iwn5000_update_sched;
    662 	ops->get_temperature = iwn5000_get_temperature;
    663 	ops->get_rssi = iwn5000_get_rssi;
    664 	ops->set_txpower = iwn5000_set_txpower;
    665 	ops->init_gains = iwn5000_init_gains;
    666 	ops->set_gains = iwn5000_set_gains;
    667 	ops->add_node = iwn5000_add_node;
    668 	ops->tx_done = iwn5000_tx_done;
    669 #ifndef IEEE80211_NO_HT
    670 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
    671 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
    672 #endif
    673 	sc->ntxqs = IWN5000_NTXQUEUES;
    674 	sc->ndmachnls = IWN5000_NDMACHNLS;
    675 	sc->broadcast_id = IWN5000_ID_BROADCAST;
    676 	sc->rxonsz = IWN5000_RXONSZ;
    677 	sc->schedsz = IWN5000_SCHEDSZ;
    678 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
    679 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
    680 	sc->fwsz = IWN5000_FWSZ;
    681 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
    682 
    683 	switch (sc->hw_type) {
    684 	case IWN_HW_REV_TYPE_5100:
    685 		sc->limits = &iwn5000_sensitivity_limits;
    686 		sc->fwname = "iwlwifi-5000-2.ucode";
    687 		/* Override chains masks, ROM is known to be broken. */
    688 		sc->txchainmask = IWN_ANT_B;
    689 		sc->rxchainmask = IWN_ANT_AB;
    690 		break;
    691 	case IWN_HW_REV_TYPE_5150:
    692 		sc->limits = &iwn5150_sensitivity_limits;
    693 		sc->fwname = "iwlwifi-5150-2.ucode";
    694 		break;
    695 	case IWN_HW_REV_TYPE_5300:
    696 	case IWN_HW_REV_TYPE_5350:
    697 		sc->limits = &iwn5000_sensitivity_limits;
    698 		sc->fwname = "iwlwifi-5000-2.ucode";
    699 		break;
    700 	case IWN_HW_REV_TYPE_1000:
    701 		sc->limits = &iwn1000_sensitivity_limits;
    702 		sc->fwname = "iwlwifi-1000-3.ucode";
    703 		break;
    704 	case IWN_HW_REV_TYPE_6000:
    705 		sc->limits = &iwn6000_sensitivity_limits;
    706 		sc->fwname = "iwlwifi-6000-4.ucode";
    707 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
    708 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
    709 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    710 			/* Override chains masks, ROM is known to be broken. */
    711 			sc->txchainmask = IWN_ANT_BC;
    712 			sc->rxchainmask = IWN_ANT_BC;
    713 		}
    714 		break;
    715 	case IWN_HW_REV_TYPE_6050:
    716 		sc->limits = &iwn6000_sensitivity_limits;
    717 		sc->fwname = "iwlwifi-6050-5.ucode";
    718 		break;
    719 	case IWN_HW_REV_TYPE_6005:
    720 		sc->limits = &iwn6000_sensitivity_limits;
    721 		sc->fwname = "iwlwifi-6000g2a-5.ucode";
    722 		break;
    723 	default:
    724 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    725 		return ENOTSUP;
    726 	}
    727 	return 0;
    728 }
    729 
    730 /*
    731  * Attach the interface to 802.11 radiotap.
    732  */
    733 static void
    734 iwn_radiotap_attach(struct iwn_softc *sc)
    735 {
    736 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    737 
    738 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    739 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    740 	    &sc->sc_drvbpf);
    741 
    742 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    743 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    744 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    745 
    746 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    747 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    748 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    749 }
    750 
    751 static int
    752 iwn_detach(device_t self, int flags __unused)
    753 {
    754 	struct iwn_softc *sc = device_private(self);
    755 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    756 	int qid;
    757 
    758 	callout_stop(&sc->calib_to);
    759 
    760 	/* Uninstall interrupt handler. */
    761 	if (sc->sc_ih != NULL)
    762 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    763 
    764 	/* Free DMA resources. */
    765 	iwn_free_rx_ring(sc, &sc->rxq);
    766 	for (qid = 0; qid < sc->ntxqs; qid++)
    767 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    768 #ifdef IWN_USE_RBUF
    769 	iwn_free_rpool(sc);
    770 #endif
    771 	iwn_free_sched(sc);
    772 	iwn_free_kw(sc);
    773 	if (sc->ict != NULL)
    774 		iwn_free_ict(sc);
    775 	iwn_free_fwmem(sc);
    776 
    777 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    778 
    779 	ieee80211_ifdetach(&sc->sc_ic);
    780 	if_detach(ifp);
    781 
    782 	return 0;
    783 }
    784 
    785 #if 0
    786 /*
    787  * XXX Investigate if clearing the PCI retry timeout could eliminate
    788  * the repeated scan calls.  Also the calls to if_init and if_start
    789  * are similar to the effect of adding the call to ifioctl_common .
    790  */
    791 static void
    792 iwn_power(int why, void *arg)
    793 {
    794 	struct iwn_softc *sc = arg;
    795 	struct ifnet *ifp;
    796 	pcireg_t reg;
    797 	int s;
    798 
    799 	if (why != PWR_RESUME)
    800 		return;
    801 
    802 	/* Clear device-specific "PCI retry timeout" register (41h). */
    803 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    804 	if (reg & 0xff00)
    805 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    806 
    807 	s = splnet();
    808 	ifp = &sc->sc_ic.ic_if;
    809 	if (ifp->if_flags & IFF_UP) {
    810 		ifp->if_init(ifp);
    811 		if (ifp->if_flags & IFF_RUNNING)
    812 			ifp->if_start(ifp);
    813 	}
    814 	splx(s);
    815 }
    816 #endif
    817 
    818 static bool
    819 iwn_resume(device_t dv, const pmf_qual_t *qual)
    820 {
    821 	return true;
    822 }
    823 
    824 static int
    825 iwn_nic_lock(struct iwn_softc *sc)
    826 {
    827 	int ntries;
    828 
    829 	/* Request exclusive access to NIC. */
    830 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    831 
    832 	/* Spin until we actually get the lock. */
    833 	for (ntries = 0; ntries < 1000; ntries++) {
    834 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    835 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    836 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    837 			return 0;
    838 		DELAY(10);
    839 	}
    840 	return ETIMEDOUT;
    841 }
    842 
    843 static __inline void
    844 iwn_nic_unlock(struct iwn_softc *sc)
    845 {
    846 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    847 }
    848 
    849 static __inline uint32_t
    850 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    851 {
    852 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    853 	IWN_BARRIER_READ_WRITE(sc);
    854 	return IWN_READ(sc, IWN_PRPH_RDATA);
    855 }
    856 
    857 static __inline void
    858 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    859 {
    860 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    861 	IWN_BARRIER_WRITE(sc);
    862 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    863 }
    864 
    865 static __inline void
    866 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    867 {
    868 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    869 }
    870 
    871 static __inline void
    872 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    873 {
    874 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    875 }
    876 
    877 static __inline void
    878 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    879     const uint32_t *data, int count)
    880 {
    881 	for (; count > 0; count--, data++, addr += 4)
    882 		iwn_prph_write(sc, addr, *data);
    883 }
    884 
    885 static __inline uint32_t
    886 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    887 {
    888 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    889 	IWN_BARRIER_READ_WRITE(sc);
    890 	return IWN_READ(sc, IWN_MEM_RDATA);
    891 }
    892 
    893 static __inline void
    894 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    895 {
    896 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    897 	IWN_BARRIER_WRITE(sc);
    898 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    899 }
    900 
    901 static __inline void
    902 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
    903 {
    904 	uint32_t tmp;
    905 
    906 	tmp = iwn_mem_read(sc, addr & ~3);
    907 	if (addr & 3)
    908 		tmp = (tmp & 0x0000ffff) | data << 16;
    909 	else
    910 		tmp = (tmp & 0xffff0000) | data;
    911 	iwn_mem_write(sc, addr & ~3, tmp);
    912 }
    913 
    914 static __inline void
    915 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
    916     int count)
    917 {
    918 	for (; count > 0; count--, addr += 4)
    919 		*data++ = iwn_mem_read(sc, addr);
    920 }
    921 
    922 static __inline void
    923 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
    924     int count)
    925 {
    926 	for (; count > 0; count--, addr += 4)
    927 		iwn_mem_write(sc, addr, val);
    928 }
    929 
    930 static int
    931 iwn_eeprom_lock(struct iwn_softc *sc)
    932 {
    933 	int i, ntries;
    934 
    935 	for (i = 0; i < 100; i++) {
    936 		/* Request exclusive access to EEPROM. */
    937 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
    938 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
    939 
    940 		/* Spin until we actually get the lock. */
    941 		for (ntries = 0; ntries < 100; ntries++) {
    942 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
    943 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
    944 				return 0;
    945 			DELAY(10);
    946 		}
    947 	}
    948 	return ETIMEDOUT;
    949 }
    950 
    951 static __inline void
    952 iwn_eeprom_unlock(struct iwn_softc *sc)
    953 {
    954 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
    955 }
    956 
    957 /*
    958  * Initialize access by host to One Time Programmable ROM.
    959  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
    960  */
    961 static int
    962 iwn_init_otprom(struct iwn_softc *sc)
    963 {
    964 	uint16_t prev = 0, base, next;
    965 	int count, error;
    966 
    967 	/* Wait for clock stabilization before accessing prph. */
    968 	if ((error = iwn_clock_wait(sc)) != 0)
    969 		return error;
    970 
    971 	if ((error = iwn_nic_lock(sc)) != 0)
    972 		return error;
    973 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
    974 	DELAY(5);
    975 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
    976 	iwn_nic_unlock(sc);
    977 
    978 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
    979 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
    980 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
    981 		    IWN_RESET_LINK_PWR_MGMT_DIS);
    982 	}
    983 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
    984 	/* Clear ECC status. */
    985 	IWN_SETBITS(sc, IWN_OTP_GP,
    986 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
    987 
    988 	/*
    989 	 * Find the block before last block (contains the EEPROM image)
    990 	 * for HW without OTP shadow RAM.
    991 	 */
    992 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
    993 		/* Switch to absolute addressing mode. */
    994 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
    995 		base = 0;
    996 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
    997 			error = iwn_read_prom_data(sc, base, &next, 2);
    998 			if (error != 0)
    999 				return error;
   1000 			if (next == 0)	/* End of linked-list. */
   1001 				break;
   1002 			prev = base;
   1003 			base = le16toh(next);
   1004 		}
   1005 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1006 			return EIO;
   1007 		/* Skip "next" word. */
   1008 		sc->prom_base = prev + 1;
   1009 	}
   1010 	return 0;
   1011 }
   1012 
   1013 static int
   1014 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1015 {
   1016 	uint8_t *out = data;
   1017 	uint32_t val, tmp;
   1018 	int ntries;
   1019 
   1020 	addr += sc->prom_base;
   1021 	for (; count > 0; count -= 2, addr++) {
   1022 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1023 		for (ntries = 0; ntries < 10; ntries++) {
   1024 			val = IWN_READ(sc, IWN_EEPROM);
   1025 			if (val & IWN_EEPROM_READ_VALID)
   1026 				break;
   1027 			DELAY(5);
   1028 		}
   1029 		if (ntries == 10) {
   1030 			aprint_error_dev(sc->sc_dev,
   1031 			    "timeout reading ROM at 0x%x\n", addr);
   1032 			return ETIMEDOUT;
   1033 		}
   1034 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1035 			/* OTPROM, check for ECC errors. */
   1036 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1037 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1038 				aprint_error_dev(sc->sc_dev,
   1039 				    "OTPROM ECC error at 0x%x\n", addr);
   1040 				return EIO;
   1041 			}
   1042 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1043 				/* Correctable ECC error, clear bit. */
   1044 				IWN_SETBITS(sc, IWN_OTP_GP,
   1045 				    IWN_OTP_GP_ECC_CORR_STTS);
   1046 			}
   1047 		}
   1048 		*out++ = val >> 16;
   1049 		if (count > 1)
   1050 			*out++ = val >> 24;
   1051 	}
   1052 	return 0;
   1053 }
   1054 
   1055 static int
   1056 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1057     bus_size_t size, bus_size_t alignment)
   1058 {
   1059 	int nsegs, error;
   1060 
   1061 	dma->tag = tag;
   1062 	dma->size = size;
   1063 
   1064 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1065 	    &dma->map);
   1066 	if (error != 0)
   1067 		goto fail;
   1068 
   1069 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1070 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1071 	if (error != 0)
   1072 		goto fail;
   1073 
   1074 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1075 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1076 	if (error != 0)
   1077 		goto fail;
   1078 
   1079 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1080 	    BUS_DMA_NOWAIT);
   1081 	if (error != 0)
   1082 		goto fail;
   1083 
   1084 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1085 	memset(dma->vaddr, 0, size);
   1086 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1087 
   1088 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1089 	if (kvap != NULL)
   1090 		*kvap = dma->vaddr;
   1091 
   1092 	return 0;
   1093 
   1094 fail:	iwn_dma_contig_free(dma);
   1095 	return error;
   1096 }
   1097 
   1098 static void
   1099 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1100 {
   1101 	if (dma->map != NULL) {
   1102 		if (dma->vaddr != NULL) {
   1103 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1104 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1105 			bus_dmamap_unload(dma->tag, dma->map);
   1106 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1107 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1108 			dma->vaddr = NULL;
   1109 		}
   1110 		bus_dmamap_destroy(dma->tag, dma->map);
   1111 		dma->map = NULL;
   1112 	}
   1113 }
   1114 
   1115 static int
   1116 iwn_alloc_sched(struct iwn_softc *sc)
   1117 {
   1118 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1119 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1120 	    (void **)&sc->sched, sc->schedsz, 1024);
   1121 }
   1122 
   1123 static void
   1124 iwn_free_sched(struct iwn_softc *sc)
   1125 {
   1126 	iwn_dma_contig_free(&sc->sched_dma);
   1127 }
   1128 
   1129 static int
   1130 iwn_alloc_kw(struct iwn_softc *sc)
   1131 {
   1132 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1133 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1134 	    4096);
   1135 }
   1136 
   1137 static void
   1138 iwn_free_kw(struct iwn_softc *sc)
   1139 {
   1140 	iwn_dma_contig_free(&sc->kw_dma);
   1141 }
   1142 
   1143 static int
   1144 iwn_alloc_ict(struct iwn_softc *sc)
   1145 {
   1146 	/* ICT table must be aligned on a 4KB boundary. */
   1147 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1148 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1149 }
   1150 
   1151 static void
   1152 iwn_free_ict(struct iwn_softc *sc)
   1153 {
   1154 	iwn_dma_contig_free(&sc->ict_dma);
   1155 }
   1156 
   1157 static int
   1158 iwn_alloc_fwmem(struct iwn_softc *sc)
   1159 {
   1160 	/* Must be aligned on a 16-byte boundary. */
   1161 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1162 	    sc->fwsz, 16);
   1163 }
   1164 
   1165 static void
   1166 iwn_free_fwmem(struct iwn_softc *sc)
   1167 {
   1168 	iwn_dma_contig_free(&sc->fw_dma);
   1169 }
   1170 
   1171 static int
   1172 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1173 {
   1174 	bus_size_t size;
   1175 	int i, error;
   1176 
   1177 	ring->cur = 0;
   1178 
   1179 	/* Allocate RX descriptors (256-byte aligned). */
   1180 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1181 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1182 	    (void **)&ring->desc, size, 256);
   1183 	if (error != 0) {
   1184 		aprint_error_dev(sc->sc_dev,
   1185 		    "could not allocate RX ring DMA memory\n");
   1186 		goto fail;
   1187 	}
   1188 
   1189 	/* Allocate RX status area (16-byte aligned). */
   1190 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1191 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1192 	if (error != 0) {
   1193 		aprint_error_dev(sc->sc_dev,
   1194 		    "could not allocate RX status DMA memory\n");
   1195 		goto fail;
   1196 	}
   1197 
   1198 	/*
   1199 	 * Allocate and map RX buffers.
   1200 	 */
   1201 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1202 		struct iwn_rx_data *data = &ring->data[i];
   1203 
   1204 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1205 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1206 		    &data->map);
   1207 		if (error != 0) {
   1208 			aprint_error_dev(sc->sc_dev,
   1209 			    "could not create RX buf DMA map\n");
   1210 			goto fail;
   1211 		}
   1212 
   1213 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1214 		if (data->m == NULL) {
   1215 			aprint_error_dev(sc->sc_dev,
   1216 			    "could not allocate RX mbuf\n");
   1217 			error = ENOBUFS;
   1218 			goto fail;
   1219 		}
   1220 
   1221 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1222 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1223 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1224 		if (error != 0) {
   1225 			aprint_error_dev(sc->sc_dev,
   1226 			    "can't not map mbuf (error %d)\n", error);
   1227 			goto fail;
   1228 		}
   1229 
   1230 		/* Set physical address of RX buffer (256-byte aligned). */
   1231 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1232 	}
   1233 
   1234 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1235 	    BUS_DMASYNC_PREWRITE);
   1236 
   1237 	return 0;
   1238 
   1239 fail:	iwn_free_rx_ring(sc, ring);
   1240 	return error;
   1241 }
   1242 
   1243 static void
   1244 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1245 {
   1246 	int ntries;
   1247 
   1248 	if (iwn_nic_lock(sc) == 0) {
   1249 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1250 		for (ntries = 0; ntries < 1000; ntries++) {
   1251 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1252 			    IWN_FH_RX_STATUS_IDLE)
   1253 				break;
   1254 			DELAY(10);
   1255 		}
   1256 		iwn_nic_unlock(sc);
   1257 	}
   1258 	ring->cur = 0;
   1259 	sc->last_rx_valid = 0;
   1260 }
   1261 
   1262 static void
   1263 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1264 {
   1265 	int i;
   1266 
   1267 	iwn_dma_contig_free(&ring->desc_dma);
   1268 	iwn_dma_contig_free(&ring->stat_dma);
   1269 
   1270 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1271 		struct iwn_rx_data *data = &ring->data[i];
   1272 
   1273 		if (data->m != NULL) {
   1274 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1275 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1276 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1277 			m_freem(data->m);
   1278 		}
   1279 		if (data->map != NULL)
   1280 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1281 	}
   1282 }
   1283 
   1284 static int
   1285 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1286 {
   1287 	bus_addr_t paddr;
   1288 	bus_size_t size;
   1289 	int i, error;
   1290 
   1291 	ring->qid = qid;
   1292 	ring->queued = 0;
   1293 	ring->cur = 0;
   1294 
   1295 	/* Allocate TX descriptors (256-byte aligned). */
   1296 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1297 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1298 	    (void **)&ring->desc, size, 256);
   1299 	if (error != 0) {
   1300 		aprint_error_dev(sc->sc_dev,
   1301 		    "could not allocate TX ring DMA memory\n");
   1302 		goto fail;
   1303 	}
   1304 	/*
   1305 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1306 	 * to allocate commands space for other rings.
   1307 	 * XXX Do we really need to allocate descriptors for other rings?
   1308 	 */
   1309 	if (qid > 4)
   1310 		return 0;
   1311 
   1312 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1313 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1314 	    (void **)&ring->cmd, size, 4);
   1315 	if (error != 0) {
   1316 		aprint_error_dev(sc->sc_dev,
   1317 		    "could not allocate TX cmd DMA memory\n");
   1318 		goto fail;
   1319 	}
   1320 
   1321 	paddr = ring->cmd_dma.paddr;
   1322 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1323 		struct iwn_tx_data *data = &ring->data[i];
   1324 
   1325 		data->cmd_paddr = paddr;
   1326 		data->scratch_paddr = paddr + 12;
   1327 		paddr += sizeof (struct iwn_tx_cmd);
   1328 
   1329 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1330 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1331 		    &data->map);
   1332 		if (error != 0) {
   1333 			aprint_error_dev(sc->sc_dev,
   1334 			    "could not create TX buf DMA map\n");
   1335 			goto fail;
   1336 		}
   1337 	}
   1338 	return 0;
   1339 
   1340 fail:	iwn_free_tx_ring(sc, ring);
   1341 	return error;
   1342 }
   1343 
   1344 static void
   1345 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1346 {
   1347 	int i;
   1348 
   1349 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1350 		struct iwn_tx_data *data = &ring->data[i];
   1351 
   1352 		if (data->m != NULL) {
   1353 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1354 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1355 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1356 			m_freem(data->m);
   1357 			data->m = NULL;
   1358 		}
   1359 	}
   1360 	/* Clear TX descriptors. */
   1361 	memset(ring->desc, 0, ring->desc_dma.size);
   1362 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1363 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1364 	sc->qfullmsk &= ~(1 << ring->qid);
   1365 	ring->queued = 0;
   1366 	ring->cur = 0;
   1367 }
   1368 
   1369 static void
   1370 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1371 {
   1372 	int i;
   1373 
   1374 	iwn_dma_contig_free(&ring->desc_dma);
   1375 	iwn_dma_contig_free(&ring->cmd_dma);
   1376 
   1377 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1378 		struct iwn_tx_data *data = &ring->data[i];
   1379 
   1380 		if (data->m != NULL) {
   1381 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1382 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1383 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1384 			m_freem(data->m);
   1385 		}
   1386 		if (data->map != NULL)
   1387 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1388 	}
   1389 }
   1390 
   1391 static void
   1392 iwn5000_ict_reset(struct iwn_softc *sc)
   1393 {
   1394 	/* Disable interrupts. */
   1395 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1396 
   1397 	/* Reset ICT table. */
   1398 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1399 	sc->ict_cur = 0;
   1400 
   1401 	/* Set physical address of ICT table (4KB aligned). */
   1402 	DPRINTF(("enabling ICT\n"));
   1403 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1404 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1405 
   1406 	/* Enable periodic RX interrupt. */
   1407 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1408 	/* Switch to ICT interrupt mode in driver. */
   1409 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1410 
   1411 	/* Re-enable interrupts. */
   1412 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1413 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1414 }
   1415 
   1416 static int
   1417 iwn_read_eeprom(struct iwn_softc *sc)
   1418 {
   1419 	struct iwn_ops *ops = &sc->ops;
   1420 	struct ieee80211com *ic = &sc->sc_ic;
   1421 	uint16_t val;
   1422 	int error;
   1423 
   1424 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1425 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1426 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1427 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1428 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1429 	    "OTPROM" : "EEPROM"));
   1430 
   1431 	/* Adapter has to be powered on for EEPROM access to work. */
   1432 	if ((error = iwn_apm_init(sc)) != 0) {
   1433 		aprint_error_dev(sc->sc_dev,
   1434 		    "could not power ON adapter\n");
   1435 		return error;
   1436 	}
   1437 
   1438 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1439 		aprint_error_dev(sc->sc_dev,
   1440 		    "bad ROM signature\n");
   1441 		return EIO;
   1442 	}
   1443 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1444 		aprint_error_dev(sc->sc_dev,
   1445 		    "could not lock ROM (error=%d)\n", error);
   1446 		return error;
   1447 	}
   1448 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1449 		if ((error = iwn_init_otprom(sc)) != 0) {
   1450 			aprint_error_dev(sc->sc_dev,
   1451 			    "could not initialize OTPROM\n");
   1452 			return error;
   1453 		}
   1454 	}
   1455 
   1456 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
   1457 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
   1458 	/* Check if HT support is bonded out. */
   1459 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
   1460 		sc->sc_flags |= IWN_FLAG_HAS_11N;
   1461 
   1462 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1463 	sc->rfcfg = le16toh(val);
   1464 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1465 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
   1466 	if (sc->txchainmask == 0)
   1467 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
   1468 	if (sc->rxchainmask == 0)
   1469 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
   1470 
   1471 	/* Read MAC address. */
   1472 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1473 
   1474 	/* Read adapter-specific information from EEPROM. */
   1475 	ops->read_eeprom(sc);
   1476 
   1477 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1478 
   1479 	iwn_eeprom_unlock(sc);
   1480 	return 0;
   1481 }
   1482 
   1483 static void
   1484 iwn4965_read_eeprom(struct iwn_softc *sc)
   1485 {
   1486 	uint32_t addr;
   1487 	uint16_t val;
   1488 	int i;
   1489 
   1490 	/* Read regulatory domain (4 ASCII characters). */
   1491 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1492 
   1493 	/* Read the list of authorized channels (20MHz ones only). */
   1494 	for (i = 0; i < 5; i++) {
   1495 		addr = iwn4965_regulatory_bands[i];
   1496 		iwn_read_eeprom_channels(sc, i, addr);
   1497 	}
   1498 
   1499 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1500 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1501 	sc->maxpwr2GHz = val & 0xff;
   1502 	sc->maxpwr5GHz = val >> 8;
   1503 	/* Check that EEPROM values are within valid range. */
   1504 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1505 		sc->maxpwr5GHz = 38;
   1506 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1507 		sc->maxpwr2GHz = 38;
   1508 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1509 
   1510 	/* Read samples for each TX power group. */
   1511 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1512 	    sizeof sc->bands);
   1513 
   1514 	/* Read voltage at which samples were taken. */
   1515 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1516 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1517 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1518 
   1519 #ifdef IWN_DEBUG
   1520 	/* Print samples. */
   1521 	if (iwn_debug > 0) {
   1522 		for (i = 0; i < IWN_NBANDS; i++)
   1523 			iwn4965_print_power_group(sc, i);
   1524 	}
   1525 #endif
   1526 }
   1527 
   1528 #ifdef IWN_DEBUG
   1529 static void
   1530 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1531 {
   1532 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1533 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1534 	int j, c;
   1535 
   1536 	aprint_normal("===band %d===\n", i);
   1537 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1538 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1539 	for (c = 0; c < 2; c++) {
   1540 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1541 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1542 			    "power=%d pa_det=%d\n", c, j,
   1543 			    chans[0].samples[c][j].temp,
   1544 			    chans[0].samples[c][j].gain,
   1545 			    chans[0].samples[c][j].power,
   1546 			    chans[0].samples[c][j].pa_det);
   1547 		}
   1548 	}
   1549 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1550 	for (c = 0; c < 2; c++) {
   1551 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1552 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1553 			    "power=%d pa_det=%d\n", c, j,
   1554 			    chans[1].samples[c][j].temp,
   1555 			    chans[1].samples[c][j].gain,
   1556 			    chans[1].samples[c][j].power,
   1557 			    chans[1].samples[c][j].pa_det);
   1558 		}
   1559 	}
   1560 }
   1561 #endif
   1562 
   1563 static void
   1564 iwn5000_read_eeprom(struct iwn_softc *sc)
   1565 {
   1566 	struct iwn5000_eeprom_calib_hdr hdr;
   1567 	int32_t volt;
   1568 	uint32_t base, addr;
   1569 	uint16_t val;
   1570 	int i;
   1571 
   1572 	/* Read regulatory domain (4 ASCII characters). */
   1573 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1574 	base = le16toh(val);
   1575 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1576 	    sc->eeprom_domain, 4);
   1577 
   1578 	/* Read the list of authorized channels (20MHz ones only). */
   1579 	for (i = 0; i < 5; i++) {
   1580 		addr = base + iwn5000_regulatory_bands[i];
   1581 		iwn_read_eeprom_channels(sc, i, addr);
   1582 	}
   1583 
   1584 	/* Read enhanced TX power information for 6000 Series. */
   1585 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1586 		iwn_read_eeprom_enhinfo(sc);
   1587 
   1588 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1589 	base = le16toh(val);
   1590 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1591 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1592 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1593 	sc->calib_ver = hdr.version;
   1594 
   1595 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1596 		/* Compute temperature offset. */
   1597 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1598 		sc->eeprom_temp = le16toh(val);
   1599 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1600 		volt = le16toh(val);
   1601 		sc->temp_off = sc->eeprom_temp - (volt / -5);
   1602 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1603 		    sc->eeprom_temp, volt, sc->temp_off));
   1604 	} else {
   1605 		/* Read crystal calibration. */
   1606 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1607 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1608 		DPRINTF(("crystal calibration 0x%08x\n",
   1609 		    le32toh(sc->eeprom_crystal)));
   1610 	}
   1611 }
   1612 
   1613 static void
   1614 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1615 {
   1616 	struct ieee80211com *ic = &sc->sc_ic;
   1617 	const struct iwn_chan_band *band = &iwn_bands[n];
   1618 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1619 	uint8_t chan;
   1620 	int i;
   1621 
   1622 	iwn_read_prom_data(sc, addr, channels,
   1623 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1624 
   1625 	for (i = 0; i < band->nchan; i++) {
   1626 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1627 			continue;
   1628 
   1629 		chan = band->chan[i];
   1630 
   1631 		if (n == 0) {	/* 2GHz band */
   1632 			ic->ic_channels[chan].ic_freq =
   1633 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1634 			ic->ic_channels[chan].ic_flags =
   1635 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1636 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1637 
   1638 		} else {	/* 5GHz band */
   1639 			/*
   1640 			 * Some adapters support channels 7, 8, 11 and 12
   1641 			 * both in the 2GHz and 4.9GHz bands.
   1642 			 * Because of limitations in our net80211 layer,
   1643 			 * we don't support them in the 4.9GHz band.
   1644 			 */
   1645 			if (chan <= 14)
   1646 				continue;
   1647 
   1648 			ic->ic_channels[chan].ic_freq =
   1649 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1650 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1651 			/* We have at least one valid 5GHz channel. */
   1652 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1653 		}
   1654 
   1655 		/* Is active scan allowed on this channel? */
   1656 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1657 			ic->ic_channels[chan].ic_flags |=
   1658 			    IEEE80211_CHAN_PASSIVE;
   1659 		}
   1660 
   1661 		/* Save maximum allowed TX power for this channel. */
   1662 		sc->maxpwr[chan] = channels[i].maxpwr;
   1663 
   1664 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1665 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1666 	}
   1667 }
   1668 
   1669 static void
   1670 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1671 {
   1672 	struct iwn_eeprom_enhinfo enhinfo[35];
   1673 	uint16_t val, base;
   1674 	int8_t maxpwr;
   1675 	int i;
   1676 
   1677 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1678 	base = le16toh(val);
   1679 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1680 	    enhinfo, sizeof enhinfo);
   1681 
   1682 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1683 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1684 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
   1685 			continue;	/* Skip invalid entries. */
   1686 
   1687 		maxpwr = 0;
   1688 		if (sc->txchainmask & IWN_ANT_A)
   1689 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1690 		if (sc->txchainmask & IWN_ANT_B)
   1691 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1692 		if (sc->txchainmask & IWN_ANT_C)
   1693 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1694 		if (sc->ntxchains == 2)
   1695 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1696 		else if (sc->ntxchains == 3)
   1697 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1698 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1699 
   1700 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1701 		sc->enh_maxpwr[i] = maxpwr;
   1702 	}
   1703 }
   1704 
   1705 static struct ieee80211_node *
   1706 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1707 {
   1708 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1709 }
   1710 
   1711 static void
   1712 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1713 {
   1714 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1715 	struct iwn_node *wn = (void *)ni;
   1716 	uint8_t rate;
   1717 	int ridx, i;
   1718 
   1719 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1720 	/* Start at lowest available bit-rate, AMRR will raise. */
   1721 	ni->ni_txrate = 0;
   1722 
   1723 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1724 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1725 		/* Map 802.11 rate to HW rate index. */
   1726 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1727 			if (iwn_rates[ridx].rate == rate)
   1728 				break;
   1729 		wn->ridx[i] = ridx;
   1730 	}
   1731 }
   1732 
   1733 static int
   1734 iwn_media_change(struct ifnet *ifp)
   1735 {
   1736 	struct iwn_softc *sc = ifp->if_softc;
   1737 	struct ieee80211com *ic = &sc->sc_ic;
   1738 	uint8_t rate, ridx;
   1739 	int error;
   1740 
   1741 	error = ieee80211_media_change(ifp);
   1742 	if (error != ENETRESET)
   1743 		return error;
   1744 
   1745 	if (ic->ic_fixed_rate != -1) {
   1746 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1747 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1748 		/* Map 802.11 rate to HW rate index. */
   1749 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1750 			if (iwn_rates[ridx].rate == rate)
   1751 				break;
   1752 		sc->fixed_ridx = ridx;
   1753 	}
   1754 
   1755 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1756 	    (IFF_UP | IFF_RUNNING)) {
   1757 		iwn_stop(ifp, 0);
   1758 		error = iwn_init(ifp);
   1759 	}
   1760 	return error;
   1761 }
   1762 
   1763 static int
   1764 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1765 {
   1766 	struct ifnet *ifp = ic->ic_ifp;
   1767 	struct iwn_softc *sc = ifp->if_softc;
   1768 	int error;
   1769 
   1770 	callout_stop(&sc->calib_to);
   1771 
   1772 	switch (nstate) {
   1773 	case IEEE80211_S_SCAN:
   1774 		/* XXX Do not abort a running scan. */
   1775 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1776 			if (ic->ic_state != nstate)
   1777 				aprint_error_dev(sc->sc_dev, "scan request(%d) "
   1778 				    "while scanning(%d) ignored\n", nstate,
   1779 				    ic->ic_state);
   1780 			break;
   1781 		}
   1782 
   1783 		/* XXX Not sure if call and flags are needed. */
   1784 		ieee80211_node_table_reset(&ic->ic_scan);
   1785 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1786 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
   1787 
   1788 		/* Make the link LED blink while we're scanning. */
   1789 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1790 
   1791 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1792 			aprint_error_dev(sc->sc_dev,
   1793 			    "could not initiate scan\n");
   1794 			return error;
   1795 		}
   1796 		ic->ic_state = nstate;
   1797 		return 0;
   1798 
   1799 	case IEEE80211_S_ASSOC:
   1800 		if (ic->ic_state != IEEE80211_S_RUN)
   1801 			break;
   1802 		/* FALLTHROUGH */
   1803 	case IEEE80211_S_AUTH:
   1804 		/* Reset state to handle reassociations correctly. */
   1805 		sc->rxon.associd = 0;
   1806 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1807 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1808 
   1809 		if ((error = iwn_auth(sc)) != 0) {
   1810 			aprint_error_dev(sc->sc_dev,
   1811 			    "could not move to auth state\n");
   1812 			return error;
   1813 		}
   1814 		break;
   1815 
   1816 	case IEEE80211_S_RUN:
   1817 		if ((error = iwn_run(sc)) != 0) {
   1818 			aprint_error_dev(sc->sc_dev,
   1819 			    "could not move to run state\n");
   1820 			return error;
   1821 		}
   1822 		break;
   1823 
   1824 	case IEEE80211_S_INIT:
   1825 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1826 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1827 		break;
   1828 	}
   1829 
   1830 	return sc->sc_newstate(ic, nstate, arg);
   1831 }
   1832 
   1833 static void
   1834 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1835 {
   1836 	struct iwn_softc *sc = arg;
   1837 	struct iwn_node *wn = (struct iwn_node *)ni;
   1838 
   1839 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1840 }
   1841 
   1842 static void
   1843 iwn_calib_timeout(void *arg)
   1844 {
   1845 	struct iwn_softc *sc = arg;
   1846 	struct ieee80211com *ic = &sc->sc_ic;
   1847 	int s;
   1848 
   1849 	s = splnet();
   1850 	if (ic->ic_fixed_rate == -1) {
   1851 		if (ic->ic_opmode == IEEE80211_M_STA)
   1852 			iwn_iter_func(sc, ic->ic_bss);
   1853 		else
   1854 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1855 	}
   1856 	/* Force automatic TX power calibration every 60 secs. */
   1857 	if (++sc->calib_cnt >= 120) {
   1858 		uint32_t flags = 0;
   1859 
   1860 		DPRINTF(("sending request for statistics\n"));
   1861 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   1862 		    sizeof flags, 1);
   1863 		sc->calib_cnt = 0;
   1864 	}
   1865 	splx(s);
   1866 
   1867 	/* Automatic rate control triggered every 500ms. */
   1868 	callout_schedule(&sc->calib_to, hz/2);
   1869 }
   1870 
   1871 /*
   1872  * Process an RX_PHY firmware notification.  This is usually immediately
   1873  * followed by an MPDU_RX_DONE notification.
   1874  */
   1875 static void
   1876 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1877     struct iwn_rx_data *data)
   1878 {
   1879 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   1880 
   1881 	DPRINTFN(2, ("received PHY stats\n"));
   1882 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   1883 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   1884 
   1885 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   1886 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   1887 	sc->last_rx_valid = 1;
   1888 }
   1889 
   1890 /*
   1891  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   1892  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   1893  */
   1894 static void
   1895 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1896     struct iwn_rx_data *data)
   1897 {
   1898 	struct iwn_ops *ops = &sc->ops;
   1899 	struct ieee80211com *ic = &sc->sc_ic;
   1900 	struct ifnet *ifp = ic->ic_ifp;
   1901 	struct iwn_rx_ring *ring = &sc->rxq;
   1902 	struct ieee80211_frame *wh;
   1903 	struct ieee80211_node *ni;
   1904 	struct mbuf *m, *m1;
   1905 	struct iwn_rx_stat *stat;
   1906 	char	*head;
   1907 	uint32_t flags;
   1908 	int error, len, rssi;
   1909 
   1910 	if (desc->type == IWN_MPDU_RX_DONE) {
   1911 		/* Check for prior RX_PHY notification. */
   1912 		if (!sc->last_rx_valid) {
   1913 			DPRINTF(("missing RX_PHY\n"));
   1914 			return;
   1915 		}
   1916 		sc->last_rx_valid = 0;
   1917 		stat = &sc->last_rx_stat;
   1918 	} else
   1919 		stat = (struct iwn_rx_stat *)(desc + 1);
   1920 
   1921 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   1922 	    BUS_DMASYNC_POSTREAD);
   1923 
   1924 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   1925 		aprint_error_dev(sc->sc_dev,
   1926 		    "invalid RX statistic header\n");
   1927 		return;
   1928 	}
   1929 	if (desc->type == IWN_MPDU_RX_DONE) {
   1930 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   1931 		head = (char *)(mpdu + 1);
   1932 		len = le16toh(mpdu->len);
   1933 	} else {
   1934 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   1935 		len = le16toh(stat->len);
   1936 	}
   1937 
   1938 	flags = le32toh(*(uint32_t *)(head + len));
   1939 
   1940 	/* Discard frames with a bad FCS early. */
   1941 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   1942 		DPRINTFN(2, ("RX flags error %x\n", flags));
   1943 		ifp->if_ierrors++;
   1944 		return;
   1945 	}
   1946 	/* Discard frames that are too short. */
   1947 	if (len < sizeof (*wh)) {
   1948 		DPRINTF(("frame too short: %d\n", len));
   1949 		ic->ic_stats.is_rx_tooshort++;
   1950 		ifp->if_ierrors++;
   1951 		return;
   1952 	}
   1953 
   1954 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1955 	if (m1 == NULL) {
   1956 		ic->ic_stats.is_rx_nobuf++;
   1957 		ifp->if_ierrors++;
   1958 		return;
   1959 	}
   1960 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1961 
   1962 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   1963 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   1964 	if (error != 0) {
   1965 		m_freem(m1);
   1966 
   1967 		/* Try to reload the old mbuf. */
   1968 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1969 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1970 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1971 		if (error != 0) {
   1972 			panic("%s: could not load old RX mbuf",
   1973 			    device_xname(sc->sc_dev));
   1974 		}
   1975 		/* Physical address may have changed. */
   1976 		ring->desc[ring->cur] =
   1977 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   1978 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   1979 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   1980 		    BUS_DMASYNC_PREWRITE);
   1981 		ifp->if_ierrors++;
   1982 		return;
   1983 	}
   1984 
   1985 	m = data->m;
   1986 	data->m = m1;
   1987 	/* Update RX descriptor. */
   1988 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1989 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   1990 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   1991 	    BUS_DMASYNC_PREWRITE);
   1992 
   1993 	/* Finalize mbuf. */
   1994 	m->m_pkthdr.rcvif = ifp;
   1995 	m->m_data = head;
   1996 	m->m_pkthdr.len = m->m_len = len;
   1997 
   1998 	/* Grab a reference to the source node. */
   1999 	wh = mtod(m, struct ieee80211_frame *);
   2000 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2001 
   2002 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2003 	/* NetBSD does decryption in ieee80211_input. */
   2004 
   2005 	rssi = ops->get_rssi(stat);
   2006 
   2007 	/* XXX Added for NetBSD: scans never stop without it */
   2008 	if (ic->ic_state == IEEE80211_S_SCAN)
   2009 		iwn_fix_channel(ic, m, stat);
   2010 
   2011 	if (sc->sc_drvbpf != NULL) {
   2012 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2013 
   2014 		tap->wr_flags = 0;
   2015 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2016 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2017 		tap->wr_chan_freq =
   2018 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2019 		tap->wr_chan_flags =
   2020 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2021 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2022 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2023 		tap->wr_tsft = stat->tstamp;
   2024 		switch (stat->rate) {
   2025 		/* CCK rates. */
   2026 		case  10: tap->wr_rate =   2; break;
   2027 		case  20: tap->wr_rate =   4; break;
   2028 		case  55: tap->wr_rate =  11; break;
   2029 		case 110: tap->wr_rate =  22; break;
   2030 		/* OFDM rates. */
   2031 		case 0xd: tap->wr_rate =  12; break;
   2032 		case 0xf: tap->wr_rate =  18; break;
   2033 		case 0x5: tap->wr_rate =  24; break;
   2034 		case 0x7: tap->wr_rate =  36; break;
   2035 		case 0x9: tap->wr_rate =  48; break;
   2036 		case 0xb: tap->wr_rate =  72; break;
   2037 		case 0x1: tap->wr_rate =  96; break;
   2038 		case 0x3: tap->wr_rate = 108; break;
   2039 		/* Unknown rate: should not happen. */
   2040 		default:  tap->wr_rate =   0;
   2041 		}
   2042 
   2043 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   2044 	}
   2045 
   2046 	/* Send the frame to the 802.11 layer. */
   2047 	ieee80211_input(ic, m, ni, rssi, 0);
   2048 
   2049 	/* Node is no longer needed. */
   2050 	ieee80211_free_node(ni);
   2051 }
   2052 
   2053 #ifndef IEEE80211_NO_HT
   2054 /* Process an incoming Compressed BlockAck. */
   2055 static void
   2056 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2057     struct iwn_rx_data *data)
   2058 {
   2059 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2060 	struct iwn_tx_ring *txq;
   2061 
   2062 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2063 	    BUS_DMASYNC_POSTREAD);
   2064 
   2065 	txq = &sc->txq[le16toh(ba->qid)];
   2066 	/* XXX TBD */
   2067 }
   2068 #endif
   2069 
   2070 /*
   2071  * Process a CALIBRATION_RESULT notification sent by the initialization
   2072  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
   2073  */
   2074 static void
   2075 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2076     struct iwn_rx_data *data)
   2077 {
   2078 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2079 	int len, idx = -1;
   2080 
   2081 	/* Runtime firmware should not send such a notification. */
   2082 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2083 		return;
   2084 
   2085 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2086 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2087 	    BUS_DMASYNC_POSTREAD);
   2088 
   2089 	switch (calib->code) {
   2090 	case IWN5000_PHY_CALIB_DC:
   2091 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   2092 			idx = 0;
   2093 		break;
   2094 	case IWN5000_PHY_CALIB_LO:
   2095 		idx = 1;
   2096 		break;
   2097 	case IWN5000_PHY_CALIB_TX_IQ:
   2098 		idx = 2;
   2099 		break;
   2100 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2101 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2102 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2103 			idx = 3;
   2104 		break;
   2105 	case IWN5000_PHY_CALIB_BASE_BAND:
   2106 		idx = 4;
   2107 		break;
   2108 	}
   2109 	if (idx == -1)	/* Ignore other results. */
   2110 		return;
   2111 
   2112 	/* Save calibration result. */
   2113 	if (sc->calibcmd[idx].buf != NULL)
   2114 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2115 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2116 	if (sc->calibcmd[idx].buf == NULL) {
   2117 		DPRINTF(("not enough memory for calibration result %d\n",
   2118 		    calib->code));
   2119 		return;
   2120 	}
   2121 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2122 	    calib->code, len));
   2123 	sc->calibcmd[idx].len = len;
   2124 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2125 }
   2126 
   2127 /*
   2128  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2129  * The latter is sent by the firmware after each received beacon.
   2130  */
   2131 static void
   2132 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2133     struct iwn_rx_data *data)
   2134 {
   2135 	struct iwn_ops *ops = &sc->ops;
   2136 	struct ieee80211com *ic = &sc->sc_ic;
   2137 	struct iwn_calib_state *calib = &sc->calib;
   2138 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2139 	int temp;
   2140 
   2141 	/* Ignore statistics received during a scan. */
   2142 	if (ic->ic_state != IEEE80211_S_RUN)
   2143 		return;
   2144 
   2145 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2146 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2147 
   2148 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2149 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2150 
   2151 	/* Test if temperature has changed. */
   2152 	if (stats->general.temp != sc->rawtemp) {
   2153 		/* Convert "raw" temperature to degC. */
   2154 		sc->rawtemp = stats->general.temp;
   2155 		temp = ops->get_temperature(sc);
   2156 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2157 
   2158 		/* Update TX power if need be (4965AGN only). */
   2159 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2160 			iwn4965_power_calibration(sc, temp);
   2161 	}
   2162 
   2163 	if (desc->type != IWN_BEACON_STATISTICS)
   2164 		return;	/* Reply to a statistics request. */
   2165 
   2166 	sc->noise = iwn_get_noise(&stats->rx.general);
   2167 
   2168 	/* Test that RSSI and noise are present in stats report. */
   2169 	if (le32toh(stats->rx.general.flags) != 1) {
   2170 		DPRINTF(("received statistics without RSSI\n"));
   2171 		return;
   2172 	}
   2173 
   2174 	/*
   2175 	 * XXX Differential gain calibration makes the 6005 firmware
   2176 	 * crap out, so skip it for now.  This effectively disables
   2177 	 * sensitivity tuning as well.
   2178 	 */
   2179 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   2180 		return;
   2181 
   2182 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2183 		iwn_collect_noise(sc, &stats->rx.general);
   2184 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2185 		iwn_tune_sensitivity(sc, &stats->rx);
   2186 }
   2187 
   2188 /*
   2189  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2190  * and 5000 adapters have different incompatible TX status formats.
   2191  */
   2192 static void
   2193 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2194     struct iwn_rx_data *data)
   2195 {
   2196 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2197 
   2198 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2199 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2200 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2201 }
   2202 
   2203 static void
   2204 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2205     struct iwn_rx_data *data)
   2206 {
   2207 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2208 
   2209 #ifdef notyet
   2210 	/* Reset TX scheduler slot. */
   2211 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2212 #endif
   2213 
   2214 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2215 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2216 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2217 }
   2218 
   2219 /*
   2220  * Adapter-independent backend for TX_DONE firmware notifications.
   2221  */
   2222 static void
   2223 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2224     uint8_t status)
   2225 {
   2226 	struct ieee80211com *ic = &sc->sc_ic;
   2227 	struct ifnet *ifp = ic->ic_ifp;
   2228 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2229 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2230 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2231 
   2232 	/* Update rate control statistics. */
   2233 	wn->amn.amn_txcnt++;
   2234 	if (ackfailcnt > 0)
   2235 		wn->amn.amn_retrycnt++;
   2236 
   2237 	if (status != 1 && status != 2)
   2238 		ifp->if_oerrors++;
   2239 	else
   2240 		ifp->if_opackets++;
   2241 
   2242 	/* Unmap and free mbuf. */
   2243 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2244 	    BUS_DMASYNC_POSTWRITE);
   2245 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2246 	m_freem(data->m);
   2247 	data->m = NULL;
   2248 	ieee80211_free_node(data->ni);
   2249 	data->ni = NULL;
   2250 
   2251 	sc->sc_tx_timer = 0;
   2252 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2253 		sc->qfullmsk &= ~(1 << ring->qid);
   2254 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2255 			ifp->if_flags &= ~IFF_OACTIVE;
   2256 			(*ifp->if_start)(ifp);
   2257 		}
   2258 	}
   2259 }
   2260 
   2261 /*
   2262  * Process a "command done" firmware notification.  This is where we wakeup
   2263  * processes waiting for a synchronous command completion.
   2264  */
   2265 static void
   2266 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2267 {
   2268 	struct iwn_tx_ring *ring = &sc->txq[4];
   2269 	struct iwn_tx_data *data;
   2270 
   2271 	if ((desc->qid & 0xf) != 4)
   2272 		return;	/* Not a command ack. */
   2273 
   2274 	data = &ring->data[desc->idx];
   2275 
   2276 	/* If the command was mapped in an mbuf, free it. */
   2277 	if (data->m != NULL) {
   2278 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2279 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2280 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2281 		m_freem(data->m);
   2282 		data->m = NULL;
   2283 	}
   2284 	wakeup(&ring->desc[desc->idx]);
   2285 }
   2286 
   2287 /*
   2288  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2289  */
   2290 static void
   2291 iwn_notif_intr(struct iwn_softc *sc)
   2292 {
   2293 	struct iwn_ops *ops = &sc->ops;
   2294 	struct ieee80211com *ic = &sc->sc_ic;
   2295 	struct ifnet *ifp = ic->ic_ifp;
   2296 	uint16_t hw;
   2297 
   2298 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2299 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2300 
   2301 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2302 	while (sc->rxq.cur != hw) {
   2303 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2304 		struct iwn_rx_desc *desc;
   2305 
   2306 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2307 		    BUS_DMASYNC_POSTREAD);
   2308 		desc = mtod(data->m, struct iwn_rx_desc *);
   2309 
   2310 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2311 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2312 
   2313 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2314 			iwn_cmd_done(sc, desc);
   2315 
   2316 		switch (desc->type) {
   2317 		case IWN_RX_PHY:
   2318 			iwn_rx_phy(sc, desc, data);
   2319 			break;
   2320 
   2321 		case IWN_RX_DONE:		/* 4965AGN only. */
   2322 		case IWN_MPDU_RX_DONE:
   2323 			/* An 802.11 frame has been received. */
   2324 			iwn_rx_done(sc, desc, data);
   2325 			break;
   2326 #ifndef IEEE80211_NO_HT
   2327 		case IWN_RX_COMPRESSED_BA:
   2328 			/* A Compressed BlockAck has been received. */
   2329 			iwn_rx_compressed_ba(sc, desc, data);
   2330 			break;
   2331 #endif
   2332 		case IWN_TX_DONE:
   2333 			/* An 802.11 frame has been transmitted. */
   2334 			ops->tx_done(sc, desc, data);
   2335 			break;
   2336 
   2337 		case IWN_RX_STATISTICS:
   2338 		case IWN_BEACON_STATISTICS:
   2339 			iwn_rx_statistics(sc, desc, data);
   2340 			break;
   2341 
   2342 		case IWN_BEACON_MISSED:
   2343 		{
   2344 			struct iwn_beacon_missed *miss =
   2345 			    (struct iwn_beacon_missed *)(desc + 1);
   2346 
   2347 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2348 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2349 			/*
   2350 			 * If more than 5 consecutive beacons are missed,
   2351 			 * reinitialize the sensitivity state machine.
   2352 			 */
   2353 			DPRINTF(("beacons missed %d/%d\n",
   2354 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2355 			if (ic->ic_state == IEEE80211_S_RUN &&
   2356 			    le32toh(miss->consecutive) > 5)
   2357 				(void)iwn_init_sensitivity(sc);
   2358 			break;
   2359 		}
   2360 		case IWN_UC_READY:
   2361 		{
   2362 			struct iwn_ucode_info *uc =
   2363 			    (struct iwn_ucode_info *)(desc + 1);
   2364 
   2365 			/* The microcontroller is ready. */
   2366 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2367 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2368 			DPRINTF(("microcode alive notification version=%d.%d "
   2369 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2370 			    uc->subtype, le32toh(uc->valid)));
   2371 
   2372 			if (le32toh(uc->valid) != 1) {
   2373 				aprint_error_dev(sc->sc_dev,
   2374 				    "microcontroller initialization "
   2375 				    "failed\n");
   2376 				break;
   2377 			}
   2378 			if (uc->subtype == IWN_UCODE_INIT) {
   2379 				/* Save microcontroller report. */
   2380 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2381 			}
   2382 			/* Save the address of the error log in SRAM. */
   2383 			sc->errptr = le32toh(uc->errptr);
   2384 			break;
   2385 		}
   2386 		case IWN_STATE_CHANGED:
   2387 		{
   2388 			uint32_t *status = (uint32_t *)(desc + 1);
   2389 
   2390 			/* Enabled/disabled notification. */
   2391 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2392 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2393 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2394 
   2395 			if (le32toh(*status) & 1) {
   2396 				/* The radio button has to be pushed. */
   2397 				aprint_error_dev(sc->sc_dev,
   2398 				    "Radio transmitter is off\n");
   2399 				/* Turn the interface down. */
   2400 				ifp->if_flags &= ~IFF_UP;
   2401 				iwn_stop(ifp, 1);
   2402 				return;	/* No further processing. */
   2403 			}
   2404 			break;
   2405 		}
   2406 		case IWN_START_SCAN:
   2407 		{
   2408 			struct iwn_start_scan *scan =
   2409 			    (struct iwn_start_scan *)(desc + 1);
   2410 
   2411 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2412 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2413 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2414 			    scan->chan, le32toh(scan->status)));
   2415 
   2416 			/* Fix current channel. */
   2417 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2418 			break;
   2419 		}
   2420 		case IWN_STOP_SCAN:
   2421 		{
   2422 			struct iwn_stop_scan *scan =
   2423 			    (struct iwn_stop_scan *)(desc + 1);
   2424 
   2425 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2426 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2427 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2428 			    scan->nchan, scan->status, scan->chan));
   2429 
   2430 			if (scan->status == 1 && scan->chan <= 14 &&
   2431 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2432 				/*
   2433 				 * We just finished scanning 2GHz channels,
   2434 				 * start scanning 5GHz ones.
   2435 				 */
   2436 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
   2437 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
   2438 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2439 					break;
   2440 			}
   2441 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2442 			ieee80211_end_scan(ic);
   2443 			break;
   2444 		}
   2445 		case IWN5000_CALIBRATION_RESULT:
   2446 			iwn5000_rx_calib_results(sc, desc, data);
   2447 			break;
   2448 
   2449 		case IWN5000_CALIBRATION_DONE:
   2450 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2451 			wakeup(sc);
   2452 			break;
   2453 		}
   2454 
   2455 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2456 	}
   2457 
   2458 	/* Tell the firmware what we have processed. */
   2459 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2460 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2461 }
   2462 
   2463 /*
   2464  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2465  * from power-down sleep mode.
   2466  */
   2467 static void
   2468 iwn_wakeup_intr(struct iwn_softc *sc)
   2469 {
   2470 	int qid;
   2471 
   2472 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2473 
   2474 	/* Wakeup RX and TX rings. */
   2475 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2476 	for (qid = 0; qid < sc->ntxqs; qid++) {
   2477 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2478 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2479 	}
   2480 }
   2481 
   2482 /*
   2483  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2484  * we can't debug the firmware because it is neither open source nor free, it
   2485  * can help us to identify certain classes of problems.
   2486  */
   2487 static void
   2488 iwn_fatal_intr(struct iwn_softc *sc)
   2489 {
   2490 	struct iwn_fw_dump dump;
   2491 	int i;
   2492 
   2493 	/* Force a complete recalibration on next init. */
   2494 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2495 
   2496 	/* Check that the error log address is valid. */
   2497 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2498 	    sc->errptr + sizeof (dump) >
   2499 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
   2500 		aprint_error_dev(sc->sc_dev,
   2501 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2502 		return;
   2503 	}
   2504 	if (iwn_nic_lock(sc) != 0) {
   2505 		aprint_error_dev(sc->sc_dev,
   2506 		    "could not read firmware error log\n");
   2507 		return;
   2508 	}
   2509 	/* Read firmware error log from SRAM. */
   2510 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2511 	    sizeof (dump) / sizeof (uint32_t));
   2512 	iwn_nic_unlock(sc);
   2513 
   2514 	if (dump.valid == 0) {
   2515 		aprint_error_dev(sc->sc_dev,
   2516 		    "firmware error log is empty\n");
   2517 		return;
   2518 	}
   2519 	aprint_error("firmware error log:\n");
   2520 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2521 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2522 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2523 	    dump.id);
   2524 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2525 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2526 	aprint_error("  error data      = 0x%08X%08X\n",
   2527 	    dump.error_data[0], dump.error_data[1]);
   2528 	aprint_error("  branch link     = 0x%08X%08X\n",
   2529 	    dump.branch_link[0], dump.branch_link[1]);
   2530 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2531 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2532 	aprint_error("  time            = %u\n", dump.time[0]);
   2533 
   2534 	/* Dump driver status (TX and RX rings) while we're here. */
   2535 	aprint_error("driver status:\n");
   2536 	for (i = 0; i < sc->ntxqs; i++) {
   2537 		struct iwn_tx_ring *ring = &sc->txq[i];
   2538 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2539 		    i, ring->qid, ring->cur, ring->queued);
   2540 	}
   2541 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2542 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2543 }
   2544 
   2545 static int
   2546 iwn_intr(void *arg)
   2547 {
   2548 	struct iwn_softc *sc = arg;
   2549 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2550 	uint32_t r1, r2, tmp;
   2551 
   2552 	/* Disable interrupts. */
   2553 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2554 
   2555 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2556 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2557 		tmp = 0;
   2558 		while (sc->ict[sc->ict_cur] != 0) {
   2559 			tmp |= sc->ict[sc->ict_cur];
   2560 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2561 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2562 		}
   2563 		tmp = le32toh(tmp);
   2564 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2565 			tmp = 0;
   2566 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2567 			tmp |= 0x8000;
   2568 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2569 		r2 = 0;	/* Unused. */
   2570 	} else {
   2571 		r1 = IWN_READ(sc, IWN_INT);
   2572 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2573 			return 0;	/* Hardware gone! */
   2574 		r2 = IWN_READ(sc, IWN_FH_INT);
   2575 	}
   2576 	if (r1 == 0 && r2 == 0) {
   2577 		if (ifp->if_flags & IFF_UP)
   2578 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2579 		return 0;	/* Interrupt not for us. */
   2580 	}
   2581 
   2582 	/* Acknowledge interrupts. */
   2583 	IWN_WRITE(sc, IWN_INT, r1);
   2584 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2585 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2586 
   2587 	if (r1 & IWN_INT_RF_TOGGLED) {
   2588 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2589 		aprint_error_dev(sc->sc_dev,
   2590 		    "RF switch: radio %s\n",
   2591 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2592 	}
   2593 	if (r1 & IWN_INT_CT_REACHED) {
   2594 		aprint_error_dev(sc->sc_dev,
   2595 		    "critical temperature reached!\n");
   2596 	}
   2597 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2598 		aprint_error_dev(sc->sc_dev,
   2599 		    "fatal firmware error\n");
   2600 		/* Dump firmware error log and stop. */
   2601 		iwn_fatal_intr(sc);
   2602 		ifp->if_flags &= ~IFF_UP;
   2603 		iwn_stop(ifp, 1);
   2604 		return 1;
   2605 	}
   2606 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2607 	    (r2 & IWN_FH_INT_RX)) {
   2608 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2609 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2610 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2611 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2612 			    IWN_INT_PERIODIC_DIS);
   2613 			iwn_notif_intr(sc);
   2614 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2615 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2616 				    IWN_INT_PERIODIC_ENA);
   2617 			}
   2618 		} else
   2619 			iwn_notif_intr(sc);
   2620 	}
   2621 
   2622 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2623 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2624 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2625 		wakeup(sc);	/* FH DMA transfer completed. */
   2626 	}
   2627 
   2628 	if (r1 & IWN_INT_ALIVE)
   2629 		wakeup(sc);	/* Firmware is alive. */
   2630 
   2631 	if (r1 & IWN_INT_WAKEUP)
   2632 		iwn_wakeup_intr(sc);
   2633 
   2634 	/* Re-enable interrupts. */
   2635 	if (ifp->if_flags & IFF_UP)
   2636 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2637 
   2638 	return 1;
   2639 }
   2640 
   2641 /*
   2642  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2643  * 5000 adapters use a slightly different format).
   2644  */
   2645 static void
   2646 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2647     uint16_t len)
   2648 {
   2649 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2650 
   2651 	*w = htole16(len + 8);
   2652 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2653 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2654 	    sizeof (uint16_t),
   2655 	    BUS_DMASYNC_PREWRITE);
   2656 	if (idx < IWN_SCHED_WINSZ) {
   2657 		*(w + IWN_TX_RING_COUNT) = *w;
   2658 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2659 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2660 		    (char *)(void *)sc->sched_dma.vaddr,
   2661 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2662 	}
   2663 }
   2664 
   2665 static void
   2666 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2667     uint16_t len)
   2668 {
   2669 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2670 
   2671 	*w = htole16(id << 12 | (len + 8));
   2672 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2673 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2674 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2675 	if (idx < IWN_SCHED_WINSZ) {
   2676 		*(w + IWN_TX_RING_COUNT) = *w;
   2677 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2678 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2679 		    (char *)(void *)sc->sched_dma.vaddr,
   2680 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2681 	}
   2682 }
   2683 
   2684 #ifdef notyet
   2685 static void
   2686 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2687 {
   2688 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2689 
   2690 	*w = (*w & htole16(0xf000)) | htole16(1);
   2691 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2692 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2693 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2694 	if (idx < IWN_SCHED_WINSZ) {
   2695 		*(w + IWN_TX_RING_COUNT) = *w;
   2696 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2697 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2698 		    (char *)(void *)sc->sched_dma.vaddr,
   2699 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2700 	}
   2701 }
   2702 #endif
   2703 
   2704 static int
   2705 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2706 {
   2707 	struct ieee80211com *ic = &sc->sc_ic;
   2708 	struct iwn_node *wn = (void *)ni;
   2709 	struct iwn_tx_ring *ring;
   2710 	struct iwn_tx_desc *desc;
   2711 	struct iwn_tx_data *data;
   2712 	struct iwn_tx_cmd *cmd;
   2713 	struct iwn_cmd_data *tx;
   2714 	const struct iwn_rate *rinfo;
   2715 	struct ieee80211_frame *wh;
   2716 	struct ieee80211_key *k = NULL;
   2717 	struct mbuf *m1;
   2718 	uint32_t flags;
   2719 	u_int hdrlen;
   2720 	bus_dma_segment_t *seg;
   2721 	uint8_t tid, ridx, txant, type;
   2722 	int i, totlen, error, pad;
   2723 
   2724 	const struct chanAccParams *cap;
   2725 	int noack;
   2726 	int hdrlen2;
   2727 
   2728 	wh = mtod(m, struct ieee80211_frame *);
   2729 	hdrlen = ieee80211_anyhdrsize(wh);
   2730 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2731 
   2732 	hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
   2733 	    sizeof (struct ieee80211_qosframe) :
   2734 	    sizeof (struct ieee80211_frame);
   2735 
   2736 	if (hdrlen != hdrlen2)
   2737 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2738 		hdrlen, hdrlen2);
   2739 
   2740 	/* XXX OpenBSD sets a different tid when using QOS */
   2741 	tid = 0;
   2742 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   2743 		cap = &ic->ic_wme.wme_chanParams;
   2744 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2745 	}
   2746 	else
   2747 		noack = 0;
   2748 
   2749 	ring = &sc->txq[ac];
   2750 	desc = &ring->desc[ring->cur];
   2751 	data = &ring->data[ring->cur];
   2752 
   2753 	/* Choose a TX rate index. */
   2754 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2755 	    type != IEEE80211_FC0_TYPE_DATA) {
   2756 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2757 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2758 	} else if (ic->ic_fixed_rate != -1) {
   2759 		ridx = sc->fixed_ridx;
   2760 	} else
   2761 		ridx = wn->ridx[ni->ni_txrate];
   2762 	rinfo = &iwn_rates[ridx];
   2763 
   2764 	/* Encrypt the frame if need be. */
   2765 	/*
   2766 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   2767 	 * in order to match old code and other drivers. Tests with
   2768 	 * tcpdump indicates that the order is irrelevant, however,
   2769 	 * as bpf produces unencrypted data for both ordering choices.
   2770 	 */
   2771 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2772 		k = ieee80211_crypto_encap(ic, ni, m);
   2773 		if (k == NULL) {
   2774 			m_freem(m);
   2775 			return ENOBUFS;
   2776 		}
   2777 		/* Packet header may have moved, reset our local pointer. */
   2778 		wh = mtod(m, struct ieee80211_frame *);
   2779 	}
   2780 	totlen = m->m_pkthdr.len;
   2781 
   2782 	if (sc->sc_drvbpf != NULL) {
   2783 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2784 
   2785 		tap->wt_flags = 0;
   2786 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2787 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2788 		tap->wt_rate = rinfo->rate;
   2789 		tap->wt_hwqueue = ac;
   2790 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2791 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2792 
   2793 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   2794 	}
   2795 
   2796 	/* Prepare TX firmware command. */
   2797 	cmd = &ring->cmd[ring->cur];
   2798 	cmd->code = IWN_CMD_TX_DATA;
   2799 	cmd->flags = 0;
   2800 	cmd->qid = ring->qid;
   2801 	cmd->idx = ring->cur;
   2802 
   2803 	tx = (struct iwn_cmd_data *)cmd->data;
   2804 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2805 	tx->scratch = 0;	/* clear "scratch" area */
   2806 
   2807 	flags = 0;
   2808 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2809 		/* Unicast frame, check if an ACK is expected. */
   2810 		if (!noack)
   2811 			flags |= IWN_TX_NEED_ACK;
   2812 	}
   2813 
   2814 #ifdef notyet
   2815 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   2816 	if ((wh->i_fc[0] &
   2817 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   2818 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   2819 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   2820 #endif
   2821 
   2822 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   2823 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   2824 
   2825 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   2826 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2827 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   2828 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   2829 			flags |= IWN_TX_NEED_RTS;
   2830 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   2831 		    ridx >= IWN_RIDX_OFDM6) {
   2832 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   2833 				flags |= IWN_TX_NEED_CTS;
   2834 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   2835 				flags |= IWN_TX_NEED_RTS;
   2836 		}
   2837 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   2838 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   2839 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   2840 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   2841 				flags |= IWN_TX_NEED_PROTECTION;
   2842 			} else
   2843 				flags |= IWN_TX_FULL_TXOP;
   2844 		}
   2845 	}
   2846 
   2847 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2848 	    type != IEEE80211_FC0_TYPE_DATA)
   2849 		tx->id = sc->broadcast_id;
   2850 	else
   2851 		tx->id = wn->id;
   2852 
   2853 	if (type == IEEE80211_FC0_TYPE_MGT) {
   2854 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2855 
   2856 #ifndef IEEE80211_STA_ONLY
   2857 		/* Tell HW to set timestamp in probe responses. */
   2858 		/* XXX NetBSD rev 1.11 added probe requests here but */
   2859 		/* probe requests do not take timestamps (from Bergamini). */
   2860 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   2861 			flags |= IWN_TX_INSERT_TSTAMP;
   2862 #endif
   2863 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   2864 		/* changes here. These are not needed (from Bergamini). */
   2865 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   2866 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   2867 			tx->timeout = htole16(3);
   2868 		else
   2869 			tx->timeout = htole16(2);
   2870 	} else
   2871 		tx->timeout = htole16(0);
   2872 
   2873 	if (hdrlen & 3) {
   2874 		/* First segment length must be a multiple of 4. */
   2875 		flags |= IWN_TX_NEED_PADDING;
   2876 		pad = 4 - (hdrlen & 3);
   2877 	} else
   2878 		pad = 0;
   2879 
   2880 	tx->len = htole16(totlen);
   2881 	tx->tid = tid;
   2882 	tx->rts_ntries = 60;
   2883 	tx->data_ntries = 15;
   2884 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   2885 	tx->plcp = rinfo->plcp;
   2886 	tx->rflags = rinfo->flags;
   2887 	if (tx->id == sc->broadcast_id) {
   2888 		/* Group or management frame. */
   2889 		tx->linkq = 0;
   2890 		/* XXX Alternate between antenna A and B? */
   2891 		txant = IWN_LSB(sc->txchainmask);
   2892 		tx->rflags |= IWN_RFLAG_ANT(txant);
   2893 	} else {
   2894 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   2895 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   2896 	}
   2897 	/* Set physical address of "scratch area". */
   2898 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   2899 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   2900 
   2901 	/* Copy 802.11 header in TX command. */
   2902 	/* XXX NetBSD changed this in rev 1.20 */
   2903 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   2904 
   2905 	/* Trim 802.11 header. */
   2906 	m_adj(m, hdrlen);
   2907 	tx->security = 0;
   2908 	tx->flags = htole32(flags);
   2909 
   2910 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2911 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2912 	if (error != 0) {
   2913 		if (error != EFBIG) {
   2914 			aprint_error_dev(sc->sc_dev,
   2915 			    "can't map mbuf (error %d)\n", error);
   2916 			m_freem(m);
   2917 			return error;
   2918 		}
   2919 		/* Too many DMA segments, linearize mbuf. */
   2920 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   2921 		if (m1 == NULL) {
   2922 			m_freem(m);
   2923 			return ENOBUFS;
   2924 		}
   2925 		if (m->m_pkthdr.len > MHLEN) {
   2926 			MCLGET(m1, M_DONTWAIT);
   2927 			if (!(m1->m_flags & M_EXT)) {
   2928 				m_freem(m);
   2929 				m_freem(m1);
   2930 				return ENOBUFS;
   2931 			}
   2932 		}
   2933 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   2934 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   2935 		m_freem(m);
   2936 		m = m1;
   2937 
   2938 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2939 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2940 		if (error != 0) {
   2941 			aprint_error_dev(sc->sc_dev,
   2942 			    "can't map mbuf (error %d)\n", error);
   2943 			m_freem(m);
   2944 			return error;
   2945 		}
   2946 	}
   2947 
   2948 	data->m = m;
   2949 	data->ni = ni;
   2950 
   2951 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   2952 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   2953 
   2954 	/* Fill TX descriptor. */
   2955 	desc->nsegs = 1 + data->map->dm_nsegs;
   2956 	/* First DMA segment is used by the TX command. */
   2957 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   2958 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   2959 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   2960 	/* Other DMA segments are for data payload. */
   2961 	seg = data->map->dm_segs;
   2962 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   2963 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   2964 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   2965 		    seg->ds_len << 4);
   2966 		seg++;
   2967 	}
   2968 
   2969 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2970 	    BUS_DMASYNC_PREWRITE);
   2971 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   2972 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   2973 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   2974 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2975 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   2976 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   2977 
   2978 #ifdef notyet
   2979 	/* Update TX scheduler. */
   2980 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   2981 #endif
   2982 
   2983 	/* Kick TX ring. */
   2984 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   2985 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   2986 
   2987 	/* Mark TX ring as full if we reach a certain threshold. */
   2988 	if (++ring->queued > IWN_TX_RING_HIMARK)
   2989 		sc->qfullmsk |= 1 << ring->qid;
   2990 
   2991 	return 0;
   2992 }
   2993 
   2994 static void
   2995 iwn_start(struct ifnet *ifp)
   2996 {
   2997 	struct iwn_softc *sc = ifp->if_softc;
   2998 	struct ieee80211com *ic = &sc->sc_ic;
   2999 	struct ieee80211_node *ni;
   3000 	struct ether_header *eh;
   3001 	struct mbuf *m;
   3002 	int ac;
   3003 
   3004 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3005 		return;
   3006 
   3007 	for (;;) {
   3008 		if (sc->qfullmsk != 0) {
   3009 			ifp->if_flags |= IFF_OACTIVE;
   3010 			break;
   3011 		}
   3012 		/* Send pending management frames first. */
   3013 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3014 		if (m != NULL) {
   3015 			ni = (void *)m->m_pkthdr.rcvif;
   3016 			ac = 0;
   3017 			goto sendit;
   3018 		}
   3019 		if (ic->ic_state != IEEE80211_S_RUN)
   3020 			break;
   3021 
   3022 		/* Encapsulate and send data frames. */
   3023 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3024 		if (m == NULL)
   3025 			break;
   3026 		if (m->m_len < sizeof (*eh) &&
   3027 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3028 			ifp->if_oerrors++;
   3029 			continue;
   3030 		}
   3031 		eh = mtod(m, struct ether_header *);
   3032 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3033 		if (ni == NULL) {
   3034 			m_freem(m);
   3035 			ifp->if_oerrors++;
   3036 			continue;
   3037 		}
   3038 		/* classify mbuf so we can find which tx ring to use */
   3039 		if (ieee80211_classify(ic, m, ni) != 0) {
   3040 			m_freem(m);
   3041 			ieee80211_free_node(ni);
   3042 			ifp->if_oerrors++;
   3043 			continue;
   3044 		}
   3045 
   3046 		/* No QoS encapsulation for EAPOL frames. */
   3047 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3048 		    M_WME_GETAC(m) : WME_AC_BE;
   3049 
   3050 		bpf_mtap(ifp, m);
   3051 
   3052 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3053 			ieee80211_free_node(ni);
   3054 			ifp->if_oerrors++;
   3055 			continue;
   3056 		}
   3057 sendit:
   3058 		bpf_mtap3(ic->ic_rawbpf, m);
   3059 
   3060 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3061 			ieee80211_free_node(ni);
   3062 			ifp->if_oerrors++;
   3063 			continue;
   3064 		}
   3065 
   3066 		sc->sc_tx_timer = 5;
   3067 		ifp->if_timer = 1;
   3068 	}
   3069 }
   3070 
   3071 static void
   3072 iwn_watchdog(struct ifnet *ifp)
   3073 {
   3074 	struct iwn_softc *sc = ifp->if_softc;
   3075 
   3076 	ifp->if_timer = 0;
   3077 
   3078 	if (sc->sc_tx_timer > 0) {
   3079 		if (--sc->sc_tx_timer == 0) {
   3080 			aprint_error_dev(sc->sc_dev,
   3081 			    "device timeout\n");
   3082 			ifp->if_flags &= ~IFF_UP;
   3083 			iwn_stop(ifp, 1);
   3084 			ifp->if_oerrors++;
   3085 			return;
   3086 		}
   3087 		ifp->if_timer = 1;
   3088 	}
   3089 
   3090 	ieee80211_watchdog(&sc->sc_ic);
   3091 }
   3092 
   3093 static int
   3094 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3095 {
   3096 	struct iwn_softc *sc = ifp->if_softc;
   3097 	struct ieee80211com *ic = &sc->sc_ic;
   3098 	struct ifaddr *ifa;
   3099 	const struct sockaddr *sa;
   3100 	int s, error = 0;
   3101 
   3102 	s = splnet();
   3103 
   3104 	switch (cmd) {
   3105 	case SIOCSIFADDR:
   3106 		ifa = (struct ifaddr *)data;
   3107 		ifp->if_flags |= IFF_UP;
   3108 #ifdef INET
   3109 		if (ifa->ifa_addr->sa_family == AF_INET)
   3110 			arp_ifinit(&ic->ic_ac, ifa);
   3111 #endif
   3112 		/* FALLTHROUGH */
   3113 	case SIOCSIFFLAGS:
   3114 		/* XXX Added as it is in every NetBSD driver */
   3115 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3116 			break;
   3117 		if (ifp->if_flags & IFF_UP) {
   3118 			if (!(ifp->if_flags & IFF_RUNNING))
   3119 				error = iwn_init(ifp);
   3120 		} else {
   3121 			if (ifp->if_flags & IFF_RUNNING)
   3122 				iwn_stop(ifp, 1);
   3123 		}
   3124 		break;
   3125 
   3126 	case SIOCADDMULTI:
   3127 	case SIOCDELMULTI:
   3128 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3129 		error = (cmd == SIOCADDMULTI) ?
   3130 		    ether_addmulti(sa, &sc->sc_ec) :
   3131 		    ether_delmulti(sa, &sc->sc_ec);
   3132 
   3133 		if (error == ENETRESET)
   3134 			error = 0;
   3135 		break;
   3136 
   3137 	default:
   3138 		error = ieee80211_ioctl(ic, cmd, data);
   3139 	}
   3140 
   3141 	if (error == ENETRESET) {
   3142 		error = 0;
   3143 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3144 		    (IFF_UP | IFF_RUNNING)) {
   3145 			iwn_stop(ifp, 0);
   3146 			error = iwn_init(ifp);
   3147 		}
   3148 	}
   3149 
   3150 	splx(s);
   3151 	return error;
   3152 }
   3153 
   3154 /*
   3155  * Send a command to the firmware.
   3156  */
   3157 static int
   3158 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3159 {
   3160 	struct iwn_tx_ring *ring = &sc->txq[4];
   3161 	struct iwn_tx_desc *desc;
   3162 	struct iwn_tx_data *data;
   3163 	struct iwn_tx_cmd *cmd;
   3164 	struct mbuf *m;
   3165 	bus_addr_t paddr;
   3166 	int totlen, error;
   3167 
   3168 	desc = &ring->desc[ring->cur];
   3169 	data = &ring->data[ring->cur];
   3170 	totlen = 4 + size;
   3171 
   3172 	if (size > sizeof cmd->data) {
   3173 		/* Command is too large to fit in a descriptor. */
   3174 		if (totlen > MCLBYTES)
   3175 			return EINVAL;
   3176 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3177 		if (m == NULL)
   3178 			return ENOMEM;
   3179 		if (totlen > MHLEN) {
   3180 			MCLGET(m, M_DONTWAIT);
   3181 			if (!(m->m_flags & M_EXT)) {
   3182 				m_freem(m);
   3183 				return ENOMEM;
   3184 			}
   3185 		}
   3186 		cmd = mtod(m, struct iwn_tx_cmd *);
   3187 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3188 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3189 		if (error != 0) {
   3190 			m_freem(m);
   3191 			return error;
   3192 		}
   3193 		data->m = m;
   3194 		paddr = data->map->dm_segs[0].ds_addr;
   3195 	} else {
   3196 		cmd = &ring->cmd[ring->cur];
   3197 		paddr = data->cmd_paddr;
   3198 	}
   3199 
   3200 	cmd->code = code;
   3201 	cmd->flags = 0;
   3202 	cmd->qid = ring->qid;
   3203 	cmd->idx = ring->cur;
   3204 	memcpy(cmd->data, buf, size);
   3205 
   3206 	desc->nsegs = 1;
   3207 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3208 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3209 
   3210 	if (size > sizeof cmd->data) {
   3211 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3212 		    BUS_DMASYNC_PREWRITE);
   3213 	} else {
   3214 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3215 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3216 		    totlen, BUS_DMASYNC_PREWRITE);
   3217 	}
   3218 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3219 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3220 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3221 
   3222 #ifdef notyet
   3223 	/* Update TX scheduler. */
   3224 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3225 #endif
   3226 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3227 
   3228 	/* Kick command ring. */
   3229 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3230 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3231 
   3232 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3233 }
   3234 
   3235 static int
   3236 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3237 {
   3238 	struct iwn4965_node_info hnode;
   3239 	char *src, *dst;
   3240 
   3241 	/*
   3242 	 * We use the node structure for 5000 Series internally (it is
   3243 	 * a superset of the one for 4965AGN). We thus copy the common
   3244 	 * fields before sending the command.
   3245 	 */
   3246 	src = (char *)node;
   3247 	dst = (char *)&hnode;
   3248 	memcpy(dst, src, 48);
   3249 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3250 	memcpy(dst + 48, src + 72, 20);
   3251 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3252 }
   3253 
   3254 static int
   3255 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3256 {
   3257 	/* Direct mapping. */
   3258 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3259 }
   3260 
   3261 static int
   3262 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3263 {
   3264 	struct iwn_node *wn = (void *)ni;
   3265 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3266 	struct iwn_cmd_link_quality linkq;
   3267 	const struct iwn_rate *rinfo;
   3268 	uint8_t txant;
   3269 	int i, txrate;
   3270 
   3271 	/* Use the first valid TX antenna. */
   3272 	txant = IWN_LSB(sc->txchainmask);
   3273 
   3274 	memset(&linkq, 0, sizeof linkq);
   3275 	linkq.id = wn->id;
   3276 	linkq.antmsk_1stream = txant;
   3277 	linkq.antmsk_2stream = IWN_ANT_AB;
   3278 	linkq.ampdu_max = 31;
   3279 	linkq.ampdu_threshold = 3;
   3280 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3281 
   3282 	/* Start at highest available bit-rate. */
   3283 	txrate = rs->rs_nrates - 1;
   3284 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3285 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3286 		linkq.retry[i].plcp = rinfo->plcp;
   3287 		linkq.retry[i].rflags = rinfo->flags;
   3288 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3289 		/* Next retry at immediate lower bit-rate. */
   3290 		if (txrate > 0)
   3291 			txrate--;
   3292 	}
   3293 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3294 }
   3295 
   3296 /*
   3297  * Broadcast node is used to send group-addressed and management frames.
   3298  */
   3299 static int
   3300 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3301 {
   3302 	struct iwn_ops *ops = &sc->ops;
   3303 	struct iwn_node_info node;
   3304 	struct iwn_cmd_link_quality linkq;
   3305 	const struct iwn_rate *rinfo;
   3306 	uint8_t txant;
   3307 	int i, error;
   3308 
   3309 	memset(&node, 0, sizeof node);
   3310 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3311 	node.id = sc->broadcast_id;
   3312 	DPRINTF(("adding broadcast node\n"));
   3313 	if ((error = ops->add_node(sc, &node, async)) != 0)
   3314 		return error;
   3315 
   3316 	/* Use the first valid TX antenna. */
   3317 	txant = IWN_LSB(sc->txchainmask);
   3318 
   3319 	memset(&linkq, 0, sizeof linkq);
   3320 	linkq.id = sc->broadcast_id;
   3321 	linkq.antmsk_1stream = txant;
   3322 	linkq.antmsk_2stream = IWN_ANT_AB;
   3323 	linkq.ampdu_max = 64;
   3324 	linkq.ampdu_threshold = 3;
   3325 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3326 
   3327 	/* Use lowest mandatory bit-rate. */
   3328 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3329 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3330 	linkq.retry[0].plcp = rinfo->plcp;
   3331 	linkq.retry[0].rflags = rinfo->flags;
   3332 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3333 	/* Use same bit-rate for all TX retries. */
   3334 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3335 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3336 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3337 	}
   3338 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3339 }
   3340 
   3341 static void
   3342 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3343 {
   3344 	struct iwn_cmd_led led;
   3345 
   3346 	/* Clear microcode LED ownership. */
   3347 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3348 
   3349 	led.which = which;
   3350 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3351 	led.off = off;
   3352 	led.on = on;
   3353 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3354 }
   3355 
   3356 /*
   3357  * Set the critical temperature at which the firmware will stop the radio
   3358  * and notify us.
   3359  */
   3360 static int
   3361 iwn_set_critical_temp(struct iwn_softc *sc)
   3362 {
   3363 	struct iwn_critical_temp crit;
   3364 	int32_t temp;
   3365 
   3366 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3367 
   3368 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3369 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3370 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3371 		temp = IWN_CTOK(110);
   3372 	else
   3373 		temp = 110;
   3374 	memset(&crit, 0, sizeof crit);
   3375 	crit.tempR = htole32(temp);
   3376 	DPRINTF(("setting critical temperature to %d\n", temp));
   3377 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3378 }
   3379 
   3380 static int
   3381 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3382 {
   3383 	struct iwn_cmd_timing cmd;
   3384 	uint64_t val, mod;
   3385 
   3386 	memset(&cmd, 0, sizeof cmd);
   3387 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3388 	cmd.bintval = htole16(ni->ni_intval);
   3389 	cmd.lintval = htole16(10);
   3390 
   3391 	/* Compute remaining time until next beacon. */
   3392 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3393 	mod = le64toh(cmd.tstamp) % val;
   3394 	cmd.binitval = htole32((uint32_t)(val - mod));
   3395 
   3396 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
   3397 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3398 
   3399 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3400 }
   3401 
   3402 static void
   3403 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3404 {
   3405 	/* Adjust TX power if need be (delta >= 3 degC). */
   3406 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3407 	if (abs(temp - sc->temp) >= 3) {
   3408 		/* Record temperature of last calibration. */
   3409 		sc->temp = temp;
   3410 		(void)iwn4965_set_txpower(sc, 1);
   3411 	}
   3412 }
   3413 
   3414 /*
   3415  * Set TX power for current channel (each rate has its own power settings).
   3416  * This function takes into account the regulatory information from EEPROM,
   3417  * the current temperature and the current voltage.
   3418  */
   3419 static int
   3420 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3421 {
   3422 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3423 #define fdivround(a, b, n)	\
   3424 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3425 /* Linear interpolation. */
   3426 #define interpolate(x, x1, y1, x2, y2, n)	\
   3427 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3428 
   3429 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3430 	struct ieee80211com *ic = &sc->sc_ic;
   3431 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3432 	struct ieee80211_channel *ch;
   3433 	struct iwn4965_cmd_txpower cmd;
   3434 	struct iwn4965_eeprom_chan_samples *chans;
   3435 	const uint8_t *rf_gain, *dsp_gain;
   3436 	int32_t vdiff, tdiff;
   3437 	int i, c, grp, maxpwr;
   3438 	uint8_t chan;
   3439 
   3440 	/* Retrieve current channel from last RXON. */
   3441 	chan = sc->rxon.chan;
   3442 	DPRINTF(("setting TX power for channel %d\n", chan));
   3443 	ch = &ic->ic_channels[chan];
   3444 
   3445 	memset(&cmd, 0, sizeof cmd);
   3446 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3447 	cmd.chan = chan;
   3448 
   3449 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3450 		maxpwr   = sc->maxpwr5GHz;
   3451 		rf_gain  = iwn4965_rf_gain_5ghz;
   3452 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3453 	} else {
   3454 		maxpwr   = sc->maxpwr2GHz;
   3455 		rf_gain  = iwn4965_rf_gain_2ghz;
   3456 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3457 	}
   3458 
   3459 	/* Compute voltage compensation. */
   3460 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3461 	if (vdiff > 0)
   3462 		vdiff *= 2;
   3463 	if (abs(vdiff) > 2)
   3464 		vdiff = 0;
   3465 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3466 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3467 
   3468 	/* Get channel attenuation group. */
   3469 	if (chan <= 20)		/* 1-20 */
   3470 		grp = 4;
   3471 	else if (chan <= 43)	/* 34-43 */
   3472 		grp = 0;
   3473 	else if (chan <= 70)	/* 44-70 */
   3474 		grp = 1;
   3475 	else if (chan <= 124)	/* 71-124 */
   3476 		grp = 2;
   3477 	else			/* 125-200 */
   3478 		grp = 3;
   3479 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3480 
   3481 	/* Get channel sub-band. */
   3482 	for (i = 0; i < IWN_NBANDS; i++)
   3483 		if (sc->bands[i].lo != 0 &&
   3484 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3485 			break;
   3486 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3487 		return EINVAL;
   3488 	chans = sc->bands[i].chans;
   3489 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3490 
   3491 	for (c = 0; c < 2; c++) {
   3492 		uint8_t power, gain, temp;
   3493 		int maxchpwr, pwr, ridx, idx;
   3494 
   3495 		power = interpolate(chan,
   3496 		    chans[0].num, chans[0].samples[c][1].power,
   3497 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3498 		gain  = interpolate(chan,
   3499 		    chans[0].num, chans[0].samples[c][1].gain,
   3500 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3501 		temp  = interpolate(chan,
   3502 		    chans[0].num, chans[0].samples[c][1].temp,
   3503 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3504 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3505 		    c, power, gain, temp));
   3506 
   3507 		/* Compute temperature compensation. */
   3508 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3509 		DPRINTF(("temperature compensation=%d (current=%d, "
   3510 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3511 
   3512 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3513 			/* Convert dBm to half-dBm. */
   3514 			maxchpwr = sc->maxpwr[chan] * 2;
   3515 			if ((ridx / 8) & 1)
   3516 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3517 
   3518 			pwr = maxpwr;
   3519 
   3520 			/* Adjust TX power based on rate. */
   3521 			if ((ridx % 8) == 5)
   3522 				pwr -= 15;	/* OFDM48: -7.5dB */
   3523 			else if ((ridx % 8) == 6)
   3524 				pwr -= 17;	/* OFDM54: -8.5dB */
   3525 			else if ((ridx % 8) == 7)
   3526 				pwr -= 20;	/* OFDM60: -10dB */
   3527 			else
   3528 				pwr -= 10;	/* Others: -5dB */
   3529 
   3530 			/* Do not exceed channel max TX power. */
   3531 			if (pwr > maxchpwr)
   3532 				pwr = maxchpwr;
   3533 
   3534 			idx = gain - (pwr - power) - tdiff - vdiff;
   3535 			if ((ridx / 8) & 1)	/* MIMO */
   3536 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3537 
   3538 			if (cmd.band == 0)
   3539 				idx += 9;	/* 5GHz */
   3540 			if (ridx == IWN_RIDX_MAX)
   3541 				idx += 5;	/* CCK */
   3542 
   3543 			/* Make sure idx stays in a valid range. */
   3544 			if (idx < 0)
   3545 				idx = 0;
   3546 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3547 				idx = IWN4965_MAX_PWR_INDEX;
   3548 
   3549 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3550 			    c, ridx, idx));
   3551 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3552 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3553 		}
   3554 	}
   3555 
   3556 	DPRINTF(("setting TX power for chan %d\n", chan));
   3557 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3558 
   3559 #undef interpolate
   3560 #undef fdivround
   3561 }
   3562 
   3563 static int
   3564 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3565 {
   3566 	struct iwn5000_cmd_txpower cmd;
   3567 
   3568 	/*
   3569 	 * TX power calibration is handled automatically by the firmware
   3570 	 * for 5000 Series.
   3571 	 */
   3572 	memset(&cmd, 0, sizeof cmd);
   3573 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3574 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3575 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3576 	DPRINTF(("setting TX power\n"));
   3577 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
   3578 }
   3579 
   3580 /*
   3581  * Retrieve the maximum RSSI (in dBm) among receivers.
   3582  */
   3583 static int
   3584 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3585 {
   3586 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3587 	uint8_t mask, agc;
   3588 	int rssi;
   3589 
   3590 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3591 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3592 
   3593 	rssi = 0;
   3594 	if (mask & IWN_ANT_A)
   3595 		rssi = MAX(rssi, phy->rssi[0]);
   3596 	if (mask & IWN_ANT_B)
   3597 		rssi = MAX(rssi, phy->rssi[2]);
   3598 	if (mask & IWN_ANT_C)
   3599 		rssi = MAX(rssi, phy->rssi[4]);
   3600 
   3601 	return rssi - agc - IWN_RSSI_TO_DBM;
   3602 }
   3603 
   3604 static int
   3605 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3606 {
   3607 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3608 	uint8_t agc;
   3609 	int rssi;
   3610 
   3611 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3612 
   3613 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3614 		   le16toh(phy->rssi[1]) & 0xff);
   3615 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3616 
   3617 	return rssi - agc - IWN_RSSI_TO_DBM;
   3618 }
   3619 
   3620 /*
   3621  * Retrieve the average noise (in dBm) among receivers.
   3622  */
   3623 static int
   3624 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3625 {
   3626 	int i, total, nbant, noise;
   3627 
   3628 	total = nbant = 0;
   3629 	for (i = 0; i < 3; i++) {
   3630 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3631 			continue;
   3632 		total += noise;
   3633 		nbant++;
   3634 	}
   3635 	/* There should be at least one antenna but check anyway. */
   3636 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3637 }
   3638 
   3639 /*
   3640  * Compute temperature (in degC) from last received statistics.
   3641  */
   3642 static int
   3643 iwn4965_get_temperature(struct iwn_softc *sc)
   3644 {
   3645 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3646 	int32_t r1, r2, r3, r4, temp;
   3647 
   3648 	r1 = le32toh(uc->temp[0].chan20MHz);
   3649 	r2 = le32toh(uc->temp[1].chan20MHz);
   3650 	r3 = le32toh(uc->temp[2].chan20MHz);
   3651 	r4 = le32toh(sc->rawtemp);
   3652 
   3653 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
   3654 		return 0;
   3655 
   3656 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3657 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
   3658 	/* Compute temperature in Kelvin. */
   3659 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3660 	temp = (temp * 97) / 100 + 8;
   3661 
   3662 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3663 	return IWN_KTOC(temp);
   3664 }
   3665 
   3666 static int
   3667 iwn5000_get_temperature(struct iwn_softc *sc)
   3668 {
   3669 	int32_t temp;
   3670 
   3671 	/*
   3672 	 * Temperature is not used by the driver for 5000 Series because
   3673 	 * TX power calibration is handled by firmware.  We export it to
   3674 	 * users through the sensor framework though.
   3675 	 */
   3676 	temp = le32toh(sc->rawtemp);
   3677 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3678 		temp = (temp / -5) + sc->temp_off;
   3679 		temp = IWN_KTOC(temp);
   3680 	}
   3681 	return temp;
   3682 }
   3683 
   3684 /*
   3685  * Initialize sensitivity calibration state machine.
   3686  */
   3687 static int
   3688 iwn_init_sensitivity(struct iwn_softc *sc)
   3689 {
   3690 	struct iwn_ops *ops = &sc->ops;
   3691 	struct iwn_calib_state *calib = &sc->calib;
   3692 	uint32_t flags;
   3693 	int error;
   3694 
   3695 	/* Reset calibration state machine. */
   3696 	memset(calib, 0, sizeof (*calib));
   3697 	calib->state = IWN_CALIB_STATE_INIT;
   3698 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3699 	/* Set initial correlation values. */
   3700 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3701 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3702 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3703 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3704 	calib->cck_x4      = 125;
   3705 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3706 	calib->energy_cck  = sc->limits->energy_cck;
   3707 
   3708 	/* Write initial sensitivity. */
   3709 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3710 		return error;
   3711 
   3712 	/* Write initial gains. */
   3713 	if ((error = ops->init_gains(sc)) != 0)
   3714 		return error;
   3715 
   3716 	/* Request statistics at each beacon interval. */
   3717 	flags = 0;
   3718 	DPRINTF(("sending request for statistics\n"));
   3719 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3720 }
   3721 
   3722 /*
   3723  * Collect noise and RSSI statistics for the first 20 beacons received
   3724  * after association and use them to determine connected antennas and
   3725  * to set differential gains.
   3726  */
   3727 static void
   3728 iwn_collect_noise(struct iwn_softc *sc,
   3729     const struct iwn_rx_general_stats *stats)
   3730 {
   3731 	struct iwn_ops *ops = &sc->ops;
   3732 	struct iwn_calib_state *calib = &sc->calib;
   3733 	uint32_t val;
   3734 	int i;
   3735 
   3736 	/* Accumulate RSSI and noise for all 3 antennas. */
   3737 	for (i = 0; i < 3; i++) {
   3738 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3739 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3740 	}
   3741 	/* NB: We update differential gains only once after 20 beacons. */
   3742 	if (++calib->nbeacons < 20)
   3743 		return;
   3744 
   3745 	/* Determine highest average RSSI. */
   3746 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3747 	val = MAX(calib->rssi[2], val);
   3748 
   3749 	/* Determine which antennas are connected. */
   3750 	sc->chainmask = sc->rxchainmask;
   3751 	for (i = 0; i < 3; i++)
   3752 		if (val - calib->rssi[i] > 15 * 20)
   3753 			sc->chainmask &= ~(1 << i);
   3754 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   3755 	    sc->rxchainmask, sc->chainmask));
   3756 
   3757 	/* If none of the TX antennas are connected, keep at least one. */
   3758 	if ((sc->chainmask & sc->txchainmask) == 0)
   3759 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   3760 
   3761 	(void)ops->set_gains(sc);
   3762 	calib->state = IWN_CALIB_STATE_RUN;
   3763 
   3764 #ifdef notyet
   3765 	/* XXX Disable RX chains with no antennas connected. */
   3766 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   3767 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   3768 #endif
   3769 
   3770 	/* Enable power-saving mode if requested by user. */
   3771 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3772 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3773 }
   3774 
   3775 static int
   3776 iwn4965_init_gains(struct iwn_softc *sc)
   3777 {
   3778 	struct iwn_phy_calib_gain cmd;
   3779 
   3780 	memset(&cmd, 0, sizeof cmd);
   3781 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3782 	/* Differential gains initially set to 0 for all 3 antennas. */
   3783 	DPRINTF(("setting initial differential gains\n"));
   3784 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3785 }
   3786 
   3787 static int
   3788 iwn5000_init_gains(struct iwn_softc *sc)
   3789 {
   3790 	struct iwn_phy_calib cmd;
   3791 
   3792 	memset(&cmd, 0, sizeof cmd);
   3793 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   3794 	cmd.ngroups = 1;
   3795 	cmd.isvalid = 1;
   3796 	DPRINTF(("setting initial differential gains\n"));
   3797 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3798 }
   3799 
   3800 static int
   3801 iwn4965_set_gains(struct iwn_softc *sc)
   3802 {
   3803 	struct iwn_calib_state *calib = &sc->calib;
   3804 	struct iwn_phy_calib_gain cmd;
   3805 	int i, delta, noise;
   3806 
   3807 	/* Get minimal noise among connected antennas. */
   3808 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   3809 	for (i = 0; i < 3; i++)
   3810 		if (sc->chainmask & (1 << i))
   3811 			noise = MIN(calib->noise[i], noise);
   3812 
   3813 	memset(&cmd, 0, sizeof cmd);
   3814 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3815 	/* Set differential gains for connected antennas. */
   3816 	for (i = 0; i < 3; i++) {
   3817 		if (sc->chainmask & (1 << i)) {
   3818 			/* Compute attenuation (in unit of 1.5dB). */
   3819 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   3820 			/* NB: delta <= 0 */
   3821 			/* Limit to [-4.5dB,0]. */
   3822 			cmd.gain[i] = MIN(abs(delta), 3);
   3823 			if (delta < 0)
   3824 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   3825 		}
   3826 	}
   3827 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   3828 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   3829 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3830 }
   3831 
   3832 static int
   3833 iwn5000_set_gains(struct iwn_softc *sc)
   3834 {
   3835 	struct iwn_calib_state *calib = &sc->calib;
   3836 	struct iwn_phy_calib_gain cmd;
   3837 	int i, ant, div, delta;
   3838 
   3839 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   3840 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   3841 
   3842 	memset(&cmd, 0, sizeof cmd);
   3843 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
   3844 	cmd.ngroups = 1;
   3845 	cmd.isvalid = 1;
   3846 	/* Get first available RX antenna as referential. */
   3847 	ant = IWN_LSB(sc->rxchainmask);
   3848 	/* Set differential gains for other antennas. */
   3849 	for (i = ant + 1; i < 3; i++) {
   3850 		if (sc->chainmask & (1 << i)) {
   3851 			/* The delta is relative to antenna "ant". */
   3852 			delta = ((int32_t)calib->noise[ant] -
   3853 			    (int32_t)calib->noise[i]) / div;
   3854 			/* Limit to [-4.5dB,+4.5dB]. */
   3855 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   3856 			if (delta < 0)
   3857 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   3858 		}
   3859 	}
   3860 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   3861 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   3862 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3863 }
   3864 
   3865 /*
   3866  * Tune RF RX sensitivity based on the number of false alarms detected
   3867  * during the last beacon period.
   3868  */
   3869 static void
   3870 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   3871 {
   3872 #define inc(val, inc, max)			\
   3873 	if ((val) < (max)) {			\
   3874 		if ((val) < (max) - (inc))	\
   3875 			(val) += (inc);		\
   3876 		else				\
   3877 			(val) = (max);		\
   3878 		needs_update = 1;		\
   3879 	}
   3880 #define dec(val, dec, min)			\
   3881 	if ((val) > (min)) {			\
   3882 		if ((val) > (min) + (dec))	\
   3883 			(val) -= (dec);		\
   3884 		else				\
   3885 			(val) = (min);		\
   3886 		needs_update = 1;		\
   3887 	}
   3888 
   3889 	const struct iwn_sensitivity_limits *limits = sc->limits;
   3890 	struct iwn_calib_state *calib = &sc->calib;
   3891 	uint32_t val, rxena, fa;
   3892 	uint32_t energy[3], energy_min;
   3893 	uint8_t noise[3], noise_ref;
   3894 	int i, needs_update = 0;
   3895 
   3896 	/* Check that we've been enabled long enough. */
   3897 	if ((rxena = le32toh(stats->general.load)) == 0)
   3898 		return;
   3899 
   3900 	/* Compute number of false alarms since last call for OFDM. */
   3901 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   3902 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   3903 	fa *= 200 * 1024;	/* 200TU */
   3904 
   3905 	/* Save counters values for next call. */
   3906 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   3907 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   3908 
   3909 	if (fa > 50 * rxena) {
   3910 		/* High false alarm count, decrease sensitivity. */
   3911 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   3912 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   3913 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   3914 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   3915 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   3916 
   3917 	} else if (fa < 5 * rxena) {
   3918 		/* Low false alarm count, increase sensitivity. */
   3919 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   3920 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   3921 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   3922 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   3923 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   3924 	}
   3925 
   3926 	/* Compute maximum noise among 3 receivers. */
   3927 	for (i = 0; i < 3; i++)
   3928 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   3929 	val = MAX(noise[0], noise[1]);
   3930 	val = MAX(noise[2], val);
   3931 	/* Insert it into our samples table. */
   3932 	calib->noise_samples[calib->cur_noise_sample] = val;
   3933 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   3934 
   3935 	/* Compute maximum noise among last 20 samples. */
   3936 	noise_ref = calib->noise_samples[0];
   3937 	for (i = 1; i < 20; i++)
   3938 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   3939 
   3940 	/* Compute maximum energy among 3 receivers. */
   3941 	for (i = 0; i < 3; i++)
   3942 		energy[i] = le32toh(stats->general.energy[i]);
   3943 	val = MIN(energy[0], energy[1]);
   3944 	val = MIN(energy[2], val);
   3945 	/* Insert it into our samples table. */
   3946 	calib->energy_samples[calib->cur_energy_sample] = val;
   3947 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   3948 
   3949 	/* Compute minimum energy among last 10 samples. */
   3950 	energy_min = calib->energy_samples[0];
   3951 	for (i = 1; i < 10; i++)
   3952 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   3953 	energy_min += 6;
   3954 
   3955 	/* Compute number of false alarms since last call for CCK. */
   3956 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   3957 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   3958 	fa *= 200 * 1024;	/* 200TU */
   3959 
   3960 	/* Save counters values for next call. */
   3961 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   3962 	calib->fa_cck = le32toh(stats->cck.fa);
   3963 
   3964 	if (fa > 50 * rxena) {
   3965 		/* High false alarm count, decrease sensitivity. */
   3966 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   3967 		calib->cck_state = IWN_CCK_STATE_HIFA;
   3968 		calib->low_fa = 0;
   3969 
   3970 		if (calib->cck_x4 > 160) {
   3971 			calib->noise_ref = noise_ref;
   3972 			if (calib->energy_cck > 2)
   3973 				dec(calib->energy_cck, 2, energy_min);
   3974 		}
   3975 		if (calib->cck_x4 < 160) {
   3976 			calib->cck_x4 = 161;
   3977 			needs_update = 1;
   3978 		} else
   3979 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   3980 
   3981 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   3982 
   3983 	} else if (fa < 5 * rxena) {
   3984 		/* Low false alarm count, increase sensitivity. */
   3985 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   3986 		calib->cck_state = IWN_CCK_STATE_LOFA;
   3987 		calib->low_fa++;
   3988 
   3989 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   3990 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   3991 		     calib->low_fa > 100)) {
   3992 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   3993 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   3994 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   3995 		}
   3996 	} else {
   3997 		/* Not worth to increase or decrease sensitivity. */
   3998 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   3999 		calib->low_fa = 0;
   4000 		calib->noise_ref = noise_ref;
   4001 
   4002 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4003 			/* Previous interval had many false alarms. */
   4004 			dec(calib->energy_cck, 8, energy_min);
   4005 		}
   4006 		calib->cck_state = IWN_CCK_STATE_INIT;
   4007 	}
   4008 
   4009 	if (needs_update)
   4010 		(void)iwn_send_sensitivity(sc);
   4011 #undef dec
   4012 #undef inc
   4013 }
   4014 
   4015 static int
   4016 iwn_send_sensitivity(struct iwn_softc *sc)
   4017 {
   4018 	struct iwn_calib_state *calib = &sc->calib;
   4019 	struct iwn_sensitivity_cmd cmd;
   4020 
   4021 	memset(&cmd, 0, sizeof cmd);
   4022 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4023 	/* OFDM modulation. */
   4024 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4025 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4026 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4027 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4028 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4029 	cmd.energy_ofdm_th   = htole16(62);
   4030 	/* CCK modulation. */
   4031 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4032 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4033 	cmd.energy_cck       = htole16(calib->energy_cck);
   4034 	/* Barker modulation: use default values. */
   4035 	cmd.corr_barker      = htole16(190);
   4036 	cmd.corr_barker_mrc  = htole16(390);
   4037 
   4038 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4039 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4040 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4041 	    calib->energy_cck));
   4042 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
   4043 }
   4044 
   4045 /*
   4046  * Set STA mode power saving level (between 0 and 5).
   4047  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4048  */
   4049 static int
   4050 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4051 {
   4052 	struct iwn_pmgt_cmd cmd;
   4053 	const struct iwn_pmgt *pmgt;
   4054 	uint32_t maxp, skip_dtim;
   4055 	pcireg_t reg;
   4056 	int i;
   4057 
   4058 	/* Select which PS parameters to use. */
   4059 	if (dtim <= 2)
   4060 		pmgt = &iwn_pmgt[0][level];
   4061 	else if (dtim <= 10)
   4062 		pmgt = &iwn_pmgt[1][level];
   4063 	else
   4064 		pmgt = &iwn_pmgt[2][level];
   4065 
   4066 	memset(&cmd, 0, sizeof cmd);
   4067 	if (level != 0)	/* not CAM */
   4068 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4069 	if (level == 5)
   4070 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4071 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4072 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4073 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   4074 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4075 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4076 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4077 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4078 
   4079 	if (dtim == 0) {
   4080 		dtim = 1;
   4081 		skip_dtim = 0;
   4082 	} else
   4083 		skip_dtim = pmgt->skip_dtim;
   4084 	if (skip_dtim != 0) {
   4085 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4086 		maxp = pmgt->intval[4];
   4087 		if (maxp == (uint32_t)-1)
   4088 			maxp = dtim * (skip_dtim + 1);
   4089 		else if (maxp > dtim)
   4090 			maxp = (maxp / dtim) * dtim;
   4091 	} else
   4092 		maxp = dtim;
   4093 	for (i = 0; i < 5; i++)
   4094 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4095 
   4096 	DPRINTF(("setting power saving level to %d\n", level));
   4097 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4098 }
   4099 
   4100 int
   4101 iwn5000_runtime_calib(struct iwn_softc *sc)
   4102 {
   4103 	struct iwn5000_calib_config cmd;
   4104 
   4105 	memset(&cmd, 0, sizeof cmd);
   4106 	cmd.ucode.once.enable = 0xffffffff;
   4107 	cmd.ucode.once.start = IWN5000_CALIB_DC;
   4108 	DPRINTF(("configuring runtime calibration\n"));
   4109 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
   4110 }
   4111 
   4112 static int
   4113 iwn_config(struct iwn_softc *sc)
   4114 {
   4115 	struct iwn_ops *ops = &sc->ops;
   4116 	struct ieee80211com *ic = &sc->sc_ic;
   4117 	struct ifnet *ifp = ic->ic_ifp;
   4118 	struct iwn_bluetooth bluetooth;
   4119 	uint32_t txmask;
   4120 	uint16_t rxchain;
   4121 	int error;
   4122 
   4123 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   4124 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4125 		/* Configure runtime DC calibration. */
   4126 		error = iwn5000_runtime_calib(sc);
   4127 		if (error != 0) {
   4128 			aprint_error_dev(sc->sc_dev,
   4129 			    "could not configure runtime calibration\n");
   4130 			return error;
   4131 		}
   4132 	}
   4133 
   4134 	/* Configure valid TX chains for 5000 Series. */
   4135 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4136 		txmask = htole32(sc->txchainmask);
   4137 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4138 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4139 		    sizeof txmask, 0);
   4140 		if (error != 0) {
   4141 			aprint_error_dev(sc->sc_dev,
   4142 			    "could not configure valid TX chains\n");
   4143 			return error;
   4144 		}
   4145 	}
   4146 
   4147 	/* Configure bluetooth coexistence. */
   4148 	memset(&bluetooth, 0, sizeof bluetooth);
   4149 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
   4150 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4151 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4152 	DPRINTF(("configuring bluetooth coexistence\n"));
   4153 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4154 	if (error != 0) {
   4155 		aprint_error_dev(sc->sc_dev,
   4156 		    "could not configure bluetooth coexistence\n");
   4157 		return error;
   4158 	}
   4159 
   4160 	/* Set mode, channel, RX filter and enable RX. */
   4161 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4162 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4163 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4164 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4165 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4166 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4167 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4168 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4169 	switch (ic->ic_opmode) {
   4170 	case IEEE80211_M_STA:
   4171 		sc->rxon.mode = IWN_MODE_STA;
   4172 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4173 		break;
   4174 	case IEEE80211_M_MONITOR:
   4175 		sc->rxon.mode = IWN_MODE_MONITOR;
   4176 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4177 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4178 		break;
   4179 	default:
   4180 		/* Should not get there. */
   4181 		break;
   4182 	}
   4183 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4184 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4185 	sc->rxon.ht_single_mask = 0xff;
   4186 	sc->rxon.ht_dual_mask = 0xff;
   4187 	sc->rxon.ht_triple_mask = 0xff;
   4188 	rxchain =
   4189 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4190 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4191 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4192 	sc->rxon.rxchain = htole16(rxchain);
   4193 	DPRINTF(("setting configuration\n"));
   4194 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
   4195 	if (error != 0) {
   4196 		aprint_error_dev(sc->sc_dev,
   4197 		    "RXON command failed\n");
   4198 		return error;
   4199 	}
   4200 
   4201 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4202 		aprint_error_dev(sc->sc_dev,
   4203 		    "could not add broadcast node\n");
   4204 		return error;
   4205 	}
   4206 
   4207 	/* Configuration has changed, set TX power accordingly. */
   4208 	if ((error = ops->set_txpower(sc, 0)) != 0) {
   4209 		aprint_error_dev(sc->sc_dev,
   4210 		    "could not set TX power\n");
   4211 		return error;
   4212 	}
   4213 
   4214 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4215 		aprint_error_dev(sc->sc_dev,
   4216 		    "could not set critical temperature\n");
   4217 		return error;
   4218 	}
   4219 
   4220 	/* Set power saving level to CAM during initialization. */
   4221 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4222 		aprint_error_dev(sc->sc_dev,
   4223 		    "could not set power saving level\n");
   4224 		return error;
   4225 	}
   4226 	return 0;
   4227 }
   4228 
   4229 static int
   4230 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4231 {
   4232 	struct ieee80211com *ic = &sc->sc_ic;
   4233 	struct iwn_scan_hdr *hdr;
   4234 	struct iwn_cmd_data *tx;
   4235 	struct iwn_scan_essid *essid;
   4236 	struct iwn_scan_chan *chan;
   4237 	struct ieee80211_frame *wh;
   4238 	struct ieee80211_rateset *rs;
   4239 	struct ieee80211_channel *c;
   4240 	uint8_t *buf, *frm;
   4241 	uint16_t rxchain;
   4242 	uint8_t txant;
   4243 	int buflen, error;
   4244 
   4245 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4246 	if (buf == NULL) {
   4247 		aprint_error_dev(sc->sc_dev,
   4248 		    "could not allocate buffer for scan command\n");
   4249 		return ENOMEM;
   4250 	}
   4251 	hdr = (struct iwn_scan_hdr *)buf;
   4252 	/*
   4253 	 * Move to the next channel if no frames are received within 10ms
   4254 	 * after sending the probe request.
   4255 	 */
   4256 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4257 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4258 
   4259 	/* Select antennas for scanning. */
   4260 	rxchain =
   4261 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4262 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4263 	    IWN_RXCHAIN_DRIVER_FORCE;
   4264 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4265 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4266 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4267 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4268 	} else	/* Use all available RX antennas. */
   4269 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4270 	hdr->rxchain = htole16(rxchain);
   4271 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4272 
   4273 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4274 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4275 	tx->id = sc->broadcast_id;
   4276 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4277 
   4278 	if (flags & IEEE80211_CHAN_5GHZ) {
   4279 		hdr->crc_threshold = 0xffff;
   4280 		/* Send probe requests at 6Mbps. */
   4281 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4282 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4283 	} else {
   4284 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4285 		/* Send probe requests at 1Mbps. */
   4286 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4287 		tx->rflags = IWN_RFLAG_CCK;
   4288 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4289 	}
   4290 	/* Use the first valid TX antenna. */
   4291 	txant = IWN_LSB(sc->txchainmask);
   4292 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4293 
   4294 	essid = (struct iwn_scan_essid *)(tx + 1);
   4295 	if (ic->ic_des_esslen != 0) {
   4296 		essid[0].id = IEEE80211_ELEMID_SSID;
   4297 		essid[0].len = ic->ic_des_esslen;
   4298 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4299 	}
   4300 	/*
   4301 	 * Build a probe request frame.  Most of the following code is a
   4302 	 * copy & paste of what is done in net80211.
   4303 	 */
   4304 	wh = (struct ieee80211_frame *)(essid + 20);
   4305 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4306 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4307 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4308 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4309 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4310 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4311 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4312 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4313 
   4314 	frm = (uint8_t *)(wh + 1);
   4315 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4316 	frm = ieee80211_add_rates(frm, rs);
   4317 #ifndef IEEE80211_NO_HT
   4318 	if (ic->ic_flags & IEEE80211_F_HTON)
   4319 		frm = ieee80211_add_htcaps(frm, ic);
   4320 #endif
   4321 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4322 		frm = ieee80211_add_xrates(frm, rs);
   4323 
   4324 	/* Set length of probe request. */
   4325 	tx->len = htole16(frm - (uint8_t *)wh);
   4326 
   4327 	chan = (struct iwn_scan_chan *)frm;
   4328 	for (c  = &ic->ic_channels[1];
   4329 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4330 		if ((c->ic_flags & flags) != flags)
   4331 			continue;
   4332 
   4333 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4334 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4335 		chan->flags = 0;
   4336 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4337 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4338 		if (ic->ic_des_esslen != 0)
   4339 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4340 		chan->dsp_gain = 0x6e;
   4341 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4342 			chan->rf_gain = 0x3b;
   4343 			chan->active  = htole16(24);
   4344 			chan->passive = htole16(110);
   4345 		} else {
   4346 			chan->rf_gain = 0x28;
   4347 			chan->active  = htole16(36);
   4348 			chan->passive = htole16(120);
   4349 		}
   4350 		hdr->nchan++;
   4351 		chan++;
   4352 	}
   4353 
   4354 	buflen = (uint8_t *)chan - buf;
   4355 	hdr->len = htole16(buflen);
   4356 
   4357 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4358 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4359 	free(buf, M_DEVBUF);
   4360 	return error;
   4361 }
   4362 
   4363 static int
   4364 iwn_auth(struct iwn_softc *sc)
   4365 {
   4366 	struct iwn_ops *ops = &sc->ops;
   4367 	struct ieee80211com *ic = &sc->sc_ic;
   4368 	struct ieee80211_node *ni = ic->ic_bss;
   4369 	int error;
   4370 
   4371 	/* Update adapter configuration. */
   4372 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4373 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4374 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4375 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4376 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4377 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4378 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4379 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4380 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4381 	switch (ic->ic_curmode) {
   4382 	case IEEE80211_MODE_11A:
   4383 		sc->rxon.cck_mask  = 0;
   4384 		sc->rxon.ofdm_mask = 0x15;
   4385 		break;
   4386 	case IEEE80211_MODE_11B:
   4387 		sc->rxon.cck_mask  = 0x03;
   4388 		sc->rxon.ofdm_mask = 0;
   4389 		break;
   4390 	default:	/* Assume 802.11b/g. */
   4391 		sc->rxon.cck_mask  = 0x0f;
   4392 		sc->rxon.ofdm_mask = 0x15;
   4393 	}
   4394 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4395 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4396 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4397 	if (error != 0) {
   4398 		aprint_error_dev(sc->sc_dev,
   4399 		    "RXON command failed\n");
   4400 		return error;
   4401 	}
   4402 
   4403 	/* Configuration has changed, set TX power accordingly. */
   4404 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4405 		aprint_error_dev(sc->sc_dev,
   4406 		    "could not set TX power\n");
   4407 		return error;
   4408 	}
   4409 	/*
   4410 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4411 	 * add the broadcast node again.
   4412 	 */
   4413 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4414 		aprint_error_dev(sc->sc_dev,
   4415 		    "could not add broadcast node\n");
   4416 		return error;
   4417 	}
   4418 	return 0;
   4419 }
   4420 
   4421 static int
   4422 iwn_run(struct iwn_softc *sc)
   4423 {
   4424 	struct iwn_ops *ops = &sc->ops;
   4425 	struct ieee80211com *ic = &sc->sc_ic;
   4426 	struct ieee80211_node *ni = ic->ic_bss;
   4427 	struct iwn_node_info node;
   4428 	int error;
   4429 
   4430 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4431 		/* Link LED blinks while monitoring. */
   4432 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4433 		return 0;
   4434 	}
   4435 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4436 		aprint_error_dev(sc->sc_dev,
   4437 		    "could not set timing\n");
   4438 		return error;
   4439 	}
   4440 
   4441 	/* Update adapter configuration. */
   4442 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4443 	/* Short preamble and slot time are negotiated when associating. */
   4444 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4445 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4446 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4447 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4448 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4449 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4450 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4451 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4452 	if (error != 0) {
   4453 		aprint_error_dev(sc->sc_dev,
   4454 		    "could not update configuration\n");
   4455 		return error;
   4456 	}
   4457 
   4458 	/* Configuration has changed, set TX power accordingly. */
   4459 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4460 		aprint_error_dev(sc->sc_dev,
   4461 		    "could not set TX power\n");
   4462 		return error;
   4463 	}
   4464 
   4465 	/* Fake a join to initialize the TX rate. */
   4466 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4467 	iwn_newassoc(ni, 1);
   4468 
   4469 	/* Add BSS node. */
   4470 	memset(&node, 0, sizeof node);
   4471 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4472 	node.id = IWN_ID_BSS;
   4473 #ifdef notyet
   4474 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4475 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4476 #endif
   4477 	DPRINTF(("adding BSS node\n"));
   4478 	error = ops->add_node(sc, &node, 1);
   4479 	if (error != 0) {
   4480 		aprint_error_dev(sc->sc_dev,
   4481 		    "could not add BSS node\n");
   4482 		return error;
   4483 	}
   4484 	DPRINTF(("setting link quality for node %d\n", node.id));
   4485 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4486 		aprint_error_dev(sc->sc_dev,
   4487 		    "could not setup link quality for node %d\n", node.id);
   4488 		return error;
   4489 	}
   4490 
   4491 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4492 		aprint_error_dev(sc->sc_dev,
   4493 		    "could not set sensitivity\n");
   4494 		return error;
   4495 	}
   4496 	/* Start periodic calibration timer. */
   4497 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4498 	sc->calib_cnt = 0;
   4499 	callout_schedule(&sc->calib_to, hz/2);
   4500 
   4501 	/* Link LED always on while associated. */
   4502 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4503 	return 0;
   4504 }
   4505 
   4506 #ifdef IWN_HWCRYPTO
   4507 /*
   4508  * We support CCMP hardware encryption/decryption of unicast frames only.
   4509  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4510  */
   4511 static int
   4512 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4513     struct ieee80211_key *k)
   4514 {
   4515 	struct iwn_softc *sc = ic->ic_softc;
   4516 	struct iwn_ops *ops = &sc->ops;
   4517 	struct iwn_node *wn = (void *)ni;
   4518 	struct iwn_node_info node;
   4519 	uint16_t kflags;
   4520 
   4521 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4522 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4523 		return ieee80211_set_key(ic, ni, k);
   4524 
   4525 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4526 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4527 		kflags |= IWN_KFLAG_GROUP;
   4528 
   4529 	memset(&node, 0, sizeof node);
   4530 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4531 	    sc->broadcast_id : wn->id;
   4532 	node.control = IWN_NODE_UPDATE;
   4533 	node.flags = IWN_FLAG_SET_KEY;
   4534 	node.kflags = htole16(kflags);
   4535 	node.kid = k->k_id;
   4536 	memcpy(node.key, k->k_key, k->k_len);
   4537 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   4538 	return ops->add_node(sc, &node, 1);
   4539 }
   4540 
   4541 static void
   4542 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4543     struct ieee80211_key *k)
   4544 {
   4545 	struct iwn_softc *sc = ic->ic_softc;
   4546 	struct iwn_ops *ops = &sc->ops;
   4547 	struct iwn_node *wn = (void *)ni;
   4548 	struct iwn_node_info node;
   4549 
   4550 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4551 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   4552 		/* See comment about other ciphers above. */
   4553 		ieee80211_delete_key(ic, ni, k);
   4554 		return;
   4555 	}
   4556 	if (ic->ic_state != IEEE80211_S_RUN)
   4557 		return;	/* Nothing to do. */
   4558 	memset(&node, 0, sizeof node);
   4559 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4560 	    sc->broadcast_id : wn->id;
   4561 	node.control = IWN_NODE_UPDATE;
   4562 	node.flags = IWN_FLAG_SET_KEY;
   4563 	node.kflags = htole16(IWN_KFLAG_INVALID);
   4564 	node.kid = 0xff;
   4565 	DPRINTF(("delete keys for node %d\n", node.id));
   4566 	(void)ops->add_node(sc, &node, 1);
   4567 }
   4568 #endif
   4569 
   4570 /* XXX Added for NetBSD (copied from rev 1.39). */
   4571 
   4572 static int
   4573 iwn_wme_update(struct ieee80211com *ic)
   4574 {
   4575 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   4576 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   4577 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   4578 	const struct wmeParams *wmep;
   4579 	struct iwn_edca_params cmd;
   4580 	int ac;
   4581 
   4582 	/* don't override default WME values if WME is not actually enabled */
   4583 	if (!(ic->ic_flags & IEEE80211_F_WME))
   4584 		return 0;
   4585 	cmd.flags = 0;
   4586 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   4587 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   4588 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   4589 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   4590 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   4591 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   4592 
   4593 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   4594 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   4595 					cmd.ac[ac].cwmin,
   4596 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   4597 	}
   4598 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   4599 #undef IWN_USEC
   4600 #undef IWN_EXP2
   4601 }
   4602 
   4603 #ifndef IEEE80211_NO_HT
   4604 /*
   4605  * This function is called by upper layer when an ADDBA request is received
   4606  * from another STA and before the ADDBA response is sent.
   4607  */
   4608 static int
   4609 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4610     uint8_t tid)
   4611 {
   4612 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   4613 	struct iwn_softc *sc = ic->ic_softc;
   4614 	struct iwn_ops *ops = &sc->ops;
   4615 	struct iwn_node *wn = (void *)ni;
   4616 	struct iwn_node_info node;
   4617 
   4618 	memset(&node, 0, sizeof node);
   4619 	node.id = wn->id;
   4620 	node.control = IWN_NODE_UPDATE;
   4621 	node.flags = IWN_FLAG_SET_ADDBA;
   4622 	node.addba_tid = tid;
   4623 	node.addba_ssn = htole16(ba->ba_winstart);
   4624 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   4625 	    ba->ba_winstart));
   4626 	return ops->add_node(sc, &node, 1);
   4627 }
   4628 
   4629 /*
   4630  * This function is called by upper layer on teardown of an HT-immediate
   4631  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
   4632  */
   4633 static void
   4634 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4635     uint8_t tid)
   4636 {
   4637 	struct iwn_softc *sc = ic->ic_softc;
   4638 	struct iwn_ops *ops = &sc->ops;
   4639 	struct iwn_node *wn = (void *)ni;
   4640 	struct iwn_node_info node;
   4641 
   4642 	memset(&node, 0, sizeof node);
   4643 	node.id = wn->id;
   4644 	node.control = IWN_NODE_UPDATE;
   4645 	node.flags = IWN_FLAG_SET_DELBA;
   4646 	node.delba_tid = tid;
   4647 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   4648 	(void)ops->add_node(sc, &node, 1);
   4649 }
   4650 
   4651 /*
   4652  * This function is called by upper layer when an ADDBA response is received
   4653  * from another STA.
   4654  */
   4655 static int
   4656 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4657     uint8_t tid)
   4658 {
   4659 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4660 	struct iwn_softc *sc = ic->ic_softc;
   4661 	struct iwn_ops *ops = &sc->ops;
   4662 	struct iwn_node *wn = (void *)ni;
   4663 	struct iwn_node_info node;
   4664 	int error;
   4665 
   4666 	/* Enable TX for the specified RA/TID. */
   4667 	wn->disable_tid &= ~(1 << tid);
   4668 	memset(&node, 0, sizeof node);
   4669 	node.id = wn->id;
   4670 	node.control = IWN_NODE_UPDATE;
   4671 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   4672 	node.disable_tid = htole16(wn->disable_tid);
   4673 	error = ops->add_node(sc, &node, 1);
   4674 	if (error != 0)
   4675 		return error;
   4676 
   4677 	if ((error = iwn_nic_lock(sc)) != 0)
   4678 		return error;
   4679 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   4680 	iwn_nic_unlock(sc);
   4681 	return 0;
   4682 }
   4683 
   4684 static void
   4685 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4686     uint8_t tid)
   4687 {
   4688 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4689 	struct iwn_softc *sc = ic->ic_softc;
   4690 	struct iwn_ops *ops = &sc->ops;
   4691 
   4692 	if (iwn_nic_lock(sc) != 0)
   4693 		return;
   4694 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   4695 	iwn_nic_unlock(sc);
   4696 }
   4697 
   4698 static void
   4699 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4700     uint8_t tid, uint16_t ssn)
   4701 {
   4702 	struct iwn_node *wn = (void *)ni;
   4703 	int qid = 7 + tid;
   4704 
   4705 	/* Stop TX scheduler while we're changing its configuration. */
   4706 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4707 	    IWN4965_TXQ_STATUS_CHGACT);
   4708 
   4709 	/* Assign RA/TID translation to the queue. */
   4710 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   4711 	    wn->id << 4 | tid);
   4712 
   4713 	/* Enable chain-building mode for the queue. */
   4714 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   4715 
   4716 	/* Set starting sequence number from the ADDBA request. */
   4717 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4718 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4719 
   4720 	/* Set scheduler window size. */
   4721 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   4722 	    IWN_SCHED_WINSZ);
   4723 	/* Set scheduler frame limit. */
   4724 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4725 	    IWN_SCHED_LIMIT << 16);
   4726 
   4727 	/* Enable interrupts for the queue. */
   4728 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4729 
   4730 	/* Mark the queue as active. */
   4731 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4732 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   4733 	    iwn_tid2fifo[tid] << 1);
   4734 }
   4735 
   4736 static void
   4737 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4738 {
   4739 	int qid = 7 + tid;
   4740 
   4741 	/* Stop TX scheduler while we're changing its configuration. */
   4742 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4743 	    IWN4965_TXQ_STATUS_CHGACT);
   4744 
   4745 	/* Set starting sequence number from the ADDBA request. */
   4746 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4747 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4748 
   4749 	/* Disable interrupts for the queue. */
   4750 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4751 
   4752 	/* Mark the queue as inactive. */
   4753 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4754 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   4755 }
   4756 
   4757 static void
   4758 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4759     uint8_t tid, uint16_t ssn)
   4760 {
   4761 	struct iwn_node *wn = (void *)ni;
   4762 	int qid = 10 + tid;
   4763 
   4764 	/* Stop TX scheduler while we're changing its configuration. */
   4765 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4766 	    IWN5000_TXQ_STATUS_CHGACT);
   4767 
   4768 	/* Assign RA/TID translation to the queue. */
   4769 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   4770 	    wn->id << 4 | tid);
   4771 
   4772 	/* Enable chain-building mode for the queue. */
   4773 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   4774 
   4775 	/* Enable aggregation for the queue. */
   4776 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4777 
   4778 	/* Set starting sequence number from the ADDBA request. */
   4779 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4780 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4781 
   4782 	/* Set scheduler window size and frame limit. */
   4783 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   4784 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   4785 
   4786 	/* Enable interrupts for the queue. */
   4787 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4788 
   4789 	/* Mark the queue as active. */
   4790 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4791 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   4792 }
   4793 
   4794 static void
   4795 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4796 {
   4797 	int qid = 10 + tid;
   4798 
   4799 	/* Stop TX scheduler while we're changing its configuration. */
   4800 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4801 	    IWN5000_TXQ_STATUS_CHGACT);
   4802 
   4803 	/* Disable aggregation for the queue. */
   4804 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4805 
   4806 	/* Set starting sequence number from the ADDBA request. */
   4807 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4808 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4809 
   4810 	/* Disable interrupts for the queue. */
   4811 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4812 
   4813 	/* Mark the queue as inactive. */
   4814 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4815 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   4816 }
   4817 #endif	/* !IEEE80211_NO_HT */
   4818 
   4819 /*
   4820  * Query calibration tables from the initialization firmware.  We do this
   4821  * only once at first boot.  Called from a process context.
   4822  */
   4823 static int
   4824 iwn5000_query_calibration(struct iwn_softc *sc)
   4825 {
   4826 	struct iwn5000_calib_config cmd;
   4827 	int error;
   4828 
   4829 	memset(&cmd, 0, sizeof cmd);
   4830 	cmd.ucode.once.enable = 0xffffffff;
   4831 	cmd.ucode.once.start  = 0xffffffff;
   4832 	cmd.ucode.once.send   = 0xffffffff;
   4833 	cmd.ucode.flags       = 0xffffffff;
   4834 	DPRINTF(("sending calibration query\n"));
   4835 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   4836 	if (error != 0)
   4837 		return error;
   4838 
   4839 	/* Wait at most two seconds for calibration to complete. */
   4840 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   4841 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   4842 	return error;
   4843 }
   4844 
   4845 /*
   4846  * Send calibration results to the runtime firmware.  These results were
   4847  * obtained on first boot from the initialization firmware.
   4848  */
   4849 static int
   4850 iwn5000_send_calibration(struct iwn_softc *sc)
   4851 {
   4852 	int idx, error;
   4853 
   4854 	for (idx = 0; idx < 5; idx++) {
   4855 		if (sc->calibcmd[idx].buf == NULL)
   4856 			continue;	/* No results available. */
   4857 		DPRINTF(("send calibration result idx=%d len=%d\n",
   4858 		    idx, sc->calibcmd[idx].len));
   4859 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   4860 		    sc->calibcmd[idx].len, 0);
   4861 		if (error != 0) {
   4862 			aprint_error_dev(sc->sc_dev,
   4863 			    "could not send calibration result\n");
   4864 			return error;
   4865 		}
   4866 	}
   4867 	return 0;
   4868 }
   4869 
   4870 static int
   4871 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   4872 {
   4873 	struct iwn5000_wimax_coex wimax;
   4874 
   4875 #ifdef notyet
   4876 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   4877 		/* Enable WiMAX coexistence for combo adapters. */
   4878 		wimax.flags =
   4879 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   4880 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   4881 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   4882 		    IWN_WIMAX_COEX_ENABLE;
   4883 		memcpy(wimax.events, iwn6050_wimax_events,
   4884 		    sizeof iwn6050_wimax_events);
   4885 	} else
   4886 #endif
   4887 	{
   4888 		/* Disable WiMAX coexistence. */
   4889 		wimax.flags = 0;
   4890 		memset(wimax.events, 0, sizeof wimax.events);
   4891 	}
   4892 	DPRINTF(("Configuring WiMAX coexistence\n"));
   4893 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   4894 }
   4895 
   4896 /*
   4897  * This function is called after the runtime firmware notifies us of its
   4898  * readiness (called in a process context).
   4899  */
   4900 static int
   4901 iwn4965_post_alive(struct iwn_softc *sc)
   4902 {
   4903 	int error, qid;
   4904 
   4905 	if ((error = iwn_nic_lock(sc)) != 0)
   4906 		return error;
   4907 
   4908 	/* Clear TX scheduler state in SRAM. */
   4909 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   4910 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   4911 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   4912 
   4913 	/* Set physical address of TX scheduler rings (1KB aligned). */
   4914 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   4915 
   4916 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   4917 
   4918 	/* Disable chain mode for all our 16 queues. */
   4919 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   4920 
   4921 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   4922 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   4923 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   4924 
   4925 		/* Set scheduler window size. */
   4926 		iwn_mem_write(sc, sc->sched_base +
   4927 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   4928 		/* Set scheduler frame limit. */
   4929 		iwn_mem_write(sc, sc->sched_base +
   4930 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4931 		    IWN_SCHED_LIMIT << 16);
   4932 	}
   4933 
   4934 	/* Enable interrupts for all our 16 queues. */
   4935 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   4936 	/* Identify TX FIFO rings (0-7). */
   4937 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   4938 
   4939 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   4940 	for (qid = 0; qid < 7; qid++) {
   4941 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   4942 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4943 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   4944 	}
   4945 	iwn_nic_unlock(sc);
   4946 	return 0;
   4947 }
   4948 
   4949 /*
   4950  * This function is called after the initialization or runtime firmware
   4951  * notifies us of its readiness (called in a process context).
   4952  */
   4953 static int
   4954 iwn5000_post_alive(struct iwn_softc *sc)
   4955 {
   4956 	int error, qid;
   4957 
   4958 	/* Switch to using ICT interrupt mode. */
   4959 	iwn5000_ict_reset(sc);
   4960 
   4961 	if ((error = iwn_nic_lock(sc)) != 0)
   4962 		return error;
   4963 
   4964 	/* Clear TX scheduler state in SRAM. */
   4965 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   4966 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   4967 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   4968 
   4969 	/* Set physical address of TX scheduler rings (1KB aligned). */
   4970 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   4971 
   4972 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   4973 
   4974 	/* Enable chain mode for all queues, except command queue. */
   4975 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   4976 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   4977 
   4978 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   4979 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   4980 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   4981 
   4982 		iwn_mem_write(sc, sc->sched_base +
   4983 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   4984 		/* Set scheduler window size and frame limit. */
   4985 		iwn_mem_write(sc, sc->sched_base +
   4986 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   4987 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   4988 	}
   4989 
   4990 	/* Enable interrupts for all our 20 queues. */
   4991 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   4992 	/* Identify TX FIFO rings (0-7). */
   4993 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   4994 
   4995 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   4996 	for (qid = 0; qid < 7; qid++) {
   4997 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   4998 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4999 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   5000 	}
   5001 	iwn_nic_unlock(sc);
   5002 
   5003 	/* Configure WiMAX coexistence for combo adapters. */
   5004 	error = iwn5000_send_wimax_coex(sc);
   5005 	if (error != 0) {
   5006 		aprint_error_dev(sc->sc_dev,
   5007 		    "could not configure WiMAX coexistence\n");
   5008 		return error;
   5009 	}
   5010 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5011 		struct iwn5000_phy_calib_crystal cmd;
   5012 
   5013 		/* Perform crystal calibration. */
   5014 		memset(&cmd, 0, sizeof cmd);
   5015 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5016 		cmd.ngroups = 1;
   5017 		cmd.isvalid = 1;
   5018 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5019 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5020 		DPRINTF(("sending crystal calibration %d, %d\n",
   5021 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5022 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5023 		if (error != 0) {
   5024 			aprint_error_dev(sc->sc_dev,
   5025 			    "crystal calibration failed\n");
   5026 			return error;
   5027 		}
   5028 	}
   5029 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5030 		/* Query calibration from the initialization firmware. */
   5031 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5032 			aprint_error_dev(sc->sc_dev,
   5033 			    "could not query calibration\n");
   5034 			return error;
   5035 		}
   5036 		/*
   5037 		 * We have the calibration results now, reboot with the
   5038 		 * runtime firmware (call ourselves recursively!)
   5039 		 */
   5040 		iwn_hw_stop(sc);
   5041 		error = iwn_hw_init(sc);
   5042 	} else {
   5043 		/* Send calibration results to runtime firmware. */
   5044 		error = iwn5000_send_calibration(sc);
   5045 	}
   5046 	return error;
   5047 }
   5048 
   5049 /*
   5050  * The firmware boot code is small and is intended to be copied directly into
   5051  * the NIC internal memory (no DMA transfer).
   5052  */
   5053 static int
   5054 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5055 {
   5056 	int error, ntries;
   5057 
   5058 	size /= sizeof (uint32_t);
   5059 
   5060 	if ((error = iwn_nic_lock(sc)) != 0)
   5061 		return error;
   5062 
   5063 	/* Copy microcode image into NIC memory. */
   5064 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5065 	    (const uint32_t *)ucode, size);
   5066 
   5067 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5068 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5069 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5070 
   5071 	/* Start boot load now. */
   5072 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5073 
   5074 	/* Wait for transfer to complete. */
   5075 	for (ntries = 0; ntries < 1000; ntries++) {
   5076 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5077 		    IWN_BSM_WR_CTRL_START))
   5078 			break;
   5079 		DELAY(10);
   5080 	}
   5081 	if (ntries == 1000) {
   5082 		aprint_error_dev(sc->sc_dev,
   5083 		    "could not load boot firmware\n");
   5084 		iwn_nic_unlock(sc);
   5085 		return ETIMEDOUT;
   5086 	}
   5087 
   5088 	/* Enable boot after power up. */
   5089 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5090 
   5091 	iwn_nic_unlock(sc);
   5092 	return 0;
   5093 }
   5094 
   5095 static int
   5096 iwn4965_load_firmware(struct iwn_softc *sc)
   5097 {
   5098 	struct iwn_fw_info *fw = &sc->fw;
   5099 	struct iwn_dma_info *dma = &sc->fw_dma;
   5100 	int error;
   5101 
   5102 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5103 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5104 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5105 	    BUS_DMASYNC_PREWRITE);
   5106 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5107 	    fw->init.text, fw->init.textsz);
   5108 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5109 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5110 
   5111 	/* Tell adapter where to find initialization sections. */
   5112 	if ((error = iwn_nic_lock(sc)) != 0)
   5113 		return error;
   5114 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5115 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5116 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5117 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5118 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5119 	iwn_nic_unlock(sc);
   5120 
   5121 	/* Load firmware boot code. */
   5122 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5123 	if (error != 0) {
   5124 		aprint_error_dev(sc->sc_dev,
   5125 		    "could not load boot firmware\n");
   5126 		return error;
   5127 	}
   5128 	/* Now press "execute". */
   5129 	IWN_WRITE(sc, IWN_RESET, 0);
   5130 
   5131 	/* Wait at most one second for first alive notification. */
   5132 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5133 		aprint_error_dev(sc->sc_dev,
   5134 		    "timeout waiting for adapter to initialize\n");
   5135 		return error;
   5136 	}
   5137 
   5138 	/* Retrieve current temperature for initial TX power calibration. */
   5139 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5140 	sc->temp = iwn4965_get_temperature(sc);
   5141 
   5142 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5143 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5144 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5145 	    BUS_DMASYNC_PREWRITE);
   5146 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5147 	    fw->main.text, fw->main.textsz);
   5148 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5149 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5150 
   5151 	/* Tell adapter where to find runtime sections. */
   5152 	if ((error = iwn_nic_lock(sc)) != 0)
   5153 		return error;
   5154 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5155 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5156 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5157 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5158 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5159 	    IWN_FW_UPDATED | fw->main.textsz);
   5160 	iwn_nic_unlock(sc);
   5161 
   5162 	return 0;
   5163 }
   5164 
   5165 static int
   5166 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5167     const uint8_t *section, int size)
   5168 {
   5169 	struct iwn_dma_info *dma = &sc->fw_dma;
   5170 	int error;
   5171 
   5172 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5173 	memcpy(dma->vaddr, section, size);
   5174 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5175 
   5176 	if ((error = iwn_nic_lock(sc)) != 0)
   5177 		return error;
   5178 
   5179 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5180 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5181 
   5182 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5183 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5184 	    IWN_LOADDR(dma->paddr));
   5185 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5186 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5187 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5188 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5189 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5190 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5191 
   5192 	/* Kick Flow Handler to start DMA transfer. */
   5193 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5194 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5195 
   5196 	iwn_nic_unlock(sc);
   5197 
   5198 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5199 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5200 }
   5201 
   5202 static int
   5203 iwn5000_load_firmware(struct iwn_softc *sc)
   5204 {
   5205 	struct iwn_fw_part *fw;
   5206 	int error;
   5207 
   5208 	/* Load the initialization firmware on first boot only. */
   5209 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5210 	    &sc->fw.main : &sc->fw.init;
   5211 
   5212 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5213 	    fw->text, fw->textsz);
   5214 	if (error != 0) {
   5215 		aprint_error_dev(sc->sc_dev,
   5216 		    "could not load firmware %s section\n", ".text");
   5217 		return error;
   5218 	}
   5219 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5220 	    fw->data, fw->datasz);
   5221 	if (error != 0) {
   5222 		aprint_error_dev(sc->sc_dev,
   5223 		    "could not load firmware %s section\n", ".data");
   5224 		return error;
   5225 	}
   5226 
   5227 	/* Now press "execute". */
   5228 	IWN_WRITE(sc, IWN_RESET, 0);
   5229 	return 0;
   5230 }
   5231 
   5232 /*
   5233  * Extract text and data sections from a legacy firmware image.
   5234  */
   5235 static int
   5236 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
   5237 {
   5238 	const uint32_t *ptr;
   5239 	size_t hdrlen = 24;
   5240 	uint32_t rev;
   5241 
   5242 	ptr = (const uint32_t *)fw->data;
   5243 	rev = le32toh(*ptr++);
   5244 
   5245 	/* Check firmware API version. */
   5246 	if (IWN_FW_API(rev) <= 1) {
   5247 		aprint_error_dev(sc->sc_dev,
   5248 		    "bad firmware, need API version >=2\n");
   5249 		return EINVAL;
   5250 	}
   5251 	if (IWN_FW_API(rev) >= 3) {
   5252 		/* Skip build number (version 2 header). */
   5253 		hdrlen += 4;
   5254 		ptr++;
   5255 	}
   5256 	if (fw->size < hdrlen) {
   5257 		aprint_error_dev(sc->sc_dev,
   5258 		    "firmware too short: %zd bytes\n", fw->size);
   5259 		return EINVAL;
   5260 	}
   5261 	fw->main.textsz = le32toh(*ptr++);
   5262 	fw->main.datasz = le32toh(*ptr++);
   5263 	fw->init.textsz = le32toh(*ptr++);
   5264 	fw->init.datasz = le32toh(*ptr++);
   5265 	fw->boot.textsz = le32toh(*ptr++);
   5266 
   5267 	/* Check that all firmware sections fit. */
   5268 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
   5269 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
   5270 		aprint_error_dev(sc->sc_dev,
   5271 		    "firmware too short: %zd bytes\n", fw->size);
   5272 		return EINVAL;
   5273 	}
   5274 
   5275 	/* Get pointers to firmware sections. */
   5276 	fw->main.text = (const uint8_t *)ptr;
   5277 	fw->main.data = fw->main.text + fw->main.textsz;
   5278 	fw->init.text = fw->main.data + fw->main.datasz;
   5279 	fw->init.data = fw->init.text + fw->init.textsz;
   5280 	fw->boot.text = fw->init.data + fw->init.datasz;
   5281 	return 0;
   5282 }
   5283 
   5284 /*
   5285  * Extract text and data sections from a TLV firmware image.
   5286  */
   5287 static int
   5288 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
   5289     uint16_t alt)
   5290 {
   5291 	const struct iwn_fw_tlv_hdr *hdr;
   5292 	const struct iwn_fw_tlv *tlv;
   5293 	const uint8_t *ptr, *end;
   5294 	uint64_t altmask;
   5295 	uint32_t len;
   5296 
   5297 	if (fw->size < sizeof (*hdr)) {
   5298 		aprint_error_dev(sc->sc_dev,
   5299 		    "firmware too short: %zd bytes\n", fw->size);
   5300 		return EINVAL;
   5301 	}
   5302 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
   5303 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
   5304 		aprint_error_dev(sc->sc_dev,
   5305 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
   5306 		return EINVAL;
   5307 	}
   5308 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
   5309 	    le32toh(hdr->build)));
   5310 
   5311 	/*
   5312 	 * Select the closest supported alternative that is less than
   5313 	 * or equal to the specified one.
   5314 	 */
   5315 	altmask = le64toh(hdr->altmask);
   5316 	while (alt > 0 && !(altmask & (1ULL << alt)))
   5317 		alt--;	/* Downgrade. */
   5318 	DPRINTF(("using alternative %d\n", alt));
   5319 
   5320 	ptr = (const uint8_t *)(hdr + 1);
   5321 	end = (const uint8_t *)(fw->data + fw->size);
   5322 
   5323 	/* Parse type-length-value fields. */
   5324 	while (ptr + sizeof (*tlv) <= end) {
   5325 		tlv = (const struct iwn_fw_tlv *)ptr;
   5326 		len = le32toh(tlv->len);
   5327 
   5328 		ptr += sizeof (*tlv);
   5329 		if (ptr + len > end) {
   5330 			aprint_error_dev(sc->sc_dev,
   5331 			    "firmware too short: %zd bytes\n", fw->size);
   5332 			return EINVAL;
   5333 		}
   5334 		/* Skip other alternatives. */
   5335 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
   5336 			goto next;
   5337 
   5338 		switch (le16toh(tlv->type)) {
   5339 		case IWN_FW_TLV_MAIN_TEXT:
   5340 			fw->main.text = ptr;
   5341 			fw->main.textsz = len;
   5342 			break;
   5343 		case IWN_FW_TLV_MAIN_DATA:
   5344 			fw->main.data = ptr;
   5345 			fw->main.datasz = len;
   5346 			break;
   5347 		case IWN_FW_TLV_INIT_TEXT:
   5348 			fw->init.text = ptr;
   5349 			fw->init.textsz = len;
   5350 			break;
   5351 		case IWN_FW_TLV_INIT_DATA:
   5352 			fw->init.data = ptr;
   5353 			fw->init.datasz = len;
   5354 			break;
   5355 		case IWN_FW_TLV_BOOT_TEXT:
   5356 			fw->boot.text = ptr;
   5357 			fw->boot.textsz = len;
   5358 			break;
   5359 		default:
   5360 			DPRINTF(("TLV type %d not handled\n",
   5361 			    le16toh(tlv->type)));
   5362 			break;
   5363 		}
   5364  next:		/* TLV fields are 32-bit aligned. */
   5365 		ptr += (len + 3) & ~3;
   5366 	}
   5367 	return 0;
   5368 }
   5369 
   5370 static int
   5371 iwn_read_firmware(struct iwn_softc *sc)
   5372 {
   5373 	struct iwn_fw_info *fw = &sc->fw;
   5374 	firmware_handle_t fwh;
   5375 	int error;
   5376 
   5377 	/* Initialize for error returns */
   5378 	fw->data = NULL;
   5379 	fw->size = 0;
   5380 
   5381 	/* Open firmware image. */
   5382 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5383 		aprint_error_dev(sc->sc_dev,
   5384 		    "could not get firmware handle %s\n", sc->fwname);
   5385 		return error;
   5386 	}
   5387 	fw->size = firmware_get_size(fwh);
   5388 	if (fw->size < sizeof (uint32_t)) {
   5389 		aprint_error_dev(sc->sc_dev,
   5390 		    "firmware too short: %zd bytes\n", fw->size);
   5391 		firmware_close(fwh);
   5392 		return EINVAL;
   5393 	}
   5394 
   5395 	/* Read the firmware. */
   5396 	fw->data = firmware_malloc(fw->size);
   5397 	if (fw->data == NULL) {
   5398 		aprint_error_dev(sc->sc_dev,
   5399 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5400 		firmware_close(fwh);
   5401 		return ENOMEM;
   5402 	}
   5403 	error = firmware_read(fwh, 0, fw->data, fw->size);
   5404 	firmware_close(fwh);
   5405 	if (error != 0) {
   5406 		aprint_error_dev(sc->sc_dev,
   5407 		    "could not read firmware %s\n", sc->fwname);
   5408 		goto out;
   5409 	}
   5410 
   5411 	/* Retrieve text and data sections. */
   5412 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
   5413 		error = iwn_read_firmware_leg(sc, fw);
   5414 	else
   5415 		error = iwn_read_firmware_tlv(sc, fw, 1);
   5416 	if (error != 0) {
   5417 		aprint_error_dev(sc->sc_dev,
   5418 		    "could not read firmware sections\n");
   5419 		goto out;
   5420 	}
   5421 
   5422 	/* Make sure text and data sections fit in hardware memory. */
   5423 	if (fw->main.textsz > sc->fw_text_maxsz ||
   5424 	    fw->main.datasz > sc->fw_data_maxsz ||
   5425 	    fw->init.textsz > sc->fw_text_maxsz ||
   5426 	    fw->init.datasz > sc->fw_data_maxsz ||
   5427 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5428 	    (fw->boot.textsz & 3) != 0) {
   5429 		aprint_error_dev(sc->sc_dev,
   5430 		    "firmware sections too large\n");
   5431 		goto out;
   5432 	}
   5433 
   5434 	/* We can proceed with loading the firmware. */
   5435 	return 0;
   5436 out:
   5437 	firmware_free(fw->data, fw->size);
   5438 	fw->data = NULL;
   5439 	fw->size = 0;
   5440 	return error ? error : EINVAL;
   5441 }
   5442 
   5443 static int
   5444 iwn_clock_wait(struct iwn_softc *sc)
   5445 {
   5446 	int ntries;
   5447 
   5448 	/* Set "initialization complete" bit. */
   5449 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5450 
   5451 	/* Wait for clock stabilization. */
   5452 	for (ntries = 0; ntries < 2500; ntries++) {
   5453 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5454 			return 0;
   5455 		DELAY(10);
   5456 	}
   5457 	aprint_error_dev(sc->sc_dev,
   5458 	    "timeout waiting for clock stabilization\n");
   5459 	return ETIMEDOUT;
   5460 }
   5461 
   5462 static int
   5463 iwn_apm_init(struct iwn_softc *sc)
   5464 {
   5465 	pcireg_t reg;
   5466 	int error;
   5467 
   5468 	/* Disable L0s exit timer (NMI bug workaround). */
   5469 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   5470 	/* Don't wait for ICH L0s (ICH bug workaround). */
   5471 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   5472 
   5473 	/* Set FH wait threshold to max (HW bug under stress workaround). */
   5474 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   5475 
   5476 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   5477 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   5478 
   5479 	/* Retrieve PCIe Active State Power Management (ASPM). */
   5480 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   5481 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   5482 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   5483 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   5484 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5485 	else
   5486 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5487 
   5488 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   5489 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   5490 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   5491 
   5492 	/* Wait for clock stabilization before accessing prph. */
   5493 	if ((error = iwn_clock_wait(sc)) != 0)
   5494 		return error;
   5495 
   5496 	if ((error = iwn_nic_lock(sc)) != 0)
   5497 		return error;
   5498 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   5499 		/* Enable DMA and BSM (Bootstrap State Machine). */
   5500 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5501 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   5502 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   5503 	} else {
   5504 		/* Enable DMA. */
   5505 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5506 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5507 	}
   5508 	DELAY(20);
   5509 	/* Disable L1-Active. */
   5510 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   5511 	iwn_nic_unlock(sc);
   5512 
   5513 	return 0;
   5514 }
   5515 
   5516 static void
   5517 iwn_apm_stop_master(struct iwn_softc *sc)
   5518 {
   5519 	int ntries;
   5520 
   5521 	/* Stop busmaster DMA activity. */
   5522 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   5523 	for (ntries = 0; ntries < 100; ntries++) {
   5524 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   5525 			return;
   5526 		DELAY(10);
   5527 	}
   5528 	aprint_error_dev(sc->sc_dev,
   5529 	    "timeout waiting for master\n");
   5530 }
   5531 
   5532 static void
   5533 iwn_apm_stop(struct iwn_softc *sc)
   5534 {
   5535 	iwn_apm_stop_master(sc);
   5536 
   5537 	/* Reset the entire device. */
   5538 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   5539 	DELAY(10);
   5540 	/* Clear "initialization complete" bit. */
   5541 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5542 }
   5543 
   5544 static int
   5545 iwn4965_nic_config(struct iwn_softc *sc)
   5546 {
   5547 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   5548 		/*
   5549 		 * I don't believe this to be correct but this is what the
   5550 		 * vendor driver is doing. Probably the bits should not be
   5551 		 * shifted in IWN_RFCFG_*.
   5552 		 */
   5553 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5554 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5555 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5556 		    IWN_RFCFG_DASH(sc->rfcfg));
   5557 	}
   5558 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5559 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5560 	return 0;
   5561 }
   5562 
   5563 static int
   5564 iwn5000_nic_config(struct iwn_softc *sc)
   5565 {
   5566 	uint32_t tmp;
   5567 	int error;
   5568 
   5569 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   5570 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5571 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5572 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5573 		    IWN_RFCFG_DASH(sc->rfcfg));
   5574 	}
   5575 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5576 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5577 
   5578 	if ((error = iwn_nic_lock(sc)) != 0)
   5579 		return error;
   5580 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   5581 
   5582 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   5583 		/*
   5584 		 * Select first Switching Voltage Regulator (1.32V) to
   5585 		 * solve a stability issue related to noisy DC2DC line
   5586 		 * in the silicon of 1000 Series.
   5587 		 */
   5588 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   5589 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   5590 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   5591 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   5592 	}
   5593 	iwn_nic_unlock(sc);
   5594 
   5595 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   5596 		/* Use internal power amplifier only. */
   5597 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   5598 	}
   5599 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   5600 		sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
   5601 		/* Indicate that ROM calibration version is >=6. */
   5602 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   5603 	}
   5604 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   5605 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
   5606 	return 0;
   5607 }
   5608 
   5609 /*
   5610  * Take NIC ownership over Intel Active Management Technology (AMT).
   5611  */
   5612 static int
   5613 iwn_hw_prepare(struct iwn_softc *sc)
   5614 {
   5615 	int ntries;
   5616 
   5617 	/* Check if hardware is ready. */
   5618 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5619 	for (ntries = 0; ntries < 5; ntries++) {
   5620 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5621 		    IWN_HW_IF_CONFIG_NIC_READY)
   5622 			return 0;
   5623 		DELAY(10);
   5624 	}
   5625 
   5626 	/* Hardware not ready, force into ready state. */
   5627 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   5628 	for (ntries = 0; ntries < 15000; ntries++) {
   5629 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5630 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   5631 			break;
   5632 		DELAY(10);
   5633 	}
   5634 	if (ntries == 15000)
   5635 		return ETIMEDOUT;
   5636 
   5637 	/* Hardware should be ready now. */
   5638 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5639 	for (ntries = 0; ntries < 5; ntries++) {
   5640 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5641 		    IWN_HW_IF_CONFIG_NIC_READY)
   5642 			return 0;
   5643 		DELAY(10);
   5644 	}
   5645 	return ETIMEDOUT;
   5646 }
   5647 
   5648 static int
   5649 iwn_hw_init(struct iwn_softc *sc)
   5650 {
   5651 	struct iwn_ops *ops = &sc->ops;
   5652 	int error, chnl, qid;
   5653 
   5654 	/* Clear pending interrupts. */
   5655 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5656 
   5657 	if ((error = iwn_apm_init(sc)) != 0) {
   5658 		aprint_error_dev(sc->sc_dev,
   5659 		    "could not power ON adapter\n");
   5660 		return error;
   5661 	}
   5662 
   5663 	/* Select VMAIN power source. */
   5664 	if ((error = iwn_nic_lock(sc)) != 0)
   5665 		return error;
   5666 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   5667 	iwn_nic_unlock(sc);
   5668 
   5669 	/* Perform adapter-specific initialization. */
   5670 	if ((error = ops->nic_config(sc)) != 0)
   5671 		return error;
   5672 
   5673 	/* Initialize RX ring. */
   5674 	if ((error = iwn_nic_lock(sc)) != 0)
   5675 		return error;
   5676 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   5677 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   5678 	/* Set physical address of RX ring (256-byte aligned). */
   5679 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   5680 	/* Set physical address of RX status (16-byte aligned). */
   5681 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   5682 	/* Enable RX. */
   5683 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   5684 	    IWN_FH_RX_CONFIG_ENA           |
   5685 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   5686 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   5687 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   5688 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   5689 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   5690 	iwn_nic_unlock(sc);
   5691 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   5692 
   5693 	if ((error = iwn_nic_lock(sc)) != 0)
   5694 		return error;
   5695 
   5696 	/* Initialize TX scheduler. */
   5697 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   5698 
   5699 	/* Set physical address of "keep warm" page (16-byte aligned). */
   5700 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   5701 
   5702 	/* Initialize TX rings. */
   5703 	for (qid = 0; qid < sc->ntxqs; qid++) {
   5704 		struct iwn_tx_ring *txq = &sc->txq[qid];
   5705 
   5706 		/* Set physical address of TX ring (256-byte aligned). */
   5707 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   5708 		    txq->desc_dma.paddr >> 8);
   5709 	}
   5710 	iwn_nic_unlock(sc);
   5711 
   5712 	/* Enable DMA channels. */
   5713 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   5714 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   5715 		    IWN_FH_TX_CONFIG_DMA_ENA |
   5716 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   5717 	}
   5718 
   5719 	/* Clear "radio off" and "commands blocked" bits. */
   5720 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5721 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   5722 
   5723 	/* Clear pending interrupts. */
   5724 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5725 	/* Enable interrupt coalescing. */
   5726 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   5727 	/* Enable interrupts. */
   5728 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   5729 
   5730 	/* _Really_ make sure "radio off" bit is cleared! */
   5731 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5732 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5733 
   5734 	/* Enable shadow registers. */
   5735 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   5736 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
   5737 
   5738 	if ((error = ops->load_firmware(sc)) != 0) {
   5739 		aprint_error_dev(sc->sc_dev,
   5740 		    "could not load firmware\n");
   5741 		return error;
   5742 	}
   5743 	/* Wait at most one second for firmware alive notification. */
   5744 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5745 		aprint_error_dev(sc->sc_dev,
   5746 		    "timeout waiting for adapter to initialize\n");
   5747 		return error;
   5748 	}
   5749 	/* Do post-firmware initialization. */
   5750 	return ops->post_alive(sc);
   5751 }
   5752 
   5753 static void
   5754 iwn_hw_stop(struct iwn_softc *sc)
   5755 {
   5756 	int chnl, qid, ntries;
   5757 
   5758 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   5759 
   5760 	/* Disable interrupts. */
   5761 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   5762 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5763 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   5764 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5765 
   5766 	/* Make sure we no longer hold the NIC lock. */
   5767 	iwn_nic_unlock(sc);
   5768 
   5769 	/* Stop TX scheduler. */
   5770 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   5771 
   5772 	/* Stop all DMA channels. */
   5773 	if (iwn_nic_lock(sc) == 0) {
   5774 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   5775 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   5776 			for (ntries = 0; ntries < 200; ntries++) {
   5777 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
   5778 				    IWN_FH_TX_STATUS_IDLE(chnl))
   5779 					break;
   5780 				DELAY(10);
   5781 			}
   5782 		}
   5783 		iwn_nic_unlock(sc);
   5784 	}
   5785 
   5786 	/* Stop RX ring. */
   5787 	iwn_reset_rx_ring(sc, &sc->rxq);
   5788 
   5789 	/* Reset all TX rings. */
   5790 	for (qid = 0; qid < sc->ntxqs; qid++)
   5791 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   5792 
   5793 	if (iwn_nic_lock(sc) == 0) {
   5794 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   5795 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5796 		iwn_nic_unlock(sc);
   5797 	}
   5798 	DELAY(5);
   5799 	/* Power OFF adapter. */
   5800 	iwn_apm_stop(sc);
   5801 }
   5802 
   5803 static int
   5804 iwn_init(struct ifnet *ifp)
   5805 {
   5806 	struct iwn_softc *sc = ifp->if_softc;
   5807 	struct ieee80211com *ic = &sc->sc_ic;
   5808 	int error;
   5809 
   5810 	mutex_enter(&sc->sc_mtx);
   5811 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
   5812 		goto out;
   5813 	if ((error = iwn_hw_prepare(sc)) != 0) {
   5814 		aprint_error_dev(sc->sc_dev,
   5815 		    "hardware not ready\n");
   5816 		goto fail;
   5817 	}
   5818 
   5819 	/* Check that the radio is not disabled by hardware switch. */
   5820 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   5821 		aprint_error_dev(sc->sc_dev,
   5822 		    "radio is disabled by hardware switch\n");
   5823 		error = EPERM;	/* :-) */
   5824 		goto fail;
   5825 	}
   5826 
   5827 	/* Read firmware images from the filesystem. */
   5828 	if ((error = iwn_read_firmware(sc)) != 0) {
   5829 		aprint_error_dev(sc->sc_dev,
   5830 		    "could not read firmware\n");
   5831 		goto fail;
   5832 	}
   5833 
   5834 	/* Initialize interrupt mask to default value. */
   5835 	sc->int_mask = IWN_INT_MASK_DEF;
   5836 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5837 
   5838 	/* Initialize hardware and upload firmware. */
   5839 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
   5840 	error = iwn_hw_init(sc);
   5841 	firmware_free(sc->fw.data, sc->fw.size);
   5842 	sc->fw.data = NULL;
   5843 	sc->fw.size = 0;
   5844 	if (error != 0) {
   5845 		aprint_error_dev(sc->sc_dev,
   5846 		    "could not initialize hardware\n");
   5847 		goto fail;
   5848 	}
   5849 
   5850 	/* Configure adapter now that it is ready. */
   5851 	if ((error = iwn_config(sc)) != 0) {
   5852 		aprint_error_dev(sc->sc_dev,
   5853 		    "could not configure device\n");
   5854 		goto fail;
   5855 	}
   5856 
   5857 	ifp->if_flags &= ~IFF_OACTIVE;
   5858 	ifp->if_flags |= IFF_RUNNING;
   5859 
   5860 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   5861 		ieee80211_begin_scan(ic, 0);
   5862 	else
   5863 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   5864 
   5865 	sc->sc_flags |= IWN_FLAG_HW_INITED;
   5866 out:
   5867 	mutex_exit(&sc->sc_mtx);
   5868 	return 0;
   5869 
   5870 fail:	mutex_exit(&sc->sc_mtx);
   5871 	iwn_stop(ifp, 1);
   5872 	return error;
   5873 }
   5874 
   5875 static void
   5876 iwn_stop(struct ifnet *ifp, int disable)
   5877 {
   5878 	struct iwn_softc *sc = ifp->if_softc;
   5879 	struct ieee80211com *ic = &sc->sc_ic;
   5880 
   5881 	if (!disable)
   5882 		mutex_enter(&sc->sc_mtx);
   5883 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
   5884 	ifp->if_timer = sc->sc_tx_timer = 0;
   5885 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5886 
   5887 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   5888 
   5889 	/* Power OFF hardware. */
   5890 	iwn_hw_stop(sc);
   5891 
   5892 	if (!disable)
   5893 		mutex_exit(&sc->sc_mtx);
   5894 }
   5895 
   5896 /*
   5897  * XXX MCLGETI alternative
   5898  *
   5899  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   5900  * as long as there are available free buffers then it uses MEXTMALLOC.,
   5901  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   5902  * The MCLGET4K code is used for testing an alternative mbuf cache.
   5903  */
   5904 
   5905 static struct mbuf *
   5906 MCLGETIalt(struct iwn_softc *sc, int how,
   5907     struct ifnet *ifp __unused, u_int size)
   5908 {
   5909 	struct mbuf *m;
   5910 #ifdef IWN_USE_RBUF
   5911 	struct iwn_rbuf *rbuf;
   5912 #endif
   5913 
   5914 	MGETHDR(m, how, MT_DATA);
   5915 	if (m == NULL)
   5916 		return NULL;
   5917 
   5918 #ifdef IWN_USE_RBUF
   5919 	if (sc->rxq.nb_free_entries > 0 &&
   5920 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   5921 		/* Attach buffer to mbuf header. */
   5922 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   5923 		m->m_flags |= M_EXT_RW;
   5924 	}
   5925 	else {
   5926 		MEXTMALLOC(m, size, how);
   5927 		if ((m->m_flags & M_EXT) == 0) {
   5928 			m_freem(m);
   5929 			return NULL;
   5930 		}
   5931 	}
   5932 
   5933 #else
   5934 #ifdef MCLGET4K
   5935 	if (size == 4096)
   5936 		MCLGET4K(m, how);
   5937 	else
   5938 		panic("size must be 4k");
   5939 #else
   5940 	MEXTMALLOC(m, size, how);
   5941 #endif
   5942 	if ((m->m_flags & M_EXT) == 0) {
   5943 		m_freem(m);
   5944 		return NULL;
   5945 	}
   5946 #endif
   5947 
   5948 	return m;
   5949 }
   5950 
   5951 #ifdef IWN_USE_RBUF
   5952 static struct iwn_rbuf *
   5953 iwn_alloc_rbuf(struct iwn_softc *sc)
   5954 {
   5955 	struct iwn_rbuf *rbuf;
   5956 	mutex_enter(&sc->rxq.freelist_mtx);
   5957 
   5958 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   5959 	if (rbuf != NULL) {
   5960 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   5961 		sc->rxq.nb_free_entries --;
   5962 	}
   5963 	mutex_exit(&sc->rxq.freelist_mtx);
   5964 	return rbuf;
   5965 }
   5966 
   5967 /*
   5968  * This is called automatically by the network stack when the mbuf to which
   5969  * our RX buffer is attached is freed.
   5970  */
   5971 static void
   5972 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   5973 {
   5974 	struct iwn_rbuf *rbuf = arg;
   5975 	struct iwn_softc *sc = rbuf->sc;
   5976 
   5977 	/* Put the RX buffer back in the free list. */
   5978 	mutex_enter(&sc->rxq.freelist_mtx);
   5979 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   5980 	mutex_exit(&sc->rxq.freelist_mtx);
   5981 
   5982 	sc->rxq.nb_free_entries ++;
   5983 	if (__predict_true(m != NULL))
   5984 		pool_cache_put(mb_cache, m);
   5985 }
   5986 
   5987 static int
   5988 iwn_alloc_rpool(struct iwn_softc *sc)
   5989 {
   5990 	struct iwn_rx_ring *ring = &sc->rxq;
   5991 	struct iwn_rbuf *rbuf;
   5992 	int i, error;
   5993 
   5994 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   5995 
   5996 	/* Allocate a big chunk of DMA'able memory... */
   5997 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   5998 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   5999 	if (error != 0) {
   6000 		aprint_error_dev(sc->sc_dev,
   6001 		    "could not allocate RX buffers DMA memory\n");
   6002 		return error;
   6003 	}
   6004 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   6005 	SLIST_INIT(&ring->freelist);
   6006 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   6007 		rbuf = &ring->rbuf[i];
   6008 
   6009 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   6010 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   6011 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   6012 
   6013 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   6014 	}
   6015 	ring->nb_free_entries = IWN_RBUF_COUNT;
   6016 	return 0;
   6017 }
   6018 
   6019 static void
   6020 iwn_free_rpool(struct iwn_softc *sc)
   6021 {
   6022 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   6023 }
   6024 #endif
   6025 
   6026 /*
   6027  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
   6028  * Copyright (c) 2001 Atsushi Onoe
   6029  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
   6030  * Copyright (c) 2007-2009 Damien Bergamini
   6031  * All rights reserved.
   6032  */
   6033 
   6034 /*
   6035  * Add an SSID element to a frame (see 7.3.2.1).
   6036  */
   6037 static u_int8_t *
   6038 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
   6039 {
   6040 	*frm++ = IEEE80211_ELEMID_SSID;
   6041 	*frm++ = len;
   6042 	memcpy(frm, ssid, len);
   6043 	return frm + len;
   6044 }
   6045 
   6046 /*
   6047  * Add a supported rates element to a frame (see 7.3.2.2).
   6048  */
   6049 static u_int8_t *
   6050 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6051 {
   6052 	int nrates;
   6053 
   6054 	*frm++ = IEEE80211_ELEMID_RATES;
   6055 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
   6056 	*frm++ = nrates;
   6057 	memcpy(frm, rs->rs_rates, nrates);
   6058 	return frm + nrates;
   6059 }
   6060 
   6061 /*
   6062  * Add an extended supported rates element to a frame (see 7.3.2.14).
   6063  */
   6064 static u_int8_t *
   6065 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6066 {
   6067 	int nrates;
   6068 
   6069 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
   6070 
   6071 	*frm++ = IEEE80211_ELEMID_XRATES;
   6072 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   6073 	*frm++ = nrates;
   6074 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   6075 	return frm + nrates;
   6076 }
   6077 
   6078 /*
   6079  * XXX: Hack to set the current channel to the value advertised in beacons or
   6080  * probe responses. Only used during AP detection.
   6081  * XXX: Duplicated from if_iwi.c
   6082  */
   6083 static void
   6084 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
   6085     struct iwn_rx_stat *stat)
   6086 {
   6087 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   6088 	struct ieee80211_frame *wh;
   6089 	uint8_t subtype;
   6090 	uint8_t *frm, *efrm;
   6091 
   6092 	wh = mtod(m, struct ieee80211_frame *);
   6093 
   6094 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6095 		return;
   6096 
   6097 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6098 
   6099 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6100 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6101 		return;
   6102 
   6103 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
   6104 		int chan = le16toh(stat->chan);
   6105 		if (chan < __arraycount(ic->ic_channels))
   6106 			ic->ic_curchan = &ic->ic_channels[chan];
   6107 		return;
   6108 	}
   6109 
   6110 	frm = (uint8_t *)(wh + 1);
   6111 	efrm = mtod(m, uint8_t *) + m->m_len;
   6112 
   6113 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6114 	while (frm < efrm) {
   6115 		if (*frm == IEEE80211_ELEMID_DSPARMS)
   6116 #if IEEE80211_CHAN_MAX < 255
   6117 		if (frm[2] <= IEEE80211_CHAN_MAX)
   6118 #endif
   6119 			ic->ic_curchan = &ic->ic_channels[frm[2]];
   6120 
   6121 		frm += frm[1] + 2;
   6122 	}
   6123 }
   6124 
   6125