Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.68
      1 /*	$NetBSD: if_iwn.c,v 1.68 2013/08/23 16:49:53 christos Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.119 2013/05/29 23:16:52 yuo Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.68 2013/08/23 16:49:53 christos Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/proc.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #ifdef notyetMODULE
     39 #include <sys/module.h>
     40 #endif
     41 #include <sys/mutex.h>
     42 #include <sys/conf.h>
     43 #include <sys/kauth.h>
     44 #include <sys/callout.h>
     45 
     46 #include <dev/sysmon/sysmonvar.h>
     47 
     48 #include <sys/bus.h>
     49 #include <machine/endian.h>
     50 #include <machine/intr.h>
     51 
     52 #include <dev/pci/pcireg.h>
     53 #include <dev/pci/pcivar.h>
     54 #include <dev/pci/pcidevs.h>
     55 
     56 #include <net/bpf.h>
     57 #include <net/if.h>
     58 #include <net/if_arp.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_types.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <net/if_ether.h>
     67 #include <netinet/ip.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_amrr.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #include <dev/firmload.h>
     74 
     75 #include <dev/pci/if_iwnreg.h>
     76 #include <dev/pci/if_iwnvar.h>
     77 
     78 static const pci_product_id_t iwn_devices[] = {
     79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
     80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
     81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
     84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
     85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
     99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
    100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
    101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
    102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
    103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
    104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
    105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
    106 };
    107 
    108 /*
    109  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    110  */
    111 static const struct ieee80211_rateset iwn_rateset_11a =
    112 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    113 
    114 static const struct ieee80211_rateset iwn_rateset_11b =
    115 	{ 4, { 2, 4, 11, 22 } };
    116 
    117 static const struct ieee80211_rateset iwn_rateset_11g =
    118 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    119 
    120 static int	iwn_match(device_t , struct cfdata *, void *);
    121 static void	iwn_attach(device_t , device_t , void *);
    122 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
    123 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
    124 static void	iwn_radiotap_attach(struct iwn_softc *);
    125 static int	iwn_detach(device_t , int);
    126 #if 0
    127 static void	iwn_power(int, void *);
    128 #endif
    129 static bool	iwn_resume(device_t, const pmf_qual_t *);
    130 static int	iwn_nic_lock(struct iwn_softc *);
    131 static int	iwn_eeprom_lock(struct iwn_softc *);
    132 static int	iwn_init_otprom(struct iwn_softc *);
    133 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    134 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    135 		    void **, bus_size_t, bus_size_t);
    136 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    137 static int	iwn_alloc_sched(struct iwn_softc *);
    138 static void	iwn_free_sched(struct iwn_softc *);
    139 static int	iwn_alloc_kw(struct iwn_softc *);
    140 static void	iwn_free_kw(struct iwn_softc *);
    141 static int	iwn_alloc_ict(struct iwn_softc *);
    142 static void	iwn_free_ict(struct iwn_softc *);
    143 static int	iwn_alloc_fwmem(struct iwn_softc *);
    144 static void	iwn_free_fwmem(struct iwn_softc *);
    145 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    146 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    147 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    148 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    149 		    int);
    150 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    151 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    152 static void	iwn5000_ict_reset(struct iwn_softc *);
    153 static int	iwn_read_eeprom(struct iwn_softc *);
    154 static void	iwn4965_read_eeprom(struct iwn_softc *);
    155 
    156 #ifdef IWN_DEBUG
    157 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    158 #endif
    159 static void	iwn5000_read_eeprom(struct iwn_softc *);
    160 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    161 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    162 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    163 static void	iwn_newassoc(struct ieee80211_node *, int);
    164 static int	iwn_media_change(struct ifnet *);
    165 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    166 static void	iwn_iter_func(void *, struct ieee80211_node *);
    167 static void	iwn_calib_timeout(void *);
    168 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    169 		    struct iwn_rx_data *);
    170 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    171 		    struct iwn_rx_data *);
    172 #ifndef IEEE80211_NO_HT
    173 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    174 		    struct iwn_rx_data *);
    175 #endif
    176 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    177 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    178 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    179 		    struct iwn_rx_data *);
    180 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    181 		    struct iwn_rx_data *);
    182 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    183 		    struct iwn_rx_data *);
    184 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    185 		    uint8_t);
    186 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    187 static void	iwn_notif_intr(struct iwn_softc *);
    188 static void	iwn_wakeup_intr(struct iwn_softc *);
    189 static void	iwn_fatal_intr(struct iwn_softc *);
    190 static int	iwn_intr(void *);
    191 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    192 		    uint16_t);
    193 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    194 		    uint16_t);
    195 #ifdef notyet
    196 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    197 #endif
    198 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    199 		    struct ieee80211_node *, int);
    200 static void	iwn_start(struct ifnet *);
    201 static void	iwn_watchdog(struct ifnet *);
    202 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    203 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    204 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    205 		    int);
    206 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    207 		    int);
    208 static int	iwn_set_link_quality(struct iwn_softc *,
    209 		    struct ieee80211_node *);
    210 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    211 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    212 static int	iwn_set_critical_temp(struct iwn_softc *);
    213 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    214 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    215 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    216 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    217 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    218 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    219 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    220 static int	iwn4965_get_temperature(struct iwn_softc *);
    221 static int	iwn5000_get_temperature(struct iwn_softc *);
    222 static int	iwn_init_sensitivity(struct iwn_softc *);
    223 static void	iwn_collect_noise(struct iwn_softc *,
    224 		    const struct iwn_rx_general_stats *);
    225 static int	iwn4965_init_gains(struct iwn_softc *);
    226 static int	iwn5000_init_gains(struct iwn_softc *);
    227 static int	iwn4965_set_gains(struct iwn_softc *);
    228 static int	iwn5000_set_gains(struct iwn_softc *);
    229 static void	iwn_tune_sensitivity(struct iwn_softc *,
    230 		    const struct iwn_rx_stats *);
    231 static int	iwn_send_sensitivity(struct iwn_softc *);
    232 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    233 static int	iwn5000_runtime_calib(struct iwn_softc *);
    234 
    235 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
    236 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
    237 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
    238 
    239 static int	iwn_config(struct iwn_softc *);
    240 static int	iwn_scan(struct iwn_softc *, uint16_t);
    241 static int	iwn_auth(struct iwn_softc *);
    242 static int	iwn_run(struct iwn_softc *);
    243 #ifdef IWN_HWCRYPTO
    244 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    245 		    struct ieee80211_key *);
    246 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    247 		    struct ieee80211_key *);
    248 #endif
    249 static int	iwn_wme_update(struct ieee80211com *);
    250 #ifndef IEEE80211_NO_HT
    251 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    252 		    struct ieee80211_node *, uint8_t);
    253 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    254 		    struct ieee80211_node *, uint8_t);
    255 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    256 		    struct ieee80211_node *, uint8_t);
    257 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    258 		    struct ieee80211_node *, uint8_t);
    259 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    260 		    struct ieee80211_node *, uint8_t, uint16_t);
    261 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    262 		    uint8_t, uint16_t);
    263 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    264 		    struct ieee80211_node *, uint8_t, uint16_t);
    265 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    266 		    uint8_t, uint16_t);
    267 #endif
    268 static int	iwn5000_query_calibration(struct iwn_softc *);
    269 static int	iwn5000_send_calibration(struct iwn_softc *);
    270 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    271 static int	iwn4965_post_alive(struct iwn_softc *);
    272 static int	iwn5000_post_alive(struct iwn_softc *);
    273 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    274 		    int);
    275 static int	iwn4965_load_firmware(struct iwn_softc *);
    276 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    277 		    const uint8_t *, int);
    278 static int	iwn5000_load_firmware(struct iwn_softc *);
    279 static int	iwn_read_firmware_leg(struct iwn_softc *,
    280 		    struct iwn_fw_info *);
    281 static int	iwn_read_firmware_tlv(struct iwn_softc *,
    282 		    struct iwn_fw_info *, uint16_t);
    283 static int	iwn_read_firmware(struct iwn_softc *);
    284 static int	iwn_clock_wait(struct iwn_softc *);
    285 static int	iwn_apm_init(struct iwn_softc *);
    286 static void	iwn_apm_stop_master(struct iwn_softc *);
    287 static void	iwn_apm_stop(struct iwn_softc *);
    288 static int	iwn4965_nic_config(struct iwn_softc *);
    289 static int	iwn5000_nic_config(struct iwn_softc *);
    290 static int	iwn_hw_prepare(struct iwn_softc *);
    291 static int	iwn_hw_init(struct iwn_softc *);
    292 static void	iwn_hw_stop(struct iwn_softc *);
    293 static int	iwn_init(struct ifnet *);
    294 static void	iwn_stop(struct ifnet *, int);
    295 
    296 /* XXX MCLGETI alternative */
    297 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    298 		    struct ifnet *, u_int);
    299 #ifdef IWN_USE_RBUF
    300 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    301 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    302 static int	iwn_alloc_rpool(struct iwn_softc *);
    303 static void	iwn_free_rpool(struct iwn_softc *);
    304 #endif
    305 
    306 /* XXX needed by iwn_scan */
    307 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
    308 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
    309     const struct ieee80211_rateset *);
    310 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
    311     const struct ieee80211_rateset *);
    312 
    313 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
    314 
    315 #ifdef IWN_DEBUG
    316 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    317 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    318 int iwn_debug = 0;
    319 #else
    320 #define DPRINTF(x)
    321 #define DPRINTFN(n, x)
    322 #endif
    323 
    324 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    325 	iwn_detach, NULL);
    326 
    327 static int
    328 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    329 {
    330 	struct pci_attach_args *pa = aux;
    331 	size_t i;
    332 
    333 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    334 		return 0;
    335 
    336 	for (i = 0; i < __arraycount(iwn_devices); i++)
    337 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    338 			return 1;
    339 
    340 	return 0;
    341 }
    342 
    343 static void
    344 iwn_attach(device_t parent __unused, device_t self, void *aux)
    345 {
    346 	struct iwn_softc *sc = device_private(self);
    347 	struct ieee80211com *ic = &sc->sc_ic;
    348 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    349 	struct pci_attach_args *pa = aux;
    350 	const char *intrstr;
    351 	pci_intr_handle_t ih;
    352 	pcireg_t memtype, reg;
    353 	int i, error;
    354 
    355 	sc->sc_dev = self;
    356 	sc->sc_pct = pa->pa_pc;
    357 	sc->sc_pcitag = pa->pa_tag;
    358 	sc->sc_dmat = pa->pa_dmat;
    359 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
    360 
    361 	callout_init(&sc->calib_to, 0);
    362 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    363 
    364 	pci_aprint_devinfo(pa, NULL);
    365 
    366 	/*
    367 	 * Get the offset of the PCI Express Capability Structure in PCI
    368 	 * Configuration Space.
    369 	 */
    370 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    371 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    372 	if (error == 0) {
    373 		aprint_error(": PCIe capability structure not found!\n");
    374 		return;
    375 	}
    376 
    377 	/* Clear device-specific "PCI retry timeout" register (41h). */
    378 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    379 	if (reg & 0xff00)
    380 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    381 
    382 	/* Enable bus-mastering and hardware bug workaround. */
    383 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    384 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    385 	reg |= PCI_COMMAND_MASTER_ENABLE;
    386 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
    387 		DPRINTF(("PCIe INTx Disable set\n"));
    388 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
    389 	}
    390 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    391 
    392 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    393 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    394 	    &sc->sc_sh, NULL, &sc->sc_sz);
    395 	if (error != 0) {
    396 		aprint_error(": can't map mem space\n");
    397 		return;
    398 	}
    399 
    400 	/* Install interrupt handler. */
    401 	if (pci_intr_map(pa, &ih) != 0) {
    402 		aprint_error(": can't map interrupt\n");
    403 		return;
    404 	}
    405 	intrstr = pci_intr_string(sc->sc_pct, ih);
    406 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
    407 	if (sc->sc_ih == NULL) {
    408 		aprint_error(": can't establish interrupt");
    409 		if (intrstr != NULL)
    410 			aprint_error(" at %s", intrstr);
    411 		aprint_error("\n");
    412 		return;
    413 	}
    414 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    415 
    416 	/* Read hardware revision and attach. */
    417 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
    418 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
    419 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
    420 	else
    421 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
    422 	if (error != 0) {
    423 		aprint_error(": could not attach device\n");
    424 		return;
    425 	}
    426 
    427 	if ((error = iwn_hw_prepare(sc)) != 0) {
    428 		aprint_error(": hardware not ready\n");
    429 		return;
    430 	}
    431 
    432 	/* Read MAC address, channels, etc from EEPROM. */
    433 	if ((error = iwn_read_eeprom(sc)) != 0) {
    434 		aprint_error(": could not read EEPROM\n");
    435 		return;
    436 	}
    437 
    438 	/* Allocate DMA memory for firmware transfers. */
    439 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    440 		aprint_error(": could not allocate memory for firmware\n");
    441 		return;
    442 	}
    443 
    444 	/* Allocate "Keep Warm" page. */
    445 	if ((error = iwn_alloc_kw(sc)) != 0) {
    446 		aprint_error(": could not allocate keep warm page\n");
    447 		goto fail1;
    448 	}
    449 
    450 	/* Allocate ICT table for 5000 Series. */
    451 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    452 	    (error = iwn_alloc_ict(sc)) != 0) {
    453 		aprint_error(": could not allocate ICT table\n");
    454 		goto fail2;
    455 	}
    456 
    457 	/* Allocate TX scheduler "rings". */
    458 	if ((error = iwn_alloc_sched(sc)) != 0) {
    459 		aprint_error(": could not allocate TX scheduler rings\n");
    460 		goto fail3;
    461 	}
    462 
    463 #ifdef IWN_USE_RBUF
    464 	/* Allocate RX buffers. */
    465 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    466 		aprint_error_dev(self, "could not allocate RX buffers\n");
    467 		goto fail3;
    468 	}
    469 #endif
    470 
    471 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
    472 	for (i = 0; i < sc->ntxqs; i++) {
    473 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    474 			aprint_error(": could not allocate TX ring %d\n", i);
    475 			goto fail4;
    476 		}
    477 	}
    478 
    479 	/* Allocate RX ring. */
    480 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    481 		aprint_error(": could not allocate RX ring\n");
    482 		goto fail4;
    483 	}
    484 
    485 	/* Clear pending interrupts. */
    486 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    487 
    488 	/* Count the number of available chains. */
    489 	sc->ntxchains =
    490 	    ((sc->txchainmask >> 2) & 1) +
    491 	    ((sc->txchainmask >> 1) & 1) +
    492 	    ((sc->txchainmask >> 0) & 1);
    493 	sc->nrxchains =
    494 	    ((sc->rxchainmask >> 2) & 1) +
    495 	    ((sc->rxchainmask >> 1) & 1) +
    496 	    ((sc->rxchainmask >> 0) & 1);
    497 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    498 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    499 	    ether_sprintf(ic->ic_myaddr));
    500 
    501 	ic->ic_ifp = ifp;
    502 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    503 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    504 	ic->ic_state = IEEE80211_S_INIT;
    505 
    506 	/* Set device capabilities. */
    507 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
    508 	 * and IEEE80211_C_PMGT too. */
    509 	ic->ic_caps =
    510 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    511 	    IEEE80211_C_WPA |		/* 802.11i */
    512 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    513 	    IEEE80211_C_TXPMGT |	/* tx power management */
    514 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    515 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    516 	    IEEE80211_C_WME;		/* 802.11e */
    517 
    518 #ifndef IEEE80211_NO_HT
    519 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    520 		/* Set HT capabilities. */
    521 		ic->ic_htcaps =
    522 #if IWN_RBUF_SIZE == 8192
    523 		    IEEE80211_HTCAP_AMSDU7935 |
    524 #endif
    525 		    IEEE80211_HTCAP_CBW20_40 |
    526 		    IEEE80211_HTCAP_SGI20 |
    527 		    IEEE80211_HTCAP_SGI40;
    528 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    529 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    530 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    531 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    532 		else
    533 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    534 	}
    535 #endif	/* !IEEE80211_NO_HT */
    536 
    537 	/* Set supported legacy rates. */
    538 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
    539 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
    540 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    541 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
    542 	}
    543 #ifndef IEEE80211_NO_HT
    544 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    545 		/* Set supported HT rates. */
    546 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
    547 		if (sc->nrxchains > 1)
    548 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    549 		if (sc->nrxchains > 2)
    550 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    551 	}
    552 #endif
    553 
    554 	/* IBSS channel undefined for now. */
    555 	ic->ic_ibss_chan = &ic->ic_channels[0];
    556 
    557 	ifp->if_softc = sc;
    558 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    559 	ifp->if_init = iwn_init;
    560 	ifp->if_ioctl = iwn_ioctl;
    561 	ifp->if_start = iwn_start;
    562 	ifp->if_stop = iwn_stop;
    563 	ifp->if_watchdog = iwn_watchdog;
    564 	IFQ_SET_READY(&ifp->if_snd);
    565 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    566 
    567 	if_attach(ifp);
    568 	ieee80211_ifattach(ic);
    569 	ic->ic_node_alloc = iwn_node_alloc;
    570 	ic->ic_newassoc = iwn_newassoc;
    571 #ifdef IWN_HWCRYPTO
    572 	ic->ic_crypto.cs_key_set = iwn_set_key;
    573 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    574 #endif
    575 	ic->ic_wme.wme_update = iwn_wme_update;
    576 #ifndef IEEE80211_NO_HT
    577 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    578 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    579 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    580 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    581 #endif
    582 
    583 	/* Override 802.11 state transition machine. */
    584 	sc->sc_newstate = ic->ic_newstate;
    585 	ic->ic_newstate = iwn_newstate;
    586 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    587 
    588 	sc->amrr.amrr_min_success_threshold =  1;
    589 	sc->amrr.amrr_max_success_threshold = 15;
    590 
    591 	iwn_radiotap_attach(sc);
    592 
    593 	/*
    594 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    595 	 * callout_init and callout_setfunc, above.
    596 	*/
    597 
    598 	if (pmf_device_register(self, NULL, iwn_resume))
    599 		pmf_class_network_register(self, ifp);
    600 	else
    601 		aprint_error_dev(self, "couldn't establish power handler\n");
    602 
    603 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    604 	ieee80211_announce(ic);
    605 
    606 	return;
    607 
    608 	/* Free allocated memory if something failed during attachment. */
    609 fail4:	while (--i >= 0)
    610 		iwn_free_tx_ring(sc, &sc->txq[i]);
    611 #ifdef IWN_USE_RBUF
    612 	iwn_free_rpool(sc);
    613 #endif
    614 	iwn_free_sched(sc);
    615 fail3:	if (sc->ict != NULL)
    616 		iwn_free_ict(sc);
    617 fail2:	iwn_free_kw(sc);
    618 fail1:	iwn_free_fwmem(sc);
    619 }
    620 
    621 int
    622 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
    623 {
    624 	struct iwn_ops *ops = &sc->ops;
    625 
    626 	ops->load_firmware = iwn4965_load_firmware;
    627 	ops->read_eeprom = iwn4965_read_eeprom;
    628 	ops->post_alive = iwn4965_post_alive;
    629 	ops->nic_config = iwn4965_nic_config;
    630 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    631 	ops->update_sched = iwn4965_update_sched;
    632 	ops->get_temperature = iwn4965_get_temperature;
    633 	ops->get_rssi = iwn4965_get_rssi;
    634 	ops->set_txpower = iwn4965_set_txpower;
    635 	ops->init_gains = iwn4965_init_gains;
    636 	ops->set_gains = iwn4965_set_gains;
    637 	ops->add_node = iwn4965_add_node;
    638 	ops->tx_done = iwn4965_tx_done;
    639 #ifndef IEEE80211_NO_HT
    640 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
    641 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
    642 #endif
    643 	sc->ntxqs = IWN4965_NTXQUEUES;
    644 	sc->ndmachnls = IWN4965_NDMACHNLS;
    645 	sc->broadcast_id = IWN4965_ID_BROADCAST;
    646 	sc->rxonsz = IWN4965_RXONSZ;
    647 	sc->schedsz = IWN4965_SCHEDSZ;
    648 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
    649 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
    650 	sc->fwsz = IWN4965_FWSZ;
    651 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
    652 	sc->limits = &iwn4965_sensitivity_limits;
    653 	sc->fwname = "iwlwifi-4965-2.ucode";
    654 	/* Override chains masks, ROM is known to be broken. */
    655 	sc->txchainmask = IWN_ANT_AB;
    656 	sc->rxchainmask = IWN_ANT_ABC;
    657 
    658 	return 0;
    659 }
    660 
    661 int
    662 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
    663 {
    664 	struct iwn_ops *ops = &sc->ops;
    665 
    666 	ops->load_firmware = iwn5000_load_firmware;
    667 	ops->read_eeprom = iwn5000_read_eeprom;
    668 	ops->post_alive = iwn5000_post_alive;
    669 	ops->nic_config = iwn5000_nic_config;
    670 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    671 	ops->update_sched = iwn5000_update_sched;
    672 	ops->get_temperature = iwn5000_get_temperature;
    673 	ops->get_rssi = iwn5000_get_rssi;
    674 	ops->set_txpower = iwn5000_set_txpower;
    675 	ops->init_gains = iwn5000_init_gains;
    676 	ops->set_gains = iwn5000_set_gains;
    677 	ops->add_node = iwn5000_add_node;
    678 	ops->tx_done = iwn5000_tx_done;
    679 #ifndef IEEE80211_NO_HT
    680 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
    681 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
    682 #endif
    683 	sc->ntxqs = IWN5000_NTXQUEUES;
    684 	sc->ndmachnls = IWN5000_NDMACHNLS;
    685 	sc->broadcast_id = IWN5000_ID_BROADCAST;
    686 	sc->rxonsz = IWN5000_RXONSZ;
    687 	sc->schedsz = IWN5000_SCHEDSZ;
    688 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
    689 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
    690 	sc->fwsz = IWN5000_FWSZ;
    691 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
    692 
    693 	switch (sc->hw_type) {
    694 	case IWN_HW_REV_TYPE_5100:
    695 		sc->limits = &iwn5000_sensitivity_limits;
    696 		sc->fwname = "iwlwifi-5000-2.ucode";
    697 		/* Override chains masks, ROM is known to be broken. */
    698 		sc->txchainmask = IWN_ANT_B;
    699 		sc->rxchainmask = IWN_ANT_AB;
    700 		break;
    701 	case IWN_HW_REV_TYPE_5150:
    702 		sc->limits = &iwn5150_sensitivity_limits;
    703 		sc->fwname = "iwlwifi-5150-2.ucode";
    704 		break;
    705 	case IWN_HW_REV_TYPE_5300:
    706 	case IWN_HW_REV_TYPE_5350:
    707 		sc->limits = &iwn5000_sensitivity_limits;
    708 		sc->fwname = "iwlwifi-5000-2.ucode";
    709 		break;
    710 	case IWN_HW_REV_TYPE_1000:
    711 		sc->limits = &iwn1000_sensitivity_limits;
    712 		sc->fwname = "iwlwifi-1000-3.ucode";
    713 		break;
    714 	case IWN_HW_REV_TYPE_6000:
    715 		sc->limits = &iwn6000_sensitivity_limits;
    716 		sc->fwname = "iwlwifi-6000-4.ucode";
    717 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
    718 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
    719 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    720 			/* Override chains masks, ROM is known to be broken. */
    721 			sc->txchainmask = IWN_ANT_BC;
    722 			sc->rxchainmask = IWN_ANT_BC;
    723 		}
    724 		break;
    725 	case IWN_HW_REV_TYPE_6050:
    726 		sc->limits = &iwn6000_sensitivity_limits;
    727 		sc->fwname = "iwlwifi-6050-5.ucode";
    728 		break;
    729 	case IWN_HW_REV_TYPE_6005:
    730 		sc->limits = &iwn6000_sensitivity_limits;
    731 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
    732 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
    733 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
    734 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
    735 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
    736 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235) {
    737 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
    738 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
    739 		}
    740 		else
    741 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
    742 		break;
    743 	default:
    744 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    745 		return ENOTSUP;
    746 	}
    747 	return 0;
    748 }
    749 
    750 /*
    751  * Attach the interface to 802.11 radiotap.
    752  */
    753 static void
    754 iwn_radiotap_attach(struct iwn_softc *sc)
    755 {
    756 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    757 
    758 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    759 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    760 	    &sc->sc_drvbpf);
    761 
    762 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    763 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    764 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    765 
    766 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    767 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    768 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    769 }
    770 
    771 static int
    772 iwn_detach(device_t self, int flags __unused)
    773 {
    774 	struct iwn_softc *sc = device_private(self);
    775 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    776 	int qid;
    777 
    778 	callout_stop(&sc->calib_to);
    779 
    780 	/* Uninstall interrupt handler. */
    781 	if (sc->sc_ih != NULL)
    782 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    783 
    784 	/* Free DMA resources. */
    785 	iwn_free_rx_ring(sc, &sc->rxq);
    786 	for (qid = 0; qid < sc->ntxqs; qid++)
    787 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    788 #ifdef IWN_USE_RBUF
    789 	iwn_free_rpool(sc);
    790 #endif
    791 	iwn_free_sched(sc);
    792 	iwn_free_kw(sc);
    793 	if (sc->ict != NULL)
    794 		iwn_free_ict(sc);
    795 	iwn_free_fwmem(sc);
    796 
    797 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    798 
    799 	ieee80211_ifdetach(&sc->sc_ic);
    800 	if_detach(ifp);
    801 
    802 	return 0;
    803 }
    804 
    805 #if 0
    806 /*
    807  * XXX Investigate if clearing the PCI retry timeout could eliminate
    808  * the repeated scan calls.  Also the calls to if_init and if_start
    809  * are similar to the effect of adding the call to ifioctl_common .
    810  */
    811 static void
    812 iwn_power(int why, void *arg)
    813 {
    814 	struct iwn_softc *sc = arg;
    815 	struct ifnet *ifp;
    816 	pcireg_t reg;
    817 	int s;
    818 
    819 	if (why != PWR_RESUME)
    820 		return;
    821 
    822 	/* Clear device-specific "PCI retry timeout" register (41h). */
    823 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    824 	if (reg & 0xff00)
    825 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    826 
    827 	s = splnet();
    828 	ifp = &sc->sc_ic.ic_if;
    829 	if (ifp->if_flags & IFF_UP) {
    830 		ifp->if_init(ifp);
    831 		if (ifp->if_flags & IFF_RUNNING)
    832 			ifp->if_start(ifp);
    833 	}
    834 	splx(s);
    835 }
    836 #endif
    837 
    838 static bool
    839 iwn_resume(device_t dv, const pmf_qual_t *qual)
    840 {
    841 	return true;
    842 }
    843 
    844 static int
    845 iwn_nic_lock(struct iwn_softc *sc)
    846 {
    847 	int ntries;
    848 
    849 	/* Request exclusive access to NIC. */
    850 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    851 
    852 	/* Spin until we actually get the lock. */
    853 	for (ntries = 0; ntries < 1000; ntries++) {
    854 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    855 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    856 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    857 			return 0;
    858 		DELAY(10);
    859 	}
    860 	return ETIMEDOUT;
    861 }
    862 
    863 static __inline void
    864 iwn_nic_unlock(struct iwn_softc *sc)
    865 {
    866 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    867 }
    868 
    869 static __inline uint32_t
    870 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    871 {
    872 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    873 	IWN_BARRIER_READ_WRITE(sc);
    874 	return IWN_READ(sc, IWN_PRPH_RDATA);
    875 }
    876 
    877 static __inline void
    878 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    879 {
    880 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    881 	IWN_BARRIER_WRITE(sc);
    882 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    883 }
    884 
    885 static __inline void
    886 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    887 {
    888 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    889 }
    890 
    891 static __inline void
    892 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    893 {
    894 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    895 }
    896 
    897 static __inline void
    898 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    899     const uint32_t *data, int count)
    900 {
    901 	for (; count > 0; count--, data++, addr += 4)
    902 		iwn_prph_write(sc, addr, *data);
    903 }
    904 
    905 static __inline uint32_t
    906 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    907 {
    908 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    909 	IWN_BARRIER_READ_WRITE(sc);
    910 	return IWN_READ(sc, IWN_MEM_RDATA);
    911 }
    912 
    913 static __inline void
    914 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    915 {
    916 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    917 	IWN_BARRIER_WRITE(sc);
    918 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    919 }
    920 
    921 static __inline void
    922 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
    923 {
    924 	uint32_t tmp;
    925 
    926 	tmp = iwn_mem_read(sc, addr & ~3);
    927 	if (addr & 3)
    928 		tmp = (tmp & 0x0000ffff) | data << 16;
    929 	else
    930 		tmp = (tmp & 0xffff0000) | data;
    931 	iwn_mem_write(sc, addr & ~3, tmp);
    932 }
    933 
    934 static __inline void
    935 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
    936     int count)
    937 {
    938 	for (; count > 0; count--, addr += 4)
    939 		*data++ = iwn_mem_read(sc, addr);
    940 }
    941 
    942 static __inline void
    943 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
    944     int count)
    945 {
    946 	for (; count > 0; count--, addr += 4)
    947 		iwn_mem_write(sc, addr, val);
    948 }
    949 
    950 static int
    951 iwn_eeprom_lock(struct iwn_softc *sc)
    952 {
    953 	int i, ntries;
    954 
    955 	for (i = 0; i < 100; i++) {
    956 		/* Request exclusive access to EEPROM. */
    957 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
    958 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
    959 
    960 		/* Spin until we actually get the lock. */
    961 		for (ntries = 0; ntries < 100; ntries++) {
    962 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
    963 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
    964 				return 0;
    965 			DELAY(10);
    966 		}
    967 	}
    968 	return ETIMEDOUT;
    969 }
    970 
    971 static __inline void
    972 iwn_eeprom_unlock(struct iwn_softc *sc)
    973 {
    974 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
    975 }
    976 
    977 /*
    978  * Initialize access by host to One Time Programmable ROM.
    979  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
    980  */
    981 static int
    982 iwn_init_otprom(struct iwn_softc *sc)
    983 {
    984 	uint16_t prev = 0, base, next;
    985 	int count, error;
    986 
    987 	/* Wait for clock stabilization before accessing prph. */
    988 	if ((error = iwn_clock_wait(sc)) != 0)
    989 		return error;
    990 
    991 	if ((error = iwn_nic_lock(sc)) != 0)
    992 		return error;
    993 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
    994 	DELAY(5);
    995 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
    996 	iwn_nic_unlock(sc);
    997 
    998 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
    999 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
   1000 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
   1001 		    IWN_RESET_LINK_PWR_MGMT_DIS);
   1002 	}
   1003 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
   1004 	/* Clear ECC status. */
   1005 	IWN_SETBITS(sc, IWN_OTP_GP,
   1006 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
   1007 
   1008 	/*
   1009 	 * Find the block before last block (contains the EEPROM image)
   1010 	 * for HW without OTP shadow RAM.
   1011 	 */
   1012 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   1013 		/* Switch to absolute addressing mode. */
   1014 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
   1015 		base = 0;
   1016 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
   1017 			error = iwn_read_prom_data(sc, base, &next, 2);
   1018 			if (error != 0)
   1019 				return error;
   1020 			if (next == 0)	/* End of linked-list. */
   1021 				break;
   1022 			prev = base;
   1023 			base = le16toh(next);
   1024 		}
   1025 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1026 			return EIO;
   1027 		/* Skip "next" word. */
   1028 		sc->prom_base = prev + 1;
   1029 	}
   1030 	return 0;
   1031 }
   1032 
   1033 static int
   1034 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1035 {
   1036 	uint8_t *out = data;
   1037 	uint32_t val, tmp;
   1038 	int ntries;
   1039 
   1040 	addr += sc->prom_base;
   1041 	for (; count > 0; count -= 2, addr++) {
   1042 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1043 		for (ntries = 0; ntries < 10; ntries++) {
   1044 			val = IWN_READ(sc, IWN_EEPROM);
   1045 			if (val & IWN_EEPROM_READ_VALID)
   1046 				break;
   1047 			DELAY(5);
   1048 		}
   1049 		if (ntries == 10) {
   1050 			aprint_error_dev(sc->sc_dev,
   1051 			    "timeout reading ROM at 0x%x\n", addr);
   1052 			return ETIMEDOUT;
   1053 		}
   1054 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1055 			/* OTPROM, check for ECC errors. */
   1056 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1057 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1058 				aprint_error_dev(sc->sc_dev,
   1059 				    "OTPROM ECC error at 0x%x\n", addr);
   1060 				return EIO;
   1061 			}
   1062 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1063 				/* Correctable ECC error, clear bit. */
   1064 				IWN_SETBITS(sc, IWN_OTP_GP,
   1065 				    IWN_OTP_GP_ECC_CORR_STTS);
   1066 			}
   1067 		}
   1068 		*out++ = val >> 16;
   1069 		if (count > 1)
   1070 			*out++ = val >> 24;
   1071 	}
   1072 	return 0;
   1073 }
   1074 
   1075 static int
   1076 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1077     bus_size_t size, bus_size_t alignment)
   1078 {
   1079 	int nsegs, error;
   1080 
   1081 	dma->tag = tag;
   1082 	dma->size = size;
   1083 
   1084 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1085 	    &dma->map);
   1086 	if (error != 0)
   1087 		goto fail;
   1088 
   1089 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1090 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1091 	if (error != 0)
   1092 		goto fail;
   1093 
   1094 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1095 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1096 	if (error != 0)
   1097 		goto fail;
   1098 
   1099 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1100 	    BUS_DMA_NOWAIT);
   1101 	if (error != 0)
   1102 		goto fail;
   1103 
   1104 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1105 	memset(dma->vaddr, 0, size);
   1106 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1107 
   1108 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1109 	if (kvap != NULL)
   1110 		*kvap = dma->vaddr;
   1111 
   1112 	return 0;
   1113 
   1114 fail:	iwn_dma_contig_free(dma);
   1115 	return error;
   1116 }
   1117 
   1118 static void
   1119 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1120 {
   1121 	if (dma->map != NULL) {
   1122 		if (dma->vaddr != NULL) {
   1123 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1124 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1125 			bus_dmamap_unload(dma->tag, dma->map);
   1126 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1127 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1128 			dma->vaddr = NULL;
   1129 		}
   1130 		bus_dmamap_destroy(dma->tag, dma->map);
   1131 		dma->map = NULL;
   1132 	}
   1133 }
   1134 
   1135 static int
   1136 iwn_alloc_sched(struct iwn_softc *sc)
   1137 {
   1138 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1139 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1140 	    (void **)&sc->sched, sc->schedsz, 1024);
   1141 }
   1142 
   1143 static void
   1144 iwn_free_sched(struct iwn_softc *sc)
   1145 {
   1146 	iwn_dma_contig_free(&sc->sched_dma);
   1147 }
   1148 
   1149 static int
   1150 iwn_alloc_kw(struct iwn_softc *sc)
   1151 {
   1152 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1153 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1154 	    4096);
   1155 }
   1156 
   1157 static void
   1158 iwn_free_kw(struct iwn_softc *sc)
   1159 {
   1160 	iwn_dma_contig_free(&sc->kw_dma);
   1161 }
   1162 
   1163 static int
   1164 iwn_alloc_ict(struct iwn_softc *sc)
   1165 {
   1166 	/* ICT table must be aligned on a 4KB boundary. */
   1167 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1168 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1169 }
   1170 
   1171 static void
   1172 iwn_free_ict(struct iwn_softc *sc)
   1173 {
   1174 	iwn_dma_contig_free(&sc->ict_dma);
   1175 }
   1176 
   1177 static int
   1178 iwn_alloc_fwmem(struct iwn_softc *sc)
   1179 {
   1180 	/* Must be aligned on a 16-byte boundary. */
   1181 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1182 	    sc->fwsz, 16);
   1183 }
   1184 
   1185 static void
   1186 iwn_free_fwmem(struct iwn_softc *sc)
   1187 {
   1188 	iwn_dma_contig_free(&sc->fw_dma);
   1189 }
   1190 
   1191 static int
   1192 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1193 {
   1194 	bus_size_t size;
   1195 	int i, error;
   1196 
   1197 	ring->cur = 0;
   1198 
   1199 	/* Allocate RX descriptors (256-byte aligned). */
   1200 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1201 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1202 	    (void **)&ring->desc, size, 256);
   1203 	if (error != 0) {
   1204 		aprint_error_dev(sc->sc_dev,
   1205 		    "could not allocate RX ring DMA memory\n");
   1206 		goto fail;
   1207 	}
   1208 
   1209 	/* Allocate RX status area (16-byte aligned). */
   1210 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1211 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1212 	if (error != 0) {
   1213 		aprint_error_dev(sc->sc_dev,
   1214 		    "could not allocate RX status DMA memory\n");
   1215 		goto fail;
   1216 	}
   1217 
   1218 	/*
   1219 	 * Allocate and map RX buffers.
   1220 	 */
   1221 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1222 		struct iwn_rx_data *data = &ring->data[i];
   1223 
   1224 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1225 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1226 		    &data->map);
   1227 		if (error != 0) {
   1228 			aprint_error_dev(sc->sc_dev,
   1229 			    "could not create RX buf DMA map\n");
   1230 			goto fail;
   1231 		}
   1232 
   1233 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1234 		if (data->m == NULL) {
   1235 			aprint_error_dev(sc->sc_dev,
   1236 			    "could not allocate RX mbuf\n");
   1237 			error = ENOBUFS;
   1238 			goto fail;
   1239 		}
   1240 
   1241 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1242 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1243 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1244 		if (error != 0) {
   1245 			aprint_error_dev(sc->sc_dev,
   1246 			    "can't not map mbuf (error %d)\n", error);
   1247 			goto fail;
   1248 		}
   1249 
   1250 		/* Set physical address of RX buffer (256-byte aligned). */
   1251 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1252 	}
   1253 
   1254 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1255 	    BUS_DMASYNC_PREWRITE);
   1256 
   1257 	return 0;
   1258 
   1259 fail:	iwn_free_rx_ring(sc, ring);
   1260 	return error;
   1261 }
   1262 
   1263 static void
   1264 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1265 {
   1266 	int ntries;
   1267 
   1268 	if (iwn_nic_lock(sc) == 0) {
   1269 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1270 		for (ntries = 0; ntries < 1000; ntries++) {
   1271 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1272 			    IWN_FH_RX_STATUS_IDLE)
   1273 				break;
   1274 			DELAY(10);
   1275 		}
   1276 		iwn_nic_unlock(sc);
   1277 	}
   1278 	ring->cur = 0;
   1279 	sc->last_rx_valid = 0;
   1280 }
   1281 
   1282 static void
   1283 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1284 {
   1285 	int i;
   1286 
   1287 	iwn_dma_contig_free(&ring->desc_dma);
   1288 	iwn_dma_contig_free(&ring->stat_dma);
   1289 
   1290 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1291 		struct iwn_rx_data *data = &ring->data[i];
   1292 
   1293 		if (data->m != NULL) {
   1294 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1295 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1296 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1297 			m_freem(data->m);
   1298 		}
   1299 		if (data->map != NULL)
   1300 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1301 	}
   1302 }
   1303 
   1304 static int
   1305 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1306 {
   1307 	bus_addr_t paddr;
   1308 	bus_size_t size;
   1309 	int i, error;
   1310 
   1311 	ring->qid = qid;
   1312 	ring->queued = 0;
   1313 	ring->cur = 0;
   1314 
   1315 	/* Allocate TX descriptors (256-byte aligned). */
   1316 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1317 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1318 	    (void **)&ring->desc, size, 256);
   1319 	if (error != 0) {
   1320 		aprint_error_dev(sc->sc_dev,
   1321 		    "could not allocate TX ring DMA memory\n");
   1322 		goto fail;
   1323 	}
   1324 	/*
   1325 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1326 	 * to allocate commands space for other rings.
   1327 	 * XXX Do we really need to allocate descriptors for other rings?
   1328 	 */
   1329 	if (qid > 4)
   1330 		return 0;
   1331 
   1332 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1333 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1334 	    (void **)&ring->cmd, size, 4);
   1335 	if (error != 0) {
   1336 		aprint_error_dev(sc->sc_dev,
   1337 		    "could not allocate TX cmd DMA memory\n");
   1338 		goto fail;
   1339 	}
   1340 
   1341 	paddr = ring->cmd_dma.paddr;
   1342 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1343 		struct iwn_tx_data *data = &ring->data[i];
   1344 
   1345 		data->cmd_paddr = paddr;
   1346 		data->scratch_paddr = paddr + 12;
   1347 		paddr += sizeof (struct iwn_tx_cmd);
   1348 
   1349 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1350 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1351 		    &data->map);
   1352 		if (error != 0) {
   1353 			aprint_error_dev(sc->sc_dev,
   1354 			    "could not create TX buf DMA map\n");
   1355 			goto fail;
   1356 		}
   1357 	}
   1358 	return 0;
   1359 
   1360 fail:	iwn_free_tx_ring(sc, ring);
   1361 	return error;
   1362 }
   1363 
   1364 static void
   1365 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1366 {
   1367 	int i;
   1368 
   1369 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1370 		struct iwn_tx_data *data = &ring->data[i];
   1371 
   1372 		if (data->m != NULL) {
   1373 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1374 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1375 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1376 			m_freem(data->m);
   1377 			data->m = NULL;
   1378 		}
   1379 	}
   1380 	/* Clear TX descriptors. */
   1381 	memset(ring->desc, 0, ring->desc_dma.size);
   1382 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1383 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1384 	sc->qfullmsk &= ~(1 << ring->qid);
   1385 	ring->queued = 0;
   1386 	ring->cur = 0;
   1387 }
   1388 
   1389 static void
   1390 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1391 {
   1392 	int i;
   1393 
   1394 	iwn_dma_contig_free(&ring->desc_dma);
   1395 	iwn_dma_contig_free(&ring->cmd_dma);
   1396 
   1397 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1398 		struct iwn_tx_data *data = &ring->data[i];
   1399 
   1400 		if (data->m != NULL) {
   1401 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1402 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1403 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1404 			m_freem(data->m);
   1405 		}
   1406 		if (data->map != NULL)
   1407 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1408 	}
   1409 }
   1410 
   1411 static void
   1412 iwn5000_ict_reset(struct iwn_softc *sc)
   1413 {
   1414 	/* Disable interrupts. */
   1415 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1416 
   1417 	/* Reset ICT table. */
   1418 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1419 	sc->ict_cur = 0;
   1420 
   1421 	/* Set physical address of ICT table (4KB aligned). */
   1422 	DPRINTF(("enabling ICT\n"));
   1423 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1424 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1425 
   1426 	/* Enable periodic RX interrupt. */
   1427 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1428 	/* Switch to ICT interrupt mode in driver. */
   1429 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1430 
   1431 	/* Re-enable interrupts. */
   1432 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1433 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1434 }
   1435 
   1436 static int
   1437 iwn_read_eeprom(struct iwn_softc *sc)
   1438 {
   1439 	struct iwn_ops *ops = &sc->ops;
   1440 	struct ieee80211com *ic = &sc->sc_ic;
   1441 	uint16_t val;
   1442 	int error;
   1443 
   1444 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1445 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1446 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1447 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1448 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1449 	    "OTPROM" : "EEPROM"));
   1450 
   1451 	/* Adapter has to be powered on for EEPROM access to work. */
   1452 	if ((error = iwn_apm_init(sc)) != 0) {
   1453 		aprint_error_dev(sc->sc_dev,
   1454 		    "could not power ON adapter\n");
   1455 		return error;
   1456 	}
   1457 
   1458 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1459 		aprint_error_dev(sc->sc_dev,
   1460 		    "bad ROM signature\n");
   1461 		return EIO;
   1462 	}
   1463 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1464 		aprint_error_dev(sc->sc_dev,
   1465 		    "could not lock ROM (error=%d)\n", error);
   1466 		return error;
   1467 	}
   1468 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1469 		if ((error = iwn_init_otprom(sc)) != 0) {
   1470 			aprint_error_dev(sc->sc_dev,
   1471 			    "could not initialize OTPROM\n");
   1472 			return error;
   1473 		}
   1474 	}
   1475 
   1476 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
   1477 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
   1478 	/* Check if HT support is bonded out. */
   1479 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
   1480 		sc->sc_flags |= IWN_FLAG_HAS_11N;
   1481 
   1482 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1483 	sc->rfcfg = le16toh(val);
   1484 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1485 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
   1486 	if (sc->txchainmask == 0)
   1487 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
   1488 	if (sc->rxchainmask == 0)
   1489 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
   1490 
   1491 	/* Read MAC address. */
   1492 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1493 
   1494 	/* Read adapter-specific information from EEPROM. */
   1495 	ops->read_eeprom(sc);
   1496 
   1497 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1498 
   1499 	iwn_eeprom_unlock(sc);
   1500 	return 0;
   1501 }
   1502 
   1503 static void
   1504 iwn4965_read_eeprom(struct iwn_softc *sc)
   1505 {
   1506 	uint32_t addr;
   1507 	uint16_t val;
   1508 	int i;
   1509 
   1510 	/* Read regulatory domain (4 ASCII characters). */
   1511 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1512 
   1513 	/* Read the list of authorized channels (20MHz ones only). */
   1514 	for (i = 0; i < 5; i++) {
   1515 		addr = iwn4965_regulatory_bands[i];
   1516 		iwn_read_eeprom_channels(sc, i, addr);
   1517 	}
   1518 
   1519 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1520 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1521 	sc->maxpwr2GHz = val & 0xff;
   1522 	sc->maxpwr5GHz = val >> 8;
   1523 	/* Check that EEPROM values are within valid range. */
   1524 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1525 		sc->maxpwr5GHz = 38;
   1526 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1527 		sc->maxpwr2GHz = 38;
   1528 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1529 
   1530 	/* Read samples for each TX power group. */
   1531 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1532 	    sizeof sc->bands);
   1533 
   1534 	/* Read voltage at which samples were taken. */
   1535 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1536 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1537 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1538 
   1539 #ifdef IWN_DEBUG
   1540 	/* Print samples. */
   1541 	if (iwn_debug > 0) {
   1542 		for (i = 0; i < IWN_NBANDS; i++)
   1543 			iwn4965_print_power_group(sc, i);
   1544 	}
   1545 #endif
   1546 }
   1547 
   1548 #ifdef IWN_DEBUG
   1549 static void
   1550 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1551 {
   1552 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1553 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1554 	int j, c;
   1555 
   1556 	aprint_normal("===band %d===\n", i);
   1557 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1558 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1559 	for (c = 0; c < 2; c++) {
   1560 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1561 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1562 			    "power=%d pa_det=%d\n", c, j,
   1563 			    chans[0].samples[c][j].temp,
   1564 			    chans[0].samples[c][j].gain,
   1565 			    chans[0].samples[c][j].power,
   1566 			    chans[0].samples[c][j].pa_det);
   1567 		}
   1568 	}
   1569 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1570 	for (c = 0; c < 2; c++) {
   1571 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1572 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1573 			    "power=%d pa_det=%d\n", c, j,
   1574 			    chans[1].samples[c][j].temp,
   1575 			    chans[1].samples[c][j].gain,
   1576 			    chans[1].samples[c][j].power,
   1577 			    chans[1].samples[c][j].pa_det);
   1578 		}
   1579 	}
   1580 }
   1581 #endif
   1582 
   1583 static void
   1584 iwn5000_read_eeprom(struct iwn_softc *sc)
   1585 {
   1586 	struct iwn5000_eeprom_calib_hdr hdr;
   1587 	int32_t volt;
   1588 	uint32_t base, addr;
   1589 	uint16_t val;
   1590 	int i;
   1591 
   1592 	/* Read regulatory domain (4 ASCII characters). */
   1593 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1594 	base = le16toh(val);
   1595 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1596 	    sc->eeprom_domain, 4);
   1597 
   1598 	/* Read the list of authorized channels (20MHz ones only). */
   1599 	for (i = 0; i < 5; i++) {
   1600 		addr = base + iwn5000_regulatory_bands[i];
   1601 		iwn_read_eeprom_channels(sc, i, addr);
   1602 	}
   1603 
   1604 	/* Read enhanced TX power information for 6000 Series. */
   1605 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1606 		iwn_read_eeprom_enhinfo(sc);
   1607 
   1608 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1609 	base = le16toh(val);
   1610 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1611 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1612 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1613 	sc->calib_ver = hdr.version;
   1614 
   1615 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1616 		/* Compute temperature offset. */
   1617 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1618 		sc->eeprom_temp = le16toh(val);
   1619 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1620 		volt = le16toh(val);
   1621 		sc->temp_off = sc->eeprom_temp - (volt / -5);
   1622 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1623 		    sc->eeprom_temp, volt, sc->temp_off));
   1624 	} else {
   1625 		/* Read crystal calibration. */
   1626 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1627 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1628 		DPRINTF(("crystal calibration 0x%08x\n",
   1629 		    le32toh(sc->eeprom_crystal)));
   1630 	}
   1631 }
   1632 
   1633 static void
   1634 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1635 {
   1636 	struct ieee80211com *ic = &sc->sc_ic;
   1637 	const struct iwn_chan_band *band = &iwn_bands[n];
   1638 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1639 	uint8_t chan;
   1640 	int i;
   1641 
   1642 	iwn_read_prom_data(sc, addr, channels,
   1643 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1644 
   1645 	for (i = 0; i < band->nchan; i++) {
   1646 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1647 			continue;
   1648 
   1649 		chan = band->chan[i];
   1650 
   1651 		if (n == 0) {	/* 2GHz band */
   1652 			ic->ic_channels[chan].ic_freq =
   1653 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1654 			ic->ic_channels[chan].ic_flags =
   1655 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1656 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1657 
   1658 		} else {	/* 5GHz band */
   1659 			/*
   1660 			 * Some adapters support channels 7, 8, 11 and 12
   1661 			 * both in the 2GHz and 4.9GHz bands.
   1662 			 * Because of limitations in our net80211 layer,
   1663 			 * we don't support them in the 4.9GHz band.
   1664 			 */
   1665 			if (chan <= 14)
   1666 				continue;
   1667 
   1668 			ic->ic_channels[chan].ic_freq =
   1669 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1670 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1671 			/* We have at least one valid 5GHz channel. */
   1672 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1673 		}
   1674 
   1675 		/* Is active scan allowed on this channel? */
   1676 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1677 			ic->ic_channels[chan].ic_flags |=
   1678 			    IEEE80211_CHAN_PASSIVE;
   1679 		}
   1680 
   1681 		/* Save maximum allowed TX power for this channel. */
   1682 		sc->maxpwr[chan] = channels[i].maxpwr;
   1683 
   1684 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1685 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1686 	}
   1687 }
   1688 
   1689 static void
   1690 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1691 {
   1692 	struct iwn_eeprom_enhinfo enhinfo[35];
   1693 	uint16_t val, base;
   1694 	int8_t maxpwr;
   1695 	int i;
   1696 
   1697 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1698 	base = le16toh(val);
   1699 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1700 	    enhinfo, sizeof enhinfo);
   1701 
   1702 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1703 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1704 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
   1705 			continue;	/* Skip invalid entries. */
   1706 
   1707 		maxpwr = 0;
   1708 		if (sc->txchainmask & IWN_ANT_A)
   1709 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1710 		if (sc->txchainmask & IWN_ANT_B)
   1711 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1712 		if (sc->txchainmask & IWN_ANT_C)
   1713 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1714 		if (sc->ntxchains == 2)
   1715 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1716 		else if (sc->ntxchains == 3)
   1717 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1718 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1719 
   1720 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1721 		sc->enh_maxpwr[i] = maxpwr;
   1722 	}
   1723 }
   1724 
   1725 static struct ieee80211_node *
   1726 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1727 {
   1728 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1729 }
   1730 
   1731 static void
   1732 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1733 {
   1734 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1735 	struct iwn_node *wn = (void *)ni;
   1736 	uint8_t rate;
   1737 	int ridx, i;
   1738 
   1739 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1740 	/* Start at lowest available bit-rate, AMRR will raise. */
   1741 	ni->ni_txrate = 0;
   1742 
   1743 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1744 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1745 		/* Map 802.11 rate to HW rate index. */
   1746 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1747 			if (iwn_rates[ridx].rate == rate)
   1748 				break;
   1749 		wn->ridx[i] = ridx;
   1750 	}
   1751 }
   1752 
   1753 static int
   1754 iwn_media_change(struct ifnet *ifp)
   1755 {
   1756 	struct iwn_softc *sc = ifp->if_softc;
   1757 	struct ieee80211com *ic = &sc->sc_ic;
   1758 	uint8_t rate, ridx;
   1759 	int error;
   1760 
   1761 	error = ieee80211_media_change(ifp);
   1762 	if (error != ENETRESET)
   1763 		return error;
   1764 
   1765 	if (ic->ic_fixed_rate != -1) {
   1766 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1767 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1768 		/* Map 802.11 rate to HW rate index. */
   1769 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1770 			if (iwn_rates[ridx].rate == rate)
   1771 				break;
   1772 		sc->fixed_ridx = ridx;
   1773 	}
   1774 
   1775 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1776 	    (IFF_UP | IFF_RUNNING)) {
   1777 		iwn_stop(ifp, 0);
   1778 		error = iwn_init(ifp);
   1779 	}
   1780 	return error;
   1781 }
   1782 
   1783 static int
   1784 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1785 {
   1786 	struct ifnet *ifp = ic->ic_ifp;
   1787 	struct iwn_softc *sc = ifp->if_softc;
   1788 	int error;
   1789 
   1790 	callout_stop(&sc->calib_to);
   1791 
   1792 	switch (nstate) {
   1793 	case IEEE80211_S_SCAN:
   1794 		/* XXX Do not abort a running scan. */
   1795 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1796 			if (ic->ic_state != nstate)
   1797 				aprint_error_dev(sc->sc_dev, "scan request(%d) "
   1798 				    "while scanning(%d) ignored\n", nstate,
   1799 				    ic->ic_state);
   1800 			break;
   1801 		}
   1802 
   1803 		/* XXX Not sure if call and flags are needed. */
   1804 		ieee80211_node_table_reset(&ic->ic_scan);
   1805 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1806 		sc->sc_flags |= IWN_FLAG_SCANNING;
   1807 
   1808 		/* Make the link LED blink while we're scanning. */
   1809 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1810 
   1811 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1812 			aprint_error_dev(sc->sc_dev,
   1813 			    "could not initiate scan\n");
   1814 			return error;
   1815 		}
   1816 		ic->ic_state = nstate;
   1817 		return 0;
   1818 
   1819 	case IEEE80211_S_ASSOC:
   1820 		if (ic->ic_state != IEEE80211_S_RUN)
   1821 			break;
   1822 		/* FALLTHROUGH */
   1823 	case IEEE80211_S_AUTH:
   1824 		/* Reset state to handle reassociations correctly. */
   1825 		sc->rxon.associd = 0;
   1826 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1827 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1828 
   1829 		if ((error = iwn_auth(sc)) != 0) {
   1830 			aprint_error_dev(sc->sc_dev,
   1831 			    "could not move to auth state\n");
   1832 			return error;
   1833 		}
   1834 		break;
   1835 
   1836 	case IEEE80211_S_RUN:
   1837 		if ((error = iwn_run(sc)) != 0) {
   1838 			aprint_error_dev(sc->sc_dev,
   1839 			    "could not move to run state\n");
   1840 			return error;
   1841 		}
   1842 		break;
   1843 
   1844 	case IEEE80211_S_INIT:
   1845 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1846 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1847 		break;
   1848 	}
   1849 
   1850 	return sc->sc_newstate(ic, nstate, arg);
   1851 }
   1852 
   1853 static void
   1854 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1855 {
   1856 	struct iwn_softc *sc = arg;
   1857 	struct iwn_node *wn = (struct iwn_node *)ni;
   1858 
   1859 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1860 }
   1861 
   1862 static void
   1863 iwn_calib_timeout(void *arg)
   1864 {
   1865 	struct iwn_softc *sc = arg;
   1866 	struct ieee80211com *ic = &sc->sc_ic;
   1867 	int s;
   1868 
   1869 	s = splnet();
   1870 	if (ic->ic_fixed_rate == -1) {
   1871 		if (ic->ic_opmode == IEEE80211_M_STA)
   1872 			iwn_iter_func(sc, ic->ic_bss);
   1873 		else
   1874 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1875 	}
   1876 	/* Force automatic TX power calibration every 60 secs. */
   1877 	if (++sc->calib_cnt >= 120) {
   1878 		uint32_t flags = 0;
   1879 
   1880 		DPRINTF(("sending request for statistics\n"));
   1881 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   1882 		    sizeof flags, 1);
   1883 		sc->calib_cnt = 0;
   1884 	}
   1885 	splx(s);
   1886 
   1887 	/* Automatic rate control triggered every 500ms. */
   1888 	callout_schedule(&sc->calib_to, hz/2);
   1889 }
   1890 
   1891 /*
   1892  * Process an RX_PHY firmware notification.  This is usually immediately
   1893  * followed by an MPDU_RX_DONE notification.
   1894  */
   1895 static void
   1896 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1897     struct iwn_rx_data *data)
   1898 {
   1899 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   1900 
   1901 	DPRINTFN(2, ("received PHY stats\n"));
   1902 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   1903 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   1904 
   1905 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   1906 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   1907 	sc->last_rx_valid = 1;
   1908 }
   1909 
   1910 /*
   1911  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   1912  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   1913  */
   1914 static void
   1915 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1916     struct iwn_rx_data *data)
   1917 {
   1918 	struct iwn_ops *ops = &sc->ops;
   1919 	struct ieee80211com *ic = &sc->sc_ic;
   1920 	struct ifnet *ifp = ic->ic_ifp;
   1921 	struct iwn_rx_ring *ring = &sc->rxq;
   1922 	struct ieee80211_frame *wh;
   1923 	struct ieee80211_node *ni;
   1924 	struct mbuf *m, *m1;
   1925 	struct iwn_rx_stat *stat;
   1926 	char	*head;
   1927 	uint32_t flags;
   1928 	int error, len, rssi;
   1929 
   1930 	if (desc->type == IWN_MPDU_RX_DONE) {
   1931 		/* Check for prior RX_PHY notification. */
   1932 		if (!sc->last_rx_valid) {
   1933 			DPRINTF(("missing RX_PHY\n"));
   1934 			return;
   1935 		}
   1936 		sc->last_rx_valid = 0;
   1937 		stat = &sc->last_rx_stat;
   1938 	} else
   1939 		stat = (struct iwn_rx_stat *)(desc + 1);
   1940 
   1941 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   1942 	    BUS_DMASYNC_POSTREAD);
   1943 
   1944 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   1945 		aprint_error_dev(sc->sc_dev,
   1946 		    "invalid RX statistic header\n");
   1947 		return;
   1948 	}
   1949 	if (desc->type == IWN_MPDU_RX_DONE) {
   1950 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   1951 		head = (char *)(mpdu + 1);
   1952 		len = le16toh(mpdu->len);
   1953 	} else {
   1954 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   1955 		len = le16toh(stat->len);
   1956 	}
   1957 
   1958 	flags = le32toh(*(uint32_t *)(head + len));
   1959 
   1960 	/* Discard frames with a bad FCS early. */
   1961 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   1962 		DPRINTFN(2, ("RX flags error %x\n", flags));
   1963 		ifp->if_ierrors++;
   1964 		return;
   1965 	}
   1966 	/* Discard frames that are too short. */
   1967 	if (len < sizeof (*wh)) {
   1968 		DPRINTF(("frame too short: %d\n", len));
   1969 		ic->ic_stats.is_rx_tooshort++;
   1970 		ifp->if_ierrors++;
   1971 		return;
   1972 	}
   1973 
   1974 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1975 	if (m1 == NULL) {
   1976 		ic->ic_stats.is_rx_nobuf++;
   1977 		ifp->if_ierrors++;
   1978 		return;
   1979 	}
   1980 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1981 
   1982 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   1983 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   1984 	if (error != 0) {
   1985 		m_freem(m1);
   1986 
   1987 		/* Try to reload the old mbuf. */
   1988 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1989 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1990 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1991 		if (error != 0) {
   1992 			panic("%s: could not load old RX mbuf",
   1993 			    device_xname(sc->sc_dev));
   1994 		}
   1995 		/* Physical address may have changed. */
   1996 		ring->desc[ring->cur] =
   1997 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   1998 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   1999 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2000 		    BUS_DMASYNC_PREWRITE);
   2001 		ifp->if_ierrors++;
   2002 		return;
   2003 	}
   2004 
   2005 	m = data->m;
   2006 	data->m = m1;
   2007 	/* Update RX descriptor. */
   2008 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   2009 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2010 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2011 	    BUS_DMASYNC_PREWRITE);
   2012 
   2013 	/* Finalize mbuf. */
   2014 	m->m_pkthdr.rcvif = ifp;
   2015 	m->m_data = head;
   2016 	m->m_pkthdr.len = m->m_len = len;
   2017 
   2018 	/* Grab a reference to the source node. */
   2019 	wh = mtod(m, struct ieee80211_frame *);
   2020 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2021 
   2022 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2023 	/* NetBSD does decryption in ieee80211_input. */
   2024 
   2025 	rssi = ops->get_rssi(stat);
   2026 
   2027 	/* XXX Added for NetBSD: scans never stop without it */
   2028 	if (ic->ic_state == IEEE80211_S_SCAN)
   2029 		iwn_fix_channel(ic, m);
   2030 
   2031 	if (sc->sc_drvbpf != NULL) {
   2032 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2033 
   2034 		tap->wr_flags = 0;
   2035 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2036 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2037 		tap->wr_chan_freq =
   2038 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2039 		tap->wr_chan_flags =
   2040 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2041 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2042 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2043 		tap->wr_tsft = stat->tstamp;
   2044 		switch (stat->rate) {
   2045 		/* CCK rates. */
   2046 		case  10: tap->wr_rate =   2; break;
   2047 		case  20: tap->wr_rate =   4; break;
   2048 		case  55: tap->wr_rate =  11; break;
   2049 		case 110: tap->wr_rate =  22; break;
   2050 		/* OFDM rates. */
   2051 		case 0xd: tap->wr_rate =  12; break;
   2052 		case 0xf: tap->wr_rate =  18; break;
   2053 		case 0x5: tap->wr_rate =  24; break;
   2054 		case 0x7: tap->wr_rate =  36; break;
   2055 		case 0x9: tap->wr_rate =  48; break;
   2056 		case 0xb: tap->wr_rate =  72; break;
   2057 		case 0x1: tap->wr_rate =  96; break;
   2058 		case 0x3: tap->wr_rate = 108; break;
   2059 		/* Unknown rate: should not happen. */
   2060 		default:  tap->wr_rate =   0;
   2061 		}
   2062 
   2063 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   2064 	}
   2065 
   2066 	/* Send the frame to the 802.11 layer. */
   2067 	ieee80211_input(ic, m, ni, rssi, 0);
   2068 
   2069 	/* Node is no longer needed. */
   2070 	ieee80211_free_node(ni);
   2071 }
   2072 
   2073 #ifndef IEEE80211_NO_HT
   2074 /* Process an incoming Compressed BlockAck. */
   2075 static void
   2076 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2077     struct iwn_rx_data *data)
   2078 {
   2079 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2080 	struct iwn_tx_ring *txq;
   2081 
   2082 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2083 	    BUS_DMASYNC_POSTREAD);
   2084 
   2085 	txq = &sc->txq[le16toh(ba->qid)];
   2086 	/* XXX TBD */
   2087 }
   2088 #endif
   2089 
   2090 /*
   2091  * Process a CALIBRATION_RESULT notification sent by the initialization
   2092  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
   2093  */
   2094 static void
   2095 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2096     struct iwn_rx_data *data)
   2097 {
   2098 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2099 	int len, idx = -1;
   2100 
   2101 	/* Runtime firmware should not send such a notification. */
   2102 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2103 		return;
   2104 
   2105 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2106 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2107 	    BUS_DMASYNC_POSTREAD);
   2108 
   2109 	switch (calib->code) {
   2110 	case IWN5000_PHY_CALIB_DC:
   2111 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   2112 			idx = 0;
   2113 		break;
   2114 	case IWN5000_PHY_CALIB_LO:
   2115 		idx = 1;
   2116 		break;
   2117 	case IWN5000_PHY_CALIB_TX_IQ:
   2118 		idx = 2;
   2119 		break;
   2120 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2121 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2122 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2123 			idx = 3;
   2124 		break;
   2125 	case IWN5000_PHY_CALIB_BASE_BAND:
   2126 		idx = 4;
   2127 		break;
   2128 	}
   2129 	if (idx == -1)	/* Ignore other results. */
   2130 		return;
   2131 
   2132 	/* Save calibration result. */
   2133 	if (sc->calibcmd[idx].buf != NULL)
   2134 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2135 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2136 	if (sc->calibcmd[idx].buf == NULL) {
   2137 		DPRINTF(("not enough memory for calibration result %d\n",
   2138 		    calib->code));
   2139 		return;
   2140 	}
   2141 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2142 	    calib->code, len));
   2143 	sc->calibcmd[idx].len = len;
   2144 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2145 }
   2146 
   2147 /*
   2148  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2149  * The latter is sent by the firmware after each received beacon.
   2150  */
   2151 static void
   2152 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2153     struct iwn_rx_data *data)
   2154 {
   2155 	struct iwn_ops *ops = &sc->ops;
   2156 	struct ieee80211com *ic = &sc->sc_ic;
   2157 	struct iwn_calib_state *calib = &sc->calib;
   2158 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2159 	int temp;
   2160 
   2161 	/* Ignore statistics received during a scan. */
   2162 	if (ic->ic_state != IEEE80211_S_RUN)
   2163 		return;
   2164 
   2165 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2166 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2167 
   2168 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2169 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2170 
   2171 	/* Test if temperature has changed. */
   2172 	if (stats->general.temp != sc->rawtemp) {
   2173 		/* Convert "raw" temperature to degC. */
   2174 		sc->rawtemp = stats->general.temp;
   2175 		temp = ops->get_temperature(sc);
   2176 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2177 
   2178 		/* Update TX power if need be (4965AGN only). */
   2179 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2180 			iwn4965_power_calibration(sc, temp);
   2181 	}
   2182 
   2183 	if (desc->type != IWN_BEACON_STATISTICS)
   2184 		return;	/* Reply to a statistics request. */
   2185 
   2186 	sc->noise = iwn_get_noise(&stats->rx.general);
   2187 
   2188 	/* Test that RSSI and noise are present in stats report. */
   2189 	if (le32toh(stats->rx.general.flags) != 1) {
   2190 		DPRINTF(("received statistics without RSSI\n"));
   2191 		return;
   2192 	}
   2193 
   2194 	/*
   2195 	 * XXX Differential gain calibration makes the 6005 firmware
   2196 	 * crap out, so skip it for now.  This effectively disables
   2197 	 * sensitivity tuning as well.
   2198 	 */
   2199 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   2200 		return;
   2201 
   2202 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2203 		iwn_collect_noise(sc, &stats->rx.general);
   2204 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2205 		iwn_tune_sensitivity(sc, &stats->rx);
   2206 }
   2207 
   2208 /*
   2209  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2210  * and 5000 adapters have different incompatible TX status formats.
   2211  */
   2212 static void
   2213 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2214     struct iwn_rx_data *data)
   2215 {
   2216 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2217 
   2218 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2219 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2220 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2221 }
   2222 
   2223 static void
   2224 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2225     struct iwn_rx_data *data)
   2226 {
   2227 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2228 
   2229 #ifdef notyet
   2230 	/* Reset TX scheduler slot. */
   2231 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2232 #endif
   2233 
   2234 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2235 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2236 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2237 }
   2238 
   2239 /*
   2240  * Adapter-independent backend for TX_DONE firmware notifications.
   2241  */
   2242 static void
   2243 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2244     uint8_t status)
   2245 {
   2246 	struct ieee80211com *ic = &sc->sc_ic;
   2247 	struct ifnet *ifp = ic->ic_ifp;
   2248 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2249 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2250 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2251 
   2252 	/* Update rate control statistics. */
   2253 	wn->amn.amn_txcnt++;
   2254 	if (ackfailcnt > 0)
   2255 		wn->amn.amn_retrycnt++;
   2256 
   2257 	if (status != 1 && status != 2)
   2258 		ifp->if_oerrors++;
   2259 	else
   2260 		ifp->if_opackets++;
   2261 
   2262 	/* Unmap and free mbuf. */
   2263 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2264 	    BUS_DMASYNC_POSTWRITE);
   2265 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2266 	m_freem(data->m);
   2267 	data->m = NULL;
   2268 	ieee80211_free_node(data->ni);
   2269 	data->ni = NULL;
   2270 
   2271 	sc->sc_tx_timer = 0;
   2272 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2273 		sc->qfullmsk &= ~(1 << ring->qid);
   2274 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2275 			ifp->if_flags &= ~IFF_OACTIVE;
   2276 			(*ifp->if_start)(ifp);
   2277 		}
   2278 	}
   2279 }
   2280 
   2281 /*
   2282  * Process a "command done" firmware notification.  This is where we wakeup
   2283  * processes waiting for a synchronous command completion.
   2284  */
   2285 static void
   2286 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2287 {
   2288 	struct iwn_tx_ring *ring = &sc->txq[4];
   2289 	struct iwn_tx_data *data;
   2290 
   2291 	if ((desc->qid & 0xf) != 4)
   2292 		return;	/* Not a command ack. */
   2293 
   2294 	data = &ring->data[desc->idx];
   2295 
   2296 	/* If the command was mapped in an mbuf, free it. */
   2297 	if (data->m != NULL) {
   2298 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2299 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2300 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2301 		m_freem(data->m);
   2302 		data->m = NULL;
   2303 	}
   2304 	wakeup(&ring->desc[desc->idx]);
   2305 }
   2306 
   2307 /*
   2308  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2309  */
   2310 static void
   2311 iwn_notif_intr(struct iwn_softc *sc)
   2312 {
   2313 	struct iwn_ops *ops = &sc->ops;
   2314 	struct ieee80211com *ic = &sc->sc_ic;
   2315 	struct ifnet *ifp = ic->ic_ifp;
   2316 	uint16_t hw;
   2317 
   2318 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2319 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2320 
   2321 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2322 	while (sc->rxq.cur != hw) {
   2323 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2324 		struct iwn_rx_desc *desc;
   2325 
   2326 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2327 		    BUS_DMASYNC_POSTREAD);
   2328 		desc = mtod(data->m, struct iwn_rx_desc *);
   2329 
   2330 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2331 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2332 
   2333 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2334 			iwn_cmd_done(sc, desc);
   2335 
   2336 		switch (desc->type) {
   2337 		case IWN_RX_PHY:
   2338 			iwn_rx_phy(sc, desc, data);
   2339 			break;
   2340 
   2341 		case IWN_RX_DONE:		/* 4965AGN only. */
   2342 		case IWN_MPDU_RX_DONE:
   2343 			/* An 802.11 frame has been received. */
   2344 			iwn_rx_done(sc, desc, data);
   2345 			break;
   2346 #ifndef IEEE80211_NO_HT
   2347 		case IWN_RX_COMPRESSED_BA:
   2348 			/* A Compressed BlockAck has been received. */
   2349 			iwn_rx_compressed_ba(sc, desc, data);
   2350 			break;
   2351 #endif
   2352 		case IWN_TX_DONE:
   2353 			/* An 802.11 frame has been transmitted. */
   2354 			ops->tx_done(sc, desc, data);
   2355 			break;
   2356 
   2357 		case IWN_RX_STATISTICS:
   2358 		case IWN_BEACON_STATISTICS:
   2359 			iwn_rx_statistics(sc, desc, data);
   2360 			break;
   2361 
   2362 		case IWN_BEACON_MISSED:
   2363 		{
   2364 			struct iwn_beacon_missed *miss =
   2365 			    (struct iwn_beacon_missed *)(desc + 1);
   2366 
   2367 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2368 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2369 			/*
   2370 			 * If more than 5 consecutive beacons are missed,
   2371 			 * reinitialize the sensitivity state machine.
   2372 			 */
   2373 			DPRINTF(("beacons missed %d/%d\n",
   2374 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2375 			if (ic->ic_state == IEEE80211_S_RUN &&
   2376 			    le32toh(miss->consecutive) > 5)
   2377 				(void)iwn_init_sensitivity(sc);
   2378 			break;
   2379 		}
   2380 		case IWN_UC_READY:
   2381 		{
   2382 			struct iwn_ucode_info *uc =
   2383 			    (struct iwn_ucode_info *)(desc + 1);
   2384 
   2385 			/* The microcontroller is ready. */
   2386 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2387 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2388 			DPRINTF(("microcode alive notification version=%d.%d "
   2389 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2390 			    uc->subtype, le32toh(uc->valid)));
   2391 
   2392 			if (le32toh(uc->valid) != 1) {
   2393 				aprint_error_dev(sc->sc_dev,
   2394 				    "microcontroller initialization "
   2395 				    "failed\n");
   2396 				break;
   2397 			}
   2398 			if (uc->subtype == IWN_UCODE_INIT) {
   2399 				/* Save microcontroller report. */
   2400 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2401 			}
   2402 			/* Save the address of the error log in SRAM. */
   2403 			sc->errptr = le32toh(uc->errptr);
   2404 			break;
   2405 		}
   2406 		case IWN_STATE_CHANGED:
   2407 		{
   2408 			uint32_t *status = (uint32_t *)(desc + 1);
   2409 
   2410 			/* Enabled/disabled notification. */
   2411 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2412 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2413 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2414 
   2415 			if (le32toh(*status) & 1) {
   2416 				/* The radio button has to be pushed. */
   2417 				aprint_error_dev(sc->sc_dev,
   2418 				    "Radio transmitter is off\n");
   2419 				/* Turn the interface down. */
   2420 				ifp->if_flags &= ~IFF_UP;
   2421 				iwn_stop(ifp, 1);
   2422 				return;	/* No further processing. */
   2423 			}
   2424 			break;
   2425 		}
   2426 		case IWN_START_SCAN:
   2427 		{
   2428 			struct iwn_start_scan *scan =
   2429 			    (struct iwn_start_scan *)(desc + 1);
   2430 
   2431 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2432 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2433 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2434 			    scan->chan, le32toh(scan->status)));
   2435 
   2436 			/* Fix current channel. */
   2437 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2438 			break;
   2439 		}
   2440 		case IWN_STOP_SCAN:
   2441 		{
   2442 			struct iwn_stop_scan *scan =
   2443 			    (struct iwn_stop_scan *)(desc + 1);
   2444 
   2445 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2446 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2447 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2448 			    scan->nchan, scan->status, scan->chan));
   2449 
   2450 			if (scan->status == 1 && scan->chan <= 14 &&
   2451 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2452 				/*
   2453 				 * We just finished scanning 2GHz channels,
   2454 				 * start scanning 5GHz ones.
   2455 				 */
   2456 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2457 					break;
   2458 			}
   2459 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2460 			ieee80211_end_scan(ic);
   2461 			break;
   2462 		}
   2463 		case IWN5000_CALIBRATION_RESULT:
   2464 			iwn5000_rx_calib_results(sc, desc, data);
   2465 			break;
   2466 
   2467 		case IWN5000_CALIBRATION_DONE:
   2468 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2469 			wakeup(sc);
   2470 			break;
   2471 		}
   2472 
   2473 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2474 	}
   2475 
   2476 	/* Tell the firmware what we have processed. */
   2477 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2478 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2479 }
   2480 
   2481 /*
   2482  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2483  * from power-down sleep mode.
   2484  */
   2485 static void
   2486 iwn_wakeup_intr(struct iwn_softc *sc)
   2487 {
   2488 	int qid;
   2489 
   2490 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2491 
   2492 	/* Wakeup RX and TX rings. */
   2493 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2494 	for (qid = 0; qid < sc->ntxqs; qid++) {
   2495 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2496 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2497 	}
   2498 }
   2499 
   2500 /*
   2501  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2502  * we can't debug the firmware because it is neither open source nor free, it
   2503  * can help us to identify certain classes of problems.
   2504  */
   2505 static void
   2506 iwn_fatal_intr(struct iwn_softc *sc)
   2507 {
   2508 	struct iwn_fw_dump dump;
   2509 	int i;
   2510 
   2511 	/* Force a complete recalibration on next init. */
   2512 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2513 
   2514 	/* Check that the error log address is valid. */
   2515 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2516 	    sc->errptr + sizeof (dump) >
   2517 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
   2518 		aprint_error_dev(sc->sc_dev,
   2519 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2520 		return;
   2521 	}
   2522 	if (iwn_nic_lock(sc) != 0) {
   2523 		aprint_error_dev(sc->sc_dev,
   2524 		    "could not read firmware error log\n");
   2525 		return;
   2526 	}
   2527 	/* Read firmware error log from SRAM. */
   2528 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2529 	    sizeof (dump) / sizeof (uint32_t));
   2530 	iwn_nic_unlock(sc);
   2531 
   2532 	if (dump.valid == 0) {
   2533 		aprint_error_dev(sc->sc_dev,
   2534 		    "firmware error log is empty\n");
   2535 		return;
   2536 	}
   2537 	aprint_error("firmware error log:\n");
   2538 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2539 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2540 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2541 	    dump.id);
   2542 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2543 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2544 	aprint_error("  error data      = 0x%08X%08X\n",
   2545 	    dump.error_data[0], dump.error_data[1]);
   2546 	aprint_error("  branch link     = 0x%08X%08X\n",
   2547 	    dump.branch_link[0], dump.branch_link[1]);
   2548 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2549 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2550 	aprint_error("  time            = %u\n", dump.time[0]);
   2551 
   2552 	/* Dump driver status (TX and RX rings) while we're here. */
   2553 	aprint_error("driver status:\n");
   2554 	for (i = 0; i < sc->ntxqs; i++) {
   2555 		struct iwn_tx_ring *ring = &sc->txq[i];
   2556 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2557 		    i, ring->qid, ring->cur, ring->queued);
   2558 	}
   2559 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2560 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2561 }
   2562 
   2563 static int
   2564 iwn_intr(void *arg)
   2565 {
   2566 	struct iwn_softc *sc = arg;
   2567 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2568 	uint32_t r1, r2, tmp;
   2569 
   2570 	/* Disable interrupts. */
   2571 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2572 
   2573 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2574 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2575 		tmp = 0;
   2576 		while (sc->ict[sc->ict_cur] != 0) {
   2577 			tmp |= sc->ict[sc->ict_cur];
   2578 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2579 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2580 		}
   2581 		tmp = le32toh(tmp);
   2582 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2583 			tmp = 0;
   2584 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2585 			tmp |= 0x8000;
   2586 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2587 		r2 = 0;	/* Unused. */
   2588 	} else {
   2589 		r1 = IWN_READ(sc, IWN_INT);
   2590 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2591 			return 0;	/* Hardware gone! */
   2592 		r2 = IWN_READ(sc, IWN_FH_INT);
   2593 	}
   2594 	if (r1 == 0 && r2 == 0) {
   2595 		if (ifp->if_flags & IFF_UP)
   2596 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2597 		return 0;	/* Interrupt not for us. */
   2598 	}
   2599 
   2600 	/* Acknowledge interrupts. */
   2601 	IWN_WRITE(sc, IWN_INT, r1);
   2602 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2603 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2604 
   2605 	if (r1 & IWN_INT_RF_TOGGLED) {
   2606 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2607 		aprint_error_dev(sc->sc_dev,
   2608 		    "RF switch: radio %s\n",
   2609 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2610 	}
   2611 	if (r1 & IWN_INT_CT_REACHED) {
   2612 		aprint_error_dev(sc->sc_dev,
   2613 		    "critical temperature reached!\n");
   2614 	}
   2615 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2616 		aprint_error_dev(sc->sc_dev,
   2617 		    "fatal firmware error\n");
   2618 		/* Dump firmware error log and stop. */
   2619 		iwn_fatal_intr(sc);
   2620 		ifp->if_flags &= ~IFF_UP;
   2621 		iwn_stop(ifp, 1);
   2622 		return 1;
   2623 	}
   2624 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2625 	    (r2 & IWN_FH_INT_RX)) {
   2626 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2627 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2628 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2629 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2630 			    IWN_INT_PERIODIC_DIS);
   2631 			iwn_notif_intr(sc);
   2632 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2633 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2634 				    IWN_INT_PERIODIC_ENA);
   2635 			}
   2636 		} else
   2637 			iwn_notif_intr(sc);
   2638 	}
   2639 
   2640 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2641 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2642 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2643 		wakeup(sc);	/* FH DMA transfer completed. */
   2644 	}
   2645 
   2646 	if (r1 & IWN_INT_ALIVE)
   2647 		wakeup(sc);	/* Firmware is alive. */
   2648 
   2649 	if (r1 & IWN_INT_WAKEUP)
   2650 		iwn_wakeup_intr(sc);
   2651 
   2652 	/* Re-enable interrupts. */
   2653 	if (ifp->if_flags & IFF_UP)
   2654 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2655 
   2656 	return 1;
   2657 }
   2658 
   2659 /*
   2660  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2661  * 5000 adapters use a slightly different format).
   2662  */
   2663 static void
   2664 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2665     uint16_t len)
   2666 {
   2667 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2668 
   2669 	*w = htole16(len + 8);
   2670 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2671 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2672 	    sizeof (uint16_t),
   2673 	    BUS_DMASYNC_PREWRITE);
   2674 	if (idx < IWN_SCHED_WINSZ) {
   2675 		*(w + IWN_TX_RING_COUNT) = *w;
   2676 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2677 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2678 		    (char *)(void *)sc->sched_dma.vaddr,
   2679 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2680 	}
   2681 }
   2682 
   2683 static void
   2684 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2685     uint16_t len)
   2686 {
   2687 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2688 
   2689 	*w = htole16(id << 12 | (len + 8));
   2690 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2691 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2692 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2693 	if (idx < IWN_SCHED_WINSZ) {
   2694 		*(w + IWN_TX_RING_COUNT) = *w;
   2695 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2696 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2697 		    (char *)(void *)sc->sched_dma.vaddr,
   2698 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2699 	}
   2700 }
   2701 
   2702 #ifdef notyet
   2703 static void
   2704 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2705 {
   2706 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2707 
   2708 	*w = (*w & htole16(0xf000)) | htole16(1);
   2709 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2710 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2711 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2712 	if (idx < IWN_SCHED_WINSZ) {
   2713 		*(w + IWN_TX_RING_COUNT) = *w;
   2714 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2715 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2716 		    (char *)(void *)sc->sched_dma.vaddr,
   2717 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2718 	}
   2719 }
   2720 #endif
   2721 
   2722 static int
   2723 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2724 {
   2725 	struct ieee80211com *ic = &sc->sc_ic;
   2726 	struct iwn_node *wn = (void *)ni;
   2727 	struct iwn_tx_ring *ring;
   2728 	struct iwn_tx_desc *desc;
   2729 	struct iwn_tx_data *data;
   2730 	struct iwn_tx_cmd *cmd;
   2731 	struct iwn_cmd_data *tx;
   2732 	const struct iwn_rate *rinfo;
   2733 	struct ieee80211_frame *wh;
   2734 	struct ieee80211_key *k = NULL;
   2735 	struct mbuf *m1;
   2736 	uint32_t flags;
   2737 	u_int hdrlen;
   2738 	bus_dma_segment_t *seg;
   2739 	uint8_t tid, ridx, txant, type;
   2740 	int i, totlen, error, pad;
   2741 
   2742 	const struct chanAccParams *cap;
   2743 	int noack;
   2744 	int hdrlen2;
   2745 
   2746 	wh = mtod(m, struct ieee80211_frame *);
   2747 	hdrlen = ieee80211_anyhdrsize(wh);
   2748 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2749 
   2750 	hdrlen2 = (ieee80211_has_qos(wh)) ?
   2751 	    sizeof (struct ieee80211_qosframe) :
   2752 	    sizeof (struct ieee80211_frame);
   2753 
   2754 	if (hdrlen != hdrlen2)
   2755 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2756 		hdrlen, hdrlen2);
   2757 
   2758 	/* XXX OpenBSD sets a different tid when using QOS */
   2759 	tid = 0;
   2760 	if (ieee80211_has_qos(wh)) {
   2761 		cap = &ic->ic_wme.wme_chanParams;
   2762 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2763 	}
   2764 	else
   2765 		noack = 0;
   2766 
   2767 	ring = &sc->txq[ac];
   2768 	desc = &ring->desc[ring->cur];
   2769 	data = &ring->data[ring->cur];
   2770 
   2771 	/* Choose a TX rate index. */
   2772 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2773 	    type != IEEE80211_FC0_TYPE_DATA) {
   2774 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2775 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2776 	} else if (ic->ic_fixed_rate != -1) {
   2777 		ridx = sc->fixed_ridx;
   2778 	} else
   2779 		ridx = wn->ridx[ni->ni_txrate];
   2780 	rinfo = &iwn_rates[ridx];
   2781 
   2782 	/* Encrypt the frame if need be. */
   2783 	/*
   2784 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   2785 	 * in order to match old code and other drivers. Tests with
   2786 	 * tcpdump indicates that the order is irrelevant, however,
   2787 	 * as bpf produces unencrypted data for both ordering choices.
   2788 	 */
   2789 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2790 		k = ieee80211_crypto_encap(ic, ni, m);
   2791 		if (k == NULL) {
   2792 			m_freem(m);
   2793 			return ENOBUFS;
   2794 		}
   2795 		/* Packet header may have moved, reset our local pointer. */
   2796 		wh = mtod(m, struct ieee80211_frame *);
   2797 	}
   2798 	totlen = m->m_pkthdr.len;
   2799 
   2800 	if (sc->sc_drvbpf != NULL) {
   2801 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2802 
   2803 		tap->wt_flags = 0;
   2804 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2805 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2806 		tap->wt_rate = rinfo->rate;
   2807 		tap->wt_hwqueue = ac;
   2808 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2809 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2810 
   2811 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   2812 	}
   2813 
   2814 	/* Prepare TX firmware command. */
   2815 	cmd = &ring->cmd[ring->cur];
   2816 	cmd->code = IWN_CMD_TX_DATA;
   2817 	cmd->flags = 0;
   2818 	cmd->qid = ring->qid;
   2819 	cmd->idx = ring->cur;
   2820 
   2821 	tx = (struct iwn_cmd_data *)cmd->data;
   2822 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2823 	tx->scratch = 0;	/* clear "scratch" area */
   2824 
   2825 	flags = 0;
   2826 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2827 		/* Unicast frame, check if an ACK is expected. */
   2828 		if (!noack)
   2829 			flags |= IWN_TX_NEED_ACK;
   2830 	}
   2831 
   2832 #ifdef notyet
   2833 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   2834 	if ((wh->i_fc[0] &
   2835 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   2836 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   2837 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   2838 #endif
   2839 
   2840 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   2841 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   2842 
   2843 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   2844 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2845 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   2846 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   2847 			flags |= IWN_TX_NEED_RTS;
   2848 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   2849 		    ridx >= IWN_RIDX_OFDM6) {
   2850 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   2851 				flags |= IWN_TX_NEED_CTS;
   2852 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   2853 				flags |= IWN_TX_NEED_RTS;
   2854 		}
   2855 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   2856 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   2857 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   2858 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   2859 				flags |= IWN_TX_NEED_PROTECTION;
   2860 			} else
   2861 				flags |= IWN_TX_FULL_TXOP;
   2862 		}
   2863 	}
   2864 
   2865 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2866 	    type != IEEE80211_FC0_TYPE_DATA)
   2867 		tx->id = sc->broadcast_id;
   2868 	else
   2869 		tx->id = wn->id;
   2870 
   2871 	if (type == IEEE80211_FC0_TYPE_MGT) {
   2872 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2873 
   2874 #ifndef IEEE80211_STA_ONLY
   2875 		/* Tell HW to set timestamp in probe responses. */
   2876 		/* XXX NetBSD rev 1.11 added probe requests here but */
   2877 		/* probe requests do not take timestamps (from Bergamini). */
   2878 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   2879 			flags |= IWN_TX_INSERT_TSTAMP;
   2880 #endif
   2881 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   2882 		/* changes here. These are not needed (from Bergamini). */
   2883 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   2884 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   2885 			tx->timeout = htole16(3);
   2886 		else
   2887 			tx->timeout = htole16(2);
   2888 	} else
   2889 		tx->timeout = htole16(0);
   2890 
   2891 	if (hdrlen & 3) {
   2892 		/* First segment length must be a multiple of 4. */
   2893 		flags |= IWN_TX_NEED_PADDING;
   2894 		pad = 4 - (hdrlen & 3);
   2895 	} else
   2896 		pad = 0;
   2897 
   2898 	tx->len = htole16(totlen);
   2899 	tx->tid = tid;
   2900 	tx->rts_ntries = 60;
   2901 	tx->data_ntries = 15;
   2902 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   2903 	tx->plcp = rinfo->plcp;
   2904 	tx->rflags = rinfo->flags;
   2905 	if (tx->id == sc->broadcast_id) {
   2906 		/* Group or management frame. */
   2907 		tx->linkq = 0;
   2908 		/* XXX Alternate between antenna A and B? */
   2909 		txant = IWN_LSB(sc->txchainmask);
   2910 		tx->rflags |= IWN_RFLAG_ANT(txant);
   2911 	} else {
   2912 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   2913 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   2914 	}
   2915 	/* Set physical address of "scratch area". */
   2916 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   2917 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   2918 
   2919 	/* Copy 802.11 header in TX command. */
   2920 	/* XXX NetBSD changed this in rev 1.20 */
   2921 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   2922 
   2923 	/* Trim 802.11 header. */
   2924 	m_adj(m, hdrlen);
   2925 	tx->security = 0;
   2926 	tx->flags = htole32(flags);
   2927 
   2928 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2929 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2930 	if (error != 0) {
   2931 		if (error != EFBIG) {
   2932 			aprint_error_dev(sc->sc_dev,
   2933 			    "can't map mbuf (error %d)\n", error);
   2934 			m_freem(m);
   2935 			return error;
   2936 		}
   2937 		/* Too many DMA segments, linearize mbuf. */
   2938 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   2939 		if (m1 == NULL) {
   2940 			m_freem(m);
   2941 			return ENOBUFS;
   2942 		}
   2943 		if (m->m_pkthdr.len > MHLEN) {
   2944 			MCLGET(m1, M_DONTWAIT);
   2945 			if (!(m1->m_flags & M_EXT)) {
   2946 				m_freem(m);
   2947 				m_freem(m1);
   2948 				return ENOBUFS;
   2949 			}
   2950 		}
   2951 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   2952 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   2953 		m_freem(m);
   2954 		m = m1;
   2955 
   2956 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2957 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2958 		if (error != 0) {
   2959 			aprint_error_dev(sc->sc_dev,
   2960 			    "can't map mbuf (error %d)\n", error);
   2961 			m_freem(m);
   2962 			return error;
   2963 		}
   2964 	}
   2965 
   2966 	data->m = m;
   2967 	data->ni = ni;
   2968 
   2969 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   2970 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   2971 
   2972 	/* Fill TX descriptor. */
   2973 	desc->nsegs = 1 + data->map->dm_nsegs;
   2974 	/* First DMA segment is used by the TX command. */
   2975 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   2976 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   2977 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   2978 	/* Other DMA segments are for data payload. */
   2979 	seg = data->map->dm_segs;
   2980 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   2981 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   2982 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   2983 		    seg->ds_len << 4);
   2984 		seg++;
   2985 	}
   2986 
   2987 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2988 	    BUS_DMASYNC_PREWRITE);
   2989 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   2990 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   2991 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   2992 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2993 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   2994 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   2995 
   2996 #ifdef notyet
   2997 	/* Update TX scheduler. */
   2998 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   2999 #endif
   3000 
   3001 	/* Kick TX ring. */
   3002 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3003 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3004 
   3005 	/* Mark TX ring as full if we reach a certain threshold. */
   3006 	if (++ring->queued > IWN_TX_RING_HIMARK)
   3007 		sc->qfullmsk |= 1 << ring->qid;
   3008 
   3009 	return 0;
   3010 }
   3011 
   3012 static void
   3013 iwn_start(struct ifnet *ifp)
   3014 {
   3015 	struct iwn_softc *sc = ifp->if_softc;
   3016 	struct ieee80211com *ic = &sc->sc_ic;
   3017 	struct ieee80211_node *ni;
   3018 	struct ether_header *eh;
   3019 	struct mbuf *m;
   3020 	int ac;
   3021 
   3022 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3023 		return;
   3024 
   3025 	for (;;) {
   3026 		if (sc->qfullmsk != 0) {
   3027 			ifp->if_flags |= IFF_OACTIVE;
   3028 			break;
   3029 		}
   3030 		/* Send pending management frames first. */
   3031 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3032 		if (m != NULL) {
   3033 			ni = (void *)m->m_pkthdr.rcvif;
   3034 			ac = 0;
   3035 			goto sendit;
   3036 		}
   3037 		if (ic->ic_state != IEEE80211_S_RUN)
   3038 			break;
   3039 
   3040 		/* Encapsulate and send data frames. */
   3041 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3042 		if (m == NULL)
   3043 			break;
   3044 		if (m->m_len < sizeof (*eh) &&
   3045 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3046 			ifp->if_oerrors++;
   3047 			continue;
   3048 		}
   3049 		eh = mtod(m, struct ether_header *);
   3050 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3051 		if (ni == NULL) {
   3052 			m_freem(m);
   3053 			ifp->if_oerrors++;
   3054 			continue;
   3055 		}
   3056 		/* classify mbuf so we can find which tx ring to use */
   3057 		if (ieee80211_classify(ic, m, ni) != 0) {
   3058 			m_freem(m);
   3059 			ieee80211_free_node(ni);
   3060 			ifp->if_oerrors++;
   3061 			continue;
   3062 		}
   3063 
   3064 		/* No QoS encapsulation for EAPOL frames. */
   3065 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3066 		    M_WME_GETAC(m) : WME_AC_BE;
   3067 
   3068 		bpf_mtap(ifp, m);
   3069 
   3070 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3071 			ieee80211_free_node(ni);
   3072 			ifp->if_oerrors++;
   3073 			continue;
   3074 		}
   3075 sendit:
   3076 		bpf_mtap3(ic->ic_rawbpf, m);
   3077 
   3078 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3079 			ieee80211_free_node(ni);
   3080 			ifp->if_oerrors++;
   3081 			continue;
   3082 		}
   3083 
   3084 		sc->sc_tx_timer = 5;
   3085 		ifp->if_timer = 1;
   3086 	}
   3087 }
   3088 
   3089 static void
   3090 iwn_watchdog(struct ifnet *ifp)
   3091 {
   3092 	struct iwn_softc *sc = ifp->if_softc;
   3093 
   3094 	ifp->if_timer = 0;
   3095 
   3096 	if (sc->sc_tx_timer > 0) {
   3097 		if (--sc->sc_tx_timer == 0) {
   3098 			aprint_error_dev(sc->sc_dev,
   3099 			    "device timeout\n");
   3100 			ifp->if_flags &= ~IFF_UP;
   3101 			iwn_stop(ifp, 1);
   3102 			ifp->if_oerrors++;
   3103 			return;
   3104 		}
   3105 		ifp->if_timer = 1;
   3106 	}
   3107 
   3108 	ieee80211_watchdog(&sc->sc_ic);
   3109 }
   3110 
   3111 static int
   3112 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3113 {
   3114 	struct iwn_softc *sc = ifp->if_softc;
   3115 	struct ieee80211com *ic = &sc->sc_ic;
   3116 	struct ifaddr *ifa;
   3117 	const struct sockaddr *sa;
   3118 	int s, error = 0;
   3119 
   3120 	s = splnet();
   3121 
   3122 	switch (cmd) {
   3123 	case SIOCSIFADDR:
   3124 		ifa = (struct ifaddr *)data;
   3125 		ifp->if_flags |= IFF_UP;
   3126 #ifdef INET
   3127 		if (ifa->ifa_addr->sa_family == AF_INET)
   3128 			arp_ifinit(&ic->ic_ac, ifa);
   3129 #endif
   3130 		/* FALLTHROUGH */
   3131 	case SIOCSIFFLAGS:
   3132 		/* XXX Added as it is in every NetBSD driver */
   3133 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3134 			break;
   3135 		if (ifp->if_flags & IFF_UP) {
   3136 			if (!(ifp->if_flags & IFF_RUNNING))
   3137 				error = iwn_init(ifp);
   3138 		} else {
   3139 			if (ifp->if_flags & IFF_RUNNING)
   3140 				iwn_stop(ifp, 1);
   3141 		}
   3142 		break;
   3143 
   3144 	case SIOCADDMULTI:
   3145 	case SIOCDELMULTI:
   3146 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3147 		error = (cmd == SIOCADDMULTI) ?
   3148 		    ether_addmulti(sa, &sc->sc_ec) :
   3149 		    ether_delmulti(sa, &sc->sc_ec);
   3150 
   3151 		if (error == ENETRESET)
   3152 			error = 0;
   3153 		break;
   3154 
   3155 	default:
   3156 		error = ieee80211_ioctl(ic, cmd, data);
   3157 	}
   3158 
   3159 	if (error == ENETRESET) {
   3160 		error = 0;
   3161 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3162 		    (IFF_UP | IFF_RUNNING)) {
   3163 			iwn_stop(ifp, 0);
   3164 			error = iwn_init(ifp);
   3165 		}
   3166 	}
   3167 
   3168 	splx(s);
   3169 	return error;
   3170 }
   3171 
   3172 /*
   3173  * Send a command to the firmware.
   3174  */
   3175 static int
   3176 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3177 {
   3178 	struct iwn_tx_ring *ring = &sc->txq[4];
   3179 	struct iwn_tx_desc *desc;
   3180 	struct iwn_tx_data *data;
   3181 	struct iwn_tx_cmd *cmd;
   3182 	struct mbuf *m;
   3183 	bus_addr_t paddr;
   3184 	int totlen, error;
   3185 
   3186 	desc = &ring->desc[ring->cur];
   3187 	data = &ring->data[ring->cur];
   3188 	totlen = 4 + size;
   3189 
   3190 	if (size > sizeof cmd->data) {
   3191 		/* Command is too large to fit in a descriptor. */
   3192 		if (totlen > MCLBYTES)
   3193 			return EINVAL;
   3194 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3195 		if (m == NULL)
   3196 			return ENOMEM;
   3197 		if (totlen > MHLEN) {
   3198 			MCLGET(m, M_DONTWAIT);
   3199 			if (!(m->m_flags & M_EXT)) {
   3200 				m_freem(m);
   3201 				return ENOMEM;
   3202 			}
   3203 		}
   3204 		cmd = mtod(m, struct iwn_tx_cmd *);
   3205 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3206 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3207 		if (error != 0) {
   3208 			m_freem(m);
   3209 			return error;
   3210 		}
   3211 		data->m = m;
   3212 		paddr = data->map->dm_segs[0].ds_addr;
   3213 	} else {
   3214 		cmd = &ring->cmd[ring->cur];
   3215 		paddr = data->cmd_paddr;
   3216 	}
   3217 
   3218 	cmd->code = code;
   3219 	cmd->flags = 0;
   3220 	cmd->qid = ring->qid;
   3221 	cmd->idx = ring->cur;
   3222 	memcpy(cmd->data, buf, size);
   3223 
   3224 	desc->nsegs = 1;
   3225 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3226 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3227 
   3228 	if (size > sizeof cmd->data) {
   3229 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3230 		    BUS_DMASYNC_PREWRITE);
   3231 	} else {
   3232 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3233 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3234 		    totlen, BUS_DMASYNC_PREWRITE);
   3235 	}
   3236 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3237 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3238 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3239 
   3240 #ifdef notyet
   3241 	/* Update TX scheduler. */
   3242 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3243 #endif
   3244 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3245 
   3246 	/* Kick command ring. */
   3247 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3248 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3249 
   3250 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3251 }
   3252 
   3253 static int
   3254 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3255 {
   3256 	struct iwn4965_node_info hnode;
   3257 	char *src, *dst;
   3258 
   3259 	/*
   3260 	 * We use the node structure for 5000 Series internally (it is
   3261 	 * a superset of the one for 4965AGN). We thus copy the common
   3262 	 * fields before sending the command.
   3263 	 */
   3264 	src = (char *)node;
   3265 	dst = (char *)&hnode;
   3266 	memcpy(dst, src, 48);
   3267 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3268 	memcpy(dst + 48, src + 72, 20);
   3269 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3270 }
   3271 
   3272 static int
   3273 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3274 {
   3275 	/* Direct mapping. */
   3276 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3277 }
   3278 
   3279 static int
   3280 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3281 {
   3282 	struct iwn_node *wn = (void *)ni;
   3283 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3284 	struct iwn_cmd_link_quality linkq;
   3285 	const struct iwn_rate *rinfo;
   3286 	uint8_t txant;
   3287 	int i, txrate;
   3288 
   3289 	/* Use the first valid TX antenna. */
   3290 	txant = IWN_LSB(sc->txchainmask);
   3291 
   3292 	memset(&linkq, 0, sizeof linkq);
   3293 	linkq.id = wn->id;
   3294 	linkq.antmsk_1stream = txant;
   3295 	linkq.antmsk_2stream = IWN_ANT_AB;
   3296 	linkq.ampdu_max = 31;
   3297 	linkq.ampdu_threshold = 3;
   3298 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3299 
   3300 	/* Start at highest available bit-rate. */
   3301 	txrate = rs->rs_nrates - 1;
   3302 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3303 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3304 		linkq.retry[i].plcp = rinfo->plcp;
   3305 		linkq.retry[i].rflags = rinfo->flags;
   3306 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3307 		/* Next retry at immediate lower bit-rate. */
   3308 		if (txrate > 0)
   3309 			txrate--;
   3310 	}
   3311 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3312 }
   3313 
   3314 /*
   3315  * Broadcast node is used to send group-addressed and management frames.
   3316  */
   3317 static int
   3318 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3319 {
   3320 	struct iwn_ops *ops = &sc->ops;
   3321 	struct iwn_node_info node;
   3322 	struct iwn_cmd_link_quality linkq;
   3323 	const struct iwn_rate *rinfo;
   3324 	uint8_t txant;
   3325 	int i, error;
   3326 
   3327 	memset(&node, 0, sizeof node);
   3328 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3329 	node.id = sc->broadcast_id;
   3330 	DPRINTF(("adding broadcast node\n"));
   3331 	if ((error = ops->add_node(sc, &node, async)) != 0)
   3332 		return error;
   3333 
   3334 	/* Use the first valid TX antenna. */
   3335 	txant = IWN_LSB(sc->txchainmask);
   3336 
   3337 	memset(&linkq, 0, sizeof linkq);
   3338 	linkq.id = sc->broadcast_id;
   3339 	linkq.antmsk_1stream = txant;
   3340 	linkq.antmsk_2stream = IWN_ANT_AB;
   3341 	linkq.ampdu_max = 64;
   3342 	linkq.ampdu_threshold = 3;
   3343 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3344 
   3345 	/* Use lowest mandatory bit-rate. */
   3346 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3347 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3348 	linkq.retry[0].plcp = rinfo->plcp;
   3349 	linkq.retry[0].rflags = rinfo->flags;
   3350 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3351 	/* Use same bit-rate for all TX retries. */
   3352 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3353 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3354 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3355 	}
   3356 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3357 }
   3358 
   3359 static void
   3360 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3361 {
   3362 	struct iwn_cmd_led led;
   3363 
   3364 	/* Clear microcode LED ownership. */
   3365 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3366 
   3367 	led.which = which;
   3368 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3369 	led.off = off;
   3370 	led.on = on;
   3371 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3372 }
   3373 
   3374 /*
   3375  * Set the critical temperature at which the firmware will stop the radio
   3376  * and notify us.
   3377  */
   3378 static int
   3379 iwn_set_critical_temp(struct iwn_softc *sc)
   3380 {
   3381 	struct iwn_critical_temp crit;
   3382 	int32_t temp;
   3383 
   3384 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3385 
   3386 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3387 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3388 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3389 		temp = IWN_CTOK(110);
   3390 	else
   3391 		temp = 110;
   3392 	memset(&crit, 0, sizeof crit);
   3393 	crit.tempR = htole32(temp);
   3394 	DPRINTF(("setting critical temperature to %d\n", temp));
   3395 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3396 }
   3397 
   3398 static int
   3399 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3400 {
   3401 	struct iwn_cmd_timing cmd;
   3402 	uint64_t val, mod;
   3403 
   3404 	memset(&cmd, 0, sizeof cmd);
   3405 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3406 	cmd.bintval = htole16(ni->ni_intval);
   3407 	cmd.lintval = htole16(10);
   3408 
   3409 	/* Compute remaining time until next beacon. */
   3410 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3411 	mod = le64toh(cmd.tstamp) % val;
   3412 	cmd.binitval = htole32((uint32_t)(val - mod));
   3413 
   3414 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
   3415 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3416 
   3417 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3418 }
   3419 
   3420 static void
   3421 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3422 {
   3423 	/* Adjust TX power if need be (delta >= 3 degC). */
   3424 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3425 	if (abs(temp - sc->temp) >= 3) {
   3426 		/* Record temperature of last calibration. */
   3427 		sc->temp = temp;
   3428 		(void)iwn4965_set_txpower(sc, 1);
   3429 	}
   3430 }
   3431 
   3432 /*
   3433  * Set TX power for current channel (each rate has its own power settings).
   3434  * This function takes into account the regulatory information from EEPROM,
   3435  * the current temperature and the current voltage.
   3436  */
   3437 static int
   3438 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3439 {
   3440 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3441 #define fdivround(a, b, n)	\
   3442 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3443 /* Linear interpolation. */
   3444 #define interpolate(x, x1, y1, x2, y2, n)	\
   3445 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3446 
   3447 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3448 	struct ieee80211com *ic = &sc->sc_ic;
   3449 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3450 	struct ieee80211_channel *ch;
   3451 	struct iwn4965_cmd_txpower cmd;
   3452 	struct iwn4965_eeprom_chan_samples *chans;
   3453 	const uint8_t *rf_gain, *dsp_gain;
   3454 	int32_t vdiff, tdiff;
   3455 	int i, c, grp, maxpwr;
   3456 	uint8_t chan;
   3457 
   3458 	/* Retrieve current channel from last RXON. */
   3459 	chan = sc->rxon.chan;
   3460 	DPRINTF(("setting TX power for channel %d\n", chan));
   3461 	ch = &ic->ic_channels[chan];
   3462 
   3463 	memset(&cmd, 0, sizeof cmd);
   3464 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3465 	cmd.chan = chan;
   3466 
   3467 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3468 		maxpwr   = sc->maxpwr5GHz;
   3469 		rf_gain  = iwn4965_rf_gain_5ghz;
   3470 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3471 	} else {
   3472 		maxpwr   = sc->maxpwr2GHz;
   3473 		rf_gain  = iwn4965_rf_gain_2ghz;
   3474 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3475 	}
   3476 
   3477 	/* Compute voltage compensation. */
   3478 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3479 	if (vdiff > 0)
   3480 		vdiff *= 2;
   3481 	if (abs(vdiff) > 2)
   3482 		vdiff = 0;
   3483 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3484 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3485 
   3486 	/* Get channel attenuation group. */
   3487 	if (chan <= 20)		/* 1-20 */
   3488 		grp = 4;
   3489 	else if (chan <= 43)	/* 34-43 */
   3490 		grp = 0;
   3491 	else if (chan <= 70)	/* 44-70 */
   3492 		grp = 1;
   3493 	else if (chan <= 124)	/* 71-124 */
   3494 		grp = 2;
   3495 	else			/* 125-200 */
   3496 		grp = 3;
   3497 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3498 
   3499 	/* Get channel sub-band. */
   3500 	for (i = 0; i < IWN_NBANDS; i++)
   3501 		if (sc->bands[i].lo != 0 &&
   3502 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3503 			break;
   3504 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3505 		return EINVAL;
   3506 	chans = sc->bands[i].chans;
   3507 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3508 
   3509 	for (c = 0; c < 2; c++) {
   3510 		uint8_t power, gain, temp;
   3511 		int maxchpwr, pwr, ridx, idx;
   3512 
   3513 		power = interpolate(chan,
   3514 		    chans[0].num, chans[0].samples[c][1].power,
   3515 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3516 		gain  = interpolate(chan,
   3517 		    chans[0].num, chans[0].samples[c][1].gain,
   3518 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3519 		temp  = interpolate(chan,
   3520 		    chans[0].num, chans[0].samples[c][1].temp,
   3521 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3522 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3523 		    c, power, gain, temp));
   3524 
   3525 		/* Compute temperature compensation. */
   3526 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3527 		DPRINTF(("temperature compensation=%d (current=%d, "
   3528 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3529 
   3530 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3531 			/* Convert dBm to half-dBm. */
   3532 			maxchpwr = sc->maxpwr[chan] * 2;
   3533 			if ((ridx / 8) & 1)
   3534 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3535 
   3536 			pwr = maxpwr;
   3537 
   3538 			/* Adjust TX power based on rate. */
   3539 			if ((ridx % 8) == 5)
   3540 				pwr -= 15;	/* OFDM48: -7.5dB */
   3541 			else if ((ridx % 8) == 6)
   3542 				pwr -= 17;	/* OFDM54: -8.5dB */
   3543 			else if ((ridx % 8) == 7)
   3544 				pwr -= 20;	/* OFDM60: -10dB */
   3545 			else
   3546 				pwr -= 10;	/* Others: -5dB */
   3547 
   3548 			/* Do not exceed channel max TX power. */
   3549 			if (pwr > maxchpwr)
   3550 				pwr = maxchpwr;
   3551 
   3552 			idx = gain - (pwr - power) - tdiff - vdiff;
   3553 			if ((ridx / 8) & 1)	/* MIMO */
   3554 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3555 
   3556 			if (cmd.band == 0)
   3557 				idx += 9;	/* 5GHz */
   3558 			if (ridx == IWN_RIDX_MAX)
   3559 				idx += 5;	/* CCK */
   3560 
   3561 			/* Make sure idx stays in a valid range. */
   3562 			if (idx < 0)
   3563 				idx = 0;
   3564 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3565 				idx = IWN4965_MAX_PWR_INDEX;
   3566 
   3567 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3568 			    c, ridx, idx));
   3569 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3570 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3571 		}
   3572 	}
   3573 
   3574 	DPRINTF(("setting TX power for chan %d\n", chan));
   3575 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3576 
   3577 #undef interpolate
   3578 #undef fdivround
   3579 }
   3580 
   3581 static int
   3582 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3583 {
   3584 	struct iwn5000_cmd_txpower cmd;
   3585 
   3586 	/*
   3587 	 * TX power calibration is handled automatically by the firmware
   3588 	 * for 5000 Series.
   3589 	 */
   3590 	memset(&cmd, 0, sizeof cmd);
   3591 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3592 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3593 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3594 	DPRINTF(("setting TX power\n"));
   3595 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
   3596 }
   3597 
   3598 /*
   3599  * Retrieve the maximum RSSI (in dBm) among receivers.
   3600  */
   3601 static int
   3602 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3603 {
   3604 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3605 	uint8_t mask, agc;
   3606 	int rssi;
   3607 
   3608 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3609 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3610 
   3611 	rssi = 0;
   3612 	if (mask & IWN_ANT_A)
   3613 		rssi = MAX(rssi, phy->rssi[0]);
   3614 	if (mask & IWN_ANT_B)
   3615 		rssi = MAX(rssi, phy->rssi[2]);
   3616 	if (mask & IWN_ANT_C)
   3617 		rssi = MAX(rssi, phy->rssi[4]);
   3618 
   3619 	return rssi - agc - IWN_RSSI_TO_DBM;
   3620 }
   3621 
   3622 static int
   3623 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3624 {
   3625 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3626 	uint8_t agc;
   3627 	int rssi;
   3628 
   3629 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3630 
   3631 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3632 		   le16toh(phy->rssi[1]) & 0xff);
   3633 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3634 
   3635 	return rssi - agc - IWN_RSSI_TO_DBM;
   3636 }
   3637 
   3638 /*
   3639  * Retrieve the average noise (in dBm) among receivers.
   3640  */
   3641 static int
   3642 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3643 {
   3644 	int i, total, nbant, noise;
   3645 
   3646 	total = nbant = 0;
   3647 	for (i = 0; i < 3; i++) {
   3648 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3649 			continue;
   3650 		total += noise;
   3651 		nbant++;
   3652 	}
   3653 	/* There should be at least one antenna but check anyway. */
   3654 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3655 }
   3656 
   3657 /*
   3658  * Compute temperature (in degC) from last received statistics.
   3659  */
   3660 static int
   3661 iwn4965_get_temperature(struct iwn_softc *sc)
   3662 {
   3663 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3664 	int32_t r1, r2, r3, r4, temp;
   3665 
   3666 	r1 = le32toh(uc->temp[0].chan20MHz);
   3667 	r2 = le32toh(uc->temp[1].chan20MHz);
   3668 	r3 = le32toh(uc->temp[2].chan20MHz);
   3669 	r4 = le32toh(sc->rawtemp);
   3670 
   3671 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
   3672 		return 0;
   3673 
   3674 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3675 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
   3676 	/* Compute temperature in Kelvin. */
   3677 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3678 	temp = (temp * 97) / 100 + 8;
   3679 
   3680 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3681 	return IWN_KTOC(temp);
   3682 }
   3683 
   3684 static int
   3685 iwn5000_get_temperature(struct iwn_softc *sc)
   3686 {
   3687 	int32_t temp;
   3688 
   3689 	/*
   3690 	 * Temperature is not used by the driver for 5000 Series because
   3691 	 * TX power calibration is handled by firmware.  We export it to
   3692 	 * users through the sensor framework though.
   3693 	 */
   3694 	temp = le32toh(sc->rawtemp);
   3695 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3696 		temp = (temp / -5) + sc->temp_off;
   3697 		temp = IWN_KTOC(temp);
   3698 	}
   3699 	return temp;
   3700 }
   3701 
   3702 /*
   3703  * Initialize sensitivity calibration state machine.
   3704  */
   3705 static int
   3706 iwn_init_sensitivity(struct iwn_softc *sc)
   3707 {
   3708 	struct iwn_ops *ops = &sc->ops;
   3709 	struct iwn_calib_state *calib = &sc->calib;
   3710 	uint32_t flags;
   3711 	int error;
   3712 
   3713 	/* Reset calibration state machine. */
   3714 	memset(calib, 0, sizeof (*calib));
   3715 	calib->state = IWN_CALIB_STATE_INIT;
   3716 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3717 	/* Set initial correlation values. */
   3718 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3719 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3720 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3721 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3722 	calib->cck_x4      = 125;
   3723 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3724 	calib->energy_cck  = sc->limits->energy_cck;
   3725 
   3726 	/* Write initial sensitivity. */
   3727 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3728 		return error;
   3729 
   3730 	/* Write initial gains. */
   3731 	if ((error = ops->init_gains(sc)) != 0)
   3732 		return error;
   3733 
   3734 	/* Request statistics at each beacon interval. */
   3735 	flags = 0;
   3736 	DPRINTF(("sending request for statistics\n"));
   3737 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3738 }
   3739 
   3740 /*
   3741  * Collect noise and RSSI statistics for the first 20 beacons received
   3742  * after association and use them to determine connected antennas and
   3743  * to set differential gains.
   3744  */
   3745 static void
   3746 iwn_collect_noise(struct iwn_softc *sc,
   3747     const struct iwn_rx_general_stats *stats)
   3748 {
   3749 	struct iwn_ops *ops = &sc->ops;
   3750 	struct iwn_calib_state *calib = &sc->calib;
   3751 	uint32_t val;
   3752 	int i;
   3753 
   3754 	/* Accumulate RSSI and noise for all 3 antennas. */
   3755 	for (i = 0; i < 3; i++) {
   3756 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3757 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3758 	}
   3759 	/* NB: We update differential gains only once after 20 beacons. */
   3760 	if (++calib->nbeacons < 20)
   3761 		return;
   3762 
   3763 	/* Determine highest average RSSI. */
   3764 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3765 	val = MAX(calib->rssi[2], val);
   3766 
   3767 	/* Determine which antennas are connected. */
   3768 	sc->chainmask = sc->rxchainmask;
   3769 	for (i = 0; i < 3; i++)
   3770 		if (val - calib->rssi[i] > 15 * 20)
   3771 			sc->chainmask &= ~(1 << i);
   3772 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   3773 	    sc->rxchainmask, sc->chainmask));
   3774 
   3775 	/* If none of the TX antennas are connected, keep at least one. */
   3776 	if ((sc->chainmask & sc->txchainmask) == 0)
   3777 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   3778 
   3779 	(void)ops->set_gains(sc);
   3780 	calib->state = IWN_CALIB_STATE_RUN;
   3781 
   3782 #ifdef notyet
   3783 	/* XXX Disable RX chains with no antennas connected. */
   3784 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   3785 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   3786 #endif
   3787 
   3788 	/* Enable power-saving mode if requested by user. */
   3789 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3790 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3791 }
   3792 
   3793 static int
   3794 iwn4965_init_gains(struct iwn_softc *sc)
   3795 {
   3796 	struct iwn_phy_calib_gain cmd;
   3797 
   3798 	memset(&cmd, 0, sizeof cmd);
   3799 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3800 	/* Differential gains initially set to 0 for all 3 antennas. */
   3801 	DPRINTF(("setting initial differential gains\n"));
   3802 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3803 }
   3804 
   3805 static int
   3806 iwn5000_init_gains(struct iwn_softc *sc)
   3807 {
   3808 	struct iwn_phy_calib cmd;
   3809 
   3810 	memset(&cmd, 0, sizeof cmd);
   3811 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   3812 	cmd.ngroups = 1;
   3813 	cmd.isvalid = 1;
   3814 	DPRINTF(("setting initial differential gains\n"));
   3815 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3816 }
   3817 
   3818 static int
   3819 iwn4965_set_gains(struct iwn_softc *sc)
   3820 {
   3821 	struct iwn_calib_state *calib = &sc->calib;
   3822 	struct iwn_phy_calib_gain cmd;
   3823 	int i, delta, noise;
   3824 
   3825 	/* Get minimal noise among connected antennas. */
   3826 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   3827 	for (i = 0; i < 3; i++)
   3828 		if (sc->chainmask & (1 << i))
   3829 			noise = MIN(calib->noise[i], noise);
   3830 
   3831 	memset(&cmd, 0, sizeof cmd);
   3832 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3833 	/* Set differential gains for connected antennas. */
   3834 	for (i = 0; i < 3; i++) {
   3835 		if (sc->chainmask & (1 << i)) {
   3836 			/* Compute attenuation (in unit of 1.5dB). */
   3837 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   3838 			/* NB: delta <= 0 */
   3839 			/* Limit to [-4.5dB,0]. */
   3840 			cmd.gain[i] = MIN(abs(delta), 3);
   3841 			if (delta < 0)
   3842 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   3843 		}
   3844 	}
   3845 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   3846 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   3847 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3848 }
   3849 
   3850 static int
   3851 iwn5000_set_gains(struct iwn_softc *sc)
   3852 {
   3853 	struct iwn_calib_state *calib = &sc->calib;
   3854 	struct iwn_phy_calib_gain cmd;
   3855 	int i, ant, div, delta;
   3856 
   3857 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   3858 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   3859 
   3860 	memset(&cmd, 0, sizeof cmd);
   3861 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
   3862 	cmd.ngroups = 1;
   3863 	cmd.isvalid = 1;
   3864 	/* Get first available RX antenna as referential. */
   3865 	ant = IWN_LSB(sc->rxchainmask);
   3866 	/* Set differential gains for other antennas. */
   3867 	for (i = ant + 1; i < 3; i++) {
   3868 		if (sc->chainmask & (1 << i)) {
   3869 			/* The delta is relative to antenna "ant". */
   3870 			delta = ((int32_t)calib->noise[ant] -
   3871 			    (int32_t)calib->noise[i]) / div;
   3872 			/* Limit to [-4.5dB,+4.5dB]. */
   3873 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   3874 			if (delta < 0)
   3875 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   3876 		}
   3877 	}
   3878 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   3879 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   3880 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3881 }
   3882 
   3883 /*
   3884  * Tune RF RX sensitivity based on the number of false alarms detected
   3885  * during the last beacon period.
   3886  */
   3887 static void
   3888 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   3889 {
   3890 #define inc(val, inc, max)			\
   3891 	if ((val) < (max)) {			\
   3892 		if ((val) < (max) - (inc))	\
   3893 			(val) += (inc);		\
   3894 		else				\
   3895 			(val) = (max);		\
   3896 		needs_update = 1;		\
   3897 	}
   3898 #define dec(val, dec, min)			\
   3899 	if ((val) > (min)) {			\
   3900 		if ((val) > (min) + (dec))	\
   3901 			(val) -= (dec);		\
   3902 		else				\
   3903 			(val) = (min);		\
   3904 		needs_update = 1;		\
   3905 	}
   3906 
   3907 	const struct iwn_sensitivity_limits *limits = sc->limits;
   3908 	struct iwn_calib_state *calib = &sc->calib;
   3909 	uint32_t val, rxena, fa;
   3910 	uint32_t energy[3], energy_min;
   3911 	uint8_t noise[3], noise_ref;
   3912 	int i, needs_update = 0;
   3913 
   3914 	/* Check that we've been enabled long enough. */
   3915 	if ((rxena = le32toh(stats->general.load)) == 0)
   3916 		return;
   3917 
   3918 	/* Compute number of false alarms since last call for OFDM. */
   3919 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   3920 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   3921 	fa *= 200 * 1024;	/* 200TU */
   3922 
   3923 	/* Save counters values for next call. */
   3924 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   3925 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   3926 
   3927 	if (fa > 50 * rxena) {
   3928 		/* High false alarm count, decrease sensitivity. */
   3929 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   3930 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   3931 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   3932 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   3933 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   3934 
   3935 	} else if (fa < 5 * rxena) {
   3936 		/* Low false alarm count, increase sensitivity. */
   3937 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   3938 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   3939 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   3940 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   3941 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   3942 	}
   3943 
   3944 	/* Compute maximum noise among 3 receivers. */
   3945 	for (i = 0; i < 3; i++)
   3946 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   3947 	val = MAX(noise[0], noise[1]);
   3948 	val = MAX(noise[2], val);
   3949 	/* Insert it into our samples table. */
   3950 	calib->noise_samples[calib->cur_noise_sample] = val;
   3951 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   3952 
   3953 	/* Compute maximum noise among last 20 samples. */
   3954 	noise_ref = calib->noise_samples[0];
   3955 	for (i = 1; i < 20; i++)
   3956 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   3957 
   3958 	/* Compute maximum energy among 3 receivers. */
   3959 	for (i = 0; i < 3; i++)
   3960 		energy[i] = le32toh(stats->general.energy[i]);
   3961 	val = MIN(energy[0], energy[1]);
   3962 	val = MIN(energy[2], val);
   3963 	/* Insert it into our samples table. */
   3964 	calib->energy_samples[calib->cur_energy_sample] = val;
   3965 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   3966 
   3967 	/* Compute minimum energy among last 10 samples. */
   3968 	energy_min = calib->energy_samples[0];
   3969 	for (i = 1; i < 10; i++)
   3970 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   3971 	energy_min += 6;
   3972 
   3973 	/* Compute number of false alarms since last call for CCK. */
   3974 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   3975 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   3976 	fa *= 200 * 1024;	/* 200TU */
   3977 
   3978 	/* Save counters values for next call. */
   3979 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   3980 	calib->fa_cck = le32toh(stats->cck.fa);
   3981 
   3982 	if (fa > 50 * rxena) {
   3983 		/* High false alarm count, decrease sensitivity. */
   3984 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   3985 		calib->cck_state = IWN_CCK_STATE_HIFA;
   3986 		calib->low_fa = 0;
   3987 
   3988 		if (calib->cck_x4 > 160) {
   3989 			calib->noise_ref = noise_ref;
   3990 			if (calib->energy_cck > 2)
   3991 				dec(calib->energy_cck, 2, energy_min);
   3992 		}
   3993 		if (calib->cck_x4 < 160) {
   3994 			calib->cck_x4 = 161;
   3995 			needs_update = 1;
   3996 		} else
   3997 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   3998 
   3999 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   4000 
   4001 	} else if (fa < 5 * rxena) {
   4002 		/* Low false alarm count, increase sensitivity. */
   4003 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   4004 		calib->cck_state = IWN_CCK_STATE_LOFA;
   4005 		calib->low_fa++;
   4006 
   4007 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   4008 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   4009 		     calib->low_fa > 100)) {
   4010 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   4011 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   4012 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   4013 		}
   4014 	} else {
   4015 		/* Not worth to increase or decrease sensitivity. */
   4016 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   4017 		calib->low_fa = 0;
   4018 		calib->noise_ref = noise_ref;
   4019 
   4020 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4021 			/* Previous interval had many false alarms. */
   4022 			dec(calib->energy_cck, 8, energy_min);
   4023 		}
   4024 		calib->cck_state = IWN_CCK_STATE_INIT;
   4025 	}
   4026 
   4027 	if (needs_update)
   4028 		(void)iwn_send_sensitivity(sc);
   4029 #undef dec
   4030 #undef inc
   4031 }
   4032 
   4033 static int
   4034 iwn_send_sensitivity(struct iwn_softc *sc)
   4035 {
   4036 	struct iwn_calib_state *calib = &sc->calib;
   4037 	struct iwn_sensitivity_cmd cmd;
   4038 
   4039 	memset(&cmd, 0, sizeof cmd);
   4040 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4041 	/* OFDM modulation. */
   4042 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4043 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4044 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4045 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4046 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4047 	cmd.energy_ofdm_th   = htole16(62);
   4048 	/* CCK modulation. */
   4049 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4050 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4051 	cmd.energy_cck       = htole16(calib->energy_cck);
   4052 	/* Barker modulation: use default values. */
   4053 	cmd.corr_barker      = htole16(190);
   4054 	cmd.corr_barker_mrc  = htole16(390);
   4055 
   4056 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4057 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4058 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4059 	    calib->energy_cck));
   4060 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
   4061 }
   4062 
   4063 /*
   4064  * Set STA mode power saving level (between 0 and 5).
   4065  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4066  */
   4067 static int
   4068 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4069 {
   4070 	struct iwn_pmgt_cmd cmd;
   4071 	const struct iwn_pmgt *pmgt;
   4072 	uint32_t maxp, skip_dtim;
   4073 	pcireg_t reg;
   4074 	int i;
   4075 
   4076 	/* Select which PS parameters to use. */
   4077 	if (dtim <= 2)
   4078 		pmgt = &iwn_pmgt[0][level];
   4079 	else if (dtim <= 10)
   4080 		pmgt = &iwn_pmgt[1][level];
   4081 	else
   4082 		pmgt = &iwn_pmgt[2][level];
   4083 
   4084 	memset(&cmd, 0, sizeof cmd);
   4085 	if (level != 0)	/* not CAM */
   4086 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4087 	if (level == 5)
   4088 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4089 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4090 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4091 	    sc->sc_cap_off + PCIE_LCSR);
   4092 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4093 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4094 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4095 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4096 
   4097 	if (dtim == 0) {
   4098 		dtim = 1;
   4099 		skip_dtim = 0;
   4100 	} else
   4101 		skip_dtim = pmgt->skip_dtim;
   4102 	if (skip_dtim != 0) {
   4103 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4104 		maxp = pmgt->intval[4];
   4105 		if (maxp == (uint32_t)-1)
   4106 			maxp = dtim * (skip_dtim + 1);
   4107 		else if (maxp > dtim)
   4108 			maxp = (maxp / dtim) * dtim;
   4109 	} else
   4110 		maxp = dtim;
   4111 	for (i = 0; i < 5; i++)
   4112 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4113 
   4114 	DPRINTF(("setting power saving level to %d\n", level));
   4115 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4116 }
   4117 
   4118 int
   4119 iwn5000_runtime_calib(struct iwn_softc *sc)
   4120 {
   4121 	struct iwn5000_calib_config cmd;
   4122 
   4123 	memset(&cmd, 0, sizeof cmd);
   4124 	cmd.ucode.once.enable = 0xffffffff;
   4125 	cmd.ucode.once.start = IWN5000_CALIB_DC;
   4126 	DPRINTF(("configuring runtime calibration\n"));
   4127 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
   4128 }
   4129 
   4130 static int
   4131 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
   4132 {
   4133 	struct iwn_bluetooth bluetooth;
   4134 
   4135 	memset(&bluetooth, 0, sizeof bluetooth);
   4136 	bluetooth.flags = IWN_BT_COEX_ENABLE;
   4137 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4138 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4139 
   4140 	DPRINTF(("configuring bluetooth coexistence\n"));
   4141 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4142 }
   4143 
   4144 static int
   4145 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
   4146 {
   4147 	uint8_t prio_table[16];
   4148 
   4149 	memset(&prio_table, 0, sizeof prio_table);
   4150 	prio_table[ 0] =  6;	/* init calibration 1		*/
   4151 	prio_table[ 1] =  7;	/* init calibration 2		*/
   4152 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
   4153 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
   4154 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
   4155 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
   4156 	prio_table[ 6] =  6;	/* dtim				*/
   4157 	prio_table[ 7] =  8;	/* scan52			*/
   4158 	prio_table[ 8] = 10;	/* scan24			*/
   4159 
   4160 	DPRINTF(("sending priority lookup table\n"));
   4161 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
   4162 	               &prio_table, sizeof prio_table, 0);
   4163 }
   4164 
   4165 static int
   4166 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
   4167 {
   4168 	int error;
   4169 	struct iwn_bt_adv1 d;
   4170 
   4171 	memset(&d, 0, sizeof d);
   4172 	d.basic.bt.flags = IWN_BT_COEX_ENABLE;
   4173 	d.basic.bt.lead_time = IWN_BT_LEAD_TIME_DEF;
   4174 	d.basic.bt.max_kill = IWN_BT_MAX_KILL_DEF;
   4175 	d.basic.bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
   4176 	d.basic.bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
   4177 	d.basic.bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
   4178 	d.basic.bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
   4179 	d.basic.bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
   4180 	d.basic.bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
   4181 	d.basic.bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
   4182 	d.basic.bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
   4183 	d.basic.bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
   4184 	d.basic.bt3_lookup_table[ 4] = htole32(0xcc00ff28);
   4185 	d.basic.bt3_lookup_table[ 5] = htole32(0x0000aaaa);
   4186 	d.basic.bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
   4187 	d.basic.bt3_lookup_table[ 7] = htole32(0x0000aaaa);
   4188 	d.basic.bt3_lookup_table[ 8] = htole32(0xc0004000);
   4189 	d.basic.bt3_lookup_table[ 9] = htole32(0x00004000);
   4190 	d.basic.bt3_lookup_table[10] = htole32(0xf0005000);
   4191 	d.basic.bt3_lookup_table[11] = htole32(0xf0005000);
   4192 	d.basic.reduce_txpower = 0; /* as not implemented */
   4193 	d.basic.valid = IWN_BT_ALL_VALID_MASK;
   4194 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4195 	d.tx_prio_boost = 0;
   4196 	d.rx_prio_boost = 0;
   4197 
   4198 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
   4199 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &d, sizeof d, 0);
   4200 	if (error != 0) {
   4201 		aprint_error_dev(sc->sc_dev,
   4202 			"could not configure advanced bluetooth coexistence\n");
   4203 		return error;
   4204 	}
   4205 
   4206 	error = iwn_config_bt_coex_prio_table(sc);
   4207 	if (error != 0) {
   4208 		aprint_error_dev(sc->sc_dev,
   4209 			"could not configure send BT priority table\n");
   4210 		return error;
   4211 	}
   4212 
   4213 	return error;
   4214 }
   4215 
   4216 static int
   4217 iwn_config(struct iwn_softc *sc)
   4218 {
   4219 	struct iwn_ops *ops = &sc->ops;
   4220 	struct ieee80211com *ic = &sc->sc_ic;
   4221 	struct ifnet *ifp = ic->ic_ifp;
   4222 	uint32_t txmask;
   4223 	uint16_t rxchain;
   4224 	int error;
   4225 
   4226 	error = ops->config_bt_coex(sc);
   4227 	if (error != 0) {
   4228 		aprint_error_dev(sc->sc_dev,
   4229 			"could not configure bluetooth coexistence\n");
   4230 		return error;
   4231 	}
   4232 
   4233 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   4234 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4235 		/* Configure runtime DC calibration. */
   4236 		error = iwn5000_runtime_calib(sc);
   4237 		if (error != 0) {
   4238 			aprint_error_dev(sc->sc_dev,
   4239 			    "could not configure runtime calibration\n");
   4240 			return error;
   4241 		}
   4242 	}
   4243 
   4244 	/* Configure valid TX chains for 5000 Series. */
   4245 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4246 		txmask = htole32(sc->txchainmask);
   4247 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4248 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4249 		    sizeof txmask, 0);
   4250 		if (error != 0) {
   4251 			aprint_error_dev(sc->sc_dev,
   4252 			    "could not configure valid TX chains\n");
   4253 			return error;
   4254 		}
   4255 	}
   4256 
   4257 	/* Set mode, channel, RX filter and enable RX. */
   4258 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4259 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4260 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4261 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4262 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4263 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4264 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4265 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4266 	switch (ic->ic_opmode) {
   4267 	case IEEE80211_M_STA:
   4268 		sc->rxon.mode = IWN_MODE_STA;
   4269 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4270 		break;
   4271 	case IEEE80211_M_MONITOR:
   4272 		sc->rxon.mode = IWN_MODE_MONITOR;
   4273 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4274 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4275 		break;
   4276 	default:
   4277 		/* Should not get there. */
   4278 		break;
   4279 	}
   4280 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4281 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4282 	sc->rxon.ht_single_mask = 0xff;
   4283 	sc->rxon.ht_dual_mask = 0xff;
   4284 	sc->rxon.ht_triple_mask = 0xff;
   4285 	rxchain =
   4286 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4287 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4288 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4289 	sc->rxon.rxchain = htole16(rxchain);
   4290 	DPRINTF(("setting configuration\n"));
   4291 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
   4292 	if (error != 0) {
   4293 		aprint_error_dev(sc->sc_dev,
   4294 		    "RXON command failed\n");
   4295 		return error;
   4296 	}
   4297 
   4298 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4299 		aprint_error_dev(sc->sc_dev,
   4300 		    "could not add broadcast node\n");
   4301 		return error;
   4302 	}
   4303 
   4304 	/* Configuration has changed, set TX power accordingly. */
   4305 	if ((error = ops->set_txpower(sc, 0)) != 0) {
   4306 		aprint_error_dev(sc->sc_dev,
   4307 		    "could not set TX power\n");
   4308 		return error;
   4309 	}
   4310 
   4311 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4312 		aprint_error_dev(sc->sc_dev,
   4313 		    "could not set critical temperature\n");
   4314 		return error;
   4315 	}
   4316 
   4317 	/* Set power saving level to CAM during initialization. */
   4318 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4319 		aprint_error_dev(sc->sc_dev,
   4320 		    "could not set power saving level\n");
   4321 		return error;
   4322 	}
   4323 	return 0;
   4324 }
   4325 
   4326 static int
   4327 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4328 {
   4329 	struct ieee80211com *ic = &sc->sc_ic;
   4330 	struct iwn_scan_hdr *hdr;
   4331 	struct iwn_cmd_data *tx;
   4332 	struct iwn_scan_essid *essid;
   4333 	struct iwn_scan_chan *chan;
   4334 	struct ieee80211_frame *wh;
   4335 	struct ieee80211_rateset *rs;
   4336 	struct ieee80211_channel *c;
   4337 	uint8_t *buf, *frm;
   4338 	uint16_t rxchain;
   4339 	uint8_t txant;
   4340 	int buflen, error;
   4341 
   4342 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4343 	if (buf == NULL) {
   4344 		aprint_error_dev(sc->sc_dev,
   4345 		    "could not allocate buffer for scan command\n");
   4346 		return ENOMEM;
   4347 	}
   4348 	hdr = (struct iwn_scan_hdr *)buf;
   4349 	/*
   4350 	 * Move to the next channel if no frames are received within 10ms
   4351 	 * after sending the probe request.
   4352 	 */
   4353 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4354 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4355 
   4356 	/* Select antennas for scanning. */
   4357 	rxchain =
   4358 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4359 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4360 	    IWN_RXCHAIN_DRIVER_FORCE;
   4361 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4362 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4363 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4364 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4365 	} else	/* Use all available RX antennas. */
   4366 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4367 	hdr->rxchain = htole16(rxchain);
   4368 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4369 
   4370 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4371 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4372 	tx->id = sc->broadcast_id;
   4373 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4374 
   4375 	if (flags & IEEE80211_CHAN_5GHZ) {
   4376 		hdr->crc_threshold = 0xffff;
   4377 		/* Send probe requests at 6Mbps. */
   4378 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4379 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4380 	} else {
   4381 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4382 		/* Send probe requests at 1Mbps. */
   4383 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4384 		tx->rflags = IWN_RFLAG_CCK;
   4385 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4386 	}
   4387 	/* Use the first valid TX antenna. */
   4388 	txant = IWN_LSB(sc->txchainmask);
   4389 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4390 
   4391 	essid = (struct iwn_scan_essid *)(tx + 1);
   4392 	if (ic->ic_des_esslen != 0) {
   4393 		essid[0].id = IEEE80211_ELEMID_SSID;
   4394 		essid[0].len = ic->ic_des_esslen;
   4395 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4396 	}
   4397 	/*
   4398 	 * Build a probe request frame.  Most of the following code is a
   4399 	 * copy & paste of what is done in net80211.
   4400 	 */
   4401 	wh = (struct ieee80211_frame *)(essid + 20);
   4402 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4403 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4404 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4405 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4406 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4407 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4408 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4409 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4410 
   4411 	frm = (uint8_t *)(wh + 1);
   4412 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4413 	frm = ieee80211_add_rates(frm, rs);
   4414 #ifndef IEEE80211_NO_HT
   4415 	if (ic->ic_flags & IEEE80211_F_HTON)
   4416 		frm = ieee80211_add_htcaps(frm, ic);
   4417 #endif
   4418 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4419 		frm = ieee80211_add_xrates(frm, rs);
   4420 
   4421 	/* Set length of probe request. */
   4422 	tx->len = htole16(frm - (uint8_t *)wh);
   4423 
   4424 	chan = (struct iwn_scan_chan *)frm;
   4425 	for (c  = &ic->ic_channels[1];
   4426 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4427 		if ((c->ic_flags & flags) != flags)
   4428 			continue;
   4429 
   4430 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4431 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4432 		chan->flags = 0;
   4433 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4434 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4435 		if (ic->ic_des_esslen != 0)
   4436 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4437 		chan->dsp_gain = 0x6e;
   4438 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4439 			chan->rf_gain = 0x3b;
   4440 			chan->active  = htole16(24);
   4441 			chan->passive = htole16(110);
   4442 		} else {
   4443 			chan->rf_gain = 0x28;
   4444 			chan->active  = htole16(36);
   4445 			chan->passive = htole16(120);
   4446 		}
   4447 		hdr->nchan++;
   4448 		chan++;
   4449 	}
   4450 
   4451 	buflen = (uint8_t *)chan - buf;
   4452 	hdr->len = htole16(buflen);
   4453 
   4454 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4455 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4456 	free(buf, M_DEVBUF);
   4457 	return error;
   4458 }
   4459 
   4460 static int
   4461 iwn_auth(struct iwn_softc *sc)
   4462 {
   4463 	struct iwn_ops *ops = &sc->ops;
   4464 	struct ieee80211com *ic = &sc->sc_ic;
   4465 	struct ieee80211_node *ni = ic->ic_bss;
   4466 	int error;
   4467 
   4468 	/* Update adapter configuration. */
   4469 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4470 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4471 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4472 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4473 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4474 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4475 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4476 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4477 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4478 	switch (ic->ic_curmode) {
   4479 	case IEEE80211_MODE_11A:
   4480 		sc->rxon.cck_mask  = 0;
   4481 		sc->rxon.ofdm_mask = 0x15;
   4482 		break;
   4483 	case IEEE80211_MODE_11B:
   4484 		sc->rxon.cck_mask  = 0x03;
   4485 		sc->rxon.ofdm_mask = 0;
   4486 		break;
   4487 	default:	/* Assume 802.11b/g. */
   4488 		sc->rxon.cck_mask  = 0x0f;
   4489 		sc->rxon.ofdm_mask = 0x15;
   4490 	}
   4491 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4492 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4493 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4494 	if (error != 0) {
   4495 		aprint_error_dev(sc->sc_dev,
   4496 		    "RXON command failed\n");
   4497 		return error;
   4498 	}
   4499 
   4500 	/* Configuration has changed, set TX power accordingly. */
   4501 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4502 		aprint_error_dev(sc->sc_dev,
   4503 		    "could not set TX power\n");
   4504 		return error;
   4505 	}
   4506 	/*
   4507 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4508 	 * add the broadcast node again.
   4509 	 */
   4510 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4511 		aprint_error_dev(sc->sc_dev,
   4512 		    "could not add broadcast node\n");
   4513 		return error;
   4514 	}
   4515 	return 0;
   4516 }
   4517 
   4518 static int
   4519 iwn_run(struct iwn_softc *sc)
   4520 {
   4521 	struct iwn_ops *ops = &sc->ops;
   4522 	struct ieee80211com *ic = &sc->sc_ic;
   4523 	struct ieee80211_node *ni = ic->ic_bss;
   4524 	struct iwn_node_info node;
   4525 	int error;
   4526 
   4527 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4528 		/* Link LED blinks while monitoring. */
   4529 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4530 		return 0;
   4531 	}
   4532 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4533 		aprint_error_dev(sc->sc_dev,
   4534 		    "could not set timing\n");
   4535 		return error;
   4536 	}
   4537 
   4538 	/* Update adapter configuration. */
   4539 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4540 	/* Short preamble and slot time are negotiated when associating. */
   4541 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4542 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4543 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4544 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4545 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4546 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4547 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4548 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4549 	if (error != 0) {
   4550 		aprint_error_dev(sc->sc_dev,
   4551 		    "could not update configuration\n");
   4552 		return error;
   4553 	}
   4554 
   4555 	/* Configuration has changed, set TX power accordingly. */
   4556 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4557 		aprint_error_dev(sc->sc_dev,
   4558 		    "could not set TX power\n");
   4559 		return error;
   4560 	}
   4561 
   4562 	/* Fake a join to initialize the TX rate. */
   4563 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4564 	iwn_newassoc(ni, 1);
   4565 
   4566 	/* Add BSS node. */
   4567 	memset(&node, 0, sizeof node);
   4568 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4569 	node.id = IWN_ID_BSS;
   4570 #ifdef notyet
   4571 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4572 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4573 #endif
   4574 	DPRINTF(("adding BSS node\n"));
   4575 	error = ops->add_node(sc, &node, 1);
   4576 	if (error != 0) {
   4577 		aprint_error_dev(sc->sc_dev,
   4578 		    "could not add BSS node\n");
   4579 		return error;
   4580 	}
   4581 	DPRINTF(("setting link quality for node %d\n", node.id));
   4582 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4583 		aprint_error_dev(sc->sc_dev,
   4584 		    "could not setup link quality for node %d\n", node.id);
   4585 		return error;
   4586 	}
   4587 
   4588 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4589 		aprint_error_dev(sc->sc_dev,
   4590 		    "could not set sensitivity\n");
   4591 		return error;
   4592 	}
   4593 	/* Start periodic calibration timer. */
   4594 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4595 	sc->calib_cnt = 0;
   4596 	callout_schedule(&sc->calib_to, hz/2);
   4597 
   4598 	/* Link LED always on while associated. */
   4599 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4600 	return 0;
   4601 }
   4602 
   4603 #ifdef IWN_HWCRYPTO
   4604 /*
   4605  * We support CCMP hardware encryption/decryption of unicast frames only.
   4606  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4607  */
   4608 static int
   4609 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4610     struct ieee80211_key *k)
   4611 {
   4612 	struct iwn_softc *sc = ic->ic_softc;
   4613 	struct iwn_ops *ops = &sc->ops;
   4614 	struct iwn_node *wn = (void *)ni;
   4615 	struct iwn_node_info node;
   4616 	uint16_t kflags;
   4617 
   4618 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4619 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4620 		return ieee80211_set_key(ic, ni, k);
   4621 
   4622 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4623 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4624 		kflags |= IWN_KFLAG_GROUP;
   4625 
   4626 	memset(&node, 0, sizeof node);
   4627 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4628 	    sc->broadcast_id : wn->id;
   4629 	node.control = IWN_NODE_UPDATE;
   4630 	node.flags = IWN_FLAG_SET_KEY;
   4631 	node.kflags = htole16(kflags);
   4632 	node.kid = k->k_id;
   4633 	memcpy(node.key, k->k_key, k->k_len);
   4634 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   4635 	return ops->add_node(sc, &node, 1);
   4636 }
   4637 
   4638 static void
   4639 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4640     struct ieee80211_key *k)
   4641 {
   4642 	struct iwn_softc *sc = ic->ic_softc;
   4643 	struct iwn_ops *ops = &sc->ops;
   4644 	struct iwn_node *wn = (void *)ni;
   4645 	struct iwn_node_info node;
   4646 
   4647 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4648 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   4649 		/* See comment about other ciphers above. */
   4650 		ieee80211_delete_key(ic, ni, k);
   4651 		return;
   4652 	}
   4653 	if (ic->ic_state != IEEE80211_S_RUN)
   4654 		return;	/* Nothing to do. */
   4655 	memset(&node, 0, sizeof node);
   4656 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4657 	    sc->broadcast_id : wn->id;
   4658 	node.control = IWN_NODE_UPDATE;
   4659 	node.flags = IWN_FLAG_SET_KEY;
   4660 	node.kflags = htole16(IWN_KFLAG_INVALID);
   4661 	node.kid = 0xff;
   4662 	DPRINTF(("delete keys for node %d\n", node.id));
   4663 	(void)ops->add_node(sc, &node, 1);
   4664 }
   4665 #endif
   4666 
   4667 /* XXX Added for NetBSD (copied from rev 1.39). */
   4668 
   4669 static int
   4670 iwn_wme_update(struct ieee80211com *ic)
   4671 {
   4672 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   4673 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   4674 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   4675 	const struct wmeParams *wmep;
   4676 	struct iwn_edca_params cmd;
   4677 	int ac;
   4678 
   4679 	/* don't override default WME values if WME is not actually enabled */
   4680 	if (!(ic->ic_flags & IEEE80211_F_WME))
   4681 		return 0;
   4682 	cmd.flags = 0;
   4683 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   4684 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   4685 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   4686 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   4687 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   4688 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   4689 
   4690 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   4691 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   4692 					cmd.ac[ac].cwmin,
   4693 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   4694 	}
   4695 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   4696 #undef IWN_USEC
   4697 #undef IWN_EXP2
   4698 }
   4699 
   4700 #ifndef IEEE80211_NO_HT
   4701 /*
   4702  * This function is called by upper layer when an ADDBA request is received
   4703  * from another STA and before the ADDBA response is sent.
   4704  */
   4705 static int
   4706 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4707     uint8_t tid)
   4708 {
   4709 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   4710 	struct iwn_softc *sc = ic->ic_softc;
   4711 	struct iwn_ops *ops = &sc->ops;
   4712 	struct iwn_node *wn = (void *)ni;
   4713 	struct iwn_node_info node;
   4714 
   4715 	memset(&node, 0, sizeof node);
   4716 	node.id = wn->id;
   4717 	node.control = IWN_NODE_UPDATE;
   4718 	node.flags = IWN_FLAG_SET_ADDBA;
   4719 	node.addba_tid = tid;
   4720 	node.addba_ssn = htole16(ba->ba_winstart);
   4721 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   4722 	    ba->ba_winstart));
   4723 	return ops->add_node(sc, &node, 1);
   4724 }
   4725 
   4726 /*
   4727  * This function is called by upper layer on teardown of an HT-immediate
   4728  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
   4729  */
   4730 static void
   4731 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4732     uint8_t tid)
   4733 {
   4734 	struct iwn_softc *sc = ic->ic_softc;
   4735 	struct iwn_ops *ops = &sc->ops;
   4736 	struct iwn_node *wn = (void *)ni;
   4737 	struct iwn_node_info node;
   4738 
   4739 	memset(&node, 0, sizeof node);
   4740 	node.id = wn->id;
   4741 	node.control = IWN_NODE_UPDATE;
   4742 	node.flags = IWN_FLAG_SET_DELBA;
   4743 	node.delba_tid = tid;
   4744 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   4745 	(void)ops->add_node(sc, &node, 1);
   4746 }
   4747 
   4748 /*
   4749  * This function is called by upper layer when an ADDBA response is received
   4750  * from another STA.
   4751  */
   4752 static int
   4753 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4754     uint8_t tid)
   4755 {
   4756 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4757 	struct iwn_softc *sc = ic->ic_softc;
   4758 	struct iwn_ops *ops = &sc->ops;
   4759 	struct iwn_node *wn = (void *)ni;
   4760 	struct iwn_node_info node;
   4761 	int error;
   4762 
   4763 	/* Enable TX for the specified RA/TID. */
   4764 	wn->disable_tid &= ~(1 << tid);
   4765 	memset(&node, 0, sizeof node);
   4766 	node.id = wn->id;
   4767 	node.control = IWN_NODE_UPDATE;
   4768 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   4769 	node.disable_tid = htole16(wn->disable_tid);
   4770 	error = ops->add_node(sc, &node, 1);
   4771 	if (error != 0)
   4772 		return error;
   4773 
   4774 	if ((error = iwn_nic_lock(sc)) != 0)
   4775 		return error;
   4776 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   4777 	iwn_nic_unlock(sc);
   4778 	return 0;
   4779 }
   4780 
   4781 static void
   4782 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4783     uint8_t tid)
   4784 {
   4785 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   4786 	struct iwn_softc *sc = ic->ic_softc;
   4787 	struct iwn_ops *ops = &sc->ops;
   4788 
   4789 	if (iwn_nic_lock(sc) != 0)
   4790 		return;
   4791 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   4792 	iwn_nic_unlock(sc);
   4793 }
   4794 
   4795 static void
   4796 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4797     uint8_t tid, uint16_t ssn)
   4798 {
   4799 	struct iwn_node *wn = (void *)ni;
   4800 	int qid = 7 + tid;
   4801 
   4802 	/* Stop TX scheduler while we're changing its configuration. */
   4803 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4804 	    IWN4965_TXQ_STATUS_CHGACT);
   4805 
   4806 	/* Assign RA/TID translation to the queue. */
   4807 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   4808 	    wn->id << 4 | tid);
   4809 
   4810 	/* Enable chain-building mode for the queue. */
   4811 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   4812 
   4813 	/* Set starting sequence number from the ADDBA request. */
   4814 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4815 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4816 
   4817 	/* Set scheduler window size. */
   4818 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   4819 	    IWN_SCHED_WINSZ);
   4820 	/* Set scheduler frame limit. */
   4821 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   4822 	    IWN_SCHED_LIMIT << 16);
   4823 
   4824 	/* Enable interrupts for the queue. */
   4825 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4826 
   4827 	/* Mark the queue as active. */
   4828 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4829 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   4830 	    iwn_tid2fifo[tid] << 1);
   4831 }
   4832 
   4833 static void
   4834 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4835 {
   4836 	int qid = 7 + tid;
   4837 
   4838 	/* Stop TX scheduler while we're changing its configuration. */
   4839 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4840 	    IWN4965_TXQ_STATUS_CHGACT);
   4841 
   4842 	/* Set starting sequence number from the ADDBA request. */
   4843 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4844 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   4845 
   4846 	/* Disable interrupts for the queue. */
   4847 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   4848 
   4849 	/* Mark the queue as inactive. */
   4850 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   4851 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   4852 }
   4853 
   4854 static void
   4855 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   4856     uint8_t tid, uint16_t ssn)
   4857 {
   4858 	struct iwn_node *wn = (void *)ni;
   4859 	int qid = 10 + tid;
   4860 
   4861 	/* Stop TX scheduler while we're changing its configuration. */
   4862 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4863 	    IWN5000_TXQ_STATUS_CHGACT);
   4864 
   4865 	/* Assign RA/TID translation to the queue. */
   4866 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   4867 	    wn->id << 4 | tid);
   4868 
   4869 	/* Enable chain-building mode for the queue. */
   4870 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   4871 
   4872 	/* Enable aggregation for the queue. */
   4873 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4874 
   4875 	/* Set starting sequence number from the ADDBA request. */
   4876 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4877 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4878 
   4879 	/* Set scheduler window size and frame limit. */
   4880 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   4881 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   4882 
   4883 	/* Enable interrupts for the queue. */
   4884 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4885 
   4886 	/* Mark the queue as active. */
   4887 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4888 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   4889 }
   4890 
   4891 static void
   4892 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   4893 {
   4894 	int qid = 10 + tid;
   4895 
   4896 	/* Stop TX scheduler while we're changing its configuration. */
   4897 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4898 	    IWN5000_TXQ_STATUS_CHGACT);
   4899 
   4900 	/* Disable aggregation for the queue. */
   4901 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   4902 
   4903 	/* Set starting sequence number from the ADDBA request. */
   4904 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   4905 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   4906 
   4907 	/* Disable interrupts for the queue. */
   4908 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   4909 
   4910 	/* Mark the queue as inactive. */
   4911 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   4912 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   4913 }
   4914 #endif	/* !IEEE80211_NO_HT */
   4915 
   4916 /*
   4917  * Query calibration tables from the initialization firmware.  We do this
   4918  * only once at first boot.  Called from a process context.
   4919  */
   4920 static int
   4921 iwn5000_query_calibration(struct iwn_softc *sc)
   4922 {
   4923 	struct iwn5000_calib_config cmd;
   4924 	int error;
   4925 
   4926 	memset(&cmd, 0, sizeof cmd);
   4927 	cmd.ucode.once.enable = 0xffffffff;
   4928 	cmd.ucode.once.start  = 0xffffffff;
   4929 	cmd.ucode.once.send   = 0xffffffff;
   4930 	cmd.ucode.flags       = 0xffffffff;
   4931 	DPRINTF(("sending calibration query\n"));
   4932 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   4933 	if (error != 0)
   4934 		return error;
   4935 
   4936 	/* Wait at most two seconds for calibration to complete. */
   4937 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   4938 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   4939 	return error;
   4940 }
   4941 
   4942 /*
   4943  * Send calibration results to the runtime firmware.  These results were
   4944  * obtained on first boot from the initialization firmware.
   4945  */
   4946 static int
   4947 iwn5000_send_calibration(struct iwn_softc *sc)
   4948 {
   4949 	int idx, error;
   4950 
   4951 	for (idx = 0; idx < 5; idx++) {
   4952 		if (sc->calibcmd[idx].buf == NULL)
   4953 			continue;	/* No results available. */
   4954 		DPRINTF(("send calibration result idx=%d len=%d\n",
   4955 		    idx, sc->calibcmd[idx].len));
   4956 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   4957 		    sc->calibcmd[idx].len, 0);
   4958 		if (error != 0) {
   4959 			aprint_error_dev(sc->sc_dev,
   4960 			    "could not send calibration result\n");
   4961 			return error;
   4962 		}
   4963 	}
   4964 	return 0;
   4965 }
   4966 
   4967 static int
   4968 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   4969 {
   4970 	struct iwn5000_wimax_coex wimax;
   4971 
   4972 #ifdef notyet
   4973 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   4974 		/* Enable WiMAX coexistence for combo adapters. */
   4975 		wimax.flags =
   4976 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   4977 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   4978 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   4979 		    IWN_WIMAX_COEX_ENABLE;
   4980 		memcpy(wimax.events, iwn6050_wimax_events,
   4981 		    sizeof iwn6050_wimax_events);
   4982 	} else
   4983 #endif
   4984 	{
   4985 		/* Disable WiMAX coexistence. */
   4986 		wimax.flags = 0;
   4987 		memset(wimax.events, 0, sizeof wimax.events);
   4988 	}
   4989 	DPRINTF(("Configuring WiMAX coexistence\n"));
   4990 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   4991 }
   4992 
   4993 /*
   4994  * This function is called after the runtime firmware notifies us of its
   4995  * readiness (called in a process context).
   4996  */
   4997 static int
   4998 iwn4965_post_alive(struct iwn_softc *sc)
   4999 {
   5000 	int error, qid;
   5001 
   5002 	if ((error = iwn_nic_lock(sc)) != 0)
   5003 		return error;
   5004 
   5005 	/* Clear TX scheduler state in SRAM. */
   5006 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5007 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   5008 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   5009 
   5010 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5011 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5012 
   5013 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5014 
   5015 	/* Disable chain mode for all our 16 queues. */
   5016 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   5017 
   5018 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   5019 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   5020 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5021 
   5022 		/* Set scheduler window size. */
   5023 		iwn_mem_write(sc, sc->sched_base +
   5024 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   5025 		/* Set scheduler frame limit. */
   5026 		iwn_mem_write(sc, sc->sched_base +
   5027 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5028 		    IWN_SCHED_LIMIT << 16);
   5029 	}
   5030 
   5031 	/* Enable interrupts for all our 16 queues. */
   5032 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   5033 	/* Identify TX FIFO rings (0-7). */
   5034 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   5035 
   5036 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5037 	for (qid = 0; qid < 7; qid++) {
   5038 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   5039 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5040 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   5041 	}
   5042 	iwn_nic_unlock(sc);
   5043 	return 0;
   5044 }
   5045 
   5046 /*
   5047  * This function is called after the initialization or runtime firmware
   5048  * notifies us of its readiness (called in a process context).
   5049  */
   5050 static int
   5051 iwn5000_post_alive(struct iwn_softc *sc)
   5052 {
   5053 	int error, qid;
   5054 
   5055 	/* Switch to using ICT interrupt mode. */
   5056 	iwn5000_ict_reset(sc);
   5057 
   5058 	if ((error = iwn_nic_lock(sc)) != 0)
   5059 		return error;
   5060 
   5061 	/* Clear TX scheduler state in SRAM. */
   5062 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5063 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   5064 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   5065 
   5066 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5067 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5068 
   5069 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5070 
   5071 	/* Enable chain mode for all queues, except command queue. */
   5072 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   5073 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   5074 
   5075 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   5076 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   5077 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5078 
   5079 		iwn_mem_write(sc, sc->sched_base +
   5080 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   5081 		/* Set scheduler window size and frame limit. */
   5082 		iwn_mem_write(sc, sc->sched_base +
   5083 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5084 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5085 	}
   5086 
   5087 	/* Enable interrupts for all our 20 queues. */
   5088 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   5089 	/* Identify TX FIFO rings (0-7). */
   5090 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   5091 
   5092 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5093 	for (qid = 0; qid < 7; qid++) {
   5094 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   5095 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5096 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   5097 	}
   5098 	iwn_nic_unlock(sc);
   5099 
   5100 	/* Configure WiMAX coexistence for combo adapters. */
   5101 	error = iwn5000_send_wimax_coex(sc);
   5102 	if (error != 0) {
   5103 		aprint_error_dev(sc->sc_dev,
   5104 		    "could not configure WiMAX coexistence\n");
   5105 		return error;
   5106 	}
   5107 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5108 		struct iwn5000_phy_calib_crystal cmd;
   5109 
   5110 		/* Perform crystal calibration. */
   5111 		memset(&cmd, 0, sizeof cmd);
   5112 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5113 		cmd.ngroups = 1;
   5114 		cmd.isvalid = 1;
   5115 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5116 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5117 		DPRINTF(("sending crystal calibration %d, %d\n",
   5118 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5119 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5120 		if (error != 0) {
   5121 			aprint_error_dev(sc->sc_dev,
   5122 			    "crystal calibration failed\n");
   5123 			return error;
   5124 		}
   5125 	}
   5126 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5127 		/* Query calibration from the initialization firmware. */
   5128 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5129 			aprint_error_dev(sc->sc_dev,
   5130 			    "could not query calibration\n");
   5131 			return error;
   5132 		}
   5133 		/*
   5134 		 * We have the calibration results now, reboot with the
   5135 		 * runtime firmware (call ourselves recursively!)
   5136 		 */
   5137 		iwn_hw_stop(sc);
   5138 		error = iwn_hw_init(sc);
   5139 	} else {
   5140 		/* Send calibration results to runtime firmware. */
   5141 		error = iwn5000_send_calibration(sc);
   5142 	}
   5143 	return error;
   5144 }
   5145 
   5146 /*
   5147  * The firmware boot code is small and is intended to be copied directly into
   5148  * the NIC internal memory (no DMA transfer).
   5149  */
   5150 static int
   5151 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5152 {
   5153 	int error, ntries;
   5154 
   5155 	size /= sizeof (uint32_t);
   5156 
   5157 	if ((error = iwn_nic_lock(sc)) != 0)
   5158 		return error;
   5159 
   5160 	/* Copy microcode image into NIC memory. */
   5161 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5162 	    (const uint32_t *)ucode, size);
   5163 
   5164 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5165 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5166 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5167 
   5168 	/* Start boot load now. */
   5169 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5170 
   5171 	/* Wait for transfer to complete. */
   5172 	for (ntries = 0; ntries < 1000; ntries++) {
   5173 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5174 		    IWN_BSM_WR_CTRL_START))
   5175 			break;
   5176 		DELAY(10);
   5177 	}
   5178 	if (ntries == 1000) {
   5179 		aprint_error_dev(sc->sc_dev,
   5180 		    "could not load boot firmware\n");
   5181 		iwn_nic_unlock(sc);
   5182 		return ETIMEDOUT;
   5183 	}
   5184 
   5185 	/* Enable boot after power up. */
   5186 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5187 
   5188 	iwn_nic_unlock(sc);
   5189 	return 0;
   5190 }
   5191 
   5192 static int
   5193 iwn4965_load_firmware(struct iwn_softc *sc)
   5194 {
   5195 	struct iwn_fw_info *fw = &sc->fw;
   5196 	struct iwn_dma_info *dma = &sc->fw_dma;
   5197 	int error;
   5198 
   5199 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5200 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5201 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5202 	    BUS_DMASYNC_PREWRITE);
   5203 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5204 	    fw->init.text, fw->init.textsz);
   5205 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5206 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5207 
   5208 	/* Tell adapter where to find initialization sections. */
   5209 	if ((error = iwn_nic_lock(sc)) != 0)
   5210 		return error;
   5211 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5212 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5213 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5214 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5215 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5216 	iwn_nic_unlock(sc);
   5217 
   5218 	/* Load firmware boot code. */
   5219 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5220 	if (error != 0) {
   5221 		aprint_error_dev(sc->sc_dev,
   5222 		    "could not load boot firmware\n");
   5223 		return error;
   5224 	}
   5225 	/* Now press "execute". */
   5226 	IWN_WRITE(sc, IWN_RESET, 0);
   5227 
   5228 	/* Wait at most one second for first alive notification. */
   5229 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5230 		aprint_error_dev(sc->sc_dev,
   5231 		    "timeout waiting for adapter to initialize\n");
   5232 		return error;
   5233 	}
   5234 
   5235 	/* Retrieve current temperature for initial TX power calibration. */
   5236 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5237 	sc->temp = iwn4965_get_temperature(sc);
   5238 
   5239 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5240 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5241 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5242 	    BUS_DMASYNC_PREWRITE);
   5243 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5244 	    fw->main.text, fw->main.textsz);
   5245 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5246 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5247 
   5248 	/* Tell adapter where to find runtime sections. */
   5249 	if ((error = iwn_nic_lock(sc)) != 0)
   5250 		return error;
   5251 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5252 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5253 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5254 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5255 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5256 	    IWN_FW_UPDATED | fw->main.textsz);
   5257 	iwn_nic_unlock(sc);
   5258 
   5259 	return 0;
   5260 }
   5261 
   5262 static int
   5263 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5264     const uint8_t *section, int size)
   5265 {
   5266 	struct iwn_dma_info *dma = &sc->fw_dma;
   5267 	int error;
   5268 
   5269 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5270 	memcpy(dma->vaddr, section, size);
   5271 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5272 
   5273 	if ((error = iwn_nic_lock(sc)) != 0)
   5274 		return error;
   5275 
   5276 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5277 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5278 
   5279 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5280 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5281 	    IWN_LOADDR(dma->paddr));
   5282 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5283 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5284 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5285 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5286 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5287 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5288 
   5289 	/* Kick Flow Handler to start DMA transfer. */
   5290 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5291 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5292 
   5293 	iwn_nic_unlock(sc);
   5294 
   5295 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5296 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5297 }
   5298 
   5299 static int
   5300 iwn5000_load_firmware(struct iwn_softc *sc)
   5301 {
   5302 	struct iwn_fw_part *fw;
   5303 	int error;
   5304 
   5305 	/* Load the initialization firmware on first boot only. */
   5306 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5307 	    &sc->fw.main : &sc->fw.init;
   5308 
   5309 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5310 	    fw->text, fw->textsz);
   5311 	if (error != 0) {
   5312 		aprint_error_dev(sc->sc_dev,
   5313 		    "could not load firmware %s section\n", ".text");
   5314 		return error;
   5315 	}
   5316 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5317 	    fw->data, fw->datasz);
   5318 	if (error != 0) {
   5319 		aprint_error_dev(sc->sc_dev,
   5320 		    "could not load firmware %s section\n", ".data");
   5321 		return error;
   5322 	}
   5323 
   5324 	/* Now press "execute". */
   5325 	IWN_WRITE(sc, IWN_RESET, 0);
   5326 	return 0;
   5327 }
   5328 
   5329 /*
   5330  * Extract text and data sections from a legacy firmware image.
   5331  */
   5332 static int
   5333 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
   5334 {
   5335 	const uint32_t *ptr;
   5336 	size_t hdrlen = 24;
   5337 	uint32_t rev;
   5338 
   5339 	ptr = (const uint32_t *)fw->data;
   5340 	rev = le32toh(*ptr++);
   5341 
   5342 	/* Check firmware API version. */
   5343 	if (IWN_FW_API(rev) <= 1) {
   5344 		aprint_error_dev(sc->sc_dev,
   5345 		    "bad firmware, need API version >=2\n");
   5346 		return EINVAL;
   5347 	}
   5348 	if (IWN_FW_API(rev) >= 3) {
   5349 		/* Skip build number (version 2 header). */
   5350 		hdrlen += 4;
   5351 		ptr++;
   5352 	}
   5353 	if (fw->size < hdrlen) {
   5354 		aprint_error_dev(sc->sc_dev,
   5355 		    "firmware too short: %zd bytes\n", fw->size);
   5356 		return EINVAL;
   5357 	}
   5358 	fw->main.textsz = le32toh(*ptr++);
   5359 	fw->main.datasz = le32toh(*ptr++);
   5360 	fw->init.textsz = le32toh(*ptr++);
   5361 	fw->init.datasz = le32toh(*ptr++);
   5362 	fw->boot.textsz = le32toh(*ptr++);
   5363 
   5364 	/* Check that all firmware sections fit. */
   5365 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
   5366 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
   5367 		aprint_error_dev(sc->sc_dev,
   5368 		    "firmware too short: %zd bytes\n", fw->size);
   5369 		return EINVAL;
   5370 	}
   5371 
   5372 	/* Get pointers to firmware sections. */
   5373 	fw->main.text = (const uint8_t *)ptr;
   5374 	fw->main.data = fw->main.text + fw->main.textsz;
   5375 	fw->init.text = fw->main.data + fw->main.datasz;
   5376 	fw->init.data = fw->init.text + fw->init.textsz;
   5377 	fw->boot.text = fw->init.data + fw->init.datasz;
   5378 	return 0;
   5379 }
   5380 
   5381 /*
   5382  * Extract text and data sections from a TLV firmware image.
   5383  */
   5384 static int
   5385 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
   5386     uint16_t alt)
   5387 {
   5388 	const struct iwn_fw_tlv_hdr *hdr;
   5389 	const struct iwn_fw_tlv *tlv;
   5390 	const uint8_t *ptr, *end;
   5391 	uint64_t altmask;
   5392 	uint32_t len;
   5393 
   5394 	if (fw->size < sizeof (*hdr)) {
   5395 		aprint_error_dev(sc->sc_dev,
   5396 		    "firmware too short: %zd bytes\n", fw->size);
   5397 		return EINVAL;
   5398 	}
   5399 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
   5400 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
   5401 		aprint_error_dev(sc->sc_dev,
   5402 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
   5403 		return EINVAL;
   5404 	}
   5405 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
   5406 	    le32toh(hdr->build)));
   5407 
   5408 	/*
   5409 	 * Select the closest supported alternative that is less than
   5410 	 * or equal to the specified one.
   5411 	 */
   5412 	altmask = le64toh(hdr->altmask);
   5413 	while (alt > 0 && !(altmask & (1ULL << alt)))
   5414 		alt--;	/* Downgrade. */
   5415 	DPRINTF(("using alternative %d\n", alt));
   5416 
   5417 	ptr = (const uint8_t *)(hdr + 1);
   5418 	end = (const uint8_t *)(fw->data + fw->size);
   5419 
   5420 	/* Parse type-length-value fields. */
   5421 	while (ptr + sizeof (*tlv) <= end) {
   5422 		tlv = (const struct iwn_fw_tlv *)ptr;
   5423 		len = le32toh(tlv->len);
   5424 
   5425 		ptr += sizeof (*tlv);
   5426 		if (ptr + len > end) {
   5427 			aprint_error_dev(sc->sc_dev,
   5428 			    "firmware too short: %zd bytes\n", fw->size);
   5429 			return EINVAL;
   5430 		}
   5431 		/* Skip other alternatives. */
   5432 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
   5433 			goto next;
   5434 
   5435 		switch (le16toh(tlv->type)) {
   5436 		case IWN_FW_TLV_MAIN_TEXT:
   5437 			fw->main.text = ptr;
   5438 			fw->main.textsz = len;
   5439 			break;
   5440 		case IWN_FW_TLV_MAIN_DATA:
   5441 			fw->main.data = ptr;
   5442 			fw->main.datasz = len;
   5443 			break;
   5444 		case IWN_FW_TLV_INIT_TEXT:
   5445 			fw->init.text = ptr;
   5446 			fw->init.textsz = len;
   5447 			break;
   5448 		case IWN_FW_TLV_INIT_DATA:
   5449 			fw->init.data = ptr;
   5450 			fw->init.datasz = len;
   5451 			break;
   5452 		case IWN_FW_TLV_BOOT_TEXT:
   5453 			fw->boot.text = ptr;
   5454 			fw->boot.textsz = len;
   5455 			break;
   5456 		default:
   5457 			DPRINTF(("TLV type %d not handled\n",
   5458 			    le16toh(tlv->type)));
   5459 			break;
   5460 		}
   5461  next:		/* TLV fields are 32-bit aligned. */
   5462 		ptr += (len + 3) & ~3;
   5463 	}
   5464 	return 0;
   5465 }
   5466 
   5467 static int
   5468 iwn_read_firmware(struct iwn_softc *sc)
   5469 {
   5470 	struct iwn_fw_info *fw = &sc->fw;
   5471 	firmware_handle_t fwh;
   5472 	int error;
   5473 
   5474 	/* Initialize for error returns */
   5475 	fw->data = NULL;
   5476 	fw->size = 0;
   5477 
   5478 	/* Open firmware image. */
   5479 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5480 		aprint_error_dev(sc->sc_dev,
   5481 		    "could not get firmware handle %s\n", sc->fwname);
   5482 		return error;
   5483 	}
   5484 	fw->size = firmware_get_size(fwh);
   5485 	if (fw->size < sizeof (uint32_t)) {
   5486 		aprint_error_dev(sc->sc_dev,
   5487 		    "firmware too short: %zd bytes\n", fw->size);
   5488 		firmware_close(fwh);
   5489 		return EINVAL;
   5490 	}
   5491 
   5492 	/* Read the firmware. */
   5493 	fw->data = firmware_malloc(fw->size);
   5494 	if (fw->data == NULL) {
   5495 		aprint_error_dev(sc->sc_dev,
   5496 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5497 		firmware_close(fwh);
   5498 		return ENOMEM;
   5499 	}
   5500 	error = firmware_read(fwh, 0, fw->data, fw->size);
   5501 	firmware_close(fwh);
   5502 	if (error != 0) {
   5503 		aprint_error_dev(sc->sc_dev,
   5504 		    "could not read firmware %s\n", sc->fwname);
   5505 		goto out;
   5506 	}
   5507 
   5508 	/* Retrieve text and data sections. */
   5509 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
   5510 		error = iwn_read_firmware_leg(sc, fw);
   5511 	else
   5512 		error = iwn_read_firmware_tlv(sc, fw, 1);
   5513 	if (error != 0) {
   5514 		aprint_error_dev(sc->sc_dev,
   5515 		    "could not read firmware sections\n");
   5516 		goto out;
   5517 	}
   5518 
   5519 	/* Make sure text and data sections fit in hardware memory. */
   5520 	if (fw->main.textsz > sc->fw_text_maxsz ||
   5521 	    fw->main.datasz > sc->fw_data_maxsz ||
   5522 	    fw->init.textsz > sc->fw_text_maxsz ||
   5523 	    fw->init.datasz > sc->fw_data_maxsz ||
   5524 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5525 	    (fw->boot.textsz & 3) != 0) {
   5526 		aprint_error_dev(sc->sc_dev,
   5527 		    "firmware sections too large\n");
   5528 		goto out;
   5529 	}
   5530 
   5531 	/* We can proceed with loading the firmware. */
   5532 	return 0;
   5533 out:
   5534 	firmware_free(fw->data, fw->size);
   5535 	fw->data = NULL;
   5536 	fw->size = 0;
   5537 	return error ? error : EINVAL;
   5538 }
   5539 
   5540 static int
   5541 iwn_clock_wait(struct iwn_softc *sc)
   5542 {
   5543 	int ntries;
   5544 
   5545 	/* Set "initialization complete" bit. */
   5546 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5547 
   5548 	/* Wait for clock stabilization. */
   5549 	for (ntries = 0; ntries < 2500; ntries++) {
   5550 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5551 			return 0;
   5552 		DELAY(10);
   5553 	}
   5554 	aprint_error_dev(sc->sc_dev,
   5555 	    "timeout waiting for clock stabilization\n");
   5556 	return ETIMEDOUT;
   5557 }
   5558 
   5559 static int
   5560 iwn_apm_init(struct iwn_softc *sc)
   5561 {
   5562 	pcireg_t reg;
   5563 	int error;
   5564 
   5565 	/* Disable L0s exit timer (NMI bug workaround). */
   5566 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   5567 	/* Don't wait for ICH L0s (ICH bug workaround). */
   5568 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   5569 
   5570 	/* Set FH wait threshold to max (HW bug under stress workaround). */
   5571 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   5572 
   5573 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   5574 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   5575 
   5576 	/* Retrieve PCIe Active State Power Management (ASPM). */
   5577 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   5578 	    sc->sc_cap_off + PCIE_LCSR);
   5579 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   5580 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   5581 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5582 	else
   5583 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5584 
   5585 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   5586 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   5587 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   5588 
   5589 	/* Wait for clock stabilization before accessing prph. */
   5590 	if ((error = iwn_clock_wait(sc)) != 0)
   5591 		return error;
   5592 
   5593 	if ((error = iwn_nic_lock(sc)) != 0)
   5594 		return error;
   5595 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   5596 		/* Enable DMA and BSM (Bootstrap State Machine). */
   5597 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5598 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   5599 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   5600 	} else {
   5601 		/* Enable DMA. */
   5602 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5603 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5604 	}
   5605 	DELAY(20);
   5606 	/* Disable L1-Active. */
   5607 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   5608 	iwn_nic_unlock(sc);
   5609 
   5610 	return 0;
   5611 }
   5612 
   5613 static void
   5614 iwn_apm_stop_master(struct iwn_softc *sc)
   5615 {
   5616 	int ntries;
   5617 
   5618 	/* Stop busmaster DMA activity. */
   5619 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   5620 	for (ntries = 0; ntries < 100; ntries++) {
   5621 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   5622 			return;
   5623 		DELAY(10);
   5624 	}
   5625 	aprint_error_dev(sc->sc_dev,
   5626 	    "timeout waiting for master\n");
   5627 }
   5628 
   5629 static void
   5630 iwn_apm_stop(struct iwn_softc *sc)
   5631 {
   5632 	iwn_apm_stop_master(sc);
   5633 
   5634 	/* Reset the entire device. */
   5635 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   5636 	DELAY(10);
   5637 	/* Clear "initialization complete" bit. */
   5638 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5639 }
   5640 
   5641 static int
   5642 iwn4965_nic_config(struct iwn_softc *sc)
   5643 {
   5644 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   5645 		/*
   5646 		 * I don't believe this to be correct but this is what the
   5647 		 * vendor driver is doing. Probably the bits should not be
   5648 		 * shifted in IWN_RFCFG_*.
   5649 		 */
   5650 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5651 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5652 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5653 		    IWN_RFCFG_DASH(sc->rfcfg));
   5654 	}
   5655 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5656 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5657 	return 0;
   5658 }
   5659 
   5660 static int
   5661 iwn5000_nic_config(struct iwn_softc *sc)
   5662 {
   5663 	uint32_t tmp;
   5664 	int error;
   5665 
   5666 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   5667 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5668 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5669 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5670 		    IWN_RFCFG_DASH(sc->rfcfg));
   5671 	}
   5672 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5673 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5674 
   5675 	if ((error = iwn_nic_lock(sc)) != 0)
   5676 		return error;
   5677 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   5678 
   5679 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   5680 		/*
   5681 		 * Select first Switching Voltage Regulator (1.32V) to
   5682 		 * solve a stability issue related to noisy DC2DC line
   5683 		 * in the silicon of 1000 Series.
   5684 		 */
   5685 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   5686 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   5687 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   5688 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   5689 	}
   5690 	iwn_nic_unlock(sc);
   5691 
   5692 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   5693 		/* Use internal power amplifier only. */
   5694 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   5695 	}
   5696 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   5697 		sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
   5698 		/* Indicate that ROM calibration version is >=6. */
   5699 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   5700 	}
   5701 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   5702 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
   5703 	return 0;
   5704 }
   5705 
   5706 /*
   5707  * Take NIC ownership over Intel Active Management Technology (AMT).
   5708  */
   5709 static int
   5710 iwn_hw_prepare(struct iwn_softc *sc)
   5711 {
   5712 	int ntries;
   5713 
   5714 	/* Check if hardware is ready. */
   5715 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5716 	for (ntries = 0; ntries < 5; ntries++) {
   5717 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5718 		    IWN_HW_IF_CONFIG_NIC_READY)
   5719 			return 0;
   5720 		DELAY(10);
   5721 	}
   5722 
   5723 	/* Hardware not ready, force into ready state. */
   5724 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   5725 	for (ntries = 0; ntries < 15000; ntries++) {
   5726 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5727 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   5728 			break;
   5729 		DELAY(10);
   5730 	}
   5731 	if (ntries == 15000)
   5732 		return ETIMEDOUT;
   5733 
   5734 	/* Hardware should be ready now. */
   5735 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   5736 	for (ntries = 0; ntries < 5; ntries++) {
   5737 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   5738 		    IWN_HW_IF_CONFIG_NIC_READY)
   5739 			return 0;
   5740 		DELAY(10);
   5741 	}
   5742 	return ETIMEDOUT;
   5743 }
   5744 
   5745 static int
   5746 iwn_hw_init(struct iwn_softc *sc)
   5747 {
   5748 	struct iwn_ops *ops = &sc->ops;
   5749 	int error, chnl, qid;
   5750 
   5751 	/* Clear pending interrupts. */
   5752 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5753 
   5754 	if ((error = iwn_apm_init(sc)) != 0) {
   5755 		aprint_error_dev(sc->sc_dev,
   5756 		    "could not power ON adapter\n");
   5757 		return error;
   5758 	}
   5759 
   5760 	/* Select VMAIN power source. */
   5761 	if ((error = iwn_nic_lock(sc)) != 0)
   5762 		return error;
   5763 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   5764 	iwn_nic_unlock(sc);
   5765 
   5766 	/* Perform adapter-specific initialization. */
   5767 	if ((error = ops->nic_config(sc)) != 0)
   5768 		return error;
   5769 
   5770 	/* Initialize RX ring. */
   5771 	if ((error = iwn_nic_lock(sc)) != 0)
   5772 		return error;
   5773 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   5774 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   5775 	/* Set physical address of RX ring (256-byte aligned). */
   5776 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   5777 	/* Set physical address of RX status (16-byte aligned). */
   5778 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   5779 	/* Enable RX. */
   5780 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   5781 	    IWN_FH_RX_CONFIG_ENA           |
   5782 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   5783 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   5784 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   5785 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   5786 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   5787 	iwn_nic_unlock(sc);
   5788 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   5789 
   5790 	if ((error = iwn_nic_lock(sc)) != 0)
   5791 		return error;
   5792 
   5793 	/* Initialize TX scheduler. */
   5794 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   5795 
   5796 	/* Set physical address of "keep warm" page (16-byte aligned). */
   5797 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   5798 
   5799 	/* Initialize TX rings. */
   5800 	for (qid = 0; qid < sc->ntxqs; qid++) {
   5801 		struct iwn_tx_ring *txq = &sc->txq[qid];
   5802 
   5803 		/* Set physical address of TX ring (256-byte aligned). */
   5804 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   5805 		    txq->desc_dma.paddr >> 8);
   5806 	}
   5807 	iwn_nic_unlock(sc);
   5808 
   5809 	/* Enable DMA channels. */
   5810 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   5811 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   5812 		    IWN_FH_TX_CONFIG_DMA_ENA |
   5813 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   5814 	}
   5815 
   5816 	/* Clear "radio off" and "commands blocked" bits. */
   5817 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5818 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   5819 
   5820 	/* Clear pending interrupts. */
   5821 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5822 	/* Enable interrupt coalescing. */
   5823 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   5824 	/* Enable interrupts. */
   5825 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   5826 
   5827 	/* _Really_ make sure "radio off" bit is cleared! */
   5828 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5829 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   5830 
   5831 	/* Enable shadow registers. */
   5832 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   5833 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
   5834 
   5835 	if ((error = ops->load_firmware(sc)) != 0) {
   5836 		aprint_error_dev(sc->sc_dev,
   5837 		    "could not load firmware\n");
   5838 		return error;
   5839 	}
   5840 	/* Wait at most one second for firmware alive notification. */
   5841 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5842 		aprint_error_dev(sc->sc_dev,
   5843 		    "timeout waiting for adapter to initialize\n");
   5844 		return error;
   5845 	}
   5846 	/* Do post-firmware initialization. */
   5847 	return ops->post_alive(sc);
   5848 }
   5849 
   5850 static void
   5851 iwn_hw_stop(struct iwn_softc *sc)
   5852 {
   5853 	int chnl, qid, ntries;
   5854 
   5855 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   5856 
   5857 	/* Disable interrupts. */
   5858 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   5859 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   5860 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   5861 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5862 
   5863 	/* Make sure we no longer hold the NIC lock. */
   5864 	iwn_nic_unlock(sc);
   5865 
   5866 	/* Stop TX scheduler. */
   5867 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   5868 
   5869 	/* Stop all DMA channels. */
   5870 	if (iwn_nic_lock(sc) == 0) {
   5871 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   5872 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   5873 			for (ntries = 0; ntries < 200; ntries++) {
   5874 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
   5875 				    IWN_FH_TX_STATUS_IDLE(chnl))
   5876 					break;
   5877 				DELAY(10);
   5878 			}
   5879 		}
   5880 		iwn_nic_unlock(sc);
   5881 	}
   5882 
   5883 	/* Stop RX ring. */
   5884 	iwn_reset_rx_ring(sc, &sc->rxq);
   5885 
   5886 	/* Reset all TX rings. */
   5887 	for (qid = 0; qid < sc->ntxqs; qid++)
   5888 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   5889 
   5890 	if (iwn_nic_lock(sc) == 0) {
   5891 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   5892 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5893 		iwn_nic_unlock(sc);
   5894 	}
   5895 	DELAY(5);
   5896 	/* Power OFF adapter. */
   5897 	iwn_apm_stop(sc);
   5898 }
   5899 
   5900 static int
   5901 iwn_init(struct ifnet *ifp)
   5902 {
   5903 	struct iwn_softc *sc = ifp->if_softc;
   5904 	struct ieee80211com *ic = &sc->sc_ic;
   5905 	int error;
   5906 
   5907 	mutex_enter(&sc->sc_mtx);
   5908 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
   5909 		goto out;
   5910 	if ((error = iwn_hw_prepare(sc)) != 0) {
   5911 		aprint_error_dev(sc->sc_dev,
   5912 		    "hardware not ready\n");
   5913 		goto fail;
   5914 	}
   5915 
   5916 	/* Check that the radio is not disabled by hardware switch. */
   5917 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   5918 		aprint_error_dev(sc->sc_dev,
   5919 		    "radio is disabled by hardware switch\n");
   5920 		error = EPERM;	/* :-) */
   5921 		goto fail;
   5922 	}
   5923 
   5924 	/* Read firmware images from the filesystem. */
   5925 	if ((error = iwn_read_firmware(sc)) != 0) {
   5926 		aprint_error_dev(sc->sc_dev,
   5927 		    "could not read firmware\n");
   5928 		goto fail;
   5929 	}
   5930 
   5931 	/* Initialize interrupt mask to default value. */
   5932 	sc->int_mask = IWN_INT_MASK_DEF;
   5933 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   5934 
   5935 	/* Initialize hardware and upload firmware. */
   5936 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
   5937 	error = iwn_hw_init(sc);
   5938 	firmware_free(sc->fw.data, sc->fw.size);
   5939 	sc->fw.data = NULL;
   5940 	sc->fw.size = 0;
   5941 	if (error != 0) {
   5942 		aprint_error_dev(sc->sc_dev,
   5943 		    "could not initialize hardware\n");
   5944 		goto fail;
   5945 	}
   5946 
   5947 	/* Configure adapter now that it is ready. */
   5948 	if ((error = iwn_config(sc)) != 0) {
   5949 		aprint_error_dev(sc->sc_dev,
   5950 		    "could not configure device\n");
   5951 		goto fail;
   5952 	}
   5953 
   5954 	ifp->if_flags &= ~IFF_OACTIVE;
   5955 	ifp->if_flags |= IFF_RUNNING;
   5956 
   5957 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   5958 		ieee80211_begin_scan(ic, 0);
   5959 	else
   5960 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   5961 
   5962 	sc->sc_flags |= IWN_FLAG_HW_INITED;
   5963 out:
   5964 	mutex_exit(&sc->sc_mtx);
   5965 	return 0;
   5966 
   5967 fail:	mutex_exit(&sc->sc_mtx);
   5968 	iwn_stop(ifp, 1);
   5969 	return error;
   5970 }
   5971 
   5972 static void
   5973 iwn_stop(struct ifnet *ifp, int disable)
   5974 {
   5975 	struct iwn_softc *sc = ifp->if_softc;
   5976 	struct ieee80211com *ic = &sc->sc_ic;
   5977 
   5978 	if (!disable)
   5979 		mutex_enter(&sc->sc_mtx);
   5980 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
   5981 	ifp->if_timer = sc->sc_tx_timer = 0;
   5982 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5983 
   5984 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   5985 
   5986 	/* Power OFF hardware. */
   5987 	iwn_hw_stop(sc);
   5988 
   5989 	if (!disable)
   5990 		mutex_exit(&sc->sc_mtx);
   5991 }
   5992 
   5993 /*
   5994  * XXX MCLGETI alternative
   5995  *
   5996  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   5997  * as long as there are available free buffers then it uses MEXTMALLOC.,
   5998  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   5999  * The MCLGET4K code is used for testing an alternative mbuf cache.
   6000  */
   6001 
   6002 static struct mbuf *
   6003 MCLGETIalt(struct iwn_softc *sc, int how,
   6004     struct ifnet *ifp __unused, u_int size)
   6005 {
   6006 	struct mbuf *m;
   6007 #ifdef IWN_USE_RBUF
   6008 	struct iwn_rbuf *rbuf;
   6009 #endif
   6010 
   6011 	MGETHDR(m, how, MT_DATA);
   6012 	if (m == NULL)
   6013 		return NULL;
   6014 
   6015 #ifdef IWN_USE_RBUF
   6016 	if (sc->rxq.nb_free_entries > 0 &&
   6017 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   6018 		/* Attach buffer to mbuf header. */
   6019 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   6020 		m->m_flags |= M_EXT_RW;
   6021 	}
   6022 	else {
   6023 		MEXTMALLOC(m, size, how);
   6024 		if ((m->m_flags & M_EXT) == 0) {
   6025 			m_freem(m);
   6026 			return NULL;
   6027 		}
   6028 	}
   6029 
   6030 #else
   6031 #ifdef MCLGET4K
   6032 	if (size == 4096)
   6033 		MCLGET4K(m, how);
   6034 	else
   6035 		panic("size must be 4k");
   6036 #else
   6037 	MEXTMALLOC(m, size, how);
   6038 #endif
   6039 	if ((m->m_flags & M_EXT) == 0) {
   6040 		m_freem(m);
   6041 		return NULL;
   6042 	}
   6043 #endif
   6044 
   6045 	return m;
   6046 }
   6047 
   6048 #ifdef IWN_USE_RBUF
   6049 static struct iwn_rbuf *
   6050 iwn_alloc_rbuf(struct iwn_softc *sc)
   6051 {
   6052 	struct iwn_rbuf *rbuf;
   6053 	mutex_enter(&sc->rxq.freelist_mtx);
   6054 
   6055 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   6056 	if (rbuf != NULL) {
   6057 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   6058 		sc->rxq.nb_free_entries --;
   6059 	}
   6060 	mutex_exit(&sc->rxq.freelist_mtx);
   6061 	return rbuf;
   6062 }
   6063 
   6064 /*
   6065  * This is called automatically by the network stack when the mbuf to which
   6066  * our RX buffer is attached is freed.
   6067  */
   6068 static void
   6069 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   6070 {
   6071 	struct iwn_rbuf *rbuf = arg;
   6072 	struct iwn_softc *sc = rbuf->sc;
   6073 
   6074 	/* Put the RX buffer back in the free list. */
   6075 	mutex_enter(&sc->rxq.freelist_mtx);
   6076 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   6077 	mutex_exit(&sc->rxq.freelist_mtx);
   6078 
   6079 	sc->rxq.nb_free_entries ++;
   6080 	if (__predict_true(m != NULL))
   6081 		pool_cache_put(mb_cache, m);
   6082 }
   6083 
   6084 static int
   6085 iwn_alloc_rpool(struct iwn_softc *sc)
   6086 {
   6087 	struct iwn_rx_ring *ring = &sc->rxq;
   6088 	struct iwn_rbuf *rbuf;
   6089 	int i, error;
   6090 
   6091 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   6092 
   6093 	/* Allocate a big chunk of DMA'able memory... */
   6094 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   6095 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   6096 	if (error != 0) {
   6097 		aprint_error_dev(sc->sc_dev,
   6098 		    "could not allocate RX buffers DMA memory\n");
   6099 		return error;
   6100 	}
   6101 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   6102 	SLIST_INIT(&ring->freelist);
   6103 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   6104 		rbuf = &ring->rbuf[i];
   6105 
   6106 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   6107 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   6108 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   6109 
   6110 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   6111 	}
   6112 	ring->nb_free_entries = IWN_RBUF_COUNT;
   6113 	return 0;
   6114 }
   6115 
   6116 static void
   6117 iwn_free_rpool(struct iwn_softc *sc)
   6118 {
   6119 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   6120 }
   6121 #endif
   6122 
   6123 /*
   6124  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
   6125  * Copyright (c) 2001 Atsushi Onoe
   6126  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
   6127  * Copyright (c) 2007-2009 Damien Bergamini
   6128  * All rights reserved.
   6129  */
   6130 
   6131 /*
   6132  * Add an SSID element to a frame (see 7.3.2.1).
   6133  */
   6134 static u_int8_t *
   6135 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
   6136 {
   6137 	*frm++ = IEEE80211_ELEMID_SSID;
   6138 	*frm++ = len;
   6139 	memcpy(frm, ssid, len);
   6140 	return frm + len;
   6141 }
   6142 
   6143 /*
   6144  * Add a supported rates element to a frame (see 7.3.2.2).
   6145  */
   6146 static u_int8_t *
   6147 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6148 {
   6149 	int nrates;
   6150 
   6151 	*frm++ = IEEE80211_ELEMID_RATES;
   6152 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
   6153 	*frm++ = nrates;
   6154 	memcpy(frm, rs->rs_rates, nrates);
   6155 	return frm + nrates;
   6156 }
   6157 
   6158 /*
   6159  * Add an extended supported rates element to a frame (see 7.3.2.14).
   6160  */
   6161 static u_int8_t *
   6162 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6163 {
   6164 	int nrates;
   6165 
   6166 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
   6167 
   6168 	*frm++ = IEEE80211_ELEMID_XRATES;
   6169 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   6170 	*frm++ = nrates;
   6171 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   6172 	return frm + nrates;
   6173 }
   6174 
   6175 /*
   6176  * XXX: Hack to set the current channel to the value advertised in beacons or
   6177  * probe responses. Only used during AP detection.
   6178  * XXX: Duplicated from if_iwi.c
   6179  */
   6180 static void
   6181 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
   6182 {
   6183 	struct ieee80211_frame *wh;
   6184 	uint8_t subtype;
   6185 	uint8_t *frm, *efrm;
   6186 
   6187 	wh = mtod(m, struct ieee80211_frame *);
   6188 
   6189 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6190 		return;
   6191 
   6192 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6193 
   6194 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6195 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6196 		return;
   6197 
   6198 	frm = (uint8_t *)(wh + 1);
   6199 	efrm = mtod(m, uint8_t *) + m->m_len;
   6200 
   6201 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6202 	while (frm < efrm) {
   6203 		if (*frm == IEEE80211_ELEMID_DSPARMS)
   6204 #if IEEE80211_CHAN_MAX < 255
   6205 		if (frm[2] <= IEEE80211_CHAN_MAX)
   6206 #endif
   6207 			ic->ic_curchan = &ic->ic_channels[frm[2]];
   6208 
   6209 		frm += frm[1] + 2;
   6210 	}
   6211 }
   6212 
   6213 #ifdef notyetMODULE
   6214 
   6215 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
   6216 
   6217 #ifdef _MODULE
   6218 #include "ioconf.c"
   6219 #endif
   6220 
   6221 static int
   6222 if_iwn_modcmd(modcmd_t cmd, void *data)
   6223 {
   6224 	int error = 0;
   6225 
   6226 	switch (cmd) {
   6227 	case MODULE_CMD_INIT:
   6228 #ifdef _MODULE
   6229 		error = config_init_component(cfdriver_ioconf_if_iwn,
   6230 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6231 #endif
   6232 		return error;
   6233 	case MODULE_CMD_FINI:
   6234 #ifdef _MODULE
   6235 		error = config_fini_component(cfdriver_ioconf_if_iwn,
   6236 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6237 #endif
   6238 		return error;
   6239 	case MODULE_CMD_AUTOUNLOAD:
   6240 #ifdef _MODULE
   6241 		/* XXX This is not optional! */
   6242 #endif
   6243 		return error;
   6244 	default:
   6245 		return ENOTTY;
   6246 	}
   6247 }
   6248 #endif
   6249