Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.63
      1 /*	$NetBSD: if_iwn.c,v 1.63 2013/03/30 03:21:05 christos Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.63 2013/03/30 03:21:05 christos Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/proc.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #include <sys/mutex.h>
     39 #include <sys/conf.h>
     40 #include <sys/kauth.h>
     41 #include <sys/callout.h>
     42 
     43 #include <dev/sysmon/sysmonvar.h>
     44 
     45 #include <sys/bus.h>
     46 #include <machine/endian.h>
     47 #include <machine/intr.h>
     48 
     49 #include <dev/pci/pcireg.h>
     50 #include <dev/pci/pcivar.h>
     51 #include <dev/pci/pcidevs.h>
     52 
     53 #include <net/bpf.h>
     54 #include <net/if.h>
     55 #include <net/if_arp.h>
     56 #include <net/if_dl.h>
     57 #include <net/if_media.h>
     58 #include <net/if_types.h>
     59 
     60 #include <netinet/in.h>
     61 #include <netinet/in_systm.h>
     62 #include <netinet/in_var.h>
     63 #include <net/if_ether.h>
     64 #include <netinet/ip.h>
     65 
     66 #include <net80211/ieee80211_var.h>
     67 #include <net80211/ieee80211_amrr.h>
     68 #include <net80211/ieee80211_radiotap.h>
     69 
     70 #include <dev/firmload.h>
     71 
     72 #include <dev/pci/if_iwnreg.h>
     73 #include <dev/pci/if_iwnvar.h>
     74 
     75 static const pci_product_id_t iwn_devices[] = {
     76 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
     77 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
     78 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     79 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     80 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
     81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
     82 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     83 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     84 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     85 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     86 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     87 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
     89 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
     90 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
     99 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
    100 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
    101 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
    102 };
    103 
    104 /*
    105  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    106  */
    107 static const struct ieee80211_rateset iwn_rateset_11a =
    108 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    109 
    110 static const struct ieee80211_rateset iwn_rateset_11b =
    111 	{ 4, { 2, 4, 11, 22 } };
    112 
    113 static const struct ieee80211_rateset iwn_rateset_11g =
    114 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    115 
    116 static int	iwn_match(device_t , struct cfdata *, void *);
    117 static void	iwn_attach(device_t , device_t , void *);
    118 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
    119 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
    120 static void	iwn_radiotap_attach(struct iwn_softc *);
    121 static int	iwn_detach(device_t , int);
    122 #if 0
    123 static void	iwn_power(int, void *);
    124 #endif
    125 static bool	iwn_resume(device_t, const pmf_qual_t *);
    126 static int	iwn_nic_lock(struct iwn_softc *);
    127 static int	iwn_eeprom_lock(struct iwn_softc *);
    128 static int	iwn_init_otprom(struct iwn_softc *);
    129 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    130 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    131 		    void **, bus_size_t, bus_size_t);
    132 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    133 static int	iwn_alloc_sched(struct iwn_softc *);
    134 static void	iwn_free_sched(struct iwn_softc *);
    135 static int	iwn_alloc_kw(struct iwn_softc *);
    136 static void	iwn_free_kw(struct iwn_softc *);
    137 static int	iwn_alloc_ict(struct iwn_softc *);
    138 static void	iwn_free_ict(struct iwn_softc *);
    139 static int	iwn_alloc_fwmem(struct iwn_softc *);
    140 static void	iwn_free_fwmem(struct iwn_softc *);
    141 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    142 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    143 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    144 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    145 		    int);
    146 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    147 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    148 static void	iwn5000_ict_reset(struct iwn_softc *);
    149 static int	iwn_read_eeprom(struct iwn_softc *);
    150 static void	iwn4965_read_eeprom(struct iwn_softc *);
    151 
    152 #ifdef IWN_DEBUG
    153 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    154 #endif
    155 static void	iwn5000_read_eeprom(struct iwn_softc *);
    156 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    157 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    158 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    159 static void	iwn_newassoc(struct ieee80211_node *, int);
    160 static int	iwn_media_change(struct ifnet *);
    161 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    162 static void	iwn_iter_func(void *, struct ieee80211_node *);
    163 static void	iwn_calib_timeout(void *);
    164 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    165 		    struct iwn_rx_data *);
    166 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    167 		    struct iwn_rx_data *);
    168 #ifndef IEEE80211_NO_HT
    169 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    170 		    struct iwn_rx_data *);
    171 #endif
    172 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    173 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    174 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    175 		    struct iwn_rx_data *);
    176 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    177 		    struct iwn_rx_data *);
    178 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    179 		    struct iwn_rx_data *);
    180 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    181 		    uint8_t);
    182 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    183 static void	iwn_notif_intr(struct iwn_softc *);
    184 static void	iwn_wakeup_intr(struct iwn_softc *);
    185 static void	iwn_fatal_intr(struct iwn_softc *);
    186 static int	iwn_intr(void *);
    187 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    188 		    uint16_t);
    189 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    190 		    uint16_t);
    191 #ifdef notyet
    192 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    193 #endif
    194 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    195 		    struct ieee80211_node *, int);
    196 static void	iwn_start(struct ifnet *);
    197 static void	iwn_watchdog(struct ifnet *);
    198 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    199 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    200 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    201 		    int);
    202 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    203 		    int);
    204 static int	iwn_set_link_quality(struct iwn_softc *,
    205 		    struct ieee80211_node *);
    206 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    207 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    208 static int	iwn_set_critical_temp(struct iwn_softc *);
    209 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    210 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    211 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    212 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    213 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    214 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    215 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    216 static int	iwn4965_get_temperature(struct iwn_softc *);
    217 static int	iwn5000_get_temperature(struct iwn_softc *);
    218 static int	iwn_init_sensitivity(struct iwn_softc *);
    219 static void	iwn_collect_noise(struct iwn_softc *,
    220 		    const struct iwn_rx_general_stats *);
    221 static int	iwn4965_init_gains(struct iwn_softc *);
    222 static int	iwn5000_init_gains(struct iwn_softc *);
    223 static int	iwn4965_set_gains(struct iwn_softc *);
    224 static int	iwn5000_set_gains(struct iwn_softc *);
    225 static void	iwn_tune_sensitivity(struct iwn_softc *,
    226 		    const struct iwn_rx_stats *);
    227 static int	iwn_send_sensitivity(struct iwn_softc *);
    228 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    229 static int	iwn5000_runtime_calib(struct iwn_softc *);
    230 static int	iwn_config(struct iwn_softc *);
    231 static int	iwn_scan(struct iwn_softc *, uint16_t);
    232 static int	iwn_auth(struct iwn_softc *);
    233 static int	iwn_run(struct iwn_softc *);
    234 #ifdef IWN_HWCRYPTO
    235 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    236 		    struct ieee80211_key *);
    237 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    238 		    struct ieee80211_key *);
    239 #endif
    240 static int	iwn_wme_update(struct ieee80211com *);
    241 #ifndef IEEE80211_NO_HT
    242 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    243 		    struct ieee80211_node *, uint8_t);
    244 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    245 		    struct ieee80211_node *, uint8_t);
    246 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    247 		    struct ieee80211_node *, uint8_t);
    248 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    249 		    struct ieee80211_node *, uint8_t);
    250 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    251 		    struct ieee80211_node *, uint8_t, uint16_t);
    252 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    253 		    uint8_t, uint16_t);
    254 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    255 		    struct ieee80211_node *, uint8_t, uint16_t);
    256 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    257 		    uint8_t, uint16_t);
    258 #endif
    259 static int	iwn5000_query_calibration(struct iwn_softc *);
    260 static int	iwn5000_send_calibration(struct iwn_softc *);
    261 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    262 static int	iwn4965_post_alive(struct iwn_softc *);
    263 static int	iwn5000_post_alive(struct iwn_softc *);
    264 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    265 		    int);
    266 static int	iwn4965_load_firmware(struct iwn_softc *);
    267 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    268 		    const uint8_t *, int);
    269 static int	iwn5000_load_firmware(struct iwn_softc *);
    270 static int	iwn_read_firmware_leg(struct iwn_softc *,
    271 		    struct iwn_fw_info *);
    272 static int	iwn_read_firmware_tlv(struct iwn_softc *,
    273 		    struct iwn_fw_info *, uint16_t);
    274 static int	iwn_read_firmware(struct iwn_softc *);
    275 static int	iwn_clock_wait(struct iwn_softc *);
    276 static int	iwn_apm_init(struct iwn_softc *);
    277 static void	iwn_apm_stop_master(struct iwn_softc *);
    278 static void	iwn_apm_stop(struct iwn_softc *);
    279 static int	iwn4965_nic_config(struct iwn_softc *);
    280 static int	iwn5000_nic_config(struct iwn_softc *);
    281 static int	iwn_hw_prepare(struct iwn_softc *);
    282 static int	iwn_hw_init(struct iwn_softc *);
    283 static void	iwn_hw_stop(struct iwn_softc *);
    284 static int	iwn_init(struct ifnet *);
    285 static void	iwn_stop(struct ifnet *, int);
    286 
    287 /* XXX MCLGETI alternative */
    288 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    289 		    struct ifnet *, u_int);
    290 #ifdef IWN_USE_RBUF
    291 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    292 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    293 static int	iwn_alloc_rpool(struct iwn_softc *);
    294 static void	iwn_free_rpool(struct iwn_softc *);
    295 #endif
    296 
    297 /* XXX needed by iwn_scan */
    298 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
    299 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
    300     const struct ieee80211_rateset *);
    301 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
    302     const struct ieee80211_rateset *);
    303 
    304 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
    305 
    306 #ifdef IWN_DEBUG
    307 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    308 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    309 int iwn_debug = 0;
    310 #else
    311 #define DPRINTF(x)
    312 #define DPRINTFN(n, x)
    313 #endif
    314 
    315 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    316 	iwn_detach, NULL);
    317 
    318 static int
    319 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    320 {
    321 	struct pci_attach_args *pa = aux;
    322 	size_t i;
    323 
    324 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    325 		return 0;
    326 
    327 	for (i = 0; i < __arraycount(iwn_devices); i++)
    328 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    329 			return 1;
    330 
    331 	return 0;
    332 }
    333 
    334 static void
    335 iwn_attach(device_t parent __unused, device_t self, void *aux)
    336 {
    337 	struct iwn_softc *sc = device_private(self);
    338 	struct ieee80211com *ic = &sc->sc_ic;
    339 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    340 	struct pci_attach_args *pa = aux;
    341 	const char *intrstr;
    342 	pci_intr_handle_t ih;
    343 	pcireg_t memtype, reg;
    344 	int i, error;
    345 
    346 	sc->sc_dev = self;
    347 	sc->sc_pct = pa->pa_pc;
    348 	sc->sc_pcitag = pa->pa_tag;
    349 	sc->sc_dmat = pa->pa_dmat;
    350 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
    351 
    352 	callout_init(&sc->calib_to, 0);
    353 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    354 
    355 	pci_aprint_devinfo(pa, NULL);
    356 
    357 	/*
    358 	 * Get the offset of the PCI Express Capability Structure in PCI
    359 	 * Configuration Space.
    360 	 */
    361 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    362 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    363 	if (error == 0) {
    364 		aprint_error(": PCIe capability structure not found!\n");
    365 		return;
    366 	}
    367 
    368 	/* Clear device-specific "PCI retry timeout" register (41h). */
    369 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    370 	if (reg & 0xff00)
    371 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    372 
    373 	/* Enable bus-mastering and hardware bug workaround. */
    374 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    375 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    376 	reg |= PCI_COMMAND_MASTER_ENABLE;
    377 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
    378 		DPRINTF(("PCIe INTx Disable set\n"));
    379 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
    380 	}
    381 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    382 
    383 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    384 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    385 	    &sc->sc_sh, NULL, &sc->sc_sz);
    386 	if (error != 0) {
    387 		aprint_error(": can't map mem space\n");
    388 		return;
    389 	}
    390 
    391 	/* Install interrupt handler. */
    392 	if (pci_intr_map(pa, &ih) != 0) {
    393 		aprint_error(": can't map interrupt\n");
    394 		return;
    395 	}
    396 	intrstr = pci_intr_string(sc->sc_pct, ih);
    397 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
    398 	if (sc->sc_ih == NULL) {
    399 		aprint_error(": can't establish interrupt");
    400 		if (intrstr != NULL)
    401 			aprint_error(" at %s", intrstr);
    402 		aprint_error("\n");
    403 		return;
    404 	}
    405 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    406 
    407 	/* Read hardware revision and attach. */
    408 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
    409 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
    410 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
    411 	else
    412 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
    413 	if (error != 0) {
    414 		aprint_error(": could not attach device\n");
    415 		return;
    416 	}
    417 
    418 	if ((error = iwn_hw_prepare(sc)) != 0) {
    419 		aprint_error(": hardware not ready\n");
    420 		return;
    421 	}
    422 
    423 	/* Read MAC address, channels, etc from EEPROM. */
    424 	if ((error = iwn_read_eeprom(sc)) != 0) {
    425 		aprint_error(": could not read EEPROM\n");
    426 		return;
    427 	}
    428 
    429 	/* Allocate DMA memory for firmware transfers. */
    430 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    431 		aprint_error(": could not allocate memory for firmware\n");
    432 		return;
    433 	}
    434 
    435 	/* Allocate "Keep Warm" page. */
    436 	if ((error = iwn_alloc_kw(sc)) != 0) {
    437 		aprint_error(": could not allocate keep warm page\n");
    438 		goto fail1;
    439 	}
    440 
    441 	/* Allocate ICT table for 5000 Series. */
    442 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    443 	    (error = iwn_alloc_ict(sc)) != 0) {
    444 		aprint_error(": could not allocate ICT table\n");
    445 		goto fail2;
    446 	}
    447 
    448 	/* Allocate TX scheduler "rings". */
    449 	if ((error = iwn_alloc_sched(sc)) != 0) {
    450 		aprint_error(": could not allocate TX scheduler rings\n");
    451 		goto fail3;
    452 	}
    453 
    454 #ifdef IWN_USE_RBUF
    455 	/* Allocate RX buffers. */
    456 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    457 		aprint_error_dev(self, "could not allocate RX buffers\n");
    458 		goto fail3;
    459 	}
    460 #endif
    461 
    462 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
    463 	for (i = 0; i < sc->ntxqs; i++) {
    464 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    465 			aprint_error(": could not allocate TX ring %d\n", i);
    466 			goto fail4;
    467 		}
    468 	}
    469 
    470 	/* Allocate RX ring. */
    471 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    472 		aprint_error(": could not allocate RX ring\n");
    473 		goto fail4;
    474 	}
    475 
    476 	/* Clear pending interrupts. */
    477 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    478 
    479 	/* Count the number of available chains. */
    480 	sc->ntxchains =
    481 	    ((sc->txchainmask >> 2) & 1) +
    482 	    ((sc->txchainmask >> 1) & 1) +
    483 	    ((sc->txchainmask >> 0) & 1);
    484 	sc->nrxchains =
    485 	    ((sc->rxchainmask >> 2) & 1) +
    486 	    ((sc->rxchainmask >> 1) & 1) +
    487 	    ((sc->rxchainmask >> 0) & 1);
    488 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    489 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    490 	    ether_sprintf(ic->ic_myaddr));
    491 
    492 	ic->ic_ifp = ifp;
    493 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    494 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    495 	ic->ic_state = IEEE80211_S_INIT;
    496 
    497 	/* Set device capabilities. */
    498 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
    499 	 * and IEEE80211_C_PMGT too. */
    500 	ic->ic_caps =
    501 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    502 	    IEEE80211_C_WPA |		/* 802.11i */
    503 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    504 	    IEEE80211_C_TXPMGT |	/* tx power management */
    505 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    506 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    507 	    IEEE80211_C_WME;		/* 802.11e */
    508 
    509 #ifndef IEEE80211_NO_HT
    510 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    511 		/* Set HT capabilities. */
    512 		ic->ic_htcaps =
    513 #if IWN_RBUF_SIZE == 8192
    514 		    IEEE80211_HTCAP_AMSDU7935 |
    515 #endif
    516 		    IEEE80211_HTCAP_CBW20_40 |
    517 		    IEEE80211_HTCAP_SGI20 |
    518 		    IEEE80211_HTCAP_SGI40;
    519 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    520 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    521 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    522 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    523 		else
    524 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    525 	}
    526 #endif	/* !IEEE80211_NO_HT */
    527 
    528 	/* Set supported legacy rates. */
    529 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
    530 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
    531 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    532 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
    533 	}
    534 #ifndef IEEE80211_NO_HT
    535 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    536 		/* Set supported HT rates. */
    537 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
    538 		if (sc->nrxchains > 1)
    539 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    540 		if (sc->nrxchains > 2)
    541 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    542 	}
    543 #endif
    544 
    545 	/* IBSS channel undefined for now. */
    546 	ic->ic_ibss_chan = &ic->ic_channels[0];
    547 
    548 	ifp->if_softc = sc;
    549 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    550 	ifp->if_init = iwn_init;
    551 	ifp->if_ioctl = iwn_ioctl;
    552 	ifp->if_start = iwn_start;
    553 	ifp->if_stop = iwn_stop;
    554 	ifp->if_watchdog = iwn_watchdog;
    555 	IFQ_SET_READY(&ifp->if_snd);
    556 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    557 
    558 	if_attach(ifp);
    559 	ieee80211_ifattach(ic);
    560 	ic->ic_node_alloc = iwn_node_alloc;
    561 	ic->ic_newassoc = iwn_newassoc;
    562 #ifdef IWN_HWCRYPTO
    563 	ic->ic_crypto.cs_key_set = iwn_set_key;
    564 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    565 #endif
    566 	ic->ic_wme.wme_update = iwn_wme_update;
    567 #ifndef IEEE80211_NO_HT
    568 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    569 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    570 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    571 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    572 #endif
    573 
    574 	/* Override 802.11 state transition machine. */
    575 	sc->sc_newstate = ic->ic_newstate;
    576 	ic->ic_newstate = iwn_newstate;
    577 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    578 
    579 	sc->amrr.amrr_min_success_threshold =  1;
    580 	sc->amrr.amrr_max_success_threshold = 15;
    581 
    582 	iwn_radiotap_attach(sc);
    583 
    584 	/*
    585 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    586 	 * callout_init and callout_setfunc, above.
    587 	*/
    588 
    589 	if (pmf_device_register(self, NULL, iwn_resume))
    590 		pmf_class_network_register(self, ifp);
    591 	else
    592 		aprint_error_dev(self, "couldn't establish power handler\n");
    593 
    594 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    595 	ieee80211_announce(ic);
    596 
    597 	return;
    598 
    599 	/* Free allocated memory if something failed during attachment. */
    600 fail4:	while (--i >= 0)
    601 		iwn_free_tx_ring(sc, &sc->txq[i]);
    602 #ifdef IWN_USE_RBUF
    603 	iwn_free_rpool(sc);
    604 #endif
    605 	iwn_free_sched(sc);
    606 fail3:	if (sc->ict != NULL)
    607 		iwn_free_ict(sc);
    608 fail2:	iwn_free_kw(sc);
    609 fail1:	iwn_free_fwmem(sc);
    610 }
    611 
    612 int
    613 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
    614 {
    615 	struct iwn_ops *ops = &sc->ops;
    616 
    617 	ops->load_firmware = iwn4965_load_firmware;
    618 	ops->read_eeprom = iwn4965_read_eeprom;
    619 	ops->post_alive = iwn4965_post_alive;
    620 	ops->nic_config = iwn4965_nic_config;
    621 	ops->update_sched = iwn4965_update_sched;
    622 	ops->get_temperature = iwn4965_get_temperature;
    623 	ops->get_rssi = iwn4965_get_rssi;
    624 	ops->set_txpower = iwn4965_set_txpower;
    625 	ops->init_gains = iwn4965_init_gains;
    626 	ops->set_gains = iwn4965_set_gains;
    627 	ops->add_node = iwn4965_add_node;
    628 	ops->tx_done = iwn4965_tx_done;
    629 #ifndef IEEE80211_NO_HT
    630 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
    631 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
    632 #endif
    633 	sc->ntxqs = IWN4965_NTXQUEUES;
    634 	sc->ndmachnls = IWN4965_NDMACHNLS;
    635 	sc->broadcast_id = IWN4965_ID_BROADCAST;
    636 	sc->rxonsz = IWN4965_RXONSZ;
    637 	sc->schedsz = IWN4965_SCHEDSZ;
    638 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
    639 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
    640 	sc->fwsz = IWN4965_FWSZ;
    641 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
    642 	sc->limits = &iwn4965_sensitivity_limits;
    643 	sc->fwname = "iwlwifi-4965-2.ucode";
    644 	/* Override chains masks, ROM is known to be broken. */
    645 	sc->txchainmask = IWN_ANT_AB;
    646 	sc->rxchainmask = IWN_ANT_ABC;
    647 
    648 	return 0;
    649 }
    650 
    651 int
    652 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
    653 {
    654 	struct iwn_ops *ops = &sc->ops;
    655 
    656 	ops->load_firmware = iwn5000_load_firmware;
    657 	ops->read_eeprom = iwn5000_read_eeprom;
    658 	ops->post_alive = iwn5000_post_alive;
    659 	ops->nic_config = iwn5000_nic_config;
    660 	ops->update_sched = iwn5000_update_sched;
    661 	ops->get_temperature = iwn5000_get_temperature;
    662 	ops->get_rssi = iwn5000_get_rssi;
    663 	ops->set_txpower = iwn5000_set_txpower;
    664 	ops->init_gains = iwn5000_init_gains;
    665 	ops->set_gains = iwn5000_set_gains;
    666 	ops->add_node = iwn5000_add_node;
    667 	ops->tx_done = iwn5000_tx_done;
    668 #ifndef IEEE80211_NO_HT
    669 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
    670 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
    671 #endif
    672 	sc->ntxqs = IWN5000_NTXQUEUES;
    673 	sc->ndmachnls = IWN5000_NDMACHNLS;
    674 	sc->broadcast_id = IWN5000_ID_BROADCAST;
    675 	sc->rxonsz = IWN5000_RXONSZ;
    676 	sc->schedsz = IWN5000_SCHEDSZ;
    677 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
    678 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
    679 	sc->fwsz = IWN5000_FWSZ;
    680 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
    681 
    682 	switch (sc->hw_type) {
    683 	case IWN_HW_REV_TYPE_5100:
    684 		sc->limits = &iwn5000_sensitivity_limits;
    685 		sc->fwname = "iwlwifi-5000-2.ucode";
    686 		/* Override chains masks, ROM is known to be broken. */
    687 		sc->txchainmask = IWN_ANT_B;
    688 		sc->rxchainmask = IWN_ANT_AB;
    689 		break;
    690 	case IWN_HW_REV_TYPE_5150:
    691 		sc->limits = &iwn5150_sensitivity_limits;
    692 		sc->fwname = "iwlwifi-5150-2.ucode";
    693 		break;
    694 	case IWN_HW_REV_TYPE_5300:
    695 	case IWN_HW_REV_TYPE_5350:
    696 		sc->limits = &iwn5000_sensitivity_limits;
    697 		sc->fwname = "iwlwifi-5000-2.ucode";
    698 		break;
    699 	case IWN_HW_REV_TYPE_1000:
    700 		sc->limits = &iwn1000_sensitivity_limits;
    701 		sc->fwname = "iwlwifi-1000-3.ucode";
    702 		break;
    703 	case IWN_HW_REV_TYPE_6000:
    704 		sc->limits = &iwn6000_sensitivity_limits;
    705 		sc->fwname = "iwlwifi-6000-4.ucode";
    706 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
    707 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
    708 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    709 			/* Override chains masks, ROM is known to be broken. */
    710 			sc->txchainmask = IWN_ANT_BC;
    711 			sc->rxchainmask = IWN_ANT_BC;
    712 		}
    713 		break;
    714 	case IWN_HW_REV_TYPE_6050:
    715 		sc->limits = &iwn6000_sensitivity_limits;
    716 		sc->fwname = "iwlwifi-6050-5.ucode";
    717 		break;
    718 	case IWN_HW_REV_TYPE_6005:
    719 		sc->limits = &iwn6000_sensitivity_limits;
    720 		sc->fwname = "iwlwifi-6000g2a-5.ucode";
    721 		break;
    722 	default:
    723 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    724 		return ENOTSUP;
    725 	}
    726 	return 0;
    727 }
    728 
    729 /*
    730  * Attach the interface to 802.11 radiotap.
    731  */
    732 static void
    733 iwn_radiotap_attach(struct iwn_softc *sc)
    734 {
    735 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    736 
    737 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    738 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    739 	    &sc->sc_drvbpf);
    740 
    741 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    742 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    743 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    744 
    745 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    746 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    747 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    748 }
    749 
    750 static int
    751 iwn_detach(device_t self, int flags __unused)
    752 {
    753 	struct iwn_softc *sc = device_private(self);
    754 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    755 	int qid;
    756 
    757 	callout_stop(&sc->calib_to);
    758 
    759 	/* Uninstall interrupt handler. */
    760 	if (sc->sc_ih != NULL)
    761 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    762 
    763 	/* Free DMA resources. */
    764 	iwn_free_rx_ring(sc, &sc->rxq);
    765 	for (qid = 0; qid < sc->ntxqs; qid++)
    766 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    767 #ifdef IWN_USE_RBUF
    768 	iwn_free_rpool(sc);
    769 #endif
    770 	iwn_free_sched(sc);
    771 	iwn_free_kw(sc);
    772 	if (sc->ict != NULL)
    773 		iwn_free_ict(sc);
    774 	iwn_free_fwmem(sc);
    775 
    776 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    777 
    778 	ieee80211_ifdetach(&sc->sc_ic);
    779 	if_detach(ifp);
    780 
    781 	return 0;
    782 }
    783 
    784 #if 0
    785 /*
    786  * XXX Investigate if clearing the PCI retry timeout could eliminate
    787  * the repeated scan calls.  Also the calls to if_init and if_start
    788  * are similar to the effect of adding the call to ifioctl_common .
    789  */
    790 static void
    791 iwn_power(int why, void *arg)
    792 {
    793 	struct iwn_softc *sc = arg;
    794 	struct ifnet *ifp;
    795 	pcireg_t reg;
    796 	int s;
    797 
    798 	if (why != PWR_RESUME)
    799 		return;
    800 
    801 	/* Clear device-specific "PCI retry timeout" register (41h). */
    802 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    803 	if (reg & 0xff00)
    804 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    805 
    806 	s = splnet();
    807 	ifp = &sc->sc_ic.ic_if;
    808 	if (ifp->if_flags & IFF_UP) {
    809 		ifp->if_init(ifp);
    810 		if (ifp->if_flags & IFF_RUNNING)
    811 			ifp->if_start(ifp);
    812 	}
    813 	splx(s);
    814 }
    815 #endif
    816 
    817 static bool
    818 iwn_resume(device_t dv, const pmf_qual_t *qual)
    819 {
    820 	return true;
    821 }
    822 
    823 static int
    824 iwn_nic_lock(struct iwn_softc *sc)
    825 {
    826 	int ntries;
    827 
    828 	/* Request exclusive access to NIC. */
    829 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    830 
    831 	/* Spin until we actually get the lock. */
    832 	for (ntries = 0; ntries < 1000; ntries++) {
    833 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    834 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    835 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    836 			return 0;
    837 		DELAY(10);
    838 	}
    839 	return ETIMEDOUT;
    840 }
    841 
    842 static __inline void
    843 iwn_nic_unlock(struct iwn_softc *sc)
    844 {
    845 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    846 }
    847 
    848 static __inline uint32_t
    849 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    850 {
    851 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    852 	IWN_BARRIER_READ_WRITE(sc);
    853 	return IWN_READ(sc, IWN_PRPH_RDATA);
    854 }
    855 
    856 static __inline void
    857 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    858 {
    859 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    860 	IWN_BARRIER_WRITE(sc);
    861 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    862 }
    863 
    864 static __inline void
    865 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    866 {
    867 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    868 }
    869 
    870 static __inline void
    871 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    872 {
    873 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    874 }
    875 
    876 static __inline void
    877 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    878     const uint32_t *data, int count)
    879 {
    880 	for (; count > 0; count--, data++, addr += 4)
    881 		iwn_prph_write(sc, addr, *data);
    882 }
    883 
    884 static __inline uint32_t
    885 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    886 {
    887 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    888 	IWN_BARRIER_READ_WRITE(sc);
    889 	return IWN_READ(sc, IWN_MEM_RDATA);
    890 }
    891 
    892 static __inline void
    893 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    894 {
    895 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    896 	IWN_BARRIER_WRITE(sc);
    897 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    898 }
    899 
    900 static __inline void
    901 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
    902 {
    903 	uint32_t tmp;
    904 
    905 	tmp = iwn_mem_read(sc, addr & ~3);
    906 	if (addr & 3)
    907 		tmp = (tmp & 0x0000ffff) | data << 16;
    908 	else
    909 		tmp = (tmp & 0xffff0000) | data;
    910 	iwn_mem_write(sc, addr & ~3, tmp);
    911 }
    912 
    913 static __inline void
    914 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
    915     int count)
    916 {
    917 	for (; count > 0; count--, addr += 4)
    918 		*data++ = iwn_mem_read(sc, addr);
    919 }
    920 
    921 static __inline void
    922 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
    923     int count)
    924 {
    925 	for (; count > 0; count--, addr += 4)
    926 		iwn_mem_write(sc, addr, val);
    927 }
    928 
    929 static int
    930 iwn_eeprom_lock(struct iwn_softc *sc)
    931 {
    932 	int i, ntries;
    933 
    934 	for (i = 0; i < 100; i++) {
    935 		/* Request exclusive access to EEPROM. */
    936 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
    937 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
    938 
    939 		/* Spin until we actually get the lock. */
    940 		for (ntries = 0; ntries < 100; ntries++) {
    941 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
    942 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
    943 				return 0;
    944 			DELAY(10);
    945 		}
    946 	}
    947 	return ETIMEDOUT;
    948 }
    949 
    950 static __inline void
    951 iwn_eeprom_unlock(struct iwn_softc *sc)
    952 {
    953 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
    954 }
    955 
    956 /*
    957  * Initialize access by host to One Time Programmable ROM.
    958  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
    959  */
    960 static int
    961 iwn_init_otprom(struct iwn_softc *sc)
    962 {
    963 	uint16_t prev = 0, base, next;
    964 	int count, error;
    965 
    966 	/* Wait for clock stabilization before accessing prph. */
    967 	if ((error = iwn_clock_wait(sc)) != 0)
    968 		return error;
    969 
    970 	if ((error = iwn_nic_lock(sc)) != 0)
    971 		return error;
    972 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
    973 	DELAY(5);
    974 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
    975 	iwn_nic_unlock(sc);
    976 
    977 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
    978 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
    979 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
    980 		    IWN_RESET_LINK_PWR_MGMT_DIS);
    981 	}
    982 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
    983 	/* Clear ECC status. */
    984 	IWN_SETBITS(sc, IWN_OTP_GP,
    985 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
    986 
    987 	/*
    988 	 * Find the block before last block (contains the EEPROM image)
    989 	 * for HW without OTP shadow RAM.
    990 	 */
    991 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
    992 		/* Switch to absolute addressing mode. */
    993 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
    994 		base = 0;
    995 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
    996 			error = iwn_read_prom_data(sc, base, &next, 2);
    997 			if (error != 0)
    998 				return error;
    999 			if (next == 0)	/* End of linked-list. */
   1000 				break;
   1001 			prev = base;
   1002 			base = le16toh(next);
   1003 		}
   1004 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1005 			return EIO;
   1006 		/* Skip "next" word. */
   1007 		sc->prom_base = prev + 1;
   1008 	}
   1009 	return 0;
   1010 }
   1011 
   1012 static int
   1013 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1014 {
   1015 	uint8_t *out = data;
   1016 	uint32_t val, tmp;
   1017 	int ntries;
   1018 
   1019 	addr += sc->prom_base;
   1020 	for (; count > 0; count -= 2, addr++) {
   1021 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1022 		for (ntries = 0; ntries < 10; ntries++) {
   1023 			val = IWN_READ(sc, IWN_EEPROM);
   1024 			if (val & IWN_EEPROM_READ_VALID)
   1025 				break;
   1026 			DELAY(5);
   1027 		}
   1028 		if (ntries == 10) {
   1029 			aprint_error_dev(sc->sc_dev,
   1030 			    "timeout reading ROM at 0x%x\n", addr);
   1031 			return ETIMEDOUT;
   1032 		}
   1033 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1034 			/* OTPROM, check for ECC errors. */
   1035 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1036 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1037 				aprint_error_dev(sc->sc_dev,
   1038 				    "OTPROM ECC error at 0x%x\n", addr);
   1039 				return EIO;
   1040 			}
   1041 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1042 				/* Correctable ECC error, clear bit. */
   1043 				IWN_SETBITS(sc, IWN_OTP_GP,
   1044 				    IWN_OTP_GP_ECC_CORR_STTS);
   1045 			}
   1046 		}
   1047 		*out++ = val >> 16;
   1048 		if (count > 1)
   1049 			*out++ = val >> 24;
   1050 	}
   1051 	return 0;
   1052 }
   1053 
   1054 static int
   1055 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1056     bus_size_t size, bus_size_t alignment)
   1057 {
   1058 	int nsegs, error;
   1059 
   1060 	dma->tag = tag;
   1061 	dma->size = size;
   1062 
   1063 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1064 	    &dma->map);
   1065 	if (error != 0)
   1066 		goto fail;
   1067 
   1068 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1069 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1070 	if (error != 0)
   1071 		goto fail;
   1072 
   1073 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1074 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1075 	if (error != 0)
   1076 		goto fail;
   1077 
   1078 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1079 	    BUS_DMA_NOWAIT);
   1080 	if (error != 0)
   1081 		goto fail;
   1082 
   1083 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1084 	memset(dma->vaddr, 0, size);
   1085 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1086 
   1087 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1088 	if (kvap != NULL)
   1089 		*kvap = dma->vaddr;
   1090 
   1091 	return 0;
   1092 
   1093 fail:	iwn_dma_contig_free(dma);
   1094 	return error;
   1095 }
   1096 
   1097 static void
   1098 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1099 {
   1100 	if (dma->map != NULL) {
   1101 		if (dma->vaddr != NULL) {
   1102 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1103 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1104 			bus_dmamap_unload(dma->tag, dma->map);
   1105 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1106 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1107 			dma->vaddr = NULL;
   1108 		}
   1109 		bus_dmamap_destroy(dma->tag, dma->map);
   1110 		dma->map = NULL;
   1111 	}
   1112 }
   1113 
   1114 static int
   1115 iwn_alloc_sched(struct iwn_softc *sc)
   1116 {
   1117 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1118 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1119 	    (void **)&sc->sched, sc->schedsz, 1024);
   1120 }
   1121 
   1122 static void
   1123 iwn_free_sched(struct iwn_softc *sc)
   1124 {
   1125 	iwn_dma_contig_free(&sc->sched_dma);
   1126 }
   1127 
   1128 static int
   1129 iwn_alloc_kw(struct iwn_softc *sc)
   1130 {
   1131 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1132 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1133 	    4096);
   1134 }
   1135 
   1136 static void
   1137 iwn_free_kw(struct iwn_softc *sc)
   1138 {
   1139 	iwn_dma_contig_free(&sc->kw_dma);
   1140 }
   1141 
   1142 static int
   1143 iwn_alloc_ict(struct iwn_softc *sc)
   1144 {
   1145 	/* ICT table must be aligned on a 4KB boundary. */
   1146 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1147 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1148 }
   1149 
   1150 static void
   1151 iwn_free_ict(struct iwn_softc *sc)
   1152 {
   1153 	iwn_dma_contig_free(&sc->ict_dma);
   1154 }
   1155 
   1156 static int
   1157 iwn_alloc_fwmem(struct iwn_softc *sc)
   1158 {
   1159 	/* Must be aligned on a 16-byte boundary. */
   1160 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1161 	    sc->fwsz, 16);
   1162 }
   1163 
   1164 static void
   1165 iwn_free_fwmem(struct iwn_softc *sc)
   1166 {
   1167 	iwn_dma_contig_free(&sc->fw_dma);
   1168 }
   1169 
   1170 static int
   1171 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1172 {
   1173 	bus_size_t size;
   1174 	int i, error;
   1175 
   1176 	ring->cur = 0;
   1177 
   1178 	/* Allocate RX descriptors (256-byte aligned). */
   1179 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1180 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1181 	    (void **)&ring->desc, size, 256);
   1182 	if (error != 0) {
   1183 		aprint_error_dev(sc->sc_dev,
   1184 		    "could not allocate RX ring DMA memory\n");
   1185 		goto fail;
   1186 	}
   1187 
   1188 	/* Allocate RX status area (16-byte aligned). */
   1189 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1190 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1191 	if (error != 0) {
   1192 		aprint_error_dev(sc->sc_dev,
   1193 		    "could not allocate RX status DMA memory\n");
   1194 		goto fail;
   1195 	}
   1196 
   1197 	/*
   1198 	 * Allocate and map RX buffers.
   1199 	 */
   1200 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1201 		struct iwn_rx_data *data = &ring->data[i];
   1202 
   1203 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1204 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1205 		    &data->map);
   1206 		if (error != 0) {
   1207 			aprint_error_dev(sc->sc_dev,
   1208 			    "could not create RX buf DMA map\n");
   1209 			goto fail;
   1210 		}
   1211 
   1212 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1213 		if (data->m == NULL) {
   1214 			aprint_error_dev(sc->sc_dev,
   1215 			    "could not allocate RX mbuf\n");
   1216 			error = ENOBUFS;
   1217 			goto fail;
   1218 		}
   1219 
   1220 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1221 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1222 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1223 		if (error != 0) {
   1224 			aprint_error_dev(sc->sc_dev,
   1225 			    "can't not map mbuf (error %d)\n", error);
   1226 			goto fail;
   1227 		}
   1228 
   1229 		/* Set physical address of RX buffer (256-byte aligned). */
   1230 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1231 	}
   1232 
   1233 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1234 	    BUS_DMASYNC_PREWRITE);
   1235 
   1236 	return 0;
   1237 
   1238 fail:	iwn_free_rx_ring(sc, ring);
   1239 	return error;
   1240 }
   1241 
   1242 static void
   1243 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1244 {
   1245 	int ntries;
   1246 
   1247 	if (iwn_nic_lock(sc) == 0) {
   1248 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1249 		for (ntries = 0; ntries < 1000; ntries++) {
   1250 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1251 			    IWN_FH_RX_STATUS_IDLE)
   1252 				break;
   1253 			DELAY(10);
   1254 		}
   1255 		iwn_nic_unlock(sc);
   1256 	}
   1257 	ring->cur = 0;
   1258 	sc->last_rx_valid = 0;
   1259 }
   1260 
   1261 static void
   1262 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1263 {
   1264 	int i;
   1265 
   1266 	iwn_dma_contig_free(&ring->desc_dma);
   1267 	iwn_dma_contig_free(&ring->stat_dma);
   1268 
   1269 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1270 		struct iwn_rx_data *data = &ring->data[i];
   1271 
   1272 		if (data->m != NULL) {
   1273 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1274 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1275 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1276 			m_freem(data->m);
   1277 		}
   1278 		if (data->map != NULL)
   1279 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1280 	}
   1281 }
   1282 
   1283 static int
   1284 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1285 {
   1286 	bus_addr_t paddr;
   1287 	bus_size_t size;
   1288 	int i, error;
   1289 
   1290 	ring->qid = qid;
   1291 	ring->queued = 0;
   1292 	ring->cur = 0;
   1293 
   1294 	/* Allocate TX descriptors (256-byte aligned). */
   1295 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1296 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1297 	    (void **)&ring->desc, size, 256);
   1298 	if (error != 0) {
   1299 		aprint_error_dev(sc->sc_dev,
   1300 		    "could not allocate TX ring DMA memory\n");
   1301 		goto fail;
   1302 	}
   1303 	/*
   1304 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1305 	 * to allocate commands space for other rings.
   1306 	 * XXX Do we really need to allocate descriptors for other rings?
   1307 	 */
   1308 	if (qid > 4)
   1309 		return 0;
   1310 
   1311 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1312 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1313 	    (void **)&ring->cmd, size, 4);
   1314 	if (error != 0) {
   1315 		aprint_error_dev(sc->sc_dev,
   1316 		    "could not allocate TX cmd DMA memory\n");
   1317 		goto fail;
   1318 	}
   1319 
   1320 	paddr = ring->cmd_dma.paddr;
   1321 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1322 		struct iwn_tx_data *data = &ring->data[i];
   1323 
   1324 		data->cmd_paddr = paddr;
   1325 		data->scratch_paddr = paddr + 12;
   1326 		paddr += sizeof (struct iwn_tx_cmd);
   1327 
   1328 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1329 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1330 		    &data->map);
   1331 		if (error != 0) {
   1332 			aprint_error_dev(sc->sc_dev,
   1333 			    "could not create TX buf DMA map\n");
   1334 			goto fail;
   1335 		}
   1336 	}
   1337 	return 0;
   1338 
   1339 fail:	iwn_free_tx_ring(sc, ring);
   1340 	return error;
   1341 }
   1342 
   1343 static void
   1344 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1345 {
   1346 	int i;
   1347 
   1348 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1349 		struct iwn_tx_data *data = &ring->data[i];
   1350 
   1351 		if (data->m != NULL) {
   1352 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1353 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1354 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1355 			m_freem(data->m);
   1356 			data->m = NULL;
   1357 		}
   1358 	}
   1359 	/* Clear TX descriptors. */
   1360 	memset(ring->desc, 0, ring->desc_dma.size);
   1361 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1362 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1363 	sc->qfullmsk &= ~(1 << ring->qid);
   1364 	ring->queued = 0;
   1365 	ring->cur = 0;
   1366 }
   1367 
   1368 static void
   1369 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1370 {
   1371 	int i;
   1372 
   1373 	iwn_dma_contig_free(&ring->desc_dma);
   1374 	iwn_dma_contig_free(&ring->cmd_dma);
   1375 
   1376 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1377 		struct iwn_tx_data *data = &ring->data[i];
   1378 
   1379 		if (data->m != NULL) {
   1380 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1381 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1382 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1383 			m_freem(data->m);
   1384 		}
   1385 		if (data->map != NULL)
   1386 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1387 	}
   1388 }
   1389 
   1390 static void
   1391 iwn5000_ict_reset(struct iwn_softc *sc)
   1392 {
   1393 	/* Disable interrupts. */
   1394 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1395 
   1396 	/* Reset ICT table. */
   1397 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1398 	sc->ict_cur = 0;
   1399 
   1400 	/* Set physical address of ICT table (4KB aligned). */
   1401 	DPRINTF(("enabling ICT\n"));
   1402 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1403 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1404 
   1405 	/* Enable periodic RX interrupt. */
   1406 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1407 	/* Switch to ICT interrupt mode in driver. */
   1408 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1409 
   1410 	/* Re-enable interrupts. */
   1411 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1412 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1413 }
   1414 
   1415 static int
   1416 iwn_read_eeprom(struct iwn_softc *sc)
   1417 {
   1418 	struct iwn_ops *ops = &sc->ops;
   1419 	struct ieee80211com *ic = &sc->sc_ic;
   1420 	uint16_t val;
   1421 	int error;
   1422 
   1423 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1424 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1425 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1426 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1427 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1428 	    "OTPROM" : "EEPROM"));
   1429 
   1430 	/* Adapter has to be powered on for EEPROM access to work. */
   1431 	if ((error = iwn_apm_init(sc)) != 0) {
   1432 		aprint_error_dev(sc->sc_dev,
   1433 		    "could not power ON adapter\n");
   1434 		return error;
   1435 	}
   1436 
   1437 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1438 		aprint_error_dev(sc->sc_dev,
   1439 		    "bad ROM signature\n");
   1440 		return EIO;
   1441 	}
   1442 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1443 		aprint_error_dev(sc->sc_dev,
   1444 		    "could not lock ROM (error=%d)\n", error);
   1445 		return error;
   1446 	}
   1447 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1448 		if ((error = iwn_init_otprom(sc)) != 0) {
   1449 			aprint_error_dev(sc->sc_dev,
   1450 			    "could not initialize OTPROM\n");
   1451 			return error;
   1452 		}
   1453 	}
   1454 
   1455 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
   1456 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
   1457 	/* Check if HT support is bonded out. */
   1458 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
   1459 		sc->sc_flags |= IWN_FLAG_HAS_11N;
   1460 
   1461 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1462 	sc->rfcfg = le16toh(val);
   1463 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1464 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
   1465 	if (sc->txchainmask == 0)
   1466 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
   1467 	if (sc->rxchainmask == 0)
   1468 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
   1469 
   1470 	/* Read MAC address. */
   1471 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1472 
   1473 	/* Read adapter-specific information from EEPROM. */
   1474 	ops->read_eeprom(sc);
   1475 
   1476 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1477 
   1478 	iwn_eeprom_unlock(sc);
   1479 	return 0;
   1480 }
   1481 
   1482 static void
   1483 iwn4965_read_eeprom(struct iwn_softc *sc)
   1484 {
   1485 	uint32_t addr;
   1486 	uint16_t val;
   1487 	int i;
   1488 
   1489 	/* Read regulatory domain (4 ASCII characters). */
   1490 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1491 
   1492 	/* Read the list of authorized channels (20MHz ones only). */
   1493 	for (i = 0; i < 5; i++) {
   1494 		addr = iwn4965_regulatory_bands[i];
   1495 		iwn_read_eeprom_channels(sc, i, addr);
   1496 	}
   1497 
   1498 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1499 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1500 	sc->maxpwr2GHz = val & 0xff;
   1501 	sc->maxpwr5GHz = val >> 8;
   1502 	/* Check that EEPROM values are within valid range. */
   1503 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1504 		sc->maxpwr5GHz = 38;
   1505 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1506 		sc->maxpwr2GHz = 38;
   1507 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1508 
   1509 	/* Read samples for each TX power group. */
   1510 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1511 	    sizeof sc->bands);
   1512 
   1513 	/* Read voltage at which samples were taken. */
   1514 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1515 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1516 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1517 
   1518 #ifdef IWN_DEBUG
   1519 	/* Print samples. */
   1520 	if (iwn_debug > 0) {
   1521 		for (i = 0; i < IWN_NBANDS; i++)
   1522 			iwn4965_print_power_group(sc, i);
   1523 	}
   1524 #endif
   1525 }
   1526 
   1527 #ifdef IWN_DEBUG
   1528 static void
   1529 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1530 {
   1531 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1532 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1533 	int j, c;
   1534 
   1535 	aprint_normal("===band %d===\n", i);
   1536 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1537 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1538 	for (c = 0; c < 2; c++) {
   1539 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1540 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1541 			    "power=%d pa_det=%d\n", c, j,
   1542 			    chans[0].samples[c][j].temp,
   1543 			    chans[0].samples[c][j].gain,
   1544 			    chans[0].samples[c][j].power,
   1545 			    chans[0].samples[c][j].pa_det);
   1546 		}
   1547 	}
   1548 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1549 	for (c = 0; c < 2; c++) {
   1550 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1551 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1552 			    "power=%d pa_det=%d\n", c, j,
   1553 			    chans[1].samples[c][j].temp,
   1554 			    chans[1].samples[c][j].gain,
   1555 			    chans[1].samples[c][j].power,
   1556 			    chans[1].samples[c][j].pa_det);
   1557 		}
   1558 	}
   1559 }
   1560 #endif
   1561 
   1562 static void
   1563 iwn5000_read_eeprom(struct iwn_softc *sc)
   1564 {
   1565 	struct iwn5000_eeprom_calib_hdr hdr;
   1566 	int32_t volt;
   1567 	uint32_t base, addr;
   1568 	uint16_t val;
   1569 	int i;
   1570 
   1571 	/* Read regulatory domain (4 ASCII characters). */
   1572 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1573 	base = le16toh(val);
   1574 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1575 	    sc->eeprom_domain, 4);
   1576 
   1577 	/* Read the list of authorized channels (20MHz ones only). */
   1578 	for (i = 0; i < 5; i++) {
   1579 		addr = base + iwn5000_regulatory_bands[i];
   1580 		iwn_read_eeprom_channels(sc, i, addr);
   1581 	}
   1582 
   1583 	/* Read enhanced TX power information for 6000 Series. */
   1584 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1585 		iwn_read_eeprom_enhinfo(sc);
   1586 
   1587 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1588 	base = le16toh(val);
   1589 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1590 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1591 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1592 	sc->calib_ver = hdr.version;
   1593 
   1594 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1595 		/* Compute temperature offset. */
   1596 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1597 		sc->eeprom_temp = le16toh(val);
   1598 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1599 		volt = le16toh(val);
   1600 		sc->temp_off = sc->eeprom_temp - (volt / -5);
   1601 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1602 		    sc->eeprom_temp, volt, sc->temp_off));
   1603 	} else {
   1604 		/* Read crystal calibration. */
   1605 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1606 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1607 		DPRINTF(("crystal calibration 0x%08x\n",
   1608 		    le32toh(sc->eeprom_crystal)));
   1609 	}
   1610 }
   1611 
   1612 static void
   1613 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1614 {
   1615 	struct ieee80211com *ic = &sc->sc_ic;
   1616 	const struct iwn_chan_band *band = &iwn_bands[n];
   1617 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1618 	uint8_t chan;
   1619 	int i;
   1620 
   1621 	iwn_read_prom_data(sc, addr, channels,
   1622 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1623 
   1624 	for (i = 0; i < band->nchan; i++) {
   1625 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1626 			continue;
   1627 
   1628 		chan = band->chan[i];
   1629 
   1630 		if (n == 0) {	/* 2GHz band */
   1631 			ic->ic_channels[chan].ic_freq =
   1632 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1633 			ic->ic_channels[chan].ic_flags =
   1634 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1635 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1636 
   1637 		} else {	/* 5GHz band */
   1638 			/*
   1639 			 * Some adapters support channels 7, 8, 11 and 12
   1640 			 * both in the 2GHz and 4.9GHz bands.
   1641 			 * Because of limitations in our net80211 layer,
   1642 			 * we don't support them in the 4.9GHz band.
   1643 			 */
   1644 			if (chan <= 14)
   1645 				continue;
   1646 
   1647 			ic->ic_channels[chan].ic_freq =
   1648 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1649 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1650 			/* We have at least one valid 5GHz channel. */
   1651 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1652 		}
   1653 
   1654 		/* Is active scan allowed on this channel? */
   1655 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1656 			ic->ic_channels[chan].ic_flags |=
   1657 			    IEEE80211_CHAN_PASSIVE;
   1658 		}
   1659 
   1660 		/* Save maximum allowed TX power for this channel. */
   1661 		sc->maxpwr[chan] = channels[i].maxpwr;
   1662 
   1663 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1664 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1665 	}
   1666 }
   1667 
   1668 static void
   1669 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1670 {
   1671 	struct iwn_eeprom_enhinfo enhinfo[35];
   1672 	uint16_t val, base;
   1673 	int8_t maxpwr;
   1674 	int i;
   1675 
   1676 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1677 	base = le16toh(val);
   1678 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1679 	    enhinfo, sizeof enhinfo);
   1680 
   1681 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1682 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1683 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
   1684 			continue;	/* Skip invalid entries. */
   1685 
   1686 		maxpwr = 0;
   1687 		if (sc->txchainmask & IWN_ANT_A)
   1688 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1689 		if (sc->txchainmask & IWN_ANT_B)
   1690 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1691 		if (sc->txchainmask & IWN_ANT_C)
   1692 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1693 		if (sc->ntxchains == 2)
   1694 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1695 		else if (sc->ntxchains == 3)
   1696 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1697 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1698 
   1699 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1700 		sc->enh_maxpwr[i] = maxpwr;
   1701 	}
   1702 }
   1703 
   1704 static struct ieee80211_node *
   1705 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1706 {
   1707 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1708 }
   1709 
   1710 static void
   1711 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1712 {
   1713 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1714 	struct iwn_node *wn = (void *)ni;
   1715 	uint8_t rate;
   1716 	int ridx, i;
   1717 
   1718 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1719 	/* Start at lowest available bit-rate, AMRR will raise. */
   1720 	ni->ni_txrate = 0;
   1721 
   1722 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1723 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1724 		/* Map 802.11 rate to HW rate index. */
   1725 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1726 			if (iwn_rates[ridx].rate == rate)
   1727 				break;
   1728 		wn->ridx[i] = ridx;
   1729 	}
   1730 }
   1731 
   1732 static int
   1733 iwn_media_change(struct ifnet *ifp)
   1734 {
   1735 	struct iwn_softc *sc = ifp->if_softc;
   1736 	struct ieee80211com *ic = &sc->sc_ic;
   1737 	uint8_t rate, ridx;
   1738 	int error;
   1739 
   1740 	error = ieee80211_media_change(ifp);
   1741 	if (error != ENETRESET)
   1742 		return error;
   1743 
   1744 	if (ic->ic_fixed_rate != -1) {
   1745 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1746 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1747 		/* Map 802.11 rate to HW rate index. */
   1748 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1749 			if (iwn_rates[ridx].rate == rate)
   1750 				break;
   1751 		sc->fixed_ridx = ridx;
   1752 	}
   1753 
   1754 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1755 	    (IFF_UP | IFF_RUNNING)) {
   1756 		iwn_stop(ifp, 0);
   1757 		error = iwn_init(ifp);
   1758 	}
   1759 	return error;
   1760 }
   1761 
   1762 static int
   1763 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1764 {
   1765 	struct ifnet *ifp = ic->ic_ifp;
   1766 	struct iwn_softc *sc = ifp->if_softc;
   1767 	int error;
   1768 
   1769 	callout_stop(&sc->calib_to);
   1770 
   1771 	switch (nstate) {
   1772 	case IEEE80211_S_SCAN:
   1773 		/* XXX Do not abort a running scan. */
   1774 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1775 			if (ic->ic_state != nstate)
   1776 				aprint_error_dev(sc->sc_dev, "scan request(%d) "
   1777 				    "while scanning(%d) ignored\n", nstate,
   1778 				    ic->ic_state);
   1779 			break;
   1780 		}
   1781 
   1782 		/* XXX Not sure if call and flags are needed. */
   1783 		ieee80211_node_table_reset(&ic->ic_scan);
   1784 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1785 		sc->sc_flags |= IWN_FLAG_SCANNING;
   1786 
   1787 		/* Make the link LED blink while we're scanning. */
   1788 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1789 
   1790 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1791 			aprint_error_dev(sc->sc_dev,
   1792 			    "could not initiate scan\n");
   1793 			return error;
   1794 		}
   1795 		ic->ic_state = nstate;
   1796 		return 0;
   1797 
   1798 	case IEEE80211_S_ASSOC:
   1799 		if (ic->ic_state != IEEE80211_S_RUN)
   1800 			break;
   1801 		/* FALLTHROUGH */
   1802 	case IEEE80211_S_AUTH:
   1803 		/* Reset state to handle reassociations correctly. */
   1804 		sc->rxon.associd = 0;
   1805 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1806 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1807 
   1808 		if ((error = iwn_auth(sc)) != 0) {
   1809 			aprint_error_dev(sc->sc_dev,
   1810 			    "could not move to auth state\n");
   1811 			return error;
   1812 		}
   1813 		break;
   1814 
   1815 	case IEEE80211_S_RUN:
   1816 		if ((error = iwn_run(sc)) != 0) {
   1817 			aprint_error_dev(sc->sc_dev,
   1818 			    "could not move to run state\n");
   1819 			return error;
   1820 		}
   1821 		break;
   1822 
   1823 	case IEEE80211_S_INIT:
   1824 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1825 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1826 		break;
   1827 	}
   1828 
   1829 	return sc->sc_newstate(ic, nstate, arg);
   1830 }
   1831 
   1832 static void
   1833 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1834 {
   1835 	struct iwn_softc *sc = arg;
   1836 	struct iwn_node *wn = (struct iwn_node *)ni;
   1837 
   1838 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1839 }
   1840 
   1841 static void
   1842 iwn_calib_timeout(void *arg)
   1843 {
   1844 	struct iwn_softc *sc = arg;
   1845 	struct ieee80211com *ic = &sc->sc_ic;
   1846 	int s;
   1847 
   1848 	s = splnet();
   1849 	if (ic->ic_fixed_rate == -1) {
   1850 		if (ic->ic_opmode == IEEE80211_M_STA)
   1851 			iwn_iter_func(sc, ic->ic_bss);
   1852 		else
   1853 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1854 	}
   1855 	/* Force automatic TX power calibration every 60 secs. */
   1856 	if (++sc->calib_cnt >= 120) {
   1857 		uint32_t flags = 0;
   1858 
   1859 		DPRINTF(("sending request for statistics\n"));
   1860 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   1861 		    sizeof flags, 1);
   1862 		sc->calib_cnt = 0;
   1863 	}
   1864 	splx(s);
   1865 
   1866 	/* Automatic rate control triggered every 500ms. */
   1867 	callout_schedule(&sc->calib_to, hz/2);
   1868 }
   1869 
   1870 /*
   1871  * Process an RX_PHY firmware notification.  This is usually immediately
   1872  * followed by an MPDU_RX_DONE notification.
   1873  */
   1874 static void
   1875 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1876     struct iwn_rx_data *data)
   1877 {
   1878 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   1879 
   1880 	DPRINTFN(2, ("received PHY stats\n"));
   1881 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   1882 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   1883 
   1884 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   1885 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   1886 	sc->last_rx_valid = 1;
   1887 }
   1888 
   1889 /*
   1890  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   1891  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   1892  */
   1893 static void
   1894 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1895     struct iwn_rx_data *data)
   1896 {
   1897 	struct iwn_ops *ops = &sc->ops;
   1898 	struct ieee80211com *ic = &sc->sc_ic;
   1899 	struct ifnet *ifp = ic->ic_ifp;
   1900 	struct iwn_rx_ring *ring = &sc->rxq;
   1901 	struct ieee80211_frame *wh;
   1902 	struct ieee80211_node *ni;
   1903 	struct mbuf *m, *m1;
   1904 	struct iwn_rx_stat *stat;
   1905 	char	*head;
   1906 	uint32_t flags;
   1907 	int error, len, rssi;
   1908 
   1909 	if (desc->type == IWN_MPDU_RX_DONE) {
   1910 		/* Check for prior RX_PHY notification. */
   1911 		if (!sc->last_rx_valid) {
   1912 			DPRINTF(("missing RX_PHY\n"));
   1913 			return;
   1914 		}
   1915 		sc->last_rx_valid = 0;
   1916 		stat = &sc->last_rx_stat;
   1917 	} else
   1918 		stat = (struct iwn_rx_stat *)(desc + 1);
   1919 
   1920 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   1921 	    BUS_DMASYNC_POSTREAD);
   1922 
   1923 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   1924 		aprint_error_dev(sc->sc_dev,
   1925 		    "invalid RX statistic header\n");
   1926 		return;
   1927 	}
   1928 	if (desc->type == IWN_MPDU_RX_DONE) {
   1929 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   1930 		head = (char *)(mpdu + 1);
   1931 		len = le16toh(mpdu->len);
   1932 	} else {
   1933 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   1934 		len = le16toh(stat->len);
   1935 	}
   1936 
   1937 	flags = le32toh(*(uint32_t *)(head + len));
   1938 
   1939 	/* Discard frames with a bad FCS early. */
   1940 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   1941 		DPRINTFN(2, ("RX flags error %x\n", flags));
   1942 		ifp->if_ierrors++;
   1943 		return;
   1944 	}
   1945 	/* Discard frames that are too short. */
   1946 	if (len < sizeof (*wh)) {
   1947 		DPRINTF(("frame too short: %d\n", len));
   1948 		ic->ic_stats.is_rx_tooshort++;
   1949 		ifp->if_ierrors++;
   1950 		return;
   1951 	}
   1952 
   1953 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1954 	if (m1 == NULL) {
   1955 		ic->ic_stats.is_rx_nobuf++;
   1956 		ifp->if_ierrors++;
   1957 		return;
   1958 	}
   1959 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1960 
   1961 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   1962 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   1963 	if (error != 0) {
   1964 		m_freem(m1);
   1965 
   1966 		/* Try to reload the old mbuf. */
   1967 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1968 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1969 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1970 		if (error != 0) {
   1971 			panic("%s: could not load old RX mbuf",
   1972 			    device_xname(sc->sc_dev));
   1973 		}
   1974 		/* Physical address may have changed. */
   1975 		ring->desc[ring->cur] =
   1976 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   1977 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   1978 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   1979 		    BUS_DMASYNC_PREWRITE);
   1980 		ifp->if_ierrors++;
   1981 		return;
   1982 	}
   1983 
   1984 	m = data->m;
   1985 	data->m = m1;
   1986 	/* Update RX descriptor. */
   1987 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1988 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   1989 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   1990 	    BUS_DMASYNC_PREWRITE);
   1991 
   1992 	/* Finalize mbuf. */
   1993 	m->m_pkthdr.rcvif = ifp;
   1994 	m->m_data = head;
   1995 	m->m_pkthdr.len = m->m_len = len;
   1996 
   1997 	/* Grab a reference to the source node. */
   1998 	wh = mtod(m, struct ieee80211_frame *);
   1999 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2000 
   2001 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2002 	/* NetBSD does decryption in ieee80211_input. */
   2003 
   2004 	rssi = ops->get_rssi(stat);
   2005 
   2006 	/* XXX Added for NetBSD: scans never stop without it */
   2007 	if (ic->ic_state == IEEE80211_S_SCAN)
   2008 		iwn_fix_channel(ic, m);
   2009 
   2010 	if (sc->sc_drvbpf != NULL) {
   2011 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2012 
   2013 		tap->wr_flags = 0;
   2014 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2015 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2016 		tap->wr_chan_freq =
   2017 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2018 		tap->wr_chan_flags =
   2019 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2020 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2021 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2022 		tap->wr_tsft = stat->tstamp;
   2023 		switch (stat->rate) {
   2024 		/* CCK rates. */
   2025 		case  10: tap->wr_rate =   2; break;
   2026 		case  20: tap->wr_rate =   4; break;
   2027 		case  55: tap->wr_rate =  11; break;
   2028 		case 110: tap->wr_rate =  22; break;
   2029 		/* OFDM rates. */
   2030 		case 0xd: tap->wr_rate =  12; break;
   2031 		case 0xf: tap->wr_rate =  18; break;
   2032 		case 0x5: tap->wr_rate =  24; break;
   2033 		case 0x7: tap->wr_rate =  36; break;
   2034 		case 0x9: tap->wr_rate =  48; break;
   2035 		case 0xb: tap->wr_rate =  72; break;
   2036 		case 0x1: tap->wr_rate =  96; break;
   2037 		case 0x3: tap->wr_rate = 108; break;
   2038 		/* Unknown rate: should not happen. */
   2039 		default:  tap->wr_rate =   0;
   2040 		}
   2041 
   2042 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   2043 	}
   2044 
   2045 	/* Send the frame to the 802.11 layer. */
   2046 	ieee80211_input(ic, m, ni, rssi, 0);
   2047 
   2048 	/* Node is no longer needed. */
   2049 	ieee80211_free_node(ni);
   2050 }
   2051 
   2052 #ifndef IEEE80211_NO_HT
   2053 /* Process an incoming Compressed BlockAck. */
   2054 static void
   2055 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2056     struct iwn_rx_data *data)
   2057 {
   2058 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2059 	struct iwn_tx_ring *txq;
   2060 
   2061 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2062 	    BUS_DMASYNC_POSTREAD);
   2063 
   2064 	txq = &sc->txq[le16toh(ba->qid)];
   2065 	/* XXX TBD */
   2066 }
   2067 #endif
   2068 
   2069 /*
   2070  * Process a CALIBRATION_RESULT notification sent by the initialization
   2071  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
   2072  */
   2073 static void
   2074 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2075     struct iwn_rx_data *data)
   2076 {
   2077 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2078 	int len, idx = -1;
   2079 
   2080 	/* Runtime firmware should not send such a notification. */
   2081 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2082 		return;
   2083 
   2084 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2085 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2086 	    BUS_DMASYNC_POSTREAD);
   2087 
   2088 	switch (calib->code) {
   2089 	case IWN5000_PHY_CALIB_DC:
   2090 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   2091 			idx = 0;
   2092 		break;
   2093 	case IWN5000_PHY_CALIB_LO:
   2094 		idx = 1;
   2095 		break;
   2096 	case IWN5000_PHY_CALIB_TX_IQ:
   2097 		idx = 2;
   2098 		break;
   2099 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2100 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2101 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2102 			idx = 3;
   2103 		break;
   2104 	case IWN5000_PHY_CALIB_BASE_BAND:
   2105 		idx = 4;
   2106 		break;
   2107 	}
   2108 	if (idx == -1)	/* Ignore other results. */
   2109 		return;
   2110 
   2111 	/* Save calibration result. */
   2112 	if (sc->calibcmd[idx].buf != NULL)
   2113 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2114 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2115 	if (sc->calibcmd[idx].buf == NULL) {
   2116 		DPRINTF(("not enough memory for calibration result %d\n",
   2117 		    calib->code));
   2118 		return;
   2119 	}
   2120 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2121 	    calib->code, len));
   2122 	sc->calibcmd[idx].len = len;
   2123 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2124 }
   2125 
   2126 /*
   2127  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2128  * The latter is sent by the firmware after each received beacon.
   2129  */
   2130 static void
   2131 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2132     struct iwn_rx_data *data)
   2133 {
   2134 	struct iwn_ops *ops = &sc->ops;
   2135 	struct ieee80211com *ic = &sc->sc_ic;
   2136 	struct iwn_calib_state *calib = &sc->calib;
   2137 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2138 	int temp;
   2139 
   2140 	/* Ignore statistics received during a scan. */
   2141 	if (ic->ic_state != IEEE80211_S_RUN)
   2142 		return;
   2143 
   2144 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2145 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2146 
   2147 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2148 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2149 
   2150 	/* Test if temperature has changed. */
   2151 	if (stats->general.temp != sc->rawtemp) {
   2152 		/* Convert "raw" temperature to degC. */
   2153 		sc->rawtemp = stats->general.temp;
   2154 		temp = ops->get_temperature(sc);
   2155 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2156 
   2157 		/* Update TX power if need be (4965AGN only). */
   2158 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2159 			iwn4965_power_calibration(sc, temp);
   2160 	}
   2161 
   2162 	if (desc->type != IWN_BEACON_STATISTICS)
   2163 		return;	/* Reply to a statistics request. */
   2164 
   2165 	sc->noise = iwn_get_noise(&stats->rx.general);
   2166 
   2167 	/* Test that RSSI and noise are present in stats report. */
   2168 	if (le32toh(stats->rx.general.flags) != 1) {
   2169 		DPRINTF(("received statistics without RSSI\n"));
   2170 		return;
   2171 	}
   2172 
   2173 	/*
   2174 	 * XXX Differential gain calibration makes the 6005 firmware
   2175 	 * crap out, so skip it for now.  This effectively disables
   2176 	 * sensitivity tuning as well.
   2177 	 */
   2178 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   2179 		return;
   2180 
   2181 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2182 		iwn_collect_noise(sc, &stats->rx.general);
   2183 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2184 		iwn_tune_sensitivity(sc, &stats->rx);
   2185 }
   2186 
   2187 /*
   2188  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2189  * and 5000 adapters have different incompatible TX status formats.
   2190  */
   2191 static void
   2192 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2193     struct iwn_rx_data *data)
   2194 {
   2195 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2196 
   2197 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2198 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2199 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2200 }
   2201 
   2202 static void
   2203 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2204     struct iwn_rx_data *data)
   2205 {
   2206 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2207 
   2208 #ifdef notyet
   2209 	/* Reset TX scheduler slot. */
   2210 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2211 #endif
   2212 
   2213 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2214 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2215 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2216 }
   2217 
   2218 /*
   2219  * Adapter-independent backend for TX_DONE firmware notifications.
   2220  */
   2221 static void
   2222 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2223     uint8_t status)
   2224 {
   2225 	struct ieee80211com *ic = &sc->sc_ic;
   2226 	struct ifnet *ifp = ic->ic_ifp;
   2227 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2228 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2229 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2230 
   2231 	/* Update rate control statistics. */
   2232 	wn->amn.amn_txcnt++;
   2233 	if (ackfailcnt > 0)
   2234 		wn->amn.amn_retrycnt++;
   2235 
   2236 	if (status != 1 && status != 2)
   2237 		ifp->if_oerrors++;
   2238 	else
   2239 		ifp->if_opackets++;
   2240 
   2241 	/* Unmap and free mbuf. */
   2242 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2243 	    BUS_DMASYNC_POSTWRITE);
   2244 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2245 	m_freem(data->m);
   2246 	data->m = NULL;
   2247 	ieee80211_free_node(data->ni);
   2248 	data->ni = NULL;
   2249 
   2250 	sc->sc_tx_timer = 0;
   2251 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2252 		sc->qfullmsk &= ~(1 << ring->qid);
   2253 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2254 			ifp->if_flags &= ~IFF_OACTIVE;
   2255 			(*ifp->if_start)(ifp);
   2256 		}
   2257 	}
   2258 }
   2259 
   2260 /*
   2261  * Process a "command done" firmware notification.  This is where we wakeup
   2262  * processes waiting for a synchronous command completion.
   2263  */
   2264 static void
   2265 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2266 {
   2267 	struct iwn_tx_ring *ring = &sc->txq[4];
   2268 	struct iwn_tx_data *data;
   2269 
   2270 	if ((desc->qid & 0xf) != 4)
   2271 		return;	/* Not a command ack. */
   2272 
   2273 	data = &ring->data[desc->idx];
   2274 
   2275 	/* If the command was mapped in an mbuf, free it. */
   2276 	if (data->m != NULL) {
   2277 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2278 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2279 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2280 		m_freem(data->m);
   2281 		data->m = NULL;
   2282 	}
   2283 	wakeup(&ring->desc[desc->idx]);
   2284 }
   2285 
   2286 /*
   2287  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2288  */
   2289 static void
   2290 iwn_notif_intr(struct iwn_softc *sc)
   2291 {
   2292 	struct iwn_ops *ops = &sc->ops;
   2293 	struct ieee80211com *ic = &sc->sc_ic;
   2294 	struct ifnet *ifp = ic->ic_ifp;
   2295 	uint16_t hw;
   2296 
   2297 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2298 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2299 
   2300 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2301 	while (sc->rxq.cur != hw) {
   2302 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2303 		struct iwn_rx_desc *desc;
   2304 
   2305 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2306 		    BUS_DMASYNC_POSTREAD);
   2307 		desc = mtod(data->m, struct iwn_rx_desc *);
   2308 
   2309 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2310 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2311 
   2312 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2313 			iwn_cmd_done(sc, desc);
   2314 
   2315 		switch (desc->type) {
   2316 		case IWN_RX_PHY:
   2317 			iwn_rx_phy(sc, desc, data);
   2318 			break;
   2319 
   2320 		case IWN_RX_DONE:		/* 4965AGN only. */
   2321 		case IWN_MPDU_RX_DONE:
   2322 			/* An 802.11 frame has been received. */
   2323 			iwn_rx_done(sc, desc, data);
   2324 			break;
   2325 #ifndef IEEE80211_NO_HT
   2326 		case IWN_RX_COMPRESSED_BA:
   2327 			/* A Compressed BlockAck has been received. */
   2328 			iwn_rx_compressed_ba(sc, desc, data);
   2329 			break;
   2330 #endif
   2331 		case IWN_TX_DONE:
   2332 			/* An 802.11 frame has been transmitted. */
   2333 			ops->tx_done(sc, desc, data);
   2334 			break;
   2335 
   2336 		case IWN_RX_STATISTICS:
   2337 		case IWN_BEACON_STATISTICS:
   2338 			iwn_rx_statistics(sc, desc, data);
   2339 			break;
   2340 
   2341 		case IWN_BEACON_MISSED:
   2342 		{
   2343 			struct iwn_beacon_missed *miss =
   2344 			    (struct iwn_beacon_missed *)(desc + 1);
   2345 
   2346 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2347 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2348 			/*
   2349 			 * If more than 5 consecutive beacons are missed,
   2350 			 * reinitialize the sensitivity state machine.
   2351 			 */
   2352 			DPRINTF(("beacons missed %d/%d\n",
   2353 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2354 			if (ic->ic_state == IEEE80211_S_RUN &&
   2355 			    le32toh(miss->consecutive) > 5)
   2356 				(void)iwn_init_sensitivity(sc);
   2357 			break;
   2358 		}
   2359 		case IWN_UC_READY:
   2360 		{
   2361 			struct iwn_ucode_info *uc =
   2362 			    (struct iwn_ucode_info *)(desc + 1);
   2363 
   2364 			/* The microcontroller is ready. */
   2365 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2366 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2367 			DPRINTF(("microcode alive notification version=%d.%d "
   2368 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2369 			    uc->subtype, le32toh(uc->valid)));
   2370 
   2371 			if (le32toh(uc->valid) != 1) {
   2372 				aprint_error_dev(sc->sc_dev,
   2373 				    "microcontroller initialization "
   2374 				    "failed\n");
   2375 				break;
   2376 			}
   2377 			if (uc->subtype == IWN_UCODE_INIT) {
   2378 				/* Save microcontroller report. */
   2379 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2380 			}
   2381 			/* Save the address of the error log in SRAM. */
   2382 			sc->errptr = le32toh(uc->errptr);
   2383 			break;
   2384 		}
   2385 		case IWN_STATE_CHANGED:
   2386 		{
   2387 			uint32_t *status = (uint32_t *)(desc + 1);
   2388 
   2389 			/* Enabled/disabled notification. */
   2390 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2391 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2392 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2393 
   2394 			if (le32toh(*status) & 1) {
   2395 				/* The radio button has to be pushed. */
   2396 				aprint_error_dev(sc->sc_dev,
   2397 				    "Radio transmitter is off\n");
   2398 				/* Turn the interface down. */
   2399 				ifp->if_flags &= ~IFF_UP;
   2400 				iwn_stop(ifp, 1);
   2401 				return;	/* No further processing. */
   2402 			}
   2403 			break;
   2404 		}
   2405 		case IWN_START_SCAN:
   2406 		{
   2407 			struct iwn_start_scan *scan =
   2408 			    (struct iwn_start_scan *)(desc + 1);
   2409 
   2410 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2411 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2412 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2413 			    scan->chan, le32toh(scan->status)));
   2414 
   2415 			/* Fix current channel. */
   2416 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2417 			break;
   2418 		}
   2419 		case IWN_STOP_SCAN:
   2420 		{
   2421 			struct iwn_stop_scan *scan =
   2422 			    (struct iwn_stop_scan *)(desc + 1);
   2423 
   2424 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2425 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2426 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2427 			    scan->nchan, scan->status, scan->chan));
   2428 
   2429 			if (scan->status == 1 && scan->chan <= 14 &&
   2430 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2431 				/*
   2432 				 * We just finished scanning 2GHz channels,
   2433 				 * start scanning 5GHz ones.
   2434 				 */
   2435 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2436 					break;
   2437 			}
   2438 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2439 			ieee80211_end_scan(ic);
   2440 			break;
   2441 		}
   2442 		case IWN5000_CALIBRATION_RESULT:
   2443 			iwn5000_rx_calib_results(sc, desc, data);
   2444 			break;
   2445 
   2446 		case IWN5000_CALIBRATION_DONE:
   2447 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2448 			wakeup(sc);
   2449 			break;
   2450 		}
   2451 
   2452 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2453 	}
   2454 
   2455 	/* Tell the firmware what we have processed. */
   2456 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2457 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2458 }
   2459 
   2460 /*
   2461  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2462  * from power-down sleep mode.
   2463  */
   2464 static void
   2465 iwn_wakeup_intr(struct iwn_softc *sc)
   2466 {
   2467 	int qid;
   2468 
   2469 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2470 
   2471 	/* Wakeup RX and TX rings. */
   2472 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2473 	for (qid = 0; qid < sc->ntxqs; qid++) {
   2474 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2475 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2476 	}
   2477 }
   2478 
   2479 /*
   2480  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2481  * we can't debug the firmware because it is neither open source nor free, it
   2482  * can help us to identify certain classes of problems.
   2483  */
   2484 static void
   2485 iwn_fatal_intr(struct iwn_softc *sc)
   2486 {
   2487 	struct iwn_fw_dump dump;
   2488 	int i;
   2489 
   2490 	/* Force a complete recalibration on next init. */
   2491 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2492 
   2493 	/* Check that the error log address is valid. */
   2494 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2495 	    sc->errptr + sizeof (dump) >
   2496 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
   2497 		aprint_error_dev(sc->sc_dev,
   2498 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2499 		return;
   2500 	}
   2501 	if (iwn_nic_lock(sc) != 0) {
   2502 		aprint_error_dev(sc->sc_dev,
   2503 		    "could not read firmware error log\n");
   2504 		return;
   2505 	}
   2506 	/* Read firmware error log from SRAM. */
   2507 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2508 	    sizeof (dump) / sizeof (uint32_t));
   2509 	iwn_nic_unlock(sc);
   2510 
   2511 	if (dump.valid == 0) {
   2512 		aprint_error_dev(sc->sc_dev,
   2513 		    "firmware error log is empty\n");
   2514 		return;
   2515 	}
   2516 	aprint_error("firmware error log:\n");
   2517 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2518 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2519 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2520 	    dump.id);
   2521 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2522 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2523 	aprint_error("  error data      = 0x%08X%08X\n",
   2524 	    dump.error_data[0], dump.error_data[1]);
   2525 	aprint_error("  branch link     = 0x%08X%08X\n",
   2526 	    dump.branch_link[0], dump.branch_link[1]);
   2527 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2528 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2529 	aprint_error("  time            = %u\n", dump.time[0]);
   2530 
   2531 	/* Dump driver status (TX and RX rings) while we're here. */
   2532 	aprint_error("driver status:\n");
   2533 	for (i = 0; i < sc->ntxqs; i++) {
   2534 		struct iwn_tx_ring *ring = &sc->txq[i];
   2535 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2536 		    i, ring->qid, ring->cur, ring->queued);
   2537 	}
   2538 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2539 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2540 }
   2541 
   2542 static int
   2543 iwn_intr(void *arg)
   2544 {
   2545 	struct iwn_softc *sc = arg;
   2546 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2547 	uint32_t r1, r2, tmp;
   2548 
   2549 	/* Disable interrupts. */
   2550 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2551 
   2552 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2553 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2554 		tmp = 0;
   2555 		while (sc->ict[sc->ict_cur] != 0) {
   2556 			tmp |= sc->ict[sc->ict_cur];
   2557 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2558 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2559 		}
   2560 		tmp = le32toh(tmp);
   2561 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2562 			tmp = 0;
   2563 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2564 			tmp |= 0x8000;
   2565 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2566 		r2 = 0;	/* Unused. */
   2567 	} else {
   2568 		r1 = IWN_READ(sc, IWN_INT);
   2569 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2570 			return 0;	/* Hardware gone! */
   2571 		r2 = IWN_READ(sc, IWN_FH_INT);
   2572 	}
   2573 	if (r1 == 0 && r2 == 0) {
   2574 		if (ifp->if_flags & IFF_UP)
   2575 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2576 		return 0;	/* Interrupt not for us. */
   2577 	}
   2578 
   2579 	/* Acknowledge interrupts. */
   2580 	IWN_WRITE(sc, IWN_INT, r1);
   2581 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2582 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2583 
   2584 	if (r1 & IWN_INT_RF_TOGGLED) {
   2585 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2586 		aprint_error_dev(sc->sc_dev,
   2587 		    "RF switch: radio %s\n",
   2588 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2589 	}
   2590 	if (r1 & IWN_INT_CT_REACHED) {
   2591 		aprint_error_dev(sc->sc_dev,
   2592 		    "critical temperature reached!\n");
   2593 	}
   2594 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2595 		aprint_error_dev(sc->sc_dev,
   2596 		    "fatal firmware error\n");
   2597 		/* Dump firmware error log and stop. */
   2598 		iwn_fatal_intr(sc);
   2599 		ifp->if_flags &= ~IFF_UP;
   2600 		iwn_stop(ifp, 1);
   2601 		return 1;
   2602 	}
   2603 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2604 	    (r2 & IWN_FH_INT_RX)) {
   2605 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2606 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2607 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2608 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2609 			    IWN_INT_PERIODIC_DIS);
   2610 			iwn_notif_intr(sc);
   2611 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2612 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2613 				    IWN_INT_PERIODIC_ENA);
   2614 			}
   2615 		} else
   2616 			iwn_notif_intr(sc);
   2617 	}
   2618 
   2619 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2620 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2621 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2622 		wakeup(sc);	/* FH DMA transfer completed. */
   2623 	}
   2624 
   2625 	if (r1 & IWN_INT_ALIVE)
   2626 		wakeup(sc);	/* Firmware is alive. */
   2627 
   2628 	if (r1 & IWN_INT_WAKEUP)
   2629 		iwn_wakeup_intr(sc);
   2630 
   2631 	/* Re-enable interrupts. */
   2632 	if (ifp->if_flags & IFF_UP)
   2633 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2634 
   2635 	return 1;
   2636 }
   2637 
   2638 /*
   2639  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2640  * 5000 adapters use a slightly different format).
   2641  */
   2642 static void
   2643 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2644     uint16_t len)
   2645 {
   2646 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2647 
   2648 	*w = htole16(len + 8);
   2649 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2650 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2651 	    sizeof (uint16_t),
   2652 	    BUS_DMASYNC_PREWRITE);
   2653 	if (idx < IWN_SCHED_WINSZ) {
   2654 		*(w + IWN_TX_RING_COUNT) = *w;
   2655 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2656 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2657 		    (char *)(void *)sc->sched_dma.vaddr,
   2658 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2659 	}
   2660 }
   2661 
   2662 static void
   2663 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2664     uint16_t len)
   2665 {
   2666 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2667 
   2668 	*w = htole16(id << 12 | (len + 8));
   2669 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2670 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2671 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2672 	if (idx < IWN_SCHED_WINSZ) {
   2673 		*(w + IWN_TX_RING_COUNT) = *w;
   2674 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2675 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2676 		    (char *)(void *)sc->sched_dma.vaddr,
   2677 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2678 	}
   2679 }
   2680 
   2681 #ifdef notyet
   2682 static void
   2683 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2684 {
   2685 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2686 
   2687 	*w = (*w & htole16(0xf000)) | htole16(1);
   2688 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2689 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2690 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2691 	if (idx < IWN_SCHED_WINSZ) {
   2692 		*(w + IWN_TX_RING_COUNT) = *w;
   2693 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2694 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2695 		    (char *)(void *)sc->sched_dma.vaddr,
   2696 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2697 	}
   2698 }
   2699 #endif
   2700 
   2701 static int
   2702 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2703 {
   2704 	struct ieee80211com *ic = &sc->sc_ic;
   2705 	struct iwn_node *wn = (void *)ni;
   2706 	struct iwn_tx_ring *ring;
   2707 	struct iwn_tx_desc *desc;
   2708 	struct iwn_tx_data *data;
   2709 	struct iwn_tx_cmd *cmd;
   2710 	struct iwn_cmd_data *tx;
   2711 	const struct iwn_rate *rinfo;
   2712 	struct ieee80211_frame *wh;
   2713 	struct ieee80211_key *k = NULL;
   2714 	struct mbuf *m1;
   2715 	uint32_t flags;
   2716 	u_int hdrlen;
   2717 	bus_dma_segment_t *seg;
   2718 	uint8_t tid, ridx, txant, type;
   2719 	int i, totlen, error, pad;
   2720 
   2721 	const struct chanAccParams *cap;
   2722 	int noack;
   2723 	int hdrlen2;
   2724 
   2725 	wh = mtod(m, struct ieee80211_frame *);
   2726 	hdrlen = ieee80211_anyhdrsize(wh);
   2727 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2728 
   2729 	hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
   2730 	    sizeof (struct ieee80211_qosframe) :
   2731 	    sizeof (struct ieee80211_frame);
   2732 
   2733 	if (hdrlen != hdrlen2)
   2734 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2735 		hdrlen, hdrlen2);
   2736 
   2737 	/* XXX OpenBSD sets a different tid when using QOS */
   2738 	tid = 0;
   2739 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   2740 		cap = &ic->ic_wme.wme_chanParams;
   2741 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2742 	}
   2743 	else
   2744 		noack = 0;
   2745 
   2746 	ring = &sc->txq[ac];
   2747 	desc = &ring->desc[ring->cur];
   2748 	data = &ring->data[ring->cur];
   2749 
   2750 	/* Choose a TX rate index. */
   2751 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2752 	    type != IEEE80211_FC0_TYPE_DATA) {
   2753 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2754 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2755 	} else if (ic->ic_fixed_rate != -1) {
   2756 		ridx = sc->fixed_ridx;
   2757 	} else
   2758 		ridx = wn->ridx[ni->ni_txrate];
   2759 	rinfo = &iwn_rates[ridx];
   2760 
   2761 	/* Encrypt the frame if need be. */
   2762 	/*
   2763 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   2764 	 * in order to match old code and other drivers. Tests with
   2765 	 * tcpdump indicates that the order is irrelevant, however,
   2766 	 * as bpf produces unencrypted data for both ordering choices.
   2767 	 */
   2768 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2769 		k = ieee80211_crypto_encap(ic, ni, m);
   2770 		if (k == NULL) {
   2771 			m_freem(m);
   2772 			return ENOBUFS;
   2773 		}
   2774 		/* Packet header may have moved, reset our local pointer. */
   2775 		wh = mtod(m, struct ieee80211_frame *);
   2776 	}
   2777 	totlen = m->m_pkthdr.len;
   2778 
   2779 	if (sc->sc_drvbpf != NULL) {
   2780 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2781 
   2782 		tap->wt_flags = 0;
   2783 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2784 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2785 		tap->wt_rate = rinfo->rate;
   2786 		tap->wt_hwqueue = ac;
   2787 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2788 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2789 
   2790 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   2791 	}
   2792 
   2793 	/* Prepare TX firmware command. */
   2794 	cmd = &ring->cmd[ring->cur];
   2795 	cmd->code = IWN_CMD_TX_DATA;
   2796 	cmd->flags = 0;
   2797 	cmd->qid = ring->qid;
   2798 	cmd->idx = ring->cur;
   2799 
   2800 	tx = (struct iwn_cmd_data *)cmd->data;
   2801 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2802 	tx->scratch = 0;	/* clear "scratch" area */
   2803 
   2804 	flags = 0;
   2805 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2806 		/* Unicast frame, check if an ACK is expected. */
   2807 		if (!noack)
   2808 			flags |= IWN_TX_NEED_ACK;
   2809 	}
   2810 
   2811 #ifdef notyet
   2812 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   2813 	if ((wh->i_fc[0] &
   2814 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   2815 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   2816 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   2817 #endif
   2818 
   2819 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   2820 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   2821 
   2822 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   2823 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2824 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   2825 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   2826 			flags |= IWN_TX_NEED_RTS;
   2827 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   2828 		    ridx >= IWN_RIDX_OFDM6) {
   2829 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   2830 				flags |= IWN_TX_NEED_CTS;
   2831 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   2832 				flags |= IWN_TX_NEED_RTS;
   2833 		}
   2834 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   2835 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   2836 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   2837 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   2838 				flags |= IWN_TX_NEED_PROTECTION;
   2839 			} else
   2840 				flags |= IWN_TX_FULL_TXOP;
   2841 		}
   2842 	}
   2843 
   2844 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2845 	    type != IEEE80211_FC0_TYPE_DATA)
   2846 		tx->id = sc->broadcast_id;
   2847 	else
   2848 		tx->id = wn->id;
   2849 
   2850 	if (type == IEEE80211_FC0_TYPE_MGT) {
   2851 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2852 
   2853 #ifndef IEEE80211_STA_ONLY
   2854 		/* Tell HW to set timestamp in probe responses. */
   2855 		/* XXX NetBSD rev 1.11 added probe requests here but */
   2856 		/* probe requests do not take timestamps (from Bergamini). */
   2857 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   2858 			flags |= IWN_TX_INSERT_TSTAMP;
   2859 #endif
   2860 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   2861 		/* changes here. These are not needed (from Bergamini). */
   2862 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   2863 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   2864 			tx->timeout = htole16(3);
   2865 		else
   2866 			tx->timeout = htole16(2);
   2867 	} else
   2868 		tx->timeout = htole16(0);
   2869 
   2870 	if (hdrlen & 3) {
   2871 		/* First segment length must be a multiple of 4. */
   2872 		flags |= IWN_TX_NEED_PADDING;
   2873 		pad = 4 - (hdrlen & 3);
   2874 	} else
   2875 		pad = 0;
   2876 
   2877 	tx->len = htole16(totlen);
   2878 	tx->tid = tid;
   2879 	tx->rts_ntries = 60;
   2880 	tx->data_ntries = 15;
   2881 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   2882 	tx->plcp = rinfo->plcp;
   2883 	tx->rflags = rinfo->flags;
   2884 	if (tx->id == sc->broadcast_id) {
   2885 		/* Group or management frame. */
   2886 		tx->linkq = 0;
   2887 		/* XXX Alternate between antenna A and B? */
   2888 		txant = IWN_LSB(sc->txchainmask);
   2889 		tx->rflags |= IWN_RFLAG_ANT(txant);
   2890 	} else {
   2891 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   2892 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   2893 	}
   2894 	/* Set physical address of "scratch area". */
   2895 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   2896 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   2897 
   2898 	/* Copy 802.11 header in TX command. */
   2899 	/* XXX NetBSD changed this in rev 1.20 */
   2900 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   2901 
   2902 	/* Trim 802.11 header. */
   2903 	m_adj(m, hdrlen);
   2904 	tx->security = 0;
   2905 	tx->flags = htole32(flags);
   2906 
   2907 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2908 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2909 	if (error != 0) {
   2910 		if (error != EFBIG) {
   2911 			aprint_error_dev(sc->sc_dev,
   2912 			    "can't map mbuf (error %d)\n", error);
   2913 			m_freem(m);
   2914 			return error;
   2915 		}
   2916 		/* Too many DMA segments, linearize mbuf. */
   2917 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   2918 		if (m1 == NULL) {
   2919 			m_freem(m);
   2920 			return ENOBUFS;
   2921 		}
   2922 		if (m->m_pkthdr.len > MHLEN) {
   2923 			MCLGET(m1, M_DONTWAIT);
   2924 			if (!(m1->m_flags & M_EXT)) {
   2925 				m_freem(m);
   2926 				m_freem(m1);
   2927 				return ENOBUFS;
   2928 			}
   2929 		}
   2930 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   2931 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   2932 		m_freem(m);
   2933 		m = m1;
   2934 
   2935 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2936 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2937 		if (error != 0) {
   2938 			aprint_error_dev(sc->sc_dev,
   2939 			    "can't map mbuf (error %d)\n", error);
   2940 			m_freem(m);
   2941 			return error;
   2942 		}
   2943 	}
   2944 
   2945 	data->m = m;
   2946 	data->ni = ni;
   2947 
   2948 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   2949 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   2950 
   2951 	/* Fill TX descriptor. */
   2952 	desc->nsegs = 1 + data->map->dm_nsegs;
   2953 	/* First DMA segment is used by the TX command. */
   2954 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   2955 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   2956 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   2957 	/* Other DMA segments are for data payload. */
   2958 	seg = data->map->dm_segs;
   2959 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   2960 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   2961 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   2962 		    seg->ds_len << 4);
   2963 		seg++;
   2964 	}
   2965 
   2966 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2967 	    BUS_DMASYNC_PREWRITE);
   2968 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   2969 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   2970 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   2971 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2972 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   2973 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   2974 
   2975 #ifdef notyet
   2976 	/* Update TX scheduler. */
   2977 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   2978 #endif
   2979 
   2980 	/* Kick TX ring. */
   2981 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   2982 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   2983 
   2984 	/* Mark TX ring as full if we reach a certain threshold. */
   2985 	if (++ring->queued > IWN_TX_RING_HIMARK)
   2986 		sc->qfullmsk |= 1 << ring->qid;
   2987 
   2988 	return 0;
   2989 }
   2990 
   2991 static void
   2992 iwn_start(struct ifnet *ifp)
   2993 {
   2994 	struct iwn_softc *sc = ifp->if_softc;
   2995 	struct ieee80211com *ic = &sc->sc_ic;
   2996 	struct ieee80211_node *ni;
   2997 	struct ether_header *eh;
   2998 	struct mbuf *m;
   2999 	int ac;
   3000 
   3001 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3002 		return;
   3003 
   3004 	for (;;) {
   3005 		if (sc->qfullmsk != 0) {
   3006 			ifp->if_flags |= IFF_OACTIVE;
   3007 			break;
   3008 		}
   3009 		/* Send pending management frames first. */
   3010 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3011 		if (m != NULL) {
   3012 			ni = (void *)m->m_pkthdr.rcvif;
   3013 			ac = 0;
   3014 			goto sendit;
   3015 		}
   3016 		if (ic->ic_state != IEEE80211_S_RUN)
   3017 			break;
   3018 
   3019 		/* Encapsulate and send data frames. */
   3020 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3021 		if (m == NULL)
   3022 			break;
   3023 		if (m->m_len < sizeof (*eh) &&
   3024 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3025 			ifp->if_oerrors++;
   3026 			continue;
   3027 		}
   3028 		eh = mtod(m, struct ether_header *);
   3029 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3030 		if (ni == NULL) {
   3031 			m_freem(m);
   3032 			ifp->if_oerrors++;
   3033 			continue;
   3034 		}
   3035 		/* classify mbuf so we can find which tx ring to use */
   3036 		if (ieee80211_classify(ic, m, ni) != 0) {
   3037 			m_freem(m);
   3038 			ieee80211_free_node(ni);
   3039 			ifp->if_oerrors++;
   3040 			continue;
   3041 		}
   3042 
   3043 		/* No QoS encapsulation for EAPOL frames. */
   3044 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3045 		    M_WME_GETAC(m) : WME_AC_BE;
   3046 
   3047 		bpf_mtap(ifp, m);
   3048 
   3049 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3050 			ieee80211_free_node(ni);
   3051 			ifp->if_oerrors++;
   3052 			continue;
   3053 		}
   3054 sendit:
   3055 		bpf_mtap3(ic->ic_rawbpf, m);
   3056 
   3057 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3058 			ieee80211_free_node(ni);
   3059 			ifp->if_oerrors++;
   3060 			continue;
   3061 		}
   3062 
   3063 		sc->sc_tx_timer = 5;
   3064 		ifp->if_timer = 1;
   3065 	}
   3066 }
   3067 
   3068 static void
   3069 iwn_watchdog(struct ifnet *ifp)
   3070 {
   3071 	struct iwn_softc *sc = ifp->if_softc;
   3072 
   3073 	ifp->if_timer = 0;
   3074 
   3075 	if (sc->sc_tx_timer > 0) {
   3076 		if (--sc->sc_tx_timer == 0) {
   3077 			aprint_error_dev(sc->sc_dev,
   3078 			    "device timeout\n");
   3079 			ifp->if_flags &= ~IFF_UP;
   3080 			iwn_stop(ifp, 1);
   3081 			ifp->if_oerrors++;
   3082 			return;
   3083 		}
   3084 		ifp->if_timer = 1;
   3085 	}
   3086 
   3087 	ieee80211_watchdog(&sc->sc_ic);
   3088 }
   3089 
   3090 static int
   3091 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3092 {
   3093 	struct iwn_softc *sc = ifp->if_softc;
   3094 	struct ieee80211com *ic = &sc->sc_ic;
   3095 	struct ifaddr *ifa;
   3096 	const struct sockaddr *sa;
   3097 	int s, error = 0;
   3098 
   3099 	s = splnet();
   3100 
   3101 	switch (cmd) {
   3102 	case SIOCSIFADDR:
   3103 		ifa = (struct ifaddr *)data;
   3104 		ifp->if_flags |= IFF_UP;
   3105 #ifdef INET
   3106 		if (ifa->ifa_addr->sa_family == AF_INET)
   3107 			arp_ifinit(&ic->ic_ac, ifa);
   3108 #endif
   3109 		/* FALLTHROUGH */
   3110 	case SIOCSIFFLAGS:
   3111 		/* XXX Added as it is in every NetBSD driver */
   3112 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3113 			break;
   3114 		if (ifp->if_flags & IFF_UP) {
   3115 			if (!(ifp->if_flags & IFF_RUNNING))
   3116 				error = iwn_init(ifp);
   3117 		} else {
   3118 			if (ifp->if_flags & IFF_RUNNING)
   3119 				iwn_stop(ifp, 1);
   3120 		}
   3121 		break;
   3122 
   3123 	case SIOCADDMULTI:
   3124 	case SIOCDELMULTI:
   3125 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3126 		error = (cmd == SIOCADDMULTI) ?
   3127 		    ether_addmulti(sa, &sc->sc_ec) :
   3128 		    ether_delmulti(sa, &sc->sc_ec);
   3129 
   3130 		if (error == ENETRESET)
   3131 			error = 0;
   3132 		break;
   3133 
   3134 	default:
   3135 		error = ieee80211_ioctl(ic, cmd, data);
   3136 	}
   3137 
   3138 	if (error == ENETRESET) {
   3139 		error = 0;
   3140 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3141 		    (IFF_UP | IFF_RUNNING)) {
   3142 			iwn_stop(ifp, 0);
   3143 			error = iwn_init(ifp);
   3144 		}
   3145 	}
   3146 
   3147 	splx(s);
   3148 	return error;
   3149 }
   3150 
   3151 /*
   3152  * Send a command to the firmware.
   3153  */
   3154 static int
   3155 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3156 {
   3157 	struct iwn_tx_ring *ring = &sc->txq[4];
   3158 	struct iwn_tx_desc *desc;
   3159 	struct iwn_tx_data *data;
   3160 	struct iwn_tx_cmd *cmd;
   3161 	struct mbuf *m;
   3162 	bus_addr_t paddr;
   3163 	int totlen, error;
   3164 
   3165 	desc = &ring->desc[ring->cur];
   3166 	data = &ring->data[ring->cur];
   3167 	totlen = 4 + size;
   3168 
   3169 	if (size > sizeof cmd->data) {
   3170 		/* Command is too large to fit in a descriptor. */
   3171 		if (totlen > MCLBYTES)
   3172 			return EINVAL;
   3173 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3174 		if (m == NULL)
   3175 			return ENOMEM;
   3176 		if (totlen > MHLEN) {
   3177 			MCLGET(m, M_DONTWAIT);
   3178 			if (!(m->m_flags & M_EXT)) {
   3179 				m_freem(m);
   3180 				return ENOMEM;
   3181 			}
   3182 		}
   3183 		cmd = mtod(m, struct iwn_tx_cmd *);
   3184 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3185 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3186 		if (error != 0) {
   3187 			m_freem(m);
   3188 			return error;
   3189 		}
   3190 		data->m = m;
   3191 		paddr = data->map->dm_segs[0].ds_addr;
   3192 	} else {
   3193 		cmd = &ring->cmd[ring->cur];
   3194 		paddr = data->cmd_paddr;
   3195 	}
   3196 
   3197 	cmd->code = code;
   3198 	cmd->flags = 0;
   3199 	cmd->qid = ring->qid;
   3200 	cmd->idx = ring->cur;
   3201 	memcpy(cmd->data, buf, size);
   3202 
   3203 	desc->nsegs = 1;
   3204 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3205 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3206 
   3207 	if (size > sizeof cmd->data) {
   3208 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3209 		    BUS_DMASYNC_PREWRITE);
   3210 	} else {
   3211 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3212 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3213 		    totlen, BUS_DMASYNC_PREWRITE);
   3214 	}
   3215 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3216 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3217 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3218 
   3219 #ifdef notyet
   3220 	/* Update TX scheduler. */
   3221 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3222 #endif
   3223 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3224 
   3225 	/* Kick command ring. */
   3226 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3227 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3228 
   3229 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3230 }
   3231 
   3232 static int
   3233 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3234 {
   3235 	struct iwn4965_node_info hnode;
   3236 	char *src, *dst;
   3237 
   3238 	/*
   3239 	 * We use the node structure for 5000 Series internally (it is
   3240 	 * a superset of the one for 4965AGN). We thus copy the common
   3241 	 * fields before sending the command.
   3242 	 */
   3243 	src = (char *)node;
   3244 	dst = (char *)&hnode;
   3245 	memcpy(dst, src, 48);
   3246 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3247 	memcpy(dst + 48, src + 72, 20);
   3248 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3249 }
   3250 
   3251 static int
   3252 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3253 {
   3254 	/* Direct mapping. */
   3255 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3256 }
   3257 
   3258 static int
   3259 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3260 {
   3261 	struct iwn_node *wn = (void *)ni;
   3262 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3263 	struct iwn_cmd_link_quality linkq;
   3264 	const struct iwn_rate *rinfo;
   3265 	uint8_t txant;
   3266 	int i, txrate;
   3267 
   3268 	/* Use the first valid TX antenna. */
   3269 	txant = IWN_LSB(sc->txchainmask);
   3270 
   3271 	memset(&linkq, 0, sizeof linkq);
   3272 	linkq.id = wn->id;
   3273 	linkq.antmsk_1stream = txant;
   3274 	linkq.antmsk_2stream = IWN_ANT_AB;
   3275 	linkq.ampdu_max = 31;
   3276 	linkq.ampdu_threshold = 3;
   3277 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3278 
   3279 	/* Start at highest available bit-rate. */
   3280 	txrate = rs->rs_nrates - 1;
   3281 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3282 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3283 		linkq.retry[i].plcp = rinfo->plcp;
   3284 		linkq.retry[i].rflags = rinfo->flags;
   3285 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3286 		/* Next retry at immediate lower bit-rate. */
   3287 		if (txrate > 0)
   3288 			txrate--;
   3289 	}
   3290 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3291 }
   3292 
   3293 /*
   3294  * Broadcast node is used to send group-addressed and management frames.
   3295  */
   3296 static int
   3297 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3298 {
   3299 	struct iwn_ops *ops = &sc->ops;
   3300 	struct iwn_node_info node;
   3301 	struct iwn_cmd_link_quality linkq;
   3302 	const struct iwn_rate *rinfo;
   3303 	uint8_t txant;
   3304 	int i, error;
   3305 
   3306 	memset(&node, 0, sizeof node);
   3307 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3308 	node.id = sc->broadcast_id;
   3309 	DPRINTF(("adding broadcast node\n"));
   3310 	if ((error = ops->add_node(sc, &node, async)) != 0)
   3311 		return error;
   3312 
   3313 	/* Use the first valid TX antenna. */
   3314 	txant = IWN_LSB(sc->txchainmask);
   3315 
   3316 	memset(&linkq, 0, sizeof linkq);
   3317 	linkq.id = sc->broadcast_id;
   3318 	linkq.antmsk_1stream = txant;
   3319 	linkq.antmsk_2stream = IWN_ANT_AB;
   3320 	linkq.ampdu_max = 64;
   3321 	linkq.ampdu_threshold = 3;
   3322 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3323 
   3324 	/* Use lowest mandatory bit-rate. */
   3325 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3326 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3327 	linkq.retry[0].plcp = rinfo->plcp;
   3328 	linkq.retry[0].rflags = rinfo->flags;
   3329 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3330 	/* Use same bit-rate for all TX retries. */
   3331 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3332 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3333 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3334 	}
   3335 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3336 }
   3337 
   3338 static void
   3339 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3340 {
   3341 	struct iwn_cmd_led led;
   3342 
   3343 	/* Clear microcode LED ownership. */
   3344 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3345 
   3346 	led.which = which;
   3347 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3348 	led.off = off;
   3349 	led.on = on;
   3350 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3351 }
   3352 
   3353 /*
   3354  * Set the critical temperature at which the firmware will stop the radio
   3355  * and notify us.
   3356  */
   3357 static int
   3358 iwn_set_critical_temp(struct iwn_softc *sc)
   3359 {
   3360 	struct iwn_critical_temp crit;
   3361 	int32_t temp;
   3362 
   3363 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3364 
   3365 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3366 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3367 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3368 		temp = IWN_CTOK(110);
   3369 	else
   3370 		temp = 110;
   3371 	memset(&crit, 0, sizeof crit);
   3372 	crit.tempR = htole32(temp);
   3373 	DPRINTF(("setting critical temperature to %d\n", temp));
   3374 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3375 }
   3376 
   3377 static int
   3378 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3379 {
   3380 	struct iwn_cmd_timing cmd;
   3381 	uint64_t val, mod;
   3382 
   3383 	memset(&cmd, 0, sizeof cmd);
   3384 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3385 	cmd.bintval = htole16(ni->ni_intval);
   3386 	cmd.lintval = htole16(10);
   3387 
   3388 	/* Compute remaining time until next beacon. */
   3389 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3390 	mod = le64toh(cmd.tstamp) % val;
   3391 	cmd.binitval = htole32((uint32_t)(val - mod));
   3392 
   3393 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
   3394 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3395 
   3396 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3397 }
   3398 
   3399 static void
   3400 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3401 {
   3402 	/* Adjust TX power if need be (delta >= 3 degC). */
   3403 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3404 	if (abs(temp - sc->temp) >= 3) {
   3405 		/* Record temperature of last calibration. */
   3406 		sc->temp = temp;
   3407 		(void)iwn4965_set_txpower(sc, 1);
   3408 	}
   3409 }
   3410 
   3411 /*
   3412  * Set TX power for current channel (each rate has its own power settings).
   3413  * This function takes into account the regulatory information from EEPROM,
   3414  * the current temperature and the current voltage.
   3415  */
   3416 static int
   3417 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3418 {
   3419 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3420 #define fdivround(a, b, n)	\
   3421 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3422 /* Linear interpolation. */
   3423 #define interpolate(x, x1, y1, x2, y2, n)	\
   3424 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3425 
   3426 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3427 	struct ieee80211com *ic = &sc->sc_ic;
   3428 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3429 	struct ieee80211_channel *ch;
   3430 	struct iwn4965_cmd_txpower cmd;
   3431 	struct iwn4965_eeprom_chan_samples *chans;
   3432 	const uint8_t *rf_gain, *dsp_gain;
   3433 	int32_t vdiff, tdiff;
   3434 	int i, c, grp, maxpwr;
   3435 	uint8_t chan;
   3436 
   3437 	/* Retrieve current channel from last RXON. */
   3438 	chan = sc->rxon.chan;
   3439 	DPRINTF(("setting TX power for channel %d\n", chan));
   3440 	ch = &ic->ic_channels[chan];
   3441 
   3442 	memset(&cmd, 0, sizeof cmd);
   3443 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3444 	cmd.chan = chan;
   3445 
   3446 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3447 		maxpwr   = sc->maxpwr5GHz;
   3448 		rf_gain  = iwn4965_rf_gain_5ghz;
   3449 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3450 	} else {
   3451 		maxpwr   = sc->maxpwr2GHz;
   3452 		rf_gain  = iwn4965_rf_gain_2ghz;
   3453 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3454 	}
   3455 
   3456 	/* Compute voltage compensation. */
   3457 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3458 	if (vdiff > 0)
   3459 		vdiff *= 2;
   3460 	if (abs(vdiff) > 2)
   3461 		vdiff = 0;
   3462 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3463 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3464 
   3465 	/* Get channel attenuation group. */
   3466 	if (chan <= 20)		/* 1-20 */
   3467 		grp = 4;
   3468 	else if (chan <= 43)	/* 34-43 */
   3469 		grp = 0;
   3470 	else if (chan <= 70)	/* 44-70 */
   3471 		grp = 1;
   3472 	else if (chan <= 124)	/* 71-124 */
   3473 		grp = 2;
   3474 	else			/* 125-200 */
   3475 		grp = 3;
   3476 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3477 
   3478 	/* Get channel sub-band. */
   3479 	for (i = 0; i < IWN_NBANDS; i++)
   3480 		if (sc->bands[i].lo != 0 &&
   3481 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3482 			break;
   3483 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3484 		return EINVAL;
   3485 	chans = sc->bands[i].chans;
   3486 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3487 
   3488 	for (c = 0; c < 2; c++) {
   3489 		uint8_t power, gain, temp;
   3490 		int maxchpwr, pwr, ridx, idx;
   3491 
   3492 		power = interpolate(chan,
   3493 		    chans[0].num, chans[0].samples[c][1].power,
   3494 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3495 		gain  = interpolate(chan,
   3496 		    chans[0].num, chans[0].samples[c][1].gain,
   3497 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3498 		temp  = interpolate(chan,
   3499 		    chans[0].num, chans[0].samples[c][1].temp,
   3500 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3501 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3502 		    c, power, gain, temp));
   3503 
   3504 		/* Compute temperature compensation. */
   3505 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3506 		DPRINTF(("temperature compensation=%d (current=%d, "
   3507 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3508 
   3509 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3510 			/* Convert dBm to half-dBm. */
   3511 			maxchpwr = sc->maxpwr[chan] * 2;
   3512 			if ((ridx / 8) & 1)
   3513 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3514 
   3515 			pwr = maxpwr;
   3516 
   3517 			/* Adjust TX power based on rate. */
   3518 			if ((ridx % 8) == 5)
   3519 				pwr -= 15;	/* OFDM48: -7.5dB */
   3520 			else if ((ridx % 8) == 6)
   3521 				pwr -= 17;	/* OFDM54: -8.5dB */
   3522 			else if ((ridx % 8) == 7)
   3523 				pwr -= 20;	/* OFDM60: -10dB */
   3524 			else
   3525 				pwr -= 10;	/* Others: -5dB */
   3526 
   3527 			/* Do not exceed channel max TX power. */
   3528 			if (pwr > maxchpwr)
   3529 				pwr = maxchpwr;
   3530 
   3531 			idx = gain - (pwr - power) - tdiff - vdiff;
   3532 			if ((ridx / 8) & 1)	/* MIMO */
   3533 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3534 
   3535 			if (cmd.band == 0)
   3536 				idx += 9;	/* 5GHz */
   3537 			if (ridx == IWN_RIDX_MAX)
   3538 				idx += 5;	/* CCK */
   3539 
   3540 			/* Make sure idx stays in a valid range. */
   3541 			if (idx < 0)
   3542 				idx = 0;
   3543 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3544 				idx = IWN4965_MAX_PWR_INDEX;
   3545 
   3546 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3547 			    c, ridx, idx));
   3548 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3549 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3550 		}
   3551 	}
   3552 
   3553 	DPRINTF(("setting TX power for chan %d\n", chan));
   3554 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3555 
   3556 #undef interpolate
   3557 #undef fdivround
   3558 }
   3559 
   3560 static int
   3561 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3562 {
   3563 	struct iwn5000_cmd_txpower cmd;
   3564 
   3565 	/*
   3566 	 * TX power calibration is handled automatically by the firmware
   3567 	 * for 5000 Series.
   3568 	 */
   3569 	memset(&cmd, 0, sizeof cmd);
   3570 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3571 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3572 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3573 	DPRINTF(("setting TX power\n"));
   3574 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
   3575 }
   3576 
   3577 /*
   3578  * Retrieve the maximum RSSI (in dBm) among receivers.
   3579  */
   3580 static int
   3581 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3582 {
   3583 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3584 	uint8_t mask, agc;
   3585 	int rssi;
   3586 
   3587 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3588 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3589 
   3590 	rssi = 0;
   3591 	if (mask & IWN_ANT_A)
   3592 		rssi = MAX(rssi, phy->rssi[0]);
   3593 	if (mask & IWN_ANT_B)
   3594 		rssi = MAX(rssi, phy->rssi[2]);
   3595 	if (mask & IWN_ANT_C)
   3596 		rssi = MAX(rssi, phy->rssi[4]);
   3597 
   3598 	return rssi - agc - IWN_RSSI_TO_DBM;
   3599 }
   3600 
   3601 static int
   3602 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3603 {
   3604 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3605 	uint8_t agc;
   3606 	int rssi;
   3607 
   3608 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3609 
   3610 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3611 		   le16toh(phy->rssi[1]) & 0xff);
   3612 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3613 
   3614 	return rssi - agc - IWN_RSSI_TO_DBM;
   3615 }
   3616 
   3617 /*
   3618  * Retrieve the average noise (in dBm) among receivers.
   3619  */
   3620 static int
   3621 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3622 {
   3623 	int i, total, nbant, noise;
   3624 
   3625 	total = nbant = 0;
   3626 	for (i = 0; i < 3; i++) {
   3627 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3628 			continue;
   3629 		total += noise;
   3630 		nbant++;
   3631 	}
   3632 	/* There should be at least one antenna but check anyway. */
   3633 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3634 }
   3635 
   3636 /*
   3637  * Compute temperature (in degC) from last received statistics.
   3638  */
   3639 static int
   3640 iwn4965_get_temperature(struct iwn_softc *sc)
   3641 {
   3642 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3643 	int32_t r1, r2, r3, r4, temp;
   3644 
   3645 	r1 = le32toh(uc->temp[0].chan20MHz);
   3646 	r2 = le32toh(uc->temp[1].chan20MHz);
   3647 	r3 = le32toh(uc->temp[2].chan20MHz);
   3648 	r4 = le32toh(sc->rawtemp);
   3649 
   3650 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
   3651 		return 0;
   3652 
   3653 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3654 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
   3655 	/* Compute temperature in Kelvin. */
   3656 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3657 	temp = (temp * 97) / 100 + 8;
   3658 
   3659 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3660 	return IWN_KTOC(temp);
   3661 }
   3662 
   3663 static int
   3664 iwn5000_get_temperature(struct iwn_softc *sc)
   3665 {
   3666 	int32_t temp;
   3667 
   3668 	/*
   3669 	 * Temperature is not used by the driver for 5000 Series because
   3670 	 * TX power calibration is handled by firmware.  We export it to
   3671 	 * users through the sensor framework though.
   3672 	 */
   3673 	temp = le32toh(sc->rawtemp);
   3674 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3675 		temp = (temp / -5) + sc->temp_off;
   3676 		temp = IWN_KTOC(temp);
   3677 	}
   3678 	return temp;
   3679 }
   3680 
   3681 /*
   3682  * Initialize sensitivity calibration state machine.
   3683  */
   3684 static int
   3685 iwn_init_sensitivity(struct iwn_softc *sc)
   3686 {
   3687 	struct iwn_ops *ops = &sc->ops;
   3688 	struct iwn_calib_state *calib = &sc->calib;
   3689 	uint32_t flags;
   3690 	int error;
   3691 
   3692 	/* Reset calibration state machine. */
   3693 	memset(calib, 0, sizeof (*calib));
   3694 	calib->state = IWN_CALIB_STATE_INIT;
   3695 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3696 	/* Set initial correlation values. */
   3697 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3698 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3699 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3700 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3701 	calib->cck_x4      = 125;
   3702 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3703 	calib->energy_cck  = sc->limits->energy_cck;
   3704 
   3705 	/* Write initial sensitivity. */
   3706 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3707 		return error;
   3708 
   3709 	/* Write initial gains. */
   3710 	if ((error = ops->init_gains(sc)) != 0)
   3711 		return error;
   3712 
   3713 	/* Request statistics at each beacon interval. */
   3714 	flags = 0;
   3715 	DPRINTF(("sending request for statistics\n"));
   3716 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3717 }
   3718 
   3719 /*
   3720  * Collect noise and RSSI statistics for the first 20 beacons received
   3721  * after association and use them to determine connected antennas and
   3722  * to set differential gains.
   3723  */
   3724 static void
   3725 iwn_collect_noise(struct iwn_softc *sc,
   3726     const struct iwn_rx_general_stats *stats)
   3727 {
   3728 	struct iwn_ops *ops = &sc->ops;
   3729 	struct iwn_calib_state *calib = &sc->calib;
   3730 	uint32_t val;
   3731 	int i;
   3732 
   3733 	/* Accumulate RSSI and noise for all 3 antennas. */
   3734 	for (i = 0; i < 3; i++) {
   3735 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3736 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3737 	}
   3738 	/* NB: We update differential gains only once after 20 beacons. */
   3739 	if (++calib->nbeacons < 20)
   3740 		return;
   3741 
   3742 	/* Determine highest average RSSI. */
   3743 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3744 	val = MAX(calib->rssi[2], val);
   3745 
   3746 	/* Determine which antennas are connected. */
   3747 	sc->chainmask = sc->rxchainmask;
   3748 	for (i = 0; i < 3; i++)
   3749 		if (val - calib->rssi[i] > 15 * 20)
   3750 			sc->chainmask &= ~(1 << i);
   3751 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   3752 	    sc->rxchainmask, sc->chainmask));
   3753 
   3754 	/* If none of the TX antennas are connected, keep at least one. */
   3755 	if ((sc->chainmask & sc->txchainmask) == 0)
   3756 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   3757 
   3758 	(void)ops->set_gains(sc);
   3759 	calib->state = IWN_CALIB_STATE_RUN;
   3760 
   3761 #ifdef notyet
   3762 	/* XXX Disable RX chains with no antennas connected. */
   3763 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   3764 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   3765 #endif
   3766 
   3767 	/* Enable power-saving mode if requested by user. */
   3768 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3769 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3770 }
   3771 
   3772 static int
   3773 iwn4965_init_gains(struct iwn_softc *sc)
   3774 {
   3775 	struct iwn_phy_calib_gain cmd;
   3776 
   3777 	memset(&cmd, 0, sizeof cmd);
   3778 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3779 	/* Differential gains initially set to 0 for all 3 antennas. */
   3780 	DPRINTF(("setting initial differential gains\n"));
   3781 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3782 }
   3783 
   3784 static int
   3785 iwn5000_init_gains(struct iwn_softc *sc)
   3786 {
   3787 	struct iwn_phy_calib cmd;
   3788 
   3789 	memset(&cmd, 0, sizeof cmd);
   3790 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   3791 	cmd.ngroups = 1;
   3792 	cmd.isvalid = 1;
   3793 	DPRINTF(("setting initial differential gains\n"));
   3794 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3795 }
   3796 
   3797 static int
   3798 iwn4965_set_gains(struct iwn_softc *sc)
   3799 {
   3800 	struct iwn_calib_state *calib = &sc->calib;
   3801 	struct iwn_phy_calib_gain cmd;
   3802 	int i, delta, noise;
   3803 
   3804 	/* Get minimal noise among connected antennas. */
   3805 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   3806 	for (i = 0; i < 3; i++)
   3807 		if (sc->chainmask & (1 << i))
   3808 			noise = MIN(calib->noise[i], noise);
   3809 
   3810 	memset(&cmd, 0, sizeof cmd);
   3811 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3812 	/* Set differential gains for connected antennas. */
   3813 	for (i = 0; i < 3; i++) {
   3814 		if (sc->chainmask & (1 << i)) {
   3815 			/* Compute attenuation (in unit of 1.5dB). */
   3816 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   3817 			/* NB: delta <= 0 */
   3818 			/* Limit to [-4.5dB,0]. */
   3819 			cmd.gain[i] = MIN(abs(delta), 3);
   3820 			if (delta < 0)
   3821 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   3822 		}
   3823 	}
   3824 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   3825 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   3826 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3827 }
   3828 
   3829 static int
   3830 iwn5000_set_gains(struct iwn_softc *sc)
   3831 {
   3832 	struct iwn_calib_state *calib = &sc->calib;
   3833 	struct iwn_phy_calib_gain cmd;
   3834 	int i, ant, div, delta;
   3835 
   3836 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   3837 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   3838 
   3839 	memset(&cmd, 0, sizeof cmd);
   3840 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
   3841 	cmd.ngroups = 1;
   3842 	cmd.isvalid = 1;
   3843 	/* Get first available RX antenna as referential. */
   3844 	ant = IWN_LSB(sc->rxchainmask);
   3845 	/* Set differential gains for other antennas. */
   3846 	for (i = ant + 1; i < 3; i++) {
   3847 		if (sc->chainmask & (1 << i)) {
   3848 			/* The delta is relative to antenna "ant". */
   3849 			delta = ((int32_t)calib->noise[ant] -
   3850 			    (int32_t)calib->noise[i]) / div;
   3851 			/* Limit to [-4.5dB,+4.5dB]. */
   3852 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   3853 			if (delta < 0)
   3854 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   3855 		}
   3856 	}
   3857 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   3858 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   3859 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3860 }
   3861 
   3862 /*
   3863  * Tune RF RX sensitivity based on the number of false alarms detected
   3864  * during the last beacon period.
   3865  */
   3866 static void
   3867 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   3868 {
   3869 #define inc(val, inc, max)			\
   3870 	if ((val) < (max)) {			\
   3871 		if ((val) < (max) - (inc))	\
   3872 			(val) += (inc);		\
   3873 		else				\
   3874 			(val) = (max);		\
   3875 		needs_update = 1;		\
   3876 	}
   3877 #define dec(val, dec, min)			\
   3878 	if ((val) > (min)) {			\
   3879 		if ((val) > (min) + (dec))	\
   3880 			(val) -= (dec);		\
   3881 		else				\
   3882 			(val) = (min);		\
   3883 		needs_update = 1;		\
   3884 	}
   3885 
   3886 	const struct iwn_sensitivity_limits *limits = sc->limits;
   3887 	struct iwn_calib_state *calib = &sc->calib;
   3888 	uint32_t val, rxena, fa;
   3889 	uint32_t energy[3], energy_min;
   3890 	uint8_t noise[3], noise_ref;
   3891 	int i, needs_update = 0;
   3892 
   3893 	/* Check that we've been enabled long enough. */
   3894 	if ((rxena = le32toh(stats->general.load)) == 0)
   3895 		return;
   3896 
   3897 	/* Compute number of false alarms since last call for OFDM. */
   3898 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   3899 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   3900 	fa *= 200 * 1024;	/* 200TU */
   3901 
   3902 	/* Save counters values for next call. */
   3903 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   3904 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   3905 
   3906 	if (fa > 50 * rxena) {
   3907 		/* High false alarm count, decrease sensitivity. */
   3908 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   3909 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   3910 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   3911 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   3912 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   3913 
   3914 	} else if (fa < 5 * rxena) {
   3915 		/* Low false alarm count, increase sensitivity. */
   3916 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   3917 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   3918 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   3919 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   3920 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   3921 	}
   3922 
   3923 	/* Compute maximum noise among 3 receivers. */
   3924 	for (i = 0; i < 3; i++)
   3925 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   3926 	val = MAX(noise[0], noise[1]);
   3927 	val = MAX(noise[2], val);
   3928 	/* Insert it into our samples table. */
   3929 	calib->noise_samples[calib->cur_noise_sample] = val;
   3930 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   3931 
   3932 	/* Compute maximum noise among last 20 samples. */
   3933 	noise_ref = calib->noise_samples[0];
   3934 	for (i = 1; i < 20; i++)
   3935 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   3936 
   3937 	/* Compute maximum energy among 3 receivers. */
   3938 	for (i = 0; i < 3; i++)
   3939 		energy[i] = le32toh(stats->general.energy[i]);
   3940 	val = MIN(energy[0], energy[1]);
   3941 	val = MIN(energy[2], val);
   3942 	/* Insert it into our samples table. */
   3943 	calib->energy_samples[calib->cur_energy_sample] = val;
   3944 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   3945 
   3946 	/* Compute minimum energy among last 10 samples. */
   3947 	energy_min = calib->energy_samples[0];
   3948 	for (i = 1; i < 10; i++)
   3949 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   3950 	energy_min += 6;
   3951 
   3952 	/* Compute number of false alarms since last call for CCK. */
   3953 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   3954 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   3955 	fa *= 200 * 1024;	/* 200TU */
   3956 
   3957 	/* Save counters values for next call. */
   3958 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   3959 	calib->fa_cck = le32toh(stats->cck.fa);
   3960 
   3961 	if (fa > 50 * rxena) {
   3962 		/* High false alarm count, decrease sensitivity. */
   3963 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   3964 		calib->cck_state = IWN_CCK_STATE_HIFA;
   3965 		calib->low_fa = 0;
   3966 
   3967 		if (calib->cck_x4 > 160) {
   3968 			calib->noise_ref = noise_ref;
   3969 			if (calib->energy_cck > 2)
   3970 				dec(calib->energy_cck, 2, energy_min);
   3971 		}
   3972 		if (calib->cck_x4 < 160) {
   3973 			calib->cck_x4 = 161;
   3974 			needs_update = 1;
   3975 		} else
   3976 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   3977 
   3978 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   3979 
   3980 	} else if (fa < 5 * rxena) {
   3981 		/* Low false alarm count, increase sensitivity. */
   3982 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   3983 		calib->cck_state = IWN_CCK_STATE_LOFA;
   3984 		calib->low_fa++;
   3985 
   3986 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   3987 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   3988 		     calib->low_fa > 100)) {
   3989 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   3990 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   3991 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   3992 		}
   3993 	} else {
   3994 		/* Not worth to increase or decrease sensitivity. */
   3995 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   3996 		calib->low_fa = 0;
   3997 		calib->noise_ref = noise_ref;
   3998 
   3999 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4000 			/* Previous interval had many false alarms. */
   4001 			dec(calib->energy_cck, 8, energy_min);
   4002 		}
   4003 		calib->cck_state = IWN_CCK_STATE_INIT;
   4004 	}
   4005 
   4006 	if (needs_update)
   4007 		(void)iwn_send_sensitivity(sc);
   4008 #undef dec
   4009 #undef inc
   4010 }
   4011 
   4012 static int
   4013 iwn_send_sensitivity(struct iwn_softc *sc)
   4014 {
   4015 	struct iwn_calib_state *calib = &sc->calib;
   4016 	struct iwn_sensitivity_cmd cmd;
   4017 
   4018 	memset(&cmd, 0, sizeof cmd);
   4019 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4020 	/* OFDM modulation. */
   4021 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4022 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4023 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4024 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4025 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4026 	cmd.energy_ofdm_th   = htole16(62);
   4027 	/* CCK modulation. */
   4028 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4029 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4030 	cmd.energy_cck       = htole16(calib->energy_cck);
   4031 	/* Barker modulation: use default values. */
   4032 	cmd.corr_barker      = htole16(190);
   4033 	cmd.corr_barker_mrc  = htole16(390);
   4034 
   4035 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4036 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4037 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4038 	    calib->energy_cck));
   4039 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
   4040 }
   4041 
   4042 /*
   4043  * Set STA mode power saving level (between 0 and 5).
   4044  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4045  */
   4046 static int
   4047 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4048 {
   4049 	struct iwn_pmgt_cmd cmd;
   4050 	const struct iwn_pmgt *pmgt;
   4051 	uint32_t maxp, skip_dtim;
   4052 	pcireg_t reg;
   4053 	int i;
   4054 
   4055 	/* Select which PS parameters to use. */
   4056 	if (dtim <= 2)
   4057 		pmgt = &iwn_pmgt[0][level];
   4058 	else if (dtim <= 10)
   4059 		pmgt = &iwn_pmgt[1][level];
   4060 	else
   4061 		pmgt = &iwn_pmgt[2][level];
   4062 
   4063 	memset(&cmd, 0, sizeof cmd);
   4064 	if (level != 0)	/* not CAM */
   4065 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4066 	if (level == 5)
   4067 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4068 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4069 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4070 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   4071 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4072 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4073 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4074 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4075 
   4076 	if (dtim == 0) {
   4077 		dtim = 1;
   4078 		skip_dtim = 0;
   4079 	} else
   4080 		skip_dtim = pmgt->skip_dtim;
   4081 	if (skip_dtim != 0) {
   4082 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4083 		maxp = pmgt->intval[4];
   4084 		if (maxp == (uint32_t)-1)
   4085 			maxp = dtim * (skip_dtim + 1);
   4086 		else if (maxp > dtim)
   4087 			maxp = (maxp / dtim) * dtim;
   4088 	} else
   4089 		maxp = dtim;
   4090 	for (i = 0; i < 5; i++)
   4091 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4092 
   4093 	DPRINTF(("setting power saving level to %d\n", level));
   4094 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4095 }
   4096 
   4097 int
   4098 iwn5000_runtime_calib(struct iwn_softc *sc)
   4099 {
   4100 	struct iwn5000_calib_config cmd;
   4101 
   4102 	memset(&cmd, 0, sizeof cmd);
   4103 	cmd.ucode.once.enable = 0xffffffff;
   4104 	cmd.ucode.once.start = IWN5000_CALIB_DC;
   4105 	DPRINTF(("configuring runtime calibration\n"));
   4106 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
   4107 }
   4108 
   4109 static int
   4110 iwn_config(struct iwn_softc *sc)
   4111 {
   4112 	struct iwn_ops *ops = &sc->ops;
   4113 	struct ieee80211com *ic = &sc->sc_ic;
   4114 	struct ifnet *ifp = ic->ic_ifp;
   4115 	struct iwn_bluetooth bluetooth;
   4116 	uint32_t txmask;
   4117 	uint16_t rxchain;
   4118 	int error;
   4119 
   4120 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   4121 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4122 		/* Configure runtime DC calibration. */
   4123 		error = iwn5000_runtime_calib(sc);
   4124 		if (error != 0) {
   4125 			aprint_error_dev(sc->sc_dev,
   4126 			    "could not configure runtime calibration\n");
   4127 			return error;
   4128 		}
   4129 	}
   4130 
   4131 	/* Configure valid TX chains for 5000 Series. */
   4132 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4133 		txmask = htole32(sc->txchainmask);
   4134 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4135 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4136 		    sizeof txmask, 0);
   4137 		if (error != 0) {
   4138 			aprint_error_dev(sc->sc_dev,
   4139 			    "could not configure valid TX chains\n");
   4140 			return error;
   4141 		}
   4142 	}
   4143 
   4144 	/* Configure bluetooth coexistence. */
   4145 	memset(&bluetooth, 0, sizeof bluetooth);
   4146 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
   4147 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4148 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4149 	DPRINTF(("configuring bluetooth coexistence\n"));
   4150 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4151 	if (error != 0) {
   4152 		aprint_error_dev(sc->sc_dev,
   4153 		    "could not configure bluetooth coexistence\n");
   4154 		return error;
   4155 	}
   4156 
   4157 	/* Set mode, channel, RX filter and enable RX. */
   4158 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4159 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4160 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4161 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4162 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4163 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4164 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4165 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4166 	switch (ic->ic_opmode) {
   4167 	case IEEE80211_M_STA:
   4168 		sc->rxon.mode = IWN_MODE_STA;
   4169 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4170 		break;
   4171 	case IEEE80211_M_MONITOR:
   4172 		sc->rxon.mode = IWN_MODE_MONITOR;
   4173 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4174 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4175 		break;
   4176 	default:
   4177 		/* Should not get there. */
   4178 		break;
   4179 	}
   4180 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4181 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4182 	sc->rxon.ht_single_mask = 0xff;
   4183 	sc->rxon.ht_dual_mask = 0xff;
   4184 	sc->rxon.ht_triple_mask = 0xff;
   4185 	rxchain =
   4186 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4187 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4188 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4189 	sc->rxon.rxchain = htole16(rxchain);
   4190 	DPRINTF(("setting configuration\n"));
   4191 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
   4192 	if (error != 0) {
   4193 		aprint_error_dev(sc->sc_dev,
   4194 		    "RXON command failed\n");
   4195 		return error;
   4196 	}
   4197 
   4198 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4199 		aprint_error_dev(sc->sc_dev,
   4200 		    "could not add broadcast node\n");
   4201 		return error;
   4202 	}
   4203 
   4204 	/* Configuration has changed, set TX power accordingly. */
   4205 	if ((error = ops->set_txpower(sc, 0)) != 0) {
   4206 		aprint_error_dev(sc->sc_dev,
   4207 		    "could not set TX power\n");
   4208 		return error;
   4209 	}
   4210 
   4211 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4212 		aprint_error_dev(sc->sc_dev,
   4213 		    "could not set critical temperature\n");
   4214 		return error;
   4215 	}
   4216 
   4217 	/* Set power saving level to CAM during initialization. */
   4218 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4219 		aprint_error_dev(sc->sc_dev,
   4220 		    "could not set power saving level\n");
   4221 		return error;
   4222 	}
   4223 	return 0;
   4224 }
   4225 
   4226 static int
   4227 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4228 {
   4229 	struct ieee80211com *ic = &sc->sc_ic;
   4230 	struct iwn_scan_hdr *hdr;
   4231 	struct iwn_cmd_data *tx;
   4232 	struct iwn_scan_essid *essid;
   4233 	struct iwn_scan_chan *chan;
   4234 	struct ieee80211_frame *wh;
   4235 	struct ieee80211_rateset *rs;
   4236 	struct ieee80211_channel *c;
   4237 	uint8_t *buf, *frm;
   4238 	uint16_t rxchain;
   4239 	uint8_t txant;
   4240 	int buflen, error;
   4241 
   4242 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4243 	if (buf == NULL) {
   4244 		aprint_error_dev(sc->sc_dev,
   4245 		    "could not allocate buffer for scan command\n");
   4246 		return ENOMEM;
   4247 	}
   4248 	hdr = (struct iwn_scan_hdr *)buf;
   4249 	/*
   4250 	 * Move to the next channel if no frames are received within 10ms
   4251 	 * after sending the probe request.
   4252 	 */
   4253 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4254 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4255 
   4256 	/* Select antennas for scanning. */
   4257 	rxchain =
   4258 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4259 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4260 	    IWN_RXCHAIN_DRIVER_FORCE;
   4261 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4262 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4263 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4264 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4265 	} else	/* Use all available RX antennas. */
   4266 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4267 	hdr->rxchain = htole16(rxchain);
   4268 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4269 
   4270 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4271 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4272 	tx->id = sc->broadcast_id;
   4273 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4274 
   4275 	if (flags & IEEE80211_CHAN_5GHZ) {
   4276 		hdr->crc_threshold = 0xffff;
   4277 		/* Send probe requests at 6Mbps. */
   4278 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4279 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4280 	} else {
   4281 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4282 		/* Send probe requests at 1Mbps. */
   4283 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4284 		tx->rflags = IWN_RFLAG_CCK;
   4285 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4286 	}
   4287 	/* Use the first valid TX antenna. */
   4288 	txant = IWN_LSB(sc->txchainmask);
   4289 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4290 
   4291 	essid = (struct iwn_scan_essid *)(tx + 1);
   4292 	if (ic->ic_des_esslen != 0) {
   4293 		essid[0].id = IEEE80211_ELEMID_SSID;
   4294 		essid[0].len = ic->ic_des_esslen;
   4295 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4296 	}
   4297 	/*
   4298 	 * Build a probe request frame.  Most of the following code is a
   4299 	 * copy & paste of what is done in net80211.
   4300 	 */
   4301 	wh = (struct ieee80211_frame *)(essid + 20);
   4302 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4303 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4304 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4305 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4306 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4307 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4308 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4309 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4310 
   4311 	frm = (uint8_t *)(wh + 1);
   4312 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4313 	frm = ieee80211_add_rates(frm, rs);
   4314 #ifndef IEEE80211_NO_HT
   4315 	if (ic->ic_flags & IEEE80211_F_HTON)
   4316 		frm = ieee80211_add_htcaps(frm, ic);
   4317 #endif
   4318 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4319 		frm = ieee80211_add_xrates(frm, rs);
   4320 
   4321 	/* Set length of probe request. */
   4322 	tx->len = htole16(frm - (uint8_t *)wh);
   4323 
   4324 	chan = (struct iwn_scan_chan *)frm;
   4325 	for (c  = &ic->ic_channels[1];
   4326 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4327 		if ((c->ic_flags & flags) != flags)
   4328 			continue;
   4329 
   4330 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4331 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4332 		chan->flags = 0;
   4333 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4334 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4335 		if (ic->ic_des_esslen != 0)
   4336 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4337 		chan->dsp_gain = 0x6e;
   4338 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4339 			chan->rf_gain = 0x3b;
   4340 			chan->active  = htole16(24);
   4341 			chan->passive = htole16(110);
   4342 		} else {
   4343 			chan->rf_gain = 0x28;
   4344 			chan->active  = htole16(36);
   4345 			chan->passive = htole16(120);
   4346 		}
   4347 		hdr->nchan++;
   4348 		chan++;
   4349 	}
   4350 
   4351 	buflen = (uint8_t *)chan - buf;
   4352 	hdr->len = htole16(buflen);
   4353 
   4354 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4355 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4356 	free(buf, M_DEVBUF);
   4357 	return error;
   4358 }
   4359 
   4360 static int
   4361 iwn_auth(struct iwn_softc *sc)
   4362 {
   4363 	struct iwn_ops *ops = &sc->ops;
   4364 	struct ieee80211com *ic = &sc->sc_ic;
   4365 	struct ieee80211_node *ni = ic->ic_bss;
   4366 	int error;
   4367 
   4368 	/* Update adapter configuration. */
   4369 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4370 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4371 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4372 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4373 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4374 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4375 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4376 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4377 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4378 	switch (ic->ic_curmode) {
   4379 	case IEEE80211_MODE_11A:
   4380 		sc->rxon.cck_mask  = 0;
   4381 		sc->rxon.ofdm_mask = 0x15;
   4382 		break;
   4383 	case IEEE80211_MODE_11B:
   4384 		sc->rxon.cck_mask  = 0x03;
   4385 		sc->rxon.ofdm_mask = 0;
   4386 		break;
   4387 	default:	/* Assume 802.11b/g. */
   4388 		sc->rxon.cck_mask  = 0x0f;
   4389 		sc->rxon.ofdm_mask = 0x15;
   4390 	}
   4391 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4392 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4393 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4394 	if (error != 0) {
   4395 		aprint_error_dev(sc->sc_dev,
   4396 		    "RXON command failed\n");
   4397 		return error;
   4398 	}
   4399 
   4400 	/* Configuration has changed, set TX power accordingly. */
   4401 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4402 		aprint_error_dev(sc->sc_dev,
   4403 		    "could not set TX power\n");
   4404 		return error;
   4405 	}
   4406 	/*
   4407 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4408 	 * add the broadcast node again.
   4409 	 */
   4410 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4411 		aprint_error_dev(sc->sc_dev,
   4412 		    "could not add broadcast node\n");
   4413 		return error;
   4414 	}
   4415 	return 0;
   4416 }
   4417 
   4418 static int
   4419 iwn_run(struct iwn_softc *sc)
   4420 {
   4421 	struct iwn_ops *ops = &sc->ops;
   4422 	struct ieee80211com *ic = &sc->sc_ic;
   4423 	struct ieee80211_node *ni = ic->ic_bss;
   4424 	struct iwn_node_info node;
   4425 	int error;
   4426 
   4427 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4428 		/* Link LED blinks while monitoring. */
   4429 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4430 		return 0;
   4431 	}
   4432 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4433 		aprint_error_dev(sc->sc_dev,
   4434 		    "could not set timing\n");
   4435 		return error;
   4436 	}
   4437 
   4438 	/* Update adapter configuration. */
   4439 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4440 	/* Short preamble and slot time are negotiated when associating. */
   4441 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4442 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4443 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4444 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4445 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4446 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4447 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4448 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4449 	if (error != 0) {
   4450 		aprint_error_dev(sc->sc_dev,
   4451 		    "could not update configuration\n");
   4452 		return error;
   4453 	}
   4454 
   4455 	/* Configuration has changed, set TX power accordingly. */
   4456 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4457 		aprint_error_dev(sc->sc_dev,
   4458 		    "could not set TX power\n");
   4459 		return error;
   4460 	}
   4461 
   4462 	/* Fake a join to initialize the TX rate. */
   4463 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4464 	iwn_newassoc(ni, 1);
   4465 
   4466 	/* Add BSS node. */
   4467 	memset(&node, 0, sizeof node);
   4468 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4469 	node.id = IWN_ID_BSS;
   4470 #ifdef notyet
   4471 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4472 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4473 #endif
   4474 	DPRINTF(("adding BSS node\n"));
   4475 	error = ops->add_node(sc, &node, 1);
   4476 	if (error != 0) {
   4477 		aprint_error_dev(sc->sc_dev,
   4478 		    "could not add BSS node\n");
   4479 		return error;
   4480 	}
   4481 	DPRINTF(("setting link quality for node %d\n", node.id));
   4482 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4483 		aprint_error_dev(sc->sc_dev,
   4484 		    "could not setup link quality for node %d\n", node.id);
   4485 		return error;
   4486 	}
   4487 
   4488 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4489 		aprint_error_dev(sc->sc_dev,
   4490 		    "could not set sensitivity\n");
   4491 		return error;
   4492 	}
   4493 	/* Start periodic calibration timer. */
   4494 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4495 	sc->calib_cnt = 0;
   4496 	callout_schedule(&sc->calib_to, hz/2);
   4497 
   4498 	/* Link LED always on while associated. */
   4499 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4500 	return 0;
   4501 }
   4502 
   4503 #ifdef IWN_HWCRYPTO
   4504 /*
   4505  * We support CCMP hardware encryption/decryption of unicast frames only.
   4506  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4507  */
   4508 static int
   4509 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4510     struct ieee80211_key *k)
   4511 {
   4512 	struct iwn_softc *sc = ic->ic_softc;
   4513 	struct iwn_ops *ops = &sc->ops;
   4514 	struct iwn_node *wn = (void *)ni;
   4515 	struct iwn_node_info node;
   4516 	uint16_t kflags;
   4517 
   4518 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4519 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4520 		return ieee80211_set_key(ic, ni, k);
   4521 
   4522 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4523 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4524 		kflags |= IWN_KFLAG_GROUP;
   4525 
   4526 	memset(&node, 0, sizeof node);
   4527 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4528 	    sc->broadcast_id : wn->id;
   4529 	node.control = IWN_NODE_UPDATE;
   4530 	node.flags = IWN_FLAG_SET_KEY;
   4531 	node.kflags = htole16(kflags);
   4532 	node.kid = k->k_id;
   4533 	memcpy(node.key, k->k_key, k->k_len);
   4534 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   4535 	return ops->add_node(sc, &node, 1);
   4536 }
   4537 
   4538 static void
   4539 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4540     struct ieee80211_key *k)
   4541 {
   4542 	struct iwn_softc *sc = ic->ic_softc;
   4543 	struct iwn_ops *ops = &sc->ops;
   4544 	struct iwn_node *wn = (void *)ni;
   4545 	struct iwn_node_info node;
   4546 
   4547 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4548 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   4549 		/* See comment about other ciphers above. */
   4550 		ieee80211_delete_key(ic, ni, k);
   4551 		return;
   4552 	}
   4553 	if (ic->ic_state != IEEE80211_S_RUN)
   4554 		return;	/* Nothing to do. */
   4555 	memset(&node, 0, sizeof node);
   4556 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4557 	    sc->broadcast_id : wn->id;
   4558 	node.control = IWN_NODE_UPDATE;
   4559 	node.flags = IWN_FLAG_SET_KEY;
   4560 	node.kflags = htole16(IWN_KFLAG_INVALID);
   4561 	node.kid = 0xff;
   4562 	DPRINTF(("delete keys for node %d\n", node.id));
   4563 	(void)ops->add_node(sc, &node, 1);
   4564 }
   4565 #endif
   4566 
   4567 /* XXX Added for NetBSD (copied from rev 1.39). */
   4568 
   4569 static int
   4570 iwn_wme_update(struct ieee80211com *ic)
   4571 {
   4572 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   4573 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   4574 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   4575 	const struct wmeParams *wmep;
   4576 	struct iwn_edca_params cmd;
   4577 	int ac;
   4578 
   4579 	/* don't override default WME values if WME is not actually enabled */
   4580 	if (!(ic->ic_flags & IEEE80211_F_WME))
   4581 		return 0;
   4582 	cmd.flags = 0;
   4583 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   4584 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   4585 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   4586 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   4587 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   4588 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   4589 
   4590 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   4591 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   4592 					cmd.ac[ac].cwmin,
   4593 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   4594 	}
   4595 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   4596 #undef IWN_USEC
   4597 #undef IWN_EXP2
   4598 }
   4599 
   4600 #ifndef IEEE80211_NO_HT
   4601 /*
   4602  * This function is called by upper layer when an ADDBA request is received
   4603  * from another STA and before the ADDBA response is sent.
   4604  */
   4605 static int
   4606 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4607     uint8_t tid)
   4608 {
   4609 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   4610 	struct iwn_softc *sc = ic->ic_softc;
   4611 	struct iwn_ops *ops = &sc->ops;
   4612 	struct iwn_node *wn = (void *)ni;
   4613 	struct iwn_node_info node;
   4614 
   4615 	memset(&node, 0, sizeof node);
   4616 	node.id = wn->id;
   4617 	node.control = IWN_NODE_UPDATE;
   4618 	node.flags = IWN_FLAG_SET_ADDBA;
   4619 	node.addba_tid = tid;
   4620 	node.addba_ssn = htole16(ba->ba_winstart);
   4621 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   4622 	    ba->ba_winstart));
   4623 	return ops->add_node(sc, &node, 1);
   4624 }
   4625 
   4626 /*
   4627  * This function is called by upper layer on teardown of an HT-immediate
   4628  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
   4629  */
   4630 static void
   4631 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4632     uint8_t tid)
   4633 {
   4634 	struct iwn_softc *sc = ic->ic_softc;
   4635 	struct iwn_ops *ops = &sc->ops;
   4636 	struct iwn_node *wn = (void *)ni;
   4637 	struct iwn_node_info node;
   4638 
   4639 	memset(&node, 0, sizeof node);
   4640 	node.id = wn->id;
   4641 	node.control = IWN_NODE_UPDATE;
   4642 	node.flags = IWN_FLAG_SET_DELBA;
   4643 	node.delba_tid = tid;
   4644 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   4645 	(void)ops->add_node(sc, &node, 1);
   4646 }
   4647 
   4648 /*
   4649  * This function is called by upper layer when an ADDBA response is received
   4650  * from another STA.
   4651  */
   4652 static int
   4653 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4654     uint8_t tid)
   4655 {
   4656 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4657 	struct iwn_softc *sc = ic->ic_softc;
   4658 	struct iwn_ops *ops = &sc->ops;
   4659 	struct iwn_node *wn = (void *)ni;
   4660 	struct iwn_node_info node;
   4661 	int error;
   4662 
   4663 	/* Enable TX for the specified RA/TID. */
   4664 	wn->disable_tid &= ~(1 << tid);
   4665 	memset(&node, 0, sizeof node);
   4666 	node.id = wn->id;
   4667 	node.control = IWN_NODE_UPDATE;
   4668 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   4669 	node.disable_tid = htole16(wn->disable_tid);
   4670 	error = ops->add_node(sc, &node, 1);
   4671 	if (error != 0)
   4672 		return error;
   4673 
   4674 	if ((error = iwn_nic_lock(sc)) != 0)
   4675 		return error;
   4676 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   4677 	iwn_nic_unlock(sc);
   4678 	return 0;
   4679 }
   4680 
   4681 static void
   4682 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4683     uint8_t tid)
   4684 {
   4685 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4686 	struct iwn_softc *sc = ic->ic_softc;
   4687 	struct iwn_ops *ops = &sc->ops;
   4688 
   4689 	if (iwn_nic_lock(sc) != 0)
   4690 		return;
   4691 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   4692 	iwn_nic_unlock(sc);
   4693 }
   4694 
   4695 static void
   4696 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4697     uint8_t tid, uint16_t ssn)
   4698 {
   4699 	struct iwn_node *wn = (void *)ni;
   4700 	int qid = 7 + tid;
   4701 
   4702 	/* Stop TX scheduler while we're changing its configuration. */
   4703 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4704 	    IWN4965_TXQ_STATUS_CHGACT);
   4705 
   4706 	/* Assign RA/TID translation to the queue. */
   4707 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   4708 	    wn->id << 4 | tid);
   4709 
   4710 	/* Enable chain-building mode for the queue. */
   4711 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   4712 
   4713 	/* Set starting sequence number from the ADDBA request. */
   4714 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4715 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4716 
   4717 	/* Set scheduler window size. */
   4718 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   4719 	    IWN_SCHED_WINSZ);
   4720 	/* Set scheduler frame limit. */
   4721 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4722 	    IWN_SCHED_LIMIT << 16);
   4723 
   4724 	/* Enable interrupts for the queue. */
   4725 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4726 
   4727 	/* Mark the queue as active. */
   4728 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4729 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   4730 	    iwn_tid2fifo[tid] << 1);
   4731 }
   4732 
   4733 static void
   4734 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4735 {
   4736 	int qid = 7 + tid;
   4737 
   4738 	/* Stop TX scheduler while we're changing its configuration. */
   4739 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4740 	    IWN4965_TXQ_STATUS_CHGACT);
   4741 
   4742 	/* Set starting sequence number from the ADDBA request. */
   4743 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4744 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4745 
   4746 	/* Disable interrupts for the queue. */
   4747 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4748 
   4749 	/* Mark the queue as inactive. */
   4750 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4751 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   4752 }
   4753 
   4754 static void
   4755 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4756     uint8_t tid, uint16_t ssn)
   4757 {
   4758 	struct iwn_node *wn = (void *)ni;
   4759 	int qid = 10 + tid;
   4760 
   4761 	/* Stop TX scheduler while we're changing its configuration. */
   4762 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4763 	    IWN5000_TXQ_STATUS_CHGACT);
   4764 
   4765 	/* Assign RA/TID translation to the queue. */
   4766 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   4767 	    wn->id << 4 | tid);
   4768 
   4769 	/* Enable chain-building mode for the queue. */
   4770 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   4771 
   4772 	/* Enable aggregation for the queue. */
   4773 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4774 
   4775 	/* Set starting sequence number from the ADDBA request. */
   4776 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4777 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4778 
   4779 	/* Set scheduler window size and frame limit. */
   4780 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   4781 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   4782 
   4783 	/* Enable interrupts for the queue. */
   4784 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4785 
   4786 	/* Mark the queue as active. */
   4787 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4788 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   4789 }
   4790 
   4791 static void
   4792 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4793 {
   4794 	int qid = 10 + tid;
   4795 
   4796 	/* Stop TX scheduler while we're changing its configuration. */
   4797 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4798 	    IWN5000_TXQ_STATUS_CHGACT);
   4799 
   4800 	/* Disable aggregation for the queue. */
   4801 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4802 
   4803 	/* Set starting sequence number from the ADDBA request. */
   4804 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4805 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4806 
   4807 	/* Disable interrupts for the queue. */
   4808 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4809 
   4810 	/* Mark the queue as inactive. */
   4811 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4812 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   4813 }
   4814 #endif	/* !IEEE80211_NO_HT */
   4815 
   4816 /*
   4817  * Query calibration tables from the initialization firmware.  We do this
   4818  * only once at first boot.  Called from a process context.
   4819  */
   4820 static int
   4821 iwn5000_query_calibration(struct iwn_softc *sc)
   4822 {
   4823 	struct iwn5000_calib_config cmd;
   4824 	int error;
   4825 
   4826 	memset(&cmd, 0, sizeof cmd);
   4827 	cmd.ucode.once.enable = 0xffffffff;
   4828 	cmd.ucode.once.start  = 0xffffffff;
   4829 	cmd.ucode.once.send   = 0xffffffff;
   4830 	cmd.ucode.flags       = 0xffffffff;
   4831 	DPRINTF(("sending calibration query\n"));
   4832 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   4833 	if (error != 0)
   4834 		return error;
   4835 
   4836 	/* Wait at most two seconds for calibration to complete. */
   4837 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   4838 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   4839 	return error;
   4840 }
   4841 
   4842 /*
   4843  * Send calibration results to the runtime firmware.  These results were
   4844  * obtained on first boot from the initialization firmware.
   4845  */
   4846 static int
   4847 iwn5000_send_calibration(struct iwn_softc *sc)
   4848 {
   4849 	int idx, error;
   4850 
   4851 	for (idx = 0; idx < 5; idx++) {
   4852 		if (sc->calibcmd[idx].buf == NULL)
   4853 			continue;	/* No results available. */
   4854 		DPRINTF(("send calibration result idx=%d len=%d\n",
   4855 		    idx, sc->calibcmd[idx].len));
   4856 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   4857 		    sc->calibcmd[idx].len, 0);
   4858 		if (error != 0) {
   4859 			aprint_error_dev(sc->sc_dev,
   4860 			    "could not send calibration result\n");
   4861 			return error;
   4862 		}
   4863 	}
   4864 	return 0;
   4865 }
   4866 
   4867 static int
   4868 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   4869 {
   4870 	struct iwn5000_wimax_coex wimax;
   4871 
   4872 #ifdef notyet
   4873 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   4874 		/* Enable WiMAX coexistence for combo adapters. */
   4875 		wimax.flags =
   4876 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   4877 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   4878 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   4879 		    IWN_WIMAX_COEX_ENABLE;
   4880 		memcpy(wimax.events, iwn6050_wimax_events,
   4881 		    sizeof iwn6050_wimax_events);
   4882 	} else
   4883 #endif
   4884 	{
   4885 		/* Disable WiMAX coexistence. */
   4886 		wimax.flags = 0;
   4887 		memset(wimax.events, 0, sizeof wimax.events);
   4888 	}
   4889 	DPRINTF(("Configuring WiMAX coexistence\n"));
   4890 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   4891 }
   4892 
   4893 /*
   4894  * This function is called after the runtime firmware notifies us of its
   4895  * readiness (called in a process context).
   4896  */
   4897 static int
   4898 iwn4965_post_alive(struct iwn_softc *sc)
   4899 {
   4900 	int error, qid;
   4901 
   4902 	if ((error = iwn_nic_lock(sc)) != 0)
   4903 		return error;
   4904 
   4905 	/* Clear TX scheduler state in SRAM. */
   4906 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   4907 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   4908 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   4909 
   4910 	/* Set physical address of TX scheduler rings (1KB aligned). */
   4911 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   4912 
   4913 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   4914 
   4915 	/* Disable chain mode for all our 16 queues. */
   4916 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   4917 
   4918 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   4919 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   4920 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   4921 
   4922 		/* Set scheduler window size. */
   4923 		iwn_mem_write(sc, sc->sched_base +
   4924 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   4925 		/* Set scheduler frame limit. */
   4926 		iwn_mem_write(sc, sc->sched_base +
   4927 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4928 		    IWN_SCHED_LIMIT << 16);
   4929 	}
   4930 
   4931 	/* Enable interrupts for all our 16 queues. */
   4932 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   4933 	/* Identify TX FIFO rings (0-7). */
   4934 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   4935 
   4936 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   4937 	for (qid = 0; qid < 7; qid++) {
   4938 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   4939 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4940 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   4941 	}
   4942 	iwn_nic_unlock(sc);
   4943 	return 0;
   4944 }
   4945 
   4946 /*
   4947  * This function is called after the initialization or runtime firmware
   4948  * notifies us of its readiness (called in a process context).
   4949  */
   4950 static int
   4951 iwn5000_post_alive(struct iwn_softc *sc)
   4952 {
   4953 	int error, qid;
   4954 
   4955 	/* Switch to using ICT interrupt mode. */
   4956 	iwn5000_ict_reset(sc);
   4957 
   4958 	if ((error = iwn_nic_lock(sc)) != 0)
   4959 		return error;
   4960 
   4961 	/* Clear TX scheduler state in SRAM. */
   4962 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   4963 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   4964 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   4965 
   4966 	/* Set physical address of TX scheduler rings (1KB aligned). */
   4967 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   4968 
   4969 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   4970 
   4971 	/* Enable chain mode for all queues, except command queue. */
   4972 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   4973 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   4974 
   4975 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   4976 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   4977 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   4978 
   4979 		iwn_mem_write(sc, sc->sched_base +
   4980 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   4981 		/* Set scheduler window size and frame limit. */
   4982 		iwn_mem_write(sc, sc->sched_base +
   4983 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   4984 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   4985 	}
   4986 
   4987 	/* Enable interrupts for all our 20 queues. */
   4988 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   4989 	/* Identify TX FIFO rings (0-7). */
   4990 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   4991 
   4992 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   4993 	for (qid = 0; qid < 7; qid++) {
   4994 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   4995 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4996 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   4997 	}
   4998 	iwn_nic_unlock(sc);
   4999 
   5000 	/* Configure WiMAX coexistence for combo adapters. */
   5001 	error = iwn5000_send_wimax_coex(sc);
   5002 	if (error != 0) {
   5003 		aprint_error_dev(sc->sc_dev,
   5004 		    "could not configure WiMAX coexistence\n");
   5005 		return error;
   5006 	}
   5007 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5008 		struct iwn5000_phy_calib_crystal cmd;
   5009 
   5010 		/* Perform crystal calibration. */
   5011 		memset(&cmd, 0, sizeof cmd);
   5012 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5013 		cmd.ngroups = 1;
   5014 		cmd.isvalid = 1;
   5015 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5016 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5017 		DPRINTF(("sending crystal calibration %d, %d\n",
   5018 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5019 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5020 		if (error != 0) {
   5021 			aprint_error_dev(sc->sc_dev,
   5022 			    "crystal calibration failed\n");
   5023 			return error;
   5024 		}
   5025 	}
   5026 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5027 		/* Query calibration from the initialization firmware. */
   5028 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5029 			aprint_error_dev(sc->sc_dev,
   5030 			    "could not query calibration\n");
   5031 			return error;
   5032 		}
   5033 		/*
   5034 		 * We have the calibration results now, reboot with the
   5035 		 * runtime firmware (call ourselves recursively!)
   5036 		 */
   5037 		iwn_hw_stop(sc);
   5038 		error = iwn_hw_init(sc);
   5039 	} else {
   5040 		/* Send calibration results to runtime firmware. */
   5041 		error = iwn5000_send_calibration(sc);
   5042 	}
   5043 	return error;
   5044 }
   5045 
   5046 /*
   5047  * The firmware boot code is small and is intended to be copied directly into
   5048  * the NIC internal memory (no DMA transfer).
   5049  */
   5050 static int
   5051 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5052 {
   5053 	int error, ntries;
   5054 
   5055 	size /= sizeof (uint32_t);
   5056 
   5057 	if ((error = iwn_nic_lock(sc)) != 0)
   5058 		return error;
   5059 
   5060 	/* Copy microcode image into NIC memory. */
   5061 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5062 	    (const uint32_t *)ucode, size);
   5063 
   5064 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5065 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5066 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5067 
   5068 	/* Start boot load now. */
   5069 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5070 
   5071 	/* Wait for transfer to complete. */
   5072 	for (ntries = 0; ntries < 1000; ntries++) {
   5073 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5074 		    IWN_BSM_WR_CTRL_START))
   5075 			break;
   5076 		DELAY(10);
   5077 	}
   5078 	if (ntries == 1000) {
   5079 		aprint_error_dev(sc->sc_dev,
   5080 		    "could not load boot firmware\n");
   5081 		iwn_nic_unlock(sc);
   5082 		return ETIMEDOUT;
   5083 	}
   5084 
   5085 	/* Enable boot after power up. */
   5086 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5087 
   5088 	iwn_nic_unlock(sc);
   5089 	return 0;
   5090 }
   5091 
   5092 static int
   5093 iwn4965_load_firmware(struct iwn_softc *sc)
   5094 {
   5095 	struct iwn_fw_info *fw = &sc->fw;
   5096 	struct iwn_dma_info *dma = &sc->fw_dma;
   5097 	int error;
   5098 
   5099 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5100 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5101 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5102 	    BUS_DMASYNC_PREWRITE);
   5103 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5104 	    fw->init.text, fw->init.textsz);
   5105 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5106 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5107 
   5108 	/* Tell adapter where to find initialization sections. */
   5109 	if ((error = iwn_nic_lock(sc)) != 0)
   5110 		return error;
   5111 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5112 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5113 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5114 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5115 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5116 	iwn_nic_unlock(sc);
   5117 
   5118 	/* Load firmware boot code. */
   5119 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5120 	if (error != 0) {
   5121 		aprint_error_dev(sc->sc_dev,
   5122 		    "could not load boot firmware\n");
   5123 		return error;
   5124 	}
   5125 	/* Now press "execute". */
   5126 	IWN_WRITE(sc, IWN_RESET, 0);
   5127 
   5128 	/* Wait at most one second for first alive notification. */
   5129 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5130 		aprint_error_dev(sc->sc_dev,
   5131 		    "timeout waiting for adapter to initialize\n");
   5132 		return error;
   5133 	}
   5134 
   5135 	/* Retrieve current temperature for initial TX power calibration. */
   5136 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5137 	sc->temp = iwn4965_get_temperature(sc);
   5138 
   5139 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5140 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5141 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5142 	    BUS_DMASYNC_PREWRITE);
   5143 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5144 	    fw->main.text, fw->main.textsz);
   5145 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5146 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5147 
   5148 	/* Tell adapter where to find runtime sections. */
   5149 	if ((error = iwn_nic_lock(sc)) != 0)
   5150 		return error;
   5151 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5152 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5153 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5154 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5155 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5156 	    IWN_FW_UPDATED | fw->main.textsz);
   5157 	iwn_nic_unlock(sc);
   5158 
   5159 	return 0;
   5160 }
   5161 
   5162 static int
   5163 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5164     const uint8_t *section, int size)
   5165 {
   5166 	struct iwn_dma_info *dma = &sc->fw_dma;
   5167 	int error;
   5168 
   5169 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5170 	memcpy(dma->vaddr, section, size);
   5171 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5172 
   5173 	if ((error = iwn_nic_lock(sc)) != 0)
   5174 		return error;
   5175 
   5176 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5177 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5178 
   5179 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5180 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5181 	    IWN_LOADDR(dma->paddr));
   5182 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5183 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5184 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5185 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5186 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5187 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5188 
   5189 	/* Kick Flow Handler to start DMA transfer. */
   5190 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5191 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5192 
   5193 	iwn_nic_unlock(sc);
   5194 
   5195 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5196 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5197 }
   5198 
   5199 static int
   5200 iwn5000_load_firmware(struct iwn_softc *sc)
   5201 {
   5202 	struct iwn_fw_part *fw;
   5203 	int error;
   5204 
   5205 	/* Load the initialization firmware on first boot only. */
   5206 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5207 	    &sc->fw.main : &sc->fw.init;
   5208 
   5209 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5210 	    fw->text, fw->textsz);
   5211 	if (error != 0) {
   5212 		aprint_error_dev(sc->sc_dev,
   5213 		    "could not load firmware %s section\n", ".text");
   5214 		return error;
   5215 	}
   5216 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5217 	    fw->data, fw->datasz);
   5218 	if (error != 0) {
   5219 		aprint_error_dev(sc->sc_dev,
   5220 		    "could not load firmware %s section\n", ".data");
   5221 		return error;
   5222 	}
   5223 
   5224 	/* Now press "execute". */
   5225 	IWN_WRITE(sc, IWN_RESET, 0);
   5226 	return 0;
   5227 }
   5228 
   5229 /*
   5230  * Extract text and data sections from a legacy firmware image.
   5231  */
   5232 static int
   5233 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
   5234 {
   5235 	const uint32_t *ptr;
   5236 	size_t hdrlen = 24;
   5237 	uint32_t rev;
   5238 
   5239 	ptr = (const uint32_t *)fw->data;
   5240 	rev = le32toh(*ptr++);
   5241 
   5242 	/* Check firmware API version. */
   5243 	if (IWN_FW_API(rev) <= 1) {
   5244 		aprint_error_dev(sc->sc_dev,
   5245 		    "bad firmware, need API version >=2\n");
   5246 		return EINVAL;
   5247 	}
   5248 	if (IWN_FW_API(rev) >= 3) {
   5249 		/* Skip build number (version 2 header). */
   5250 		hdrlen += 4;
   5251 		ptr++;
   5252 	}
   5253 	if (fw->size < hdrlen) {
   5254 		aprint_error_dev(sc->sc_dev,
   5255 		    "firmware too short: %zd bytes\n", fw->size);
   5256 		return EINVAL;
   5257 	}
   5258 	fw->main.textsz = le32toh(*ptr++);
   5259 	fw->main.datasz = le32toh(*ptr++);
   5260 	fw->init.textsz = le32toh(*ptr++);
   5261 	fw->init.datasz = le32toh(*ptr++);
   5262 	fw->boot.textsz = le32toh(*ptr++);
   5263 
   5264 	/* Check that all firmware sections fit. */
   5265 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
   5266 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
   5267 		aprint_error_dev(sc->sc_dev,
   5268 		    "firmware too short: %zd bytes\n", fw->size);
   5269 		return EINVAL;
   5270 	}
   5271 
   5272 	/* Get pointers to firmware sections. */
   5273 	fw->main.text = (const uint8_t *)ptr;
   5274 	fw->main.data = fw->main.text + fw->main.textsz;
   5275 	fw->init.text = fw->main.data + fw->main.datasz;
   5276 	fw->init.data = fw->init.text + fw->init.textsz;
   5277 	fw->boot.text = fw->init.data + fw->init.datasz;
   5278 	return 0;
   5279 }
   5280 
   5281 /*
   5282  * Extract text and data sections from a TLV firmware image.
   5283  */
   5284 static int
   5285 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
   5286     uint16_t alt)
   5287 {
   5288 	const struct iwn_fw_tlv_hdr *hdr;
   5289 	const struct iwn_fw_tlv *tlv;
   5290 	const uint8_t *ptr, *end;
   5291 	uint64_t altmask;
   5292 	uint32_t len;
   5293 
   5294 	if (fw->size < sizeof (*hdr)) {
   5295 		aprint_error_dev(sc->sc_dev,
   5296 		    "firmware too short: %zd bytes\n", fw->size);
   5297 		return EINVAL;
   5298 	}
   5299 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
   5300 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
   5301 		aprint_error_dev(sc->sc_dev,
   5302 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
   5303 		return EINVAL;
   5304 	}
   5305 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
   5306 	    le32toh(hdr->build)));
   5307 
   5308 	/*
   5309 	 * Select the closest supported alternative that is less than
   5310 	 * or equal to the specified one.
   5311 	 */
   5312 	altmask = le64toh(hdr->altmask);
   5313 	while (alt > 0 && !(altmask & (1ULL << alt)))
   5314 		alt--;	/* Downgrade. */
   5315 	DPRINTF(("using alternative %d\n", alt));
   5316 
   5317 	ptr = (const uint8_t *)(hdr + 1);
   5318 	end = (const uint8_t *)(fw->data + fw->size);
   5319 
   5320 	/* Parse type-length-value fields. */
   5321 	while (ptr + sizeof (*tlv) <= end) {
   5322 		tlv = (const struct iwn_fw_tlv *)ptr;
   5323 		len = le32toh(tlv->len);
   5324 
   5325 		ptr += sizeof (*tlv);
   5326 		if (ptr + len > end) {
   5327 			aprint_error_dev(sc->sc_dev,
   5328 			    "firmware too short: %zd bytes\n", fw->size);
   5329 			return EINVAL;
   5330 		}
   5331 		/* Skip other alternatives. */
   5332 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
   5333 			goto next;
   5334 
   5335 		switch (le16toh(tlv->type)) {
   5336 		case IWN_FW_TLV_MAIN_TEXT:
   5337 			fw->main.text = ptr;
   5338 			fw->main.textsz = len;
   5339 			break;
   5340 		case IWN_FW_TLV_MAIN_DATA:
   5341 			fw->main.data = ptr;
   5342 			fw->main.datasz = len;
   5343 			break;
   5344 		case IWN_FW_TLV_INIT_TEXT:
   5345 			fw->init.text = ptr;
   5346 			fw->init.textsz = len;
   5347 			break;
   5348 		case IWN_FW_TLV_INIT_DATA:
   5349 			fw->init.data = ptr;
   5350 			fw->init.datasz = len;
   5351 			break;
   5352 		case IWN_FW_TLV_BOOT_TEXT:
   5353 			fw->boot.text = ptr;
   5354 			fw->boot.textsz = len;
   5355 			break;
   5356 		default:
   5357 			DPRINTF(("TLV type %d not handled\n",
   5358 			    le16toh(tlv->type)));
   5359 			break;
   5360 		}
   5361  next:		/* TLV fields are 32-bit aligned. */
   5362 		ptr += (len + 3) & ~3;
   5363 	}
   5364 	return 0;
   5365 }
   5366 
   5367 static int
   5368 iwn_read_firmware(struct iwn_softc *sc)
   5369 {
   5370 	struct iwn_fw_info *fw = &sc->fw;
   5371 	firmware_handle_t fwh;
   5372 	int error;
   5373 
   5374 	/* Initialize for error returns */
   5375 	fw->data = NULL;
   5376 	fw->size = 0;
   5377 
   5378 	/* Open firmware image. */
   5379 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5380 		aprint_error_dev(sc->sc_dev,
   5381 		    "could not get firmware handle %s\n", sc->fwname);
   5382 		return error;
   5383 	}
   5384 	fw->size = firmware_get_size(fwh);
   5385 	if (fw->size < sizeof (uint32_t)) {
   5386 		aprint_error_dev(sc->sc_dev,
   5387 		    "firmware too short: %zd bytes\n", fw->size);
   5388 		firmware_close(fwh);
   5389 		return EINVAL;
   5390 	}
   5391 
   5392 	/* Read the firmware. */
   5393 	fw->data = firmware_malloc(fw->size);
   5394 	if (fw->data == NULL) {
   5395 		aprint_error_dev(sc->sc_dev,
   5396 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5397 		firmware_close(fwh);
   5398 		return ENOMEM;
   5399 	}
   5400 	error = firmware_read(fwh, 0, fw->data, fw->size);
   5401 	firmware_close(fwh);
   5402 	if (error != 0) {
   5403 		aprint_error_dev(sc->sc_dev,
   5404 		    "could not read firmware %s\n", sc->fwname);
   5405 		goto out;
   5406 	}
   5407 
   5408 	/* Retrieve text and data sections. */
   5409 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
   5410 		error = iwn_read_firmware_leg(sc, fw);
   5411 	else
   5412 		error = iwn_read_firmware_tlv(sc, fw, 1);
   5413 	if (error != 0) {
   5414 		aprint_error_dev(sc->sc_dev,
   5415 		    "could not read firmware sections\n");
   5416 		goto out;
   5417 	}
   5418 
   5419 	/* Make sure text and data sections fit in hardware memory. */
   5420 	if (fw->main.textsz > sc->fw_text_maxsz ||
   5421 	    fw->main.datasz > sc->fw_data_maxsz ||
   5422 	    fw->init.textsz > sc->fw_text_maxsz ||
   5423 	    fw->init.datasz > sc->fw_data_maxsz ||
   5424 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5425 	    (fw->boot.textsz & 3) != 0) {
   5426 		aprint_error_dev(sc->sc_dev,
   5427 		    "firmware sections too large\n");
   5428 		goto out;
   5429 	}
   5430 
   5431 	/* We can proceed with loading the firmware. */
   5432 	return 0;
   5433 out:
   5434 	firmware_free(fw->data, fw->size);
   5435 	fw->data = NULL;
   5436 	fw->size = 0;
   5437 	return error ? error : EINVAL;
   5438 }
   5439 
   5440 static int
   5441 iwn_clock_wait(struct iwn_softc *sc)
   5442 {
   5443 	int ntries;
   5444 
   5445 	/* Set "initialization complete" bit. */
   5446 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5447 
   5448 	/* Wait for clock stabilization. */
   5449 	for (ntries = 0; ntries < 2500; ntries++) {
   5450 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5451 			return 0;
   5452 		DELAY(10);
   5453 	}
   5454 	aprint_error_dev(sc->sc_dev,
   5455 	    "timeout waiting for clock stabilization\n");
   5456 	return ETIMEDOUT;
   5457 }
   5458 
   5459 static int
   5460 iwn_apm_init(struct iwn_softc *sc)
   5461 {
   5462 	pcireg_t reg;
   5463 	int error;
   5464 
   5465 	/* Disable L0s exit timer (NMI bug workaround). */
   5466 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   5467 	/* Don't wait for ICH L0s (ICH bug workaround). */
   5468 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   5469 
   5470 	/* Set FH wait threshold to max (HW bug under stress workaround). */
   5471 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   5472 
   5473 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   5474 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   5475 
   5476 	/* Retrieve PCIe Active State Power Management (ASPM). */
   5477 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   5478 	    sc->sc_cap_off + PCI_PCIE_LCSR);
   5479 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   5480 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   5481 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5482 	else
   5483 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5484 
   5485 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   5486 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   5487 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   5488 
   5489 	/* Wait for clock stabilization before accessing prph. */
   5490 	if ((error = iwn_clock_wait(sc)) != 0)
   5491 		return error;
   5492 
   5493 	if ((error = iwn_nic_lock(sc)) != 0)
   5494 		return error;
   5495 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   5496 		/* Enable DMA and BSM (Bootstrap State Machine). */
   5497 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5498 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   5499 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   5500 	} else {
   5501 		/* Enable DMA. */
   5502 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5503 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5504 	}
   5505 	DELAY(20);
   5506 	/* Disable L1-Active. */
   5507 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   5508 	iwn_nic_unlock(sc);
   5509 
   5510 	return 0;
   5511 }
   5512 
   5513 static void
   5514 iwn_apm_stop_master(struct iwn_softc *sc)
   5515 {
   5516 	int ntries;
   5517 
   5518 	/* Stop busmaster DMA activity. */
   5519 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   5520 	for (ntries = 0; ntries < 100; ntries++) {
   5521 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   5522 			return;
   5523 		DELAY(10);
   5524 	}
   5525 	aprint_error_dev(sc->sc_dev,
   5526 	    "timeout waiting for master\n");
   5527 }
   5528 
   5529 static void
   5530 iwn_apm_stop(struct iwn_softc *sc)
   5531 {
   5532 	iwn_apm_stop_master(sc);
   5533 
   5534 	/* Reset the entire device. */
   5535 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   5536 	DELAY(10);
   5537 	/* Clear "initialization complete" bit. */
   5538 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5539 }
   5540 
   5541 static int
   5542 iwn4965_nic_config(struct iwn_softc *sc)
   5543 {
   5544 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   5545 		/*
   5546 		 * I don't believe this to be correct but this is what the
   5547 		 * vendor driver is doing. Probably the bits should not be
   5548 		 * shifted in IWN_RFCFG_*.
   5549 		 */
   5550 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5551 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5552 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5553 		    IWN_RFCFG_DASH(sc->rfcfg));
   5554 	}
   5555 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5556 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5557 	return 0;
   5558 }
   5559 
   5560 static int
   5561 iwn5000_nic_config(struct iwn_softc *sc)
   5562 {
   5563 	uint32_t tmp;
   5564 	int error;
   5565 
   5566 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   5567 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5568 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5569 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5570 		    IWN_RFCFG_DASH(sc->rfcfg));
   5571 	}
   5572 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5573 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5574 
   5575 	if ((error = iwn_nic_lock(sc)) != 0)
   5576 		return error;
   5577 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   5578 
   5579 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   5580 		/*
   5581 		 * Select first Switching Voltage Regulator (1.32V) to
   5582 		 * solve a stability issue related to noisy DC2DC line
   5583 		 * in the silicon of 1000 Series.
   5584 		 */
   5585 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   5586 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   5587 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   5588 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   5589 	}
   5590 	iwn_nic_unlock(sc);
   5591 
   5592 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   5593 		/* Use internal power amplifier only. */
   5594 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   5595 	}
   5596 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   5597 		sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
   5598 		/* Indicate that ROM calibration version is >=6. */
   5599 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   5600 	}
   5601 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   5602 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
   5603 	return 0;
   5604 }
   5605 
   5606 /*
   5607  * Take NIC ownership over Intel Active Management Technology (AMT).
   5608  */
   5609 static int
   5610 iwn_hw_prepare(struct iwn_softc *sc)
   5611 {
   5612 	int ntries;
   5613 
   5614 	/* Check if hardware is ready. */
   5615 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5616 	for (ntries = 0; ntries < 5; ntries++) {
   5617 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5618 		    IWN_HW_IF_CONFIG_NIC_READY)
   5619 			return 0;
   5620 		DELAY(10);
   5621 	}
   5622 
   5623 	/* Hardware not ready, force into ready state. */
   5624 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   5625 	for (ntries = 0; ntries < 15000; ntries++) {
   5626 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5627 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   5628 			break;
   5629 		DELAY(10);
   5630 	}
   5631 	if (ntries == 15000)
   5632 		return ETIMEDOUT;
   5633 
   5634 	/* Hardware should be ready now. */
   5635 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5636 	for (ntries = 0; ntries < 5; ntries++) {
   5637 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5638 		    IWN_HW_IF_CONFIG_NIC_READY)
   5639 			return 0;
   5640 		DELAY(10);
   5641 	}
   5642 	return ETIMEDOUT;
   5643 }
   5644 
   5645 static int
   5646 iwn_hw_init(struct iwn_softc *sc)
   5647 {
   5648 	struct iwn_ops *ops = &sc->ops;
   5649 	int error, chnl, qid;
   5650 
   5651 	/* Clear pending interrupts. */
   5652 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5653 
   5654 	if ((error = iwn_apm_init(sc)) != 0) {
   5655 		aprint_error_dev(sc->sc_dev,
   5656 		    "could not power ON adapter\n");
   5657 		return error;
   5658 	}
   5659 
   5660 	/* Select VMAIN power source. */
   5661 	if ((error = iwn_nic_lock(sc)) != 0)
   5662 		return error;
   5663 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   5664 	iwn_nic_unlock(sc);
   5665 
   5666 	/* Perform adapter-specific initialization. */
   5667 	if ((error = ops->nic_config(sc)) != 0)
   5668 		return error;
   5669 
   5670 	/* Initialize RX ring. */
   5671 	if ((error = iwn_nic_lock(sc)) != 0)
   5672 		return error;
   5673 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   5674 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   5675 	/* Set physical address of RX ring (256-byte aligned). */
   5676 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   5677 	/* Set physical address of RX status (16-byte aligned). */
   5678 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   5679 	/* Enable RX. */
   5680 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   5681 	    IWN_FH_RX_CONFIG_ENA           |
   5682 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   5683 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   5684 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   5685 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   5686 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   5687 	iwn_nic_unlock(sc);
   5688 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   5689 
   5690 	if ((error = iwn_nic_lock(sc)) != 0)
   5691 		return error;
   5692 
   5693 	/* Initialize TX scheduler. */
   5694 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   5695 
   5696 	/* Set physical address of "keep warm" page (16-byte aligned). */
   5697 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   5698 
   5699 	/* Initialize TX rings. */
   5700 	for (qid = 0; qid < sc->ntxqs; qid++) {
   5701 		struct iwn_tx_ring *txq = &sc->txq[qid];
   5702 
   5703 		/* Set physical address of TX ring (256-byte aligned). */
   5704 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   5705 		    txq->desc_dma.paddr >> 8);
   5706 	}
   5707 	iwn_nic_unlock(sc);
   5708 
   5709 	/* Enable DMA channels. */
   5710 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   5711 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   5712 		    IWN_FH_TX_CONFIG_DMA_ENA |
   5713 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   5714 	}
   5715 
   5716 	/* Clear "radio off" and "commands blocked" bits. */
   5717 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5718 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   5719 
   5720 	/* Clear pending interrupts. */
   5721 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5722 	/* Enable interrupt coalescing. */
   5723 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   5724 	/* Enable interrupts. */
   5725 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   5726 
   5727 	/* _Really_ make sure "radio off" bit is cleared! */
   5728 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5729 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5730 
   5731 	/* Enable shadow registers. */
   5732 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   5733 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
   5734 
   5735 	if ((error = ops->load_firmware(sc)) != 0) {
   5736 		aprint_error_dev(sc->sc_dev,
   5737 		    "could not load firmware\n");
   5738 		return error;
   5739 	}
   5740 	/* Wait at most one second for firmware alive notification. */
   5741 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5742 		aprint_error_dev(sc->sc_dev,
   5743 		    "timeout waiting for adapter to initialize\n");
   5744 		return error;
   5745 	}
   5746 	/* Do post-firmware initialization. */
   5747 	return ops->post_alive(sc);
   5748 }
   5749 
   5750 static void
   5751 iwn_hw_stop(struct iwn_softc *sc)
   5752 {
   5753 	int chnl, qid, ntries;
   5754 
   5755 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   5756 
   5757 	/* Disable interrupts. */
   5758 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   5759 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5760 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   5761 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5762 
   5763 	/* Make sure we no longer hold the NIC lock. */
   5764 	iwn_nic_unlock(sc);
   5765 
   5766 	/* Stop TX scheduler. */
   5767 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   5768 
   5769 	/* Stop all DMA channels. */
   5770 	if (iwn_nic_lock(sc) == 0) {
   5771 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   5772 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   5773 			for (ntries = 0; ntries < 200; ntries++) {
   5774 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
   5775 				    IWN_FH_TX_STATUS_IDLE(chnl))
   5776 					break;
   5777 				DELAY(10);
   5778 			}
   5779 		}
   5780 		iwn_nic_unlock(sc);
   5781 	}
   5782 
   5783 	/* Stop RX ring. */
   5784 	iwn_reset_rx_ring(sc, &sc->rxq);
   5785 
   5786 	/* Reset all TX rings. */
   5787 	for (qid = 0; qid < sc->ntxqs; qid++)
   5788 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   5789 
   5790 	if (iwn_nic_lock(sc) == 0) {
   5791 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   5792 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5793 		iwn_nic_unlock(sc);
   5794 	}
   5795 	DELAY(5);
   5796 	/* Power OFF adapter. */
   5797 	iwn_apm_stop(sc);
   5798 }
   5799 
   5800 static int
   5801 iwn_init(struct ifnet *ifp)
   5802 {
   5803 	struct iwn_softc *sc = ifp->if_softc;
   5804 	struct ieee80211com *ic = &sc->sc_ic;
   5805 	int error;
   5806 
   5807 	mutex_enter(&sc->sc_mtx);
   5808 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
   5809 		goto out;
   5810 	if ((error = iwn_hw_prepare(sc)) != 0) {
   5811 		aprint_error_dev(sc->sc_dev,
   5812 		    "hardware not ready\n");
   5813 		goto fail;
   5814 	}
   5815 
   5816 	/* Check that the radio is not disabled by hardware switch. */
   5817 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   5818 		aprint_error_dev(sc->sc_dev,
   5819 		    "radio is disabled by hardware switch\n");
   5820 		error = EPERM;	/* :-) */
   5821 		goto fail;
   5822 	}
   5823 
   5824 	/* Read firmware images from the filesystem. */
   5825 	if ((error = iwn_read_firmware(sc)) != 0) {
   5826 		aprint_error_dev(sc->sc_dev,
   5827 		    "could not read firmware\n");
   5828 		goto fail;
   5829 	}
   5830 
   5831 	/* Initialize interrupt mask to default value. */
   5832 	sc->int_mask = IWN_INT_MASK_DEF;
   5833 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5834 
   5835 	/* Initialize hardware and upload firmware. */
   5836 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
   5837 	error = iwn_hw_init(sc);
   5838 	firmware_free(sc->fw.data, sc->fw.size);
   5839 	sc->fw.data = NULL;
   5840 	sc->fw.size = 0;
   5841 	if (error != 0) {
   5842 		aprint_error_dev(sc->sc_dev,
   5843 		    "could not initialize hardware\n");
   5844 		goto fail;
   5845 	}
   5846 
   5847 	/* Configure adapter now that it is ready. */
   5848 	if ((error = iwn_config(sc)) != 0) {
   5849 		aprint_error_dev(sc->sc_dev,
   5850 		    "could not configure device\n");
   5851 		goto fail;
   5852 	}
   5853 
   5854 	ifp->if_flags &= ~IFF_OACTIVE;
   5855 	ifp->if_flags |= IFF_RUNNING;
   5856 
   5857 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   5858 		ieee80211_begin_scan(ic, 0);
   5859 	else
   5860 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   5861 
   5862 	sc->sc_flags |= IWN_FLAG_HW_INITED;
   5863 out:
   5864 	mutex_exit(&sc->sc_mtx);
   5865 	return 0;
   5866 
   5867 fail:	mutex_exit(&sc->sc_mtx);
   5868 	iwn_stop(ifp, 1);
   5869 	return error;
   5870 }
   5871 
   5872 static void
   5873 iwn_stop(struct ifnet *ifp, int disable)
   5874 {
   5875 	struct iwn_softc *sc = ifp->if_softc;
   5876 	struct ieee80211com *ic = &sc->sc_ic;
   5877 
   5878 	if (!disable)
   5879 		mutex_enter(&sc->sc_mtx);
   5880 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
   5881 	ifp->if_timer = sc->sc_tx_timer = 0;
   5882 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5883 
   5884 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   5885 
   5886 	/* Power OFF hardware. */
   5887 	iwn_hw_stop(sc);
   5888 
   5889 	if (!disable)
   5890 		mutex_exit(&sc->sc_mtx);
   5891 }
   5892 
   5893 /*
   5894  * XXX MCLGETI alternative
   5895  *
   5896  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   5897  * as long as there are available free buffers then it uses MEXTMALLOC.,
   5898  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   5899  * The MCLGET4K code is used for testing an alternative mbuf cache.
   5900  */
   5901 
   5902 static struct mbuf *
   5903 MCLGETIalt(struct iwn_softc *sc, int how,
   5904     struct ifnet *ifp __unused, u_int size)
   5905 {
   5906 	struct mbuf *m;
   5907 #ifdef IWN_USE_RBUF
   5908 	struct iwn_rbuf *rbuf;
   5909 #endif
   5910 
   5911 	MGETHDR(m, how, MT_DATA);
   5912 	if (m == NULL)
   5913 		return NULL;
   5914 
   5915 #ifdef IWN_USE_RBUF
   5916 	if (sc->rxq.nb_free_entries > 0 &&
   5917 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   5918 		/* Attach buffer to mbuf header. */
   5919 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   5920 		m->m_flags |= M_EXT_RW;
   5921 	}
   5922 	else {
   5923 		MEXTMALLOC(m, size, how);
   5924 		if ((m->m_flags & M_EXT) == 0) {
   5925 			m_freem(m);
   5926 			return NULL;
   5927 		}
   5928 	}
   5929 
   5930 #else
   5931 #ifdef MCLGET4K
   5932 	if (size == 4096)
   5933 		MCLGET4K(m, how);
   5934 	else
   5935 		panic("size must be 4k");
   5936 #else
   5937 	MEXTMALLOC(m, size, how);
   5938 #endif
   5939 	if ((m->m_flags & M_EXT) == 0) {
   5940 		m_freem(m);
   5941 		return NULL;
   5942 	}
   5943 #endif
   5944 
   5945 	return m;
   5946 }
   5947 
   5948 #ifdef IWN_USE_RBUF
   5949 static struct iwn_rbuf *
   5950 iwn_alloc_rbuf(struct iwn_softc *sc)
   5951 {
   5952 	struct iwn_rbuf *rbuf;
   5953 	mutex_enter(&sc->rxq.freelist_mtx);
   5954 
   5955 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   5956 	if (rbuf != NULL) {
   5957 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   5958 		sc->rxq.nb_free_entries --;
   5959 	}
   5960 	mutex_exit(&sc->rxq.freelist_mtx);
   5961 	return rbuf;
   5962 }
   5963 
   5964 /*
   5965  * This is called automatically by the network stack when the mbuf to which
   5966  * our RX buffer is attached is freed.
   5967  */
   5968 static void
   5969 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   5970 {
   5971 	struct iwn_rbuf *rbuf = arg;
   5972 	struct iwn_softc *sc = rbuf->sc;
   5973 
   5974 	/* Put the RX buffer back in the free list. */
   5975 	mutex_enter(&sc->rxq.freelist_mtx);
   5976 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   5977 	mutex_exit(&sc->rxq.freelist_mtx);
   5978 
   5979 	sc->rxq.nb_free_entries ++;
   5980 	if (__predict_true(m != NULL))
   5981 		pool_cache_put(mb_cache, m);
   5982 }
   5983 
   5984 static int
   5985 iwn_alloc_rpool(struct iwn_softc *sc)
   5986 {
   5987 	struct iwn_rx_ring *ring = &sc->rxq;
   5988 	struct iwn_rbuf *rbuf;
   5989 	int i, error;
   5990 
   5991 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   5992 
   5993 	/* Allocate a big chunk of DMA'able memory... */
   5994 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   5995 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   5996 	if (error != 0) {
   5997 		aprint_error_dev(sc->sc_dev,
   5998 		    "could not allocate RX buffers DMA memory\n");
   5999 		return error;
   6000 	}
   6001 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   6002 	SLIST_INIT(&ring->freelist);
   6003 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   6004 		rbuf = &ring->rbuf[i];
   6005 
   6006 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   6007 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   6008 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   6009 
   6010 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   6011 	}
   6012 	ring->nb_free_entries = IWN_RBUF_COUNT;
   6013 	return 0;
   6014 }
   6015 
   6016 static void
   6017 iwn_free_rpool(struct iwn_softc *sc)
   6018 {
   6019 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   6020 }
   6021 #endif
   6022 
   6023 /*
   6024  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
   6025  * Copyright (c) 2001 Atsushi Onoe
   6026  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
   6027  * Copyright (c) 2007-2009 Damien Bergamini
   6028  * All rights reserved.
   6029  */
   6030 
   6031 /*
   6032  * Add an SSID element to a frame (see 7.3.2.1).
   6033  */
   6034 static u_int8_t *
   6035 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
   6036 {
   6037 	*frm++ = IEEE80211_ELEMID_SSID;
   6038 	*frm++ = len;
   6039 	memcpy(frm, ssid, len);
   6040 	return frm + len;
   6041 }
   6042 
   6043 /*
   6044  * Add a supported rates element to a frame (see 7.3.2.2).
   6045  */
   6046 static u_int8_t *
   6047 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6048 {
   6049 	int nrates;
   6050 
   6051 	*frm++ = IEEE80211_ELEMID_RATES;
   6052 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
   6053 	*frm++ = nrates;
   6054 	memcpy(frm, rs->rs_rates, nrates);
   6055 	return frm + nrates;
   6056 }
   6057 
   6058 /*
   6059  * Add an extended supported rates element to a frame (see 7.3.2.14).
   6060  */
   6061 static u_int8_t *
   6062 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6063 {
   6064 	int nrates;
   6065 
   6066 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
   6067 
   6068 	*frm++ = IEEE80211_ELEMID_XRATES;
   6069 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   6070 	*frm++ = nrates;
   6071 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   6072 	return frm + nrates;
   6073 }
   6074 
   6075 /*
   6076  * XXX: Hack to set the current channel to the value advertised in beacons or
   6077  * probe responses. Only used during AP detection.
   6078  * XXX: Duplicated from if_iwi.c
   6079  */
   6080 static void
   6081 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
   6082 {
   6083 	struct ieee80211_frame *wh;
   6084 	uint8_t subtype;
   6085 	uint8_t *frm, *efrm;
   6086 
   6087 	wh = mtod(m, struct ieee80211_frame *);
   6088 
   6089 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6090 		return;
   6091 
   6092 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6093 
   6094 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6095 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6096 		return;
   6097 
   6098 	frm = (uint8_t *)(wh + 1);
   6099 	efrm = mtod(m, uint8_t *) + m->m_len;
   6100 
   6101 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6102 	while (frm < efrm) {
   6103 		if (*frm == IEEE80211_ELEMID_DSPARMS)
   6104 #if IEEE80211_CHAN_MAX < 255
   6105 		if (frm[2] <= IEEE80211_CHAN_MAX)
   6106 #endif
   6107 			ic->ic_curchan = &ic->ic_channels[frm[2]];
   6108 
   6109 		frm += frm[1] + 2;
   6110 	}
   6111 }
   6112 
   6113