if_iwn.c revision 1.67 1 /* $NetBSD: if_iwn.c,v 1.67 2013/07/28 11:46:24 prlw1 Exp $ */
2 /* $OpenBSD: if_iwn.c,v 1.119 2013/05/29 23:16:52 yuo Exp $ */
3
4 /*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.67 2013/07/28 11:46:24 prlw1 Exp $");
26
27 #define IWN_USE_RBUF /* Use local storage for RX */
28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45
46 #include <dev/sysmon/sysmonvar.h>
47
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #include <dev/firmload.h>
74
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77
78 static const pci_product_id_t iwn_devices[] = {
79 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 };
106
107 /*
108 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
109 */
110 static const struct ieee80211_rateset iwn_rateset_11a =
111 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
112
113 static const struct ieee80211_rateset iwn_rateset_11b =
114 { 4, { 2, 4, 11, 22 } };
115
116 static const struct ieee80211_rateset iwn_rateset_11g =
117 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
118
119 static int iwn_match(device_t , struct cfdata *, void *);
120 static void iwn_attach(device_t , device_t , void *);
121 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t);
122 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t);
123 static void iwn_radiotap_attach(struct iwn_softc *);
124 static int iwn_detach(device_t , int);
125 #if 0
126 static void iwn_power(int, void *);
127 #endif
128 static bool iwn_resume(device_t, const pmf_qual_t *);
129 static int iwn_nic_lock(struct iwn_softc *);
130 static int iwn_eeprom_lock(struct iwn_softc *);
131 static int iwn_init_otprom(struct iwn_softc *);
132 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
133 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
134 void **, bus_size_t, bus_size_t);
135 static void iwn_dma_contig_free(struct iwn_dma_info *);
136 static int iwn_alloc_sched(struct iwn_softc *);
137 static void iwn_free_sched(struct iwn_softc *);
138 static int iwn_alloc_kw(struct iwn_softc *);
139 static void iwn_free_kw(struct iwn_softc *);
140 static int iwn_alloc_ict(struct iwn_softc *);
141 static void iwn_free_ict(struct iwn_softc *);
142 static int iwn_alloc_fwmem(struct iwn_softc *);
143 static void iwn_free_fwmem(struct iwn_softc *);
144 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
145 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
146 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
147 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
148 int);
149 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
150 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
151 static void iwn5000_ict_reset(struct iwn_softc *);
152 static int iwn_read_eeprom(struct iwn_softc *);
153 static void iwn4965_read_eeprom(struct iwn_softc *);
154
155 #ifdef IWN_DEBUG
156 static void iwn4965_print_power_group(struct iwn_softc *, int);
157 #endif
158 static void iwn5000_read_eeprom(struct iwn_softc *);
159 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
160 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
161 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
162 static void iwn_newassoc(struct ieee80211_node *, int);
163 static int iwn_media_change(struct ifnet *);
164 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
165 static void iwn_iter_func(void *, struct ieee80211_node *);
166 static void iwn_calib_timeout(void *);
167 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
168 struct iwn_rx_data *);
169 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
170 struct iwn_rx_data *);
171 #ifndef IEEE80211_NO_HT
172 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
173 struct iwn_rx_data *);
174 #endif
175 static void iwn5000_rx_calib_results(struct iwn_softc *,
176 struct iwn_rx_desc *, struct iwn_rx_data *);
177 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
178 struct iwn_rx_data *);
179 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
180 struct iwn_rx_data *);
181 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
182 struct iwn_rx_data *);
183 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
184 uint8_t);
185 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
186 static void iwn_notif_intr(struct iwn_softc *);
187 static void iwn_wakeup_intr(struct iwn_softc *);
188 static void iwn_fatal_intr(struct iwn_softc *);
189 static int iwn_intr(void *);
190 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
191 uint16_t);
192 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
193 uint16_t);
194 #ifdef notyet
195 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
196 #endif
197 static int iwn_tx(struct iwn_softc *, struct mbuf *,
198 struct ieee80211_node *, int);
199 static void iwn_start(struct ifnet *);
200 static void iwn_watchdog(struct ifnet *);
201 static int iwn_ioctl(struct ifnet *, u_long, void *);
202 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
203 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
204 int);
205 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
206 int);
207 static int iwn_set_link_quality(struct iwn_softc *,
208 struct ieee80211_node *);
209 static int iwn_add_broadcast_node(struct iwn_softc *, int);
210 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
211 static int iwn_set_critical_temp(struct iwn_softc *);
212 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
213 static void iwn4965_power_calibration(struct iwn_softc *, int);
214 static int iwn4965_set_txpower(struct iwn_softc *, int);
215 static int iwn5000_set_txpower(struct iwn_softc *, int);
216 static int iwn4965_get_rssi(const struct iwn_rx_stat *);
217 static int iwn5000_get_rssi(const struct iwn_rx_stat *);
218 static int iwn_get_noise(const struct iwn_rx_general_stats *);
219 static int iwn4965_get_temperature(struct iwn_softc *);
220 static int iwn5000_get_temperature(struct iwn_softc *);
221 static int iwn_init_sensitivity(struct iwn_softc *);
222 static void iwn_collect_noise(struct iwn_softc *,
223 const struct iwn_rx_general_stats *);
224 static int iwn4965_init_gains(struct iwn_softc *);
225 static int iwn5000_init_gains(struct iwn_softc *);
226 static int iwn4965_set_gains(struct iwn_softc *);
227 static int iwn5000_set_gains(struct iwn_softc *);
228 static void iwn_tune_sensitivity(struct iwn_softc *,
229 const struct iwn_rx_stats *);
230 static int iwn_send_sensitivity(struct iwn_softc *);
231 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
232 static int iwn5000_runtime_calib(struct iwn_softc *);
233
234 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *);
235 static int iwn_config_bt_coex_prio_table(struct iwn_softc *);
236 static int iwn_config_bt_coex_adv1(struct iwn_softc *);
237
238 static int iwn_config(struct iwn_softc *);
239 static int iwn_scan(struct iwn_softc *, uint16_t);
240 static int iwn_auth(struct iwn_softc *);
241 static int iwn_run(struct iwn_softc *);
242 #ifdef IWN_HWCRYPTO
243 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
244 struct ieee80211_key *);
245 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
246 struct ieee80211_key *);
247 #endif
248 static int iwn_wme_update(struct ieee80211com *);
249 #ifndef IEEE80211_NO_HT
250 static int iwn_ampdu_rx_start(struct ieee80211com *,
251 struct ieee80211_node *, uint8_t);
252 static void iwn_ampdu_rx_stop(struct ieee80211com *,
253 struct ieee80211_node *, uint8_t);
254 static int iwn_ampdu_tx_start(struct ieee80211com *,
255 struct ieee80211_node *, uint8_t);
256 static void iwn_ampdu_tx_stop(struct ieee80211com *,
257 struct ieee80211_node *, uint8_t);
258 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
259 struct ieee80211_node *, uint8_t, uint16_t);
260 static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
261 uint8_t, uint16_t);
262 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
263 struct ieee80211_node *, uint8_t, uint16_t);
264 static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
265 uint8_t, uint16_t);
266 #endif
267 static int iwn5000_query_calibration(struct iwn_softc *);
268 static int iwn5000_send_calibration(struct iwn_softc *);
269 static int iwn5000_send_wimax_coex(struct iwn_softc *);
270 static int iwn4965_post_alive(struct iwn_softc *);
271 static int iwn5000_post_alive(struct iwn_softc *);
272 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
273 int);
274 static int iwn4965_load_firmware(struct iwn_softc *);
275 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
276 const uint8_t *, int);
277 static int iwn5000_load_firmware(struct iwn_softc *);
278 static int iwn_read_firmware_leg(struct iwn_softc *,
279 struct iwn_fw_info *);
280 static int iwn_read_firmware_tlv(struct iwn_softc *,
281 struct iwn_fw_info *, uint16_t);
282 static int iwn_read_firmware(struct iwn_softc *);
283 static int iwn_clock_wait(struct iwn_softc *);
284 static int iwn_apm_init(struct iwn_softc *);
285 static void iwn_apm_stop_master(struct iwn_softc *);
286 static void iwn_apm_stop(struct iwn_softc *);
287 static int iwn4965_nic_config(struct iwn_softc *);
288 static int iwn5000_nic_config(struct iwn_softc *);
289 static int iwn_hw_prepare(struct iwn_softc *);
290 static int iwn_hw_init(struct iwn_softc *);
291 static void iwn_hw_stop(struct iwn_softc *);
292 static int iwn_init(struct ifnet *);
293 static void iwn_stop(struct ifnet *, int);
294
295 /* XXX MCLGETI alternative */
296 static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
297 struct ifnet *, u_int);
298 #ifdef IWN_USE_RBUF
299 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
300 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
301 static int iwn_alloc_rpool(struct iwn_softc *);
302 static void iwn_free_rpool(struct iwn_softc *);
303 #endif
304
305 /* XXX needed by iwn_scan */
306 static u_int8_t *ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
307 static u_int8_t *ieee80211_add_rates(u_int8_t *,
308 const struct ieee80211_rateset *);
309 static u_int8_t *ieee80211_add_xrates(u_int8_t *,
310 const struct ieee80211_rateset *);
311
312 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *);
313
314 #ifdef IWN_DEBUG
315 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
316 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
317 int iwn_debug = 0;
318 #else
319 #define DPRINTF(x)
320 #define DPRINTFN(n, x)
321 #endif
322
323 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
324 iwn_detach, NULL);
325
326 static int
327 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
328 {
329 struct pci_attach_args *pa = aux;
330 size_t i;
331
332 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
333 return 0;
334
335 for (i = 0; i < __arraycount(iwn_devices); i++)
336 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
337 return 1;
338
339 return 0;
340 }
341
342 static void
343 iwn_attach(device_t parent __unused, device_t self, void *aux)
344 {
345 struct iwn_softc *sc = device_private(self);
346 struct ieee80211com *ic = &sc->sc_ic;
347 struct ifnet *ifp = &sc->sc_ec.ec_if;
348 struct pci_attach_args *pa = aux;
349 const char *intrstr;
350 pci_intr_handle_t ih;
351 pcireg_t memtype, reg;
352 int i, error;
353
354 sc->sc_dev = self;
355 sc->sc_pct = pa->pa_pc;
356 sc->sc_pcitag = pa->pa_tag;
357 sc->sc_dmat = pa->pa_dmat;
358 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
359
360 callout_init(&sc->calib_to, 0);
361 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
362
363 pci_aprint_devinfo(pa, NULL);
364
365 /*
366 * Get the offset of the PCI Express Capability Structure in PCI
367 * Configuration Space.
368 */
369 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
370 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
371 if (error == 0) {
372 aprint_error(": PCIe capability structure not found!\n");
373 return;
374 }
375
376 /* Clear device-specific "PCI retry timeout" register (41h). */
377 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
378 if (reg & 0xff00)
379 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
380
381 /* Enable bus-mastering and hardware bug workaround. */
382 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */
383 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
384 reg |= PCI_COMMAND_MASTER_ENABLE;
385 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
386 DPRINTF(("PCIe INTx Disable set\n"));
387 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
388 }
389 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
390
391 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
392 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
393 &sc->sc_sh, NULL, &sc->sc_sz);
394 if (error != 0) {
395 aprint_error(": can't map mem space\n");
396 return;
397 }
398
399 /* Install interrupt handler. */
400 if (pci_intr_map(pa, &ih) != 0) {
401 aprint_error(": can't map interrupt\n");
402 return;
403 }
404 intrstr = pci_intr_string(sc->sc_pct, ih);
405 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
406 if (sc->sc_ih == NULL) {
407 aprint_error(": can't establish interrupt");
408 if (intrstr != NULL)
409 aprint_error(" at %s", intrstr);
410 aprint_error("\n");
411 return;
412 }
413 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
414
415 /* Read hardware revision and attach. */
416 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
417 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
418 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
419 else
420 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
421 if (error != 0) {
422 aprint_error(": could not attach device\n");
423 return;
424 }
425
426 if ((error = iwn_hw_prepare(sc)) != 0) {
427 aprint_error(": hardware not ready\n");
428 return;
429 }
430
431 /* Read MAC address, channels, etc from EEPROM. */
432 if ((error = iwn_read_eeprom(sc)) != 0) {
433 aprint_error(": could not read EEPROM\n");
434 return;
435 }
436
437 /* Allocate DMA memory for firmware transfers. */
438 if ((error = iwn_alloc_fwmem(sc)) != 0) {
439 aprint_error(": could not allocate memory for firmware\n");
440 return;
441 }
442
443 /* Allocate "Keep Warm" page. */
444 if ((error = iwn_alloc_kw(sc)) != 0) {
445 aprint_error(": could not allocate keep warm page\n");
446 goto fail1;
447 }
448
449 /* Allocate ICT table for 5000 Series. */
450 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
451 (error = iwn_alloc_ict(sc)) != 0) {
452 aprint_error(": could not allocate ICT table\n");
453 goto fail2;
454 }
455
456 /* Allocate TX scheduler "rings". */
457 if ((error = iwn_alloc_sched(sc)) != 0) {
458 aprint_error(": could not allocate TX scheduler rings\n");
459 goto fail3;
460 }
461
462 #ifdef IWN_USE_RBUF
463 /* Allocate RX buffers. */
464 if ((error = iwn_alloc_rpool(sc)) != 0) {
465 aprint_error_dev(self, "could not allocate RX buffers\n");
466 goto fail3;
467 }
468 #endif
469
470 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
471 for (i = 0; i < sc->ntxqs; i++) {
472 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
473 aprint_error(": could not allocate TX ring %d\n", i);
474 goto fail4;
475 }
476 }
477
478 /* Allocate RX ring. */
479 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
480 aprint_error(": could not allocate RX ring\n");
481 goto fail4;
482 }
483
484 /* Clear pending interrupts. */
485 IWN_WRITE(sc, IWN_INT, 0xffffffff);
486
487 /* Count the number of available chains. */
488 sc->ntxchains =
489 ((sc->txchainmask >> 2) & 1) +
490 ((sc->txchainmask >> 1) & 1) +
491 ((sc->txchainmask >> 0) & 1);
492 sc->nrxchains =
493 ((sc->rxchainmask >> 2) & 1) +
494 ((sc->rxchainmask >> 1) & 1) +
495 ((sc->rxchainmask >> 0) & 1);
496 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
497 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
498 ether_sprintf(ic->ic_myaddr));
499
500 ic->ic_ifp = ifp;
501 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
502 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
503 ic->ic_state = IEEE80211_S_INIT;
504
505 /* Set device capabilities. */
506 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
507 * and IEEE80211_C_PMGT too. */
508 ic->ic_caps =
509 IEEE80211_C_IBSS | /* IBSS mode support */
510 IEEE80211_C_WPA | /* 802.11i */
511 IEEE80211_C_MONITOR | /* monitor mode supported */
512 IEEE80211_C_TXPMGT | /* tx power management */
513 IEEE80211_C_SHSLOT | /* short slot time supported */
514 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
515 IEEE80211_C_WME; /* 802.11e */
516
517 #ifndef IEEE80211_NO_HT
518 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
519 /* Set HT capabilities. */
520 ic->ic_htcaps =
521 #if IWN_RBUF_SIZE == 8192
522 IEEE80211_HTCAP_AMSDU7935 |
523 #endif
524 IEEE80211_HTCAP_CBW20_40 |
525 IEEE80211_HTCAP_SGI20 |
526 IEEE80211_HTCAP_SGI40;
527 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
528 ic->ic_htcaps |= IEEE80211_HTCAP_GF;
529 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
530 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
531 else
532 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
533 }
534 #endif /* !IEEE80211_NO_HT */
535
536 /* Set supported legacy rates. */
537 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
538 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
539 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
540 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
541 }
542 #ifndef IEEE80211_NO_HT
543 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
544 /* Set supported HT rates. */
545 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
546 if (sc->nrxchains > 1)
547 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
548 if (sc->nrxchains > 2)
549 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
550 }
551 #endif
552
553 /* IBSS channel undefined for now. */
554 ic->ic_ibss_chan = &ic->ic_channels[0];
555
556 ifp->if_softc = sc;
557 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
558 ifp->if_init = iwn_init;
559 ifp->if_ioctl = iwn_ioctl;
560 ifp->if_start = iwn_start;
561 ifp->if_stop = iwn_stop;
562 ifp->if_watchdog = iwn_watchdog;
563 IFQ_SET_READY(&ifp->if_snd);
564 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
565
566 if_attach(ifp);
567 ieee80211_ifattach(ic);
568 ic->ic_node_alloc = iwn_node_alloc;
569 ic->ic_newassoc = iwn_newassoc;
570 #ifdef IWN_HWCRYPTO
571 ic->ic_crypto.cs_key_set = iwn_set_key;
572 ic->ic_crypto.cs_key_delete = iwn_delete_key;
573 #endif
574 ic->ic_wme.wme_update = iwn_wme_update;
575 #ifndef IEEE80211_NO_HT
576 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
577 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
578 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
579 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
580 #endif
581
582 /* Override 802.11 state transition machine. */
583 sc->sc_newstate = ic->ic_newstate;
584 ic->ic_newstate = iwn_newstate;
585 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
586
587 sc->amrr.amrr_min_success_threshold = 1;
588 sc->amrr.amrr_max_success_threshold = 15;
589
590 iwn_radiotap_attach(sc);
591
592 /*
593 * XXX for NetBSD, OpenBSD timeout_set replaced by
594 * callout_init and callout_setfunc, above.
595 */
596
597 if (pmf_device_register(self, NULL, iwn_resume))
598 pmf_class_network_register(self, ifp);
599 else
600 aprint_error_dev(self, "couldn't establish power handler\n");
601
602 /* XXX NetBSD add call to ieee80211_announce for dmesg. */
603 ieee80211_announce(ic);
604
605 return;
606
607 /* Free allocated memory if something failed during attachment. */
608 fail4: while (--i >= 0)
609 iwn_free_tx_ring(sc, &sc->txq[i]);
610 #ifdef IWN_USE_RBUF
611 iwn_free_rpool(sc);
612 #endif
613 iwn_free_sched(sc);
614 fail3: if (sc->ict != NULL)
615 iwn_free_ict(sc);
616 fail2: iwn_free_kw(sc);
617 fail1: iwn_free_fwmem(sc);
618 }
619
620 int
621 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
622 {
623 struct iwn_ops *ops = &sc->ops;
624
625 ops->load_firmware = iwn4965_load_firmware;
626 ops->read_eeprom = iwn4965_read_eeprom;
627 ops->post_alive = iwn4965_post_alive;
628 ops->nic_config = iwn4965_nic_config;
629 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
630 ops->update_sched = iwn4965_update_sched;
631 ops->get_temperature = iwn4965_get_temperature;
632 ops->get_rssi = iwn4965_get_rssi;
633 ops->set_txpower = iwn4965_set_txpower;
634 ops->init_gains = iwn4965_init_gains;
635 ops->set_gains = iwn4965_set_gains;
636 ops->add_node = iwn4965_add_node;
637 ops->tx_done = iwn4965_tx_done;
638 #ifndef IEEE80211_NO_HT
639 ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
640 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
641 #endif
642 sc->ntxqs = IWN4965_NTXQUEUES;
643 sc->ndmachnls = IWN4965_NDMACHNLS;
644 sc->broadcast_id = IWN4965_ID_BROADCAST;
645 sc->rxonsz = IWN4965_RXONSZ;
646 sc->schedsz = IWN4965_SCHEDSZ;
647 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
648 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
649 sc->fwsz = IWN4965_FWSZ;
650 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
651 sc->limits = &iwn4965_sensitivity_limits;
652 sc->fwname = "iwlwifi-4965-2.ucode";
653 /* Override chains masks, ROM is known to be broken. */
654 sc->txchainmask = IWN_ANT_AB;
655 sc->rxchainmask = IWN_ANT_ABC;
656
657 return 0;
658 }
659
660 int
661 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
662 {
663 struct iwn_ops *ops = &sc->ops;
664
665 ops->load_firmware = iwn5000_load_firmware;
666 ops->read_eeprom = iwn5000_read_eeprom;
667 ops->post_alive = iwn5000_post_alive;
668 ops->nic_config = iwn5000_nic_config;
669 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
670 ops->update_sched = iwn5000_update_sched;
671 ops->get_temperature = iwn5000_get_temperature;
672 ops->get_rssi = iwn5000_get_rssi;
673 ops->set_txpower = iwn5000_set_txpower;
674 ops->init_gains = iwn5000_init_gains;
675 ops->set_gains = iwn5000_set_gains;
676 ops->add_node = iwn5000_add_node;
677 ops->tx_done = iwn5000_tx_done;
678 #ifndef IEEE80211_NO_HT
679 ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
680 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
681 #endif
682 sc->ntxqs = IWN5000_NTXQUEUES;
683 sc->ndmachnls = IWN5000_NDMACHNLS;
684 sc->broadcast_id = IWN5000_ID_BROADCAST;
685 sc->rxonsz = IWN5000_RXONSZ;
686 sc->schedsz = IWN5000_SCHEDSZ;
687 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
688 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
689 sc->fwsz = IWN5000_FWSZ;
690 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
691
692 switch (sc->hw_type) {
693 case IWN_HW_REV_TYPE_5100:
694 sc->limits = &iwn5000_sensitivity_limits;
695 sc->fwname = "iwlwifi-5000-2.ucode";
696 /* Override chains masks, ROM is known to be broken. */
697 sc->txchainmask = IWN_ANT_B;
698 sc->rxchainmask = IWN_ANT_AB;
699 break;
700 case IWN_HW_REV_TYPE_5150:
701 sc->limits = &iwn5150_sensitivity_limits;
702 sc->fwname = "iwlwifi-5150-2.ucode";
703 break;
704 case IWN_HW_REV_TYPE_5300:
705 case IWN_HW_REV_TYPE_5350:
706 sc->limits = &iwn5000_sensitivity_limits;
707 sc->fwname = "iwlwifi-5000-2.ucode";
708 break;
709 case IWN_HW_REV_TYPE_1000:
710 sc->limits = &iwn1000_sensitivity_limits;
711 sc->fwname = "iwlwifi-1000-3.ucode";
712 break;
713 case IWN_HW_REV_TYPE_6000:
714 sc->limits = &iwn6000_sensitivity_limits;
715 sc->fwname = "iwlwifi-6000-4.ucode";
716 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
717 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
718 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
719 /* Override chains masks, ROM is known to be broken. */
720 sc->txchainmask = IWN_ANT_BC;
721 sc->rxchainmask = IWN_ANT_BC;
722 }
723 break;
724 case IWN_HW_REV_TYPE_6050:
725 sc->limits = &iwn6000_sensitivity_limits;
726 sc->fwname = "iwlwifi-6050-5.ucode";
727 break;
728 case IWN_HW_REV_TYPE_6005:
729 sc->limits = &iwn6000_sensitivity_limits;
730 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
731 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
732 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
733 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
734 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2) {
735 sc->fwname = "iwlwifi-6000g2b-6.ucode";
736 ops->config_bt_coex = iwn_config_bt_coex_adv1;
737 }
738 else
739 sc->fwname = "iwlwifi-6000g2a-5.ucode";
740 break;
741 default:
742 aprint_normal(": adapter type %d not supported\n", sc->hw_type);
743 return ENOTSUP;
744 }
745 return 0;
746 }
747
748 /*
749 * Attach the interface to 802.11 radiotap.
750 */
751 static void
752 iwn_radiotap_attach(struct iwn_softc *sc)
753 {
754 struct ifnet *ifp = sc->sc_ic.ic_ifp;
755
756 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
757 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
758 &sc->sc_drvbpf);
759
760 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
761 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
762 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
763
764 sc->sc_txtap_len = sizeof sc->sc_txtapu;
765 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
766 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
767 }
768
769 static int
770 iwn_detach(device_t self, int flags __unused)
771 {
772 struct iwn_softc *sc = device_private(self);
773 struct ifnet *ifp = sc->sc_ic.ic_ifp;
774 int qid;
775
776 callout_stop(&sc->calib_to);
777
778 /* Uninstall interrupt handler. */
779 if (sc->sc_ih != NULL)
780 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
781
782 /* Free DMA resources. */
783 iwn_free_rx_ring(sc, &sc->rxq);
784 for (qid = 0; qid < sc->ntxqs; qid++)
785 iwn_free_tx_ring(sc, &sc->txq[qid]);
786 #ifdef IWN_USE_RBUF
787 iwn_free_rpool(sc);
788 #endif
789 iwn_free_sched(sc);
790 iwn_free_kw(sc);
791 if (sc->ict != NULL)
792 iwn_free_ict(sc);
793 iwn_free_fwmem(sc);
794
795 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
796
797 ieee80211_ifdetach(&sc->sc_ic);
798 if_detach(ifp);
799
800 return 0;
801 }
802
803 #if 0
804 /*
805 * XXX Investigate if clearing the PCI retry timeout could eliminate
806 * the repeated scan calls. Also the calls to if_init and if_start
807 * are similar to the effect of adding the call to ifioctl_common .
808 */
809 static void
810 iwn_power(int why, void *arg)
811 {
812 struct iwn_softc *sc = arg;
813 struct ifnet *ifp;
814 pcireg_t reg;
815 int s;
816
817 if (why != PWR_RESUME)
818 return;
819
820 /* Clear device-specific "PCI retry timeout" register (41h). */
821 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
822 if (reg & 0xff00)
823 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
824
825 s = splnet();
826 ifp = &sc->sc_ic.ic_if;
827 if (ifp->if_flags & IFF_UP) {
828 ifp->if_init(ifp);
829 if (ifp->if_flags & IFF_RUNNING)
830 ifp->if_start(ifp);
831 }
832 splx(s);
833 }
834 #endif
835
836 static bool
837 iwn_resume(device_t dv, const pmf_qual_t *qual)
838 {
839 return true;
840 }
841
842 static int
843 iwn_nic_lock(struct iwn_softc *sc)
844 {
845 int ntries;
846
847 /* Request exclusive access to NIC. */
848 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
849
850 /* Spin until we actually get the lock. */
851 for (ntries = 0; ntries < 1000; ntries++) {
852 if ((IWN_READ(sc, IWN_GP_CNTRL) &
853 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
854 IWN_GP_CNTRL_MAC_ACCESS_ENA)
855 return 0;
856 DELAY(10);
857 }
858 return ETIMEDOUT;
859 }
860
861 static __inline void
862 iwn_nic_unlock(struct iwn_softc *sc)
863 {
864 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
865 }
866
867 static __inline uint32_t
868 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
869 {
870 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
871 IWN_BARRIER_READ_WRITE(sc);
872 return IWN_READ(sc, IWN_PRPH_RDATA);
873 }
874
875 static __inline void
876 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
877 {
878 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
879 IWN_BARRIER_WRITE(sc);
880 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
881 }
882
883 static __inline void
884 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
885 {
886 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
887 }
888
889 static __inline void
890 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
891 {
892 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
893 }
894
895 static __inline void
896 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
897 const uint32_t *data, int count)
898 {
899 for (; count > 0; count--, data++, addr += 4)
900 iwn_prph_write(sc, addr, *data);
901 }
902
903 static __inline uint32_t
904 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
905 {
906 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
907 IWN_BARRIER_READ_WRITE(sc);
908 return IWN_READ(sc, IWN_MEM_RDATA);
909 }
910
911 static __inline void
912 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
913 {
914 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
915 IWN_BARRIER_WRITE(sc);
916 IWN_WRITE(sc, IWN_MEM_WDATA, data);
917 }
918
919 static __inline void
920 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
921 {
922 uint32_t tmp;
923
924 tmp = iwn_mem_read(sc, addr & ~3);
925 if (addr & 3)
926 tmp = (tmp & 0x0000ffff) | data << 16;
927 else
928 tmp = (tmp & 0xffff0000) | data;
929 iwn_mem_write(sc, addr & ~3, tmp);
930 }
931
932 static __inline void
933 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
934 int count)
935 {
936 for (; count > 0; count--, addr += 4)
937 *data++ = iwn_mem_read(sc, addr);
938 }
939
940 static __inline void
941 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
942 int count)
943 {
944 for (; count > 0; count--, addr += 4)
945 iwn_mem_write(sc, addr, val);
946 }
947
948 static int
949 iwn_eeprom_lock(struct iwn_softc *sc)
950 {
951 int i, ntries;
952
953 for (i = 0; i < 100; i++) {
954 /* Request exclusive access to EEPROM. */
955 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
956 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
957
958 /* Spin until we actually get the lock. */
959 for (ntries = 0; ntries < 100; ntries++) {
960 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
961 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
962 return 0;
963 DELAY(10);
964 }
965 }
966 return ETIMEDOUT;
967 }
968
969 static __inline void
970 iwn_eeprom_unlock(struct iwn_softc *sc)
971 {
972 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
973 }
974
975 /*
976 * Initialize access by host to One Time Programmable ROM.
977 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
978 */
979 static int
980 iwn_init_otprom(struct iwn_softc *sc)
981 {
982 uint16_t prev = 0, base, next;
983 int count, error;
984
985 /* Wait for clock stabilization before accessing prph. */
986 if ((error = iwn_clock_wait(sc)) != 0)
987 return error;
988
989 if ((error = iwn_nic_lock(sc)) != 0)
990 return error;
991 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
992 DELAY(5);
993 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
994 iwn_nic_unlock(sc);
995
996 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
997 if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
998 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
999 IWN_RESET_LINK_PWR_MGMT_DIS);
1000 }
1001 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1002 /* Clear ECC status. */
1003 IWN_SETBITS(sc, IWN_OTP_GP,
1004 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1005
1006 /*
1007 * Find the block before last block (contains the EEPROM image)
1008 * for HW without OTP shadow RAM.
1009 */
1010 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1011 /* Switch to absolute addressing mode. */
1012 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1013 base = 0;
1014 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1015 error = iwn_read_prom_data(sc, base, &next, 2);
1016 if (error != 0)
1017 return error;
1018 if (next == 0) /* End of linked-list. */
1019 break;
1020 prev = base;
1021 base = le16toh(next);
1022 }
1023 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1024 return EIO;
1025 /* Skip "next" word. */
1026 sc->prom_base = prev + 1;
1027 }
1028 return 0;
1029 }
1030
1031 static int
1032 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1033 {
1034 uint8_t *out = data;
1035 uint32_t val, tmp;
1036 int ntries;
1037
1038 addr += sc->prom_base;
1039 for (; count > 0; count -= 2, addr++) {
1040 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1041 for (ntries = 0; ntries < 10; ntries++) {
1042 val = IWN_READ(sc, IWN_EEPROM);
1043 if (val & IWN_EEPROM_READ_VALID)
1044 break;
1045 DELAY(5);
1046 }
1047 if (ntries == 10) {
1048 aprint_error_dev(sc->sc_dev,
1049 "timeout reading ROM at 0x%x\n", addr);
1050 return ETIMEDOUT;
1051 }
1052 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1053 /* OTPROM, check for ECC errors. */
1054 tmp = IWN_READ(sc, IWN_OTP_GP);
1055 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1056 aprint_error_dev(sc->sc_dev,
1057 "OTPROM ECC error at 0x%x\n", addr);
1058 return EIO;
1059 }
1060 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1061 /* Correctable ECC error, clear bit. */
1062 IWN_SETBITS(sc, IWN_OTP_GP,
1063 IWN_OTP_GP_ECC_CORR_STTS);
1064 }
1065 }
1066 *out++ = val >> 16;
1067 if (count > 1)
1068 *out++ = val >> 24;
1069 }
1070 return 0;
1071 }
1072
1073 static int
1074 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1075 bus_size_t size, bus_size_t alignment)
1076 {
1077 int nsegs, error;
1078
1079 dma->tag = tag;
1080 dma->size = size;
1081
1082 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1083 &dma->map);
1084 if (error != 0)
1085 goto fail;
1086
1087 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1088 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1089 if (error != 0)
1090 goto fail;
1091
1092 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1093 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1094 if (error != 0)
1095 goto fail;
1096
1097 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1098 BUS_DMA_NOWAIT);
1099 if (error != 0)
1100 goto fail;
1101
1102 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1103 memset(dma->vaddr, 0, size);
1104 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1105
1106 dma->paddr = dma->map->dm_segs[0].ds_addr;
1107 if (kvap != NULL)
1108 *kvap = dma->vaddr;
1109
1110 return 0;
1111
1112 fail: iwn_dma_contig_free(dma);
1113 return error;
1114 }
1115
1116 static void
1117 iwn_dma_contig_free(struct iwn_dma_info *dma)
1118 {
1119 if (dma->map != NULL) {
1120 if (dma->vaddr != NULL) {
1121 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1122 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1123 bus_dmamap_unload(dma->tag, dma->map);
1124 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1125 bus_dmamem_free(dma->tag, &dma->seg, 1);
1126 dma->vaddr = NULL;
1127 }
1128 bus_dmamap_destroy(dma->tag, dma->map);
1129 dma->map = NULL;
1130 }
1131 }
1132
1133 static int
1134 iwn_alloc_sched(struct iwn_softc *sc)
1135 {
1136 /* TX scheduler rings must be aligned on a 1KB boundary. */
1137 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1138 (void **)&sc->sched, sc->schedsz, 1024);
1139 }
1140
1141 static void
1142 iwn_free_sched(struct iwn_softc *sc)
1143 {
1144 iwn_dma_contig_free(&sc->sched_dma);
1145 }
1146
1147 static int
1148 iwn_alloc_kw(struct iwn_softc *sc)
1149 {
1150 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1151 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1152 4096);
1153 }
1154
1155 static void
1156 iwn_free_kw(struct iwn_softc *sc)
1157 {
1158 iwn_dma_contig_free(&sc->kw_dma);
1159 }
1160
1161 static int
1162 iwn_alloc_ict(struct iwn_softc *sc)
1163 {
1164 /* ICT table must be aligned on a 4KB boundary. */
1165 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1166 (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1167 }
1168
1169 static void
1170 iwn_free_ict(struct iwn_softc *sc)
1171 {
1172 iwn_dma_contig_free(&sc->ict_dma);
1173 }
1174
1175 static int
1176 iwn_alloc_fwmem(struct iwn_softc *sc)
1177 {
1178 /* Must be aligned on a 16-byte boundary. */
1179 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1180 sc->fwsz, 16);
1181 }
1182
1183 static void
1184 iwn_free_fwmem(struct iwn_softc *sc)
1185 {
1186 iwn_dma_contig_free(&sc->fw_dma);
1187 }
1188
1189 static int
1190 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1191 {
1192 bus_size_t size;
1193 int i, error;
1194
1195 ring->cur = 0;
1196
1197 /* Allocate RX descriptors (256-byte aligned). */
1198 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1199 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1200 (void **)&ring->desc, size, 256);
1201 if (error != 0) {
1202 aprint_error_dev(sc->sc_dev,
1203 "could not allocate RX ring DMA memory\n");
1204 goto fail;
1205 }
1206
1207 /* Allocate RX status area (16-byte aligned). */
1208 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1209 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1210 if (error != 0) {
1211 aprint_error_dev(sc->sc_dev,
1212 "could not allocate RX status DMA memory\n");
1213 goto fail;
1214 }
1215
1216 /*
1217 * Allocate and map RX buffers.
1218 */
1219 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1220 struct iwn_rx_data *data = &ring->data[i];
1221
1222 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1223 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1224 &data->map);
1225 if (error != 0) {
1226 aprint_error_dev(sc->sc_dev,
1227 "could not create RX buf DMA map\n");
1228 goto fail;
1229 }
1230
1231 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1232 if (data->m == NULL) {
1233 aprint_error_dev(sc->sc_dev,
1234 "could not allocate RX mbuf\n");
1235 error = ENOBUFS;
1236 goto fail;
1237 }
1238
1239 error = bus_dmamap_load(sc->sc_dmat, data->map,
1240 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1241 BUS_DMA_NOWAIT | BUS_DMA_READ);
1242 if (error != 0) {
1243 aprint_error_dev(sc->sc_dev,
1244 "can't not map mbuf (error %d)\n", error);
1245 goto fail;
1246 }
1247
1248 /* Set physical address of RX buffer (256-byte aligned). */
1249 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1250 }
1251
1252 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1253 BUS_DMASYNC_PREWRITE);
1254
1255 return 0;
1256
1257 fail: iwn_free_rx_ring(sc, ring);
1258 return error;
1259 }
1260
1261 static void
1262 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1263 {
1264 int ntries;
1265
1266 if (iwn_nic_lock(sc) == 0) {
1267 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1268 for (ntries = 0; ntries < 1000; ntries++) {
1269 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1270 IWN_FH_RX_STATUS_IDLE)
1271 break;
1272 DELAY(10);
1273 }
1274 iwn_nic_unlock(sc);
1275 }
1276 ring->cur = 0;
1277 sc->last_rx_valid = 0;
1278 }
1279
1280 static void
1281 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1282 {
1283 int i;
1284
1285 iwn_dma_contig_free(&ring->desc_dma);
1286 iwn_dma_contig_free(&ring->stat_dma);
1287
1288 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1289 struct iwn_rx_data *data = &ring->data[i];
1290
1291 if (data->m != NULL) {
1292 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1293 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1294 bus_dmamap_unload(sc->sc_dmat, data->map);
1295 m_freem(data->m);
1296 }
1297 if (data->map != NULL)
1298 bus_dmamap_destroy(sc->sc_dmat, data->map);
1299 }
1300 }
1301
1302 static int
1303 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1304 {
1305 bus_addr_t paddr;
1306 bus_size_t size;
1307 int i, error;
1308
1309 ring->qid = qid;
1310 ring->queued = 0;
1311 ring->cur = 0;
1312
1313 /* Allocate TX descriptors (256-byte aligned). */
1314 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1315 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1316 (void **)&ring->desc, size, 256);
1317 if (error != 0) {
1318 aprint_error_dev(sc->sc_dev,
1319 "could not allocate TX ring DMA memory\n");
1320 goto fail;
1321 }
1322 /*
1323 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1324 * to allocate commands space for other rings.
1325 * XXX Do we really need to allocate descriptors for other rings?
1326 */
1327 if (qid > 4)
1328 return 0;
1329
1330 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1331 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1332 (void **)&ring->cmd, size, 4);
1333 if (error != 0) {
1334 aprint_error_dev(sc->sc_dev,
1335 "could not allocate TX cmd DMA memory\n");
1336 goto fail;
1337 }
1338
1339 paddr = ring->cmd_dma.paddr;
1340 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1341 struct iwn_tx_data *data = &ring->data[i];
1342
1343 data->cmd_paddr = paddr;
1344 data->scratch_paddr = paddr + 12;
1345 paddr += sizeof (struct iwn_tx_cmd);
1346
1347 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1348 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1349 &data->map);
1350 if (error != 0) {
1351 aprint_error_dev(sc->sc_dev,
1352 "could not create TX buf DMA map\n");
1353 goto fail;
1354 }
1355 }
1356 return 0;
1357
1358 fail: iwn_free_tx_ring(sc, ring);
1359 return error;
1360 }
1361
1362 static void
1363 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1364 {
1365 int i;
1366
1367 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1368 struct iwn_tx_data *data = &ring->data[i];
1369
1370 if (data->m != NULL) {
1371 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1372 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1373 bus_dmamap_unload(sc->sc_dmat, data->map);
1374 m_freem(data->m);
1375 data->m = NULL;
1376 }
1377 }
1378 /* Clear TX descriptors. */
1379 memset(ring->desc, 0, ring->desc_dma.size);
1380 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1381 ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1382 sc->qfullmsk &= ~(1 << ring->qid);
1383 ring->queued = 0;
1384 ring->cur = 0;
1385 }
1386
1387 static void
1388 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1389 {
1390 int i;
1391
1392 iwn_dma_contig_free(&ring->desc_dma);
1393 iwn_dma_contig_free(&ring->cmd_dma);
1394
1395 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1396 struct iwn_tx_data *data = &ring->data[i];
1397
1398 if (data->m != NULL) {
1399 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1400 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1401 bus_dmamap_unload(sc->sc_dmat, data->map);
1402 m_freem(data->m);
1403 }
1404 if (data->map != NULL)
1405 bus_dmamap_destroy(sc->sc_dmat, data->map);
1406 }
1407 }
1408
1409 static void
1410 iwn5000_ict_reset(struct iwn_softc *sc)
1411 {
1412 /* Disable interrupts. */
1413 IWN_WRITE(sc, IWN_INT_MASK, 0);
1414
1415 /* Reset ICT table. */
1416 memset(sc->ict, 0, IWN_ICT_SIZE);
1417 sc->ict_cur = 0;
1418
1419 /* Set physical address of ICT table (4KB aligned). */
1420 DPRINTF(("enabling ICT\n"));
1421 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1422 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1423
1424 /* Enable periodic RX interrupt. */
1425 sc->int_mask |= IWN_INT_RX_PERIODIC;
1426 /* Switch to ICT interrupt mode in driver. */
1427 sc->sc_flags |= IWN_FLAG_USE_ICT;
1428
1429 /* Re-enable interrupts. */
1430 IWN_WRITE(sc, IWN_INT, 0xffffffff);
1431 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1432 }
1433
1434 static int
1435 iwn_read_eeprom(struct iwn_softc *sc)
1436 {
1437 struct iwn_ops *ops = &sc->ops;
1438 struct ieee80211com *ic = &sc->sc_ic;
1439 uint16_t val;
1440 int error;
1441
1442 /* Check whether adapter has an EEPROM or an OTPROM. */
1443 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1444 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1445 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1446 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1447 "OTPROM" : "EEPROM"));
1448
1449 /* Adapter has to be powered on for EEPROM access to work. */
1450 if ((error = iwn_apm_init(sc)) != 0) {
1451 aprint_error_dev(sc->sc_dev,
1452 "could not power ON adapter\n");
1453 return error;
1454 }
1455
1456 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1457 aprint_error_dev(sc->sc_dev,
1458 "bad ROM signature\n");
1459 return EIO;
1460 }
1461 if ((error = iwn_eeprom_lock(sc)) != 0) {
1462 aprint_error_dev(sc->sc_dev,
1463 "could not lock ROM (error=%d)\n", error);
1464 return error;
1465 }
1466 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1467 if ((error = iwn_init_otprom(sc)) != 0) {
1468 aprint_error_dev(sc->sc_dev,
1469 "could not initialize OTPROM\n");
1470 return error;
1471 }
1472 }
1473
1474 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1475 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1476 /* Check if HT support is bonded out. */
1477 if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1478 sc->sc_flags |= IWN_FLAG_HAS_11N;
1479
1480 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1481 sc->rfcfg = le16toh(val);
1482 DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1483 /* Read Tx/Rx chains from ROM unless it's known to be broken. */
1484 if (sc->txchainmask == 0)
1485 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1486 if (sc->rxchainmask == 0)
1487 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1488
1489 /* Read MAC address. */
1490 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1491
1492 /* Read adapter-specific information from EEPROM. */
1493 ops->read_eeprom(sc);
1494
1495 iwn_apm_stop(sc); /* Power OFF adapter. */
1496
1497 iwn_eeprom_unlock(sc);
1498 return 0;
1499 }
1500
1501 static void
1502 iwn4965_read_eeprom(struct iwn_softc *sc)
1503 {
1504 uint32_t addr;
1505 uint16_t val;
1506 int i;
1507
1508 /* Read regulatory domain (4 ASCII characters). */
1509 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1510
1511 /* Read the list of authorized channels (20MHz ones only). */
1512 for (i = 0; i < 5; i++) {
1513 addr = iwn4965_regulatory_bands[i];
1514 iwn_read_eeprom_channels(sc, i, addr);
1515 }
1516
1517 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1518 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1519 sc->maxpwr2GHz = val & 0xff;
1520 sc->maxpwr5GHz = val >> 8;
1521 /* Check that EEPROM values are within valid range. */
1522 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1523 sc->maxpwr5GHz = 38;
1524 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1525 sc->maxpwr2GHz = 38;
1526 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1527
1528 /* Read samples for each TX power group. */
1529 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1530 sizeof sc->bands);
1531
1532 /* Read voltage at which samples were taken. */
1533 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1534 sc->eeprom_voltage = (int16_t)le16toh(val);
1535 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1536
1537 #ifdef IWN_DEBUG
1538 /* Print samples. */
1539 if (iwn_debug > 0) {
1540 for (i = 0; i < IWN_NBANDS; i++)
1541 iwn4965_print_power_group(sc, i);
1542 }
1543 #endif
1544 }
1545
1546 #ifdef IWN_DEBUG
1547 static void
1548 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1549 {
1550 struct iwn4965_eeprom_band *band = &sc->bands[i];
1551 struct iwn4965_eeprom_chan_samples *chans = band->chans;
1552 int j, c;
1553
1554 aprint_normal("===band %d===\n", i);
1555 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1556 aprint_normal("chan1 num=%d\n", chans[0].num);
1557 for (c = 0; c < 2; c++) {
1558 for (j = 0; j < IWN_NSAMPLES; j++) {
1559 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1560 "power=%d pa_det=%d\n", c, j,
1561 chans[0].samples[c][j].temp,
1562 chans[0].samples[c][j].gain,
1563 chans[0].samples[c][j].power,
1564 chans[0].samples[c][j].pa_det);
1565 }
1566 }
1567 aprint_normal("chan2 num=%d\n", chans[1].num);
1568 for (c = 0; c < 2; c++) {
1569 for (j = 0; j < IWN_NSAMPLES; j++) {
1570 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1571 "power=%d pa_det=%d\n", c, j,
1572 chans[1].samples[c][j].temp,
1573 chans[1].samples[c][j].gain,
1574 chans[1].samples[c][j].power,
1575 chans[1].samples[c][j].pa_det);
1576 }
1577 }
1578 }
1579 #endif
1580
1581 static void
1582 iwn5000_read_eeprom(struct iwn_softc *sc)
1583 {
1584 struct iwn5000_eeprom_calib_hdr hdr;
1585 int32_t volt;
1586 uint32_t base, addr;
1587 uint16_t val;
1588 int i;
1589
1590 /* Read regulatory domain (4 ASCII characters). */
1591 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1592 base = le16toh(val);
1593 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1594 sc->eeprom_domain, 4);
1595
1596 /* Read the list of authorized channels (20MHz ones only). */
1597 for (i = 0; i < 5; i++) {
1598 addr = base + iwn5000_regulatory_bands[i];
1599 iwn_read_eeprom_channels(sc, i, addr);
1600 }
1601
1602 /* Read enhanced TX power information for 6000 Series. */
1603 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1604 iwn_read_eeprom_enhinfo(sc);
1605
1606 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1607 base = le16toh(val);
1608 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1609 DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1610 hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1611 sc->calib_ver = hdr.version;
1612
1613 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1614 /* Compute temperature offset. */
1615 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1616 sc->eeprom_temp = le16toh(val);
1617 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1618 volt = le16toh(val);
1619 sc->temp_off = sc->eeprom_temp - (volt / -5);
1620 DPRINTF(("temp=%d volt=%d offset=%dK\n",
1621 sc->eeprom_temp, volt, sc->temp_off));
1622 } else {
1623 /* Read crystal calibration. */
1624 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1625 &sc->eeprom_crystal, sizeof (uint32_t));
1626 DPRINTF(("crystal calibration 0x%08x\n",
1627 le32toh(sc->eeprom_crystal)));
1628 }
1629 }
1630
1631 static void
1632 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1633 {
1634 struct ieee80211com *ic = &sc->sc_ic;
1635 const struct iwn_chan_band *band = &iwn_bands[n];
1636 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1637 uint8_t chan;
1638 int i;
1639
1640 iwn_read_prom_data(sc, addr, channels,
1641 band->nchan * sizeof (struct iwn_eeprom_chan));
1642
1643 for (i = 0; i < band->nchan; i++) {
1644 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1645 continue;
1646
1647 chan = band->chan[i];
1648
1649 if (n == 0) { /* 2GHz band */
1650 ic->ic_channels[chan].ic_freq =
1651 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1652 ic->ic_channels[chan].ic_flags =
1653 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1654 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1655
1656 } else { /* 5GHz band */
1657 /*
1658 * Some adapters support channels 7, 8, 11 and 12
1659 * both in the 2GHz and 4.9GHz bands.
1660 * Because of limitations in our net80211 layer,
1661 * we don't support them in the 4.9GHz band.
1662 */
1663 if (chan <= 14)
1664 continue;
1665
1666 ic->ic_channels[chan].ic_freq =
1667 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1668 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1669 /* We have at least one valid 5GHz channel. */
1670 sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1671 }
1672
1673 /* Is active scan allowed on this channel? */
1674 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1675 ic->ic_channels[chan].ic_flags |=
1676 IEEE80211_CHAN_PASSIVE;
1677 }
1678
1679 /* Save maximum allowed TX power for this channel. */
1680 sc->maxpwr[chan] = channels[i].maxpwr;
1681
1682 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1683 chan, channels[i].flags, sc->maxpwr[chan]));
1684 }
1685 }
1686
1687 static void
1688 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1689 {
1690 struct iwn_eeprom_enhinfo enhinfo[35];
1691 uint16_t val, base;
1692 int8_t maxpwr;
1693 int i;
1694
1695 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1696 base = le16toh(val);
1697 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1698 enhinfo, sizeof enhinfo);
1699
1700 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1701 for (i = 0; i < __arraycount(enhinfo); i++) {
1702 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1703 continue; /* Skip invalid entries. */
1704
1705 maxpwr = 0;
1706 if (sc->txchainmask & IWN_ANT_A)
1707 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1708 if (sc->txchainmask & IWN_ANT_B)
1709 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1710 if (sc->txchainmask & IWN_ANT_C)
1711 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1712 if (sc->ntxchains == 2)
1713 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1714 else if (sc->ntxchains == 3)
1715 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1716 maxpwr /= 2; /* Convert half-dBm to dBm. */
1717
1718 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1719 sc->enh_maxpwr[i] = maxpwr;
1720 }
1721 }
1722
1723 static struct ieee80211_node *
1724 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1725 {
1726 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1727 }
1728
1729 static void
1730 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1731 {
1732 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1733 struct iwn_node *wn = (void *)ni;
1734 uint8_t rate;
1735 int ridx, i;
1736
1737 ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1738 /* Start at lowest available bit-rate, AMRR will raise. */
1739 ni->ni_txrate = 0;
1740
1741 for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1742 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1743 /* Map 802.11 rate to HW rate index. */
1744 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1745 if (iwn_rates[ridx].rate == rate)
1746 break;
1747 wn->ridx[i] = ridx;
1748 }
1749 }
1750
1751 static int
1752 iwn_media_change(struct ifnet *ifp)
1753 {
1754 struct iwn_softc *sc = ifp->if_softc;
1755 struct ieee80211com *ic = &sc->sc_ic;
1756 uint8_t rate, ridx;
1757 int error;
1758
1759 error = ieee80211_media_change(ifp);
1760 if (error != ENETRESET)
1761 return error;
1762
1763 if (ic->ic_fixed_rate != -1) {
1764 rate = ic->ic_sup_rates[ic->ic_curmode].
1765 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1766 /* Map 802.11 rate to HW rate index. */
1767 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1768 if (iwn_rates[ridx].rate == rate)
1769 break;
1770 sc->fixed_ridx = ridx;
1771 }
1772
1773 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1774 (IFF_UP | IFF_RUNNING)) {
1775 iwn_stop(ifp, 0);
1776 error = iwn_init(ifp);
1777 }
1778 return error;
1779 }
1780
1781 static int
1782 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1783 {
1784 struct ifnet *ifp = ic->ic_ifp;
1785 struct iwn_softc *sc = ifp->if_softc;
1786 int error;
1787
1788 callout_stop(&sc->calib_to);
1789
1790 switch (nstate) {
1791 case IEEE80211_S_SCAN:
1792 /* XXX Do not abort a running scan. */
1793 if (sc->sc_flags & IWN_FLAG_SCANNING) {
1794 if (ic->ic_state != nstate)
1795 aprint_error_dev(sc->sc_dev, "scan request(%d) "
1796 "while scanning(%d) ignored\n", nstate,
1797 ic->ic_state);
1798 break;
1799 }
1800
1801 /* XXX Not sure if call and flags are needed. */
1802 ieee80211_node_table_reset(&ic->ic_scan);
1803 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1804 sc->sc_flags |= IWN_FLAG_SCANNING;
1805
1806 /* Make the link LED blink while we're scanning. */
1807 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1808
1809 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1810 aprint_error_dev(sc->sc_dev,
1811 "could not initiate scan\n");
1812 return error;
1813 }
1814 ic->ic_state = nstate;
1815 return 0;
1816
1817 case IEEE80211_S_ASSOC:
1818 if (ic->ic_state != IEEE80211_S_RUN)
1819 break;
1820 /* FALLTHROUGH */
1821 case IEEE80211_S_AUTH:
1822 /* Reset state to handle reassociations correctly. */
1823 sc->rxon.associd = 0;
1824 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1825 sc->calib.state = IWN_CALIB_STATE_INIT;
1826
1827 if ((error = iwn_auth(sc)) != 0) {
1828 aprint_error_dev(sc->sc_dev,
1829 "could not move to auth state\n");
1830 return error;
1831 }
1832 break;
1833
1834 case IEEE80211_S_RUN:
1835 if ((error = iwn_run(sc)) != 0) {
1836 aprint_error_dev(sc->sc_dev,
1837 "could not move to run state\n");
1838 return error;
1839 }
1840 break;
1841
1842 case IEEE80211_S_INIT:
1843 sc->sc_flags &= ~IWN_FLAG_SCANNING;
1844 sc->calib.state = IWN_CALIB_STATE_INIT;
1845 break;
1846 }
1847
1848 return sc->sc_newstate(ic, nstate, arg);
1849 }
1850
1851 static void
1852 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1853 {
1854 struct iwn_softc *sc = arg;
1855 struct iwn_node *wn = (struct iwn_node *)ni;
1856
1857 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1858 }
1859
1860 static void
1861 iwn_calib_timeout(void *arg)
1862 {
1863 struct iwn_softc *sc = arg;
1864 struct ieee80211com *ic = &sc->sc_ic;
1865 int s;
1866
1867 s = splnet();
1868 if (ic->ic_fixed_rate == -1) {
1869 if (ic->ic_opmode == IEEE80211_M_STA)
1870 iwn_iter_func(sc, ic->ic_bss);
1871 else
1872 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1873 }
1874 /* Force automatic TX power calibration every 60 secs. */
1875 if (++sc->calib_cnt >= 120) {
1876 uint32_t flags = 0;
1877
1878 DPRINTF(("sending request for statistics\n"));
1879 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1880 sizeof flags, 1);
1881 sc->calib_cnt = 0;
1882 }
1883 splx(s);
1884
1885 /* Automatic rate control triggered every 500ms. */
1886 callout_schedule(&sc->calib_to, hz/2);
1887 }
1888
1889 /*
1890 * Process an RX_PHY firmware notification. This is usually immediately
1891 * followed by an MPDU_RX_DONE notification.
1892 */
1893 static void
1894 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1895 struct iwn_rx_data *data)
1896 {
1897 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1898
1899 DPRINTFN(2, ("received PHY stats\n"));
1900 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1901 sizeof (*stat), BUS_DMASYNC_POSTREAD);
1902
1903 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
1904 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1905 sc->last_rx_valid = 1;
1906 }
1907
1908 /*
1909 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1910 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1911 */
1912 static void
1913 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1914 struct iwn_rx_data *data)
1915 {
1916 struct iwn_ops *ops = &sc->ops;
1917 struct ieee80211com *ic = &sc->sc_ic;
1918 struct ifnet *ifp = ic->ic_ifp;
1919 struct iwn_rx_ring *ring = &sc->rxq;
1920 struct ieee80211_frame *wh;
1921 struct ieee80211_node *ni;
1922 struct mbuf *m, *m1;
1923 struct iwn_rx_stat *stat;
1924 char *head;
1925 uint32_t flags;
1926 int error, len, rssi;
1927
1928 if (desc->type == IWN_MPDU_RX_DONE) {
1929 /* Check for prior RX_PHY notification. */
1930 if (!sc->last_rx_valid) {
1931 DPRINTF(("missing RX_PHY\n"));
1932 return;
1933 }
1934 sc->last_rx_valid = 0;
1935 stat = &sc->last_rx_stat;
1936 } else
1937 stat = (struct iwn_rx_stat *)(desc + 1);
1938
1939 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1940 BUS_DMASYNC_POSTREAD);
1941
1942 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1943 aprint_error_dev(sc->sc_dev,
1944 "invalid RX statistic header\n");
1945 return;
1946 }
1947 if (desc->type == IWN_MPDU_RX_DONE) {
1948 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1949 head = (char *)(mpdu + 1);
1950 len = le16toh(mpdu->len);
1951 } else {
1952 head = (char *)(stat + 1) + stat->cfg_phy_len;
1953 len = le16toh(stat->len);
1954 }
1955
1956 flags = le32toh(*(uint32_t *)(head + len));
1957
1958 /* Discard frames with a bad FCS early. */
1959 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1960 DPRINTFN(2, ("RX flags error %x\n", flags));
1961 ifp->if_ierrors++;
1962 return;
1963 }
1964 /* Discard frames that are too short. */
1965 if (len < sizeof (*wh)) {
1966 DPRINTF(("frame too short: %d\n", len));
1967 ic->ic_stats.is_rx_tooshort++;
1968 ifp->if_ierrors++;
1969 return;
1970 }
1971
1972 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1973 if (m1 == NULL) {
1974 ic->ic_stats.is_rx_nobuf++;
1975 ifp->if_ierrors++;
1976 return;
1977 }
1978 bus_dmamap_unload(sc->sc_dmat, data->map);
1979
1980 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1981 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1982 if (error != 0) {
1983 m_freem(m1);
1984
1985 /* Try to reload the old mbuf. */
1986 error = bus_dmamap_load(sc->sc_dmat, data->map,
1987 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1988 BUS_DMA_NOWAIT | BUS_DMA_READ);
1989 if (error != 0) {
1990 panic("%s: could not load old RX mbuf",
1991 device_xname(sc->sc_dev));
1992 }
1993 /* Physical address may have changed. */
1994 ring->desc[ring->cur] =
1995 htole32(data->map->dm_segs[0].ds_addr >> 8);
1996 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1997 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1998 BUS_DMASYNC_PREWRITE);
1999 ifp->if_ierrors++;
2000 return;
2001 }
2002
2003 m = data->m;
2004 data->m = m1;
2005 /* Update RX descriptor. */
2006 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2007 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2008 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2009 BUS_DMASYNC_PREWRITE);
2010
2011 /* Finalize mbuf. */
2012 m->m_pkthdr.rcvif = ifp;
2013 m->m_data = head;
2014 m->m_pkthdr.len = m->m_len = len;
2015
2016 /* Grab a reference to the source node. */
2017 wh = mtod(m, struct ieee80211_frame *);
2018 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2019
2020 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2021 /* NetBSD does decryption in ieee80211_input. */
2022
2023 rssi = ops->get_rssi(stat);
2024
2025 /* XXX Added for NetBSD: scans never stop without it */
2026 if (ic->ic_state == IEEE80211_S_SCAN)
2027 iwn_fix_channel(ic, m);
2028
2029 if (sc->sc_drvbpf != NULL) {
2030 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2031
2032 tap->wr_flags = 0;
2033 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2034 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2035 tap->wr_chan_freq =
2036 htole16(ic->ic_channels[stat->chan].ic_freq);
2037 tap->wr_chan_flags =
2038 htole16(ic->ic_channels[stat->chan].ic_flags);
2039 tap->wr_dbm_antsignal = (int8_t)rssi;
2040 tap->wr_dbm_antnoise = (int8_t)sc->noise;
2041 tap->wr_tsft = stat->tstamp;
2042 switch (stat->rate) {
2043 /* CCK rates. */
2044 case 10: tap->wr_rate = 2; break;
2045 case 20: tap->wr_rate = 4; break;
2046 case 55: tap->wr_rate = 11; break;
2047 case 110: tap->wr_rate = 22; break;
2048 /* OFDM rates. */
2049 case 0xd: tap->wr_rate = 12; break;
2050 case 0xf: tap->wr_rate = 18; break;
2051 case 0x5: tap->wr_rate = 24; break;
2052 case 0x7: tap->wr_rate = 36; break;
2053 case 0x9: tap->wr_rate = 48; break;
2054 case 0xb: tap->wr_rate = 72; break;
2055 case 0x1: tap->wr_rate = 96; break;
2056 case 0x3: tap->wr_rate = 108; break;
2057 /* Unknown rate: should not happen. */
2058 default: tap->wr_rate = 0;
2059 }
2060
2061 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2062 }
2063
2064 /* Send the frame to the 802.11 layer. */
2065 ieee80211_input(ic, m, ni, rssi, 0);
2066
2067 /* Node is no longer needed. */
2068 ieee80211_free_node(ni);
2069 }
2070
2071 #ifndef IEEE80211_NO_HT
2072 /* Process an incoming Compressed BlockAck. */
2073 static void
2074 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2075 struct iwn_rx_data *data)
2076 {
2077 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2078 struct iwn_tx_ring *txq;
2079
2080 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2081 BUS_DMASYNC_POSTREAD);
2082
2083 txq = &sc->txq[le16toh(ba->qid)];
2084 /* XXX TBD */
2085 }
2086 #endif
2087
2088 /*
2089 * Process a CALIBRATION_RESULT notification sent by the initialization
2090 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2091 */
2092 static void
2093 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2094 struct iwn_rx_data *data)
2095 {
2096 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2097 int len, idx = -1;
2098
2099 /* Runtime firmware should not send such a notification. */
2100 if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2101 return;
2102
2103 len = (le32toh(desc->len) & 0x3fff) - 4;
2104 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2105 BUS_DMASYNC_POSTREAD);
2106
2107 switch (calib->code) {
2108 case IWN5000_PHY_CALIB_DC:
2109 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
2110 idx = 0;
2111 break;
2112 case IWN5000_PHY_CALIB_LO:
2113 idx = 1;
2114 break;
2115 case IWN5000_PHY_CALIB_TX_IQ:
2116 idx = 2;
2117 break;
2118 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2119 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2120 sc->hw_type != IWN_HW_REV_TYPE_5150)
2121 idx = 3;
2122 break;
2123 case IWN5000_PHY_CALIB_BASE_BAND:
2124 idx = 4;
2125 break;
2126 }
2127 if (idx == -1) /* Ignore other results. */
2128 return;
2129
2130 /* Save calibration result. */
2131 if (sc->calibcmd[idx].buf != NULL)
2132 free(sc->calibcmd[idx].buf, M_DEVBUF);
2133 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2134 if (sc->calibcmd[idx].buf == NULL) {
2135 DPRINTF(("not enough memory for calibration result %d\n",
2136 calib->code));
2137 return;
2138 }
2139 DPRINTF(("saving calibration result code=%d len=%d\n",
2140 calib->code, len));
2141 sc->calibcmd[idx].len = len;
2142 memcpy(sc->calibcmd[idx].buf, calib, len);
2143 }
2144
2145 /*
2146 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2147 * The latter is sent by the firmware after each received beacon.
2148 */
2149 static void
2150 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2151 struct iwn_rx_data *data)
2152 {
2153 struct iwn_ops *ops = &sc->ops;
2154 struct ieee80211com *ic = &sc->sc_ic;
2155 struct iwn_calib_state *calib = &sc->calib;
2156 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2157 int temp;
2158
2159 /* Ignore statistics received during a scan. */
2160 if (ic->ic_state != IEEE80211_S_RUN)
2161 return;
2162
2163 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2164 sizeof (*stats), BUS_DMASYNC_POSTREAD);
2165
2166 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2167 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2168
2169 /* Test if temperature has changed. */
2170 if (stats->general.temp != sc->rawtemp) {
2171 /* Convert "raw" temperature to degC. */
2172 sc->rawtemp = stats->general.temp;
2173 temp = ops->get_temperature(sc);
2174 DPRINTFN(2, ("temperature=%dC\n", temp));
2175
2176 /* Update TX power if need be (4965AGN only). */
2177 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2178 iwn4965_power_calibration(sc, temp);
2179 }
2180
2181 if (desc->type != IWN_BEACON_STATISTICS)
2182 return; /* Reply to a statistics request. */
2183
2184 sc->noise = iwn_get_noise(&stats->rx.general);
2185
2186 /* Test that RSSI and noise are present in stats report. */
2187 if (le32toh(stats->rx.general.flags) != 1) {
2188 DPRINTF(("received statistics without RSSI\n"));
2189 return;
2190 }
2191
2192 /*
2193 * XXX Differential gain calibration makes the 6005 firmware
2194 * crap out, so skip it for now. This effectively disables
2195 * sensitivity tuning as well.
2196 */
2197 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2198 return;
2199
2200 if (calib->state == IWN_CALIB_STATE_ASSOC)
2201 iwn_collect_noise(sc, &stats->rx.general);
2202 else if (calib->state == IWN_CALIB_STATE_RUN)
2203 iwn_tune_sensitivity(sc, &stats->rx);
2204 }
2205
2206 /*
2207 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2208 * and 5000 adapters have different incompatible TX status formats.
2209 */
2210 static void
2211 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2212 struct iwn_rx_data *data)
2213 {
2214 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2215
2216 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2217 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2218 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2219 }
2220
2221 static void
2222 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2223 struct iwn_rx_data *data)
2224 {
2225 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2226
2227 #ifdef notyet
2228 /* Reset TX scheduler slot. */
2229 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2230 #endif
2231
2232 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2233 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2234 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2235 }
2236
2237 /*
2238 * Adapter-independent backend for TX_DONE firmware notifications.
2239 */
2240 static void
2241 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2242 uint8_t status)
2243 {
2244 struct ieee80211com *ic = &sc->sc_ic;
2245 struct ifnet *ifp = ic->ic_ifp;
2246 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2247 struct iwn_tx_data *data = &ring->data[desc->idx];
2248 struct iwn_node *wn = (struct iwn_node *)data->ni;
2249
2250 /* Update rate control statistics. */
2251 wn->amn.amn_txcnt++;
2252 if (ackfailcnt > 0)
2253 wn->amn.amn_retrycnt++;
2254
2255 if (status != 1 && status != 2)
2256 ifp->if_oerrors++;
2257 else
2258 ifp->if_opackets++;
2259
2260 /* Unmap and free mbuf. */
2261 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2262 BUS_DMASYNC_POSTWRITE);
2263 bus_dmamap_unload(sc->sc_dmat, data->map);
2264 m_freem(data->m);
2265 data->m = NULL;
2266 ieee80211_free_node(data->ni);
2267 data->ni = NULL;
2268
2269 sc->sc_tx_timer = 0;
2270 if (--ring->queued < IWN_TX_RING_LOMARK) {
2271 sc->qfullmsk &= ~(1 << ring->qid);
2272 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2273 ifp->if_flags &= ~IFF_OACTIVE;
2274 (*ifp->if_start)(ifp);
2275 }
2276 }
2277 }
2278
2279 /*
2280 * Process a "command done" firmware notification. This is where we wakeup
2281 * processes waiting for a synchronous command completion.
2282 */
2283 static void
2284 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2285 {
2286 struct iwn_tx_ring *ring = &sc->txq[4];
2287 struct iwn_tx_data *data;
2288
2289 if ((desc->qid & 0xf) != 4)
2290 return; /* Not a command ack. */
2291
2292 data = &ring->data[desc->idx];
2293
2294 /* If the command was mapped in an mbuf, free it. */
2295 if (data->m != NULL) {
2296 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2297 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2298 bus_dmamap_unload(sc->sc_dmat, data->map);
2299 m_freem(data->m);
2300 data->m = NULL;
2301 }
2302 wakeup(&ring->desc[desc->idx]);
2303 }
2304
2305 /*
2306 * Process an INT_FH_RX or INT_SW_RX interrupt.
2307 */
2308 static void
2309 iwn_notif_intr(struct iwn_softc *sc)
2310 {
2311 struct iwn_ops *ops = &sc->ops;
2312 struct ieee80211com *ic = &sc->sc_ic;
2313 struct ifnet *ifp = ic->ic_ifp;
2314 uint16_t hw;
2315
2316 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2317 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2318
2319 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2320 while (sc->rxq.cur != hw) {
2321 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2322 struct iwn_rx_desc *desc;
2323
2324 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2325 BUS_DMASYNC_POSTREAD);
2326 desc = mtod(data->m, struct iwn_rx_desc *);
2327
2328 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2329 desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2330
2331 if (!(desc->qid & 0x80)) /* Reply to a command. */
2332 iwn_cmd_done(sc, desc);
2333
2334 switch (desc->type) {
2335 case IWN_RX_PHY:
2336 iwn_rx_phy(sc, desc, data);
2337 break;
2338
2339 case IWN_RX_DONE: /* 4965AGN only. */
2340 case IWN_MPDU_RX_DONE:
2341 /* An 802.11 frame has been received. */
2342 iwn_rx_done(sc, desc, data);
2343 break;
2344 #ifndef IEEE80211_NO_HT
2345 case IWN_RX_COMPRESSED_BA:
2346 /* A Compressed BlockAck has been received. */
2347 iwn_rx_compressed_ba(sc, desc, data);
2348 break;
2349 #endif
2350 case IWN_TX_DONE:
2351 /* An 802.11 frame has been transmitted. */
2352 ops->tx_done(sc, desc, data);
2353 break;
2354
2355 case IWN_RX_STATISTICS:
2356 case IWN_BEACON_STATISTICS:
2357 iwn_rx_statistics(sc, desc, data);
2358 break;
2359
2360 case IWN_BEACON_MISSED:
2361 {
2362 struct iwn_beacon_missed *miss =
2363 (struct iwn_beacon_missed *)(desc + 1);
2364
2365 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2366 sizeof (*miss), BUS_DMASYNC_POSTREAD);
2367 /*
2368 * If more than 5 consecutive beacons are missed,
2369 * reinitialize the sensitivity state machine.
2370 */
2371 DPRINTF(("beacons missed %d/%d\n",
2372 le32toh(miss->consecutive), le32toh(miss->total)));
2373 if (ic->ic_state == IEEE80211_S_RUN &&
2374 le32toh(miss->consecutive) > 5)
2375 (void)iwn_init_sensitivity(sc);
2376 break;
2377 }
2378 case IWN_UC_READY:
2379 {
2380 struct iwn_ucode_info *uc =
2381 (struct iwn_ucode_info *)(desc + 1);
2382
2383 /* The microcontroller is ready. */
2384 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2385 sizeof (*uc), BUS_DMASYNC_POSTREAD);
2386 DPRINTF(("microcode alive notification version=%d.%d "
2387 "subtype=%x alive=%x\n", uc->major, uc->minor,
2388 uc->subtype, le32toh(uc->valid)));
2389
2390 if (le32toh(uc->valid) != 1) {
2391 aprint_error_dev(sc->sc_dev,
2392 "microcontroller initialization "
2393 "failed\n");
2394 break;
2395 }
2396 if (uc->subtype == IWN_UCODE_INIT) {
2397 /* Save microcontroller report. */
2398 memcpy(&sc->ucode_info, uc, sizeof (*uc));
2399 }
2400 /* Save the address of the error log in SRAM. */
2401 sc->errptr = le32toh(uc->errptr);
2402 break;
2403 }
2404 case IWN_STATE_CHANGED:
2405 {
2406 uint32_t *status = (uint32_t *)(desc + 1);
2407
2408 /* Enabled/disabled notification. */
2409 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2410 sizeof (*status), BUS_DMASYNC_POSTREAD);
2411 DPRINTF(("state changed to %x\n", le32toh(*status)));
2412
2413 if (le32toh(*status) & 1) {
2414 /* The radio button has to be pushed. */
2415 aprint_error_dev(sc->sc_dev,
2416 "Radio transmitter is off\n");
2417 /* Turn the interface down. */
2418 ifp->if_flags &= ~IFF_UP;
2419 iwn_stop(ifp, 1);
2420 return; /* No further processing. */
2421 }
2422 break;
2423 }
2424 case IWN_START_SCAN:
2425 {
2426 struct iwn_start_scan *scan =
2427 (struct iwn_start_scan *)(desc + 1);
2428
2429 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2430 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2431 DPRINTFN(2, ("scanning channel %d status %x\n",
2432 scan->chan, le32toh(scan->status)));
2433
2434 /* Fix current channel. */
2435 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2436 break;
2437 }
2438 case IWN_STOP_SCAN:
2439 {
2440 struct iwn_stop_scan *scan =
2441 (struct iwn_stop_scan *)(desc + 1);
2442
2443 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2444 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2445 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2446 scan->nchan, scan->status, scan->chan));
2447
2448 if (scan->status == 1 && scan->chan <= 14 &&
2449 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2450 /*
2451 * We just finished scanning 2GHz channels,
2452 * start scanning 5GHz ones.
2453 */
2454 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2455 break;
2456 }
2457 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2458 ieee80211_end_scan(ic);
2459 break;
2460 }
2461 case IWN5000_CALIBRATION_RESULT:
2462 iwn5000_rx_calib_results(sc, desc, data);
2463 break;
2464
2465 case IWN5000_CALIBRATION_DONE:
2466 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2467 wakeup(sc);
2468 break;
2469 }
2470
2471 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2472 }
2473
2474 /* Tell the firmware what we have processed. */
2475 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2476 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2477 }
2478
2479 /*
2480 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2481 * from power-down sleep mode.
2482 */
2483 static void
2484 iwn_wakeup_intr(struct iwn_softc *sc)
2485 {
2486 int qid;
2487
2488 DPRINTF(("ucode wakeup from power-down sleep\n"));
2489
2490 /* Wakeup RX and TX rings. */
2491 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2492 for (qid = 0; qid < sc->ntxqs; qid++) {
2493 struct iwn_tx_ring *ring = &sc->txq[qid];
2494 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2495 }
2496 }
2497
2498 /*
2499 * Dump the error log of the firmware when a firmware panic occurs. Although
2500 * we can't debug the firmware because it is neither open source nor free, it
2501 * can help us to identify certain classes of problems.
2502 */
2503 static void
2504 iwn_fatal_intr(struct iwn_softc *sc)
2505 {
2506 struct iwn_fw_dump dump;
2507 int i;
2508
2509 /* Force a complete recalibration on next init. */
2510 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2511
2512 /* Check that the error log address is valid. */
2513 if (sc->errptr < IWN_FW_DATA_BASE ||
2514 sc->errptr + sizeof (dump) >
2515 IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2516 aprint_error_dev(sc->sc_dev,
2517 "bad firmware error log address 0x%08x\n", sc->errptr);
2518 return;
2519 }
2520 if (iwn_nic_lock(sc) != 0) {
2521 aprint_error_dev(sc->sc_dev,
2522 "could not read firmware error log\n");
2523 return;
2524 }
2525 /* Read firmware error log from SRAM. */
2526 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2527 sizeof (dump) / sizeof (uint32_t));
2528 iwn_nic_unlock(sc);
2529
2530 if (dump.valid == 0) {
2531 aprint_error_dev(sc->sc_dev,
2532 "firmware error log is empty\n");
2533 return;
2534 }
2535 aprint_error("firmware error log:\n");
2536 aprint_error(" error type = \"%s\" (0x%08X)\n",
2537 (dump.id < __arraycount(iwn_fw_errmsg)) ?
2538 iwn_fw_errmsg[dump.id] : "UNKNOWN",
2539 dump.id);
2540 aprint_error(" program counter = 0x%08X\n", dump.pc);
2541 aprint_error(" source line = 0x%08X\n", dump.src_line);
2542 aprint_error(" error data = 0x%08X%08X\n",
2543 dump.error_data[0], dump.error_data[1]);
2544 aprint_error(" branch link = 0x%08X%08X\n",
2545 dump.branch_link[0], dump.branch_link[1]);
2546 aprint_error(" interrupt link = 0x%08X%08X\n",
2547 dump.interrupt_link[0], dump.interrupt_link[1]);
2548 aprint_error(" time = %u\n", dump.time[0]);
2549
2550 /* Dump driver status (TX and RX rings) while we're here. */
2551 aprint_error("driver status:\n");
2552 for (i = 0; i < sc->ntxqs; i++) {
2553 struct iwn_tx_ring *ring = &sc->txq[i];
2554 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2555 i, ring->qid, ring->cur, ring->queued);
2556 }
2557 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
2558 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
2559 }
2560
2561 static int
2562 iwn_intr(void *arg)
2563 {
2564 struct iwn_softc *sc = arg;
2565 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2566 uint32_t r1, r2, tmp;
2567
2568 /* Disable interrupts. */
2569 IWN_WRITE(sc, IWN_INT_MASK, 0);
2570
2571 /* Read interrupts from ICT (fast) or from registers (slow). */
2572 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2573 tmp = 0;
2574 while (sc->ict[sc->ict_cur] != 0) {
2575 tmp |= sc->ict[sc->ict_cur];
2576 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2577 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2578 }
2579 tmp = le32toh(tmp);
2580 if (tmp == 0xffffffff) /* Shouldn't happen. */
2581 tmp = 0;
2582 else if (tmp & 0xc0000) /* Workaround a HW bug. */
2583 tmp |= 0x8000;
2584 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2585 r2 = 0; /* Unused. */
2586 } else {
2587 r1 = IWN_READ(sc, IWN_INT);
2588 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2589 return 0; /* Hardware gone! */
2590 r2 = IWN_READ(sc, IWN_FH_INT);
2591 }
2592 if (r1 == 0 && r2 == 0) {
2593 if (ifp->if_flags & IFF_UP)
2594 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2595 return 0; /* Interrupt not for us. */
2596 }
2597
2598 /* Acknowledge interrupts. */
2599 IWN_WRITE(sc, IWN_INT, r1);
2600 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2601 IWN_WRITE(sc, IWN_FH_INT, r2);
2602
2603 if (r1 & IWN_INT_RF_TOGGLED) {
2604 tmp = IWN_READ(sc, IWN_GP_CNTRL);
2605 aprint_error_dev(sc->sc_dev,
2606 "RF switch: radio %s\n",
2607 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2608 }
2609 if (r1 & IWN_INT_CT_REACHED) {
2610 aprint_error_dev(sc->sc_dev,
2611 "critical temperature reached!\n");
2612 }
2613 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2614 aprint_error_dev(sc->sc_dev,
2615 "fatal firmware error\n");
2616 /* Dump firmware error log and stop. */
2617 iwn_fatal_intr(sc);
2618 ifp->if_flags &= ~IFF_UP;
2619 iwn_stop(ifp, 1);
2620 return 1;
2621 }
2622 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2623 (r2 & IWN_FH_INT_RX)) {
2624 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2625 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2626 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2627 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2628 IWN_INT_PERIODIC_DIS);
2629 iwn_notif_intr(sc);
2630 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2631 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2632 IWN_INT_PERIODIC_ENA);
2633 }
2634 } else
2635 iwn_notif_intr(sc);
2636 }
2637
2638 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2639 if (sc->sc_flags & IWN_FLAG_USE_ICT)
2640 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2641 wakeup(sc); /* FH DMA transfer completed. */
2642 }
2643
2644 if (r1 & IWN_INT_ALIVE)
2645 wakeup(sc); /* Firmware is alive. */
2646
2647 if (r1 & IWN_INT_WAKEUP)
2648 iwn_wakeup_intr(sc);
2649
2650 /* Re-enable interrupts. */
2651 if (ifp->if_flags & IFF_UP)
2652 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2653
2654 return 1;
2655 }
2656
2657 /*
2658 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2659 * 5000 adapters use a slightly different format).
2660 */
2661 static void
2662 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2663 uint16_t len)
2664 {
2665 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2666
2667 *w = htole16(len + 8);
2668 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2669 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2670 sizeof (uint16_t),
2671 BUS_DMASYNC_PREWRITE);
2672 if (idx < IWN_SCHED_WINSZ) {
2673 *(w + IWN_TX_RING_COUNT) = *w;
2674 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2675 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2676 (char *)(void *)sc->sched_dma.vaddr,
2677 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2678 }
2679 }
2680
2681 static void
2682 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2683 uint16_t len)
2684 {
2685 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2686
2687 *w = htole16(id << 12 | (len + 8));
2688 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2689 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2690 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2691 if (idx < IWN_SCHED_WINSZ) {
2692 *(w + IWN_TX_RING_COUNT) = *w;
2693 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2694 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2695 (char *)(void *)sc->sched_dma.vaddr,
2696 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2697 }
2698 }
2699
2700 #ifdef notyet
2701 static void
2702 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2703 {
2704 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2705
2706 *w = (*w & htole16(0xf000)) | htole16(1);
2707 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2708 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2709 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2710 if (idx < IWN_SCHED_WINSZ) {
2711 *(w + IWN_TX_RING_COUNT) = *w;
2712 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2713 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2714 (char *)(void *)sc->sched_dma.vaddr,
2715 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2716 }
2717 }
2718 #endif
2719
2720 static int
2721 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2722 {
2723 struct ieee80211com *ic = &sc->sc_ic;
2724 struct iwn_node *wn = (void *)ni;
2725 struct iwn_tx_ring *ring;
2726 struct iwn_tx_desc *desc;
2727 struct iwn_tx_data *data;
2728 struct iwn_tx_cmd *cmd;
2729 struct iwn_cmd_data *tx;
2730 const struct iwn_rate *rinfo;
2731 struct ieee80211_frame *wh;
2732 struct ieee80211_key *k = NULL;
2733 struct mbuf *m1;
2734 uint32_t flags;
2735 u_int hdrlen;
2736 bus_dma_segment_t *seg;
2737 uint8_t tid, ridx, txant, type;
2738 int i, totlen, error, pad;
2739
2740 const struct chanAccParams *cap;
2741 int noack;
2742 int hdrlen2;
2743
2744 wh = mtod(m, struct ieee80211_frame *);
2745 hdrlen = ieee80211_anyhdrsize(wh);
2746 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2747
2748 hdrlen2 = (ieee80211_has_qos(wh)) ?
2749 sizeof (struct ieee80211_qosframe) :
2750 sizeof (struct ieee80211_frame);
2751
2752 if (hdrlen != hdrlen2)
2753 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2754 hdrlen, hdrlen2);
2755
2756 /* XXX OpenBSD sets a different tid when using QOS */
2757 tid = 0;
2758 if (ieee80211_has_qos(wh)) {
2759 cap = &ic->ic_wme.wme_chanParams;
2760 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2761 }
2762 else
2763 noack = 0;
2764
2765 ring = &sc->txq[ac];
2766 desc = &ring->desc[ring->cur];
2767 data = &ring->data[ring->cur];
2768
2769 /* Choose a TX rate index. */
2770 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2771 type != IEEE80211_FC0_TYPE_DATA) {
2772 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2773 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2774 } else if (ic->ic_fixed_rate != -1) {
2775 ridx = sc->fixed_ridx;
2776 } else
2777 ridx = wn->ridx[ni->ni_txrate];
2778 rinfo = &iwn_rates[ridx];
2779
2780 /* Encrypt the frame if need be. */
2781 /*
2782 * XXX For now, NetBSD swaps the encryption and bpf sections
2783 * in order to match old code and other drivers. Tests with
2784 * tcpdump indicates that the order is irrelevant, however,
2785 * as bpf produces unencrypted data for both ordering choices.
2786 */
2787 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2788 k = ieee80211_crypto_encap(ic, ni, m);
2789 if (k == NULL) {
2790 m_freem(m);
2791 return ENOBUFS;
2792 }
2793 /* Packet header may have moved, reset our local pointer. */
2794 wh = mtod(m, struct ieee80211_frame *);
2795 }
2796 totlen = m->m_pkthdr.len;
2797
2798 if (sc->sc_drvbpf != NULL) {
2799 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2800
2801 tap->wt_flags = 0;
2802 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2803 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2804 tap->wt_rate = rinfo->rate;
2805 tap->wt_hwqueue = ac;
2806 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2807 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2808
2809 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2810 }
2811
2812 /* Prepare TX firmware command. */
2813 cmd = &ring->cmd[ring->cur];
2814 cmd->code = IWN_CMD_TX_DATA;
2815 cmd->flags = 0;
2816 cmd->qid = ring->qid;
2817 cmd->idx = ring->cur;
2818
2819 tx = (struct iwn_cmd_data *)cmd->data;
2820 /* NB: No need to clear tx, all fields are reinitialized here. */
2821 tx->scratch = 0; /* clear "scratch" area */
2822
2823 flags = 0;
2824 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2825 /* Unicast frame, check if an ACK is expected. */
2826 if (!noack)
2827 flags |= IWN_TX_NEED_ACK;
2828 }
2829
2830 #ifdef notyet
2831 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2832 if ((wh->i_fc[0] &
2833 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2834 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2835 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
2836 #endif
2837
2838 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2839 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
2840
2841 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2842 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2843 /* NB: Group frames are sent using CCK in 802.11b/g. */
2844 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2845 flags |= IWN_TX_NEED_RTS;
2846 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2847 ridx >= IWN_RIDX_OFDM6) {
2848 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2849 flags |= IWN_TX_NEED_CTS;
2850 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2851 flags |= IWN_TX_NEED_RTS;
2852 }
2853 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2854 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2855 /* 5000 autoselects RTS/CTS or CTS-to-self. */
2856 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2857 flags |= IWN_TX_NEED_PROTECTION;
2858 } else
2859 flags |= IWN_TX_FULL_TXOP;
2860 }
2861 }
2862
2863 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2864 type != IEEE80211_FC0_TYPE_DATA)
2865 tx->id = sc->broadcast_id;
2866 else
2867 tx->id = wn->id;
2868
2869 if (type == IEEE80211_FC0_TYPE_MGT) {
2870 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2871
2872 #ifndef IEEE80211_STA_ONLY
2873 /* Tell HW to set timestamp in probe responses. */
2874 /* XXX NetBSD rev 1.11 added probe requests here but */
2875 /* probe requests do not take timestamps (from Bergamini). */
2876 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2877 flags |= IWN_TX_INSERT_TSTAMP;
2878 #endif
2879 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2880 /* changes here. These are not needed (from Bergamini). */
2881 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2882 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2883 tx->timeout = htole16(3);
2884 else
2885 tx->timeout = htole16(2);
2886 } else
2887 tx->timeout = htole16(0);
2888
2889 if (hdrlen & 3) {
2890 /* First segment length must be a multiple of 4. */
2891 flags |= IWN_TX_NEED_PADDING;
2892 pad = 4 - (hdrlen & 3);
2893 } else
2894 pad = 0;
2895
2896 tx->len = htole16(totlen);
2897 tx->tid = tid;
2898 tx->rts_ntries = 60;
2899 tx->data_ntries = 15;
2900 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2901 tx->plcp = rinfo->plcp;
2902 tx->rflags = rinfo->flags;
2903 if (tx->id == sc->broadcast_id) {
2904 /* Group or management frame. */
2905 tx->linkq = 0;
2906 /* XXX Alternate between antenna A and B? */
2907 txant = IWN_LSB(sc->txchainmask);
2908 tx->rflags |= IWN_RFLAG_ANT(txant);
2909 } else {
2910 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2911 flags |= IWN_TX_LINKQ; /* enable MRR */
2912 }
2913 /* Set physical address of "scratch area". */
2914 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2915 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2916
2917 /* Copy 802.11 header in TX command. */
2918 /* XXX NetBSD changed this in rev 1.20 */
2919 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2920
2921 /* Trim 802.11 header. */
2922 m_adj(m, hdrlen);
2923 tx->security = 0;
2924 tx->flags = htole32(flags);
2925
2926 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2927 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2928 if (error != 0) {
2929 if (error != EFBIG) {
2930 aprint_error_dev(sc->sc_dev,
2931 "can't map mbuf (error %d)\n", error);
2932 m_freem(m);
2933 return error;
2934 }
2935 /* Too many DMA segments, linearize mbuf. */
2936 MGETHDR(m1, M_DONTWAIT, MT_DATA);
2937 if (m1 == NULL) {
2938 m_freem(m);
2939 return ENOBUFS;
2940 }
2941 if (m->m_pkthdr.len > MHLEN) {
2942 MCLGET(m1, M_DONTWAIT);
2943 if (!(m1->m_flags & M_EXT)) {
2944 m_freem(m);
2945 m_freem(m1);
2946 return ENOBUFS;
2947 }
2948 }
2949 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2950 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2951 m_freem(m);
2952 m = m1;
2953
2954 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2955 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2956 if (error != 0) {
2957 aprint_error_dev(sc->sc_dev,
2958 "can't map mbuf (error %d)\n", error);
2959 m_freem(m);
2960 return error;
2961 }
2962 }
2963
2964 data->m = m;
2965 data->ni = ni;
2966
2967 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2968 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
2969
2970 /* Fill TX descriptor. */
2971 desc->nsegs = 1 + data->map->dm_nsegs;
2972 /* First DMA segment is used by the TX command. */
2973 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
2974 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
2975 (4 + sizeof (*tx) + hdrlen + pad) << 4);
2976 /* Other DMA segments are for data payload. */
2977 seg = data->map->dm_segs;
2978 for (i = 1; i <= data->map->dm_nsegs; i++) {
2979 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
2980 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
2981 seg->ds_len << 4);
2982 seg++;
2983 }
2984
2985 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2986 BUS_DMASYNC_PREWRITE);
2987 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2988 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
2989 sizeof (*cmd), BUS_DMASYNC_PREWRITE);
2990 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2991 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
2992 sizeof (*desc), BUS_DMASYNC_PREWRITE);
2993
2994 #ifdef notyet
2995 /* Update TX scheduler. */
2996 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
2997 #endif
2998
2999 /* Kick TX ring. */
3000 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3001 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3002
3003 /* Mark TX ring as full if we reach a certain threshold. */
3004 if (++ring->queued > IWN_TX_RING_HIMARK)
3005 sc->qfullmsk |= 1 << ring->qid;
3006
3007 return 0;
3008 }
3009
3010 static void
3011 iwn_start(struct ifnet *ifp)
3012 {
3013 struct iwn_softc *sc = ifp->if_softc;
3014 struct ieee80211com *ic = &sc->sc_ic;
3015 struct ieee80211_node *ni;
3016 struct ether_header *eh;
3017 struct mbuf *m;
3018 int ac;
3019
3020 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3021 return;
3022
3023 for (;;) {
3024 if (sc->qfullmsk != 0) {
3025 ifp->if_flags |= IFF_OACTIVE;
3026 break;
3027 }
3028 /* Send pending management frames first. */
3029 IF_DEQUEUE(&ic->ic_mgtq, m);
3030 if (m != NULL) {
3031 ni = (void *)m->m_pkthdr.rcvif;
3032 ac = 0;
3033 goto sendit;
3034 }
3035 if (ic->ic_state != IEEE80211_S_RUN)
3036 break;
3037
3038 /* Encapsulate and send data frames. */
3039 IFQ_DEQUEUE(&ifp->if_snd, m);
3040 if (m == NULL)
3041 break;
3042 if (m->m_len < sizeof (*eh) &&
3043 (m = m_pullup(m, sizeof (*eh))) == NULL) {
3044 ifp->if_oerrors++;
3045 continue;
3046 }
3047 eh = mtod(m, struct ether_header *);
3048 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3049 if (ni == NULL) {
3050 m_freem(m);
3051 ifp->if_oerrors++;
3052 continue;
3053 }
3054 /* classify mbuf so we can find which tx ring to use */
3055 if (ieee80211_classify(ic, m, ni) != 0) {
3056 m_freem(m);
3057 ieee80211_free_node(ni);
3058 ifp->if_oerrors++;
3059 continue;
3060 }
3061
3062 /* No QoS encapsulation for EAPOL frames. */
3063 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3064 M_WME_GETAC(m) : WME_AC_BE;
3065
3066 bpf_mtap(ifp, m);
3067
3068 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3069 ieee80211_free_node(ni);
3070 ifp->if_oerrors++;
3071 continue;
3072 }
3073 sendit:
3074 bpf_mtap3(ic->ic_rawbpf, m);
3075
3076 if (iwn_tx(sc, m, ni, ac) != 0) {
3077 ieee80211_free_node(ni);
3078 ifp->if_oerrors++;
3079 continue;
3080 }
3081
3082 sc->sc_tx_timer = 5;
3083 ifp->if_timer = 1;
3084 }
3085 }
3086
3087 static void
3088 iwn_watchdog(struct ifnet *ifp)
3089 {
3090 struct iwn_softc *sc = ifp->if_softc;
3091
3092 ifp->if_timer = 0;
3093
3094 if (sc->sc_tx_timer > 0) {
3095 if (--sc->sc_tx_timer == 0) {
3096 aprint_error_dev(sc->sc_dev,
3097 "device timeout\n");
3098 ifp->if_flags &= ~IFF_UP;
3099 iwn_stop(ifp, 1);
3100 ifp->if_oerrors++;
3101 return;
3102 }
3103 ifp->if_timer = 1;
3104 }
3105
3106 ieee80211_watchdog(&sc->sc_ic);
3107 }
3108
3109 static int
3110 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3111 {
3112 struct iwn_softc *sc = ifp->if_softc;
3113 struct ieee80211com *ic = &sc->sc_ic;
3114 struct ifaddr *ifa;
3115 const struct sockaddr *sa;
3116 int s, error = 0;
3117
3118 s = splnet();
3119
3120 switch (cmd) {
3121 case SIOCSIFADDR:
3122 ifa = (struct ifaddr *)data;
3123 ifp->if_flags |= IFF_UP;
3124 #ifdef INET
3125 if (ifa->ifa_addr->sa_family == AF_INET)
3126 arp_ifinit(&ic->ic_ac, ifa);
3127 #endif
3128 /* FALLTHROUGH */
3129 case SIOCSIFFLAGS:
3130 /* XXX Added as it is in every NetBSD driver */
3131 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3132 break;
3133 if (ifp->if_flags & IFF_UP) {
3134 if (!(ifp->if_flags & IFF_RUNNING))
3135 error = iwn_init(ifp);
3136 } else {
3137 if (ifp->if_flags & IFF_RUNNING)
3138 iwn_stop(ifp, 1);
3139 }
3140 break;
3141
3142 case SIOCADDMULTI:
3143 case SIOCDELMULTI:
3144 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3145 error = (cmd == SIOCADDMULTI) ?
3146 ether_addmulti(sa, &sc->sc_ec) :
3147 ether_delmulti(sa, &sc->sc_ec);
3148
3149 if (error == ENETRESET)
3150 error = 0;
3151 break;
3152
3153 default:
3154 error = ieee80211_ioctl(ic, cmd, data);
3155 }
3156
3157 if (error == ENETRESET) {
3158 error = 0;
3159 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3160 (IFF_UP | IFF_RUNNING)) {
3161 iwn_stop(ifp, 0);
3162 error = iwn_init(ifp);
3163 }
3164 }
3165
3166 splx(s);
3167 return error;
3168 }
3169
3170 /*
3171 * Send a command to the firmware.
3172 */
3173 static int
3174 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3175 {
3176 struct iwn_tx_ring *ring = &sc->txq[4];
3177 struct iwn_tx_desc *desc;
3178 struct iwn_tx_data *data;
3179 struct iwn_tx_cmd *cmd;
3180 struct mbuf *m;
3181 bus_addr_t paddr;
3182 int totlen, error;
3183
3184 desc = &ring->desc[ring->cur];
3185 data = &ring->data[ring->cur];
3186 totlen = 4 + size;
3187
3188 if (size > sizeof cmd->data) {
3189 /* Command is too large to fit in a descriptor. */
3190 if (totlen > MCLBYTES)
3191 return EINVAL;
3192 MGETHDR(m, M_DONTWAIT, MT_DATA);
3193 if (m == NULL)
3194 return ENOMEM;
3195 if (totlen > MHLEN) {
3196 MCLGET(m, M_DONTWAIT);
3197 if (!(m->m_flags & M_EXT)) {
3198 m_freem(m);
3199 return ENOMEM;
3200 }
3201 }
3202 cmd = mtod(m, struct iwn_tx_cmd *);
3203 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3204 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3205 if (error != 0) {
3206 m_freem(m);
3207 return error;
3208 }
3209 data->m = m;
3210 paddr = data->map->dm_segs[0].ds_addr;
3211 } else {
3212 cmd = &ring->cmd[ring->cur];
3213 paddr = data->cmd_paddr;
3214 }
3215
3216 cmd->code = code;
3217 cmd->flags = 0;
3218 cmd->qid = ring->qid;
3219 cmd->idx = ring->cur;
3220 memcpy(cmd->data, buf, size);
3221
3222 desc->nsegs = 1;
3223 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3224 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3225
3226 if (size > sizeof cmd->data) {
3227 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3228 BUS_DMASYNC_PREWRITE);
3229 } else {
3230 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3231 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3232 totlen, BUS_DMASYNC_PREWRITE);
3233 }
3234 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3235 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3236 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3237
3238 #ifdef notyet
3239 /* Update TX scheduler. */
3240 ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3241 #endif
3242 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3243
3244 /* Kick command ring. */
3245 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3246 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3247
3248 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3249 }
3250
3251 static int
3252 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3253 {
3254 struct iwn4965_node_info hnode;
3255 char *src, *dst;
3256
3257 /*
3258 * We use the node structure for 5000 Series internally (it is
3259 * a superset of the one for 4965AGN). We thus copy the common
3260 * fields before sending the command.
3261 */
3262 src = (char *)node;
3263 dst = (char *)&hnode;
3264 memcpy(dst, src, 48);
3265 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3266 memcpy(dst + 48, src + 72, 20);
3267 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3268 }
3269
3270 static int
3271 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3272 {
3273 /* Direct mapping. */
3274 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3275 }
3276
3277 static int
3278 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3279 {
3280 struct iwn_node *wn = (void *)ni;
3281 struct ieee80211_rateset *rs = &ni->ni_rates;
3282 struct iwn_cmd_link_quality linkq;
3283 const struct iwn_rate *rinfo;
3284 uint8_t txant;
3285 int i, txrate;
3286
3287 /* Use the first valid TX antenna. */
3288 txant = IWN_LSB(sc->txchainmask);
3289
3290 memset(&linkq, 0, sizeof linkq);
3291 linkq.id = wn->id;
3292 linkq.antmsk_1stream = txant;
3293 linkq.antmsk_2stream = IWN_ANT_AB;
3294 linkq.ampdu_max = 31;
3295 linkq.ampdu_threshold = 3;
3296 linkq.ampdu_limit = htole16(4000); /* 4ms */
3297
3298 /* Start at highest available bit-rate. */
3299 txrate = rs->rs_nrates - 1;
3300 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3301 rinfo = &iwn_rates[wn->ridx[txrate]];
3302 linkq.retry[i].plcp = rinfo->plcp;
3303 linkq.retry[i].rflags = rinfo->flags;
3304 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3305 /* Next retry at immediate lower bit-rate. */
3306 if (txrate > 0)
3307 txrate--;
3308 }
3309 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3310 }
3311
3312 /*
3313 * Broadcast node is used to send group-addressed and management frames.
3314 */
3315 static int
3316 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3317 {
3318 struct iwn_ops *ops = &sc->ops;
3319 struct iwn_node_info node;
3320 struct iwn_cmd_link_quality linkq;
3321 const struct iwn_rate *rinfo;
3322 uint8_t txant;
3323 int i, error;
3324
3325 memset(&node, 0, sizeof node);
3326 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3327 node.id = sc->broadcast_id;
3328 DPRINTF(("adding broadcast node\n"));
3329 if ((error = ops->add_node(sc, &node, async)) != 0)
3330 return error;
3331
3332 /* Use the first valid TX antenna. */
3333 txant = IWN_LSB(sc->txchainmask);
3334
3335 memset(&linkq, 0, sizeof linkq);
3336 linkq.id = sc->broadcast_id;
3337 linkq.antmsk_1stream = txant;
3338 linkq.antmsk_2stream = IWN_ANT_AB;
3339 linkq.ampdu_max = 64;
3340 linkq.ampdu_threshold = 3;
3341 linkq.ampdu_limit = htole16(4000); /* 4ms */
3342
3343 /* Use lowest mandatory bit-rate. */
3344 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3345 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3346 linkq.retry[0].plcp = rinfo->plcp;
3347 linkq.retry[0].rflags = rinfo->flags;
3348 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3349 /* Use same bit-rate for all TX retries. */
3350 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3351 linkq.retry[i].plcp = linkq.retry[0].plcp;
3352 linkq.retry[i].rflags = linkq.retry[0].rflags;
3353 }
3354 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3355 }
3356
3357 static void
3358 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3359 {
3360 struct iwn_cmd_led led;
3361
3362 /* Clear microcode LED ownership. */
3363 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3364
3365 led.which = which;
3366 led.unit = htole32(10000); /* on/off in unit of 100ms */
3367 led.off = off;
3368 led.on = on;
3369 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3370 }
3371
3372 /*
3373 * Set the critical temperature at which the firmware will stop the radio
3374 * and notify us.
3375 */
3376 static int
3377 iwn_set_critical_temp(struct iwn_softc *sc)
3378 {
3379 struct iwn_critical_temp crit;
3380 int32_t temp;
3381
3382 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3383
3384 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3385 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3386 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3387 temp = IWN_CTOK(110);
3388 else
3389 temp = 110;
3390 memset(&crit, 0, sizeof crit);
3391 crit.tempR = htole32(temp);
3392 DPRINTF(("setting critical temperature to %d\n", temp));
3393 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3394 }
3395
3396 static int
3397 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3398 {
3399 struct iwn_cmd_timing cmd;
3400 uint64_t val, mod;
3401
3402 memset(&cmd, 0, sizeof cmd);
3403 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3404 cmd.bintval = htole16(ni->ni_intval);
3405 cmd.lintval = htole16(10);
3406
3407 /* Compute remaining time until next beacon. */
3408 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
3409 mod = le64toh(cmd.tstamp) % val;
3410 cmd.binitval = htole32((uint32_t)(val - mod));
3411
3412 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3413 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3414
3415 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3416 }
3417
3418 static void
3419 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3420 {
3421 /* Adjust TX power if need be (delta >= 3 degC). */
3422 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3423 if (abs(temp - sc->temp) >= 3) {
3424 /* Record temperature of last calibration. */
3425 sc->temp = temp;
3426 (void)iwn4965_set_txpower(sc, 1);
3427 }
3428 }
3429
3430 /*
3431 * Set TX power for current channel (each rate has its own power settings).
3432 * This function takes into account the regulatory information from EEPROM,
3433 * the current temperature and the current voltage.
3434 */
3435 static int
3436 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3437 {
3438 /* Fixed-point arithmetic division using a n-bit fractional part. */
3439 #define fdivround(a, b, n) \
3440 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3441 /* Linear interpolation. */
3442 #define interpolate(x, x1, y1, x2, y2, n) \
3443 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3444
3445 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3446 struct ieee80211com *ic = &sc->sc_ic;
3447 struct iwn_ucode_info *uc = &sc->ucode_info;
3448 struct ieee80211_channel *ch;
3449 struct iwn4965_cmd_txpower cmd;
3450 struct iwn4965_eeprom_chan_samples *chans;
3451 const uint8_t *rf_gain, *dsp_gain;
3452 int32_t vdiff, tdiff;
3453 int i, c, grp, maxpwr;
3454 uint8_t chan;
3455
3456 /* Retrieve current channel from last RXON. */
3457 chan = sc->rxon.chan;
3458 DPRINTF(("setting TX power for channel %d\n", chan));
3459 ch = &ic->ic_channels[chan];
3460
3461 memset(&cmd, 0, sizeof cmd);
3462 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3463 cmd.chan = chan;
3464
3465 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3466 maxpwr = sc->maxpwr5GHz;
3467 rf_gain = iwn4965_rf_gain_5ghz;
3468 dsp_gain = iwn4965_dsp_gain_5ghz;
3469 } else {
3470 maxpwr = sc->maxpwr2GHz;
3471 rf_gain = iwn4965_rf_gain_2ghz;
3472 dsp_gain = iwn4965_dsp_gain_2ghz;
3473 }
3474
3475 /* Compute voltage compensation. */
3476 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3477 if (vdiff > 0)
3478 vdiff *= 2;
3479 if (abs(vdiff) > 2)
3480 vdiff = 0;
3481 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3482 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3483
3484 /* Get channel attenuation group. */
3485 if (chan <= 20) /* 1-20 */
3486 grp = 4;
3487 else if (chan <= 43) /* 34-43 */
3488 grp = 0;
3489 else if (chan <= 70) /* 44-70 */
3490 grp = 1;
3491 else if (chan <= 124) /* 71-124 */
3492 grp = 2;
3493 else /* 125-200 */
3494 grp = 3;
3495 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3496
3497 /* Get channel sub-band. */
3498 for (i = 0; i < IWN_NBANDS; i++)
3499 if (sc->bands[i].lo != 0 &&
3500 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3501 break;
3502 if (i == IWN_NBANDS) /* Can't happen in real-life. */
3503 return EINVAL;
3504 chans = sc->bands[i].chans;
3505 DPRINTF(("chan %d sub-band=%d\n", chan, i));
3506
3507 for (c = 0; c < 2; c++) {
3508 uint8_t power, gain, temp;
3509 int maxchpwr, pwr, ridx, idx;
3510
3511 power = interpolate(chan,
3512 chans[0].num, chans[0].samples[c][1].power,
3513 chans[1].num, chans[1].samples[c][1].power, 1);
3514 gain = interpolate(chan,
3515 chans[0].num, chans[0].samples[c][1].gain,
3516 chans[1].num, chans[1].samples[c][1].gain, 1);
3517 temp = interpolate(chan,
3518 chans[0].num, chans[0].samples[c][1].temp,
3519 chans[1].num, chans[1].samples[c][1].temp, 1);
3520 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3521 c, power, gain, temp));
3522
3523 /* Compute temperature compensation. */
3524 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3525 DPRINTF(("temperature compensation=%d (current=%d, "
3526 "EEPROM=%d)\n", tdiff, sc->temp, temp));
3527
3528 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3529 /* Convert dBm to half-dBm. */
3530 maxchpwr = sc->maxpwr[chan] * 2;
3531 if ((ridx / 8) & 1)
3532 maxchpwr -= 6; /* MIMO 2T: -3dB */
3533
3534 pwr = maxpwr;
3535
3536 /* Adjust TX power based on rate. */
3537 if ((ridx % 8) == 5)
3538 pwr -= 15; /* OFDM48: -7.5dB */
3539 else if ((ridx % 8) == 6)
3540 pwr -= 17; /* OFDM54: -8.5dB */
3541 else if ((ridx % 8) == 7)
3542 pwr -= 20; /* OFDM60: -10dB */
3543 else
3544 pwr -= 10; /* Others: -5dB */
3545
3546 /* Do not exceed channel max TX power. */
3547 if (pwr > maxchpwr)
3548 pwr = maxchpwr;
3549
3550 idx = gain - (pwr - power) - tdiff - vdiff;
3551 if ((ridx / 8) & 1) /* MIMO */
3552 idx += (int32_t)le32toh(uc->atten[grp][c]);
3553
3554 if (cmd.band == 0)
3555 idx += 9; /* 5GHz */
3556 if (ridx == IWN_RIDX_MAX)
3557 idx += 5; /* CCK */
3558
3559 /* Make sure idx stays in a valid range. */
3560 if (idx < 0)
3561 idx = 0;
3562 else if (idx > IWN4965_MAX_PWR_INDEX)
3563 idx = IWN4965_MAX_PWR_INDEX;
3564
3565 DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3566 c, ridx, idx));
3567 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3568 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3569 }
3570 }
3571
3572 DPRINTF(("setting TX power for chan %d\n", chan));
3573 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3574
3575 #undef interpolate
3576 #undef fdivround
3577 }
3578
3579 static int
3580 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3581 {
3582 struct iwn5000_cmd_txpower cmd;
3583
3584 /*
3585 * TX power calibration is handled automatically by the firmware
3586 * for 5000 Series.
3587 */
3588 memset(&cmd, 0, sizeof cmd);
3589 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3590 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3591 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3592 DPRINTF(("setting TX power\n"));
3593 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3594 }
3595
3596 /*
3597 * Retrieve the maximum RSSI (in dBm) among receivers.
3598 */
3599 static int
3600 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3601 {
3602 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3603 uint8_t mask, agc;
3604 int rssi;
3605
3606 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3607 agc = (le16toh(phy->agc) >> 7) & 0x7f;
3608
3609 rssi = 0;
3610 if (mask & IWN_ANT_A)
3611 rssi = MAX(rssi, phy->rssi[0]);
3612 if (mask & IWN_ANT_B)
3613 rssi = MAX(rssi, phy->rssi[2]);
3614 if (mask & IWN_ANT_C)
3615 rssi = MAX(rssi, phy->rssi[4]);
3616
3617 return rssi - agc - IWN_RSSI_TO_DBM;
3618 }
3619
3620 static int
3621 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3622 {
3623 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3624 uint8_t agc;
3625 int rssi;
3626
3627 agc = (le32toh(phy->agc) >> 9) & 0x7f;
3628
3629 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3630 le16toh(phy->rssi[1]) & 0xff);
3631 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3632
3633 return rssi - agc - IWN_RSSI_TO_DBM;
3634 }
3635
3636 /*
3637 * Retrieve the average noise (in dBm) among receivers.
3638 */
3639 static int
3640 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3641 {
3642 int i, total, nbant, noise;
3643
3644 total = nbant = 0;
3645 for (i = 0; i < 3; i++) {
3646 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3647 continue;
3648 total += noise;
3649 nbant++;
3650 }
3651 /* There should be at least one antenna but check anyway. */
3652 return (nbant == 0) ? -127 : (total / nbant) - 107;
3653 }
3654
3655 /*
3656 * Compute temperature (in degC) from last received statistics.
3657 */
3658 static int
3659 iwn4965_get_temperature(struct iwn_softc *sc)
3660 {
3661 struct iwn_ucode_info *uc = &sc->ucode_info;
3662 int32_t r1, r2, r3, r4, temp;
3663
3664 r1 = le32toh(uc->temp[0].chan20MHz);
3665 r2 = le32toh(uc->temp[1].chan20MHz);
3666 r3 = le32toh(uc->temp[2].chan20MHz);
3667 r4 = le32toh(sc->rawtemp);
3668
3669 if (r1 == r3) /* Prevents division by 0 (should not happen). */
3670 return 0;
3671
3672 /* Sign-extend 23-bit R4 value to 32-bit. */
3673 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3674 /* Compute temperature in Kelvin. */
3675 temp = (259 * (r4 - r2)) / (r3 - r1);
3676 temp = (temp * 97) / 100 + 8;
3677
3678 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3679 return IWN_KTOC(temp);
3680 }
3681
3682 static int
3683 iwn5000_get_temperature(struct iwn_softc *sc)
3684 {
3685 int32_t temp;
3686
3687 /*
3688 * Temperature is not used by the driver for 5000 Series because
3689 * TX power calibration is handled by firmware. We export it to
3690 * users through the sensor framework though.
3691 */
3692 temp = le32toh(sc->rawtemp);
3693 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3694 temp = (temp / -5) + sc->temp_off;
3695 temp = IWN_KTOC(temp);
3696 }
3697 return temp;
3698 }
3699
3700 /*
3701 * Initialize sensitivity calibration state machine.
3702 */
3703 static int
3704 iwn_init_sensitivity(struct iwn_softc *sc)
3705 {
3706 struct iwn_ops *ops = &sc->ops;
3707 struct iwn_calib_state *calib = &sc->calib;
3708 uint32_t flags;
3709 int error;
3710
3711 /* Reset calibration state machine. */
3712 memset(calib, 0, sizeof (*calib));
3713 calib->state = IWN_CALIB_STATE_INIT;
3714 calib->cck_state = IWN_CCK_STATE_HIFA;
3715 /* Set initial correlation values. */
3716 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3717 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3718 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3719 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3720 calib->cck_x4 = 125;
3721 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3722 calib->energy_cck = sc->limits->energy_cck;
3723
3724 /* Write initial sensitivity. */
3725 if ((error = iwn_send_sensitivity(sc)) != 0)
3726 return error;
3727
3728 /* Write initial gains. */
3729 if ((error = ops->init_gains(sc)) != 0)
3730 return error;
3731
3732 /* Request statistics at each beacon interval. */
3733 flags = 0;
3734 DPRINTF(("sending request for statistics\n"));
3735 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3736 }
3737
3738 /*
3739 * Collect noise and RSSI statistics for the first 20 beacons received
3740 * after association and use them to determine connected antennas and
3741 * to set differential gains.
3742 */
3743 static void
3744 iwn_collect_noise(struct iwn_softc *sc,
3745 const struct iwn_rx_general_stats *stats)
3746 {
3747 struct iwn_ops *ops = &sc->ops;
3748 struct iwn_calib_state *calib = &sc->calib;
3749 uint32_t val;
3750 int i;
3751
3752 /* Accumulate RSSI and noise for all 3 antennas. */
3753 for (i = 0; i < 3; i++) {
3754 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3755 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3756 }
3757 /* NB: We update differential gains only once after 20 beacons. */
3758 if (++calib->nbeacons < 20)
3759 return;
3760
3761 /* Determine highest average RSSI. */
3762 val = MAX(calib->rssi[0], calib->rssi[1]);
3763 val = MAX(calib->rssi[2], val);
3764
3765 /* Determine which antennas are connected. */
3766 sc->chainmask = sc->rxchainmask;
3767 for (i = 0; i < 3; i++)
3768 if (val - calib->rssi[i] > 15 * 20)
3769 sc->chainmask &= ~(1 << i);
3770 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3771 sc->rxchainmask, sc->chainmask));
3772
3773 /* If none of the TX antennas are connected, keep at least one. */
3774 if ((sc->chainmask & sc->txchainmask) == 0)
3775 sc->chainmask |= IWN_LSB(sc->txchainmask);
3776
3777 (void)ops->set_gains(sc);
3778 calib->state = IWN_CALIB_STATE_RUN;
3779
3780 #ifdef notyet
3781 /* XXX Disable RX chains with no antennas connected. */
3782 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3783 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3784 #endif
3785
3786 /* Enable power-saving mode if requested by user. */
3787 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3788 (void)iwn_set_pslevel(sc, 0, 3, 1);
3789 }
3790
3791 static int
3792 iwn4965_init_gains(struct iwn_softc *sc)
3793 {
3794 struct iwn_phy_calib_gain cmd;
3795
3796 memset(&cmd, 0, sizeof cmd);
3797 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3798 /* Differential gains initially set to 0 for all 3 antennas. */
3799 DPRINTF(("setting initial differential gains\n"));
3800 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3801 }
3802
3803 static int
3804 iwn5000_init_gains(struct iwn_softc *sc)
3805 {
3806 struct iwn_phy_calib cmd;
3807
3808 memset(&cmd, 0, sizeof cmd);
3809 cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3810 cmd.ngroups = 1;
3811 cmd.isvalid = 1;
3812 DPRINTF(("setting initial differential gains\n"));
3813 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3814 }
3815
3816 static int
3817 iwn4965_set_gains(struct iwn_softc *sc)
3818 {
3819 struct iwn_calib_state *calib = &sc->calib;
3820 struct iwn_phy_calib_gain cmd;
3821 int i, delta, noise;
3822
3823 /* Get minimal noise among connected antennas. */
3824 noise = INT_MAX; /* NB: There's at least one antenna. */
3825 for (i = 0; i < 3; i++)
3826 if (sc->chainmask & (1 << i))
3827 noise = MIN(calib->noise[i], noise);
3828
3829 memset(&cmd, 0, sizeof cmd);
3830 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3831 /* Set differential gains for connected antennas. */
3832 for (i = 0; i < 3; i++) {
3833 if (sc->chainmask & (1 << i)) {
3834 /* Compute attenuation (in unit of 1.5dB). */
3835 delta = (noise - (int32_t)calib->noise[i]) / 30;
3836 /* NB: delta <= 0 */
3837 /* Limit to [-4.5dB,0]. */
3838 cmd.gain[i] = MIN(abs(delta), 3);
3839 if (delta < 0)
3840 cmd.gain[i] |= 1 << 2; /* sign bit */
3841 }
3842 }
3843 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3844 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3845 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3846 }
3847
3848 static int
3849 iwn5000_set_gains(struct iwn_softc *sc)
3850 {
3851 struct iwn_calib_state *calib = &sc->calib;
3852 struct iwn_phy_calib_gain cmd;
3853 int i, ant, div, delta;
3854
3855 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
3856 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3857
3858 memset(&cmd, 0, sizeof cmd);
3859 cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3860 cmd.ngroups = 1;
3861 cmd.isvalid = 1;
3862 /* Get first available RX antenna as referential. */
3863 ant = IWN_LSB(sc->rxchainmask);
3864 /* Set differential gains for other antennas. */
3865 for (i = ant + 1; i < 3; i++) {
3866 if (sc->chainmask & (1 << i)) {
3867 /* The delta is relative to antenna "ant". */
3868 delta = ((int32_t)calib->noise[ant] -
3869 (int32_t)calib->noise[i]) / div;
3870 /* Limit to [-4.5dB,+4.5dB]. */
3871 cmd.gain[i - 1] = MIN(abs(delta), 3);
3872 if (delta < 0)
3873 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
3874 }
3875 }
3876 DPRINTF(("setting differential gains: %x/%x (%x)\n",
3877 cmd.gain[0], cmd.gain[1], sc->chainmask));
3878 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3879 }
3880
3881 /*
3882 * Tune RF RX sensitivity based on the number of false alarms detected
3883 * during the last beacon period.
3884 */
3885 static void
3886 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3887 {
3888 #define inc(val, inc, max) \
3889 if ((val) < (max)) { \
3890 if ((val) < (max) - (inc)) \
3891 (val) += (inc); \
3892 else \
3893 (val) = (max); \
3894 needs_update = 1; \
3895 }
3896 #define dec(val, dec, min) \
3897 if ((val) > (min)) { \
3898 if ((val) > (min) + (dec)) \
3899 (val) -= (dec); \
3900 else \
3901 (val) = (min); \
3902 needs_update = 1; \
3903 }
3904
3905 const struct iwn_sensitivity_limits *limits = sc->limits;
3906 struct iwn_calib_state *calib = &sc->calib;
3907 uint32_t val, rxena, fa;
3908 uint32_t energy[3], energy_min;
3909 uint8_t noise[3], noise_ref;
3910 int i, needs_update = 0;
3911
3912 /* Check that we've been enabled long enough. */
3913 if ((rxena = le32toh(stats->general.load)) == 0)
3914 return;
3915
3916 /* Compute number of false alarms since last call for OFDM. */
3917 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3918 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3919 fa *= 200 * 1024; /* 200TU */
3920
3921 /* Save counters values for next call. */
3922 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3923 calib->fa_ofdm = le32toh(stats->ofdm.fa);
3924
3925 if (fa > 50 * rxena) {
3926 /* High false alarm count, decrease sensitivity. */
3927 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3928 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
3929 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3930 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
3931 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3932
3933 } else if (fa < 5 * rxena) {
3934 /* Low false alarm count, increase sensitivity. */
3935 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3936 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
3937 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3938 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
3939 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3940 }
3941
3942 /* Compute maximum noise among 3 receivers. */
3943 for (i = 0; i < 3; i++)
3944 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3945 val = MAX(noise[0], noise[1]);
3946 val = MAX(noise[2], val);
3947 /* Insert it into our samples table. */
3948 calib->noise_samples[calib->cur_noise_sample] = val;
3949 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3950
3951 /* Compute maximum noise among last 20 samples. */
3952 noise_ref = calib->noise_samples[0];
3953 for (i = 1; i < 20; i++)
3954 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
3955
3956 /* Compute maximum energy among 3 receivers. */
3957 for (i = 0; i < 3; i++)
3958 energy[i] = le32toh(stats->general.energy[i]);
3959 val = MIN(energy[0], energy[1]);
3960 val = MIN(energy[2], val);
3961 /* Insert it into our samples table. */
3962 calib->energy_samples[calib->cur_energy_sample] = val;
3963 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3964
3965 /* Compute minimum energy among last 10 samples. */
3966 energy_min = calib->energy_samples[0];
3967 for (i = 1; i < 10; i++)
3968 energy_min = MAX(energy_min, calib->energy_samples[i]);
3969 energy_min += 6;
3970
3971 /* Compute number of false alarms since last call for CCK. */
3972 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3973 fa += le32toh(stats->cck.fa) - calib->fa_cck;
3974 fa *= 200 * 1024; /* 200TU */
3975
3976 /* Save counters values for next call. */
3977 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3978 calib->fa_cck = le32toh(stats->cck.fa);
3979
3980 if (fa > 50 * rxena) {
3981 /* High false alarm count, decrease sensitivity. */
3982 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
3983 calib->cck_state = IWN_CCK_STATE_HIFA;
3984 calib->low_fa = 0;
3985
3986 if (calib->cck_x4 > 160) {
3987 calib->noise_ref = noise_ref;
3988 if (calib->energy_cck > 2)
3989 dec(calib->energy_cck, 2, energy_min);
3990 }
3991 if (calib->cck_x4 < 160) {
3992 calib->cck_x4 = 161;
3993 needs_update = 1;
3994 } else
3995 inc(calib->cck_x4, 3, limits->max_cck_x4);
3996
3997 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
3998
3999 } else if (fa < 5 * rxena) {
4000 /* Low false alarm count, increase sensitivity. */
4001 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4002 calib->cck_state = IWN_CCK_STATE_LOFA;
4003 calib->low_fa++;
4004
4005 if (calib->cck_state != IWN_CCK_STATE_INIT &&
4006 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4007 calib->low_fa > 100)) {
4008 inc(calib->energy_cck, 2, limits->min_energy_cck);
4009 dec(calib->cck_x4, 3, limits->min_cck_x4);
4010 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4011 }
4012 } else {
4013 /* Not worth to increase or decrease sensitivity. */
4014 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4015 calib->low_fa = 0;
4016 calib->noise_ref = noise_ref;
4017
4018 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4019 /* Previous interval had many false alarms. */
4020 dec(calib->energy_cck, 8, energy_min);
4021 }
4022 calib->cck_state = IWN_CCK_STATE_INIT;
4023 }
4024
4025 if (needs_update)
4026 (void)iwn_send_sensitivity(sc);
4027 #undef dec
4028 #undef inc
4029 }
4030
4031 static int
4032 iwn_send_sensitivity(struct iwn_softc *sc)
4033 {
4034 struct iwn_calib_state *calib = &sc->calib;
4035 struct iwn_sensitivity_cmd cmd;
4036
4037 memset(&cmd, 0, sizeof cmd);
4038 cmd.which = IWN_SENSITIVITY_WORKTBL;
4039 /* OFDM modulation. */
4040 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4041 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4042 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4043 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4044 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4045 cmd.energy_ofdm_th = htole16(62);
4046 /* CCK modulation. */
4047 cmd.corr_cck_x4 = htole16(calib->cck_x4);
4048 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4049 cmd.energy_cck = htole16(calib->energy_cck);
4050 /* Barker modulation: use default values. */
4051 cmd.corr_barker = htole16(190);
4052 cmd.corr_barker_mrc = htole16(390);
4053
4054 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4055 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4056 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4057 calib->energy_cck));
4058 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4059 }
4060
4061 /*
4062 * Set STA mode power saving level (between 0 and 5).
4063 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4064 */
4065 static int
4066 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4067 {
4068 struct iwn_pmgt_cmd cmd;
4069 const struct iwn_pmgt *pmgt;
4070 uint32_t maxp, skip_dtim;
4071 pcireg_t reg;
4072 int i;
4073
4074 /* Select which PS parameters to use. */
4075 if (dtim <= 2)
4076 pmgt = &iwn_pmgt[0][level];
4077 else if (dtim <= 10)
4078 pmgt = &iwn_pmgt[1][level];
4079 else
4080 pmgt = &iwn_pmgt[2][level];
4081
4082 memset(&cmd, 0, sizeof cmd);
4083 if (level != 0) /* not CAM */
4084 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4085 if (level == 5)
4086 cmd.flags |= htole16(IWN_PS_FAST_PD);
4087 /* Retrieve PCIe Active State Power Management (ASPM). */
4088 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4089 sc->sc_cap_off + PCIE_LCSR);
4090 if (!(reg & PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4091 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4092 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4093 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4094
4095 if (dtim == 0) {
4096 dtim = 1;
4097 skip_dtim = 0;
4098 } else
4099 skip_dtim = pmgt->skip_dtim;
4100 if (skip_dtim != 0) {
4101 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4102 maxp = pmgt->intval[4];
4103 if (maxp == (uint32_t)-1)
4104 maxp = dtim * (skip_dtim + 1);
4105 else if (maxp > dtim)
4106 maxp = (maxp / dtim) * dtim;
4107 } else
4108 maxp = dtim;
4109 for (i = 0; i < 5; i++)
4110 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4111
4112 DPRINTF(("setting power saving level to %d\n", level));
4113 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4114 }
4115
4116 int
4117 iwn5000_runtime_calib(struct iwn_softc *sc)
4118 {
4119 struct iwn5000_calib_config cmd;
4120
4121 memset(&cmd, 0, sizeof cmd);
4122 cmd.ucode.once.enable = 0xffffffff;
4123 cmd.ucode.once.start = IWN5000_CALIB_DC;
4124 DPRINTF(("configuring runtime calibration\n"));
4125 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4126 }
4127
4128 static int
4129 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4130 {
4131 struct iwn_bluetooth bluetooth;
4132
4133 memset(&bluetooth, 0, sizeof bluetooth);
4134 bluetooth.flags = IWN_BT_COEX_ENABLE;
4135 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4136 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4137
4138 DPRINTF(("configuring bluetooth coexistence\n"));
4139 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4140 }
4141
4142 static int
4143 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4144 {
4145 uint8_t prio_table[16];
4146
4147 memset(&prio_table, 0, sizeof prio_table);
4148 prio_table[ 0] = 6; /* init calibration 1 */
4149 prio_table[ 1] = 7; /* init calibration 2 */
4150 prio_table[ 2] = 2; /* periodic calib low 1 */
4151 prio_table[ 3] = 3; /* periodic calib low 2 */
4152 prio_table[ 4] = 4; /* periodic calib high 1 */
4153 prio_table[ 5] = 5; /* periodic calib high 2 */
4154 prio_table[ 6] = 6; /* dtim */
4155 prio_table[ 7] = 8; /* scan52 */
4156 prio_table[ 8] = 10; /* scan24 */
4157
4158 DPRINTF(("sending priority lookup table\n"));
4159 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4160 &prio_table, sizeof prio_table, 0);
4161 }
4162
4163 static int
4164 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4165 {
4166 int error;
4167 struct iwn_bt_adv1 d;
4168
4169 memset(&d, 0, sizeof d);
4170 d.basic.bt.flags = IWN_BT_COEX_ENABLE;
4171 d.basic.bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4172 d.basic.bt.max_kill = IWN_BT_MAX_KILL_DEF;
4173 d.basic.bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4174 d.basic.bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4175 d.basic.bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4176 d.basic.bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4177 d.basic.bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4178 d.basic.bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4179 d.basic.bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4180 d.basic.bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4181 d.basic.bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4182 d.basic.bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4183 d.basic.bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4184 d.basic.bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4185 d.basic.bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4186 d.basic.bt3_lookup_table[ 8] = htole32(0xc0004000);
4187 d.basic.bt3_lookup_table[ 9] = htole32(0x00004000);
4188 d.basic.bt3_lookup_table[10] = htole32(0xf0005000);
4189 d.basic.bt3_lookup_table[11] = htole32(0xf0005000);
4190 d.basic.reduce_txpower = 0; /* as not implemented */
4191 d.basic.valid = IWN_BT_ALL_VALID_MASK;
4192 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4193 d.tx_prio_boost = 0;
4194 d.rx_prio_boost = 0;
4195
4196 DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4197 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &d, sizeof d, 0);
4198 if (error != 0) {
4199 aprint_error_dev(sc->sc_dev,
4200 "could not configure advanced bluetooth coexistence\n");
4201 return error;
4202 }
4203
4204 error = iwn_config_bt_coex_prio_table(sc);
4205 if (error != 0) {
4206 aprint_error_dev(sc->sc_dev,
4207 "could not configure send BT priority table\n");
4208 return error;
4209 }
4210
4211 return error;
4212 }
4213
4214 static int
4215 iwn_config(struct iwn_softc *sc)
4216 {
4217 struct iwn_ops *ops = &sc->ops;
4218 struct ieee80211com *ic = &sc->sc_ic;
4219 struct ifnet *ifp = ic->ic_ifp;
4220 uint32_t txmask;
4221 uint16_t rxchain;
4222 int error;
4223
4224 error = ops->config_bt_coex(sc);
4225 if (error != 0) {
4226 aprint_error_dev(sc->sc_dev,
4227 "could not configure bluetooth coexistence\n");
4228 return error;
4229 }
4230
4231 if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4232 sc->hw_type == IWN_HW_REV_TYPE_6005) {
4233 /* Configure runtime DC calibration. */
4234 error = iwn5000_runtime_calib(sc);
4235 if (error != 0) {
4236 aprint_error_dev(sc->sc_dev,
4237 "could not configure runtime calibration\n");
4238 return error;
4239 }
4240 }
4241
4242 /* Configure valid TX chains for 5000 Series. */
4243 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4244 txmask = htole32(sc->txchainmask);
4245 DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4246 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4247 sizeof txmask, 0);
4248 if (error != 0) {
4249 aprint_error_dev(sc->sc_dev,
4250 "could not configure valid TX chains\n");
4251 return error;
4252 }
4253 }
4254
4255 /* Set mode, channel, RX filter and enable RX. */
4256 memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4257 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4258 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4259 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4260 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4261 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4262 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4263 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4264 switch (ic->ic_opmode) {
4265 case IEEE80211_M_STA:
4266 sc->rxon.mode = IWN_MODE_STA;
4267 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4268 break;
4269 case IEEE80211_M_MONITOR:
4270 sc->rxon.mode = IWN_MODE_MONITOR;
4271 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4272 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4273 break;
4274 default:
4275 /* Should not get there. */
4276 break;
4277 }
4278 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4279 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4280 sc->rxon.ht_single_mask = 0xff;
4281 sc->rxon.ht_dual_mask = 0xff;
4282 sc->rxon.ht_triple_mask = 0xff;
4283 rxchain =
4284 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4285 IWN_RXCHAIN_MIMO_COUNT(2) |
4286 IWN_RXCHAIN_IDLE_COUNT(2);
4287 sc->rxon.rxchain = htole16(rxchain);
4288 DPRINTF(("setting configuration\n"));
4289 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4290 if (error != 0) {
4291 aprint_error_dev(sc->sc_dev,
4292 "RXON command failed\n");
4293 return error;
4294 }
4295
4296 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4297 aprint_error_dev(sc->sc_dev,
4298 "could not add broadcast node\n");
4299 return error;
4300 }
4301
4302 /* Configuration has changed, set TX power accordingly. */
4303 if ((error = ops->set_txpower(sc, 0)) != 0) {
4304 aprint_error_dev(sc->sc_dev,
4305 "could not set TX power\n");
4306 return error;
4307 }
4308
4309 if ((error = iwn_set_critical_temp(sc)) != 0) {
4310 aprint_error_dev(sc->sc_dev,
4311 "could not set critical temperature\n");
4312 return error;
4313 }
4314
4315 /* Set power saving level to CAM during initialization. */
4316 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4317 aprint_error_dev(sc->sc_dev,
4318 "could not set power saving level\n");
4319 return error;
4320 }
4321 return 0;
4322 }
4323
4324 static int
4325 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4326 {
4327 struct ieee80211com *ic = &sc->sc_ic;
4328 struct iwn_scan_hdr *hdr;
4329 struct iwn_cmd_data *tx;
4330 struct iwn_scan_essid *essid;
4331 struct iwn_scan_chan *chan;
4332 struct ieee80211_frame *wh;
4333 struct ieee80211_rateset *rs;
4334 struct ieee80211_channel *c;
4335 uint8_t *buf, *frm;
4336 uint16_t rxchain;
4337 uint8_t txant;
4338 int buflen, error;
4339
4340 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4341 if (buf == NULL) {
4342 aprint_error_dev(sc->sc_dev,
4343 "could not allocate buffer for scan command\n");
4344 return ENOMEM;
4345 }
4346 hdr = (struct iwn_scan_hdr *)buf;
4347 /*
4348 * Move to the next channel if no frames are received within 10ms
4349 * after sending the probe request.
4350 */
4351 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4352 hdr->quiet_threshold = htole16(1); /* min # of packets */
4353
4354 /* Select antennas for scanning. */
4355 rxchain =
4356 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4357 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4358 IWN_RXCHAIN_DRIVER_FORCE;
4359 if ((flags & IEEE80211_CHAN_5GHZ) &&
4360 sc->hw_type == IWN_HW_REV_TYPE_4965) {
4361 /* Ant A must be avoided in 5GHz because of an HW bug. */
4362 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4363 } else /* Use all available RX antennas. */
4364 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4365 hdr->rxchain = htole16(rxchain);
4366 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4367
4368 tx = (struct iwn_cmd_data *)(hdr + 1);
4369 tx->flags = htole32(IWN_TX_AUTO_SEQ);
4370 tx->id = sc->broadcast_id;
4371 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4372
4373 if (flags & IEEE80211_CHAN_5GHZ) {
4374 hdr->crc_threshold = 0xffff;
4375 /* Send probe requests at 6Mbps. */
4376 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4377 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4378 } else {
4379 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4380 /* Send probe requests at 1Mbps. */
4381 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4382 tx->rflags = IWN_RFLAG_CCK;
4383 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4384 }
4385 /* Use the first valid TX antenna. */
4386 txant = IWN_LSB(sc->txchainmask);
4387 tx->rflags |= IWN_RFLAG_ANT(txant);
4388
4389 essid = (struct iwn_scan_essid *)(tx + 1);
4390 if (ic->ic_des_esslen != 0) {
4391 essid[0].id = IEEE80211_ELEMID_SSID;
4392 essid[0].len = ic->ic_des_esslen;
4393 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4394 }
4395 /*
4396 * Build a probe request frame. Most of the following code is a
4397 * copy & paste of what is done in net80211.
4398 */
4399 wh = (struct ieee80211_frame *)(essid + 20);
4400 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4401 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4402 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4403 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4404 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4405 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4406 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4407 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4408
4409 frm = (uint8_t *)(wh + 1);
4410 frm = ieee80211_add_ssid(frm, NULL, 0);
4411 frm = ieee80211_add_rates(frm, rs);
4412 #ifndef IEEE80211_NO_HT
4413 if (ic->ic_flags & IEEE80211_F_HTON)
4414 frm = ieee80211_add_htcaps(frm, ic);
4415 #endif
4416 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4417 frm = ieee80211_add_xrates(frm, rs);
4418
4419 /* Set length of probe request. */
4420 tx->len = htole16(frm - (uint8_t *)wh);
4421
4422 chan = (struct iwn_scan_chan *)frm;
4423 for (c = &ic->ic_channels[1];
4424 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4425 if ((c->ic_flags & flags) != flags)
4426 continue;
4427
4428 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4429 DPRINTFN(2, ("adding channel %d\n", chan->chan));
4430 chan->flags = 0;
4431 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4432 chan->flags |= htole32(IWN_CHAN_ACTIVE);
4433 if (ic->ic_des_esslen != 0)
4434 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4435 chan->dsp_gain = 0x6e;
4436 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4437 chan->rf_gain = 0x3b;
4438 chan->active = htole16(24);
4439 chan->passive = htole16(110);
4440 } else {
4441 chan->rf_gain = 0x28;
4442 chan->active = htole16(36);
4443 chan->passive = htole16(120);
4444 }
4445 hdr->nchan++;
4446 chan++;
4447 }
4448
4449 buflen = (uint8_t *)chan - buf;
4450 hdr->len = htole16(buflen);
4451
4452 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4453 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4454 free(buf, M_DEVBUF);
4455 return error;
4456 }
4457
4458 static int
4459 iwn_auth(struct iwn_softc *sc)
4460 {
4461 struct iwn_ops *ops = &sc->ops;
4462 struct ieee80211com *ic = &sc->sc_ic;
4463 struct ieee80211_node *ni = ic->ic_bss;
4464 int error;
4465
4466 /* Update adapter configuration. */
4467 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4468 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4469 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4470 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4471 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4472 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4473 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4474 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4475 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4476 switch (ic->ic_curmode) {
4477 case IEEE80211_MODE_11A:
4478 sc->rxon.cck_mask = 0;
4479 sc->rxon.ofdm_mask = 0x15;
4480 break;
4481 case IEEE80211_MODE_11B:
4482 sc->rxon.cck_mask = 0x03;
4483 sc->rxon.ofdm_mask = 0;
4484 break;
4485 default: /* Assume 802.11b/g. */
4486 sc->rxon.cck_mask = 0x0f;
4487 sc->rxon.ofdm_mask = 0x15;
4488 }
4489 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4490 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4491 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4492 if (error != 0) {
4493 aprint_error_dev(sc->sc_dev,
4494 "RXON command failed\n");
4495 return error;
4496 }
4497
4498 /* Configuration has changed, set TX power accordingly. */
4499 if ((error = ops->set_txpower(sc, 1)) != 0) {
4500 aprint_error_dev(sc->sc_dev,
4501 "could not set TX power\n");
4502 return error;
4503 }
4504 /*
4505 * Reconfiguring RXON clears the firmware nodes table so we must
4506 * add the broadcast node again.
4507 */
4508 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4509 aprint_error_dev(sc->sc_dev,
4510 "could not add broadcast node\n");
4511 return error;
4512 }
4513 return 0;
4514 }
4515
4516 static int
4517 iwn_run(struct iwn_softc *sc)
4518 {
4519 struct iwn_ops *ops = &sc->ops;
4520 struct ieee80211com *ic = &sc->sc_ic;
4521 struct ieee80211_node *ni = ic->ic_bss;
4522 struct iwn_node_info node;
4523 int error;
4524
4525 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4526 /* Link LED blinks while monitoring. */
4527 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4528 return 0;
4529 }
4530 if ((error = iwn_set_timing(sc, ni)) != 0) {
4531 aprint_error_dev(sc->sc_dev,
4532 "could not set timing\n");
4533 return error;
4534 }
4535
4536 /* Update adapter configuration. */
4537 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4538 /* Short preamble and slot time are negotiated when associating. */
4539 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4540 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4541 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4542 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4543 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4544 sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4545 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4546 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4547 if (error != 0) {
4548 aprint_error_dev(sc->sc_dev,
4549 "could not update configuration\n");
4550 return error;
4551 }
4552
4553 /* Configuration has changed, set TX power accordingly. */
4554 if ((error = ops->set_txpower(sc, 1)) != 0) {
4555 aprint_error_dev(sc->sc_dev,
4556 "could not set TX power\n");
4557 return error;
4558 }
4559
4560 /* Fake a join to initialize the TX rate. */
4561 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
4562 iwn_newassoc(ni, 1);
4563
4564 /* Add BSS node. */
4565 memset(&node, 0, sizeof node);
4566 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4567 node.id = IWN_ID_BSS;
4568 #ifdef notyet
4569 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4570 IWN_AMDPU_DENSITY(5)); /* 2us */
4571 #endif
4572 DPRINTF(("adding BSS node\n"));
4573 error = ops->add_node(sc, &node, 1);
4574 if (error != 0) {
4575 aprint_error_dev(sc->sc_dev,
4576 "could not add BSS node\n");
4577 return error;
4578 }
4579 DPRINTF(("setting link quality for node %d\n", node.id));
4580 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4581 aprint_error_dev(sc->sc_dev,
4582 "could not setup link quality for node %d\n", node.id);
4583 return error;
4584 }
4585
4586 if ((error = iwn_init_sensitivity(sc)) != 0) {
4587 aprint_error_dev(sc->sc_dev,
4588 "could not set sensitivity\n");
4589 return error;
4590 }
4591 /* Start periodic calibration timer. */
4592 sc->calib.state = IWN_CALIB_STATE_ASSOC;
4593 sc->calib_cnt = 0;
4594 callout_schedule(&sc->calib_to, hz/2);
4595
4596 /* Link LED always on while associated. */
4597 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4598 return 0;
4599 }
4600
4601 #ifdef IWN_HWCRYPTO
4602 /*
4603 * We support CCMP hardware encryption/decryption of unicast frames only.
4604 * HW support for TKIP really sucks. We should let TKIP die anyway.
4605 */
4606 static int
4607 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4608 struct ieee80211_key *k)
4609 {
4610 struct iwn_softc *sc = ic->ic_softc;
4611 struct iwn_ops *ops = &sc->ops;
4612 struct iwn_node *wn = (void *)ni;
4613 struct iwn_node_info node;
4614 uint16_t kflags;
4615
4616 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4617 k->k_cipher != IEEE80211_CIPHER_CCMP)
4618 return ieee80211_set_key(ic, ni, k);
4619
4620 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4621 if (k->k_flags & IEEE80211_KEY_GROUP)
4622 kflags |= IWN_KFLAG_GROUP;
4623
4624 memset(&node, 0, sizeof node);
4625 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4626 sc->broadcast_id : wn->id;
4627 node.control = IWN_NODE_UPDATE;
4628 node.flags = IWN_FLAG_SET_KEY;
4629 node.kflags = htole16(kflags);
4630 node.kid = k->k_id;
4631 memcpy(node.key, k->k_key, k->k_len);
4632 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4633 return ops->add_node(sc, &node, 1);
4634 }
4635
4636 static void
4637 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4638 struct ieee80211_key *k)
4639 {
4640 struct iwn_softc *sc = ic->ic_softc;
4641 struct iwn_ops *ops = &sc->ops;
4642 struct iwn_node *wn = (void *)ni;
4643 struct iwn_node_info node;
4644
4645 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4646 k->k_cipher != IEEE80211_CIPHER_CCMP) {
4647 /* See comment about other ciphers above. */
4648 ieee80211_delete_key(ic, ni, k);
4649 return;
4650 }
4651 if (ic->ic_state != IEEE80211_S_RUN)
4652 return; /* Nothing to do. */
4653 memset(&node, 0, sizeof node);
4654 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4655 sc->broadcast_id : wn->id;
4656 node.control = IWN_NODE_UPDATE;
4657 node.flags = IWN_FLAG_SET_KEY;
4658 node.kflags = htole16(IWN_KFLAG_INVALID);
4659 node.kid = 0xff;
4660 DPRINTF(("delete keys for node %d\n", node.id));
4661 (void)ops->add_node(sc, &node, 1);
4662 }
4663 #endif
4664
4665 /* XXX Added for NetBSD (copied from rev 1.39). */
4666
4667 static int
4668 iwn_wme_update(struct ieee80211com *ic)
4669 {
4670 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
4671 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
4672 struct iwn_softc *sc = ic->ic_ifp->if_softc;
4673 const struct wmeParams *wmep;
4674 struct iwn_edca_params cmd;
4675 int ac;
4676
4677 /* don't override default WME values if WME is not actually enabled */
4678 if (!(ic->ic_flags & IEEE80211_F_WME))
4679 return 0;
4680 cmd.flags = 0;
4681 for (ac = 0; ac < WME_NUM_AC; ac++) {
4682 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4683 cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4684 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4685 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4686 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
4687
4688 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4689 "txop=%d\n", ac, cmd.ac[ac].aifsn,
4690 cmd.ac[ac].cwmin,
4691 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4692 }
4693 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4694 #undef IWN_USEC
4695 #undef IWN_EXP2
4696 }
4697
4698 #ifndef IEEE80211_NO_HT
4699 /*
4700 * This function is called by upper layer when an ADDBA request is received
4701 * from another STA and before the ADDBA response is sent.
4702 */
4703 static int
4704 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4705 uint8_t tid)
4706 {
4707 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4708 struct iwn_softc *sc = ic->ic_softc;
4709 struct iwn_ops *ops = &sc->ops;
4710 struct iwn_node *wn = (void *)ni;
4711 struct iwn_node_info node;
4712
4713 memset(&node, 0, sizeof node);
4714 node.id = wn->id;
4715 node.control = IWN_NODE_UPDATE;
4716 node.flags = IWN_FLAG_SET_ADDBA;
4717 node.addba_tid = tid;
4718 node.addba_ssn = htole16(ba->ba_winstart);
4719 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4720 ba->ba_winstart));
4721 return ops->add_node(sc, &node, 1);
4722 }
4723
4724 /*
4725 * This function is called by upper layer on teardown of an HT-immediate
4726 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
4727 */
4728 static void
4729 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4730 uint8_t tid)
4731 {
4732 struct iwn_softc *sc = ic->ic_softc;
4733 struct iwn_ops *ops = &sc->ops;
4734 struct iwn_node *wn = (void *)ni;
4735 struct iwn_node_info node;
4736
4737 memset(&node, 0, sizeof node);
4738 node.id = wn->id;
4739 node.control = IWN_NODE_UPDATE;
4740 node.flags = IWN_FLAG_SET_DELBA;
4741 node.delba_tid = tid;
4742 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4743 (void)ops->add_node(sc, &node, 1);
4744 }
4745
4746 /*
4747 * This function is called by upper layer when an ADDBA response is received
4748 * from another STA.
4749 */
4750 static int
4751 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4752 uint8_t tid)
4753 {
4754 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4755 struct iwn_softc *sc = ic->ic_softc;
4756 struct iwn_ops *ops = &sc->ops;
4757 struct iwn_node *wn = (void *)ni;
4758 struct iwn_node_info node;
4759 int error;
4760
4761 /* Enable TX for the specified RA/TID. */
4762 wn->disable_tid &= ~(1 << tid);
4763 memset(&node, 0, sizeof node);
4764 node.id = wn->id;
4765 node.control = IWN_NODE_UPDATE;
4766 node.flags = IWN_FLAG_SET_DISABLE_TID;
4767 node.disable_tid = htole16(wn->disable_tid);
4768 error = ops->add_node(sc, &node, 1);
4769 if (error != 0)
4770 return error;
4771
4772 if ((error = iwn_nic_lock(sc)) != 0)
4773 return error;
4774 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4775 iwn_nic_unlock(sc);
4776 return 0;
4777 }
4778
4779 static void
4780 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4781 uint8_t tid)
4782 {
4783 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4784 struct iwn_softc *sc = ic->ic_softc;
4785 struct iwn_ops *ops = &sc->ops;
4786
4787 if (iwn_nic_lock(sc) != 0)
4788 return;
4789 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4790 iwn_nic_unlock(sc);
4791 }
4792
4793 static void
4794 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4795 uint8_t tid, uint16_t ssn)
4796 {
4797 struct iwn_node *wn = (void *)ni;
4798 int qid = 7 + tid;
4799
4800 /* Stop TX scheduler while we're changing its configuration. */
4801 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4802 IWN4965_TXQ_STATUS_CHGACT);
4803
4804 /* Assign RA/TID translation to the queue. */
4805 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4806 wn->id << 4 | tid);
4807
4808 /* Enable chain-building mode for the queue. */
4809 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4810
4811 /* Set starting sequence number from the ADDBA request. */
4812 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4813 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4814
4815 /* Set scheduler window size. */
4816 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4817 IWN_SCHED_WINSZ);
4818 /* Set scheduler frame limit. */
4819 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4820 IWN_SCHED_LIMIT << 16);
4821
4822 /* Enable interrupts for the queue. */
4823 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4824
4825 /* Mark the queue as active. */
4826 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4827 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4828 iwn_tid2fifo[tid] << 1);
4829 }
4830
4831 static void
4832 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4833 {
4834 int qid = 7 + tid;
4835
4836 /* Stop TX scheduler while we're changing its configuration. */
4837 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4838 IWN4965_TXQ_STATUS_CHGACT);
4839
4840 /* Set starting sequence number from the ADDBA request. */
4841 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4842 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4843
4844 /* Disable interrupts for the queue. */
4845 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4846
4847 /* Mark the queue as inactive. */
4848 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4849 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4850 }
4851
4852 static void
4853 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4854 uint8_t tid, uint16_t ssn)
4855 {
4856 struct iwn_node *wn = (void *)ni;
4857 int qid = 10 + tid;
4858
4859 /* Stop TX scheduler while we're changing its configuration. */
4860 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4861 IWN5000_TXQ_STATUS_CHGACT);
4862
4863 /* Assign RA/TID translation to the queue. */
4864 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4865 wn->id << 4 | tid);
4866
4867 /* Enable chain-building mode for the queue. */
4868 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4869
4870 /* Enable aggregation for the queue. */
4871 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4872
4873 /* Set starting sequence number from the ADDBA request. */
4874 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4875 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4876
4877 /* Set scheduler window size and frame limit. */
4878 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4879 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4880
4881 /* Enable interrupts for the queue. */
4882 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4883
4884 /* Mark the queue as active. */
4885 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4886 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4887 }
4888
4889 static void
4890 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4891 {
4892 int qid = 10 + tid;
4893
4894 /* Stop TX scheduler while we're changing its configuration. */
4895 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4896 IWN5000_TXQ_STATUS_CHGACT);
4897
4898 /* Disable aggregation for the queue. */
4899 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4900
4901 /* Set starting sequence number from the ADDBA request. */
4902 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4903 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4904
4905 /* Disable interrupts for the queue. */
4906 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4907
4908 /* Mark the queue as inactive. */
4909 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4910 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4911 }
4912 #endif /* !IEEE80211_NO_HT */
4913
4914 /*
4915 * Query calibration tables from the initialization firmware. We do this
4916 * only once at first boot. Called from a process context.
4917 */
4918 static int
4919 iwn5000_query_calibration(struct iwn_softc *sc)
4920 {
4921 struct iwn5000_calib_config cmd;
4922 int error;
4923
4924 memset(&cmd, 0, sizeof cmd);
4925 cmd.ucode.once.enable = 0xffffffff;
4926 cmd.ucode.once.start = 0xffffffff;
4927 cmd.ucode.once.send = 0xffffffff;
4928 cmd.ucode.flags = 0xffffffff;
4929 DPRINTF(("sending calibration query\n"));
4930 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4931 if (error != 0)
4932 return error;
4933
4934 /* Wait at most two seconds for calibration to complete. */
4935 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4936 error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4937 return error;
4938 }
4939
4940 /*
4941 * Send calibration results to the runtime firmware. These results were
4942 * obtained on first boot from the initialization firmware.
4943 */
4944 static int
4945 iwn5000_send_calibration(struct iwn_softc *sc)
4946 {
4947 int idx, error;
4948
4949 for (idx = 0; idx < 5; idx++) {
4950 if (sc->calibcmd[idx].buf == NULL)
4951 continue; /* No results available. */
4952 DPRINTF(("send calibration result idx=%d len=%d\n",
4953 idx, sc->calibcmd[idx].len));
4954 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4955 sc->calibcmd[idx].len, 0);
4956 if (error != 0) {
4957 aprint_error_dev(sc->sc_dev,
4958 "could not send calibration result\n");
4959 return error;
4960 }
4961 }
4962 return 0;
4963 }
4964
4965 static int
4966 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4967 {
4968 struct iwn5000_wimax_coex wimax;
4969
4970 #ifdef notyet
4971 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4972 /* Enable WiMAX coexistence for combo adapters. */
4973 wimax.flags =
4974 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4975 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4976 IWN_WIMAX_COEX_STA_TABLE_VALID |
4977 IWN_WIMAX_COEX_ENABLE;
4978 memcpy(wimax.events, iwn6050_wimax_events,
4979 sizeof iwn6050_wimax_events);
4980 } else
4981 #endif
4982 {
4983 /* Disable WiMAX coexistence. */
4984 wimax.flags = 0;
4985 memset(wimax.events, 0, sizeof wimax.events);
4986 }
4987 DPRINTF(("Configuring WiMAX coexistence\n"));
4988 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4989 }
4990
4991 /*
4992 * This function is called after the runtime firmware notifies us of its
4993 * readiness (called in a process context).
4994 */
4995 static int
4996 iwn4965_post_alive(struct iwn_softc *sc)
4997 {
4998 int error, qid;
4999
5000 if ((error = iwn_nic_lock(sc)) != 0)
5001 return error;
5002
5003 /* Clear TX scheduler state in SRAM. */
5004 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5005 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5006 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5007
5008 /* Set physical address of TX scheduler rings (1KB aligned). */
5009 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5010
5011 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5012
5013 /* Disable chain mode for all our 16 queues. */
5014 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5015
5016 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5017 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5018 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5019
5020 /* Set scheduler window size. */
5021 iwn_mem_write(sc, sc->sched_base +
5022 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5023 /* Set scheduler frame limit. */
5024 iwn_mem_write(sc, sc->sched_base +
5025 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5026 IWN_SCHED_LIMIT << 16);
5027 }
5028
5029 /* Enable interrupts for all our 16 queues. */
5030 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5031 /* Identify TX FIFO rings (0-7). */
5032 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5033
5034 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5035 for (qid = 0; qid < 7; qid++) {
5036 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5037 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5038 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5039 }
5040 iwn_nic_unlock(sc);
5041 return 0;
5042 }
5043
5044 /*
5045 * This function is called after the initialization or runtime firmware
5046 * notifies us of its readiness (called in a process context).
5047 */
5048 static int
5049 iwn5000_post_alive(struct iwn_softc *sc)
5050 {
5051 int error, qid;
5052
5053 /* Switch to using ICT interrupt mode. */
5054 iwn5000_ict_reset(sc);
5055
5056 if ((error = iwn_nic_lock(sc)) != 0)
5057 return error;
5058
5059 /* Clear TX scheduler state in SRAM. */
5060 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5061 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5062 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5063
5064 /* Set physical address of TX scheduler rings (1KB aligned). */
5065 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5066
5067 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5068
5069 /* Enable chain mode for all queues, except command queue. */
5070 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5071 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5072
5073 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5074 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5075 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5076
5077 iwn_mem_write(sc, sc->sched_base +
5078 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5079 /* Set scheduler window size and frame limit. */
5080 iwn_mem_write(sc, sc->sched_base +
5081 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5082 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5083 }
5084
5085 /* Enable interrupts for all our 20 queues. */
5086 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5087 /* Identify TX FIFO rings (0-7). */
5088 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5089
5090 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5091 for (qid = 0; qid < 7; qid++) {
5092 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5093 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5094 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5095 }
5096 iwn_nic_unlock(sc);
5097
5098 /* Configure WiMAX coexistence for combo adapters. */
5099 error = iwn5000_send_wimax_coex(sc);
5100 if (error != 0) {
5101 aprint_error_dev(sc->sc_dev,
5102 "could not configure WiMAX coexistence\n");
5103 return error;
5104 }
5105 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5106 struct iwn5000_phy_calib_crystal cmd;
5107
5108 /* Perform crystal calibration. */
5109 memset(&cmd, 0, sizeof cmd);
5110 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5111 cmd.ngroups = 1;
5112 cmd.isvalid = 1;
5113 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5114 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5115 DPRINTF(("sending crystal calibration %d, %d\n",
5116 cmd.cap_pin[0], cmd.cap_pin[1]));
5117 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5118 if (error != 0) {
5119 aprint_error_dev(sc->sc_dev,
5120 "crystal calibration failed\n");
5121 return error;
5122 }
5123 }
5124 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5125 /* Query calibration from the initialization firmware. */
5126 if ((error = iwn5000_query_calibration(sc)) != 0) {
5127 aprint_error_dev(sc->sc_dev,
5128 "could not query calibration\n");
5129 return error;
5130 }
5131 /*
5132 * We have the calibration results now, reboot with the
5133 * runtime firmware (call ourselves recursively!)
5134 */
5135 iwn_hw_stop(sc);
5136 error = iwn_hw_init(sc);
5137 } else {
5138 /* Send calibration results to runtime firmware. */
5139 error = iwn5000_send_calibration(sc);
5140 }
5141 return error;
5142 }
5143
5144 /*
5145 * The firmware boot code is small and is intended to be copied directly into
5146 * the NIC internal memory (no DMA transfer).
5147 */
5148 static int
5149 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5150 {
5151 int error, ntries;
5152
5153 size /= sizeof (uint32_t);
5154
5155 if ((error = iwn_nic_lock(sc)) != 0)
5156 return error;
5157
5158 /* Copy microcode image into NIC memory. */
5159 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5160 (const uint32_t *)ucode, size);
5161
5162 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5163 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5164 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5165
5166 /* Start boot load now. */
5167 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5168
5169 /* Wait for transfer to complete. */
5170 for (ntries = 0; ntries < 1000; ntries++) {
5171 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5172 IWN_BSM_WR_CTRL_START))
5173 break;
5174 DELAY(10);
5175 }
5176 if (ntries == 1000) {
5177 aprint_error_dev(sc->sc_dev,
5178 "could not load boot firmware\n");
5179 iwn_nic_unlock(sc);
5180 return ETIMEDOUT;
5181 }
5182
5183 /* Enable boot after power up. */
5184 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5185
5186 iwn_nic_unlock(sc);
5187 return 0;
5188 }
5189
5190 static int
5191 iwn4965_load_firmware(struct iwn_softc *sc)
5192 {
5193 struct iwn_fw_info *fw = &sc->fw;
5194 struct iwn_dma_info *dma = &sc->fw_dma;
5195 int error;
5196
5197 /* Copy initialization sections into pre-allocated DMA-safe memory. */
5198 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5199 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5200 BUS_DMASYNC_PREWRITE);
5201 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5202 fw->init.text, fw->init.textsz);
5203 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5204 fw->init.textsz, BUS_DMASYNC_PREWRITE);
5205
5206 /* Tell adapter where to find initialization sections. */
5207 if ((error = iwn_nic_lock(sc)) != 0)
5208 return error;
5209 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5210 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5211 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5212 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5213 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5214 iwn_nic_unlock(sc);
5215
5216 /* Load firmware boot code. */
5217 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5218 if (error != 0) {
5219 aprint_error_dev(sc->sc_dev,
5220 "could not load boot firmware\n");
5221 return error;
5222 }
5223 /* Now press "execute". */
5224 IWN_WRITE(sc, IWN_RESET, 0);
5225
5226 /* Wait at most one second for first alive notification. */
5227 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5228 aprint_error_dev(sc->sc_dev,
5229 "timeout waiting for adapter to initialize\n");
5230 return error;
5231 }
5232
5233 /* Retrieve current temperature for initial TX power calibration. */
5234 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5235 sc->temp = iwn4965_get_temperature(sc);
5236
5237 /* Copy runtime sections into pre-allocated DMA-safe memory. */
5238 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5239 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5240 BUS_DMASYNC_PREWRITE);
5241 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5242 fw->main.text, fw->main.textsz);
5243 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5244 fw->main.textsz, BUS_DMASYNC_PREWRITE);
5245
5246 /* Tell adapter where to find runtime sections. */
5247 if ((error = iwn_nic_lock(sc)) != 0)
5248 return error;
5249 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5250 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5251 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5252 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5253 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5254 IWN_FW_UPDATED | fw->main.textsz);
5255 iwn_nic_unlock(sc);
5256
5257 return 0;
5258 }
5259
5260 static int
5261 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5262 const uint8_t *section, int size)
5263 {
5264 struct iwn_dma_info *dma = &sc->fw_dma;
5265 int error;
5266
5267 /* Copy firmware section into pre-allocated DMA-safe memory. */
5268 memcpy(dma->vaddr, section, size);
5269 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5270
5271 if ((error = iwn_nic_lock(sc)) != 0)
5272 return error;
5273
5274 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5275 IWN_FH_TX_CONFIG_DMA_PAUSE);
5276
5277 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5278 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5279 IWN_LOADDR(dma->paddr));
5280 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5281 IWN_HIADDR(dma->paddr) << 28 | size);
5282 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5283 IWN_FH_TXBUF_STATUS_TBNUM(1) |
5284 IWN_FH_TXBUF_STATUS_TBIDX(1) |
5285 IWN_FH_TXBUF_STATUS_TFBD_VALID);
5286
5287 /* Kick Flow Handler to start DMA transfer. */
5288 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5289 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5290
5291 iwn_nic_unlock(sc);
5292
5293 /* Wait at most five seconds for FH DMA transfer to complete. */
5294 return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5295 }
5296
5297 static int
5298 iwn5000_load_firmware(struct iwn_softc *sc)
5299 {
5300 struct iwn_fw_part *fw;
5301 int error;
5302
5303 /* Load the initialization firmware on first boot only. */
5304 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5305 &sc->fw.main : &sc->fw.init;
5306
5307 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5308 fw->text, fw->textsz);
5309 if (error != 0) {
5310 aprint_error_dev(sc->sc_dev,
5311 "could not load firmware %s section\n", ".text");
5312 return error;
5313 }
5314 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5315 fw->data, fw->datasz);
5316 if (error != 0) {
5317 aprint_error_dev(sc->sc_dev,
5318 "could not load firmware %s section\n", ".data");
5319 return error;
5320 }
5321
5322 /* Now press "execute". */
5323 IWN_WRITE(sc, IWN_RESET, 0);
5324 return 0;
5325 }
5326
5327 /*
5328 * Extract text and data sections from a legacy firmware image.
5329 */
5330 static int
5331 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5332 {
5333 const uint32_t *ptr;
5334 size_t hdrlen = 24;
5335 uint32_t rev;
5336
5337 ptr = (const uint32_t *)fw->data;
5338 rev = le32toh(*ptr++);
5339
5340 /* Check firmware API version. */
5341 if (IWN_FW_API(rev) <= 1) {
5342 aprint_error_dev(sc->sc_dev,
5343 "bad firmware, need API version >=2\n");
5344 return EINVAL;
5345 }
5346 if (IWN_FW_API(rev) >= 3) {
5347 /* Skip build number (version 2 header). */
5348 hdrlen += 4;
5349 ptr++;
5350 }
5351 if (fw->size < hdrlen) {
5352 aprint_error_dev(sc->sc_dev,
5353 "firmware too short: %zd bytes\n", fw->size);
5354 return EINVAL;
5355 }
5356 fw->main.textsz = le32toh(*ptr++);
5357 fw->main.datasz = le32toh(*ptr++);
5358 fw->init.textsz = le32toh(*ptr++);
5359 fw->init.datasz = le32toh(*ptr++);
5360 fw->boot.textsz = le32toh(*ptr++);
5361
5362 /* Check that all firmware sections fit. */
5363 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5364 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5365 aprint_error_dev(sc->sc_dev,
5366 "firmware too short: %zd bytes\n", fw->size);
5367 return EINVAL;
5368 }
5369
5370 /* Get pointers to firmware sections. */
5371 fw->main.text = (const uint8_t *)ptr;
5372 fw->main.data = fw->main.text + fw->main.textsz;
5373 fw->init.text = fw->main.data + fw->main.datasz;
5374 fw->init.data = fw->init.text + fw->init.textsz;
5375 fw->boot.text = fw->init.data + fw->init.datasz;
5376 return 0;
5377 }
5378
5379 /*
5380 * Extract text and data sections from a TLV firmware image.
5381 */
5382 static int
5383 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5384 uint16_t alt)
5385 {
5386 const struct iwn_fw_tlv_hdr *hdr;
5387 const struct iwn_fw_tlv *tlv;
5388 const uint8_t *ptr, *end;
5389 uint64_t altmask;
5390 uint32_t len;
5391
5392 if (fw->size < sizeof (*hdr)) {
5393 aprint_error_dev(sc->sc_dev,
5394 "firmware too short: %zd bytes\n", fw->size);
5395 return EINVAL;
5396 }
5397 hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5398 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5399 aprint_error_dev(sc->sc_dev,
5400 "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5401 return EINVAL;
5402 }
5403 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5404 le32toh(hdr->build)));
5405
5406 /*
5407 * Select the closest supported alternative that is less than
5408 * or equal to the specified one.
5409 */
5410 altmask = le64toh(hdr->altmask);
5411 while (alt > 0 && !(altmask & (1ULL << alt)))
5412 alt--; /* Downgrade. */
5413 DPRINTF(("using alternative %d\n", alt));
5414
5415 ptr = (const uint8_t *)(hdr + 1);
5416 end = (const uint8_t *)(fw->data + fw->size);
5417
5418 /* Parse type-length-value fields. */
5419 while (ptr + sizeof (*tlv) <= end) {
5420 tlv = (const struct iwn_fw_tlv *)ptr;
5421 len = le32toh(tlv->len);
5422
5423 ptr += sizeof (*tlv);
5424 if (ptr + len > end) {
5425 aprint_error_dev(sc->sc_dev,
5426 "firmware too short: %zd bytes\n", fw->size);
5427 return EINVAL;
5428 }
5429 /* Skip other alternatives. */
5430 if (tlv->alt != 0 && tlv->alt != htole16(alt))
5431 goto next;
5432
5433 switch (le16toh(tlv->type)) {
5434 case IWN_FW_TLV_MAIN_TEXT:
5435 fw->main.text = ptr;
5436 fw->main.textsz = len;
5437 break;
5438 case IWN_FW_TLV_MAIN_DATA:
5439 fw->main.data = ptr;
5440 fw->main.datasz = len;
5441 break;
5442 case IWN_FW_TLV_INIT_TEXT:
5443 fw->init.text = ptr;
5444 fw->init.textsz = len;
5445 break;
5446 case IWN_FW_TLV_INIT_DATA:
5447 fw->init.data = ptr;
5448 fw->init.datasz = len;
5449 break;
5450 case IWN_FW_TLV_BOOT_TEXT:
5451 fw->boot.text = ptr;
5452 fw->boot.textsz = len;
5453 break;
5454 default:
5455 DPRINTF(("TLV type %d not handled\n",
5456 le16toh(tlv->type)));
5457 break;
5458 }
5459 next: /* TLV fields are 32-bit aligned. */
5460 ptr += (len + 3) & ~3;
5461 }
5462 return 0;
5463 }
5464
5465 static int
5466 iwn_read_firmware(struct iwn_softc *sc)
5467 {
5468 struct iwn_fw_info *fw = &sc->fw;
5469 firmware_handle_t fwh;
5470 int error;
5471
5472 /* Initialize for error returns */
5473 fw->data = NULL;
5474 fw->size = 0;
5475
5476 /* Open firmware image. */
5477 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5478 aprint_error_dev(sc->sc_dev,
5479 "could not get firmware handle %s\n", sc->fwname);
5480 return error;
5481 }
5482 fw->size = firmware_get_size(fwh);
5483 if (fw->size < sizeof (uint32_t)) {
5484 aprint_error_dev(sc->sc_dev,
5485 "firmware too short: %zd bytes\n", fw->size);
5486 firmware_close(fwh);
5487 return EINVAL;
5488 }
5489
5490 /* Read the firmware. */
5491 fw->data = firmware_malloc(fw->size);
5492 if (fw->data == NULL) {
5493 aprint_error_dev(sc->sc_dev,
5494 "not enough memory to stock firmware %s\n", sc->fwname);
5495 firmware_close(fwh);
5496 return ENOMEM;
5497 }
5498 error = firmware_read(fwh, 0, fw->data, fw->size);
5499 firmware_close(fwh);
5500 if (error != 0) {
5501 aprint_error_dev(sc->sc_dev,
5502 "could not read firmware %s\n", sc->fwname);
5503 goto out;
5504 }
5505
5506 /* Retrieve text and data sections. */
5507 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
5508 error = iwn_read_firmware_leg(sc, fw);
5509 else
5510 error = iwn_read_firmware_tlv(sc, fw, 1);
5511 if (error != 0) {
5512 aprint_error_dev(sc->sc_dev,
5513 "could not read firmware sections\n");
5514 goto out;
5515 }
5516
5517 /* Make sure text and data sections fit in hardware memory. */
5518 if (fw->main.textsz > sc->fw_text_maxsz ||
5519 fw->main.datasz > sc->fw_data_maxsz ||
5520 fw->init.textsz > sc->fw_text_maxsz ||
5521 fw->init.datasz > sc->fw_data_maxsz ||
5522 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5523 (fw->boot.textsz & 3) != 0) {
5524 aprint_error_dev(sc->sc_dev,
5525 "firmware sections too large\n");
5526 goto out;
5527 }
5528
5529 /* We can proceed with loading the firmware. */
5530 return 0;
5531 out:
5532 firmware_free(fw->data, fw->size);
5533 fw->data = NULL;
5534 fw->size = 0;
5535 return error ? error : EINVAL;
5536 }
5537
5538 static int
5539 iwn_clock_wait(struct iwn_softc *sc)
5540 {
5541 int ntries;
5542
5543 /* Set "initialization complete" bit. */
5544 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5545
5546 /* Wait for clock stabilization. */
5547 for (ntries = 0; ntries < 2500; ntries++) {
5548 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5549 return 0;
5550 DELAY(10);
5551 }
5552 aprint_error_dev(sc->sc_dev,
5553 "timeout waiting for clock stabilization\n");
5554 return ETIMEDOUT;
5555 }
5556
5557 static int
5558 iwn_apm_init(struct iwn_softc *sc)
5559 {
5560 pcireg_t reg;
5561 int error;
5562
5563 /* Disable L0s exit timer (NMI bug workaround). */
5564 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5565 /* Don't wait for ICH L0s (ICH bug workaround). */
5566 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5567
5568 /* Set FH wait threshold to max (HW bug under stress workaround). */
5569 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5570
5571 /* Enable HAP INTA to move adapter from L1a to L0s. */
5572 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5573
5574 /* Retrieve PCIe Active State Power Management (ASPM). */
5575 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5576 sc->sc_cap_off + PCIE_LCSR);
5577 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5578 if (reg & PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
5579 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5580 else
5581 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5582
5583 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5584 sc->hw_type <= IWN_HW_REV_TYPE_1000)
5585 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5586
5587 /* Wait for clock stabilization before accessing prph. */
5588 if ((error = iwn_clock_wait(sc)) != 0)
5589 return error;
5590
5591 if ((error = iwn_nic_lock(sc)) != 0)
5592 return error;
5593 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5594 /* Enable DMA and BSM (Bootstrap State Machine). */
5595 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5596 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5597 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5598 } else {
5599 /* Enable DMA. */
5600 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5601 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5602 }
5603 DELAY(20);
5604 /* Disable L1-Active. */
5605 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5606 iwn_nic_unlock(sc);
5607
5608 return 0;
5609 }
5610
5611 static void
5612 iwn_apm_stop_master(struct iwn_softc *sc)
5613 {
5614 int ntries;
5615
5616 /* Stop busmaster DMA activity. */
5617 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5618 for (ntries = 0; ntries < 100; ntries++) {
5619 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5620 return;
5621 DELAY(10);
5622 }
5623 aprint_error_dev(sc->sc_dev,
5624 "timeout waiting for master\n");
5625 }
5626
5627 static void
5628 iwn_apm_stop(struct iwn_softc *sc)
5629 {
5630 iwn_apm_stop_master(sc);
5631
5632 /* Reset the entire device. */
5633 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5634 DELAY(10);
5635 /* Clear "initialization complete" bit. */
5636 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5637 }
5638
5639 static int
5640 iwn4965_nic_config(struct iwn_softc *sc)
5641 {
5642 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5643 /*
5644 * I don't believe this to be correct but this is what the
5645 * vendor driver is doing. Probably the bits should not be
5646 * shifted in IWN_RFCFG_*.
5647 */
5648 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5649 IWN_RFCFG_TYPE(sc->rfcfg) |
5650 IWN_RFCFG_STEP(sc->rfcfg) |
5651 IWN_RFCFG_DASH(sc->rfcfg));
5652 }
5653 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5654 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5655 return 0;
5656 }
5657
5658 static int
5659 iwn5000_nic_config(struct iwn_softc *sc)
5660 {
5661 uint32_t tmp;
5662 int error;
5663
5664 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5665 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5666 IWN_RFCFG_TYPE(sc->rfcfg) |
5667 IWN_RFCFG_STEP(sc->rfcfg) |
5668 IWN_RFCFG_DASH(sc->rfcfg));
5669 }
5670 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5671 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5672
5673 if ((error = iwn_nic_lock(sc)) != 0)
5674 return error;
5675 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5676
5677 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5678 /*
5679 * Select first Switching Voltage Regulator (1.32V) to
5680 * solve a stability issue related to noisy DC2DC line
5681 * in the silicon of 1000 Series.
5682 */
5683 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5684 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5685 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5686 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5687 }
5688 iwn_nic_unlock(sc);
5689
5690 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5691 /* Use internal power amplifier only. */
5692 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5693 }
5694 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
5695 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
5696 /* Indicate that ROM calibration version is >=6. */
5697 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5698 }
5699 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
5700 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
5701 return 0;
5702 }
5703
5704 /*
5705 * Take NIC ownership over Intel Active Management Technology (AMT).
5706 */
5707 static int
5708 iwn_hw_prepare(struct iwn_softc *sc)
5709 {
5710 int ntries;
5711
5712 /* Check if hardware is ready. */
5713 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5714 for (ntries = 0; ntries < 5; ntries++) {
5715 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5716 IWN_HW_IF_CONFIG_NIC_READY)
5717 return 0;
5718 DELAY(10);
5719 }
5720
5721 /* Hardware not ready, force into ready state. */
5722 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5723 for (ntries = 0; ntries < 15000; ntries++) {
5724 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5725 IWN_HW_IF_CONFIG_PREPARE_DONE))
5726 break;
5727 DELAY(10);
5728 }
5729 if (ntries == 15000)
5730 return ETIMEDOUT;
5731
5732 /* Hardware should be ready now. */
5733 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5734 for (ntries = 0; ntries < 5; ntries++) {
5735 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5736 IWN_HW_IF_CONFIG_NIC_READY)
5737 return 0;
5738 DELAY(10);
5739 }
5740 return ETIMEDOUT;
5741 }
5742
5743 static int
5744 iwn_hw_init(struct iwn_softc *sc)
5745 {
5746 struct iwn_ops *ops = &sc->ops;
5747 int error, chnl, qid;
5748
5749 /* Clear pending interrupts. */
5750 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5751
5752 if ((error = iwn_apm_init(sc)) != 0) {
5753 aprint_error_dev(sc->sc_dev,
5754 "could not power ON adapter\n");
5755 return error;
5756 }
5757
5758 /* Select VMAIN power source. */
5759 if ((error = iwn_nic_lock(sc)) != 0)
5760 return error;
5761 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5762 iwn_nic_unlock(sc);
5763
5764 /* Perform adapter-specific initialization. */
5765 if ((error = ops->nic_config(sc)) != 0)
5766 return error;
5767
5768 /* Initialize RX ring. */
5769 if ((error = iwn_nic_lock(sc)) != 0)
5770 return error;
5771 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5772 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5773 /* Set physical address of RX ring (256-byte aligned). */
5774 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5775 /* Set physical address of RX status (16-byte aligned). */
5776 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5777 /* Enable RX. */
5778 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5779 IWN_FH_RX_CONFIG_ENA |
5780 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
5781 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
5782 IWN_FH_RX_CONFIG_SINGLE_FRAME |
5783 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5784 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5785 iwn_nic_unlock(sc);
5786 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5787
5788 if ((error = iwn_nic_lock(sc)) != 0)
5789 return error;
5790
5791 /* Initialize TX scheduler. */
5792 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5793
5794 /* Set physical address of "keep warm" page (16-byte aligned). */
5795 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5796
5797 /* Initialize TX rings. */
5798 for (qid = 0; qid < sc->ntxqs; qid++) {
5799 struct iwn_tx_ring *txq = &sc->txq[qid];
5800
5801 /* Set physical address of TX ring (256-byte aligned). */
5802 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5803 txq->desc_dma.paddr >> 8);
5804 }
5805 iwn_nic_unlock(sc);
5806
5807 /* Enable DMA channels. */
5808 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5809 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5810 IWN_FH_TX_CONFIG_DMA_ENA |
5811 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5812 }
5813
5814 /* Clear "radio off" and "commands blocked" bits. */
5815 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5816 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5817
5818 /* Clear pending interrupts. */
5819 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5820 /* Enable interrupt coalescing. */
5821 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5822 /* Enable interrupts. */
5823 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5824
5825 /* _Really_ make sure "radio off" bit is cleared! */
5826 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5827 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5828
5829 /* Enable shadow registers. */
5830 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
5831 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
5832
5833 if ((error = ops->load_firmware(sc)) != 0) {
5834 aprint_error_dev(sc->sc_dev,
5835 "could not load firmware\n");
5836 return error;
5837 }
5838 /* Wait at most one second for firmware alive notification. */
5839 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5840 aprint_error_dev(sc->sc_dev,
5841 "timeout waiting for adapter to initialize\n");
5842 return error;
5843 }
5844 /* Do post-firmware initialization. */
5845 return ops->post_alive(sc);
5846 }
5847
5848 static void
5849 iwn_hw_stop(struct iwn_softc *sc)
5850 {
5851 int chnl, qid, ntries;
5852
5853 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5854
5855 /* Disable interrupts. */
5856 IWN_WRITE(sc, IWN_INT_MASK, 0);
5857 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5858 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5859 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5860
5861 /* Make sure we no longer hold the NIC lock. */
5862 iwn_nic_unlock(sc);
5863
5864 /* Stop TX scheduler. */
5865 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5866
5867 /* Stop all DMA channels. */
5868 if (iwn_nic_lock(sc) == 0) {
5869 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5870 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5871 for (ntries = 0; ntries < 200; ntries++) {
5872 if (IWN_READ(sc, IWN_FH_TX_STATUS) &
5873 IWN_FH_TX_STATUS_IDLE(chnl))
5874 break;
5875 DELAY(10);
5876 }
5877 }
5878 iwn_nic_unlock(sc);
5879 }
5880
5881 /* Stop RX ring. */
5882 iwn_reset_rx_ring(sc, &sc->rxq);
5883
5884 /* Reset all TX rings. */
5885 for (qid = 0; qid < sc->ntxqs; qid++)
5886 iwn_reset_tx_ring(sc, &sc->txq[qid]);
5887
5888 if (iwn_nic_lock(sc) == 0) {
5889 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5890 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5891 iwn_nic_unlock(sc);
5892 }
5893 DELAY(5);
5894 /* Power OFF adapter. */
5895 iwn_apm_stop(sc);
5896 }
5897
5898 static int
5899 iwn_init(struct ifnet *ifp)
5900 {
5901 struct iwn_softc *sc = ifp->if_softc;
5902 struct ieee80211com *ic = &sc->sc_ic;
5903 int error;
5904
5905 mutex_enter(&sc->sc_mtx);
5906 if (sc->sc_flags & IWN_FLAG_HW_INITED)
5907 goto out;
5908 if ((error = iwn_hw_prepare(sc)) != 0) {
5909 aprint_error_dev(sc->sc_dev,
5910 "hardware not ready\n");
5911 goto fail;
5912 }
5913
5914 /* Check that the radio is not disabled by hardware switch. */
5915 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5916 aprint_error_dev(sc->sc_dev,
5917 "radio is disabled by hardware switch\n");
5918 error = EPERM; /* :-) */
5919 goto fail;
5920 }
5921
5922 /* Read firmware images from the filesystem. */
5923 if ((error = iwn_read_firmware(sc)) != 0) {
5924 aprint_error_dev(sc->sc_dev,
5925 "could not read firmware\n");
5926 goto fail;
5927 }
5928
5929 /* Initialize interrupt mask to default value. */
5930 sc->int_mask = IWN_INT_MASK_DEF;
5931 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5932
5933 /* Initialize hardware and upload firmware. */
5934 KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
5935 error = iwn_hw_init(sc);
5936 firmware_free(sc->fw.data, sc->fw.size);
5937 sc->fw.data = NULL;
5938 sc->fw.size = 0;
5939 if (error != 0) {
5940 aprint_error_dev(sc->sc_dev,
5941 "could not initialize hardware\n");
5942 goto fail;
5943 }
5944
5945 /* Configure adapter now that it is ready. */
5946 if ((error = iwn_config(sc)) != 0) {
5947 aprint_error_dev(sc->sc_dev,
5948 "could not configure device\n");
5949 goto fail;
5950 }
5951
5952 ifp->if_flags &= ~IFF_OACTIVE;
5953 ifp->if_flags |= IFF_RUNNING;
5954
5955 if (ic->ic_opmode != IEEE80211_M_MONITOR)
5956 ieee80211_begin_scan(ic, 0);
5957 else
5958 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5959
5960 sc->sc_flags |= IWN_FLAG_HW_INITED;
5961 out:
5962 mutex_exit(&sc->sc_mtx);
5963 return 0;
5964
5965 fail: mutex_exit(&sc->sc_mtx);
5966 iwn_stop(ifp, 1);
5967 return error;
5968 }
5969
5970 static void
5971 iwn_stop(struct ifnet *ifp, int disable)
5972 {
5973 struct iwn_softc *sc = ifp->if_softc;
5974 struct ieee80211com *ic = &sc->sc_ic;
5975
5976 if (!disable)
5977 mutex_enter(&sc->sc_mtx);
5978 sc->sc_flags &= ~IWN_FLAG_HW_INITED;
5979 ifp->if_timer = sc->sc_tx_timer = 0;
5980 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5981
5982 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5983
5984 /* Power OFF hardware. */
5985 iwn_hw_stop(sc);
5986
5987 if (!disable)
5988 mutex_exit(&sc->sc_mtx);
5989 }
5990
5991 /*
5992 * XXX MCLGETI alternative
5993 *
5994 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
5995 * as long as there are available free buffers then it uses MEXTMALLOC.,
5996 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
5997 * The MCLGET4K code is used for testing an alternative mbuf cache.
5998 */
5999
6000 static struct mbuf *
6001 MCLGETIalt(struct iwn_softc *sc, int how,
6002 struct ifnet *ifp __unused, u_int size)
6003 {
6004 struct mbuf *m;
6005 #ifdef IWN_USE_RBUF
6006 struct iwn_rbuf *rbuf;
6007 #endif
6008
6009 MGETHDR(m, how, MT_DATA);
6010 if (m == NULL)
6011 return NULL;
6012
6013 #ifdef IWN_USE_RBUF
6014 if (sc->rxq.nb_free_entries > 0 &&
6015 (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6016 /* Attach buffer to mbuf header. */
6017 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6018 m->m_flags |= M_EXT_RW;
6019 }
6020 else {
6021 MEXTMALLOC(m, size, how);
6022 if ((m->m_flags & M_EXT) == 0) {
6023 m_freem(m);
6024 return NULL;
6025 }
6026 }
6027
6028 #else
6029 #ifdef MCLGET4K
6030 if (size == 4096)
6031 MCLGET4K(m, how);
6032 else
6033 panic("size must be 4k");
6034 #else
6035 MEXTMALLOC(m, size, how);
6036 #endif
6037 if ((m->m_flags & M_EXT) == 0) {
6038 m_freem(m);
6039 return NULL;
6040 }
6041 #endif
6042
6043 return m;
6044 }
6045
6046 #ifdef IWN_USE_RBUF
6047 static struct iwn_rbuf *
6048 iwn_alloc_rbuf(struct iwn_softc *sc)
6049 {
6050 struct iwn_rbuf *rbuf;
6051 mutex_enter(&sc->rxq.freelist_mtx);
6052
6053 rbuf = SLIST_FIRST(&sc->rxq.freelist);
6054 if (rbuf != NULL) {
6055 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6056 sc->rxq.nb_free_entries --;
6057 }
6058 mutex_exit(&sc->rxq.freelist_mtx);
6059 return rbuf;
6060 }
6061
6062 /*
6063 * This is called automatically by the network stack when the mbuf to which
6064 * our RX buffer is attached is freed.
6065 */
6066 static void
6067 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
6068 {
6069 struct iwn_rbuf *rbuf = arg;
6070 struct iwn_softc *sc = rbuf->sc;
6071
6072 /* Put the RX buffer back in the free list. */
6073 mutex_enter(&sc->rxq.freelist_mtx);
6074 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6075 mutex_exit(&sc->rxq.freelist_mtx);
6076
6077 sc->rxq.nb_free_entries ++;
6078 if (__predict_true(m != NULL))
6079 pool_cache_put(mb_cache, m);
6080 }
6081
6082 static int
6083 iwn_alloc_rpool(struct iwn_softc *sc)
6084 {
6085 struct iwn_rx_ring *ring = &sc->rxq;
6086 struct iwn_rbuf *rbuf;
6087 int i, error;
6088
6089 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6090
6091 /* Allocate a big chunk of DMA'able memory... */
6092 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6093 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6094 if (error != 0) {
6095 aprint_error_dev(sc->sc_dev,
6096 "could not allocate RX buffers DMA memory\n");
6097 return error;
6098 }
6099 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6100 SLIST_INIT(&ring->freelist);
6101 for (i = 0; i < IWN_RBUF_COUNT; i++) {
6102 rbuf = &ring->rbuf[i];
6103
6104 rbuf->sc = sc; /* Backpointer for callbacks. */
6105 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6106 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6107
6108 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6109 }
6110 ring->nb_free_entries = IWN_RBUF_COUNT;
6111 return 0;
6112 }
6113
6114 static void
6115 iwn_free_rpool(struct iwn_softc *sc)
6116 {
6117 iwn_dma_contig_free(&sc->rxq.buf_dma);
6118 }
6119 #endif
6120
6121 /*
6122 * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6123 * Copyright (c) 2001 Atsushi Onoe
6124 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6125 * Copyright (c) 2007-2009 Damien Bergamini
6126 * All rights reserved.
6127 */
6128
6129 /*
6130 * Add an SSID element to a frame (see 7.3.2.1).
6131 */
6132 static u_int8_t *
6133 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6134 {
6135 *frm++ = IEEE80211_ELEMID_SSID;
6136 *frm++ = len;
6137 memcpy(frm, ssid, len);
6138 return frm + len;
6139 }
6140
6141 /*
6142 * Add a supported rates element to a frame (see 7.3.2.2).
6143 */
6144 static u_int8_t *
6145 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6146 {
6147 int nrates;
6148
6149 *frm++ = IEEE80211_ELEMID_RATES;
6150 nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6151 *frm++ = nrates;
6152 memcpy(frm, rs->rs_rates, nrates);
6153 return frm + nrates;
6154 }
6155
6156 /*
6157 * Add an extended supported rates element to a frame (see 7.3.2.14).
6158 */
6159 static u_int8_t *
6160 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6161 {
6162 int nrates;
6163
6164 KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6165
6166 *frm++ = IEEE80211_ELEMID_XRATES;
6167 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6168 *frm++ = nrates;
6169 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6170 return frm + nrates;
6171 }
6172
6173 /*
6174 * XXX: Hack to set the current channel to the value advertised in beacons or
6175 * probe responses. Only used during AP detection.
6176 * XXX: Duplicated from if_iwi.c
6177 */
6178 static void
6179 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6180 {
6181 struct ieee80211_frame *wh;
6182 uint8_t subtype;
6183 uint8_t *frm, *efrm;
6184
6185 wh = mtod(m, struct ieee80211_frame *);
6186
6187 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6188 return;
6189
6190 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6191
6192 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6193 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6194 return;
6195
6196 frm = (uint8_t *)(wh + 1);
6197 efrm = mtod(m, uint8_t *) + m->m_len;
6198
6199 frm += 12; /* skip tstamp, bintval and capinfo fields */
6200 while (frm < efrm) {
6201 if (*frm == IEEE80211_ELEMID_DSPARMS)
6202 #if IEEE80211_CHAN_MAX < 255
6203 if (frm[2] <= IEEE80211_CHAN_MAX)
6204 #endif
6205 ic->ic_curchan = &ic->ic_channels[frm[2]];
6206
6207 frm += frm[1] + 2;
6208 }
6209 }
6210
6211 #ifdef notyetMODULE
6212
6213 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6214
6215 #ifdef _MODULE
6216 #include "ioconf.c"
6217 #endif
6218
6219 static int
6220 if_iwn_modcmd(modcmd_t cmd, void *data)
6221 {
6222 int error = 0;
6223
6224 switch (cmd) {
6225 case MODULE_CMD_INIT:
6226 #ifdef _MODULE
6227 error = config_init_component(cfdriver_ioconf_if_iwn,
6228 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6229 #endif
6230 return error;
6231 case MODULE_CMD_FINI:
6232 #ifdef _MODULE
6233 error = config_fini_component(cfdriver_ioconf_if_iwn,
6234 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6235 #endif
6236 return error;
6237 case MODULE_CMD_AUTOUNLOAD:
6238 #ifdef _MODULE
6239 /* XXX This is not optional! */
6240 #endif
6241 return error;
6242 default:
6243 return ENOTTY;
6244 }
6245 }
6246 #endif
6247