if_iwn.c revision 1.63 1 /* $NetBSD: if_iwn.c,v 1.63 2013/03/30 03:21:05 christos Exp $ */
2 /* $OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $ */
3
4 /*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.63 2013/03/30 03:21:05 christos Exp $");
26
27 #define IWN_USE_RBUF /* Use local storage for RX */
28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/conf.h>
40 #include <sys/kauth.h>
41 #include <sys/callout.h>
42
43 #include <dev/sysmon/sysmonvar.h>
44
45 #include <sys/bus.h>
46 #include <machine/endian.h>
47 #include <machine/intr.h>
48
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pcidevs.h>
52
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <net/if_ether.h>
64 #include <netinet/ip.h>
65
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_amrr.h>
68 #include <net80211/ieee80211_radiotap.h>
69
70 #include <dev/firmload.h>
71
72 #include <dev/pci/if_iwnreg.h>
73 #include <dev/pci/if_iwnvar.h>
74
75 static const pci_product_id_t iwn_devices[] = {
76 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
77 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
78 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
79 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
80 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
81 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
82 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
83 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
84 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
85 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
86 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
87 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
88 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
89 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
90 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
91 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
92 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
93 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
94 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
95 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
96 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
97 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
98 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
99 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
100 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
101 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
102 };
103
104 /*
105 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
106 */
107 static const struct ieee80211_rateset iwn_rateset_11a =
108 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
109
110 static const struct ieee80211_rateset iwn_rateset_11b =
111 { 4, { 2, 4, 11, 22 } };
112
113 static const struct ieee80211_rateset iwn_rateset_11g =
114 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
115
116 static int iwn_match(device_t , struct cfdata *, void *);
117 static void iwn_attach(device_t , device_t , void *);
118 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t);
119 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t);
120 static void iwn_radiotap_attach(struct iwn_softc *);
121 static int iwn_detach(device_t , int);
122 #if 0
123 static void iwn_power(int, void *);
124 #endif
125 static bool iwn_resume(device_t, const pmf_qual_t *);
126 static int iwn_nic_lock(struct iwn_softc *);
127 static int iwn_eeprom_lock(struct iwn_softc *);
128 static int iwn_init_otprom(struct iwn_softc *);
129 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
130 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
131 void **, bus_size_t, bus_size_t);
132 static void iwn_dma_contig_free(struct iwn_dma_info *);
133 static int iwn_alloc_sched(struct iwn_softc *);
134 static void iwn_free_sched(struct iwn_softc *);
135 static int iwn_alloc_kw(struct iwn_softc *);
136 static void iwn_free_kw(struct iwn_softc *);
137 static int iwn_alloc_ict(struct iwn_softc *);
138 static void iwn_free_ict(struct iwn_softc *);
139 static int iwn_alloc_fwmem(struct iwn_softc *);
140 static void iwn_free_fwmem(struct iwn_softc *);
141 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
142 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
143 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
144 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
145 int);
146 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
147 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
148 static void iwn5000_ict_reset(struct iwn_softc *);
149 static int iwn_read_eeprom(struct iwn_softc *);
150 static void iwn4965_read_eeprom(struct iwn_softc *);
151
152 #ifdef IWN_DEBUG
153 static void iwn4965_print_power_group(struct iwn_softc *, int);
154 #endif
155 static void iwn5000_read_eeprom(struct iwn_softc *);
156 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
157 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
158 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
159 static void iwn_newassoc(struct ieee80211_node *, int);
160 static int iwn_media_change(struct ifnet *);
161 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
162 static void iwn_iter_func(void *, struct ieee80211_node *);
163 static void iwn_calib_timeout(void *);
164 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
165 struct iwn_rx_data *);
166 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
167 struct iwn_rx_data *);
168 #ifndef IEEE80211_NO_HT
169 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
170 struct iwn_rx_data *);
171 #endif
172 static void iwn5000_rx_calib_results(struct iwn_softc *,
173 struct iwn_rx_desc *, struct iwn_rx_data *);
174 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
175 struct iwn_rx_data *);
176 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
177 struct iwn_rx_data *);
178 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
179 struct iwn_rx_data *);
180 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
181 uint8_t);
182 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
183 static void iwn_notif_intr(struct iwn_softc *);
184 static void iwn_wakeup_intr(struct iwn_softc *);
185 static void iwn_fatal_intr(struct iwn_softc *);
186 static int iwn_intr(void *);
187 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
188 uint16_t);
189 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
190 uint16_t);
191 #ifdef notyet
192 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
193 #endif
194 static int iwn_tx(struct iwn_softc *, struct mbuf *,
195 struct ieee80211_node *, int);
196 static void iwn_start(struct ifnet *);
197 static void iwn_watchdog(struct ifnet *);
198 static int iwn_ioctl(struct ifnet *, u_long, void *);
199 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
200 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
201 int);
202 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
203 int);
204 static int iwn_set_link_quality(struct iwn_softc *,
205 struct ieee80211_node *);
206 static int iwn_add_broadcast_node(struct iwn_softc *, int);
207 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
208 static int iwn_set_critical_temp(struct iwn_softc *);
209 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
210 static void iwn4965_power_calibration(struct iwn_softc *, int);
211 static int iwn4965_set_txpower(struct iwn_softc *, int);
212 static int iwn5000_set_txpower(struct iwn_softc *, int);
213 static int iwn4965_get_rssi(const struct iwn_rx_stat *);
214 static int iwn5000_get_rssi(const struct iwn_rx_stat *);
215 static int iwn_get_noise(const struct iwn_rx_general_stats *);
216 static int iwn4965_get_temperature(struct iwn_softc *);
217 static int iwn5000_get_temperature(struct iwn_softc *);
218 static int iwn_init_sensitivity(struct iwn_softc *);
219 static void iwn_collect_noise(struct iwn_softc *,
220 const struct iwn_rx_general_stats *);
221 static int iwn4965_init_gains(struct iwn_softc *);
222 static int iwn5000_init_gains(struct iwn_softc *);
223 static int iwn4965_set_gains(struct iwn_softc *);
224 static int iwn5000_set_gains(struct iwn_softc *);
225 static void iwn_tune_sensitivity(struct iwn_softc *,
226 const struct iwn_rx_stats *);
227 static int iwn_send_sensitivity(struct iwn_softc *);
228 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
229 static int iwn5000_runtime_calib(struct iwn_softc *);
230 static int iwn_config(struct iwn_softc *);
231 static int iwn_scan(struct iwn_softc *, uint16_t);
232 static int iwn_auth(struct iwn_softc *);
233 static int iwn_run(struct iwn_softc *);
234 #ifdef IWN_HWCRYPTO
235 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
236 struct ieee80211_key *);
237 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
238 struct ieee80211_key *);
239 #endif
240 static int iwn_wme_update(struct ieee80211com *);
241 #ifndef IEEE80211_NO_HT
242 static int iwn_ampdu_rx_start(struct ieee80211com *,
243 struct ieee80211_node *, uint8_t);
244 static void iwn_ampdu_rx_stop(struct ieee80211com *,
245 struct ieee80211_node *, uint8_t);
246 static int iwn_ampdu_tx_start(struct ieee80211com *,
247 struct ieee80211_node *, uint8_t);
248 static void iwn_ampdu_tx_stop(struct ieee80211com *,
249 struct ieee80211_node *, uint8_t);
250 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
251 struct ieee80211_node *, uint8_t, uint16_t);
252 static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
253 uint8_t, uint16_t);
254 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
255 struct ieee80211_node *, uint8_t, uint16_t);
256 static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
257 uint8_t, uint16_t);
258 #endif
259 static int iwn5000_query_calibration(struct iwn_softc *);
260 static int iwn5000_send_calibration(struct iwn_softc *);
261 static int iwn5000_send_wimax_coex(struct iwn_softc *);
262 static int iwn4965_post_alive(struct iwn_softc *);
263 static int iwn5000_post_alive(struct iwn_softc *);
264 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
265 int);
266 static int iwn4965_load_firmware(struct iwn_softc *);
267 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
268 const uint8_t *, int);
269 static int iwn5000_load_firmware(struct iwn_softc *);
270 static int iwn_read_firmware_leg(struct iwn_softc *,
271 struct iwn_fw_info *);
272 static int iwn_read_firmware_tlv(struct iwn_softc *,
273 struct iwn_fw_info *, uint16_t);
274 static int iwn_read_firmware(struct iwn_softc *);
275 static int iwn_clock_wait(struct iwn_softc *);
276 static int iwn_apm_init(struct iwn_softc *);
277 static void iwn_apm_stop_master(struct iwn_softc *);
278 static void iwn_apm_stop(struct iwn_softc *);
279 static int iwn4965_nic_config(struct iwn_softc *);
280 static int iwn5000_nic_config(struct iwn_softc *);
281 static int iwn_hw_prepare(struct iwn_softc *);
282 static int iwn_hw_init(struct iwn_softc *);
283 static void iwn_hw_stop(struct iwn_softc *);
284 static int iwn_init(struct ifnet *);
285 static void iwn_stop(struct ifnet *, int);
286
287 /* XXX MCLGETI alternative */
288 static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
289 struct ifnet *, u_int);
290 #ifdef IWN_USE_RBUF
291 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
292 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
293 static int iwn_alloc_rpool(struct iwn_softc *);
294 static void iwn_free_rpool(struct iwn_softc *);
295 #endif
296
297 /* XXX needed by iwn_scan */
298 static u_int8_t *ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
299 static u_int8_t *ieee80211_add_rates(u_int8_t *,
300 const struct ieee80211_rateset *);
301 static u_int8_t *ieee80211_add_xrates(u_int8_t *,
302 const struct ieee80211_rateset *);
303
304 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *);
305
306 #ifdef IWN_DEBUG
307 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
308 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
309 int iwn_debug = 0;
310 #else
311 #define DPRINTF(x)
312 #define DPRINTFN(n, x)
313 #endif
314
315 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
316 iwn_detach, NULL);
317
318 static int
319 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
320 {
321 struct pci_attach_args *pa = aux;
322 size_t i;
323
324 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
325 return 0;
326
327 for (i = 0; i < __arraycount(iwn_devices); i++)
328 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
329 return 1;
330
331 return 0;
332 }
333
334 static void
335 iwn_attach(device_t parent __unused, device_t self, void *aux)
336 {
337 struct iwn_softc *sc = device_private(self);
338 struct ieee80211com *ic = &sc->sc_ic;
339 struct ifnet *ifp = &sc->sc_ec.ec_if;
340 struct pci_attach_args *pa = aux;
341 const char *intrstr;
342 pci_intr_handle_t ih;
343 pcireg_t memtype, reg;
344 int i, error;
345
346 sc->sc_dev = self;
347 sc->sc_pct = pa->pa_pc;
348 sc->sc_pcitag = pa->pa_tag;
349 sc->sc_dmat = pa->pa_dmat;
350 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
351
352 callout_init(&sc->calib_to, 0);
353 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
354
355 pci_aprint_devinfo(pa, NULL);
356
357 /*
358 * Get the offset of the PCI Express Capability Structure in PCI
359 * Configuration Space.
360 */
361 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
362 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
363 if (error == 0) {
364 aprint_error(": PCIe capability structure not found!\n");
365 return;
366 }
367
368 /* Clear device-specific "PCI retry timeout" register (41h). */
369 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
370 if (reg & 0xff00)
371 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
372
373 /* Enable bus-mastering and hardware bug workaround. */
374 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */
375 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
376 reg |= PCI_COMMAND_MASTER_ENABLE;
377 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
378 DPRINTF(("PCIe INTx Disable set\n"));
379 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
380 }
381 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
382
383 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
384 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
385 &sc->sc_sh, NULL, &sc->sc_sz);
386 if (error != 0) {
387 aprint_error(": can't map mem space\n");
388 return;
389 }
390
391 /* Install interrupt handler. */
392 if (pci_intr_map(pa, &ih) != 0) {
393 aprint_error(": can't map interrupt\n");
394 return;
395 }
396 intrstr = pci_intr_string(sc->sc_pct, ih);
397 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
398 if (sc->sc_ih == NULL) {
399 aprint_error(": can't establish interrupt");
400 if (intrstr != NULL)
401 aprint_error(" at %s", intrstr);
402 aprint_error("\n");
403 return;
404 }
405 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
406
407 /* Read hardware revision and attach. */
408 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
409 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
410 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
411 else
412 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
413 if (error != 0) {
414 aprint_error(": could not attach device\n");
415 return;
416 }
417
418 if ((error = iwn_hw_prepare(sc)) != 0) {
419 aprint_error(": hardware not ready\n");
420 return;
421 }
422
423 /* Read MAC address, channels, etc from EEPROM. */
424 if ((error = iwn_read_eeprom(sc)) != 0) {
425 aprint_error(": could not read EEPROM\n");
426 return;
427 }
428
429 /* Allocate DMA memory for firmware transfers. */
430 if ((error = iwn_alloc_fwmem(sc)) != 0) {
431 aprint_error(": could not allocate memory for firmware\n");
432 return;
433 }
434
435 /* Allocate "Keep Warm" page. */
436 if ((error = iwn_alloc_kw(sc)) != 0) {
437 aprint_error(": could not allocate keep warm page\n");
438 goto fail1;
439 }
440
441 /* Allocate ICT table for 5000 Series. */
442 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
443 (error = iwn_alloc_ict(sc)) != 0) {
444 aprint_error(": could not allocate ICT table\n");
445 goto fail2;
446 }
447
448 /* Allocate TX scheduler "rings". */
449 if ((error = iwn_alloc_sched(sc)) != 0) {
450 aprint_error(": could not allocate TX scheduler rings\n");
451 goto fail3;
452 }
453
454 #ifdef IWN_USE_RBUF
455 /* Allocate RX buffers. */
456 if ((error = iwn_alloc_rpool(sc)) != 0) {
457 aprint_error_dev(self, "could not allocate RX buffers\n");
458 goto fail3;
459 }
460 #endif
461
462 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
463 for (i = 0; i < sc->ntxqs; i++) {
464 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
465 aprint_error(": could not allocate TX ring %d\n", i);
466 goto fail4;
467 }
468 }
469
470 /* Allocate RX ring. */
471 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
472 aprint_error(": could not allocate RX ring\n");
473 goto fail4;
474 }
475
476 /* Clear pending interrupts. */
477 IWN_WRITE(sc, IWN_INT, 0xffffffff);
478
479 /* Count the number of available chains. */
480 sc->ntxchains =
481 ((sc->txchainmask >> 2) & 1) +
482 ((sc->txchainmask >> 1) & 1) +
483 ((sc->txchainmask >> 0) & 1);
484 sc->nrxchains =
485 ((sc->rxchainmask >> 2) & 1) +
486 ((sc->rxchainmask >> 1) & 1) +
487 ((sc->rxchainmask >> 0) & 1);
488 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
489 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
490 ether_sprintf(ic->ic_myaddr));
491
492 ic->ic_ifp = ifp;
493 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
494 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
495 ic->ic_state = IEEE80211_S_INIT;
496
497 /* Set device capabilities. */
498 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
499 * and IEEE80211_C_PMGT too. */
500 ic->ic_caps =
501 IEEE80211_C_IBSS | /* IBSS mode support */
502 IEEE80211_C_WPA | /* 802.11i */
503 IEEE80211_C_MONITOR | /* monitor mode supported */
504 IEEE80211_C_TXPMGT | /* tx power management */
505 IEEE80211_C_SHSLOT | /* short slot time supported */
506 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
507 IEEE80211_C_WME; /* 802.11e */
508
509 #ifndef IEEE80211_NO_HT
510 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
511 /* Set HT capabilities. */
512 ic->ic_htcaps =
513 #if IWN_RBUF_SIZE == 8192
514 IEEE80211_HTCAP_AMSDU7935 |
515 #endif
516 IEEE80211_HTCAP_CBW20_40 |
517 IEEE80211_HTCAP_SGI20 |
518 IEEE80211_HTCAP_SGI40;
519 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
520 ic->ic_htcaps |= IEEE80211_HTCAP_GF;
521 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
522 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
523 else
524 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
525 }
526 #endif /* !IEEE80211_NO_HT */
527
528 /* Set supported legacy rates. */
529 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
530 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
531 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
532 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
533 }
534 #ifndef IEEE80211_NO_HT
535 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
536 /* Set supported HT rates. */
537 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
538 if (sc->nrxchains > 1)
539 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
540 if (sc->nrxchains > 2)
541 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
542 }
543 #endif
544
545 /* IBSS channel undefined for now. */
546 ic->ic_ibss_chan = &ic->ic_channels[0];
547
548 ifp->if_softc = sc;
549 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
550 ifp->if_init = iwn_init;
551 ifp->if_ioctl = iwn_ioctl;
552 ifp->if_start = iwn_start;
553 ifp->if_stop = iwn_stop;
554 ifp->if_watchdog = iwn_watchdog;
555 IFQ_SET_READY(&ifp->if_snd);
556 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
557
558 if_attach(ifp);
559 ieee80211_ifattach(ic);
560 ic->ic_node_alloc = iwn_node_alloc;
561 ic->ic_newassoc = iwn_newassoc;
562 #ifdef IWN_HWCRYPTO
563 ic->ic_crypto.cs_key_set = iwn_set_key;
564 ic->ic_crypto.cs_key_delete = iwn_delete_key;
565 #endif
566 ic->ic_wme.wme_update = iwn_wme_update;
567 #ifndef IEEE80211_NO_HT
568 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
569 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
570 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
571 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
572 #endif
573
574 /* Override 802.11 state transition machine. */
575 sc->sc_newstate = ic->ic_newstate;
576 ic->ic_newstate = iwn_newstate;
577 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
578
579 sc->amrr.amrr_min_success_threshold = 1;
580 sc->amrr.amrr_max_success_threshold = 15;
581
582 iwn_radiotap_attach(sc);
583
584 /*
585 * XXX for NetBSD, OpenBSD timeout_set replaced by
586 * callout_init and callout_setfunc, above.
587 */
588
589 if (pmf_device_register(self, NULL, iwn_resume))
590 pmf_class_network_register(self, ifp);
591 else
592 aprint_error_dev(self, "couldn't establish power handler\n");
593
594 /* XXX NetBSD add call to ieee80211_announce for dmesg. */
595 ieee80211_announce(ic);
596
597 return;
598
599 /* Free allocated memory if something failed during attachment. */
600 fail4: while (--i >= 0)
601 iwn_free_tx_ring(sc, &sc->txq[i]);
602 #ifdef IWN_USE_RBUF
603 iwn_free_rpool(sc);
604 #endif
605 iwn_free_sched(sc);
606 fail3: if (sc->ict != NULL)
607 iwn_free_ict(sc);
608 fail2: iwn_free_kw(sc);
609 fail1: iwn_free_fwmem(sc);
610 }
611
612 int
613 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
614 {
615 struct iwn_ops *ops = &sc->ops;
616
617 ops->load_firmware = iwn4965_load_firmware;
618 ops->read_eeprom = iwn4965_read_eeprom;
619 ops->post_alive = iwn4965_post_alive;
620 ops->nic_config = iwn4965_nic_config;
621 ops->update_sched = iwn4965_update_sched;
622 ops->get_temperature = iwn4965_get_temperature;
623 ops->get_rssi = iwn4965_get_rssi;
624 ops->set_txpower = iwn4965_set_txpower;
625 ops->init_gains = iwn4965_init_gains;
626 ops->set_gains = iwn4965_set_gains;
627 ops->add_node = iwn4965_add_node;
628 ops->tx_done = iwn4965_tx_done;
629 #ifndef IEEE80211_NO_HT
630 ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
631 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
632 #endif
633 sc->ntxqs = IWN4965_NTXQUEUES;
634 sc->ndmachnls = IWN4965_NDMACHNLS;
635 sc->broadcast_id = IWN4965_ID_BROADCAST;
636 sc->rxonsz = IWN4965_RXONSZ;
637 sc->schedsz = IWN4965_SCHEDSZ;
638 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
639 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
640 sc->fwsz = IWN4965_FWSZ;
641 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
642 sc->limits = &iwn4965_sensitivity_limits;
643 sc->fwname = "iwlwifi-4965-2.ucode";
644 /* Override chains masks, ROM is known to be broken. */
645 sc->txchainmask = IWN_ANT_AB;
646 sc->rxchainmask = IWN_ANT_ABC;
647
648 return 0;
649 }
650
651 int
652 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
653 {
654 struct iwn_ops *ops = &sc->ops;
655
656 ops->load_firmware = iwn5000_load_firmware;
657 ops->read_eeprom = iwn5000_read_eeprom;
658 ops->post_alive = iwn5000_post_alive;
659 ops->nic_config = iwn5000_nic_config;
660 ops->update_sched = iwn5000_update_sched;
661 ops->get_temperature = iwn5000_get_temperature;
662 ops->get_rssi = iwn5000_get_rssi;
663 ops->set_txpower = iwn5000_set_txpower;
664 ops->init_gains = iwn5000_init_gains;
665 ops->set_gains = iwn5000_set_gains;
666 ops->add_node = iwn5000_add_node;
667 ops->tx_done = iwn5000_tx_done;
668 #ifndef IEEE80211_NO_HT
669 ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
670 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
671 #endif
672 sc->ntxqs = IWN5000_NTXQUEUES;
673 sc->ndmachnls = IWN5000_NDMACHNLS;
674 sc->broadcast_id = IWN5000_ID_BROADCAST;
675 sc->rxonsz = IWN5000_RXONSZ;
676 sc->schedsz = IWN5000_SCHEDSZ;
677 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
678 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
679 sc->fwsz = IWN5000_FWSZ;
680 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
681
682 switch (sc->hw_type) {
683 case IWN_HW_REV_TYPE_5100:
684 sc->limits = &iwn5000_sensitivity_limits;
685 sc->fwname = "iwlwifi-5000-2.ucode";
686 /* Override chains masks, ROM is known to be broken. */
687 sc->txchainmask = IWN_ANT_B;
688 sc->rxchainmask = IWN_ANT_AB;
689 break;
690 case IWN_HW_REV_TYPE_5150:
691 sc->limits = &iwn5150_sensitivity_limits;
692 sc->fwname = "iwlwifi-5150-2.ucode";
693 break;
694 case IWN_HW_REV_TYPE_5300:
695 case IWN_HW_REV_TYPE_5350:
696 sc->limits = &iwn5000_sensitivity_limits;
697 sc->fwname = "iwlwifi-5000-2.ucode";
698 break;
699 case IWN_HW_REV_TYPE_1000:
700 sc->limits = &iwn1000_sensitivity_limits;
701 sc->fwname = "iwlwifi-1000-3.ucode";
702 break;
703 case IWN_HW_REV_TYPE_6000:
704 sc->limits = &iwn6000_sensitivity_limits;
705 sc->fwname = "iwlwifi-6000-4.ucode";
706 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
707 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
708 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
709 /* Override chains masks, ROM is known to be broken. */
710 sc->txchainmask = IWN_ANT_BC;
711 sc->rxchainmask = IWN_ANT_BC;
712 }
713 break;
714 case IWN_HW_REV_TYPE_6050:
715 sc->limits = &iwn6000_sensitivity_limits;
716 sc->fwname = "iwlwifi-6050-5.ucode";
717 break;
718 case IWN_HW_REV_TYPE_6005:
719 sc->limits = &iwn6000_sensitivity_limits;
720 sc->fwname = "iwlwifi-6000g2a-5.ucode";
721 break;
722 default:
723 aprint_normal(": adapter type %d not supported\n", sc->hw_type);
724 return ENOTSUP;
725 }
726 return 0;
727 }
728
729 /*
730 * Attach the interface to 802.11 radiotap.
731 */
732 static void
733 iwn_radiotap_attach(struct iwn_softc *sc)
734 {
735 struct ifnet *ifp = sc->sc_ic.ic_ifp;
736
737 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
738 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
739 &sc->sc_drvbpf);
740
741 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
742 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
743 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
744
745 sc->sc_txtap_len = sizeof sc->sc_txtapu;
746 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
747 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
748 }
749
750 static int
751 iwn_detach(device_t self, int flags __unused)
752 {
753 struct iwn_softc *sc = device_private(self);
754 struct ifnet *ifp = sc->sc_ic.ic_ifp;
755 int qid;
756
757 callout_stop(&sc->calib_to);
758
759 /* Uninstall interrupt handler. */
760 if (sc->sc_ih != NULL)
761 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
762
763 /* Free DMA resources. */
764 iwn_free_rx_ring(sc, &sc->rxq);
765 for (qid = 0; qid < sc->ntxqs; qid++)
766 iwn_free_tx_ring(sc, &sc->txq[qid]);
767 #ifdef IWN_USE_RBUF
768 iwn_free_rpool(sc);
769 #endif
770 iwn_free_sched(sc);
771 iwn_free_kw(sc);
772 if (sc->ict != NULL)
773 iwn_free_ict(sc);
774 iwn_free_fwmem(sc);
775
776 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
777
778 ieee80211_ifdetach(&sc->sc_ic);
779 if_detach(ifp);
780
781 return 0;
782 }
783
784 #if 0
785 /*
786 * XXX Investigate if clearing the PCI retry timeout could eliminate
787 * the repeated scan calls. Also the calls to if_init and if_start
788 * are similar to the effect of adding the call to ifioctl_common .
789 */
790 static void
791 iwn_power(int why, void *arg)
792 {
793 struct iwn_softc *sc = arg;
794 struct ifnet *ifp;
795 pcireg_t reg;
796 int s;
797
798 if (why != PWR_RESUME)
799 return;
800
801 /* Clear device-specific "PCI retry timeout" register (41h). */
802 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
803 if (reg & 0xff00)
804 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
805
806 s = splnet();
807 ifp = &sc->sc_ic.ic_if;
808 if (ifp->if_flags & IFF_UP) {
809 ifp->if_init(ifp);
810 if (ifp->if_flags & IFF_RUNNING)
811 ifp->if_start(ifp);
812 }
813 splx(s);
814 }
815 #endif
816
817 static bool
818 iwn_resume(device_t dv, const pmf_qual_t *qual)
819 {
820 return true;
821 }
822
823 static int
824 iwn_nic_lock(struct iwn_softc *sc)
825 {
826 int ntries;
827
828 /* Request exclusive access to NIC. */
829 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
830
831 /* Spin until we actually get the lock. */
832 for (ntries = 0; ntries < 1000; ntries++) {
833 if ((IWN_READ(sc, IWN_GP_CNTRL) &
834 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
835 IWN_GP_CNTRL_MAC_ACCESS_ENA)
836 return 0;
837 DELAY(10);
838 }
839 return ETIMEDOUT;
840 }
841
842 static __inline void
843 iwn_nic_unlock(struct iwn_softc *sc)
844 {
845 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
846 }
847
848 static __inline uint32_t
849 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
850 {
851 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
852 IWN_BARRIER_READ_WRITE(sc);
853 return IWN_READ(sc, IWN_PRPH_RDATA);
854 }
855
856 static __inline void
857 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
858 {
859 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
860 IWN_BARRIER_WRITE(sc);
861 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
862 }
863
864 static __inline void
865 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
866 {
867 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
868 }
869
870 static __inline void
871 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
872 {
873 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
874 }
875
876 static __inline void
877 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
878 const uint32_t *data, int count)
879 {
880 for (; count > 0; count--, data++, addr += 4)
881 iwn_prph_write(sc, addr, *data);
882 }
883
884 static __inline uint32_t
885 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
886 {
887 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
888 IWN_BARRIER_READ_WRITE(sc);
889 return IWN_READ(sc, IWN_MEM_RDATA);
890 }
891
892 static __inline void
893 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
894 {
895 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
896 IWN_BARRIER_WRITE(sc);
897 IWN_WRITE(sc, IWN_MEM_WDATA, data);
898 }
899
900 static __inline void
901 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
902 {
903 uint32_t tmp;
904
905 tmp = iwn_mem_read(sc, addr & ~3);
906 if (addr & 3)
907 tmp = (tmp & 0x0000ffff) | data << 16;
908 else
909 tmp = (tmp & 0xffff0000) | data;
910 iwn_mem_write(sc, addr & ~3, tmp);
911 }
912
913 static __inline void
914 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
915 int count)
916 {
917 for (; count > 0; count--, addr += 4)
918 *data++ = iwn_mem_read(sc, addr);
919 }
920
921 static __inline void
922 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
923 int count)
924 {
925 for (; count > 0; count--, addr += 4)
926 iwn_mem_write(sc, addr, val);
927 }
928
929 static int
930 iwn_eeprom_lock(struct iwn_softc *sc)
931 {
932 int i, ntries;
933
934 for (i = 0; i < 100; i++) {
935 /* Request exclusive access to EEPROM. */
936 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
937 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
938
939 /* Spin until we actually get the lock. */
940 for (ntries = 0; ntries < 100; ntries++) {
941 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
942 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
943 return 0;
944 DELAY(10);
945 }
946 }
947 return ETIMEDOUT;
948 }
949
950 static __inline void
951 iwn_eeprom_unlock(struct iwn_softc *sc)
952 {
953 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
954 }
955
956 /*
957 * Initialize access by host to One Time Programmable ROM.
958 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
959 */
960 static int
961 iwn_init_otprom(struct iwn_softc *sc)
962 {
963 uint16_t prev = 0, base, next;
964 int count, error;
965
966 /* Wait for clock stabilization before accessing prph. */
967 if ((error = iwn_clock_wait(sc)) != 0)
968 return error;
969
970 if ((error = iwn_nic_lock(sc)) != 0)
971 return error;
972 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
973 DELAY(5);
974 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
975 iwn_nic_unlock(sc);
976
977 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
978 if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
979 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
980 IWN_RESET_LINK_PWR_MGMT_DIS);
981 }
982 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
983 /* Clear ECC status. */
984 IWN_SETBITS(sc, IWN_OTP_GP,
985 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
986
987 /*
988 * Find the block before last block (contains the EEPROM image)
989 * for HW without OTP shadow RAM.
990 */
991 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
992 /* Switch to absolute addressing mode. */
993 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
994 base = 0;
995 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
996 error = iwn_read_prom_data(sc, base, &next, 2);
997 if (error != 0)
998 return error;
999 if (next == 0) /* End of linked-list. */
1000 break;
1001 prev = base;
1002 base = le16toh(next);
1003 }
1004 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1005 return EIO;
1006 /* Skip "next" word. */
1007 sc->prom_base = prev + 1;
1008 }
1009 return 0;
1010 }
1011
1012 static int
1013 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1014 {
1015 uint8_t *out = data;
1016 uint32_t val, tmp;
1017 int ntries;
1018
1019 addr += sc->prom_base;
1020 for (; count > 0; count -= 2, addr++) {
1021 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1022 for (ntries = 0; ntries < 10; ntries++) {
1023 val = IWN_READ(sc, IWN_EEPROM);
1024 if (val & IWN_EEPROM_READ_VALID)
1025 break;
1026 DELAY(5);
1027 }
1028 if (ntries == 10) {
1029 aprint_error_dev(sc->sc_dev,
1030 "timeout reading ROM at 0x%x\n", addr);
1031 return ETIMEDOUT;
1032 }
1033 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1034 /* OTPROM, check for ECC errors. */
1035 tmp = IWN_READ(sc, IWN_OTP_GP);
1036 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1037 aprint_error_dev(sc->sc_dev,
1038 "OTPROM ECC error at 0x%x\n", addr);
1039 return EIO;
1040 }
1041 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1042 /* Correctable ECC error, clear bit. */
1043 IWN_SETBITS(sc, IWN_OTP_GP,
1044 IWN_OTP_GP_ECC_CORR_STTS);
1045 }
1046 }
1047 *out++ = val >> 16;
1048 if (count > 1)
1049 *out++ = val >> 24;
1050 }
1051 return 0;
1052 }
1053
1054 static int
1055 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1056 bus_size_t size, bus_size_t alignment)
1057 {
1058 int nsegs, error;
1059
1060 dma->tag = tag;
1061 dma->size = size;
1062
1063 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1064 &dma->map);
1065 if (error != 0)
1066 goto fail;
1067
1068 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1069 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1070 if (error != 0)
1071 goto fail;
1072
1073 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1074 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1075 if (error != 0)
1076 goto fail;
1077
1078 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1079 BUS_DMA_NOWAIT);
1080 if (error != 0)
1081 goto fail;
1082
1083 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1084 memset(dma->vaddr, 0, size);
1085 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1086
1087 dma->paddr = dma->map->dm_segs[0].ds_addr;
1088 if (kvap != NULL)
1089 *kvap = dma->vaddr;
1090
1091 return 0;
1092
1093 fail: iwn_dma_contig_free(dma);
1094 return error;
1095 }
1096
1097 static void
1098 iwn_dma_contig_free(struct iwn_dma_info *dma)
1099 {
1100 if (dma->map != NULL) {
1101 if (dma->vaddr != NULL) {
1102 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1103 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1104 bus_dmamap_unload(dma->tag, dma->map);
1105 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1106 bus_dmamem_free(dma->tag, &dma->seg, 1);
1107 dma->vaddr = NULL;
1108 }
1109 bus_dmamap_destroy(dma->tag, dma->map);
1110 dma->map = NULL;
1111 }
1112 }
1113
1114 static int
1115 iwn_alloc_sched(struct iwn_softc *sc)
1116 {
1117 /* TX scheduler rings must be aligned on a 1KB boundary. */
1118 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1119 (void **)&sc->sched, sc->schedsz, 1024);
1120 }
1121
1122 static void
1123 iwn_free_sched(struct iwn_softc *sc)
1124 {
1125 iwn_dma_contig_free(&sc->sched_dma);
1126 }
1127
1128 static int
1129 iwn_alloc_kw(struct iwn_softc *sc)
1130 {
1131 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1132 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1133 4096);
1134 }
1135
1136 static void
1137 iwn_free_kw(struct iwn_softc *sc)
1138 {
1139 iwn_dma_contig_free(&sc->kw_dma);
1140 }
1141
1142 static int
1143 iwn_alloc_ict(struct iwn_softc *sc)
1144 {
1145 /* ICT table must be aligned on a 4KB boundary. */
1146 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1147 (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1148 }
1149
1150 static void
1151 iwn_free_ict(struct iwn_softc *sc)
1152 {
1153 iwn_dma_contig_free(&sc->ict_dma);
1154 }
1155
1156 static int
1157 iwn_alloc_fwmem(struct iwn_softc *sc)
1158 {
1159 /* Must be aligned on a 16-byte boundary. */
1160 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1161 sc->fwsz, 16);
1162 }
1163
1164 static void
1165 iwn_free_fwmem(struct iwn_softc *sc)
1166 {
1167 iwn_dma_contig_free(&sc->fw_dma);
1168 }
1169
1170 static int
1171 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1172 {
1173 bus_size_t size;
1174 int i, error;
1175
1176 ring->cur = 0;
1177
1178 /* Allocate RX descriptors (256-byte aligned). */
1179 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1180 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1181 (void **)&ring->desc, size, 256);
1182 if (error != 0) {
1183 aprint_error_dev(sc->sc_dev,
1184 "could not allocate RX ring DMA memory\n");
1185 goto fail;
1186 }
1187
1188 /* Allocate RX status area (16-byte aligned). */
1189 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1190 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1191 if (error != 0) {
1192 aprint_error_dev(sc->sc_dev,
1193 "could not allocate RX status DMA memory\n");
1194 goto fail;
1195 }
1196
1197 /*
1198 * Allocate and map RX buffers.
1199 */
1200 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1201 struct iwn_rx_data *data = &ring->data[i];
1202
1203 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1204 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1205 &data->map);
1206 if (error != 0) {
1207 aprint_error_dev(sc->sc_dev,
1208 "could not create RX buf DMA map\n");
1209 goto fail;
1210 }
1211
1212 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1213 if (data->m == NULL) {
1214 aprint_error_dev(sc->sc_dev,
1215 "could not allocate RX mbuf\n");
1216 error = ENOBUFS;
1217 goto fail;
1218 }
1219
1220 error = bus_dmamap_load(sc->sc_dmat, data->map,
1221 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1222 BUS_DMA_NOWAIT | BUS_DMA_READ);
1223 if (error != 0) {
1224 aprint_error_dev(sc->sc_dev,
1225 "can't not map mbuf (error %d)\n", error);
1226 goto fail;
1227 }
1228
1229 /* Set physical address of RX buffer (256-byte aligned). */
1230 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1231 }
1232
1233 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1234 BUS_DMASYNC_PREWRITE);
1235
1236 return 0;
1237
1238 fail: iwn_free_rx_ring(sc, ring);
1239 return error;
1240 }
1241
1242 static void
1243 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1244 {
1245 int ntries;
1246
1247 if (iwn_nic_lock(sc) == 0) {
1248 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1249 for (ntries = 0; ntries < 1000; ntries++) {
1250 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1251 IWN_FH_RX_STATUS_IDLE)
1252 break;
1253 DELAY(10);
1254 }
1255 iwn_nic_unlock(sc);
1256 }
1257 ring->cur = 0;
1258 sc->last_rx_valid = 0;
1259 }
1260
1261 static void
1262 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1263 {
1264 int i;
1265
1266 iwn_dma_contig_free(&ring->desc_dma);
1267 iwn_dma_contig_free(&ring->stat_dma);
1268
1269 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1270 struct iwn_rx_data *data = &ring->data[i];
1271
1272 if (data->m != NULL) {
1273 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1274 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1275 bus_dmamap_unload(sc->sc_dmat, data->map);
1276 m_freem(data->m);
1277 }
1278 if (data->map != NULL)
1279 bus_dmamap_destroy(sc->sc_dmat, data->map);
1280 }
1281 }
1282
1283 static int
1284 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1285 {
1286 bus_addr_t paddr;
1287 bus_size_t size;
1288 int i, error;
1289
1290 ring->qid = qid;
1291 ring->queued = 0;
1292 ring->cur = 0;
1293
1294 /* Allocate TX descriptors (256-byte aligned). */
1295 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1296 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1297 (void **)&ring->desc, size, 256);
1298 if (error != 0) {
1299 aprint_error_dev(sc->sc_dev,
1300 "could not allocate TX ring DMA memory\n");
1301 goto fail;
1302 }
1303 /*
1304 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1305 * to allocate commands space for other rings.
1306 * XXX Do we really need to allocate descriptors for other rings?
1307 */
1308 if (qid > 4)
1309 return 0;
1310
1311 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1312 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1313 (void **)&ring->cmd, size, 4);
1314 if (error != 0) {
1315 aprint_error_dev(sc->sc_dev,
1316 "could not allocate TX cmd DMA memory\n");
1317 goto fail;
1318 }
1319
1320 paddr = ring->cmd_dma.paddr;
1321 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1322 struct iwn_tx_data *data = &ring->data[i];
1323
1324 data->cmd_paddr = paddr;
1325 data->scratch_paddr = paddr + 12;
1326 paddr += sizeof (struct iwn_tx_cmd);
1327
1328 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1329 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1330 &data->map);
1331 if (error != 0) {
1332 aprint_error_dev(sc->sc_dev,
1333 "could not create TX buf DMA map\n");
1334 goto fail;
1335 }
1336 }
1337 return 0;
1338
1339 fail: iwn_free_tx_ring(sc, ring);
1340 return error;
1341 }
1342
1343 static void
1344 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1345 {
1346 int i;
1347
1348 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1349 struct iwn_tx_data *data = &ring->data[i];
1350
1351 if (data->m != NULL) {
1352 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1353 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1354 bus_dmamap_unload(sc->sc_dmat, data->map);
1355 m_freem(data->m);
1356 data->m = NULL;
1357 }
1358 }
1359 /* Clear TX descriptors. */
1360 memset(ring->desc, 0, ring->desc_dma.size);
1361 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1362 ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1363 sc->qfullmsk &= ~(1 << ring->qid);
1364 ring->queued = 0;
1365 ring->cur = 0;
1366 }
1367
1368 static void
1369 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1370 {
1371 int i;
1372
1373 iwn_dma_contig_free(&ring->desc_dma);
1374 iwn_dma_contig_free(&ring->cmd_dma);
1375
1376 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1377 struct iwn_tx_data *data = &ring->data[i];
1378
1379 if (data->m != NULL) {
1380 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1381 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1382 bus_dmamap_unload(sc->sc_dmat, data->map);
1383 m_freem(data->m);
1384 }
1385 if (data->map != NULL)
1386 bus_dmamap_destroy(sc->sc_dmat, data->map);
1387 }
1388 }
1389
1390 static void
1391 iwn5000_ict_reset(struct iwn_softc *sc)
1392 {
1393 /* Disable interrupts. */
1394 IWN_WRITE(sc, IWN_INT_MASK, 0);
1395
1396 /* Reset ICT table. */
1397 memset(sc->ict, 0, IWN_ICT_SIZE);
1398 sc->ict_cur = 0;
1399
1400 /* Set physical address of ICT table (4KB aligned). */
1401 DPRINTF(("enabling ICT\n"));
1402 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1403 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1404
1405 /* Enable periodic RX interrupt. */
1406 sc->int_mask |= IWN_INT_RX_PERIODIC;
1407 /* Switch to ICT interrupt mode in driver. */
1408 sc->sc_flags |= IWN_FLAG_USE_ICT;
1409
1410 /* Re-enable interrupts. */
1411 IWN_WRITE(sc, IWN_INT, 0xffffffff);
1412 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1413 }
1414
1415 static int
1416 iwn_read_eeprom(struct iwn_softc *sc)
1417 {
1418 struct iwn_ops *ops = &sc->ops;
1419 struct ieee80211com *ic = &sc->sc_ic;
1420 uint16_t val;
1421 int error;
1422
1423 /* Check whether adapter has an EEPROM or an OTPROM. */
1424 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1425 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1426 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1427 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1428 "OTPROM" : "EEPROM"));
1429
1430 /* Adapter has to be powered on for EEPROM access to work. */
1431 if ((error = iwn_apm_init(sc)) != 0) {
1432 aprint_error_dev(sc->sc_dev,
1433 "could not power ON adapter\n");
1434 return error;
1435 }
1436
1437 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1438 aprint_error_dev(sc->sc_dev,
1439 "bad ROM signature\n");
1440 return EIO;
1441 }
1442 if ((error = iwn_eeprom_lock(sc)) != 0) {
1443 aprint_error_dev(sc->sc_dev,
1444 "could not lock ROM (error=%d)\n", error);
1445 return error;
1446 }
1447 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1448 if ((error = iwn_init_otprom(sc)) != 0) {
1449 aprint_error_dev(sc->sc_dev,
1450 "could not initialize OTPROM\n");
1451 return error;
1452 }
1453 }
1454
1455 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1456 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1457 /* Check if HT support is bonded out. */
1458 if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1459 sc->sc_flags |= IWN_FLAG_HAS_11N;
1460
1461 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1462 sc->rfcfg = le16toh(val);
1463 DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1464 /* Read Tx/Rx chains from ROM unless it's known to be broken. */
1465 if (sc->txchainmask == 0)
1466 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1467 if (sc->rxchainmask == 0)
1468 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1469
1470 /* Read MAC address. */
1471 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1472
1473 /* Read adapter-specific information from EEPROM. */
1474 ops->read_eeprom(sc);
1475
1476 iwn_apm_stop(sc); /* Power OFF adapter. */
1477
1478 iwn_eeprom_unlock(sc);
1479 return 0;
1480 }
1481
1482 static void
1483 iwn4965_read_eeprom(struct iwn_softc *sc)
1484 {
1485 uint32_t addr;
1486 uint16_t val;
1487 int i;
1488
1489 /* Read regulatory domain (4 ASCII characters). */
1490 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1491
1492 /* Read the list of authorized channels (20MHz ones only). */
1493 for (i = 0; i < 5; i++) {
1494 addr = iwn4965_regulatory_bands[i];
1495 iwn_read_eeprom_channels(sc, i, addr);
1496 }
1497
1498 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1499 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1500 sc->maxpwr2GHz = val & 0xff;
1501 sc->maxpwr5GHz = val >> 8;
1502 /* Check that EEPROM values are within valid range. */
1503 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1504 sc->maxpwr5GHz = 38;
1505 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1506 sc->maxpwr2GHz = 38;
1507 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1508
1509 /* Read samples for each TX power group. */
1510 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1511 sizeof sc->bands);
1512
1513 /* Read voltage at which samples were taken. */
1514 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1515 sc->eeprom_voltage = (int16_t)le16toh(val);
1516 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1517
1518 #ifdef IWN_DEBUG
1519 /* Print samples. */
1520 if (iwn_debug > 0) {
1521 for (i = 0; i < IWN_NBANDS; i++)
1522 iwn4965_print_power_group(sc, i);
1523 }
1524 #endif
1525 }
1526
1527 #ifdef IWN_DEBUG
1528 static void
1529 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1530 {
1531 struct iwn4965_eeprom_band *band = &sc->bands[i];
1532 struct iwn4965_eeprom_chan_samples *chans = band->chans;
1533 int j, c;
1534
1535 aprint_normal("===band %d===\n", i);
1536 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1537 aprint_normal("chan1 num=%d\n", chans[0].num);
1538 for (c = 0; c < 2; c++) {
1539 for (j = 0; j < IWN_NSAMPLES; j++) {
1540 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1541 "power=%d pa_det=%d\n", c, j,
1542 chans[0].samples[c][j].temp,
1543 chans[0].samples[c][j].gain,
1544 chans[0].samples[c][j].power,
1545 chans[0].samples[c][j].pa_det);
1546 }
1547 }
1548 aprint_normal("chan2 num=%d\n", chans[1].num);
1549 for (c = 0; c < 2; c++) {
1550 for (j = 0; j < IWN_NSAMPLES; j++) {
1551 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1552 "power=%d pa_det=%d\n", c, j,
1553 chans[1].samples[c][j].temp,
1554 chans[1].samples[c][j].gain,
1555 chans[1].samples[c][j].power,
1556 chans[1].samples[c][j].pa_det);
1557 }
1558 }
1559 }
1560 #endif
1561
1562 static void
1563 iwn5000_read_eeprom(struct iwn_softc *sc)
1564 {
1565 struct iwn5000_eeprom_calib_hdr hdr;
1566 int32_t volt;
1567 uint32_t base, addr;
1568 uint16_t val;
1569 int i;
1570
1571 /* Read regulatory domain (4 ASCII characters). */
1572 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1573 base = le16toh(val);
1574 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1575 sc->eeprom_domain, 4);
1576
1577 /* Read the list of authorized channels (20MHz ones only). */
1578 for (i = 0; i < 5; i++) {
1579 addr = base + iwn5000_regulatory_bands[i];
1580 iwn_read_eeprom_channels(sc, i, addr);
1581 }
1582
1583 /* Read enhanced TX power information for 6000 Series. */
1584 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1585 iwn_read_eeprom_enhinfo(sc);
1586
1587 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1588 base = le16toh(val);
1589 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1590 DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1591 hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1592 sc->calib_ver = hdr.version;
1593
1594 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1595 /* Compute temperature offset. */
1596 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1597 sc->eeprom_temp = le16toh(val);
1598 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1599 volt = le16toh(val);
1600 sc->temp_off = sc->eeprom_temp - (volt / -5);
1601 DPRINTF(("temp=%d volt=%d offset=%dK\n",
1602 sc->eeprom_temp, volt, sc->temp_off));
1603 } else {
1604 /* Read crystal calibration. */
1605 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1606 &sc->eeprom_crystal, sizeof (uint32_t));
1607 DPRINTF(("crystal calibration 0x%08x\n",
1608 le32toh(sc->eeprom_crystal)));
1609 }
1610 }
1611
1612 static void
1613 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1614 {
1615 struct ieee80211com *ic = &sc->sc_ic;
1616 const struct iwn_chan_band *band = &iwn_bands[n];
1617 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1618 uint8_t chan;
1619 int i;
1620
1621 iwn_read_prom_data(sc, addr, channels,
1622 band->nchan * sizeof (struct iwn_eeprom_chan));
1623
1624 for (i = 0; i < band->nchan; i++) {
1625 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1626 continue;
1627
1628 chan = band->chan[i];
1629
1630 if (n == 0) { /* 2GHz band */
1631 ic->ic_channels[chan].ic_freq =
1632 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1633 ic->ic_channels[chan].ic_flags =
1634 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1635 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1636
1637 } else { /* 5GHz band */
1638 /*
1639 * Some adapters support channels 7, 8, 11 and 12
1640 * both in the 2GHz and 4.9GHz bands.
1641 * Because of limitations in our net80211 layer,
1642 * we don't support them in the 4.9GHz band.
1643 */
1644 if (chan <= 14)
1645 continue;
1646
1647 ic->ic_channels[chan].ic_freq =
1648 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1649 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1650 /* We have at least one valid 5GHz channel. */
1651 sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1652 }
1653
1654 /* Is active scan allowed on this channel? */
1655 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1656 ic->ic_channels[chan].ic_flags |=
1657 IEEE80211_CHAN_PASSIVE;
1658 }
1659
1660 /* Save maximum allowed TX power for this channel. */
1661 sc->maxpwr[chan] = channels[i].maxpwr;
1662
1663 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1664 chan, channels[i].flags, sc->maxpwr[chan]));
1665 }
1666 }
1667
1668 static void
1669 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1670 {
1671 struct iwn_eeprom_enhinfo enhinfo[35];
1672 uint16_t val, base;
1673 int8_t maxpwr;
1674 int i;
1675
1676 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1677 base = le16toh(val);
1678 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1679 enhinfo, sizeof enhinfo);
1680
1681 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1682 for (i = 0; i < __arraycount(enhinfo); i++) {
1683 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1684 continue; /* Skip invalid entries. */
1685
1686 maxpwr = 0;
1687 if (sc->txchainmask & IWN_ANT_A)
1688 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1689 if (sc->txchainmask & IWN_ANT_B)
1690 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1691 if (sc->txchainmask & IWN_ANT_C)
1692 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1693 if (sc->ntxchains == 2)
1694 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1695 else if (sc->ntxchains == 3)
1696 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1697 maxpwr /= 2; /* Convert half-dBm to dBm. */
1698
1699 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1700 sc->enh_maxpwr[i] = maxpwr;
1701 }
1702 }
1703
1704 static struct ieee80211_node *
1705 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1706 {
1707 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1708 }
1709
1710 static void
1711 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1712 {
1713 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1714 struct iwn_node *wn = (void *)ni;
1715 uint8_t rate;
1716 int ridx, i;
1717
1718 ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1719 /* Start at lowest available bit-rate, AMRR will raise. */
1720 ni->ni_txrate = 0;
1721
1722 for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1723 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1724 /* Map 802.11 rate to HW rate index. */
1725 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1726 if (iwn_rates[ridx].rate == rate)
1727 break;
1728 wn->ridx[i] = ridx;
1729 }
1730 }
1731
1732 static int
1733 iwn_media_change(struct ifnet *ifp)
1734 {
1735 struct iwn_softc *sc = ifp->if_softc;
1736 struct ieee80211com *ic = &sc->sc_ic;
1737 uint8_t rate, ridx;
1738 int error;
1739
1740 error = ieee80211_media_change(ifp);
1741 if (error != ENETRESET)
1742 return error;
1743
1744 if (ic->ic_fixed_rate != -1) {
1745 rate = ic->ic_sup_rates[ic->ic_curmode].
1746 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1747 /* Map 802.11 rate to HW rate index. */
1748 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1749 if (iwn_rates[ridx].rate == rate)
1750 break;
1751 sc->fixed_ridx = ridx;
1752 }
1753
1754 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1755 (IFF_UP | IFF_RUNNING)) {
1756 iwn_stop(ifp, 0);
1757 error = iwn_init(ifp);
1758 }
1759 return error;
1760 }
1761
1762 static int
1763 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1764 {
1765 struct ifnet *ifp = ic->ic_ifp;
1766 struct iwn_softc *sc = ifp->if_softc;
1767 int error;
1768
1769 callout_stop(&sc->calib_to);
1770
1771 switch (nstate) {
1772 case IEEE80211_S_SCAN:
1773 /* XXX Do not abort a running scan. */
1774 if (sc->sc_flags & IWN_FLAG_SCANNING) {
1775 if (ic->ic_state != nstate)
1776 aprint_error_dev(sc->sc_dev, "scan request(%d) "
1777 "while scanning(%d) ignored\n", nstate,
1778 ic->ic_state);
1779 break;
1780 }
1781
1782 /* XXX Not sure if call and flags are needed. */
1783 ieee80211_node_table_reset(&ic->ic_scan);
1784 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1785 sc->sc_flags |= IWN_FLAG_SCANNING;
1786
1787 /* Make the link LED blink while we're scanning. */
1788 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1789
1790 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1791 aprint_error_dev(sc->sc_dev,
1792 "could not initiate scan\n");
1793 return error;
1794 }
1795 ic->ic_state = nstate;
1796 return 0;
1797
1798 case IEEE80211_S_ASSOC:
1799 if (ic->ic_state != IEEE80211_S_RUN)
1800 break;
1801 /* FALLTHROUGH */
1802 case IEEE80211_S_AUTH:
1803 /* Reset state to handle reassociations correctly. */
1804 sc->rxon.associd = 0;
1805 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1806 sc->calib.state = IWN_CALIB_STATE_INIT;
1807
1808 if ((error = iwn_auth(sc)) != 0) {
1809 aprint_error_dev(sc->sc_dev,
1810 "could not move to auth state\n");
1811 return error;
1812 }
1813 break;
1814
1815 case IEEE80211_S_RUN:
1816 if ((error = iwn_run(sc)) != 0) {
1817 aprint_error_dev(sc->sc_dev,
1818 "could not move to run state\n");
1819 return error;
1820 }
1821 break;
1822
1823 case IEEE80211_S_INIT:
1824 sc->sc_flags &= ~IWN_FLAG_SCANNING;
1825 sc->calib.state = IWN_CALIB_STATE_INIT;
1826 break;
1827 }
1828
1829 return sc->sc_newstate(ic, nstate, arg);
1830 }
1831
1832 static void
1833 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1834 {
1835 struct iwn_softc *sc = arg;
1836 struct iwn_node *wn = (struct iwn_node *)ni;
1837
1838 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1839 }
1840
1841 static void
1842 iwn_calib_timeout(void *arg)
1843 {
1844 struct iwn_softc *sc = arg;
1845 struct ieee80211com *ic = &sc->sc_ic;
1846 int s;
1847
1848 s = splnet();
1849 if (ic->ic_fixed_rate == -1) {
1850 if (ic->ic_opmode == IEEE80211_M_STA)
1851 iwn_iter_func(sc, ic->ic_bss);
1852 else
1853 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1854 }
1855 /* Force automatic TX power calibration every 60 secs. */
1856 if (++sc->calib_cnt >= 120) {
1857 uint32_t flags = 0;
1858
1859 DPRINTF(("sending request for statistics\n"));
1860 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1861 sizeof flags, 1);
1862 sc->calib_cnt = 0;
1863 }
1864 splx(s);
1865
1866 /* Automatic rate control triggered every 500ms. */
1867 callout_schedule(&sc->calib_to, hz/2);
1868 }
1869
1870 /*
1871 * Process an RX_PHY firmware notification. This is usually immediately
1872 * followed by an MPDU_RX_DONE notification.
1873 */
1874 static void
1875 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1876 struct iwn_rx_data *data)
1877 {
1878 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1879
1880 DPRINTFN(2, ("received PHY stats\n"));
1881 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1882 sizeof (*stat), BUS_DMASYNC_POSTREAD);
1883
1884 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
1885 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1886 sc->last_rx_valid = 1;
1887 }
1888
1889 /*
1890 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1891 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1892 */
1893 static void
1894 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1895 struct iwn_rx_data *data)
1896 {
1897 struct iwn_ops *ops = &sc->ops;
1898 struct ieee80211com *ic = &sc->sc_ic;
1899 struct ifnet *ifp = ic->ic_ifp;
1900 struct iwn_rx_ring *ring = &sc->rxq;
1901 struct ieee80211_frame *wh;
1902 struct ieee80211_node *ni;
1903 struct mbuf *m, *m1;
1904 struct iwn_rx_stat *stat;
1905 char *head;
1906 uint32_t flags;
1907 int error, len, rssi;
1908
1909 if (desc->type == IWN_MPDU_RX_DONE) {
1910 /* Check for prior RX_PHY notification. */
1911 if (!sc->last_rx_valid) {
1912 DPRINTF(("missing RX_PHY\n"));
1913 return;
1914 }
1915 sc->last_rx_valid = 0;
1916 stat = &sc->last_rx_stat;
1917 } else
1918 stat = (struct iwn_rx_stat *)(desc + 1);
1919
1920 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1921 BUS_DMASYNC_POSTREAD);
1922
1923 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1924 aprint_error_dev(sc->sc_dev,
1925 "invalid RX statistic header\n");
1926 return;
1927 }
1928 if (desc->type == IWN_MPDU_RX_DONE) {
1929 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1930 head = (char *)(mpdu + 1);
1931 len = le16toh(mpdu->len);
1932 } else {
1933 head = (char *)(stat + 1) + stat->cfg_phy_len;
1934 len = le16toh(stat->len);
1935 }
1936
1937 flags = le32toh(*(uint32_t *)(head + len));
1938
1939 /* Discard frames with a bad FCS early. */
1940 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1941 DPRINTFN(2, ("RX flags error %x\n", flags));
1942 ifp->if_ierrors++;
1943 return;
1944 }
1945 /* Discard frames that are too short. */
1946 if (len < sizeof (*wh)) {
1947 DPRINTF(("frame too short: %d\n", len));
1948 ic->ic_stats.is_rx_tooshort++;
1949 ifp->if_ierrors++;
1950 return;
1951 }
1952
1953 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1954 if (m1 == NULL) {
1955 ic->ic_stats.is_rx_nobuf++;
1956 ifp->if_ierrors++;
1957 return;
1958 }
1959 bus_dmamap_unload(sc->sc_dmat, data->map);
1960
1961 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1962 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1963 if (error != 0) {
1964 m_freem(m1);
1965
1966 /* Try to reload the old mbuf. */
1967 error = bus_dmamap_load(sc->sc_dmat, data->map,
1968 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1969 BUS_DMA_NOWAIT | BUS_DMA_READ);
1970 if (error != 0) {
1971 panic("%s: could not load old RX mbuf",
1972 device_xname(sc->sc_dev));
1973 }
1974 /* Physical address may have changed. */
1975 ring->desc[ring->cur] =
1976 htole32(data->map->dm_segs[0].ds_addr >> 8);
1977 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1978 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1979 BUS_DMASYNC_PREWRITE);
1980 ifp->if_ierrors++;
1981 return;
1982 }
1983
1984 m = data->m;
1985 data->m = m1;
1986 /* Update RX descriptor. */
1987 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1988 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1989 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1990 BUS_DMASYNC_PREWRITE);
1991
1992 /* Finalize mbuf. */
1993 m->m_pkthdr.rcvif = ifp;
1994 m->m_data = head;
1995 m->m_pkthdr.len = m->m_len = len;
1996
1997 /* Grab a reference to the source node. */
1998 wh = mtod(m, struct ieee80211_frame *);
1999 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2000
2001 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2002 /* NetBSD does decryption in ieee80211_input. */
2003
2004 rssi = ops->get_rssi(stat);
2005
2006 /* XXX Added for NetBSD: scans never stop without it */
2007 if (ic->ic_state == IEEE80211_S_SCAN)
2008 iwn_fix_channel(ic, m);
2009
2010 if (sc->sc_drvbpf != NULL) {
2011 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2012
2013 tap->wr_flags = 0;
2014 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2015 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2016 tap->wr_chan_freq =
2017 htole16(ic->ic_channels[stat->chan].ic_freq);
2018 tap->wr_chan_flags =
2019 htole16(ic->ic_channels[stat->chan].ic_flags);
2020 tap->wr_dbm_antsignal = (int8_t)rssi;
2021 tap->wr_dbm_antnoise = (int8_t)sc->noise;
2022 tap->wr_tsft = stat->tstamp;
2023 switch (stat->rate) {
2024 /* CCK rates. */
2025 case 10: tap->wr_rate = 2; break;
2026 case 20: tap->wr_rate = 4; break;
2027 case 55: tap->wr_rate = 11; break;
2028 case 110: tap->wr_rate = 22; break;
2029 /* OFDM rates. */
2030 case 0xd: tap->wr_rate = 12; break;
2031 case 0xf: tap->wr_rate = 18; break;
2032 case 0x5: tap->wr_rate = 24; break;
2033 case 0x7: tap->wr_rate = 36; break;
2034 case 0x9: tap->wr_rate = 48; break;
2035 case 0xb: tap->wr_rate = 72; break;
2036 case 0x1: tap->wr_rate = 96; break;
2037 case 0x3: tap->wr_rate = 108; break;
2038 /* Unknown rate: should not happen. */
2039 default: tap->wr_rate = 0;
2040 }
2041
2042 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2043 }
2044
2045 /* Send the frame to the 802.11 layer. */
2046 ieee80211_input(ic, m, ni, rssi, 0);
2047
2048 /* Node is no longer needed. */
2049 ieee80211_free_node(ni);
2050 }
2051
2052 #ifndef IEEE80211_NO_HT
2053 /* Process an incoming Compressed BlockAck. */
2054 static void
2055 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2056 struct iwn_rx_data *data)
2057 {
2058 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2059 struct iwn_tx_ring *txq;
2060
2061 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2062 BUS_DMASYNC_POSTREAD);
2063
2064 txq = &sc->txq[le16toh(ba->qid)];
2065 /* XXX TBD */
2066 }
2067 #endif
2068
2069 /*
2070 * Process a CALIBRATION_RESULT notification sent by the initialization
2071 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2072 */
2073 static void
2074 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2075 struct iwn_rx_data *data)
2076 {
2077 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2078 int len, idx = -1;
2079
2080 /* Runtime firmware should not send such a notification. */
2081 if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2082 return;
2083
2084 len = (le32toh(desc->len) & 0x3fff) - 4;
2085 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2086 BUS_DMASYNC_POSTREAD);
2087
2088 switch (calib->code) {
2089 case IWN5000_PHY_CALIB_DC:
2090 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
2091 idx = 0;
2092 break;
2093 case IWN5000_PHY_CALIB_LO:
2094 idx = 1;
2095 break;
2096 case IWN5000_PHY_CALIB_TX_IQ:
2097 idx = 2;
2098 break;
2099 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2100 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2101 sc->hw_type != IWN_HW_REV_TYPE_5150)
2102 idx = 3;
2103 break;
2104 case IWN5000_PHY_CALIB_BASE_BAND:
2105 idx = 4;
2106 break;
2107 }
2108 if (idx == -1) /* Ignore other results. */
2109 return;
2110
2111 /* Save calibration result. */
2112 if (sc->calibcmd[idx].buf != NULL)
2113 free(sc->calibcmd[idx].buf, M_DEVBUF);
2114 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2115 if (sc->calibcmd[idx].buf == NULL) {
2116 DPRINTF(("not enough memory for calibration result %d\n",
2117 calib->code));
2118 return;
2119 }
2120 DPRINTF(("saving calibration result code=%d len=%d\n",
2121 calib->code, len));
2122 sc->calibcmd[idx].len = len;
2123 memcpy(sc->calibcmd[idx].buf, calib, len);
2124 }
2125
2126 /*
2127 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2128 * The latter is sent by the firmware after each received beacon.
2129 */
2130 static void
2131 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2132 struct iwn_rx_data *data)
2133 {
2134 struct iwn_ops *ops = &sc->ops;
2135 struct ieee80211com *ic = &sc->sc_ic;
2136 struct iwn_calib_state *calib = &sc->calib;
2137 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2138 int temp;
2139
2140 /* Ignore statistics received during a scan. */
2141 if (ic->ic_state != IEEE80211_S_RUN)
2142 return;
2143
2144 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2145 sizeof (*stats), BUS_DMASYNC_POSTREAD);
2146
2147 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2148 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2149
2150 /* Test if temperature has changed. */
2151 if (stats->general.temp != sc->rawtemp) {
2152 /* Convert "raw" temperature to degC. */
2153 sc->rawtemp = stats->general.temp;
2154 temp = ops->get_temperature(sc);
2155 DPRINTFN(2, ("temperature=%dC\n", temp));
2156
2157 /* Update TX power if need be (4965AGN only). */
2158 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2159 iwn4965_power_calibration(sc, temp);
2160 }
2161
2162 if (desc->type != IWN_BEACON_STATISTICS)
2163 return; /* Reply to a statistics request. */
2164
2165 sc->noise = iwn_get_noise(&stats->rx.general);
2166
2167 /* Test that RSSI and noise are present in stats report. */
2168 if (le32toh(stats->rx.general.flags) != 1) {
2169 DPRINTF(("received statistics without RSSI\n"));
2170 return;
2171 }
2172
2173 /*
2174 * XXX Differential gain calibration makes the 6005 firmware
2175 * crap out, so skip it for now. This effectively disables
2176 * sensitivity tuning as well.
2177 */
2178 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2179 return;
2180
2181 if (calib->state == IWN_CALIB_STATE_ASSOC)
2182 iwn_collect_noise(sc, &stats->rx.general);
2183 else if (calib->state == IWN_CALIB_STATE_RUN)
2184 iwn_tune_sensitivity(sc, &stats->rx);
2185 }
2186
2187 /*
2188 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2189 * and 5000 adapters have different incompatible TX status formats.
2190 */
2191 static void
2192 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2193 struct iwn_rx_data *data)
2194 {
2195 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2196
2197 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2198 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2199 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2200 }
2201
2202 static void
2203 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2204 struct iwn_rx_data *data)
2205 {
2206 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2207
2208 #ifdef notyet
2209 /* Reset TX scheduler slot. */
2210 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2211 #endif
2212
2213 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2214 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2215 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2216 }
2217
2218 /*
2219 * Adapter-independent backend for TX_DONE firmware notifications.
2220 */
2221 static void
2222 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2223 uint8_t status)
2224 {
2225 struct ieee80211com *ic = &sc->sc_ic;
2226 struct ifnet *ifp = ic->ic_ifp;
2227 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2228 struct iwn_tx_data *data = &ring->data[desc->idx];
2229 struct iwn_node *wn = (struct iwn_node *)data->ni;
2230
2231 /* Update rate control statistics. */
2232 wn->amn.amn_txcnt++;
2233 if (ackfailcnt > 0)
2234 wn->amn.amn_retrycnt++;
2235
2236 if (status != 1 && status != 2)
2237 ifp->if_oerrors++;
2238 else
2239 ifp->if_opackets++;
2240
2241 /* Unmap and free mbuf. */
2242 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2243 BUS_DMASYNC_POSTWRITE);
2244 bus_dmamap_unload(sc->sc_dmat, data->map);
2245 m_freem(data->m);
2246 data->m = NULL;
2247 ieee80211_free_node(data->ni);
2248 data->ni = NULL;
2249
2250 sc->sc_tx_timer = 0;
2251 if (--ring->queued < IWN_TX_RING_LOMARK) {
2252 sc->qfullmsk &= ~(1 << ring->qid);
2253 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2254 ifp->if_flags &= ~IFF_OACTIVE;
2255 (*ifp->if_start)(ifp);
2256 }
2257 }
2258 }
2259
2260 /*
2261 * Process a "command done" firmware notification. This is where we wakeup
2262 * processes waiting for a synchronous command completion.
2263 */
2264 static void
2265 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2266 {
2267 struct iwn_tx_ring *ring = &sc->txq[4];
2268 struct iwn_tx_data *data;
2269
2270 if ((desc->qid & 0xf) != 4)
2271 return; /* Not a command ack. */
2272
2273 data = &ring->data[desc->idx];
2274
2275 /* If the command was mapped in an mbuf, free it. */
2276 if (data->m != NULL) {
2277 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2278 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2279 bus_dmamap_unload(sc->sc_dmat, data->map);
2280 m_freem(data->m);
2281 data->m = NULL;
2282 }
2283 wakeup(&ring->desc[desc->idx]);
2284 }
2285
2286 /*
2287 * Process an INT_FH_RX or INT_SW_RX interrupt.
2288 */
2289 static void
2290 iwn_notif_intr(struct iwn_softc *sc)
2291 {
2292 struct iwn_ops *ops = &sc->ops;
2293 struct ieee80211com *ic = &sc->sc_ic;
2294 struct ifnet *ifp = ic->ic_ifp;
2295 uint16_t hw;
2296
2297 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2298 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2299
2300 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2301 while (sc->rxq.cur != hw) {
2302 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2303 struct iwn_rx_desc *desc;
2304
2305 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2306 BUS_DMASYNC_POSTREAD);
2307 desc = mtod(data->m, struct iwn_rx_desc *);
2308
2309 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2310 desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2311
2312 if (!(desc->qid & 0x80)) /* Reply to a command. */
2313 iwn_cmd_done(sc, desc);
2314
2315 switch (desc->type) {
2316 case IWN_RX_PHY:
2317 iwn_rx_phy(sc, desc, data);
2318 break;
2319
2320 case IWN_RX_DONE: /* 4965AGN only. */
2321 case IWN_MPDU_RX_DONE:
2322 /* An 802.11 frame has been received. */
2323 iwn_rx_done(sc, desc, data);
2324 break;
2325 #ifndef IEEE80211_NO_HT
2326 case IWN_RX_COMPRESSED_BA:
2327 /* A Compressed BlockAck has been received. */
2328 iwn_rx_compressed_ba(sc, desc, data);
2329 break;
2330 #endif
2331 case IWN_TX_DONE:
2332 /* An 802.11 frame has been transmitted. */
2333 ops->tx_done(sc, desc, data);
2334 break;
2335
2336 case IWN_RX_STATISTICS:
2337 case IWN_BEACON_STATISTICS:
2338 iwn_rx_statistics(sc, desc, data);
2339 break;
2340
2341 case IWN_BEACON_MISSED:
2342 {
2343 struct iwn_beacon_missed *miss =
2344 (struct iwn_beacon_missed *)(desc + 1);
2345
2346 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2347 sizeof (*miss), BUS_DMASYNC_POSTREAD);
2348 /*
2349 * If more than 5 consecutive beacons are missed,
2350 * reinitialize the sensitivity state machine.
2351 */
2352 DPRINTF(("beacons missed %d/%d\n",
2353 le32toh(miss->consecutive), le32toh(miss->total)));
2354 if (ic->ic_state == IEEE80211_S_RUN &&
2355 le32toh(miss->consecutive) > 5)
2356 (void)iwn_init_sensitivity(sc);
2357 break;
2358 }
2359 case IWN_UC_READY:
2360 {
2361 struct iwn_ucode_info *uc =
2362 (struct iwn_ucode_info *)(desc + 1);
2363
2364 /* The microcontroller is ready. */
2365 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2366 sizeof (*uc), BUS_DMASYNC_POSTREAD);
2367 DPRINTF(("microcode alive notification version=%d.%d "
2368 "subtype=%x alive=%x\n", uc->major, uc->minor,
2369 uc->subtype, le32toh(uc->valid)));
2370
2371 if (le32toh(uc->valid) != 1) {
2372 aprint_error_dev(sc->sc_dev,
2373 "microcontroller initialization "
2374 "failed\n");
2375 break;
2376 }
2377 if (uc->subtype == IWN_UCODE_INIT) {
2378 /* Save microcontroller report. */
2379 memcpy(&sc->ucode_info, uc, sizeof (*uc));
2380 }
2381 /* Save the address of the error log in SRAM. */
2382 sc->errptr = le32toh(uc->errptr);
2383 break;
2384 }
2385 case IWN_STATE_CHANGED:
2386 {
2387 uint32_t *status = (uint32_t *)(desc + 1);
2388
2389 /* Enabled/disabled notification. */
2390 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2391 sizeof (*status), BUS_DMASYNC_POSTREAD);
2392 DPRINTF(("state changed to %x\n", le32toh(*status)));
2393
2394 if (le32toh(*status) & 1) {
2395 /* The radio button has to be pushed. */
2396 aprint_error_dev(sc->sc_dev,
2397 "Radio transmitter is off\n");
2398 /* Turn the interface down. */
2399 ifp->if_flags &= ~IFF_UP;
2400 iwn_stop(ifp, 1);
2401 return; /* No further processing. */
2402 }
2403 break;
2404 }
2405 case IWN_START_SCAN:
2406 {
2407 struct iwn_start_scan *scan =
2408 (struct iwn_start_scan *)(desc + 1);
2409
2410 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2411 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2412 DPRINTFN(2, ("scanning channel %d status %x\n",
2413 scan->chan, le32toh(scan->status)));
2414
2415 /* Fix current channel. */
2416 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2417 break;
2418 }
2419 case IWN_STOP_SCAN:
2420 {
2421 struct iwn_stop_scan *scan =
2422 (struct iwn_stop_scan *)(desc + 1);
2423
2424 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2425 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2426 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2427 scan->nchan, scan->status, scan->chan));
2428
2429 if (scan->status == 1 && scan->chan <= 14 &&
2430 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2431 /*
2432 * We just finished scanning 2GHz channels,
2433 * start scanning 5GHz ones.
2434 */
2435 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2436 break;
2437 }
2438 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2439 ieee80211_end_scan(ic);
2440 break;
2441 }
2442 case IWN5000_CALIBRATION_RESULT:
2443 iwn5000_rx_calib_results(sc, desc, data);
2444 break;
2445
2446 case IWN5000_CALIBRATION_DONE:
2447 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2448 wakeup(sc);
2449 break;
2450 }
2451
2452 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2453 }
2454
2455 /* Tell the firmware what we have processed. */
2456 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2457 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2458 }
2459
2460 /*
2461 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2462 * from power-down sleep mode.
2463 */
2464 static void
2465 iwn_wakeup_intr(struct iwn_softc *sc)
2466 {
2467 int qid;
2468
2469 DPRINTF(("ucode wakeup from power-down sleep\n"));
2470
2471 /* Wakeup RX and TX rings. */
2472 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2473 for (qid = 0; qid < sc->ntxqs; qid++) {
2474 struct iwn_tx_ring *ring = &sc->txq[qid];
2475 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2476 }
2477 }
2478
2479 /*
2480 * Dump the error log of the firmware when a firmware panic occurs. Although
2481 * we can't debug the firmware because it is neither open source nor free, it
2482 * can help us to identify certain classes of problems.
2483 */
2484 static void
2485 iwn_fatal_intr(struct iwn_softc *sc)
2486 {
2487 struct iwn_fw_dump dump;
2488 int i;
2489
2490 /* Force a complete recalibration on next init. */
2491 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2492
2493 /* Check that the error log address is valid. */
2494 if (sc->errptr < IWN_FW_DATA_BASE ||
2495 sc->errptr + sizeof (dump) >
2496 IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2497 aprint_error_dev(sc->sc_dev,
2498 "bad firmware error log address 0x%08x\n", sc->errptr);
2499 return;
2500 }
2501 if (iwn_nic_lock(sc) != 0) {
2502 aprint_error_dev(sc->sc_dev,
2503 "could not read firmware error log\n");
2504 return;
2505 }
2506 /* Read firmware error log from SRAM. */
2507 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2508 sizeof (dump) / sizeof (uint32_t));
2509 iwn_nic_unlock(sc);
2510
2511 if (dump.valid == 0) {
2512 aprint_error_dev(sc->sc_dev,
2513 "firmware error log is empty\n");
2514 return;
2515 }
2516 aprint_error("firmware error log:\n");
2517 aprint_error(" error type = \"%s\" (0x%08X)\n",
2518 (dump.id < __arraycount(iwn_fw_errmsg)) ?
2519 iwn_fw_errmsg[dump.id] : "UNKNOWN",
2520 dump.id);
2521 aprint_error(" program counter = 0x%08X\n", dump.pc);
2522 aprint_error(" source line = 0x%08X\n", dump.src_line);
2523 aprint_error(" error data = 0x%08X%08X\n",
2524 dump.error_data[0], dump.error_data[1]);
2525 aprint_error(" branch link = 0x%08X%08X\n",
2526 dump.branch_link[0], dump.branch_link[1]);
2527 aprint_error(" interrupt link = 0x%08X%08X\n",
2528 dump.interrupt_link[0], dump.interrupt_link[1]);
2529 aprint_error(" time = %u\n", dump.time[0]);
2530
2531 /* Dump driver status (TX and RX rings) while we're here. */
2532 aprint_error("driver status:\n");
2533 for (i = 0; i < sc->ntxqs; i++) {
2534 struct iwn_tx_ring *ring = &sc->txq[i];
2535 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2536 i, ring->qid, ring->cur, ring->queued);
2537 }
2538 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
2539 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
2540 }
2541
2542 static int
2543 iwn_intr(void *arg)
2544 {
2545 struct iwn_softc *sc = arg;
2546 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2547 uint32_t r1, r2, tmp;
2548
2549 /* Disable interrupts. */
2550 IWN_WRITE(sc, IWN_INT_MASK, 0);
2551
2552 /* Read interrupts from ICT (fast) or from registers (slow). */
2553 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2554 tmp = 0;
2555 while (sc->ict[sc->ict_cur] != 0) {
2556 tmp |= sc->ict[sc->ict_cur];
2557 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2558 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2559 }
2560 tmp = le32toh(tmp);
2561 if (tmp == 0xffffffff) /* Shouldn't happen. */
2562 tmp = 0;
2563 else if (tmp & 0xc0000) /* Workaround a HW bug. */
2564 tmp |= 0x8000;
2565 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2566 r2 = 0; /* Unused. */
2567 } else {
2568 r1 = IWN_READ(sc, IWN_INT);
2569 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2570 return 0; /* Hardware gone! */
2571 r2 = IWN_READ(sc, IWN_FH_INT);
2572 }
2573 if (r1 == 0 && r2 == 0) {
2574 if (ifp->if_flags & IFF_UP)
2575 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2576 return 0; /* Interrupt not for us. */
2577 }
2578
2579 /* Acknowledge interrupts. */
2580 IWN_WRITE(sc, IWN_INT, r1);
2581 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2582 IWN_WRITE(sc, IWN_FH_INT, r2);
2583
2584 if (r1 & IWN_INT_RF_TOGGLED) {
2585 tmp = IWN_READ(sc, IWN_GP_CNTRL);
2586 aprint_error_dev(sc->sc_dev,
2587 "RF switch: radio %s\n",
2588 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2589 }
2590 if (r1 & IWN_INT_CT_REACHED) {
2591 aprint_error_dev(sc->sc_dev,
2592 "critical temperature reached!\n");
2593 }
2594 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2595 aprint_error_dev(sc->sc_dev,
2596 "fatal firmware error\n");
2597 /* Dump firmware error log and stop. */
2598 iwn_fatal_intr(sc);
2599 ifp->if_flags &= ~IFF_UP;
2600 iwn_stop(ifp, 1);
2601 return 1;
2602 }
2603 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2604 (r2 & IWN_FH_INT_RX)) {
2605 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2606 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2607 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2608 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2609 IWN_INT_PERIODIC_DIS);
2610 iwn_notif_intr(sc);
2611 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2612 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2613 IWN_INT_PERIODIC_ENA);
2614 }
2615 } else
2616 iwn_notif_intr(sc);
2617 }
2618
2619 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2620 if (sc->sc_flags & IWN_FLAG_USE_ICT)
2621 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2622 wakeup(sc); /* FH DMA transfer completed. */
2623 }
2624
2625 if (r1 & IWN_INT_ALIVE)
2626 wakeup(sc); /* Firmware is alive. */
2627
2628 if (r1 & IWN_INT_WAKEUP)
2629 iwn_wakeup_intr(sc);
2630
2631 /* Re-enable interrupts. */
2632 if (ifp->if_flags & IFF_UP)
2633 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2634
2635 return 1;
2636 }
2637
2638 /*
2639 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2640 * 5000 adapters use a slightly different format).
2641 */
2642 static void
2643 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2644 uint16_t len)
2645 {
2646 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2647
2648 *w = htole16(len + 8);
2649 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2650 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2651 sizeof (uint16_t),
2652 BUS_DMASYNC_PREWRITE);
2653 if (idx < IWN_SCHED_WINSZ) {
2654 *(w + IWN_TX_RING_COUNT) = *w;
2655 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2656 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2657 (char *)(void *)sc->sched_dma.vaddr,
2658 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2659 }
2660 }
2661
2662 static void
2663 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2664 uint16_t len)
2665 {
2666 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2667
2668 *w = htole16(id << 12 | (len + 8));
2669 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2670 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2671 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2672 if (idx < IWN_SCHED_WINSZ) {
2673 *(w + IWN_TX_RING_COUNT) = *w;
2674 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2675 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2676 (char *)(void *)sc->sched_dma.vaddr,
2677 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2678 }
2679 }
2680
2681 #ifdef notyet
2682 static void
2683 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2684 {
2685 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2686
2687 *w = (*w & htole16(0xf000)) | htole16(1);
2688 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2689 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2690 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2691 if (idx < IWN_SCHED_WINSZ) {
2692 *(w + IWN_TX_RING_COUNT) = *w;
2693 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2694 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2695 (char *)(void *)sc->sched_dma.vaddr,
2696 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2697 }
2698 }
2699 #endif
2700
2701 static int
2702 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2703 {
2704 struct ieee80211com *ic = &sc->sc_ic;
2705 struct iwn_node *wn = (void *)ni;
2706 struct iwn_tx_ring *ring;
2707 struct iwn_tx_desc *desc;
2708 struct iwn_tx_data *data;
2709 struct iwn_tx_cmd *cmd;
2710 struct iwn_cmd_data *tx;
2711 const struct iwn_rate *rinfo;
2712 struct ieee80211_frame *wh;
2713 struct ieee80211_key *k = NULL;
2714 struct mbuf *m1;
2715 uint32_t flags;
2716 u_int hdrlen;
2717 bus_dma_segment_t *seg;
2718 uint8_t tid, ridx, txant, type;
2719 int i, totlen, error, pad;
2720
2721 const struct chanAccParams *cap;
2722 int noack;
2723 int hdrlen2;
2724
2725 wh = mtod(m, struct ieee80211_frame *);
2726 hdrlen = ieee80211_anyhdrsize(wh);
2727 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2728
2729 hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
2730 sizeof (struct ieee80211_qosframe) :
2731 sizeof (struct ieee80211_frame);
2732
2733 if (hdrlen != hdrlen2)
2734 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2735 hdrlen, hdrlen2);
2736
2737 /* XXX OpenBSD sets a different tid when using QOS */
2738 tid = 0;
2739 if (IEEE80211_QOS_HAS_SEQ(wh)) {
2740 cap = &ic->ic_wme.wme_chanParams;
2741 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2742 }
2743 else
2744 noack = 0;
2745
2746 ring = &sc->txq[ac];
2747 desc = &ring->desc[ring->cur];
2748 data = &ring->data[ring->cur];
2749
2750 /* Choose a TX rate index. */
2751 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2752 type != IEEE80211_FC0_TYPE_DATA) {
2753 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2754 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2755 } else if (ic->ic_fixed_rate != -1) {
2756 ridx = sc->fixed_ridx;
2757 } else
2758 ridx = wn->ridx[ni->ni_txrate];
2759 rinfo = &iwn_rates[ridx];
2760
2761 /* Encrypt the frame if need be. */
2762 /*
2763 * XXX For now, NetBSD swaps the encryption and bpf sections
2764 * in order to match old code and other drivers. Tests with
2765 * tcpdump indicates that the order is irrelevant, however,
2766 * as bpf produces unencrypted data for both ordering choices.
2767 */
2768 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2769 k = ieee80211_crypto_encap(ic, ni, m);
2770 if (k == NULL) {
2771 m_freem(m);
2772 return ENOBUFS;
2773 }
2774 /* Packet header may have moved, reset our local pointer. */
2775 wh = mtod(m, struct ieee80211_frame *);
2776 }
2777 totlen = m->m_pkthdr.len;
2778
2779 if (sc->sc_drvbpf != NULL) {
2780 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2781
2782 tap->wt_flags = 0;
2783 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2784 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2785 tap->wt_rate = rinfo->rate;
2786 tap->wt_hwqueue = ac;
2787 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2788 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2789
2790 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2791 }
2792
2793 /* Prepare TX firmware command. */
2794 cmd = &ring->cmd[ring->cur];
2795 cmd->code = IWN_CMD_TX_DATA;
2796 cmd->flags = 0;
2797 cmd->qid = ring->qid;
2798 cmd->idx = ring->cur;
2799
2800 tx = (struct iwn_cmd_data *)cmd->data;
2801 /* NB: No need to clear tx, all fields are reinitialized here. */
2802 tx->scratch = 0; /* clear "scratch" area */
2803
2804 flags = 0;
2805 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2806 /* Unicast frame, check if an ACK is expected. */
2807 if (!noack)
2808 flags |= IWN_TX_NEED_ACK;
2809 }
2810
2811 #ifdef notyet
2812 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2813 if ((wh->i_fc[0] &
2814 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2815 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2816 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
2817 #endif
2818
2819 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2820 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
2821
2822 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2823 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2824 /* NB: Group frames are sent using CCK in 802.11b/g. */
2825 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2826 flags |= IWN_TX_NEED_RTS;
2827 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2828 ridx >= IWN_RIDX_OFDM6) {
2829 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2830 flags |= IWN_TX_NEED_CTS;
2831 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2832 flags |= IWN_TX_NEED_RTS;
2833 }
2834 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2835 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2836 /* 5000 autoselects RTS/CTS or CTS-to-self. */
2837 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2838 flags |= IWN_TX_NEED_PROTECTION;
2839 } else
2840 flags |= IWN_TX_FULL_TXOP;
2841 }
2842 }
2843
2844 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2845 type != IEEE80211_FC0_TYPE_DATA)
2846 tx->id = sc->broadcast_id;
2847 else
2848 tx->id = wn->id;
2849
2850 if (type == IEEE80211_FC0_TYPE_MGT) {
2851 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2852
2853 #ifndef IEEE80211_STA_ONLY
2854 /* Tell HW to set timestamp in probe responses. */
2855 /* XXX NetBSD rev 1.11 added probe requests here but */
2856 /* probe requests do not take timestamps (from Bergamini). */
2857 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2858 flags |= IWN_TX_INSERT_TSTAMP;
2859 #endif
2860 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2861 /* changes here. These are not needed (from Bergamini). */
2862 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2863 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2864 tx->timeout = htole16(3);
2865 else
2866 tx->timeout = htole16(2);
2867 } else
2868 tx->timeout = htole16(0);
2869
2870 if (hdrlen & 3) {
2871 /* First segment length must be a multiple of 4. */
2872 flags |= IWN_TX_NEED_PADDING;
2873 pad = 4 - (hdrlen & 3);
2874 } else
2875 pad = 0;
2876
2877 tx->len = htole16(totlen);
2878 tx->tid = tid;
2879 tx->rts_ntries = 60;
2880 tx->data_ntries = 15;
2881 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2882 tx->plcp = rinfo->plcp;
2883 tx->rflags = rinfo->flags;
2884 if (tx->id == sc->broadcast_id) {
2885 /* Group or management frame. */
2886 tx->linkq = 0;
2887 /* XXX Alternate between antenna A and B? */
2888 txant = IWN_LSB(sc->txchainmask);
2889 tx->rflags |= IWN_RFLAG_ANT(txant);
2890 } else {
2891 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2892 flags |= IWN_TX_LINKQ; /* enable MRR */
2893 }
2894 /* Set physical address of "scratch area". */
2895 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2896 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2897
2898 /* Copy 802.11 header in TX command. */
2899 /* XXX NetBSD changed this in rev 1.20 */
2900 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2901
2902 /* Trim 802.11 header. */
2903 m_adj(m, hdrlen);
2904 tx->security = 0;
2905 tx->flags = htole32(flags);
2906
2907 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2908 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2909 if (error != 0) {
2910 if (error != EFBIG) {
2911 aprint_error_dev(sc->sc_dev,
2912 "can't map mbuf (error %d)\n", error);
2913 m_freem(m);
2914 return error;
2915 }
2916 /* Too many DMA segments, linearize mbuf. */
2917 MGETHDR(m1, M_DONTWAIT, MT_DATA);
2918 if (m1 == NULL) {
2919 m_freem(m);
2920 return ENOBUFS;
2921 }
2922 if (m->m_pkthdr.len > MHLEN) {
2923 MCLGET(m1, M_DONTWAIT);
2924 if (!(m1->m_flags & M_EXT)) {
2925 m_freem(m);
2926 m_freem(m1);
2927 return ENOBUFS;
2928 }
2929 }
2930 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2931 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2932 m_freem(m);
2933 m = m1;
2934
2935 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2936 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2937 if (error != 0) {
2938 aprint_error_dev(sc->sc_dev,
2939 "can't map mbuf (error %d)\n", error);
2940 m_freem(m);
2941 return error;
2942 }
2943 }
2944
2945 data->m = m;
2946 data->ni = ni;
2947
2948 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2949 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
2950
2951 /* Fill TX descriptor. */
2952 desc->nsegs = 1 + data->map->dm_nsegs;
2953 /* First DMA segment is used by the TX command. */
2954 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
2955 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
2956 (4 + sizeof (*tx) + hdrlen + pad) << 4);
2957 /* Other DMA segments are for data payload. */
2958 seg = data->map->dm_segs;
2959 for (i = 1; i <= data->map->dm_nsegs; i++) {
2960 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
2961 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
2962 seg->ds_len << 4);
2963 seg++;
2964 }
2965
2966 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2967 BUS_DMASYNC_PREWRITE);
2968 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2969 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
2970 sizeof (*cmd), BUS_DMASYNC_PREWRITE);
2971 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2972 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
2973 sizeof (*desc), BUS_DMASYNC_PREWRITE);
2974
2975 #ifdef notyet
2976 /* Update TX scheduler. */
2977 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
2978 #endif
2979
2980 /* Kick TX ring. */
2981 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2982 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2983
2984 /* Mark TX ring as full if we reach a certain threshold. */
2985 if (++ring->queued > IWN_TX_RING_HIMARK)
2986 sc->qfullmsk |= 1 << ring->qid;
2987
2988 return 0;
2989 }
2990
2991 static void
2992 iwn_start(struct ifnet *ifp)
2993 {
2994 struct iwn_softc *sc = ifp->if_softc;
2995 struct ieee80211com *ic = &sc->sc_ic;
2996 struct ieee80211_node *ni;
2997 struct ether_header *eh;
2998 struct mbuf *m;
2999 int ac;
3000
3001 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3002 return;
3003
3004 for (;;) {
3005 if (sc->qfullmsk != 0) {
3006 ifp->if_flags |= IFF_OACTIVE;
3007 break;
3008 }
3009 /* Send pending management frames first. */
3010 IF_DEQUEUE(&ic->ic_mgtq, m);
3011 if (m != NULL) {
3012 ni = (void *)m->m_pkthdr.rcvif;
3013 ac = 0;
3014 goto sendit;
3015 }
3016 if (ic->ic_state != IEEE80211_S_RUN)
3017 break;
3018
3019 /* Encapsulate and send data frames. */
3020 IFQ_DEQUEUE(&ifp->if_snd, m);
3021 if (m == NULL)
3022 break;
3023 if (m->m_len < sizeof (*eh) &&
3024 (m = m_pullup(m, sizeof (*eh))) == NULL) {
3025 ifp->if_oerrors++;
3026 continue;
3027 }
3028 eh = mtod(m, struct ether_header *);
3029 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3030 if (ni == NULL) {
3031 m_freem(m);
3032 ifp->if_oerrors++;
3033 continue;
3034 }
3035 /* classify mbuf so we can find which tx ring to use */
3036 if (ieee80211_classify(ic, m, ni) != 0) {
3037 m_freem(m);
3038 ieee80211_free_node(ni);
3039 ifp->if_oerrors++;
3040 continue;
3041 }
3042
3043 /* No QoS encapsulation for EAPOL frames. */
3044 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3045 M_WME_GETAC(m) : WME_AC_BE;
3046
3047 bpf_mtap(ifp, m);
3048
3049 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3050 ieee80211_free_node(ni);
3051 ifp->if_oerrors++;
3052 continue;
3053 }
3054 sendit:
3055 bpf_mtap3(ic->ic_rawbpf, m);
3056
3057 if (iwn_tx(sc, m, ni, ac) != 0) {
3058 ieee80211_free_node(ni);
3059 ifp->if_oerrors++;
3060 continue;
3061 }
3062
3063 sc->sc_tx_timer = 5;
3064 ifp->if_timer = 1;
3065 }
3066 }
3067
3068 static void
3069 iwn_watchdog(struct ifnet *ifp)
3070 {
3071 struct iwn_softc *sc = ifp->if_softc;
3072
3073 ifp->if_timer = 0;
3074
3075 if (sc->sc_tx_timer > 0) {
3076 if (--sc->sc_tx_timer == 0) {
3077 aprint_error_dev(sc->sc_dev,
3078 "device timeout\n");
3079 ifp->if_flags &= ~IFF_UP;
3080 iwn_stop(ifp, 1);
3081 ifp->if_oerrors++;
3082 return;
3083 }
3084 ifp->if_timer = 1;
3085 }
3086
3087 ieee80211_watchdog(&sc->sc_ic);
3088 }
3089
3090 static int
3091 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3092 {
3093 struct iwn_softc *sc = ifp->if_softc;
3094 struct ieee80211com *ic = &sc->sc_ic;
3095 struct ifaddr *ifa;
3096 const struct sockaddr *sa;
3097 int s, error = 0;
3098
3099 s = splnet();
3100
3101 switch (cmd) {
3102 case SIOCSIFADDR:
3103 ifa = (struct ifaddr *)data;
3104 ifp->if_flags |= IFF_UP;
3105 #ifdef INET
3106 if (ifa->ifa_addr->sa_family == AF_INET)
3107 arp_ifinit(&ic->ic_ac, ifa);
3108 #endif
3109 /* FALLTHROUGH */
3110 case SIOCSIFFLAGS:
3111 /* XXX Added as it is in every NetBSD driver */
3112 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3113 break;
3114 if (ifp->if_flags & IFF_UP) {
3115 if (!(ifp->if_flags & IFF_RUNNING))
3116 error = iwn_init(ifp);
3117 } else {
3118 if (ifp->if_flags & IFF_RUNNING)
3119 iwn_stop(ifp, 1);
3120 }
3121 break;
3122
3123 case SIOCADDMULTI:
3124 case SIOCDELMULTI:
3125 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3126 error = (cmd == SIOCADDMULTI) ?
3127 ether_addmulti(sa, &sc->sc_ec) :
3128 ether_delmulti(sa, &sc->sc_ec);
3129
3130 if (error == ENETRESET)
3131 error = 0;
3132 break;
3133
3134 default:
3135 error = ieee80211_ioctl(ic, cmd, data);
3136 }
3137
3138 if (error == ENETRESET) {
3139 error = 0;
3140 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3141 (IFF_UP | IFF_RUNNING)) {
3142 iwn_stop(ifp, 0);
3143 error = iwn_init(ifp);
3144 }
3145 }
3146
3147 splx(s);
3148 return error;
3149 }
3150
3151 /*
3152 * Send a command to the firmware.
3153 */
3154 static int
3155 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3156 {
3157 struct iwn_tx_ring *ring = &sc->txq[4];
3158 struct iwn_tx_desc *desc;
3159 struct iwn_tx_data *data;
3160 struct iwn_tx_cmd *cmd;
3161 struct mbuf *m;
3162 bus_addr_t paddr;
3163 int totlen, error;
3164
3165 desc = &ring->desc[ring->cur];
3166 data = &ring->data[ring->cur];
3167 totlen = 4 + size;
3168
3169 if (size > sizeof cmd->data) {
3170 /* Command is too large to fit in a descriptor. */
3171 if (totlen > MCLBYTES)
3172 return EINVAL;
3173 MGETHDR(m, M_DONTWAIT, MT_DATA);
3174 if (m == NULL)
3175 return ENOMEM;
3176 if (totlen > MHLEN) {
3177 MCLGET(m, M_DONTWAIT);
3178 if (!(m->m_flags & M_EXT)) {
3179 m_freem(m);
3180 return ENOMEM;
3181 }
3182 }
3183 cmd = mtod(m, struct iwn_tx_cmd *);
3184 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3185 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3186 if (error != 0) {
3187 m_freem(m);
3188 return error;
3189 }
3190 data->m = m;
3191 paddr = data->map->dm_segs[0].ds_addr;
3192 } else {
3193 cmd = &ring->cmd[ring->cur];
3194 paddr = data->cmd_paddr;
3195 }
3196
3197 cmd->code = code;
3198 cmd->flags = 0;
3199 cmd->qid = ring->qid;
3200 cmd->idx = ring->cur;
3201 memcpy(cmd->data, buf, size);
3202
3203 desc->nsegs = 1;
3204 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3205 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3206
3207 if (size > sizeof cmd->data) {
3208 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3209 BUS_DMASYNC_PREWRITE);
3210 } else {
3211 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3212 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3213 totlen, BUS_DMASYNC_PREWRITE);
3214 }
3215 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3216 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3217 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3218
3219 #ifdef notyet
3220 /* Update TX scheduler. */
3221 ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3222 #endif
3223 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3224
3225 /* Kick command ring. */
3226 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3227 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3228
3229 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3230 }
3231
3232 static int
3233 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3234 {
3235 struct iwn4965_node_info hnode;
3236 char *src, *dst;
3237
3238 /*
3239 * We use the node structure for 5000 Series internally (it is
3240 * a superset of the one for 4965AGN). We thus copy the common
3241 * fields before sending the command.
3242 */
3243 src = (char *)node;
3244 dst = (char *)&hnode;
3245 memcpy(dst, src, 48);
3246 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3247 memcpy(dst + 48, src + 72, 20);
3248 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3249 }
3250
3251 static int
3252 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3253 {
3254 /* Direct mapping. */
3255 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3256 }
3257
3258 static int
3259 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3260 {
3261 struct iwn_node *wn = (void *)ni;
3262 struct ieee80211_rateset *rs = &ni->ni_rates;
3263 struct iwn_cmd_link_quality linkq;
3264 const struct iwn_rate *rinfo;
3265 uint8_t txant;
3266 int i, txrate;
3267
3268 /* Use the first valid TX antenna. */
3269 txant = IWN_LSB(sc->txchainmask);
3270
3271 memset(&linkq, 0, sizeof linkq);
3272 linkq.id = wn->id;
3273 linkq.antmsk_1stream = txant;
3274 linkq.antmsk_2stream = IWN_ANT_AB;
3275 linkq.ampdu_max = 31;
3276 linkq.ampdu_threshold = 3;
3277 linkq.ampdu_limit = htole16(4000); /* 4ms */
3278
3279 /* Start at highest available bit-rate. */
3280 txrate = rs->rs_nrates - 1;
3281 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3282 rinfo = &iwn_rates[wn->ridx[txrate]];
3283 linkq.retry[i].plcp = rinfo->plcp;
3284 linkq.retry[i].rflags = rinfo->flags;
3285 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3286 /* Next retry at immediate lower bit-rate. */
3287 if (txrate > 0)
3288 txrate--;
3289 }
3290 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3291 }
3292
3293 /*
3294 * Broadcast node is used to send group-addressed and management frames.
3295 */
3296 static int
3297 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3298 {
3299 struct iwn_ops *ops = &sc->ops;
3300 struct iwn_node_info node;
3301 struct iwn_cmd_link_quality linkq;
3302 const struct iwn_rate *rinfo;
3303 uint8_t txant;
3304 int i, error;
3305
3306 memset(&node, 0, sizeof node);
3307 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3308 node.id = sc->broadcast_id;
3309 DPRINTF(("adding broadcast node\n"));
3310 if ((error = ops->add_node(sc, &node, async)) != 0)
3311 return error;
3312
3313 /* Use the first valid TX antenna. */
3314 txant = IWN_LSB(sc->txchainmask);
3315
3316 memset(&linkq, 0, sizeof linkq);
3317 linkq.id = sc->broadcast_id;
3318 linkq.antmsk_1stream = txant;
3319 linkq.antmsk_2stream = IWN_ANT_AB;
3320 linkq.ampdu_max = 64;
3321 linkq.ampdu_threshold = 3;
3322 linkq.ampdu_limit = htole16(4000); /* 4ms */
3323
3324 /* Use lowest mandatory bit-rate. */
3325 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3326 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3327 linkq.retry[0].plcp = rinfo->plcp;
3328 linkq.retry[0].rflags = rinfo->flags;
3329 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3330 /* Use same bit-rate for all TX retries. */
3331 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3332 linkq.retry[i].plcp = linkq.retry[0].plcp;
3333 linkq.retry[i].rflags = linkq.retry[0].rflags;
3334 }
3335 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3336 }
3337
3338 static void
3339 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3340 {
3341 struct iwn_cmd_led led;
3342
3343 /* Clear microcode LED ownership. */
3344 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3345
3346 led.which = which;
3347 led.unit = htole32(10000); /* on/off in unit of 100ms */
3348 led.off = off;
3349 led.on = on;
3350 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3351 }
3352
3353 /*
3354 * Set the critical temperature at which the firmware will stop the radio
3355 * and notify us.
3356 */
3357 static int
3358 iwn_set_critical_temp(struct iwn_softc *sc)
3359 {
3360 struct iwn_critical_temp crit;
3361 int32_t temp;
3362
3363 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3364
3365 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3366 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3367 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3368 temp = IWN_CTOK(110);
3369 else
3370 temp = 110;
3371 memset(&crit, 0, sizeof crit);
3372 crit.tempR = htole32(temp);
3373 DPRINTF(("setting critical temperature to %d\n", temp));
3374 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3375 }
3376
3377 static int
3378 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3379 {
3380 struct iwn_cmd_timing cmd;
3381 uint64_t val, mod;
3382
3383 memset(&cmd, 0, sizeof cmd);
3384 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3385 cmd.bintval = htole16(ni->ni_intval);
3386 cmd.lintval = htole16(10);
3387
3388 /* Compute remaining time until next beacon. */
3389 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
3390 mod = le64toh(cmd.tstamp) % val;
3391 cmd.binitval = htole32((uint32_t)(val - mod));
3392
3393 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3394 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3395
3396 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3397 }
3398
3399 static void
3400 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3401 {
3402 /* Adjust TX power if need be (delta >= 3 degC). */
3403 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3404 if (abs(temp - sc->temp) >= 3) {
3405 /* Record temperature of last calibration. */
3406 sc->temp = temp;
3407 (void)iwn4965_set_txpower(sc, 1);
3408 }
3409 }
3410
3411 /*
3412 * Set TX power for current channel (each rate has its own power settings).
3413 * This function takes into account the regulatory information from EEPROM,
3414 * the current temperature and the current voltage.
3415 */
3416 static int
3417 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3418 {
3419 /* Fixed-point arithmetic division using a n-bit fractional part. */
3420 #define fdivround(a, b, n) \
3421 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3422 /* Linear interpolation. */
3423 #define interpolate(x, x1, y1, x2, y2, n) \
3424 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3425
3426 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3427 struct ieee80211com *ic = &sc->sc_ic;
3428 struct iwn_ucode_info *uc = &sc->ucode_info;
3429 struct ieee80211_channel *ch;
3430 struct iwn4965_cmd_txpower cmd;
3431 struct iwn4965_eeprom_chan_samples *chans;
3432 const uint8_t *rf_gain, *dsp_gain;
3433 int32_t vdiff, tdiff;
3434 int i, c, grp, maxpwr;
3435 uint8_t chan;
3436
3437 /* Retrieve current channel from last RXON. */
3438 chan = sc->rxon.chan;
3439 DPRINTF(("setting TX power for channel %d\n", chan));
3440 ch = &ic->ic_channels[chan];
3441
3442 memset(&cmd, 0, sizeof cmd);
3443 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3444 cmd.chan = chan;
3445
3446 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3447 maxpwr = sc->maxpwr5GHz;
3448 rf_gain = iwn4965_rf_gain_5ghz;
3449 dsp_gain = iwn4965_dsp_gain_5ghz;
3450 } else {
3451 maxpwr = sc->maxpwr2GHz;
3452 rf_gain = iwn4965_rf_gain_2ghz;
3453 dsp_gain = iwn4965_dsp_gain_2ghz;
3454 }
3455
3456 /* Compute voltage compensation. */
3457 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3458 if (vdiff > 0)
3459 vdiff *= 2;
3460 if (abs(vdiff) > 2)
3461 vdiff = 0;
3462 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3463 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3464
3465 /* Get channel attenuation group. */
3466 if (chan <= 20) /* 1-20 */
3467 grp = 4;
3468 else if (chan <= 43) /* 34-43 */
3469 grp = 0;
3470 else if (chan <= 70) /* 44-70 */
3471 grp = 1;
3472 else if (chan <= 124) /* 71-124 */
3473 grp = 2;
3474 else /* 125-200 */
3475 grp = 3;
3476 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3477
3478 /* Get channel sub-band. */
3479 for (i = 0; i < IWN_NBANDS; i++)
3480 if (sc->bands[i].lo != 0 &&
3481 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3482 break;
3483 if (i == IWN_NBANDS) /* Can't happen in real-life. */
3484 return EINVAL;
3485 chans = sc->bands[i].chans;
3486 DPRINTF(("chan %d sub-band=%d\n", chan, i));
3487
3488 for (c = 0; c < 2; c++) {
3489 uint8_t power, gain, temp;
3490 int maxchpwr, pwr, ridx, idx;
3491
3492 power = interpolate(chan,
3493 chans[0].num, chans[0].samples[c][1].power,
3494 chans[1].num, chans[1].samples[c][1].power, 1);
3495 gain = interpolate(chan,
3496 chans[0].num, chans[0].samples[c][1].gain,
3497 chans[1].num, chans[1].samples[c][1].gain, 1);
3498 temp = interpolate(chan,
3499 chans[0].num, chans[0].samples[c][1].temp,
3500 chans[1].num, chans[1].samples[c][1].temp, 1);
3501 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3502 c, power, gain, temp));
3503
3504 /* Compute temperature compensation. */
3505 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3506 DPRINTF(("temperature compensation=%d (current=%d, "
3507 "EEPROM=%d)\n", tdiff, sc->temp, temp));
3508
3509 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3510 /* Convert dBm to half-dBm. */
3511 maxchpwr = sc->maxpwr[chan] * 2;
3512 if ((ridx / 8) & 1)
3513 maxchpwr -= 6; /* MIMO 2T: -3dB */
3514
3515 pwr = maxpwr;
3516
3517 /* Adjust TX power based on rate. */
3518 if ((ridx % 8) == 5)
3519 pwr -= 15; /* OFDM48: -7.5dB */
3520 else if ((ridx % 8) == 6)
3521 pwr -= 17; /* OFDM54: -8.5dB */
3522 else if ((ridx % 8) == 7)
3523 pwr -= 20; /* OFDM60: -10dB */
3524 else
3525 pwr -= 10; /* Others: -5dB */
3526
3527 /* Do not exceed channel max TX power. */
3528 if (pwr > maxchpwr)
3529 pwr = maxchpwr;
3530
3531 idx = gain - (pwr - power) - tdiff - vdiff;
3532 if ((ridx / 8) & 1) /* MIMO */
3533 idx += (int32_t)le32toh(uc->atten[grp][c]);
3534
3535 if (cmd.band == 0)
3536 idx += 9; /* 5GHz */
3537 if (ridx == IWN_RIDX_MAX)
3538 idx += 5; /* CCK */
3539
3540 /* Make sure idx stays in a valid range. */
3541 if (idx < 0)
3542 idx = 0;
3543 else if (idx > IWN4965_MAX_PWR_INDEX)
3544 idx = IWN4965_MAX_PWR_INDEX;
3545
3546 DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3547 c, ridx, idx));
3548 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3549 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3550 }
3551 }
3552
3553 DPRINTF(("setting TX power for chan %d\n", chan));
3554 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3555
3556 #undef interpolate
3557 #undef fdivround
3558 }
3559
3560 static int
3561 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3562 {
3563 struct iwn5000_cmd_txpower cmd;
3564
3565 /*
3566 * TX power calibration is handled automatically by the firmware
3567 * for 5000 Series.
3568 */
3569 memset(&cmd, 0, sizeof cmd);
3570 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3571 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3572 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3573 DPRINTF(("setting TX power\n"));
3574 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3575 }
3576
3577 /*
3578 * Retrieve the maximum RSSI (in dBm) among receivers.
3579 */
3580 static int
3581 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3582 {
3583 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3584 uint8_t mask, agc;
3585 int rssi;
3586
3587 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3588 agc = (le16toh(phy->agc) >> 7) & 0x7f;
3589
3590 rssi = 0;
3591 if (mask & IWN_ANT_A)
3592 rssi = MAX(rssi, phy->rssi[0]);
3593 if (mask & IWN_ANT_B)
3594 rssi = MAX(rssi, phy->rssi[2]);
3595 if (mask & IWN_ANT_C)
3596 rssi = MAX(rssi, phy->rssi[4]);
3597
3598 return rssi - agc - IWN_RSSI_TO_DBM;
3599 }
3600
3601 static int
3602 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3603 {
3604 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3605 uint8_t agc;
3606 int rssi;
3607
3608 agc = (le32toh(phy->agc) >> 9) & 0x7f;
3609
3610 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3611 le16toh(phy->rssi[1]) & 0xff);
3612 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3613
3614 return rssi - agc - IWN_RSSI_TO_DBM;
3615 }
3616
3617 /*
3618 * Retrieve the average noise (in dBm) among receivers.
3619 */
3620 static int
3621 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3622 {
3623 int i, total, nbant, noise;
3624
3625 total = nbant = 0;
3626 for (i = 0; i < 3; i++) {
3627 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3628 continue;
3629 total += noise;
3630 nbant++;
3631 }
3632 /* There should be at least one antenna but check anyway. */
3633 return (nbant == 0) ? -127 : (total / nbant) - 107;
3634 }
3635
3636 /*
3637 * Compute temperature (in degC) from last received statistics.
3638 */
3639 static int
3640 iwn4965_get_temperature(struct iwn_softc *sc)
3641 {
3642 struct iwn_ucode_info *uc = &sc->ucode_info;
3643 int32_t r1, r2, r3, r4, temp;
3644
3645 r1 = le32toh(uc->temp[0].chan20MHz);
3646 r2 = le32toh(uc->temp[1].chan20MHz);
3647 r3 = le32toh(uc->temp[2].chan20MHz);
3648 r4 = le32toh(sc->rawtemp);
3649
3650 if (r1 == r3) /* Prevents division by 0 (should not happen). */
3651 return 0;
3652
3653 /* Sign-extend 23-bit R4 value to 32-bit. */
3654 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3655 /* Compute temperature in Kelvin. */
3656 temp = (259 * (r4 - r2)) / (r3 - r1);
3657 temp = (temp * 97) / 100 + 8;
3658
3659 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3660 return IWN_KTOC(temp);
3661 }
3662
3663 static int
3664 iwn5000_get_temperature(struct iwn_softc *sc)
3665 {
3666 int32_t temp;
3667
3668 /*
3669 * Temperature is not used by the driver for 5000 Series because
3670 * TX power calibration is handled by firmware. We export it to
3671 * users through the sensor framework though.
3672 */
3673 temp = le32toh(sc->rawtemp);
3674 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3675 temp = (temp / -5) + sc->temp_off;
3676 temp = IWN_KTOC(temp);
3677 }
3678 return temp;
3679 }
3680
3681 /*
3682 * Initialize sensitivity calibration state machine.
3683 */
3684 static int
3685 iwn_init_sensitivity(struct iwn_softc *sc)
3686 {
3687 struct iwn_ops *ops = &sc->ops;
3688 struct iwn_calib_state *calib = &sc->calib;
3689 uint32_t flags;
3690 int error;
3691
3692 /* Reset calibration state machine. */
3693 memset(calib, 0, sizeof (*calib));
3694 calib->state = IWN_CALIB_STATE_INIT;
3695 calib->cck_state = IWN_CCK_STATE_HIFA;
3696 /* Set initial correlation values. */
3697 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3698 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3699 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3700 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3701 calib->cck_x4 = 125;
3702 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3703 calib->energy_cck = sc->limits->energy_cck;
3704
3705 /* Write initial sensitivity. */
3706 if ((error = iwn_send_sensitivity(sc)) != 0)
3707 return error;
3708
3709 /* Write initial gains. */
3710 if ((error = ops->init_gains(sc)) != 0)
3711 return error;
3712
3713 /* Request statistics at each beacon interval. */
3714 flags = 0;
3715 DPRINTF(("sending request for statistics\n"));
3716 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3717 }
3718
3719 /*
3720 * Collect noise and RSSI statistics for the first 20 beacons received
3721 * after association and use them to determine connected antennas and
3722 * to set differential gains.
3723 */
3724 static void
3725 iwn_collect_noise(struct iwn_softc *sc,
3726 const struct iwn_rx_general_stats *stats)
3727 {
3728 struct iwn_ops *ops = &sc->ops;
3729 struct iwn_calib_state *calib = &sc->calib;
3730 uint32_t val;
3731 int i;
3732
3733 /* Accumulate RSSI and noise for all 3 antennas. */
3734 for (i = 0; i < 3; i++) {
3735 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3736 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3737 }
3738 /* NB: We update differential gains only once after 20 beacons. */
3739 if (++calib->nbeacons < 20)
3740 return;
3741
3742 /* Determine highest average RSSI. */
3743 val = MAX(calib->rssi[0], calib->rssi[1]);
3744 val = MAX(calib->rssi[2], val);
3745
3746 /* Determine which antennas are connected. */
3747 sc->chainmask = sc->rxchainmask;
3748 for (i = 0; i < 3; i++)
3749 if (val - calib->rssi[i] > 15 * 20)
3750 sc->chainmask &= ~(1 << i);
3751 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3752 sc->rxchainmask, sc->chainmask));
3753
3754 /* If none of the TX antennas are connected, keep at least one. */
3755 if ((sc->chainmask & sc->txchainmask) == 0)
3756 sc->chainmask |= IWN_LSB(sc->txchainmask);
3757
3758 (void)ops->set_gains(sc);
3759 calib->state = IWN_CALIB_STATE_RUN;
3760
3761 #ifdef notyet
3762 /* XXX Disable RX chains with no antennas connected. */
3763 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3764 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3765 #endif
3766
3767 /* Enable power-saving mode if requested by user. */
3768 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3769 (void)iwn_set_pslevel(sc, 0, 3, 1);
3770 }
3771
3772 static int
3773 iwn4965_init_gains(struct iwn_softc *sc)
3774 {
3775 struct iwn_phy_calib_gain cmd;
3776
3777 memset(&cmd, 0, sizeof cmd);
3778 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3779 /* Differential gains initially set to 0 for all 3 antennas. */
3780 DPRINTF(("setting initial differential gains\n"));
3781 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3782 }
3783
3784 static int
3785 iwn5000_init_gains(struct iwn_softc *sc)
3786 {
3787 struct iwn_phy_calib cmd;
3788
3789 memset(&cmd, 0, sizeof cmd);
3790 cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3791 cmd.ngroups = 1;
3792 cmd.isvalid = 1;
3793 DPRINTF(("setting initial differential gains\n"));
3794 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3795 }
3796
3797 static int
3798 iwn4965_set_gains(struct iwn_softc *sc)
3799 {
3800 struct iwn_calib_state *calib = &sc->calib;
3801 struct iwn_phy_calib_gain cmd;
3802 int i, delta, noise;
3803
3804 /* Get minimal noise among connected antennas. */
3805 noise = INT_MAX; /* NB: There's at least one antenna. */
3806 for (i = 0; i < 3; i++)
3807 if (sc->chainmask & (1 << i))
3808 noise = MIN(calib->noise[i], noise);
3809
3810 memset(&cmd, 0, sizeof cmd);
3811 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3812 /* Set differential gains for connected antennas. */
3813 for (i = 0; i < 3; i++) {
3814 if (sc->chainmask & (1 << i)) {
3815 /* Compute attenuation (in unit of 1.5dB). */
3816 delta = (noise - (int32_t)calib->noise[i]) / 30;
3817 /* NB: delta <= 0 */
3818 /* Limit to [-4.5dB,0]. */
3819 cmd.gain[i] = MIN(abs(delta), 3);
3820 if (delta < 0)
3821 cmd.gain[i] |= 1 << 2; /* sign bit */
3822 }
3823 }
3824 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3825 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3826 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3827 }
3828
3829 static int
3830 iwn5000_set_gains(struct iwn_softc *sc)
3831 {
3832 struct iwn_calib_state *calib = &sc->calib;
3833 struct iwn_phy_calib_gain cmd;
3834 int i, ant, div, delta;
3835
3836 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
3837 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3838
3839 memset(&cmd, 0, sizeof cmd);
3840 cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3841 cmd.ngroups = 1;
3842 cmd.isvalid = 1;
3843 /* Get first available RX antenna as referential. */
3844 ant = IWN_LSB(sc->rxchainmask);
3845 /* Set differential gains for other antennas. */
3846 for (i = ant + 1; i < 3; i++) {
3847 if (sc->chainmask & (1 << i)) {
3848 /* The delta is relative to antenna "ant". */
3849 delta = ((int32_t)calib->noise[ant] -
3850 (int32_t)calib->noise[i]) / div;
3851 /* Limit to [-4.5dB,+4.5dB]. */
3852 cmd.gain[i - 1] = MIN(abs(delta), 3);
3853 if (delta < 0)
3854 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
3855 }
3856 }
3857 DPRINTF(("setting differential gains: %x/%x (%x)\n",
3858 cmd.gain[0], cmd.gain[1], sc->chainmask));
3859 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3860 }
3861
3862 /*
3863 * Tune RF RX sensitivity based on the number of false alarms detected
3864 * during the last beacon period.
3865 */
3866 static void
3867 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3868 {
3869 #define inc(val, inc, max) \
3870 if ((val) < (max)) { \
3871 if ((val) < (max) - (inc)) \
3872 (val) += (inc); \
3873 else \
3874 (val) = (max); \
3875 needs_update = 1; \
3876 }
3877 #define dec(val, dec, min) \
3878 if ((val) > (min)) { \
3879 if ((val) > (min) + (dec)) \
3880 (val) -= (dec); \
3881 else \
3882 (val) = (min); \
3883 needs_update = 1; \
3884 }
3885
3886 const struct iwn_sensitivity_limits *limits = sc->limits;
3887 struct iwn_calib_state *calib = &sc->calib;
3888 uint32_t val, rxena, fa;
3889 uint32_t energy[3], energy_min;
3890 uint8_t noise[3], noise_ref;
3891 int i, needs_update = 0;
3892
3893 /* Check that we've been enabled long enough. */
3894 if ((rxena = le32toh(stats->general.load)) == 0)
3895 return;
3896
3897 /* Compute number of false alarms since last call for OFDM. */
3898 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3899 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3900 fa *= 200 * 1024; /* 200TU */
3901
3902 /* Save counters values for next call. */
3903 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3904 calib->fa_ofdm = le32toh(stats->ofdm.fa);
3905
3906 if (fa > 50 * rxena) {
3907 /* High false alarm count, decrease sensitivity. */
3908 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3909 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
3910 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3911 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
3912 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3913
3914 } else if (fa < 5 * rxena) {
3915 /* Low false alarm count, increase sensitivity. */
3916 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3917 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
3918 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3919 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
3920 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3921 }
3922
3923 /* Compute maximum noise among 3 receivers. */
3924 for (i = 0; i < 3; i++)
3925 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3926 val = MAX(noise[0], noise[1]);
3927 val = MAX(noise[2], val);
3928 /* Insert it into our samples table. */
3929 calib->noise_samples[calib->cur_noise_sample] = val;
3930 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3931
3932 /* Compute maximum noise among last 20 samples. */
3933 noise_ref = calib->noise_samples[0];
3934 for (i = 1; i < 20; i++)
3935 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
3936
3937 /* Compute maximum energy among 3 receivers. */
3938 for (i = 0; i < 3; i++)
3939 energy[i] = le32toh(stats->general.energy[i]);
3940 val = MIN(energy[0], energy[1]);
3941 val = MIN(energy[2], val);
3942 /* Insert it into our samples table. */
3943 calib->energy_samples[calib->cur_energy_sample] = val;
3944 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3945
3946 /* Compute minimum energy among last 10 samples. */
3947 energy_min = calib->energy_samples[0];
3948 for (i = 1; i < 10; i++)
3949 energy_min = MAX(energy_min, calib->energy_samples[i]);
3950 energy_min += 6;
3951
3952 /* Compute number of false alarms since last call for CCK. */
3953 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3954 fa += le32toh(stats->cck.fa) - calib->fa_cck;
3955 fa *= 200 * 1024; /* 200TU */
3956
3957 /* Save counters values for next call. */
3958 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3959 calib->fa_cck = le32toh(stats->cck.fa);
3960
3961 if (fa > 50 * rxena) {
3962 /* High false alarm count, decrease sensitivity. */
3963 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
3964 calib->cck_state = IWN_CCK_STATE_HIFA;
3965 calib->low_fa = 0;
3966
3967 if (calib->cck_x4 > 160) {
3968 calib->noise_ref = noise_ref;
3969 if (calib->energy_cck > 2)
3970 dec(calib->energy_cck, 2, energy_min);
3971 }
3972 if (calib->cck_x4 < 160) {
3973 calib->cck_x4 = 161;
3974 needs_update = 1;
3975 } else
3976 inc(calib->cck_x4, 3, limits->max_cck_x4);
3977
3978 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
3979
3980 } else if (fa < 5 * rxena) {
3981 /* Low false alarm count, increase sensitivity. */
3982 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
3983 calib->cck_state = IWN_CCK_STATE_LOFA;
3984 calib->low_fa++;
3985
3986 if (calib->cck_state != IWN_CCK_STATE_INIT &&
3987 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
3988 calib->low_fa > 100)) {
3989 inc(calib->energy_cck, 2, limits->min_energy_cck);
3990 dec(calib->cck_x4, 3, limits->min_cck_x4);
3991 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
3992 }
3993 } else {
3994 /* Not worth to increase or decrease sensitivity. */
3995 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
3996 calib->low_fa = 0;
3997 calib->noise_ref = noise_ref;
3998
3999 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4000 /* Previous interval had many false alarms. */
4001 dec(calib->energy_cck, 8, energy_min);
4002 }
4003 calib->cck_state = IWN_CCK_STATE_INIT;
4004 }
4005
4006 if (needs_update)
4007 (void)iwn_send_sensitivity(sc);
4008 #undef dec
4009 #undef inc
4010 }
4011
4012 static int
4013 iwn_send_sensitivity(struct iwn_softc *sc)
4014 {
4015 struct iwn_calib_state *calib = &sc->calib;
4016 struct iwn_sensitivity_cmd cmd;
4017
4018 memset(&cmd, 0, sizeof cmd);
4019 cmd.which = IWN_SENSITIVITY_WORKTBL;
4020 /* OFDM modulation. */
4021 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4022 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4023 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4024 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4025 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4026 cmd.energy_ofdm_th = htole16(62);
4027 /* CCK modulation. */
4028 cmd.corr_cck_x4 = htole16(calib->cck_x4);
4029 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4030 cmd.energy_cck = htole16(calib->energy_cck);
4031 /* Barker modulation: use default values. */
4032 cmd.corr_barker = htole16(190);
4033 cmd.corr_barker_mrc = htole16(390);
4034
4035 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4036 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4037 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4038 calib->energy_cck));
4039 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4040 }
4041
4042 /*
4043 * Set STA mode power saving level (between 0 and 5).
4044 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4045 */
4046 static int
4047 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4048 {
4049 struct iwn_pmgt_cmd cmd;
4050 const struct iwn_pmgt *pmgt;
4051 uint32_t maxp, skip_dtim;
4052 pcireg_t reg;
4053 int i;
4054
4055 /* Select which PS parameters to use. */
4056 if (dtim <= 2)
4057 pmgt = &iwn_pmgt[0][level];
4058 else if (dtim <= 10)
4059 pmgt = &iwn_pmgt[1][level];
4060 else
4061 pmgt = &iwn_pmgt[2][level];
4062
4063 memset(&cmd, 0, sizeof cmd);
4064 if (level != 0) /* not CAM */
4065 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4066 if (level == 5)
4067 cmd.flags |= htole16(IWN_PS_FAST_PD);
4068 /* Retrieve PCIe Active State Power Management (ASPM). */
4069 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4070 sc->sc_cap_off + PCI_PCIE_LCSR);
4071 if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4072 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4073 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4074 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4075
4076 if (dtim == 0) {
4077 dtim = 1;
4078 skip_dtim = 0;
4079 } else
4080 skip_dtim = pmgt->skip_dtim;
4081 if (skip_dtim != 0) {
4082 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4083 maxp = pmgt->intval[4];
4084 if (maxp == (uint32_t)-1)
4085 maxp = dtim * (skip_dtim + 1);
4086 else if (maxp > dtim)
4087 maxp = (maxp / dtim) * dtim;
4088 } else
4089 maxp = dtim;
4090 for (i = 0; i < 5; i++)
4091 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4092
4093 DPRINTF(("setting power saving level to %d\n", level));
4094 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4095 }
4096
4097 int
4098 iwn5000_runtime_calib(struct iwn_softc *sc)
4099 {
4100 struct iwn5000_calib_config cmd;
4101
4102 memset(&cmd, 0, sizeof cmd);
4103 cmd.ucode.once.enable = 0xffffffff;
4104 cmd.ucode.once.start = IWN5000_CALIB_DC;
4105 DPRINTF(("configuring runtime calibration\n"));
4106 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4107 }
4108
4109 static int
4110 iwn_config(struct iwn_softc *sc)
4111 {
4112 struct iwn_ops *ops = &sc->ops;
4113 struct ieee80211com *ic = &sc->sc_ic;
4114 struct ifnet *ifp = ic->ic_ifp;
4115 struct iwn_bluetooth bluetooth;
4116 uint32_t txmask;
4117 uint16_t rxchain;
4118 int error;
4119
4120 if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4121 sc->hw_type == IWN_HW_REV_TYPE_6005) {
4122 /* Configure runtime DC calibration. */
4123 error = iwn5000_runtime_calib(sc);
4124 if (error != 0) {
4125 aprint_error_dev(sc->sc_dev,
4126 "could not configure runtime calibration\n");
4127 return error;
4128 }
4129 }
4130
4131 /* Configure valid TX chains for 5000 Series. */
4132 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4133 txmask = htole32(sc->txchainmask);
4134 DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4135 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4136 sizeof txmask, 0);
4137 if (error != 0) {
4138 aprint_error_dev(sc->sc_dev,
4139 "could not configure valid TX chains\n");
4140 return error;
4141 }
4142 }
4143
4144 /* Configure bluetooth coexistence. */
4145 memset(&bluetooth, 0, sizeof bluetooth);
4146 bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4147 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4148 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4149 DPRINTF(("configuring bluetooth coexistence\n"));
4150 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4151 if (error != 0) {
4152 aprint_error_dev(sc->sc_dev,
4153 "could not configure bluetooth coexistence\n");
4154 return error;
4155 }
4156
4157 /* Set mode, channel, RX filter and enable RX. */
4158 memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4159 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4160 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4161 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4162 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4163 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4164 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4165 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4166 switch (ic->ic_opmode) {
4167 case IEEE80211_M_STA:
4168 sc->rxon.mode = IWN_MODE_STA;
4169 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4170 break;
4171 case IEEE80211_M_MONITOR:
4172 sc->rxon.mode = IWN_MODE_MONITOR;
4173 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4174 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4175 break;
4176 default:
4177 /* Should not get there. */
4178 break;
4179 }
4180 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4181 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4182 sc->rxon.ht_single_mask = 0xff;
4183 sc->rxon.ht_dual_mask = 0xff;
4184 sc->rxon.ht_triple_mask = 0xff;
4185 rxchain =
4186 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4187 IWN_RXCHAIN_MIMO_COUNT(2) |
4188 IWN_RXCHAIN_IDLE_COUNT(2);
4189 sc->rxon.rxchain = htole16(rxchain);
4190 DPRINTF(("setting configuration\n"));
4191 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4192 if (error != 0) {
4193 aprint_error_dev(sc->sc_dev,
4194 "RXON command failed\n");
4195 return error;
4196 }
4197
4198 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4199 aprint_error_dev(sc->sc_dev,
4200 "could not add broadcast node\n");
4201 return error;
4202 }
4203
4204 /* Configuration has changed, set TX power accordingly. */
4205 if ((error = ops->set_txpower(sc, 0)) != 0) {
4206 aprint_error_dev(sc->sc_dev,
4207 "could not set TX power\n");
4208 return error;
4209 }
4210
4211 if ((error = iwn_set_critical_temp(sc)) != 0) {
4212 aprint_error_dev(sc->sc_dev,
4213 "could not set critical temperature\n");
4214 return error;
4215 }
4216
4217 /* Set power saving level to CAM during initialization. */
4218 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4219 aprint_error_dev(sc->sc_dev,
4220 "could not set power saving level\n");
4221 return error;
4222 }
4223 return 0;
4224 }
4225
4226 static int
4227 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4228 {
4229 struct ieee80211com *ic = &sc->sc_ic;
4230 struct iwn_scan_hdr *hdr;
4231 struct iwn_cmd_data *tx;
4232 struct iwn_scan_essid *essid;
4233 struct iwn_scan_chan *chan;
4234 struct ieee80211_frame *wh;
4235 struct ieee80211_rateset *rs;
4236 struct ieee80211_channel *c;
4237 uint8_t *buf, *frm;
4238 uint16_t rxchain;
4239 uint8_t txant;
4240 int buflen, error;
4241
4242 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4243 if (buf == NULL) {
4244 aprint_error_dev(sc->sc_dev,
4245 "could not allocate buffer for scan command\n");
4246 return ENOMEM;
4247 }
4248 hdr = (struct iwn_scan_hdr *)buf;
4249 /*
4250 * Move to the next channel if no frames are received within 10ms
4251 * after sending the probe request.
4252 */
4253 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4254 hdr->quiet_threshold = htole16(1); /* min # of packets */
4255
4256 /* Select antennas for scanning. */
4257 rxchain =
4258 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4259 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4260 IWN_RXCHAIN_DRIVER_FORCE;
4261 if ((flags & IEEE80211_CHAN_5GHZ) &&
4262 sc->hw_type == IWN_HW_REV_TYPE_4965) {
4263 /* Ant A must be avoided in 5GHz because of an HW bug. */
4264 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4265 } else /* Use all available RX antennas. */
4266 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4267 hdr->rxchain = htole16(rxchain);
4268 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4269
4270 tx = (struct iwn_cmd_data *)(hdr + 1);
4271 tx->flags = htole32(IWN_TX_AUTO_SEQ);
4272 tx->id = sc->broadcast_id;
4273 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4274
4275 if (flags & IEEE80211_CHAN_5GHZ) {
4276 hdr->crc_threshold = 0xffff;
4277 /* Send probe requests at 6Mbps. */
4278 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4279 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4280 } else {
4281 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4282 /* Send probe requests at 1Mbps. */
4283 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4284 tx->rflags = IWN_RFLAG_CCK;
4285 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4286 }
4287 /* Use the first valid TX antenna. */
4288 txant = IWN_LSB(sc->txchainmask);
4289 tx->rflags |= IWN_RFLAG_ANT(txant);
4290
4291 essid = (struct iwn_scan_essid *)(tx + 1);
4292 if (ic->ic_des_esslen != 0) {
4293 essid[0].id = IEEE80211_ELEMID_SSID;
4294 essid[0].len = ic->ic_des_esslen;
4295 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4296 }
4297 /*
4298 * Build a probe request frame. Most of the following code is a
4299 * copy & paste of what is done in net80211.
4300 */
4301 wh = (struct ieee80211_frame *)(essid + 20);
4302 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4303 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4304 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4305 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4306 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4307 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4308 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4309 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4310
4311 frm = (uint8_t *)(wh + 1);
4312 frm = ieee80211_add_ssid(frm, NULL, 0);
4313 frm = ieee80211_add_rates(frm, rs);
4314 #ifndef IEEE80211_NO_HT
4315 if (ic->ic_flags & IEEE80211_F_HTON)
4316 frm = ieee80211_add_htcaps(frm, ic);
4317 #endif
4318 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4319 frm = ieee80211_add_xrates(frm, rs);
4320
4321 /* Set length of probe request. */
4322 tx->len = htole16(frm - (uint8_t *)wh);
4323
4324 chan = (struct iwn_scan_chan *)frm;
4325 for (c = &ic->ic_channels[1];
4326 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4327 if ((c->ic_flags & flags) != flags)
4328 continue;
4329
4330 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4331 DPRINTFN(2, ("adding channel %d\n", chan->chan));
4332 chan->flags = 0;
4333 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4334 chan->flags |= htole32(IWN_CHAN_ACTIVE);
4335 if (ic->ic_des_esslen != 0)
4336 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4337 chan->dsp_gain = 0x6e;
4338 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4339 chan->rf_gain = 0x3b;
4340 chan->active = htole16(24);
4341 chan->passive = htole16(110);
4342 } else {
4343 chan->rf_gain = 0x28;
4344 chan->active = htole16(36);
4345 chan->passive = htole16(120);
4346 }
4347 hdr->nchan++;
4348 chan++;
4349 }
4350
4351 buflen = (uint8_t *)chan - buf;
4352 hdr->len = htole16(buflen);
4353
4354 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4355 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4356 free(buf, M_DEVBUF);
4357 return error;
4358 }
4359
4360 static int
4361 iwn_auth(struct iwn_softc *sc)
4362 {
4363 struct iwn_ops *ops = &sc->ops;
4364 struct ieee80211com *ic = &sc->sc_ic;
4365 struct ieee80211_node *ni = ic->ic_bss;
4366 int error;
4367
4368 /* Update adapter configuration. */
4369 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4370 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4371 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4372 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4373 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4374 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4375 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4376 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4377 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4378 switch (ic->ic_curmode) {
4379 case IEEE80211_MODE_11A:
4380 sc->rxon.cck_mask = 0;
4381 sc->rxon.ofdm_mask = 0x15;
4382 break;
4383 case IEEE80211_MODE_11B:
4384 sc->rxon.cck_mask = 0x03;
4385 sc->rxon.ofdm_mask = 0;
4386 break;
4387 default: /* Assume 802.11b/g. */
4388 sc->rxon.cck_mask = 0x0f;
4389 sc->rxon.ofdm_mask = 0x15;
4390 }
4391 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4392 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4393 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4394 if (error != 0) {
4395 aprint_error_dev(sc->sc_dev,
4396 "RXON command failed\n");
4397 return error;
4398 }
4399
4400 /* Configuration has changed, set TX power accordingly. */
4401 if ((error = ops->set_txpower(sc, 1)) != 0) {
4402 aprint_error_dev(sc->sc_dev,
4403 "could not set TX power\n");
4404 return error;
4405 }
4406 /*
4407 * Reconfiguring RXON clears the firmware nodes table so we must
4408 * add the broadcast node again.
4409 */
4410 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4411 aprint_error_dev(sc->sc_dev,
4412 "could not add broadcast node\n");
4413 return error;
4414 }
4415 return 0;
4416 }
4417
4418 static int
4419 iwn_run(struct iwn_softc *sc)
4420 {
4421 struct iwn_ops *ops = &sc->ops;
4422 struct ieee80211com *ic = &sc->sc_ic;
4423 struct ieee80211_node *ni = ic->ic_bss;
4424 struct iwn_node_info node;
4425 int error;
4426
4427 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4428 /* Link LED blinks while monitoring. */
4429 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4430 return 0;
4431 }
4432 if ((error = iwn_set_timing(sc, ni)) != 0) {
4433 aprint_error_dev(sc->sc_dev,
4434 "could not set timing\n");
4435 return error;
4436 }
4437
4438 /* Update adapter configuration. */
4439 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4440 /* Short preamble and slot time are negotiated when associating. */
4441 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4442 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4443 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4444 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4445 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4446 sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4447 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4448 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4449 if (error != 0) {
4450 aprint_error_dev(sc->sc_dev,
4451 "could not update configuration\n");
4452 return error;
4453 }
4454
4455 /* Configuration has changed, set TX power accordingly. */
4456 if ((error = ops->set_txpower(sc, 1)) != 0) {
4457 aprint_error_dev(sc->sc_dev,
4458 "could not set TX power\n");
4459 return error;
4460 }
4461
4462 /* Fake a join to initialize the TX rate. */
4463 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
4464 iwn_newassoc(ni, 1);
4465
4466 /* Add BSS node. */
4467 memset(&node, 0, sizeof node);
4468 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4469 node.id = IWN_ID_BSS;
4470 #ifdef notyet
4471 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4472 IWN_AMDPU_DENSITY(5)); /* 2us */
4473 #endif
4474 DPRINTF(("adding BSS node\n"));
4475 error = ops->add_node(sc, &node, 1);
4476 if (error != 0) {
4477 aprint_error_dev(sc->sc_dev,
4478 "could not add BSS node\n");
4479 return error;
4480 }
4481 DPRINTF(("setting link quality for node %d\n", node.id));
4482 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4483 aprint_error_dev(sc->sc_dev,
4484 "could not setup link quality for node %d\n", node.id);
4485 return error;
4486 }
4487
4488 if ((error = iwn_init_sensitivity(sc)) != 0) {
4489 aprint_error_dev(sc->sc_dev,
4490 "could not set sensitivity\n");
4491 return error;
4492 }
4493 /* Start periodic calibration timer. */
4494 sc->calib.state = IWN_CALIB_STATE_ASSOC;
4495 sc->calib_cnt = 0;
4496 callout_schedule(&sc->calib_to, hz/2);
4497
4498 /* Link LED always on while associated. */
4499 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4500 return 0;
4501 }
4502
4503 #ifdef IWN_HWCRYPTO
4504 /*
4505 * We support CCMP hardware encryption/decryption of unicast frames only.
4506 * HW support for TKIP really sucks. We should let TKIP die anyway.
4507 */
4508 static int
4509 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4510 struct ieee80211_key *k)
4511 {
4512 struct iwn_softc *sc = ic->ic_softc;
4513 struct iwn_ops *ops = &sc->ops;
4514 struct iwn_node *wn = (void *)ni;
4515 struct iwn_node_info node;
4516 uint16_t kflags;
4517
4518 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4519 k->k_cipher != IEEE80211_CIPHER_CCMP)
4520 return ieee80211_set_key(ic, ni, k);
4521
4522 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4523 if (k->k_flags & IEEE80211_KEY_GROUP)
4524 kflags |= IWN_KFLAG_GROUP;
4525
4526 memset(&node, 0, sizeof node);
4527 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4528 sc->broadcast_id : wn->id;
4529 node.control = IWN_NODE_UPDATE;
4530 node.flags = IWN_FLAG_SET_KEY;
4531 node.kflags = htole16(kflags);
4532 node.kid = k->k_id;
4533 memcpy(node.key, k->k_key, k->k_len);
4534 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4535 return ops->add_node(sc, &node, 1);
4536 }
4537
4538 static void
4539 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4540 struct ieee80211_key *k)
4541 {
4542 struct iwn_softc *sc = ic->ic_softc;
4543 struct iwn_ops *ops = &sc->ops;
4544 struct iwn_node *wn = (void *)ni;
4545 struct iwn_node_info node;
4546
4547 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4548 k->k_cipher != IEEE80211_CIPHER_CCMP) {
4549 /* See comment about other ciphers above. */
4550 ieee80211_delete_key(ic, ni, k);
4551 return;
4552 }
4553 if (ic->ic_state != IEEE80211_S_RUN)
4554 return; /* Nothing to do. */
4555 memset(&node, 0, sizeof node);
4556 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4557 sc->broadcast_id : wn->id;
4558 node.control = IWN_NODE_UPDATE;
4559 node.flags = IWN_FLAG_SET_KEY;
4560 node.kflags = htole16(IWN_KFLAG_INVALID);
4561 node.kid = 0xff;
4562 DPRINTF(("delete keys for node %d\n", node.id));
4563 (void)ops->add_node(sc, &node, 1);
4564 }
4565 #endif
4566
4567 /* XXX Added for NetBSD (copied from rev 1.39). */
4568
4569 static int
4570 iwn_wme_update(struct ieee80211com *ic)
4571 {
4572 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
4573 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
4574 struct iwn_softc *sc = ic->ic_ifp->if_softc;
4575 const struct wmeParams *wmep;
4576 struct iwn_edca_params cmd;
4577 int ac;
4578
4579 /* don't override default WME values if WME is not actually enabled */
4580 if (!(ic->ic_flags & IEEE80211_F_WME))
4581 return 0;
4582 cmd.flags = 0;
4583 for (ac = 0; ac < WME_NUM_AC; ac++) {
4584 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4585 cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4586 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4587 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4588 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
4589
4590 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4591 "txop=%d\n", ac, cmd.ac[ac].aifsn,
4592 cmd.ac[ac].cwmin,
4593 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4594 }
4595 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4596 #undef IWN_USEC
4597 #undef IWN_EXP2
4598 }
4599
4600 #ifndef IEEE80211_NO_HT
4601 /*
4602 * This function is called by upper layer when an ADDBA request is received
4603 * from another STA and before the ADDBA response is sent.
4604 */
4605 static int
4606 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4607 uint8_t tid)
4608 {
4609 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4610 struct iwn_softc *sc = ic->ic_softc;
4611 struct iwn_ops *ops = &sc->ops;
4612 struct iwn_node *wn = (void *)ni;
4613 struct iwn_node_info node;
4614
4615 memset(&node, 0, sizeof node);
4616 node.id = wn->id;
4617 node.control = IWN_NODE_UPDATE;
4618 node.flags = IWN_FLAG_SET_ADDBA;
4619 node.addba_tid = tid;
4620 node.addba_ssn = htole16(ba->ba_winstart);
4621 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4622 ba->ba_winstart));
4623 return ops->add_node(sc, &node, 1);
4624 }
4625
4626 /*
4627 * This function is called by upper layer on teardown of an HT-immediate
4628 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
4629 */
4630 static void
4631 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4632 uint8_t tid)
4633 {
4634 struct iwn_softc *sc = ic->ic_softc;
4635 struct iwn_ops *ops = &sc->ops;
4636 struct iwn_node *wn = (void *)ni;
4637 struct iwn_node_info node;
4638
4639 memset(&node, 0, sizeof node);
4640 node.id = wn->id;
4641 node.control = IWN_NODE_UPDATE;
4642 node.flags = IWN_FLAG_SET_DELBA;
4643 node.delba_tid = tid;
4644 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4645 (void)ops->add_node(sc, &node, 1);
4646 }
4647
4648 /*
4649 * This function is called by upper layer when an ADDBA response is received
4650 * from another STA.
4651 */
4652 static int
4653 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4654 uint8_t tid)
4655 {
4656 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4657 struct iwn_softc *sc = ic->ic_softc;
4658 struct iwn_ops *ops = &sc->ops;
4659 struct iwn_node *wn = (void *)ni;
4660 struct iwn_node_info node;
4661 int error;
4662
4663 /* Enable TX for the specified RA/TID. */
4664 wn->disable_tid &= ~(1 << tid);
4665 memset(&node, 0, sizeof node);
4666 node.id = wn->id;
4667 node.control = IWN_NODE_UPDATE;
4668 node.flags = IWN_FLAG_SET_DISABLE_TID;
4669 node.disable_tid = htole16(wn->disable_tid);
4670 error = ops->add_node(sc, &node, 1);
4671 if (error != 0)
4672 return error;
4673
4674 if ((error = iwn_nic_lock(sc)) != 0)
4675 return error;
4676 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4677 iwn_nic_unlock(sc);
4678 return 0;
4679 }
4680
4681 static void
4682 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4683 uint8_t tid)
4684 {
4685 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4686 struct iwn_softc *sc = ic->ic_softc;
4687 struct iwn_ops *ops = &sc->ops;
4688
4689 if (iwn_nic_lock(sc) != 0)
4690 return;
4691 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4692 iwn_nic_unlock(sc);
4693 }
4694
4695 static void
4696 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4697 uint8_t tid, uint16_t ssn)
4698 {
4699 struct iwn_node *wn = (void *)ni;
4700 int qid = 7 + tid;
4701
4702 /* Stop TX scheduler while we're changing its configuration. */
4703 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4704 IWN4965_TXQ_STATUS_CHGACT);
4705
4706 /* Assign RA/TID translation to the queue. */
4707 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4708 wn->id << 4 | tid);
4709
4710 /* Enable chain-building mode for the queue. */
4711 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4712
4713 /* Set starting sequence number from the ADDBA request. */
4714 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4715 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4716
4717 /* Set scheduler window size. */
4718 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4719 IWN_SCHED_WINSZ);
4720 /* Set scheduler frame limit. */
4721 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4722 IWN_SCHED_LIMIT << 16);
4723
4724 /* Enable interrupts for the queue. */
4725 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4726
4727 /* Mark the queue as active. */
4728 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4729 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4730 iwn_tid2fifo[tid] << 1);
4731 }
4732
4733 static void
4734 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4735 {
4736 int qid = 7 + tid;
4737
4738 /* Stop TX scheduler while we're changing its configuration. */
4739 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4740 IWN4965_TXQ_STATUS_CHGACT);
4741
4742 /* Set starting sequence number from the ADDBA request. */
4743 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4744 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4745
4746 /* Disable interrupts for the queue. */
4747 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4748
4749 /* Mark the queue as inactive. */
4750 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4751 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4752 }
4753
4754 static void
4755 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4756 uint8_t tid, uint16_t ssn)
4757 {
4758 struct iwn_node *wn = (void *)ni;
4759 int qid = 10 + tid;
4760
4761 /* Stop TX scheduler while we're changing its configuration. */
4762 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4763 IWN5000_TXQ_STATUS_CHGACT);
4764
4765 /* Assign RA/TID translation to the queue. */
4766 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4767 wn->id << 4 | tid);
4768
4769 /* Enable chain-building mode for the queue. */
4770 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4771
4772 /* Enable aggregation for the queue. */
4773 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4774
4775 /* Set starting sequence number from the ADDBA request. */
4776 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4777 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4778
4779 /* Set scheduler window size and frame limit. */
4780 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4781 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4782
4783 /* Enable interrupts for the queue. */
4784 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4785
4786 /* Mark the queue as active. */
4787 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4788 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4789 }
4790
4791 static void
4792 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4793 {
4794 int qid = 10 + tid;
4795
4796 /* Stop TX scheduler while we're changing its configuration. */
4797 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4798 IWN5000_TXQ_STATUS_CHGACT);
4799
4800 /* Disable aggregation for the queue. */
4801 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4802
4803 /* Set starting sequence number from the ADDBA request. */
4804 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4805 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4806
4807 /* Disable interrupts for the queue. */
4808 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4809
4810 /* Mark the queue as inactive. */
4811 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4812 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4813 }
4814 #endif /* !IEEE80211_NO_HT */
4815
4816 /*
4817 * Query calibration tables from the initialization firmware. We do this
4818 * only once at first boot. Called from a process context.
4819 */
4820 static int
4821 iwn5000_query_calibration(struct iwn_softc *sc)
4822 {
4823 struct iwn5000_calib_config cmd;
4824 int error;
4825
4826 memset(&cmd, 0, sizeof cmd);
4827 cmd.ucode.once.enable = 0xffffffff;
4828 cmd.ucode.once.start = 0xffffffff;
4829 cmd.ucode.once.send = 0xffffffff;
4830 cmd.ucode.flags = 0xffffffff;
4831 DPRINTF(("sending calibration query\n"));
4832 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4833 if (error != 0)
4834 return error;
4835
4836 /* Wait at most two seconds for calibration to complete. */
4837 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4838 error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4839 return error;
4840 }
4841
4842 /*
4843 * Send calibration results to the runtime firmware. These results were
4844 * obtained on first boot from the initialization firmware.
4845 */
4846 static int
4847 iwn5000_send_calibration(struct iwn_softc *sc)
4848 {
4849 int idx, error;
4850
4851 for (idx = 0; idx < 5; idx++) {
4852 if (sc->calibcmd[idx].buf == NULL)
4853 continue; /* No results available. */
4854 DPRINTF(("send calibration result idx=%d len=%d\n",
4855 idx, sc->calibcmd[idx].len));
4856 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4857 sc->calibcmd[idx].len, 0);
4858 if (error != 0) {
4859 aprint_error_dev(sc->sc_dev,
4860 "could not send calibration result\n");
4861 return error;
4862 }
4863 }
4864 return 0;
4865 }
4866
4867 static int
4868 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4869 {
4870 struct iwn5000_wimax_coex wimax;
4871
4872 #ifdef notyet
4873 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4874 /* Enable WiMAX coexistence for combo adapters. */
4875 wimax.flags =
4876 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4877 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4878 IWN_WIMAX_COEX_STA_TABLE_VALID |
4879 IWN_WIMAX_COEX_ENABLE;
4880 memcpy(wimax.events, iwn6050_wimax_events,
4881 sizeof iwn6050_wimax_events);
4882 } else
4883 #endif
4884 {
4885 /* Disable WiMAX coexistence. */
4886 wimax.flags = 0;
4887 memset(wimax.events, 0, sizeof wimax.events);
4888 }
4889 DPRINTF(("Configuring WiMAX coexistence\n"));
4890 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4891 }
4892
4893 /*
4894 * This function is called after the runtime firmware notifies us of its
4895 * readiness (called in a process context).
4896 */
4897 static int
4898 iwn4965_post_alive(struct iwn_softc *sc)
4899 {
4900 int error, qid;
4901
4902 if ((error = iwn_nic_lock(sc)) != 0)
4903 return error;
4904
4905 /* Clear TX scheduler state in SRAM. */
4906 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4907 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
4908 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
4909
4910 /* Set physical address of TX scheduler rings (1KB aligned). */
4911 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4912
4913 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4914
4915 /* Disable chain mode for all our 16 queues. */
4916 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
4917
4918 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
4919 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
4920 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4921
4922 /* Set scheduler window size. */
4923 iwn_mem_write(sc, sc->sched_base +
4924 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
4925 /* Set scheduler frame limit. */
4926 iwn_mem_write(sc, sc->sched_base +
4927 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4928 IWN_SCHED_LIMIT << 16);
4929 }
4930
4931 /* Enable interrupts for all our 16 queues. */
4932 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
4933 /* Identify TX FIFO rings (0-7). */
4934 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
4935
4936 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4937 for (qid = 0; qid < 7; qid++) {
4938 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
4939 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4940 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
4941 }
4942 iwn_nic_unlock(sc);
4943 return 0;
4944 }
4945
4946 /*
4947 * This function is called after the initialization or runtime firmware
4948 * notifies us of its readiness (called in a process context).
4949 */
4950 static int
4951 iwn5000_post_alive(struct iwn_softc *sc)
4952 {
4953 int error, qid;
4954
4955 /* Switch to using ICT interrupt mode. */
4956 iwn5000_ict_reset(sc);
4957
4958 if ((error = iwn_nic_lock(sc)) != 0)
4959 return error;
4960
4961 /* Clear TX scheduler state in SRAM. */
4962 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
4963 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
4964 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
4965
4966 /* Set physical address of TX scheduler rings (1KB aligned). */
4967 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
4968
4969 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
4970
4971 /* Enable chain mode for all queues, except command queue. */
4972 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
4973 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
4974
4975 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
4976 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
4977 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
4978
4979 iwn_mem_write(sc, sc->sched_base +
4980 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
4981 /* Set scheduler window size and frame limit. */
4982 iwn_mem_write(sc, sc->sched_base +
4983 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4984 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4985 }
4986
4987 /* Enable interrupts for all our 20 queues. */
4988 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
4989 /* Identify TX FIFO rings (0-7). */
4990 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
4991
4992 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
4993 for (qid = 0; qid < 7; qid++) {
4994 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
4995 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4996 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
4997 }
4998 iwn_nic_unlock(sc);
4999
5000 /* Configure WiMAX coexistence for combo adapters. */
5001 error = iwn5000_send_wimax_coex(sc);
5002 if (error != 0) {
5003 aprint_error_dev(sc->sc_dev,
5004 "could not configure WiMAX coexistence\n");
5005 return error;
5006 }
5007 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5008 struct iwn5000_phy_calib_crystal cmd;
5009
5010 /* Perform crystal calibration. */
5011 memset(&cmd, 0, sizeof cmd);
5012 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5013 cmd.ngroups = 1;
5014 cmd.isvalid = 1;
5015 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5016 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5017 DPRINTF(("sending crystal calibration %d, %d\n",
5018 cmd.cap_pin[0], cmd.cap_pin[1]));
5019 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5020 if (error != 0) {
5021 aprint_error_dev(sc->sc_dev,
5022 "crystal calibration failed\n");
5023 return error;
5024 }
5025 }
5026 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5027 /* Query calibration from the initialization firmware. */
5028 if ((error = iwn5000_query_calibration(sc)) != 0) {
5029 aprint_error_dev(sc->sc_dev,
5030 "could not query calibration\n");
5031 return error;
5032 }
5033 /*
5034 * We have the calibration results now, reboot with the
5035 * runtime firmware (call ourselves recursively!)
5036 */
5037 iwn_hw_stop(sc);
5038 error = iwn_hw_init(sc);
5039 } else {
5040 /* Send calibration results to runtime firmware. */
5041 error = iwn5000_send_calibration(sc);
5042 }
5043 return error;
5044 }
5045
5046 /*
5047 * The firmware boot code is small and is intended to be copied directly into
5048 * the NIC internal memory (no DMA transfer).
5049 */
5050 static int
5051 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5052 {
5053 int error, ntries;
5054
5055 size /= sizeof (uint32_t);
5056
5057 if ((error = iwn_nic_lock(sc)) != 0)
5058 return error;
5059
5060 /* Copy microcode image into NIC memory. */
5061 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5062 (const uint32_t *)ucode, size);
5063
5064 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5065 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5066 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5067
5068 /* Start boot load now. */
5069 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5070
5071 /* Wait for transfer to complete. */
5072 for (ntries = 0; ntries < 1000; ntries++) {
5073 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5074 IWN_BSM_WR_CTRL_START))
5075 break;
5076 DELAY(10);
5077 }
5078 if (ntries == 1000) {
5079 aprint_error_dev(sc->sc_dev,
5080 "could not load boot firmware\n");
5081 iwn_nic_unlock(sc);
5082 return ETIMEDOUT;
5083 }
5084
5085 /* Enable boot after power up. */
5086 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5087
5088 iwn_nic_unlock(sc);
5089 return 0;
5090 }
5091
5092 static int
5093 iwn4965_load_firmware(struct iwn_softc *sc)
5094 {
5095 struct iwn_fw_info *fw = &sc->fw;
5096 struct iwn_dma_info *dma = &sc->fw_dma;
5097 int error;
5098
5099 /* Copy initialization sections into pre-allocated DMA-safe memory. */
5100 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5101 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5102 BUS_DMASYNC_PREWRITE);
5103 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5104 fw->init.text, fw->init.textsz);
5105 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5106 fw->init.textsz, BUS_DMASYNC_PREWRITE);
5107
5108 /* Tell adapter where to find initialization sections. */
5109 if ((error = iwn_nic_lock(sc)) != 0)
5110 return error;
5111 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5112 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5113 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5114 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5115 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5116 iwn_nic_unlock(sc);
5117
5118 /* Load firmware boot code. */
5119 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5120 if (error != 0) {
5121 aprint_error_dev(sc->sc_dev,
5122 "could not load boot firmware\n");
5123 return error;
5124 }
5125 /* Now press "execute". */
5126 IWN_WRITE(sc, IWN_RESET, 0);
5127
5128 /* Wait at most one second for first alive notification. */
5129 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5130 aprint_error_dev(sc->sc_dev,
5131 "timeout waiting for adapter to initialize\n");
5132 return error;
5133 }
5134
5135 /* Retrieve current temperature for initial TX power calibration. */
5136 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5137 sc->temp = iwn4965_get_temperature(sc);
5138
5139 /* Copy runtime sections into pre-allocated DMA-safe memory. */
5140 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5141 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5142 BUS_DMASYNC_PREWRITE);
5143 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5144 fw->main.text, fw->main.textsz);
5145 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5146 fw->main.textsz, BUS_DMASYNC_PREWRITE);
5147
5148 /* Tell adapter where to find runtime sections. */
5149 if ((error = iwn_nic_lock(sc)) != 0)
5150 return error;
5151 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5152 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5153 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5154 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5155 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5156 IWN_FW_UPDATED | fw->main.textsz);
5157 iwn_nic_unlock(sc);
5158
5159 return 0;
5160 }
5161
5162 static int
5163 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5164 const uint8_t *section, int size)
5165 {
5166 struct iwn_dma_info *dma = &sc->fw_dma;
5167 int error;
5168
5169 /* Copy firmware section into pre-allocated DMA-safe memory. */
5170 memcpy(dma->vaddr, section, size);
5171 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5172
5173 if ((error = iwn_nic_lock(sc)) != 0)
5174 return error;
5175
5176 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5177 IWN_FH_TX_CONFIG_DMA_PAUSE);
5178
5179 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5180 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5181 IWN_LOADDR(dma->paddr));
5182 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5183 IWN_HIADDR(dma->paddr) << 28 | size);
5184 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5185 IWN_FH_TXBUF_STATUS_TBNUM(1) |
5186 IWN_FH_TXBUF_STATUS_TBIDX(1) |
5187 IWN_FH_TXBUF_STATUS_TFBD_VALID);
5188
5189 /* Kick Flow Handler to start DMA transfer. */
5190 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5191 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5192
5193 iwn_nic_unlock(sc);
5194
5195 /* Wait at most five seconds for FH DMA transfer to complete. */
5196 return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5197 }
5198
5199 static int
5200 iwn5000_load_firmware(struct iwn_softc *sc)
5201 {
5202 struct iwn_fw_part *fw;
5203 int error;
5204
5205 /* Load the initialization firmware on first boot only. */
5206 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5207 &sc->fw.main : &sc->fw.init;
5208
5209 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5210 fw->text, fw->textsz);
5211 if (error != 0) {
5212 aprint_error_dev(sc->sc_dev,
5213 "could not load firmware %s section\n", ".text");
5214 return error;
5215 }
5216 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5217 fw->data, fw->datasz);
5218 if (error != 0) {
5219 aprint_error_dev(sc->sc_dev,
5220 "could not load firmware %s section\n", ".data");
5221 return error;
5222 }
5223
5224 /* Now press "execute". */
5225 IWN_WRITE(sc, IWN_RESET, 0);
5226 return 0;
5227 }
5228
5229 /*
5230 * Extract text and data sections from a legacy firmware image.
5231 */
5232 static int
5233 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5234 {
5235 const uint32_t *ptr;
5236 size_t hdrlen = 24;
5237 uint32_t rev;
5238
5239 ptr = (const uint32_t *)fw->data;
5240 rev = le32toh(*ptr++);
5241
5242 /* Check firmware API version. */
5243 if (IWN_FW_API(rev) <= 1) {
5244 aprint_error_dev(sc->sc_dev,
5245 "bad firmware, need API version >=2\n");
5246 return EINVAL;
5247 }
5248 if (IWN_FW_API(rev) >= 3) {
5249 /* Skip build number (version 2 header). */
5250 hdrlen += 4;
5251 ptr++;
5252 }
5253 if (fw->size < hdrlen) {
5254 aprint_error_dev(sc->sc_dev,
5255 "firmware too short: %zd bytes\n", fw->size);
5256 return EINVAL;
5257 }
5258 fw->main.textsz = le32toh(*ptr++);
5259 fw->main.datasz = le32toh(*ptr++);
5260 fw->init.textsz = le32toh(*ptr++);
5261 fw->init.datasz = le32toh(*ptr++);
5262 fw->boot.textsz = le32toh(*ptr++);
5263
5264 /* Check that all firmware sections fit. */
5265 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5266 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5267 aprint_error_dev(sc->sc_dev,
5268 "firmware too short: %zd bytes\n", fw->size);
5269 return EINVAL;
5270 }
5271
5272 /* Get pointers to firmware sections. */
5273 fw->main.text = (const uint8_t *)ptr;
5274 fw->main.data = fw->main.text + fw->main.textsz;
5275 fw->init.text = fw->main.data + fw->main.datasz;
5276 fw->init.data = fw->init.text + fw->init.textsz;
5277 fw->boot.text = fw->init.data + fw->init.datasz;
5278 return 0;
5279 }
5280
5281 /*
5282 * Extract text and data sections from a TLV firmware image.
5283 */
5284 static int
5285 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5286 uint16_t alt)
5287 {
5288 const struct iwn_fw_tlv_hdr *hdr;
5289 const struct iwn_fw_tlv *tlv;
5290 const uint8_t *ptr, *end;
5291 uint64_t altmask;
5292 uint32_t len;
5293
5294 if (fw->size < sizeof (*hdr)) {
5295 aprint_error_dev(sc->sc_dev,
5296 "firmware too short: %zd bytes\n", fw->size);
5297 return EINVAL;
5298 }
5299 hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5300 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5301 aprint_error_dev(sc->sc_dev,
5302 "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5303 return EINVAL;
5304 }
5305 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5306 le32toh(hdr->build)));
5307
5308 /*
5309 * Select the closest supported alternative that is less than
5310 * or equal to the specified one.
5311 */
5312 altmask = le64toh(hdr->altmask);
5313 while (alt > 0 && !(altmask & (1ULL << alt)))
5314 alt--; /* Downgrade. */
5315 DPRINTF(("using alternative %d\n", alt));
5316
5317 ptr = (const uint8_t *)(hdr + 1);
5318 end = (const uint8_t *)(fw->data + fw->size);
5319
5320 /* Parse type-length-value fields. */
5321 while (ptr + sizeof (*tlv) <= end) {
5322 tlv = (const struct iwn_fw_tlv *)ptr;
5323 len = le32toh(tlv->len);
5324
5325 ptr += sizeof (*tlv);
5326 if (ptr + len > end) {
5327 aprint_error_dev(sc->sc_dev,
5328 "firmware too short: %zd bytes\n", fw->size);
5329 return EINVAL;
5330 }
5331 /* Skip other alternatives. */
5332 if (tlv->alt != 0 && tlv->alt != htole16(alt))
5333 goto next;
5334
5335 switch (le16toh(tlv->type)) {
5336 case IWN_FW_TLV_MAIN_TEXT:
5337 fw->main.text = ptr;
5338 fw->main.textsz = len;
5339 break;
5340 case IWN_FW_TLV_MAIN_DATA:
5341 fw->main.data = ptr;
5342 fw->main.datasz = len;
5343 break;
5344 case IWN_FW_TLV_INIT_TEXT:
5345 fw->init.text = ptr;
5346 fw->init.textsz = len;
5347 break;
5348 case IWN_FW_TLV_INIT_DATA:
5349 fw->init.data = ptr;
5350 fw->init.datasz = len;
5351 break;
5352 case IWN_FW_TLV_BOOT_TEXT:
5353 fw->boot.text = ptr;
5354 fw->boot.textsz = len;
5355 break;
5356 default:
5357 DPRINTF(("TLV type %d not handled\n",
5358 le16toh(tlv->type)));
5359 break;
5360 }
5361 next: /* TLV fields are 32-bit aligned. */
5362 ptr += (len + 3) & ~3;
5363 }
5364 return 0;
5365 }
5366
5367 static int
5368 iwn_read_firmware(struct iwn_softc *sc)
5369 {
5370 struct iwn_fw_info *fw = &sc->fw;
5371 firmware_handle_t fwh;
5372 int error;
5373
5374 /* Initialize for error returns */
5375 fw->data = NULL;
5376 fw->size = 0;
5377
5378 /* Open firmware image. */
5379 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5380 aprint_error_dev(sc->sc_dev,
5381 "could not get firmware handle %s\n", sc->fwname);
5382 return error;
5383 }
5384 fw->size = firmware_get_size(fwh);
5385 if (fw->size < sizeof (uint32_t)) {
5386 aprint_error_dev(sc->sc_dev,
5387 "firmware too short: %zd bytes\n", fw->size);
5388 firmware_close(fwh);
5389 return EINVAL;
5390 }
5391
5392 /* Read the firmware. */
5393 fw->data = firmware_malloc(fw->size);
5394 if (fw->data == NULL) {
5395 aprint_error_dev(sc->sc_dev,
5396 "not enough memory to stock firmware %s\n", sc->fwname);
5397 firmware_close(fwh);
5398 return ENOMEM;
5399 }
5400 error = firmware_read(fwh, 0, fw->data, fw->size);
5401 firmware_close(fwh);
5402 if (error != 0) {
5403 aprint_error_dev(sc->sc_dev,
5404 "could not read firmware %s\n", sc->fwname);
5405 goto out;
5406 }
5407
5408 /* Retrieve text and data sections. */
5409 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
5410 error = iwn_read_firmware_leg(sc, fw);
5411 else
5412 error = iwn_read_firmware_tlv(sc, fw, 1);
5413 if (error != 0) {
5414 aprint_error_dev(sc->sc_dev,
5415 "could not read firmware sections\n");
5416 goto out;
5417 }
5418
5419 /* Make sure text and data sections fit in hardware memory. */
5420 if (fw->main.textsz > sc->fw_text_maxsz ||
5421 fw->main.datasz > sc->fw_data_maxsz ||
5422 fw->init.textsz > sc->fw_text_maxsz ||
5423 fw->init.datasz > sc->fw_data_maxsz ||
5424 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5425 (fw->boot.textsz & 3) != 0) {
5426 aprint_error_dev(sc->sc_dev,
5427 "firmware sections too large\n");
5428 goto out;
5429 }
5430
5431 /* We can proceed with loading the firmware. */
5432 return 0;
5433 out:
5434 firmware_free(fw->data, fw->size);
5435 fw->data = NULL;
5436 fw->size = 0;
5437 return error ? error : EINVAL;
5438 }
5439
5440 static int
5441 iwn_clock_wait(struct iwn_softc *sc)
5442 {
5443 int ntries;
5444
5445 /* Set "initialization complete" bit. */
5446 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5447
5448 /* Wait for clock stabilization. */
5449 for (ntries = 0; ntries < 2500; ntries++) {
5450 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5451 return 0;
5452 DELAY(10);
5453 }
5454 aprint_error_dev(sc->sc_dev,
5455 "timeout waiting for clock stabilization\n");
5456 return ETIMEDOUT;
5457 }
5458
5459 static int
5460 iwn_apm_init(struct iwn_softc *sc)
5461 {
5462 pcireg_t reg;
5463 int error;
5464
5465 /* Disable L0s exit timer (NMI bug workaround). */
5466 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5467 /* Don't wait for ICH L0s (ICH bug workaround). */
5468 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5469
5470 /* Set FH wait threshold to max (HW bug under stress workaround). */
5471 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5472
5473 /* Enable HAP INTA to move adapter from L1a to L0s. */
5474 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5475
5476 /* Retrieve PCIe Active State Power Management (ASPM). */
5477 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5478 sc->sc_cap_off + PCI_PCIE_LCSR);
5479 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5480 if (reg & PCI_PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
5481 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5482 else
5483 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5484
5485 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5486 sc->hw_type <= IWN_HW_REV_TYPE_1000)
5487 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5488
5489 /* Wait for clock stabilization before accessing prph. */
5490 if ((error = iwn_clock_wait(sc)) != 0)
5491 return error;
5492
5493 if ((error = iwn_nic_lock(sc)) != 0)
5494 return error;
5495 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5496 /* Enable DMA and BSM (Bootstrap State Machine). */
5497 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5498 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5499 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5500 } else {
5501 /* Enable DMA. */
5502 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5503 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5504 }
5505 DELAY(20);
5506 /* Disable L1-Active. */
5507 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5508 iwn_nic_unlock(sc);
5509
5510 return 0;
5511 }
5512
5513 static void
5514 iwn_apm_stop_master(struct iwn_softc *sc)
5515 {
5516 int ntries;
5517
5518 /* Stop busmaster DMA activity. */
5519 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5520 for (ntries = 0; ntries < 100; ntries++) {
5521 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5522 return;
5523 DELAY(10);
5524 }
5525 aprint_error_dev(sc->sc_dev,
5526 "timeout waiting for master\n");
5527 }
5528
5529 static void
5530 iwn_apm_stop(struct iwn_softc *sc)
5531 {
5532 iwn_apm_stop_master(sc);
5533
5534 /* Reset the entire device. */
5535 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5536 DELAY(10);
5537 /* Clear "initialization complete" bit. */
5538 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5539 }
5540
5541 static int
5542 iwn4965_nic_config(struct iwn_softc *sc)
5543 {
5544 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5545 /*
5546 * I don't believe this to be correct but this is what the
5547 * vendor driver is doing. Probably the bits should not be
5548 * shifted in IWN_RFCFG_*.
5549 */
5550 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5551 IWN_RFCFG_TYPE(sc->rfcfg) |
5552 IWN_RFCFG_STEP(sc->rfcfg) |
5553 IWN_RFCFG_DASH(sc->rfcfg));
5554 }
5555 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5556 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5557 return 0;
5558 }
5559
5560 static int
5561 iwn5000_nic_config(struct iwn_softc *sc)
5562 {
5563 uint32_t tmp;
5564 int error;
5565
5566 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5567 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5568 IWN_RFCFG_TYPE(sc->rfcfg) |
5569 IWN_RFCFG_STEP(sc->rfcfg) |
5570 IWN_RFCFG_DASH(sc->rfcfg));
5571 }
5572 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5573 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5574
5575 if ((error = iwn_nic_lock(sc)) != 0)
5576 return error;
5577 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5578
5579 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5580 /*
5581 * Select first Switching Voltage Regulator (1.32V) to
5582 * solve a stability issue related to noisy DC2DC line
5583 * in the silicon of 1000 Series.
5584 */
5585 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5586 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5587 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5588 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5589 }
5590 iwn_nic_unlock(sc);
5591
5592 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5593 /* Use internal power amplifier only. */
5594 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5595 }
5596 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
5597 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
5598 /* Indicate that ROM calibration version is >=6. */
5599 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5600 }
5601 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
5602 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
5603 return 0;
5604 }
5605
5606 /*
5607 * Take NIC ownership over Intel Active Management Technology (AMT).
5608 */
5609 static int
5610 iwn_hw_prepare(struct iwn_softc *sc)
5611 {
5612 int ntries;
5613
5614 /* Check if hardware is ready. */
5615 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5616 for (ntries = 0; ntries < 5; ntries++) {
5617 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5618 IWN_HW_IF_CONFIG_NIC_READY)
5619 return 0;
5620 DELAY(10);
5621 }
5622
5623 /* Hardware not ready, force into ready state. */
5624 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5625 for (ntries = 0; ntries < 15000; ntries++) {
5626 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5627 IWN_HW_IF_CONFIG_PREPARE_DONE))
5628 break;
5629 DELAY(10);
5630 }
5631 if (ntries == 15000)
5632 return ETIMEDOUT;
5633
5634 /* Hardware should be ready now. */
5635 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5636 for (ntries = 0; ntries < 5; ntries++) {
5637 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5638 IWN_HW_IF_CONFIG_NIC_READY)
5639 return 0;
5640 DELAY(10);
5641 }
5642 return ETIMEDOUT;
5643 }
5644
5645 static int
5646 iwn_hw_init(struct iwn_softc *sc)
5647 {
5648 struct iwn_ops *ops = &sc->ops;
5649 int error, chnl, qid;
5650
5651 /* Clear pending interrupts. */
5652 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5653
5654 if ((error = iwn_apm_init(sc)) != 0) {
5655 aprint_error_dev(sc->sc_dev,
5656 "could not power ON adapter\n");
5657 return error;
5658 }
5659
5660 /* Select VMAIN power source. */
5661 if ((error = iwn_nic_lock(sc)) != 0)
5662 return error;
5663 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5664 iwn_nic_unlock(sc);
5665
5666 /* Perform adapter-specific initialization. */
5667 if ((error = ops->nic_config(sc)) != 0)
5668 return error;
5669
5670 /* Initialize RX ring. */
5671 if ((error = iwn_nic_lock(sc)) != 0)
5672 return error;
5673 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5674 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5675 /* Set physical address of RX ring (256-byte aligned). */
5676 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5677 /* Set physical address of RX status (16-byte aligned). */
5678 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5679 /* Enable RX. */
5680 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5681 IWN_FH_RX_CONFIG_ENA |
5682 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
5683 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
5684 IWN_FH_RX_CONFIG_SINGLE_FRAME |
5685 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5686 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5687 iwn_nic_unlock(sc);
5688 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5689
5690 if ((error = iwn_nic_lock(sc)) != 0)
5691 return error;
5692
5693 /* Initialize TX scheduler. */
5694 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5695
5696 /* Set physical address of "keep warm" page (16-byte aligned). */
5697 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5698
5699 /* Initialize TX rings. */
5700 for (qid = 0; qid < sc->ntxqs; qid++) {
5701 struct iwn_tx_ring *txq = &sc->txq[qid];
5702
5703 /* Set physical address of TX ring (256-byte aligned). */
5704 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5705 txq->desc_dma.paddr >> 8);
5706 }
5707 iwn_nic_unlock(sc);
5708
5709 /* Enable DMA channels. */
5710 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5711 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5712 IWN_FH_TX_CONFIG_DMA_ENA |
5713 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5714 }
5715
5716 /* Clear "radio off" and "commands blocked" bits. */
5717 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5718 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5719
5720 /* Clear pending interrupts. */
5721 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5722 /* Enable interrupt coalescing. */
5723 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5724 /* Enable interrupts. */
5725 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5726
5727 /* _Really_ make sure "radio off" bit is cleared! */
5728 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5729 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5730
5731 /* Enable shadow registers. */
5732 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
5733 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
5734
5735 if ((error = ops->load_firmware(sc)) != 0) {
5736 aprint_error_dev(sc->sc_dev,
5737 "could not load firmware\n");
5738 return error;
5739 }
5740 /* Wait at most one second for firmware alive notification. */
5741 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5742 aprint_error_dev(sc->sc_dev,
5743 "timeout waiting for adapter to initialize\n");
5744 return error;
5745 }
5746 /* Do post-firmware initialization. */
5747 return ops->post_alive(sc);
5748 }
5749
5750 static void
5751 iwn_hw_stop(struct iwn_softc *sc)
5752 {
5753 int chnl, qid, ntries;
5754
5755 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5756
5757 /* Disable interrupts. */
5758 IWN_WRITE(sc, IWN_INT_MASK, 0);
5759 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5760 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5761 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5762
5763 /* Make sure we no longer hold the NIC lock. */
5764 iwn_nic_unlock(sc);
5765
5766 /* Stop TX scheduler. */
5767 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5768
5769 /* Stop all DMA channels. */
5770 if (iwn_nic_lock(sc) == 0) {
5771 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5772 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5773 for (ntries = 0; ntries < 200; ntries++) {
5774 if (IWN_READ(sc, IWN_FH_TX_STATUS) &
5775 IWN_FH_TX_STATUS_IDLE(chnl))
5776 break;
5777 DELAY(10);
5778 }
5779 }
5780 iwn_nic_unlock(sc);
5781 }
5782
5783 /* Stop RX ring. */
5784 iwn_reset_rx_ring(sc, &sc->rxq);
5785
5786 /* Reset all TX rings. */
5787 for (qid = 0; qid < sc->ntxqs; qid++)
5788 iwn_reset_tx_ring(sc, &sc->txq[qid]);
5789
5790 if (iwn_nic_lock(sc) == 0) {
5791 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5792 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5793 iwn_nic_unlock(sc);
5794 }
5795 DELAY(5);
5796 /* Power OFF adapter. */
5797 iwn_apm_stop(sc);
5798 }
5799
5800 static int
5801 iwn_init(struct ifnet *ifp)
5802 {
5803 struct iwn_softc *sc = ifp->if_softc;
5804 struct ieee80211com *ic = &sc->sc_ic;
5805 int error;
5806
5807 mutex_enter(&sc->sc_mtx);
5808 if (sc->sc_flags & IWN_FLAG_HW_INITED)
5809 goto out;
5810 if ((error = iwn_hw_prepare(sc)) != 0) {
5811 aprint_error_dev(sc->sc_dev,
5812 "hardware not ready\n");
5813 goto fail;
5814 }
5815
5816 /* Check that the radio is not disabled by hardware switch. */
5817 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5818 aprint_error_dev(sc->sc_dev,
5819 "radio is disabled by hardware switch\n");
5820 error = EPERM; /* :-) */
5821 goto fail;
5822 }
5823
5824 /* Read firmware images from the filesystem. */
5825 if ((error = iwn_read_firmware(sc)) != 0) {
5826 aprint_error_dev(sc->sc_dev,
5827 "could not read firmware\n");
5828 goto fail;
5829 }
5830
5831 /* Initialize interrupt mask to default value. */
5832 sc->int_mask = IWN_INT_MASK_DEF;
5833 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5834
5835 /* Initialize hardware and upload firmware. */
5836 KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
5837 error = iwn_hw_init(sc);
5838 firmware_free(sc->fw.data, sc->fw.size);
5839 sc->fw.data = NULL;
5840 sc->fw.size = 0;
5841 if (error != 0) {
5842 aprint_error_dev(sc->sc_dev,
5843 "could not initialize hardware\n");
5844 goto fail;
5845 }
5846
5847 /* Configure adapter now that it is ready. */
5848 if ((error = iwn_config(sc)) != 0) {
5849 aprint_error_dev(sc->sc_dev,
5850 "could not configure device\n");
5851 goto fail;
5852 }
5853
5854 ifp->if_flags &= ~IFF_OACTIVE;
5855 ifp->if_flags |= IFF_RUNNING;
5856
5857 if (ic->ic_opmode != IEEE80211_M_MONITOR)
5858 ieee80211_begin_scan(ic, 0);
5859 else
5860 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5861
5862 sc->sc_flags |= IWN_FLAG_HW_INITED;
5863 out:
5864 mutex_exit(&sc->sc_mtx);
5865 return 0;
5866
5867 fail: mutex_exit(&sc->sc_mtx);
5868 iwn_stop(ifp, 1);
5869 return error;
5870 }
5871
5872 static void
5873 iwn_stop(struct ifnet *ifp, int disable)
5874 {
5875 struct iwn_softc *sc = ifp->if_softc;
5876 struct ieee80211com *ic = &sc->sc_ic;
5877
5878 if (!disable)
5879 mutex_enter(&sc->sc_mtx);
5880 sc->sc_flags &= ~IWN_FLAG_HW_INITED;
5881 ifp->if_timer = sc->sc_tx_timer = 0;
5882 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5883
5884 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5885
5886 /* Power OFF hardware. */
5887 iwn_hw_stop(sc);
5888
5889 if (!disable)
5890 mutex_exit(&sc->sc_mtx);
5891 }
5892
5893 /*
5894 * XXX MCLGETI alternative
5895 *
5896 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
5897 * as long as there are available free buffers then it uses MEXTMALLOC.,
5898 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
5899 * The MCLGET4K code is used for testing an alternative mbuf cache.
5900 */
5901
5902 static struct mbuf *
5903 MCLGETIalt(struct iwn_softc *sc, int how,
5904 struct ifnet *ifp __unused, u_int size)
5905 {
5906 struct mbuf *m;
5907 #ifdef IWN_USE_RBUF
5908 struct iwn_rbuf *rbuf;
5909 #endif
5910
5911 MGETHDR(m, how, MT_DATA);
5912 if (m == NULL)
5913 return NULL;
5914
5915 #ifdef IWN_USE_RBUF
5916 if (sc->rxq.nb_free_entries > 0 &&
5917 (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
5918 /* Attach buffer to mbuf header. */
5919 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
5920 m->m_flags |= M_EXT_RW;
5921 }
5922 else {
5923 MEXTMALLOC(m, size, how);
5924 if ((m->m_flags & M_EXT) == 0) {
5925 m_freem(m);
5926 return NULL;
5927 }
5928 }
5929
5930 #else
5931 #ifdef MCLGET4K
5932 if (size == 4096)
5933 MCLGET4K(m, how);
5934 else
5935 panic("size must be 4k");
5936 #else
5937 MEXTMALLOC(m, size, how);
5938 #endif
5939 if ((m->m_flags & M_EXT) == 0) {
5940 m_freem(m);
5941 return NULL;
5942 }
5943 #endif
5944
5945 return m;
5946 }
5947
5948 #ifdef IWN_USE_RBUF
5949 static struct iwn_rbuf *
5950 iwn_alloc_rbuf(struct iwn_softc *sc)
5951 {
5952 struct iwn_rbuf *rbuf;
5953 mutex_enter(&sc->rxq.freelist_mtx);
5954
5955 rbuf = SLIST_FIRST(&sc->rxq.freelist);
5956 if (rbuf != NULL) {
5957 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
5958 sc->rxq.nb_free_entries --;
5959 }
5960 mutex_exit(&sc->rxq.freelist_mtx);
5961 return rbuf;
5962 }
5963
5964 /*
5965 * This is called automatically by the network stack when the mbuf to which
5966 * our RX buffer is attached is freed.
5967 */
5968 static void
5969 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
5970 {
5971 struct iwn_rbuf *rbuf = arg;
5972 struct iwn_softc *sc = rbuf->sc;
5973
5974 /* Put the RX buffer back in the free list. */
5975 mutex_enter(&sc->rxq.freelist_mtx);
5976 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
5977 mutex_exit(&sc->rxq.freelist_mtx);
5978
5979 sc->rxq.nb_free_entries ++;
5980 if (__predict_true(m != NULL))
5981 pool_cache_put(mb_cache, m);
5982 }
5983
5984 static int
5985 iwn_alloc_rpool(struct iwn_softc *sc)
5986 {
5987 struct iwn_rx_ring *ring = &sc->rxq;
5988 struct iwn_rbuf *rbuf;
5989 int i, error;
5990
5991 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
5992
5993 /* Allocate a big chunk of DMA'able memory... */
5994 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
5995 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
5996 if (error != 0) {
5997 aprint_error_dev(sc->sc_dev,
5998 "could not allocate RX buffers DMA memory\n");
5999 return error;
6000 }
6001 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6002 SLIST_INIT(&ring->freelist);
6003 for (i = 0; i < IWN_RBUF_COUNT; i++) {
6004 rbuf = &ring->rbuf[i];
6005
6006 rbuf->sc = sc; /* Backpointer for callbacks. */
6007 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6008 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6009
6010 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6011 }
6012 ring->nb_free_entries = IWN_RBUF_COUNT;
6013 return 0;
6014 }
6015
6016 static void
6017 iwn_free_rpool(struct iwn_softc *sc)
6018 {
6019 iwn_dma_contig_free(&sc->rxq.buf_dma);
6020 }
6021 #endif
6022
6023 /*
6024 * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6025 * Copyright (c) 2001 Atsushi Onoe
6026 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6027 * Copyright (c) 2007-2009 Damien Bergamini
6028 * All rights reserved.
6029 */
6030
6031 /*
6032 * Add an SSID element to a frame (see 7.3.2.1).
6033 */
6034 static u_int8_t *
6035 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6036 {
6037 *frm++ = IEEE80211_ELEMID_SSID;
6038 *frm++ = len;
6039 memcpy(frm, ssid, len);
6040 return frm + len;
6041 }
6042
6043 /*
6044 * Add a supported rates element to a frame (see 7.3.2.2).
6045 */
6046 static u_int8_t *
6047 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6048 {
6049 int nrates;
6050
6051 *frm++ = IEEE80211_ELEMID_RATES;
6052 nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6053 *frm++ = nrates;
6054 memcpy(frm, rs->rs_rates, nrates);
6055 return frm + nrates;
6056 }
6057
6058 /*
6059 * Add an extended supported rates element to a frame (see 7.3.2.14).
6060 */
6061 static u_int8_t *
6062 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6063 {
6064 int nrates;
6065
6066 KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6067
6068 *frm++ = IEEE80211_ELEMID_XRATES;
6069 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6070 *frm++ = nrates;
6071 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6072 return frm + nrates;
6073 }
6074
6075 /*
6076 * XXX: Hack to set the current channel to the value advertised in beacons or
6077 * probe responses. Only used during AP detection.
6078 * XXX: Duplicated from if_iwi.c
6079 */
6080 static void
6081 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6082 {
6083 struct ieee80211_frame *wh;
6084 uint8_t subtype;
6085 uint8_t *frm, *efrm;
6086
6087 wh = mtod(m, struct ieee80211_frame *);
6088
6089 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6090 return;
6091
6092 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6093
6094 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6095 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6096 return;
6097
6098 frm = (uint8_t *)(wh + 1);
6099 efrm = mtod(m, uint8_t *) + m->m_len;
6100
6101 frm += 12; /* skip tstamp, bintval and capinfo fields */
6102 while (frm < efrm) {
6103 if (*frm == IEEE80211_ELEMID_DSPARMS)
6104 #if IEEE80211_CHAN_MAX < 255
6105 if (frm[2] <= IEEE80211_CHAN_MAX)
6106 #endif
6107 ic->ic_curchan = &ic->ic_channels[frm[2]];
6108
6109 frm += frm[1] + 2;
6110 }
6111 }
6112
6113