if_iwn.c revision 1.70 1 /* $NetBSD: if_iwn.c,v 1.70 2013/10/17 21:06:15 christos Exp $ */
2 /* $OpenBSD: if_iwn.c,v 1.119 2013/05/29 23:16:52 yuo Exp $ */
3
4 /*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.70 2013/10/17 21:06:15 christos Exp $");
26
27 #define IWN_USE_RBUF /* Use local storage for RX */
28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45
46 #include <dev/sysmon/sysmonvar.h>
47
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #include <dev/firmload.h>
74
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77
78 static const pci_product_id_t iwn_devices[] = {
79 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 PCI_PRODUCT_INTEL_WIFI_LINK_6235,
106 };
107
108 /*
109 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
110 */
111 static const struct ieee80211_rateset iwn_rateset_11a =
112 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
113
114 static const struct ieee80211_rateset iwn_rateset_11b =
115 { 4, { 2, 4, 11, 22 } };
116
117 static const struct ieee80211_rateset iwn_rateset_11g =
118 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
119
120 static int iwn_match(device_t , struct cfdata *, void *);
121 static void iwn_attach(device_t , device_t , void *);
122 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t);
123 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t);
124 static void iwn_radiotap_attach(struct iwn_softc *);
125 static int iwn_detach(device_t , int);
126 #if 0
127 static void iwn_power(int, void *);
128 #endif
129 static bool iwn_resume(device_t, const pmf_qual_t *);
130 static int iwn_nic_lock(struct iwn_softc *);
131 static int iwn_eeprom_lock(struct iwn_softc *);
132 static int iwn_init_otprom(struct iwn_softc *);
133 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
134 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
135 void **, bus_size_t, bus_size_t);
136 static void iwn_dma_contig_free(struct iwn_dma_info *);
137 static int iwn_alloc_sched(struct iwn_softc *);
138 static void iwn_free_sched(struct iwn_softc *);
139 static int iwn_alloc_kw(struct iwn_softc *);
140 static void iwn_free_kw(struct iwn_softc *);
141 static int iwn_alloc_ict(struct iwn_softc *);
142 static void iwn_free_ict(struct iwn_softc *);
143 static int iwn_alloc_fwmem(struct iwn_softc *);
144 static void iwn_free_fwmem(struct iwn_softc *);
145 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
146 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
147 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
148 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
149 int);
150 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
151 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
152 static void iwn5000_ict_reset(struct iwn_softc *);
153 static int iwn_read_eeprom(struct iwn_softc *);
154 static void iwn4965_read_eeprom(struct iwn_softc *);
155
156 #ifdef IWN_DEBUG
157 static void iwn4965_print_power_group(struct iwn_softc *, int);
158 #endif
159 static void iwn5000_read_eeprom(struct iwn_softc *);
160 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
161 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
162 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
163 static void iwn_newassoc(struct ieee80211_node *, int);
164 static int iwn_media_change(struct ifnet *);
165 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
166 static void iwn_iter_func(void *, struct ieee80211_node *);
167 static void iwn_calib_timeout(void *);
168 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
169 struct iwn_rx_data *);
170 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
171 struct iwn_rx_data *);
172 #ifndef IEEE80211_NO_HT
173 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
174 struct iwn_rx_data *);
175 #endif
176 static void iwn5000_rx_calib_results(struct iwn_softc *,
177 struct iwn_rx_desc *, struct iwn_rx_data *);
178 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
179 struct iwn_rx_data *);
180 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
181 struct iwn_rx_data *);
182 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
183 struct iwn_rx_data *);
184 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
185 uint8_t);
186 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
187 static void iwn_notif_intr(struct iwn_softc *);
188 static void iwn_wakeup_intr(struct iwn_softc *);
189 static void iwn_fatal_intr(struct iwn_softc *);
190 static int iwn_intr(void *);
191 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
192 uint16_t);
193 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
194 uint16_t);
195 #ifdef notyet
196 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
197 #endif
198 static int iwn_tx(struct iwn_softc *, struct mbuf *,
199 struct ieee80211_node *, int);
200 static void iwn_start(struct ifnet *);
201 static void iwn_watchdog(struct ifnet *);
202 static int iwn_ioctl(struct ifnet *, u_long, void *);
203 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
204 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
205 int);
206 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
207 int);
208 static int iwn_set_link_quality(struct iwn_softc *,
209 struct ieee80211_node *);
210 static int iwn_add_broadcast_node(struct iwn_softc *, int);
211 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
212 static int iwn_set_critical_temp(struct iwn_softc *);
213 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
214 static void iwn4965_power_calibration(struct iwn_softc *, int);
215 static int iwn4965_set_txpower(struct iwn_softc *, int);
216 static int iwn5000_set_txpower(struct iwn_softc *, int);
217 static int iwn4965_get_rssi(const struct iwn_rx_stat *);
218 static int iwn5000_get_rssi(const struct iwn_rx_stat *);
219 static int iwn_get_noise(const struct iwn_rx_general_stats *);
220 static int iwn4965_get_temperature(struct iwn_softc *);
221 static int iwn5000_get_temperature(struct iwn_softc *);
222 static int iwn_init_sensitivity(struct iwn_softc *);
223 static void iwn_collect_noise(struct iwn_softc *,
224 const struct iwn_rx_general_stats *);
225 static int iwn4965_init_gains(struct iwn_softc *);
226 static int iwn5000_init_gains(struct iwn_softc *);
227 static int iwn4965_set_gains(struct iwn_softc *);
228 static int iwn5000_set_gains(struct iwn_softc *);
229 static void iwn_tune_sensitivity(struct iwn_softc *,
230 const struct iwn_rx_stats *);
231 static int iwn_send_sensitivity(struct iwn_softc *);
232 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
233 static int iwn5000_runtime_calib(struct iwn_softc *);
234
235 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *);
236 static int iwn_config_bt_coex_prio_table(struct iwn_softc *);
237 static int iwn_config_bt_coex_adv1(struct iwn_softc *);
238
239 static int iwn_config(struct iwn_softc *);
240 static int iwn_scan(struct iwn_softc *, uint16_t);
241 static int iwn_auth(struct iwn_softc *);
242 static int iwn_run(struct iwn_softc *);
243 #ifdef IWN_HWCRYPTO
244 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
245 struct ieee80211_key *);
246 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
247 struct ieee80211_key *);
248 #endif
249 static int iwn_wme_update(struct ieee80211com *);
250 #ifndef IEEE80211_NO_HT
251 static int iwn_ampdu_rx_start(struct ieee80211com *,
252 struct ieee80211_node *, uint8_t);
253 static void iwn_ampdu_rx_stop(struct ieee80211com *,
254 struct ieee80211_node *, uint8_t);
255 static int iwn_ampdu_tx_start(struct ieee80211com *,
256 struct ieee80211_node *, uint8_t);
257 static void iwn_ampdu_tx_stop(struct ieee80211com *,
258 struct ieee80211_node *, uint8_t);
259 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
260 struct ieee80211_node *, uint8_t, uint16_t);
261 static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
262 uint8_t, uint16_t);
263 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
264 struct ieee80211_node *, uint8_t, uint16_t);
265 static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
266 uint8_t, uint16_t);
267 #endif
268 static int iwn5000_query_calibration(struct iwn_softc *);
269 static int iwn5000_send_calibration(struct iwn_softc *);
270 static int iwn5000_send_wimax_coex(struct iwn_softc *);
271 static int iwn4965_post_alive(struct iwn_softc *);
272 static int iwn5000_post_alive(struct iwn_softc *);
273 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
274 int);
275 static int iwn4965_load_firmware(struct iwn_softc *);
276 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
277 const uint8_t *, int);
278 static int iwn5000_load_firmware(struct iwn_softc *);
279 static int iwn_read_firmware_leg(struct iwn_softc *,
280 struct iwn_fw_info *);
281 static int iwn_read_firmware_tlv(struct iwn_softc *,
282 struct iwn_fw_info *, uint16_t);
283 static int iwn_read_firmware(struct iwn_softc *);
284 static int iwn_clock_wait(struct iwn_softc *);
285 static int iwn_apm_init(struct iwn_softc *);
286 static void iwn_apm_stop_master(struct iwn_softc *);
287 static void iwn_apm_stop(struct iwn_softc *);
288 static int iwn4965_nic_config(struct iwn_softc *);
289 static int iwn5000_nic_config(struct iwn_softc *);
290 static int iwn_hw_prepare(struct iwn_softc *);
291 static int iwn_hw_init(struct iwn_softc *);
292 static void iwn_hw_stop(struct iwn_softc *);
293 static int iwn_init(struct ifnet *);
294 static void iwn_stop(struct ifnet *, int);
295
296 /* XXX MCLGETI alternative */
297 static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
298 struct ifnet *, u_int);
299 #ifdef IWN_USE_RBUF
300 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
301 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
302 static int iwn_alloc_rpool(struct iwn_softc *);
303 static void iwn_free_rpool(struct iwn_softc *);
304 #endif
305
306 /* XXX needed by iwn_scan */
307 static u_int8_t *ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
308 static u_int8_t *ieee80211_add_rates(u_int8_t *,
309 const struct ieee80211_rateset *);
310 static u_int8_t *ieee80211_add_xrates(u_int8_t *,
311 const struct ieee80211_rateset *);
312
313 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *);
314
315 #ifdef IWN_DEBUG
316 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
317 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
318 int iwn_debug = 0;
319 #else
320 #define DPRINTF(x)
321 #define DPRINTFN(n, x)
322 #endif
323
324 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
325 iwn_detach, NULL);
326
327 static int
328 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
329 {
330 struct pci_attach_args *pa = aux;
331 size_t i;
332
333 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
334 return 0;
335
336 for (i = 0; i < __arraycount(iwn_devices); i++)
337 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
338 return 1;
339
340 return 0;
341 }
342
343 static void
344 iwn_attach(device_t parent __unused, device_t self, void *aux)
345 {
346 struct iwn_softc *sc = device_private(self);
347 struct ieee80211com *ic = &sc->sc_ic;
348 struct ifnet *ifp = &sc->sc_ec.ec_if;
349 struct pci_attach_args *pa = aux;
350 const char *intrstr;
351 pci_intr_handle_t ih;
352 pcireg_t memtype, reg;
353 int i, error;
354
355 sc->sc_dev = self;
356 sc->sc_pct = pa->pa_pc;
357 sc->sc_pcitag = pa->pa_tag;
358 sc->sc_dmat = pa->pa_dmat;
359 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
360
361 callout_init(&sc->calib_to, 0);
362 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
363
364 pci_aprint_devinfo(pa, NULL);
365
366 /*
367 * Get the offset of the PCI Express Capability Structure in PCI
368 * Configuration Space.
369 */
370 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
371 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
372 if (error == 0) {
373 aprint_error(": PCIe capability structure not found!\n");
374 return;
375 }
376
377 /* Clear device-specific "PCI retry timeout" register (41h). */
378 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
379 if (reg & 0xff00)
380 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
381
382 /* Enable bus-mastering and hardware bug workaround. */
383 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */
384 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
385 reg |= PCI_COMMAND_MASTER_ENABLE;
386 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
387 DPRINTF(("PCIe INTx Disable set\n"));
388 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
389 }
390 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
391
392 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
393 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
394 &sc->sc_sh, NULL, &sc->sc_sz);
395 if (error != 0) {
396 aprint_error(": can't map mem space\n");
397 return;
398 }
399
400 /* Install interrupt handler. */
401 if (pci_intr_map(pa, &ih) != 0) {
402 aprint_error(": can't map interrupt\n");
403 return;
404 }
405 intrstr = pci_intr_string(sc->sc_pct, ih);
406 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
407 if (sc->sc_ih == NULL) {
408 aprint_error(": can't establish interrupt");
409 if (intrstr != NULL)
410 aprint_error(" at %s", intrstr);
411 aprint_error("\n");
412 return;
413 }
414 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
415
416 /* Read hardware revision and attach. */
417 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
418 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
419 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
420 else
421 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
422 if (error != 0) {
423 aprint_error(": could not attach device\n");
424 return;
425 }
426
427 if ((error = iwn_hw_prepare(sc)) != 0) {
428 aprint_error(": hardware not ready\n");
429 return;
430 }
431
432 /* Read MAC address, channels, etc from EEPROM. */
433 if ((error = iwn_read_eeprom(sc)) != 0) {
434 aprint_error(": could not read EEPROM\n");
435 return;
436 }
437
438 /* Allocate DMA memory for firmware transfers. */
439 if ((error = iwn_alloc_fwmem(sc)) != 0) {
440 aprint_error(": could not allocate memory for firmware\n");
441 return;
442 }
443
444 /* Allocate "Keep Warm" page. */
445 if ((error = iwn_alloc_kw(sc)) != 0) {
446 aprint_error(": could not allocate keep warm page\n");
447 goto fail1;
448 }
449
450 /* Allocate ICT table for 5000 Series. */
451 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
452 (error = iwn_alloc_ict(sc)) != 0) {
453 aprint_error(": could not allocate ICT table\n");
454 goto fail2;
455 }
456
457 /* Allocate TX scheduler "rings". */
458 if ((error = iwn_alloc_sched(sc)) != 0) {
459 aprint_error(": could not allocate TX scheduler rings\n");
460 goto fail3;
461 }
462
463 #ifdef IWN_USE_RBUF
464 /* Allocate RX buffers. */
465 if ((error = iwn_alloc_rpool(sc)) != 0) {
466 aprint_error_dev(self, "could not allocate RX buffers\n");
467 goto fail3;
468 }
469 #endif
470
471 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
472 for (i = 0; i < sc->ntxqs; i++) {
473 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
474 aprint_error(": could not allocate TX ring %d\n", i);
475 goto fail4;
476 }
477 }
478
479 /* Allocate RX ring. */
480 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
481 aprint_error(": could not allocate RX ring\n");
482 goto fail4;
483 }
484
485 /* Clear pending interrupts. */
486 IWN_WRITE(sc, IWN_INT, 0xffffffff);
487
488 /* Count the number of available chains. */
489 sc->ntxchains =
490 ((sc->txchainmask >> 2) & 1) +
491 ((sc->txchainmask >> 1) & 1) +
492 ((sc->txchainmask >> 0) & 1);
493 sc->nrxchains =
494 ((sc->rxchainmask >> 2) & 1) +
495 ((sc->rxchainmask >> 1) & 1) +
496 ((sc->rxchainmask >> 0) & 1);
497 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
498 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
499 ether_sprintf(ic->ic_myaddr));
500
501 ic->ic_ifp = ifp;
502 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
503 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
504 ic->ic_state = IEEE80211_S_INIT;
505
506 /* Set device capabilities. */
507 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
508 * and IEEE80211_C_PMGT too. */
509 ic->ic_caps =
510 IEEE80211_C_IBSS | /* IBSS mode support */
511 IEEE80211_C_WPA | /* 802.11i */
512 IEEE80211_C_MONITOR | /* monitor mode supported */
513 IEEE80211_C_TXPMGT | /* tx power management */
514 IEEE80211_C_SHSLOT | /* short slot time supported */
515 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
516 IEEE80211_C_WME; /* 802.11e */
517
518 #ifndef IEEE80211_NO_HT
519 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
520 /* Set HT capabilities. */
521 ic->ic_htcaps =
522 #if IWN_RBUF_SIZE == 8192
523 IEEE80211_HTCAP_AMSDU7935 |
524 #endif
525 IEEE80211_HTCAP_CBW20_40 |
526 IEEE80211_HTCAP_SGI20 |
527 IEEE80211_HTCAP_SGI40;
528 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
529 ic->ic_htcaps |= IEEE80211_HTCAP_GF;
530 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
531 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
532 else
533 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
534 }
535 #endif /* !IEEE80211_NO_HT */
536
537 /* Set supported legacy rates. */
538 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
539 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
540 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
541 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
542 }
543 #ifndef IEEE80211_NO_HT
544 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
545 /* Set supported HT rates. */
546 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
547 if (sc->nrxchains > 1)
548 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
549 if (sc->nrxchains > 2)
550 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
551 }
552 #endif
553
554 /* IBSS channel undefined for now. */
555 ic->ic_ibss_chan = &ic->ic_channels[0];
556
557 ifp->if_softc = sc;
558 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
559 ifp->if_init = iwn_init;
560 ifp->if_ioctl = iwn_ioctl;
561 ifp->if_start = iwn_start;
562 ifp->if_stop = iwn_stop;
563 ifp->if_watchdog = iwn_watchdog;
564 IFQ_SET_READY(&ifp->if_snd);
565 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
566
567 if_attach(ifp);
568 ieee80211_ifattach(ic);
569 ic->ic_node_alloc = iwn_node_alloc;
570 ic->ic_newassoc = iwn_newassoc;
571 #ifdef IWN_HWCRYPTO
572 ic->ic_crypto.cs_key_set = iwn_set_key;
573 ic->ic_crypto.cs_key_delete = iwn_delete_key;
574 #endif
575 ic->ic_wme.wme_update = iwn_wme_update;
576 #ifndef IEEE80211_NO_HT
577 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
578 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
579 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
580 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
581 #endif
582
583 /* Override 802.11 state transition machine. */
584 sc->sc_newstate = ic->ic_newstate;
585 ic->ic_newstate = iwn_newstate;
586 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
587
588 sc->amrr.amrr_min_success_threshold = 1;
589 sc->amrr.amrr_max_success_threshold = 15;
590
591 iwn_radiotap_attach(sc);
592
593 /*
594 * XXX for NetBSD, OpenBSD timeout_set replaced by
595 * callout_init and callout_setfunc, above.
596 */
597
598 if (pmf_device_register(self, NULL, iwn_resume))
599 pmf_class_network_register(self, ifp);
600 else
601 aprint_error_dev(self, "couldn't establish power handler\n");
602
603 /* XXX NetBSD add call to ieee80211_announce for dmesg. */
604 ieee80211_announce(ic);
605
606 return;
607
608 /* Free allocated memory if something failed during attachment. */
609 fail4: while (--i >= 0)
610 iwn_free_tx_ring(sc, &sc->txq[i]);
611 #ifdef IWN_USE_RBUF
612 iwn_free_rpool(sc);
613 #endif
614 iwn_free_sched(sc);
615 fail3: if (sc->ict != NULL)
616 iwn_free_ict(sc);
617 fail2: iwn_free_kw(sc);
618 fail1: iwn_free_fwmem(sc);
619 }
620
621 int
622 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
623 {
624 struct iwn_ops *ops = &sc->ops;
625
626 ops->load_firmware = iwn4965_load_firmware;
627 ops->read_eeprom = iwn4965_read_eeprom;
628 ops->post_alive = iwn4965_post_alive;
629 ops->nic_config = iwn4965_nic_config;
630 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
631 ops->update_sched = iwn4965_update_sched;
632 ops->get_temperature = iwn4965_get_temperature;
633 ops->get_rssi = iwn4965_get_rssi;
634 ops->set_txpower = iwn4965_set_txpower;
635 ops->init_gains = iwn4965_init_gains;
636 ops->set_gains = iwn4965_set_gains;
637 ops->add_node = iwn4965_add_node;
638 ops->tx_done = iwn4965_tx_done;
639 #ifndef IEEE80211_NO_HT
640 ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
641 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
642 #endif
643 sc->ntxqs = IWN4965_NTXQUEUES;
644 sc->ndmachnls = IWN4965_NDMACHNLS;
645 sc->broadcast_id = IWN4965_ID_BROADCAST;
646 sc->rxonsz = IWN4965_RXONSZ;
647 sc->schedsz = IWN4965_SCHEDSZ;
648 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
649 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
650 sc->fwsz = IWN4965_FWSZ;
651 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
652 sc->limits = &iwn4965_sensitivity_limits;
653 sc->fwname = "iwlwifi-4965-2.ucode";
654 /* Override chains masks, ROM is known to be broken. */
655 sc->txchainmask = IWN_ANT_AB;
656 sc->rxchainmask = IWN_ANT_ABC;
657
658 return 0;
659 }
660
661 int
662 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
663 {
664 struct iwn_ops *ops = &sc->ops;
665
666 ops->load_firmware = iwn5000_load_firmware;
667 ops->read_eeprom = iwn5000_read_eeprom;
668 ops->post_alive = iwn5000_post_alive;
669 ops->nic_config = iwn5000_nic_config;
670 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
671 ops->update_sched = iwn5000_update_sched;
672 ops->get_temperature = iwn5000_get_temperature;
673 ops->get_rssi = iwn5000_get_rssi;
674 ops->set_txpower = iwn5000_set_txpower;
675 ops->init_gains = iwn5000_init_gains;
676 ops->set_gains = iwn5000_set_gains;
677 ops->add_node = iwn5000_add_node;
678 ops->tx_done = iwn5000_tx_done;
679 #ifndef IEEE80211_NO_HT
680 ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
681 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
682 #endif
683 sc->ntxqs = IWN5000_NTXQUEUES;
684 sc->ndmachnls = IWN5000_NDMACHNLS;
685 sc->broadcast_id = IWN5000_ID_BROADCAST;
686 sc->rxonsz = IWN5000_RXONSZ;
687 sc->schedsz = IWN5000_SCHEDSZ;
688 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
689 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
690 sc->fwsz = IWN5000_FWSZ;
691 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
692
693 switch (sc->hw_type) {
694 case IWN_HW_REV_TYPE_5100:
695 sc->limits = &iwn5000_sensitivity_limits;
696 sc->fwname = "iwlwifi-5000-2.ucode";
697 /* Override chains masks, ROM is known to be broken. */
698 sc->txchainmask = IWN_ANT_B;
699 sc->rxchainmask = IWN_ANT_AB;
700 break;
701 case IWN_HW_REV_TYPE_5150:
702 sc->limits = &iwn5150_sensitivity_limits;
703 sc->fwname = "iwlwifi-5150-2.ucode";
704 break;
705 case IWN_HW_REV_TYPE_5300:
706 case IWN_HW_REV_TYPE_5350:
707 sc->limits = &iwn5000_sensitivity_limits;
708 sc->fwname = "iwlwifi-5000-2.ucode";
709 break;
710 case IWN_HW_REV_TYPE_1000:
711 sc->limits = &iwn1000_sensitivity_limits;
712 sc->fwname = "iwlwifi-1000-3.ucode";
713 break;
714 case IWN_HW_REV_TYPE_6000:
715 sc->limits = &iwn6000_sensitivity_limits;
716 sc->fwname = "iwlwifi-6000-4.ucode";
717 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
718 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
719 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
720 /* Override chains masks, ROM is known to be broken. */
721 sc->txchainmask = IWN_ANT_BC;
722 sc->rxchainmask = IWN_ANT_BC;
723 }
724 break;
725 case IWN_HW_REV_TYPE_6050:
726 sc->limits = &iwn6000_sensitivity_limits;
727 sc->fwname = "iwlwifi-6050-5.ucode";
728 break;
729 case IWN_HW_REV_TYPE_6005:
730 sc->limits = &iwn6000_sensitivity_limits;
731 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
732 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
733 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
734 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
735 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
736 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235) {
737 sc->fwname = "iwlwifi-6000g2b-6.ucode";
738 ops->config_bt_coex = iwn_config_bt_coex_adv1;
739 }
740 else
741 sc->fwname = "iwlwifi-6000g2a-5.ucode";
742 break;
743 default:
744 aprint_normal(": adapter type %d not supported\n", sc->hw_type);
745 return ENOTSUP;
746 }
747 return 0;
748 }
749
750 /*
751 * Attach the interface to 802.11 radiotap.
752 */
753 static void
754 iwn_radiotap_attach(struct iwn_softc *sc)
755 {
756 struct ifnet *ifp = sc->sc_ic.ic_ifp;
757
758 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
759 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
760 &sc->sc_drvbpf);
761
762 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
763 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
764 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
765
766 sc->sc_txtap_len = sizeof sc->sc_txtapu;
767 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
768 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
769 }
770
771 static int
772 iwn_detach(device_t self, int flags __unused)
773 {
774 struct iwn_softc *sc = device_private(self);
775 struct ifnet *ifp = sc->sc_ic.ic_ifp;
776 int qid;
777
778 callout_stop(&sc->calib_to);
779
780 /* Uninstall interrupt handler. */
781 if (sc->sc_ih != NULL)
782 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
783
784 /* Free DMA resources. */
785 iwn_free_rx_ring(sc, &sc->rxq);
786 for (qid = 0; qid < sc->ntxqs; qid++)
787 iwn_free_tx_ring(sc, &sc->txq[qid]);
788 #ifdef IWN_USE_RBUF
789 iwn_free_rpool(sc);
790 #endif
791 iwn_free_sched(sc);
792 iwn_free_kw(sc);
793 if (sc->ict != NULL)
794 iwn_free_ict(sc);
795 iwn_free_fwmem(sc);
796
797 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
798
799 ieee80211_ifdetach(&sc->sc_ic);
800 if_detach(ifp);
801
802 return 0;
803 }
804
805 #if 0
806 /*
807 * XXX Investigate if clearing the PCI retry timeout could eliminate
808 * the repeated scan calls. Also the calls to if_init and if_start
809 * are similar to the effect of adding the call to ifioctl_common .
810 */
811 static void
812 iwn_power(int why, void *arg)
813 {
814 struct iwn_softc *sc = arg;
815 struct ifnet *ifp;
816 pcireg_t reg;
817 int s;
818
819 if (why != PWR_RESUME)
820 return;
821
822 /* Clear device-specific "PCI retry timeout" register (41h). */
823 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
824 if (reg & 0xff00)
825 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
826
827 s = splnet();
828 ifp = &sc->sc_ic.ic_if;
829 if (ifp->if_flags & IFF_UP) {
830 ifp->if_init(ifp);
831 if (ifp->if_flags & IFF_RUNNING)
832 ifp->if_start(ifp);
833 }
834 splx(s);
835 }
836 #endif
837
838 static bool
839 iwn_resume(device_t dv, const pmf_qual_t *qual)
840 {
841 return true;
842 }
843
844 static int
845 iwn_nic_lock(struct iwn_softc *sc)
846 {
847 int ntries;
848
849 /* Request exclusive access to NIC. */
850 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
851
852 /* Spin until we actually get the lock. */
853 for (ntries = 0; ntries < 1000; ntries++) {
854 if ((IWN_READ(sc, IWN_GP_CNTRL) &
855 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
856 IWN_GP_CNTRL_MAC_ACCESS_ENA)
857 return 0;
858 DELAY(10);
859 }
860 return ETIMEDOUT;
861 }
862
863 static __inline void
864 iwn_nic_unlock(struct iwn_softc *sc)
865 {
866 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
867 }
868
869 static __inline uint32_t
870 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
871 {
872 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
873 IWN_BARRIER_READ_WRITE(sc);
874 return IWN_READ(sc, IWN_PRPH_RDATA);
875 }
876
877 static __inline void
878 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
879 {
880 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
881 IWN_BARRIER_WRITE(sc);
882 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
883 }
884
885 static __inline void
886 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
887 {
888 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
889 }
890
891 static __inline void
892 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
893 {
894 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
895 }
896
897 static __inline void
898 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
899 const uint32_t *data, int count)
900 {
901 for (; count > 0; count--, data++, addr += 4)
902 iwn_prph_write(sc, addr, *data);
903 }
904
905 static __inline uint32_t
906 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
907 {
908 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
909 IWN_BARRIER_READ_WRITE(sc);
910 return IWN_READ(sc, IWN_MEM_RDATA);
911 }
912
913 static __inline void
914 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
915 {
916 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
917 IWN_BARRIER_WRITE(sc);
918 IWN_WRITE(sc, IWN_MEM_WDATA, data);
919 }
920
921 #ifndef IEEE80211_NO_HT
922 static __inline void
923 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
924 {
925 uint32_t tmp;
926
927 tmp = iwn_mem_read(sc, addr & ~3);
928 if (addr & 3)
929 tmp = (tmp & 0x0000ffff) | data << 16;
930 else
931 tmp = (tmp & 0xffff0000) | data;
932 iwn_mem_write(sc, addr & ~3, tmp);
933 }
934 #endif
935
936 static __inline void
937 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
938 int count)
939 {
940 for (; count > 0; count--, addr += 4)
941 *data++ = iwn_mem_read(sc, addr);
942 }
943
944 static __inline void
945 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
946 int count)
947 {
948 for (; count > 0; count--, addr += 4)
949 iwn_mem_write(sc, addr, val);
950 }
951
952 static int
953 iwn_eeprom_lock(struct iwn_softc *sc)
954 {
955 int i, ntries;
956
957 for (i = 0; i < 100; i++) {
958 /* Request exclusive access to EEPROM. */
959 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
960 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
961
962 /* Spin until we actually get the lock. */
963 for (ntries = 0; ntries < 100; ntries++) {
964 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
965 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
966 return 0;
967 DELAY(10);
968 }
969 }
970 return ETIMEDOUT;
971 }
972
973 static __inline void
974 iwn_eeprom_unlock(struct iwn_softc *sc)
975 {
976 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
977 }
978
979 /*
980 * Initialize access by host to One Time Programmable ROM.
981 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
982 */
983 static int
984 iwn_init_otprom(struct iwn_softc *sc)
985 {
986 uint16_t prev = 0, base, next;
987 int count, error;
988
989 /* Wait for clock stabilization before accessing prph. */
990 if ((error = iwn_clock_wait(sc)) != 0)
991 return error;
992
993 if ((error = iwn_nic_lock(sc)) != 0)
994 return error;
995 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
996 DELAY(5);
997 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
998 iwn_nic_unlock(sc);
999
1000 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1001 if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1002 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1003 IWN_RESET_LINK_PWR_MGMT_DIS);
1004 }
1005 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1006 /* Clear ECC status. */
1007 IWN_SETBITS(sc, IWN_OTP_GP,
1008 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1009
1010 /*
1011 * Find the block before last block (contains the EEPROM image)
1012 * for HW without OTP shadow RAM.
1013 */
1014 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1015 /* Switch to absolute addressing mode. */
1016 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1017 base = 0;
1018 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1019 error = iwn_read_prom_data(sc, base, &next, 2);
1020 if (error != 0)
1021 return error;
1022 if (next == 0) /* End of linked-list. */
1023 break;
1024 prev = base;
1025 base = le16toh(next);
1026 }
1027 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1028 return EIO;
1029 /* Skip "next" word. */
1030 sc->prom_base = prev + 1;
1031 }
1032 return 0;
1033 }
1034
1035 static int
1036 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1037 {
1038 uint8_t *out = data;
1039 uint32_t val, tmp;
1040 int ntries;
1041
1042 addr += sc->prom_base;
1043 for (; count > 0; count -= 2, addr++) {
1044 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1045 for (ntries = 0; ntries < 10; ntries++) {
1046 val = IWN_READ(sc, IWN_EEPROM);
1047 if (val & IWN_EEPROM_READ_VALID)
1048 break;
1049 DELAY(5);
1050 }
1051 if (ntries == 10) {
1052 aprint_error_dev(sc->sc_dev,
1053 "timeout reading ROM at 0x%x\n", addr);
1054 return ETIMEDOUT;
1055 }
1056 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1057 /* OTPROM, check for ECC errors. */
1058 tmp = IWN_READ(sc, IWN_OTP_GP);
1059 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1060 aprint_error_dev(sc->sc_dev,
1061 "OTPROM ECC error at 0x%x\n", addr);
1062 return EIO;
1063 }
1064 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1065 /* Correctable ECC error, clear bit. */
1066 IWN_SETBITS(sc, IWN_OTP_GP,
1067 IWN_OTP_GP_ECC_CORR_STTS);
1068 }
1069 }
1070 *out++ = val >> 16;
1071 if (count > 1)
1072 *out++ = val >> 24;
1073 }
1074 return 0;
1075 }
1076
1077 static int
1078 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1079 bus_size_t size, bus_size_t alignment)
1080 {
1081 int nsegs, error;
1082
1083 dma->tag = tag;
1084 dma->size = size;
1085
1086 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1087 &dma->map);
1088 if (error != 0)
1089 goto fail;
1090
1091 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1092 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1093 if (error != 0)
1094 goto fail;
1095
1096 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1097 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1098 if (error != 0)
1099 goto fail;
1100
1101 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1102 BUS_DMA_NOWAIT);
1103 if (error != 0)
1104 goto fail;
1105
1106 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1107 memset(dma->vaddr, 0, size);
1108 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1109
1110 dma->paddr = dma->map->dm_segs[0].ds_addr;
1111 if (kvap != NULL)
1112 *kvap = dma->vaddr;
1113
1114 return 0;
1115
1116 fail: iwn_dma_contig_free(dma);
1117 return error;
1118 }
1119
1120 static void
1121 iwn_dma_contig_free(struct iwn_dma_info *dma)
1122 {
1123 if (dma->map != NULL) {
1124 if (dma->vaddr != NULL) {
1125 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1126 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1127 bus_dmamap_unload(dma->tag, dma->map);
1128 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1129 bus_dmamem_free(dma->tag, &dma->seg, 1);
1130 dma->vaddr = NULL;
1131 }
1132 bus_dmamap_destroy(dma->tag, dma->map);
1133 dma->map = NULL;
1134 }
1135 }
1136
1137 static int
1138 iwn_alloc_sched(struct iwn_softc *sc)
1139 {
1140 /* TX scheduler rings must be aligned on a 1KB boundary. */
1141 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1142 (void **)&sc->sched, sc->schedsz, 1024);
1143 }
1144
1145 static void
1146 iwn_free_sched(struct iwn_softc *sc)
1147 {
1148 iwn_dma_contig_free(&sc->sched_dma);
1149 }
1150
1151 static int
1152 iwn_alloc_kw(struct iwn_softc *sc)
1153 {
1154 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1155 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1156 4096);
1157 }
1158
1159 static void
1160 iwn_free_kw(struct iwn_softc *sc)
1161 {
1162 iwn_dma_contig_free(&sc->kw_dma);
1163 }
1164
1165 static int
1166 iwn_alloc_ict(struct iwn_softc *sc)
1167 {
1168 /* ICT table must be aligned on a 4KB boundary. */
1169 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1170 (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1171 }
1172
1173 static void
1174 iwn_free_ict(struct iwn_softc *sc)
1175 {
1176 iwn_dma_contig_free(&sc->ict_dma);
1177 }
1178
1179 static int
1180 iwn_alloc_fwmem(struct iwn_softc *sc)
1181 {
1182 /* Must be aligned on a 16-byte boundary. */
1183 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1184 sc->fwsz, 16);
1185 }
1186
1187 static void
1188 iwn_free_fwmem(struct iwn_softc *sc)
1189 {
1190 iwn_dma_contig_free(&sc->fw_dma);
1191 }
1192
1193 static int
1194 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1195 {
1196 bus_size_t size;
1197 int i, error;
1198
1199 ring->cur = 0;
1200
1201 /* Allocate RX descriptors (256-byte aligned). */
1202 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1203 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1204 (void **)&ring->desc, size, 256);
1205 if (error != 0) {
1206 aprint_error_dev(sc->sc_dev,
1207 "could not allocate RX ring DMA memory\n");
1208 goto fail;
1209 }
1210
1211 /* Allocate RX status area (16-byte aligned). */
1212 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1213 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1214 if (error != 0) {
1215 aprint_error_dev(sc->sc_dev,
1216 "could not allocate RX status DMA memory\n");
1217 goto fail;
1218 }
1219
1220 /*
1221 * Allocate and map RX buffers.
1222 */
1223 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1224 struct iwn_rx_data *data = &ring->data[i];
1225
1226 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1227 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1228 &data->map);
1229 if (error != 0) {
1230 aprint_error_dev(sc->sc_dev,
1231 "could not create RX buf DMA map\n");
1232 goto fail;
1233 }
1234
1235 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1236 if (data->m == NULL) {
1237 aprint_error_dev(sc->sc_dev,
1238 "could not allocate RX mbuf\n");
1239 error = ENOBUFS;
1240 goto fail;
1241 }
1242
1243 error = bus_dmamap_load(sc->sc_dmat, data->map,
1244 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1245 BUS_DMA_NOWAIT | BUS_DMA_READ);
1246 if (error != 0) {
1247 aprint_error_dev(sc->sc_dev,
1248 "can't not map mbuf (error %d)\n", error);
1249 goto fail;
1250 }
1251
1252 /* Set physical address of RX buffer (256-byte aligned). */
1253 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1254 }
1255
1256 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1257 BUS_DMASYNC_PREWRITE);
1258
1259 return 0;
1260
1261 fail: iwn_free_rx_ring(sc, ring);
1262 return error;
1263 }
1264
1265 static void
1266 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1267 {
1268 int ntries;
1269
1270 if (iwn_nic_lock(sc) == 0) {
1271 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1272 for (ntries = 0; ntries < 1000; ntries++) {
1273 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1274 IWN_FH_RX_STATUS_IDLE)
1275 break;
1276 DELAY(10);
1277 }
1278 iwn_nic_unlock(sc);
1279 }
1280 ring->cur = 0;
1281 sc->last_rx_valid = 0;
1282 }
1283
1284 static void
1285 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1286 {
1287 int i;
1288
1289 iwn_dma_contig_free(&ring->desc_dma);
1290 iwn_dma_contig_free(&ring->stat_dma);
1291
1292 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1293 struct iwn_rx_data *data = &ring->data[i];
1294
1295 if (data->m != NULL) {
1296 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1297 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1298 bus_dmamap_unload(sc->sc_dmat, data->map);
1299 m_freem(data->m);
1300 }
1301 if (data->map != NULL)
1302 bus_dmamap_destroy(sc->sc_dmat, data->map);
1303 }
1304 }
1305
1306 static int
1307 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1308 {
1309 bus_addr_t paddr;
1310 bus_size_t size;
1311 int i, error;
1312
1313 ring->qid = qid;
1314 ring->queued = 0;
1315 ring->cur = 0;
1316
1317 /* Allocate TX descriptors (256-byte aligned). */
1318 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1319 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1320 (void **)&ring->desc, size, 256);
1321 if (error != 0) {
1322 aprint_error_dev(sc->sc_dev,
1323 "could not allocate TX ring DMA memory\n");
1324 goto fail;
1325 }
1326 /*
1327 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1328 * to allocate commands space for other rings.
1329 * XXX Do we really need to allocate descriptors for other rings?
1330 */
1331 if (qid > 4)
1332 return 0;
1333
1334 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1335 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1336 (void **)&ring->cmd, size, 4);
1337 if (error != 0) {
1338 aprint_error_dev(sc->sc_dev,
1339 "could not allocate TX cmd DMA memory\n");
1340 goto fail;
1341 }
1342
1343 paddr = ring->cmd_dma.paddr;
1344 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1345 struct iwn_tx_data *data = &ring->data[i];
1346
1347 data->cmd_paddr = paddr;
1348 data->scratch_paddr = paddr + 12;
1349 paddr += sizeof (struct iwn_tx_cmd);
1350
1351 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1352 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1353 &data->map);
1354 if (error != 0) {
1355 aprint_error_dev(sc->sc_dev,
1356 "could not create TX buf DMA map\n");
1357 goto fail;
1358 }
1359 }
1360 return 0;
1361
1362 fail: iwn_free_tx_ring(sc, ring);
1363 return error;
1364 }
1365
1366 static void
1367 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1368 {
1369 int i;
1370
1371 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1372 struct iwn_tx_data *data = &ring->data[i];
1373
1374 if (data->m != NULL) {
1375 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1376 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1377 bus_dmamap_unload(sc->sc_dmat, data->map);
1378 m_freem(data->m);
1379 data->m = NULL;
1380 }
1381 }
1382 /* Clear TX descriptors. */
1383 memset(ring->desc, 0, ring->desc_dma.size);
1384 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1385 ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1386 sc->qfullmsk &= ~(1 << ring->qid);
1387 ring->queued = 0;
1388 ring->cur = 0;
1389 }
1390
1391 static void
1392 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1393 {
1394 int i;
1395
1396 iwn_dma_contig_free(&ring->desc_dma);
1397 iwn_dma_contig_free(&ring->cmd_dma);
1398
1399 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1400 struct iwn_tx_data *data = &ring->data[i];
1401
1402 if (data->m != NULL) {
1403 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1404 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1405 bus_dmamap_unload(sc->sc_dmat, data->map);
1406 m_freem(data->m);
1407 }
1408 if (data->map != NULL)
1409 bus_dmamap_destroy(sc->sc_dmat, data->map);
1410 }
1411 }
1412
1413 static void
1414 iwn5000_ict_reset(struct iwn_softc *sc)
1415 {
1416 /* Disable interrupts. */
1417 IWN_WRITE(sc, IWN_INT_MASK, 0);
1418
1419 /* Reset ICT table. */
1420 memset(sc->ict, 0, IWN_ICT_SIZE);
1421 sc->ict_cur = 0;
1422
1423 /* Set physical address of ICT table (4KB aligned). */
1424 DPRINTF(("enabling ICT\n"));
1425 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1426 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1427
1428 /* Enable periodic RX interrupt. */
1429 sc->int_mask |= IWN_INT_RX_PERIODIC;
1430 /* Switch to ICT interrupt mode in driver. */
1431 sc->sc_flags |= IWN_FLAG_USE_ICT;
1432
1433 /* Re-enable interrupts. */
1434 IWN_WRITE(sc, IWN_INT, 0xffffffff);
1435 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1436 }
1437
1438 static int
1439 iwn_read_eeprom(struct iwn_softc *sc)
1440 {
1441 struct iwn_ops *ops = &sc->ops;
1442 struct ieee80211com *ic = &sc->sc_ic;
1443 uint16_t val;
1444 int error;
1445
1446 /* Check whether adapter has an EEPROM or an OTPROM. */
1447 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1448 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1449 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1450 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1451 "OTPROM" : "EEPROM"));
1452
1453 /* Adapter has to be powered on for EEPROM access to work. */
1454 if ((error = iwn_apm_init(sc)) != 0) {
1455 aprint_error_dev(sc->sc_dev,
1456 "could not power ON adapter\n");
1457 return error;
1458 }
1459
1460 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1461 aprint_error_dev(sc->sc_dev,
1462 "bad ROM signature\n");
1463 return EIO;
1464 }
1465 if ((error = iwn_eeprom_lock(sc)) != 0) {
1466 aprint_error_dev(sc->sc_dev,
1467 "could not lock ROM (error=%d)\n", error);
1468 return error;
1469 }
1470 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1471 if ((error = iwn_init_otprom(sc)) != 0) {
1472 aprint_error_dev(sc->sc_dev,
1473 "could not initialize OTPROM\n");
1474 return error;
1475 }
1476 }
1477
1478 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1479 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1480 /* Check if HT support is bonded out. */
1481 if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1482 sc->sc_flags |= IWN_FLAG_HAS_11N;
1483
1484 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1485 sc->rfcfg = le16toh(val);
1486 DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1487 /* Read Tx/Rx chains from ROM unless it's known to be broken. */
1488 if (sc->txchainmask == 0)
1489 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1490 if (sc->rxchainmask == 0)
1491 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1492
1493 /* Read MAC address. */
1494 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1495
1496 /* Read adapter-specific information from EEPROM. */
1497 ops->read_eeprom(sc);
1498
1499 iwn_apm_stop(sc); /* Power OFF adapter. */
1500
1501 iwn_eeprom_unlock(sc);
1502 return 0;
1503 }
1504
1505 static void
1506 iwn4965_read_eeprom(struct iwn_softc *sc)
1507 {
1508 uint32_t addr;
1509 uint16_t val;
1510 int i;
1511
1512 /* Read regulatory domain (4 ASCII characters). */
1513 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1514
1515 /* Read the list of authorized channels (20MHz ones only). */
1516 for (i = 0; i < 5; i++) {
1517 addr = iwn4965_regulatory_bands[i];
1518 iwn_read_eeprom_channels(sc, i, addr);
1519 }
1520
1521 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1522 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1523 sc->maxpwr2GHz = val & 0xff;
1524 sc->maxpwr5GHz = val >> 8;
1525 /* Check that EEPROM values are within valid range. */
1526 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1527 sc->maxpwr5GHz = 38;
1528 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1529 sc->maxpwr2GHz = 38;
1530 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1531
1532 /* Read samples for each TX power group. */
1533 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1534 sizeof sc->bands);
1535
1536 /* Read voltage at which samples were taken. */
1537 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1538 sc->eeprom_voltage = (int16_t)le16toh(val);
1539 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1540
1541 #ifdef IWN_DEBUG
1542 /* Print samples. */
1543 if (iwn_debug > 0) {
1544 for (i = 0; i < IWN_NBANDS; i++)
1545 iwn4965_print_power_group(sc, i);
1546 }
1547 #endif
1548 }
1549
1550 #ifdef IWN_DEBUG
1551 static void
1552 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1553 {
1554 struct iwn4965_eeprom_band *band = &sc->bands[i];
1555 struct iwn4965_eeprom_chan_samples *chans = band->chans;
1556 int j, c;
1557
1558 aprint_normal("===band %d===\n", i);
1559 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1560 aprint_normal("chan1 num=%d\n", chans[0].num);
1561 for (c = 0; c < 2; c++) {
1562 for (j = 0; j < IWN_NSAMPLES; j++) {
1563 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1564 "power=%d pa_det=%d\n", c, j,
1565 chans[0].samples[c][j].temp,
1566 chans[0].samples[c][j].gain,
1567 chans[0].samples[c][j].power,
1568 chans[0].samples[c][j].pa_det);
1569 }
1570 }
1571 aprint_normal("chan2 num=%d\n", chans[1].num);
1572 for (c = 0; c < 2; c++) {
1573 for (j = 0; j < IWN_NSAMPLES; j++) {
1574 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1575 "power=%d pa_det=%d\n", c, j,
1576 chans[1].samples[c][j].temp,
1577 chans[1].samples[c][j].gain,
1578 chans[1].samples[c][j].power,
1579 chans[1].samples[c][j].pa_det);
1580 }
1581 }
1582 }
1583 #endif
1584
1585 static void
1586 iwn5000_read_eeprom(struct iwn_softc *sc)
1587 {
1588 struct iwn5000_eeprom_calib_hdr hdr;
1589 int32_t volt;
1590 uint32_t base, addr;
1591 uint16_t val;
1592 int i;
1593
1594 /* Read regulatory domain (4 ASCII characters). */
1595 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1596 base = le16toh(val);
1597 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1598 sc->eeprom_domain, 4);
1599
1600 /* Read the list of authorized channels (20MHz ones only). */
1601 for (i = 0; i < 5; i++) {
1602 addr = base + iwn5000_regulatory_bands[i];
1603 iwn_read_eeprom_channels(sc, i, addr);
1604 }
1605
1606 /* Read enhanced TX power information for 6000 Series. */
1607 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1608 iwn_read_eeprom_enhinfo(sc);
1609
1610 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1611 base = le16toh(val);
1612 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1613 DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1614 hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1615 sc->calib_ver = hdr.version;
1616
1617 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1618 /* Compute temperature offset. */
1619 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1620 sc->eeprom_temp = le16toh(val);
1621 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1622 volt = le16toh(val);
1623 sc->temp_off = sc->eeprom_temp - (volt / -5);
1624 DPRINTF(("temp=%d volt=%d offset=%dK\n",
1625 sc->eeprom_temp, volt, sc->temp_off));
1626 } else {
1627 /* Read crystal calibration. */
1628 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1629 &sc->eeprom_crystal, sizeof (uint32_t));
1630 DPRINTF(("crystal calibration 0x%08x\n",
1631 le32toh(sc->eeprom_crystal)));
1632 }
1633 }
1634
1635 static void
1636 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1637 {
1638 struct ieee80211com *ic = &sc->sc_ic;
1639 const struct iwn_chan_band *band = &iwn_bands[n];
1640 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1641 uint8_t chan;
1642 int i;
1643
1644 iwn_read_prom_data(sc, addr, channels,
1645 band->nchan * sizeof (struct iwn_eeprom_chan));
1646
1647 for (i = 0; i < band->nchan; i++) {
1648 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1649 continue;
1650
1651 chan = band->chan[i];
1652
1653 if (n == 0) { /* 2GHz band */
1654 ic->ic_channels[chan].ic_freq =
1655 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1656 ic->ic_channels[chan].ic_flags =
1657 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1658 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1659
1660 } else { /* 5GHz band */
1661 /*
1662 * Some adapters support channels 7, 8, 11 and 12
1663 * both in the 2GHz and 4.9GHz bands.
1664 * Because of limitations in our net80211 layer,
1665 * we don't support them in the 4.9GHz band.
1666 */
1667 if (chan <= 14)
1668 continue;
1669
1670 ic->ic_channels[chan].ic_freq =
1671 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1672 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1673 /* We have at least one valid 5GHz channel. */
1674 sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1675 }
1676
1677 /* Is active scan allowed on this channel? */
1678 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1679 ic->ic_channels[chan].ic_flags |=
1680 IEEE80211_CHAN_PASSIVE;
1681 }
1682
1683 /* Save maximum allowed TX power for this channel. */
1684 sc->maxpwr[chan] = channels[i].maxpwr;
1685
1686 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1687 chan, channels[i].flags, sc->maxpwr[chan]));
1688 }
1689 }
1690
1691 static void
1692 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1693 {
1694 struct iwn_eeprom_enhinfo enhinfo[35];
1695 uint16_t val, base;
1696 int8_t maxpwr;
1697 int i;
1698
1699 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1700 base = le16toh(val);
1701 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1702 enhinfo, sizeof enhinfo);
1703
1704 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1705 for (i = 0; i < __arraycount(enhinfo); i++) {
1706 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1707 continue; /* Skip invalid entries. */
1708
1709 maxpwr = 0;
1710 if (sc->txchainmask & IWN_ANT_A)
1711 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1712 if (sc->txchainmask & IWN_ANT_B)
1713 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1714 if (sc->txchainmask & IWN_ANT_C)
1715 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1716 if (sc->ntxchains == 2)
1717 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1718 else if (sc->ntxchains == 3)
1719 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1720 maxpwr /= 2; /* Convert half-dBm to dBm. */
1721
1722 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1723 sc->enh_maxpwr[i] = maxpwr;
1724 }
1725 }
1726
1727 static struct ieee80211_node *
1728 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1729 {
1730 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1731 }
1732
1733 static void
1734 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1735 {
1736 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1737 struct iwn_node *wn = (void *)ni;
1738 uint8_t rate;
1739 int ridx, i;
1740
1741 ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1742 /* Start at lowest available bit-rate, AMRR will raise. */
1743 ni->ni_txrate = 0;
1744
1745 for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1746 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1747 /* Map 802.11 rate to HW rate index. */
1748 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1749 if (iwn_rates[ridx].rate == rate)
1750 break;
1751 wn->ridx[i] = ridx;
1752 }
1753 }
1754
1755 static int
1756 iwn_media_change(struct ifnet *ifp)
1757 {
1758 struct iwn_softc *sc = ifp->if_softc;
1759 struct ieee80211com *ic = &sc->sc_ic;
1760 uint8_t rate, ridx;
1761 int error;
1762
1763 error = ieee80211_media_change(ifp);
1764 if (error != ENETRESET)
1765 return error;
1766
1767 if (ic->ic_fixed_rate != -1) {
1768 rate = ic->ic_sup_rates[ic->ic_curmode].
1769 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1770 /* Map 802.11 rate to HW rate index. */
1771 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1772 if (iwn_rates[ridx].rate == rate)
1773 break;
1774 sc->fixed_ridx = ridx;
1775 }
1776
1777 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1778 (IFF_UP | IFF_RUNNING)) {
1779 iwn_stop(ifp, 0);
1780 error = iwn_init(ifp);
1781 }
1782 return error;
1783 }
1784
1785 static int
1786 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1787 {
1788 struct ifnet *ifp = ic->ic_ifp;
1789 struct iwn_softc *sc = ifp->if_softc;
1790 int error;
1791
1792 callout_stop(&sc->calib_to);
1793
1794 switch (nstate) {
1795 case IEEE80211_S_SCAN:
1796 /* XXX Do not abort a running scan. */
1797 if (sc->sc_flags & IWN_FLAG_SCANNING) {
1798 if (ic->ic_state != nstate)
1799 aprint_error_dev(sc->sc_dev, "scan request(%d) "
1800 "while scanning(%d) ignored\n", nstate,
1801 ic->ic_state);
1802 break;
1803 }
1804
1805 /* XXX Not sure if call and flags are needed. */
1806 ieee80211_node_table_reset(&ic->ic_scan);
1807 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1808 sc->sc_flags |= IWN_FLAG_SCANNING;
1809
1810 /* Make the link LED blink while we're scanning. */
1811 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1812
1813 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1814 aprint_error_dev(sc->sc_dev,
1815 "could not initiate scan\n");
1816 return error;
1817 }
1818 ic->ic_state = nstate;
1819 return 0;
1820
1821 case IEEE80211_S_ASSOC:
1822 if (ic->ic_state != IEEE80211_S_RUN)
1823 break;
1824 /* FALLTHROUGH */
1825 case IEEE80211_S_AUTH:
1826 /* Reset state to handle reassociations correctly. */
1827 sc->rxon.associd = 0;
1828 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1829 sc->calib.state = IWN_CALIB_STATE_INIT;
1830
1831 if ((error = iwn_auth(sc)) != 0) {
1832 aprint_error_dev(sc->sc_dev,
1833 "could not move to auth state\n");
1834 return error;
1835 }
1836 break;
1837
1838 case IEEE80211_S_RUN:
1839 if ((error = iwn_run(sc)) != 0) {
1840 aprint_error_dev(sc->sc_dev,
1841 "could not move to run state\n");
1842 return error;
1843 }
1844 break;
1845
1846 case IEEE80211_S_INIT:
1847 sc->sc_flags &= ~IWN_FLAG_SCANNING;
1848 sc->calib.state = IWN_CALIB_STATE_INIT;
1849 break;
1850 }
1851
1852 return sc->sc_newstate(ic, nstate, arg);
1853 }
1854
1855 static void
1856 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1857 {
1858 struct iwn_softc *sc = arg;
1859 struct iwn_node *wn = (struct iwn_node *)ni;
1860
1861 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1862 }
1863
1864 static void
1865 iwn_calib_timeout(void *arg)
1866 {
1867 struct iwn_softc *sc = arg;
1868 struct ieee80211com *ic = &sc->sc_ic;
1869 int s;
1870
1871 s = splnet();
1872 if (ic->ic_fixed_rate == -1) {
1873 if (ic->ic_opmode == IEEE80211_M_STA)
1874 iwn_iter_func(sc, ic->ic_bss);
1875 else
1876 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1877 }
1878 /* Force automatic TX power calibration every 60 secs. */
1879 if (++sc->calib_cnt >= 120) {
1880 uint32_t flags = 0;
1881
1882 DPRINTF(("sending request for statistics\n"));
1883 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1884 sizeof flags, 1);
1885 sc->calib_cnt = 0;
1886 }
1887 splx(s);
1888
1889 /* Automatic rate control triggered every 500ms. */
1890 callout_schedule(&sc->calib_to, hz/2);
1891 }
1892
1893 /*
1894 * Process an RX_PHY firmware notification. This is usually immediately
1895 * followed by an MPDU_RX_DONE notification.
1896 */
1897 static void
1898 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1899 struct iwn_rx_data *data)
1900 {
1901 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1902
1903 DPRINTFN(2, ("received PHY stats\n"));
1904 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1905 sizeof (*stat), BUS_DMASYNC_POSTREAD);
1906
1907 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
1908 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1909 sc->last_rx_valid = 1;
1910 }
1911
1912 /*
1913 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1914 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1915 */
1916 static void
1917 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1918 struct iwn_rx_data *data)
1919 {
1920 struct iwn_ops *ops = &sc->ops;
1921 struct ieee80211com *ic = &sc->sc_ic;
1922 struct ifnet *ifp = ic->ic_ifp;
1923 struct iwn_rx_ring *ring = &sc->rxq;
1924 struct ieee80211_frame *wh;
1925 struct ieee80211_node *ni;
1926 struct mbuf *m, *m1;
1927 struct iwn_rx_stat *stat;
1928 char *head;
1929 uint32_t flags;
1930 int error, len, rssi;
1931
1932 if (desc->type == IWN_MPDU_RX_DONE) {
1933 /* Check for prior RX_PHY notification. */
1934 if (!sc->last_rx_valid) {
1935 DPRINTF(("missing RX_PHY\n"));
1936 return;
1937 }
1938 sc->last_rx_valid = 0;
1939 stat = &sc->last_rx_stat;
1940 } else
1941 stat = (struct iwn_rx_stat *)(desc + 1);
1942
1943 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1944 BUS_DMASYNC_POSTREAD);
1945
1946 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1947 aprint_error_dev(sc->sc_dev,
1948 "invalid RX statistic header\n");
1949 return;
1950 }
1951 if (desc->type == IWN_MPDU_RX_DONE) {
1952 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
1953 head = (char *)(mpdu + 1);
1954 len = le16toh(mpdu->len);
1955 } else {
1956 head = (char *)(stat + 1) + stat->cfg_phy_len;
1957 len = le16toh(stat->len);
1958 }
1959
1960 flags = le32toh(*(uint32_t *)(head + len));
1961
1962 /* Discard frames with a bad FCS early. */
1963 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1964 DPRINTFN(2, ("RX flags error %x\n", flags));
1965 ifp->if_ierrors++;
1966 return;
1967 }
1968 /* Discard frames that are too short. */
1969 if (len < sizeof (*wh)) {
1970 DPRINTF(("frame too short: %d\n", len));
1971 ic->ic_stats.is_rx_tooshort++;
1972 ifp->if_ierrors++;
1973 return;
1974 }
1975
1976 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1977 if (m1 == NULL) {
1978 ic->ic_stats.is_rx_nobuf++;
1979 ifp->if_ierrors++;
1980 return;
1981 }
1982 bus_dmamap_unload(sc->sc_dmat, data->map);
1983
1984 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1985 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1986 if (error != 0) {
1987 m_freem(m1);
1988
1989 /* Try to reload the old mbuf. */
1990 error = bus_dmamap_load(sc->sc_dmat, data->map,
1991 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1992 BUS_DMA_NOWAIT | BUS_DMA_READ);
1993 if (error != 0) {
1994 panic("%s: could not load old RX mbuf",
1995 device_xname(sc->sc_dev));
1996 }
1997 /* Physical address may have changed. */
1998 ring->desc[ring->cur] =
1999 htole32(data->map->dm_segs[0].ds_addr >> 8);
2000 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2001 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2002 BUS_DMASYNC_PREWRITE);
2003 ifp->if_ierrors++;
2004 return;
2005 }
2006
2007 m = data->m;
2008 data->m = m1;
2009 /* Update RX descriptor. */
2010 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2011 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2012 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2013 BUS_DMASYNC_PREWRITE);
2014
2015 /* Finalize mbuf. */
2016 m->m_pkthdr.rcvif = ifp;
2017 m->m_data = head;
2018 m->m_pkthdr.len = m->m_len = len;
2019
2020 /* Grab a reference to the source node. */
2021 wh = mtod(m, struct ieee80211_frame *);
2022 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2023
2024 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2025 /* NetBSD does decryption in ieee80211_input. */
2026
2027 rssi = ops->get_rssi(stat);
2028
2029 /* XXX Added for NetBSD: scans never stop without it */
2030 if (ic->ic_state == IEEE80211_S_SCAN)
2031 iwn_fix_channel(ic, m);
2032
2033 if (sc->sc_drvbpf != NULL) {
2034 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2035
2036 tap->wr_flags = 0;
2037 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2038 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2039 tap->wr_chan_freq =
2040 htole16(ic->ic_channels[stat->chan].ic_freq);
2041 tap->wr_chan_flags =
2042 htole16(ic->ic_channels[stat->chan].ic_flags);
2043 tap->wr_dbm_antsignal = (int8_t)rssi;
2044 tap->wr_dbm_antnoise = (int8_t)sc->noise;
2045 tap->wr_tsft = stat->tstamp;
2046 switch (stat->rate) {
2047 /* CCK rates. */
2048 case 10: tap->wr_rate = 2; break;
2049 case 20: tap->wr_rate = 4; break;
2050 case 55: tap->wr_rate = 11; break;
2051 case 110: tap->wr_rate = 22; break;
2052 /* OFDM rates. */
2053 case 0xd: tap->wr_rate = 12; break;
2054 case 0xf: tap->wr_rate = 18; break;
2055 case 0x5: tap->wr_rate = 24; break;
2056 case 0x7: tap->wr_rate = 36; break;
2057 case 0x9: tap->wr_rate = 48; break;
2058 case 0xb: tap->wr_rate = 72; break;
2059 case 0x1: tap->wr_rate = 96; break;
2060 case 0x3: tap->wr_rate = 108; break;
2061 /* Unknown rate: should not happen. */
2062 default: tap->wr_rate = 0;
2063 }
2064
2065 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2066 }
2067
2068 /* Send the frame to the 802.11 layer. */
2069 ieee80211_input(ic, m, ni, rssi, 0);
2070
2071 /* Node is no longer needed. */
2072 ieee80211_free_node(ni);
2073 }
2074
2075 #ifndef IEEE80211_NO_HT
2076 /* Process an incoming Compressed BlockAck. */
2077 static void
2078 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2079 struct iwn_rx_data *data)
2080 {
2081 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2082 struct iwn_tx_ring *txq;
2083
2084 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2085 BUS_DMASYNC_POSTREAD);
2086
2087 txq = &sc->txq[le16toh(ba->qid)];
2088 /* XXX TBD */
2089 }
2090 #endif
2091
2092 /*
2093 * Process a CALIBRATION_RESULT notification sent by the initialization
2094 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2095 */
2096 static void
2097 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2098 struct iwn_rx_data *data)
2099 {
2100 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2101 int len, idx = -1;
2102
2103 /* Runtime firmware should not send such a notification. */
2104 if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2105 return;
2106
2107 len = (le32toh(desc->len) & 0x3fff) - 4;
2108 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2109 BUS_DMASYNC_POSTREAD);
2110
2111 switch (calib->code) {
2112 case IWN5000_PHY_CALIB_DC:
2113 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
2114 idx = 0;
2115 break;
2116 case IWN5000_PHY_CALIB_LO:
2117 idx = 1;
2118 break;
2119 case IWN5000_PHY_CALIB_TX_IQ:
2120 idx = 2;
2121 break;
2122 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2123 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2124 sc->hw_type != IWN_HW_REV_TYPE_5150)
2125 idx = 3;
2126 break;
2127 case IWN5000_PHY_CALIB_BASE_BAND:
2128 idx = 4;
2129 break;
2130 }
2131 if (idx == -1) /* Ignore other results. */
2132 return;
2133
2134 /* Save calibration result. */
2135 if (sc->calibcmd[idx].buf != NULL)
2136 free(sc->calibcmd[idx].buf, M_DEVBUF);
2137 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2138 if (sc->calibcmd[idx].buf == NULL) {
2139 DPRINTF(("not enough memory for calibration result %d\n",
2140 calib->code));
2141 return;
2142 }
2143 DPRINTF(("saving calibration result code=%d len=%d\n",
2144 calib->code, len));
2145 sc->calibcmd[idx].len = len;
2146 memcpy(sc->calibcmd[idx].buf, calib, len);
2147 }
2148
2149 /*
2150 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2151 * The latter is sent by the firmware after each received beacon.
2152 */
2153 static void
2154 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2155 struct iwn_rx_data *data)
2156 {
2157 struct iwn_ops *ops = &sc->ops;
2158 struct ieee80211com *ic = &sc->sc_ic;
2159 struct iwn_calib_state *calib = &sc->calib;
2160 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2161 int temp;
2162
2163 /* Ignore statistics received during a scan. */
2164 if (ic->ic_state != IEEE80211_S_RUN)
2165 return;
2166
2167 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2168 sizeof (*stats), BUS_DMASYNC_POSTREAD);
2169
2170 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2171 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2172
2173 /* Test if temperature has changed. */
2174 if (stats->general.temp != sc->rawtemp) {
2175 /* Convert "raw" temperature to degC. */
2176 sc->rawtemp = stats->general.temp;
2177 temp = ops->get_temperature(sc);
2178 DPRINTFN(2, ("temperature=%dC\n", temp));
2179
2180 /* Update TX power if need be (4965AGN only). */
2181 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2182 iwn4965_power_calibration(sc, temp);
2183 }
2184
2185 if (desc->type != IWN_BEACON_STATISTICS)
2186 return; /* Reply to a statistics request. */
2187
2188 sc->noise = iwn_get_noise(&stats->rx.general);
2189
2190 /* Test that RSSI and noise are present in stats report. */
2191 if (le32toh(stats->rx.general.flags) != 1) {
2192 DPRINTF(("received statistics without RSSI\n"));
2193 return;
2194 }
2195
2196 /*
2197 * XXX Differential gain calibration makes the 6005 firmware
2198 * crap out, so skip it for now. This effectively disables
2199 * sensitivity tuning as well.
2200 */
2201 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2202 return;
2203
2204 if (calib->state == IWN_CALIB_STATE_ASSOC)
2205 iwn_collect_noise(sc, &stats->rx.general);
2206 else if (calib->state == IWN_CALIB_STATE_RUN)
2207 iwn_tune_sensitivity(sc, &stats->rx);
2208 }
2209
2210 /*
2211 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2212 * and 5000 adapters have different incompatible TX status formats.
2213 */
2214 static void
2215 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2216 struct iwn_rx_data *data)
2217 {
2218 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2219
2220 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2221 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2222 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2223 }
2224
2225 static void
2226 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2227 struct iwn_rx_data *data)
2228 {
2229 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2230
2231 #ifdef notyet
2232 /* Reset TX scheduler slot. */
2233 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2234 #endif
2235
2236 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2237 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2238 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2239 }
2240
2241 /*
2242 * Adapter-independent backend for TX_DONE firmware notifications.
2243 */
2244 static void
2245 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2246 uint8_t status)
2247 {
2248 struct ieee80211com *ic = &sc->sc_ic;
2249 struct ifnet *ifp = ic->ic_ifp;
2250 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2251 struct iwn_tx_data *data = &ring->data[desc->idx];
2252 struct iwn_node *wn = (struct iwn_node *)data->ni;
2253
2254 /* Update rate control statistics. */
2255 wn->amn.amn_txcnt++;
2256 if (ackfailcnt > 0)
2257 wn->amn.amn_retrycnt++;
2258
2259 if (status != 1 && status != 2)
2260 ifp->if_oerrors++;
2261 else
2262 ifp->if_opackets++;
2263
2264 /* Unmap and free mbuf. */
2265 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2266 BUS_DMASYNC_POSTWRITE);
2267 bus_dmamap_unload(sc->sc_dmat, data->map);
2268 m_freem(data->m);
2269 data->m = NULL;
2270 ieee80211_free_node(data->ni);
2271 data->ni = NULL;
2272
2273 sc->sc_tx_timer = 0;
2274 if (--ring->queued < IWN_TX_RING_LOMARK) {
2275 sc->qfullmsk &= ~(1 << ring->qid);
2276 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2277 ifp->if_flags &= ~IFF_OACTIVE;
2278 (*ifp->if_start)(ifp);
2279 }
2280 }
2281 }
2282
2283 /*
2284 * Process a "command done" firmware notification. This is where we wakeup
2285 * processes waiting for a synchronous command completion.
2286 */
2287 static void
2288 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2289 {
2290 struct iwn_tx_ring *ring = &sc->txq[4];
2291 struct iwn_tx_data *data;
2292
2293 if ((desc->qid & 0xf) != 4)
2294 return; /* Not a command ack. */
2295
2296 data = &ring->data[desc->idx];
2297
2298 /* If the command was mapped in an mbuf, free it. */
2299 if (data->m != NULL) {
2300 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2301 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2302 bus_dmamap_unload(sc->sc_dmat, data->map);
2303 m_freem(data->m);
2304 data->m = NULL;
2305 }
2306 wakeup(&ring->desc[desc->idx]);
2307 }
2308
2309 /*
2310 * Process an INT_FH_RX or INT_SW_RX interrupt.
2311 */
2312 static void
2313 iwn_notif_intr(struct iwn_softc *sc)
2314 {
2315 struct iwn_ops *ops = &sc->ops;
2316 struct ieee80211com *ic = &sc->sc_ic;
2317 struct ifnet *ifp = ic->ic_ifp;
2318 uint16_t hw;
2319
2320 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2321 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2322
2323 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2324 while (sc->rxq.cur != hw) {
2325 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2326 struct iwn_rx_desc *desc;
2327
2328 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2329 BUS_DMASYNC_POSTREAD);
2330 desc = mtod(data->m, struct iwn_rx_desc *);
2331
2332 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2333 desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2334
2335 if (!(desc->qid & 0x80)) /* Reply to a command. */
2336 iwn_cmd_done(sc, desc);
2337
2338 switch (desc->type) {
2339 case IWN_RX_PHY:
2340 iwn_rx_phy(sc, desc, data);
2341 break;
2342
2343 case IWN_RX_DONE: /* 4965AGN only. */
2344 case IWN_MPDU_RX_DONE:
2345 /* An 802.11 frame has been received. */
2346 iwn_rx_done(sc, desc, data);
2347 break;
2348 #ifndef IEEE80211_NO_HT
2349 case IWN_RX_COMPRESSED_BA:
2350 /* A Compressed BlockAck has been received. */
2351 iwn_rx_compressed_ba(sc, desc, data);
2352 break;
2353 #endif
2354 case IWN_TX_DONE:
2355 /* An 802.11 frame has been transmitted. */
2356 ops->tx_done(sc, desc, data);
2357 break;
2358
2359 case IWN_RX_STATISTICS:
2360 case IWN_BEACON_STATISTICS:
2361 iwn_rx_statistics(sc, desc, data);
2362 break;
2363
2364 case IWN_BEACON_MISSED:
2365 {
2366 struct iwn_beacon_missed *miss =
2367 (struct iwn_beacon_missed *)(desc + 1);
2368
2369 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2370 sizeof (*miss), BUS_DMASYNC_POSTREAD);
2371 /*
2372 * If more than 5 consecutive beacons are missed,
2373 * reinitialize the sensitivity state machine.
2374 */
2375 DPRINTF(("beacons missed %d/%d\n",
2376 le32toh(miss->consecutive), le32toh(miss->total)));
2377 if (ic->ic_state == IEEE80211_S_RUN &&
2378 le32toh(miss->consecutive) > 5)
2379 (void)iwn_init_sensitivity(sc);
2380 break;
2381 }
2382 case IWN_UC_READY:
2383 {
2384 struct iwn_ucode_info *uc =
2385 (struct iwn_ucode_info *)(desc + 1);
2386
2387 /* The microcontroller is ready. */
2388 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2389 sizeof (*uc), BUS_DMASYNC_POSTREAD);
2390 DPRINTF(("microcode alive notification version=%d.%d "
2391 "subtype=%x alive=%x\n", uc->major, uc->minor,
2392 uc->subtype, le32toh(uc->valid)));
2393
2394 if (le32toh(uc->valid) != 1) {
2395 aprint_error_dev(sc->sc_dev,
2396 "microcontroller initialization "
2397 "failed\n");
2398 break;
2399 }
2400 if (uc->subtype == IWN_UCODE_INIT) {
2401 /* Save microcontroller report. */
2402 memcpy(&sc->ucode_info, uc, sizeof (*uc));
2403 }
2404 /* Save the address of the error log in SRAM. */
2405 sc->errptr = le32toh(uc->errptr);
2406 break;
2407 }
2408 case IWN_STATE_CHANGED:
2409 {
2410 uint32_t *status = (uint32_t *)(desc + 1);
2411
2412 /* Enabled/disabled notification. */
2413 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2414 sizeof (*status), BUS_DMASYNC_POSTREAD);
2415 DPRINTF(("state changed to %x\n", le32toh(*status)));
2416
2417 if (le32toh(*status) & 1) {
2418 /* The radio button has to be pushed. */
2419 aprint_error_dev(sc->sc_dev,
2420 "Radio transmitter is off\n");
2421 /* Turn the interface down. */
2422 ifp->if_flags &= ~IFF_UP;
2423 iwn_stop(ifp, 1);
2424 return; /* No further processing. */
2425 }
2426 break;
2427 }
2428 case IWN_START_SCAN:
2429 {
2430 struct iwn_start_scan *scan =
2431 (struct iwn_start_scan *)(desc + 1);
2432
2433 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2434 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2435 DPRINTFN(2, ("scanning channel %d status %x\n",
2436 scan->chan, le32toh(scan->status)));
2437
2438 /* Fix current channel. */
2439 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2440 break;
2441 }
2442 case IWN_STOP_SCAN:
2443 {
2444 struct iwn_stop_scan *scan =
2445 (struct iwn_stop_scan *)(desc + 1);
2446
2447 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2448 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2449 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2450 scan->nchan, scan->status, scan->chan));
2451
2452 if (scan->status == 1 && scan->chan <= 14 &&
2453 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2454 /*
2455 * We just finished scanning 2GHz channels,
2456 * start scanning 5GHz ones.
2457 */
2458 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2459 break;
2460 }
2461 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2462 ieee80211_end_scan(ic);
2463 break;
2464 }
2465 case IWN5000_CALIBRATION_RESULT:
2466 iwn5000_rx_calib_results(sc, desc, data);
2467 break;
2468
2469 case IWN5000_CALIBRATION_DONE:
2470 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2471 wakeup(sc);
2472 break;
2473 }
2474
2475 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2476 }
2477
2478 /* Tell the firmware what we have processed. */
2479 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2480 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2481 }
2482
2483 /*
2484 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2485 * from power-down sleep mode.
2486 */
2487 static void
2488 iwn_wakeup_intr(struct iwn_softc *sc)
2489 {
2490 int qid;
2491
2492 DPRINTF(("ucode wakeup from power-down sleep\n"));
2493
2494 /* Wakeup RX and TX rings. */
2495 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2496 for (qid = 0; qid < sc->ntxqs; qid++) {
2497 struct iwn_tx_ring *ring = &sc->txq[qid];
2498 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2499 }
2500 }
2501
2502 /*
2503 * Dump the error log of the firmware when a firmware panic occurs. Although
2504 * we can't debug the firmware because it is neither open source nor free, it
2505 * can help us to identify certain classes of problems.
2506 */
2507 static void
2508 iwn_fatal_intr(struct iwn_softc *sc)
2509 {
2510 struct iwn_fw_dump dump;
2511 int i;
2512
2513 /* Force a complete recalibration on next init. */
2514 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2515
2516 /* Check that the error log address is valid. */
2517 if (sc->errptr < IWN_FW_DATA_BASE ||
2518 sc->errptr + sizeof (dump) >
2519 IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2520 aprint_error_dev(sc->sc_dev,
2521 "bad firmware error log address 0x%08x\n", sc->errptr);
2522 return;
2523 }
2524 if (iwn_nic_lock(sc) != 0) {
2525 aprint_error_dev(sc->sc_dev,
2526 "could not read firmware error log\n");
2527 return;
2528 }
2529 /* Read firmware error log from SRAM. */
2530 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2531 sizeof (dump) / sizeof (uint32_t));
2532 iwn_nic_unlock(sc);
2533
2534 if (dump.valid == 0) {
2535 aprint_error_dev(sc->sc_dev,
2536 "firmware error log is empty\n");
2537 return;
2538 }
2539 aprint_error("firmware error log:\n");
2540 aprint_error(" error type = \"%s\" (0x%08X)\n",
2541 (dump.id < __arraycount(iwn_fw_errmsg)) ?
2542 iwn_fw_errmsg[dump.id] : "UNKNOWN",
2543 dump.id);
2544 aprint_error(" program counter = 0x%08X\n", dump.pc);
2545 aprint_error(" source line = 0x%08X\n", dump.src_line);
2546 aprint_error(" error data = 0x%08X%08X\n",
2547 dump.error_data[0], dump.error_data[1]);
2548 aprint_error(" branch link = 0x%08X%08X\n",
2549 dump.branch_link[0], dump.branch_link[1]);
2550 aprint_error(" interrupt link = 0x%08X%08X\n",
2551 dump.interrupt_link[0], dump.interrupt_link[1]);
2552 aprint_error(" time = %u\n", dump.time[0]);
2553
2554 /* Dump driver status (TX and RX rings) while we're here. */
2555 aprint_error("driver status:\n");
2556 for (i = 0; i < sc->ntxqs; i++) {
2557 struct iwn_tx_ring *ring = &sc->txq[i];
2558 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2559 i, ring->qid, ring->cur, ring->queued);
2560 }
2561 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
2562 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
2563 }
2564
2565 static int
2566 iwn_intr(void *arg)
2567 {
2568 struct iwn_softc *sc = arg;
2569 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2570 uint32_t r1, r2, tmp;
2571
2572 /* Disable interrupts. */
2573 IWN_WRITE(sc, IWN_INT_MASK, 0);
2574
2575 /* Read interrupts from ICT (fast) or from registers (slow). */
2576 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2577 tmp = 0;
2578 while (sc->ict[sc->ict_cur] != 0) {
2579 tmp |= sc->ict[sc->ict_cur];
2580 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2581 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2582 }
2583 tmp = le32toh(tmp);
2584 if (tmp == 0xffffffff) /* Shouldn't happen. */
2585 tmp = 0;
2586 else if (tmp & 0xc0000) /* Workaround a HW bug. */
2587 tmp |= 0x8000;
2588 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2589 r2 = 0; /* Unused. */
2590 } else {
2591 r1 = IWN_READ(sc, IWN_INT);
2592 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2593 return 0; /* Hardware gone! */
2594 r2 = IWN_READ(sc, IWN_FH_INT);
2595 }
2596 if (r1 == 0 && r2 == 0) {
2597 if (ifp->if_flags & IFF_UP)
2598 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2599 return 0; /* Interrupt not for us. */
2600 }
2601
2602 /* Acknowledge interrupts. */
2603 IWN_WRITE(sc, IWN_INT, r1);
2604 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2605 IWN_WRITE(sc, IWN_FH_INT, r2);
2606
2607 if (r1 & IWN_INT_RF_TOGGLED) {
2608 tmp = IWN_READ(sc, IWN_GP_CNTRL);
2609 aprint_error_dev(sc->sc_dev,
2610 "RF switch: radio %s\n",
2611 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2612 }
2613 if (r1 & IWN_INT_CT_REACHED) {
2614 aprint_error_dev(sc->sc_dev,
2615 "critical temperature reached!\n");
2616 }
2617 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2618 aprint_error_dev(sc->sc_dev,
2619 "fatal firmware error\n");
2620 /* Dump firmware error log and stop. */
2621 iwn_fatal_intr(sc);
2622 ifp->if_flags &= ~IFF_UP;
2623 iwn_stop(ifp, 1);
2624 return 1;
2625 }
2626 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2627 (r2 & IWN_FH_INT_RX)) {
2628 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2629 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2630 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2631 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2632 IWN_INT_PERIODIC_DIS);
2633 iwn_notif_intr(sc);
2634 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2635 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2636 IWN_INT_PERIODIC_ENA);
2637 }
2638 } else
2639 iwn_notif_intr(sc);
2640 }
2641
2642 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2643 if (sc->sc_flags & IWN_FLAG_USE_ICT)
2644 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2645 wakeup(sc); /* FH DMA transfer completed. */
2646 }
2647
2648 if (r1 & IWN_INT_ALIVE)
2649 wakeup(sc); /* Firmware is alive. */
2650
2651 if (r1 & IWN_INT_WAKEUP)
2652 iwn_wakeup_intr(sc);
2653
2654 /* Re-enable interrupts. */
2655 if (ifp->if_flags & IFF_UP)
2656 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2657
2658 return 1;
2659 }
2660
2661 /*
2662 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2663 * 5000 adapters use a slightly different format).
2664 */
2665 static void
2666 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2667 uint16_t len)
2668 {
2669 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2670
2671 *w = htole16(len + 8);
2672 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2673 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2674 sizeof (uint16_t),
2675 BUS_DMASYNC_PREWRITE);
2676 if (idx < IWN_SCHED_WINSZ) {
2677 *(w + IWN_TX_RING_COUNT) = *w;
2678 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2679 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2680 (char *)(void *)sc->sched_dma.vaddr,
2681 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2682 }
2683 }
2684
2685 static void
2686 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2687 uint16_t len)
2688 {
2689 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2690
2691 *w = htole16(id << 12 | (len + 8));
2692 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2693 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2694 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2695 if (idx < IWN_SCHED_WINSZ) {
2696 *(w + IWN_TX_RING_COUNT) = *w;
2697 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2698 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2699 (char *)(void *)sc->sched_dma.vaddr,
2700 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2701 }
2702 }
2703
2704 #ifdef notyet
2705 static void
2706 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2707 {
2708 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2709
2710 *w = (*w & htole16(0xf000)) | htole16(1);
2711 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2712 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2713 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2714 if (idx < IWN_SCHED_WINSZ) {
2715 *(w + IWN_TX_RING_COUNT) = *w;
2716 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2717 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2718 (char *)(void *)sc->sched_dma.vaddr,
2719 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2720 }
2721 }
2722 #endif
2723
2724 static int
2725 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2726 {
2727 struct ieee80211com *ic = &sc->sc_ic;
2728 struct iwn_node *wn = (void *)ni;
2729 struct iwn_tx_ring *ring;
2730 struct iwn_tx_desc *desc;
2731 struct iwn_tx_data *data;
2732 struct iwn_tx_cmd *cmd;
2733 struct iwn_cmd_data *tx;
2734 const struct iwn_rate *rinfo;
2735 struct ieee80211_frame *wh;
2736 struct ieee80211_key *k = NULL;
2737 struct mbuf *m1;
2738 uint32_t flags;
2739 u_int hdrlen;
2740 bus_dma_segment_t *seg;
2741 uint8_t tid, ridx, txant, type;
2742 int i, totlen, error, pad;
2743
2744 const struct chanAccParams *cap;
2745 int noack;
2746 int hdrlen2;
2747
2748 wh = mtod(m, struct ieee80211_frame *);
2749 hdrlen = ieee80211_anyhdrsize(wh);
2750 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2751
2752 hdrlen2 = (ieee80211_has_qos(wh)) ?
2753 sizeof (struct ieee80211_qosframe) :
2754 sizeof (struct ieee80211_frame);
2755
2756 if (hdrlen != hdrlen2)
2757 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2758 hdrlen, hdrlen2);
2759
2760 /* XXX OpenBSD sets a different tid when using QOS */
2761 tid = 0;
2762 if (ieee80211_has_qos(wh)) {
2763 cap = &ic->ic_wme.wme_chanParams;
2764 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2765 }
2766 else
2767 noack = 0;
2768
2769 ring = &sc->txq[ac];
2770 desc = &ring->desc[ring->cur];
2771 data = &ring->data[ring->cur];
2772
2773 /* Choose a TX rate index. */
2774 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2775 type != IEEE80211_FC0_TYPE_DATA) {
2776 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2777 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2778 } else if (ic->ic_fixed_rate != -1) {
2779 ridx = sc->fixed_ridx;
2780 } else
2781 ridx = wn->ridx[ni->ni_txrate];
2782 rinfo = &iwn_rates[ridx];
2783
2784 /* Encrypt the frame if need be. */
2785 /*
2786 * XXX For now, NetBSD swaps the encryption and bpf sections
2787 * in order to match old code and other drivers. Tests with
2788 * tcpdump indicates that the order is irrelevant, however,
2789 * as bpf produces unencrypted data for both ordering choices.
2790 */
2791 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2792 k = ieee80211_crypto_encap(ic, ni, m);
2793 if (k == NULL) {
2794 m_freem(m);
2795 return ENOBUFS;
2796 }
2797 /* Packet header may have moved, reset our local pointer. */
2798 wh = mtod(m, struct ieee80211_frame *);
2799 }
2800 totlen = m->m_pkthdr.len;
2801
2802 if (sc->sc_drvbpf != NULL) {
2803 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2804
2805 tap->wt_flags = 0;
2806 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2807 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2808 tap->wt_rate = rinfo->rate;
2809 tap->wt_hwqueue = ac;
2810 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2811 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2812
2813 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2814 }
2815
2816 /* Prepare TX firmware command. */
2817 cmd = &ring->cmd[ring->cur];
2818 cmd->code = IWN_CMD_TX_DATA;
2819 cmd->flags = 0;
2820 cmd->qid = ring->qid;
2821 cmd->idx = ring->cur;
2822
2823 tx = (struct iwn_cmd_data *)cmd->data;
2824 /* NB: No need to clear tx, all fields are reinitialized here. */
2825 tx->scratch = 0; /* clear "scratch" area */
2826
2827 flags = 0;
2828 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2829 /* Unicast frame, check if an ACK is expected. */
2830 if (!noack)
2831 flags |= IWN_TX_NEED_ACK;
2832 }
2833
2834 #ifdef notyet
2835 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2836 if ((wh->i_fc[0] &
2837 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2838 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2839 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
2840 #endif
2841
2842 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2843 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
2844
2845 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2846 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2847 /* NB: Group frames are sent using CCK in 802.11b/g. */
2848 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2849 flags |= IWN_TX_NEED_RTS;
2850 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2851 ridx >= IWN_RIDX_OFDM6) {
2852 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2853 flags |= IWN_TX_NEED_CTS;
2854 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2855 flags |= IWN_TX_NEED_RTS;
2856 }
2857 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2858 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2859 /* 5000 autoselects RTS/CTS or CTS-to-self. */
2860 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2861 flags |= IWN_TX_NEED_PROTECTION;
2862 } else
2863 flags |= IWN_TX_FULL_TXOP;
2864 }
2865 }
2866
2867 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2868 type != IEEE80211_FC0_TYPE_DATA)
2869 tx->id = sc->broadcast_id;
2870 else
2871 tx->id = wn->id;
2872
2873 if (type == IEEE80211_FC0_TYPE_MGT) {
2874 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2875
2876 #ifndef IEEE80211_STA_ONLY
2877 /* Tell HW to set timestamp in probe responses. */
2878 /* XXX NetBSD rev 1.11 added probe requests here but */
2879 /* probe requests do not take timestamps (from Bergamini). */
2880 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2881 flags |= IWN_TX_INSERT_TSTAMP;
2882 #endif
2883 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2884 /* changes here. These are not needed (from Bergamini). */
2885 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2886 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2887 tx->timeout = htole16(3);
2888 else
2889 tx->timeout = htole16(2);
2890 } else
2891 tx->timeout = htole16(0);
2892
2893 if (hdrlen & 3) {
2894 /* First segment length must be a multiple of 4. */
2895 flags |= IWN_TX_NEED_PADDING;
2896 pad = 4 - (hdrlen & 3);
2897 } else
2898 pad = 0;
2899
2900 tx->len = htole16(totlen);
2901 tx->tid = tid;
2902 tx->rts_ntries = 60;
2903 tx->data_ntries = 15;
2904 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2905 tx->plcp = rinfo->plcp;
2906 tx->rflags = rinfo->flags;
2907 if (tx->id == sc->broadcast_id) {
2908 /* Group or management frame. */
2909 tx->linkq = 0;
2910 /* XXX Alternate between antenna A and B? */
2911 txant = IWN_LSB(sc->txchainmask);
2912 tx->rflags |= IWN_RFLAG_ANT(txant);
2913 } else {
2914 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2915 flags |= IWN_TX_LINKQ; /* enable MRR */
2916 }
2917 /* Set physical address of "scratch area". */
2918 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2919 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2920
2921 /* Copy 802.11 header in TX command. */
2922 /* XXX NetBSD changed this in rev 1.20 */
2923 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2924
2925 /* Trim 802.11 header. */
2926 m_adj(m, hdrlen);
2927 tx->security = 0;
2928 tx->flags = htole32(flags);
2929
2930 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2931 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2932 if (error != 0) {
2933 if (error != EFBIG) {
2934 aprint_error_dev(sc->sc_dev,
2935 "can't map mbuf (error %d)\n", error);
2936 m_freem(m);
2937 return error;
2938 }
2939 /* Too many DMA segments, linearize mbuf. */
2940 MGETHDR(m1, M_DONTWAIT, MT_DATA);
2941 if (m1 == NULL) {
2942 m_freem(m);
2943 return ENOBUFS;
2944 }
2945 if (m->m_pkthdr.len > MHLEN) {
2946 MCLGET(m1, M_DONTWAIT);
2947 if (!(m1->m_flags & M_EXT)) {
2948 m_freem(m);
2949 m_freem(m1);
2950 return ENOBUFS;
2951 }
2952 }
2953 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2954 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2955 m_freem(m);
2956 m = m1;
2957
2958 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2959 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2960 if (error != 0) {
2961 aprint_error_dev(sc->sc_dev,
2962 "can't map mbuf (error %d)\n", error);
2963 m_freem(m);
2964 return error;
2965 }
2966 }
2967
2968 data->m = m;
2969 data->ni = ni;
2970
2971 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2972 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
2973
2974 /* Fill TX descriptor. */
2975 desc->nsegs = 1 + data->map->dm_nsegs;
2976 /* First DMA segment is used by the TX command. */
2977 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
2978 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
2979 (4 + sizeof (*tx) + hdrlen + pad) << 4);
2980 /* Other DMA segments are for data payload. */
2981 seg = data->map->dm_segs;
2982 for (i = 1; i <= data->map->dm_nsegs; i++) {
2983 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
2984 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
2985 seg->ds_len << 4);
2986 seg++;
2987 }
2988
2989 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2990 BUS_DMASYNC_PREWRITE);
2991 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2992 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
2993 sizeof (*cmd), BUS_DMASYNC_PREWRITE);
2994 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2995 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
2996 sizeof (*desc), BUS_DMASYNC_PREWRITE);
2997
2998 #ifdef notyet
2999 /* Update TX scheduler. */
3000 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3001 #endif
3002
3003 /* Kick TX ring. */
3004 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3005 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3006
3007 /* Mark TX ring as full if we reach a certain threshold. */
3008 if (++ring->queued > IWN_TX_RING_HIMARK)
3009 sc->qfullmsk |= 1 << ring->qid;
3010
3011 return 0;
3012 }
3013
3014 static void
3015 iwn_start(struct ifnet *ifp)
3016 {
3017 struct iwn_softc *sc = ifp->if_softc;
3018 struct ieee80211com *ic = &sc->sc_ic;
3019 struct ieee80211_node *ni;
3020 struct ether_header *eh;
3021 struct mbuf *m;
3022 int ac;
3023
3024 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3025 return;
3026
3027 for (;;) {
3028 if (sc->qfullmsk != 0) {
3029 ifp->if_flags |= IFF_OACTIVE;
3030 break;
3031 }
3032 /* Send pending management frames first. */
3033 IF_DEQUEUE(&ic->ic_mgtq, m);
3034 if (m != NULL) {
3035 ni = (void *)m->m_pkthdr.rcvif;
3036 ac = 0;
3037 goto sendit;
3038 }
3039 if (ic->ic_state != IEEE80211_S_RUN)
3040 break;
3041
3042 /* Encapsulate and send data frames. */
3043 IFQ_DEQUEUE(&ifp->if_snd, m);
3044 if (m == NULL)
3045 break;
3046 if (m->m_len < sizeof (*eh) &&
3047 (m = m_pullup(m, sizeof (*eh))) == NULL) {
3048 ifp->if_oerrors++;
3049 continue;
3050 }
3051 eh = mtod(m, struct ether_header *);
3052 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3053 if (ni == NULL) {
3054 m_freem(m);
3055 ifp->if_oerrors++;
3056 continue;
3057 }
3058 /* classify mbuf so we can find which tx ring to use */
3059 if (ieee80211_classify(ic, m, ni) != 0) {
3060 m_freem(m);
3061 ieee80211_free_node(ni);
3062 ifp->if_oerrors++;
3063 continue;
3064 }
3065
3066 /* No QoS encapsulation for EAPOL frames. */
3067 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3068 M_WME_GETAC(m) : WME_AC_BE;
3069
3070 bpf_mtap(ifp, m);
3071
3072 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3073 ieee80211_free_node(ni);
3074 ifp->if_oerrors++;
3075 continue;
3076 }
3077 sendit:
3078 bpf_mtap3(ic->ic_rawbpf, m);
3079
3080 if (iwn_tx(sc, m, ni, ac) != 0) {
3081 ieee80211_free_node(ni);
3082 ifp->if_oerrors++;
3083 continue;
3084 }
3085
3086 sc->sc_tx_timer = 5;
3087 ifp->if_timer = 1;
3088 }
3089 }
3090
3091 static void
3092 iwn_watchdog(struct ifnet *ifp)
3093 {
3094 struct iwn_softc *sc = ifp->if_softc;
3095
3096 ifp->if_timer = 0;
3097
3098 if (sc->sc_tx_timer > 0) {
3099 if (--sc->sc_tx_timer == 0) {
3100 aprint_error_dev(sc->sc_dev,
3101 "device timeout\n");
3102 ifp->if_flags &= ~IFF_UP;
3103 iwn_stop(ifp, 1);
3104 ifp->if_oerrors++;
3105 return;
3106 }
3107 ifp->if_timer = 1;
3108 }
3109
3110 ieee80211_watchdog(&sc->sc_ic);
3111 }
3112
3113 static int
3114 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3115 {
3116 struct iwn_softc *sc = ifp->if_softc;
3117 struct ieee80211com *ic = &sc->sc_ic;
3118 const struct sockaddr *sa;
3119 int s, error = 0;
3120
3121 s = splnet();
3122
3123 switch (cmd) {
3124 case SIOCSIFADDR:
3125 ifp->if_flags |= IFF_UP;
3126 #ifdef INET
3127 struct ifaddr *ifa = (struct ifaddr *)data;
3128 if (ifa->ifa_addr->sa_family == AF_INET)
3129 arp_ifinit(&ic->ic_ac, ifa);
3130 #endif
3131 /* FALLTHROUGH */
3132 case SIOCSIFFLAGS:
3133 /* XXX Added as it is in every NetBSD driver */
3134 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3135 break;
3136 if (ifp->if_flags & IFF_UP) {
3137 if (!(ifp->if_flags & IFF_RUNNING))
3138 error = iwn_init(ifp);
3139 } else {
3140 if (ifp->if_flags & IFF_RUNNING)
3141 iwn_stop(ifp, 1);
3142 }
3143 break;
3144
3145 case SIOCADDMULTI:
3146 case SIOCDELMULTI:
3147 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3148 error = (cmd == SIOCADDMULTI) ?
3149 ether_addmulti(sa, &sc->sc_ec) :
3150 ether_delmulti(sa, &sc->sc_ec);
3151
3152 if (error == ENETRESET)
3153 error = 0;
3154 break;
3155
3156 default:
3157 error = ieee80211_ioctl(ic, cmd, data);
3158 }
3159
3160 if (error == ENETRESET) {
3161 error = 0;
3162 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3163 (IFF_UP | IFF_RUNNING)) {
3164 iwn_stop(ifp, 0);
3165 error = iwn_init(ifp);
3166 }
3167 }
3168
3169 splx(s);
3170 return error;
3171 }
3172
3173 /*
3174 * Send a command to the firmware.
3175 */
3176 static int
3177 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3178 {
3179 struct iwn_tx_ring *ring = &sc->txq[4];
3180 struct iwn_tx_desc *desc;
3181 struct iwn_tx_data *data;
3182 struct iwn_tx_cmd *cmd;
3183 struct mbuf *m;
3184 bus_addr_t paddr;
3185 int totlen, error;
3186
3187 desc = &ring->desc[ring->cur];
3188 data = &ring->data[ring->cur];
3189 totlen = 4 + size;
3190
3191 if (size > sizeof cmd->data) {
3192 /* Command is too large to fit in a descriptor. */
3193 if (totlen > MCLBYTES)
3194 return EINVAL;
3195 MGETHDR(m, M_DONTWAIT, MT_DATA);
3196 if (m == NULL)
3197 return ENOMEM;
3198 if (totlen > MHLEN) {
3199 MCLGET(m, M_DONTWAIT);
3200 if (!(m->m_flags & M_EXT)) {
3201 m_freem(m);
3202 return ENOMEM;
3203 }
3204 }
3205 cmd = mtod(m, struct iwn_tx_cmd *);
3206 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3207 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3208 if (error != 0) {
3209 m_freem(m);
3210 return error;
3211 }
3212 data->m = m;
3213 paddr = data->map->dm_segs[0].ds_addr;
3214 } else {
3215 cmd = &ring->cmd[ring->cur];
3216 paddr = data->cmd_paddr;
3217 }
3218
3219 cmd->code = code;
3220 cmd->flags = 0;
3221 cmd->qid = ring->qid;
3222 cmd->idx = ring->cur;
3223 memcpy(cmd->data, buf, size);
3224
3225 desc->nsegs = 1;
3226 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3227 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3228
3229 if (size > sizeof cmd->data) {
3230 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3231 BUS_DMASYNC_PREWRITE);
3232 } else {
3233 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3234 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3235 totlen, BUS_DMASYNC_PREWRITE);
3236 }
3237 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3238 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3239 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3240
3241 #ifdef notyet
3242 /* Update TX scheduler. */
3243 ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3244 #endif
3245 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3246
3247 /* Kick command ring. */
3248 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3249 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3250
3251 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3252 }
3253
3254 static int
3255 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3256 {
3257 struct iwn4965_node_info hnode;
3258 char *src, *dst;
3259
3260 /*
3261 * We use the node structure for 5000 Series internally (it is
3262 * a superset of the one for 4965AGN). We thus copy the common
3263 * fields before sending the command.
3264 */
3265 src = (char *)node;
3266 dst = (char *)&hnode;
3267 memcpy(dst, src, 48);
3268 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3269 memcpy(dst + 48, src + 72, 20);
3270 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3271 }
3272
3273 static int
3274 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3275 {
3276 /* Direct mapping. */
3277 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3278 }
3279
3280 static int
3281 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3282 {
3283 struct iwn_node *wn = (void *)ni;
3284 struct ieee80211_rateset *rs = &ni->ni_rates;
3285 struct iwn_cmd_link_quality linkq;
3286 const struct iwn_rate *rinfo;
3287 uint8_t txant;
3288 int i, txrate;
3289
3290 /* Use the first valid TX antenna. */
3291 txant = IWN_LSB(sc->txchainmask);
3292
3293 memset(&linkq, 0, sizeof linkq);
3294 linkq.id = wn->id;
3295 linkq.antmsk_1stream = txant;
3296 linkq.antmsk_2stream = IWN_ANT_AB;
3297 linkq.ampdu_max = 31;
3298 linkq.ampdu_threshold = 3;
3299 linkq.ampdu_limit = htole16(4000); /* 4ms */
3300
3301 /* Start at highest available bit-rate. */
3302 txrate = rs->rs_nrates - 1;
3303 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3304 rinfo = &iwn_rates[wn->ridx[txrate]];
3305 linkq.retry[i].plcp = rinfo->plcp;
3306 linkq.retry[i].rflags = rinfo->flags;
3307 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3308 /* Next retry at immediate lower bit-rate. */
3309 if (txrate > 0)
3310 txrate--;
3311 }
3312 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3313 }
3314
3315 /*
3316 * Broadcast node is used to send group-addressed and management frames.
3317 */
3318 static int
3319 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3320 {
3321 struct iwn_ops *ops = &sc->ops;
3322 struct iwn_node_info node;
3323 struct iwn_cmd_link_quality linkq;
3324 const struct iwn_rate *rinfo;
3325 uint8_t txant;
3326 int i, error;
3327
3328 memset(&node, 0, sizeof node);
3329 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3330 node.id = sc->broadcast_id;
3331 DPRINTF(("adding broadcast node\n"));
3332 if ((error = ops->add_node(sc, &node, async)) != 0)
3333 return error;
3334
3335 /* Use the first valid TX antenna. */
3336 txant = IWN_LSB(sc->txchainmask);
3337
3338 memset(&linkq, 0, sizeof linkq);
3339 linkq.id = sc->broadcast_id;
3340 linkq.antmsk_1stream = txant;
3341 linkq.antmsk_2stream = IWN_ANT_AB;
3342 linkq.ampdu_max = 64;
3343 linkq.ampdu_threshold = 3;
3344 linkq.ampdu_limit = htole16(4000); /* 4ms */
3345
3346 /* Use lowest mandatory bit-rate. */
3347 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3348 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3349 linkq.retry[0].plcp = rinfo->plcp;
3350 linkq.retry[0].rflags = rinfo->flags;
3351 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3352 /* Use same bit-rate for all TX retries. */
3353 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3354 linkq.retry[i].plcp = linkq.retry[0].plcp;
3355 linkq.retry[i].rflags = linkq.retry[0].rflags;
3356 }
3357 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3358 }
3359
3360 static void
3361 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3362 {
3363 struct iwn_cmd_led led;
3364
3365 /* Clear microcode LED ownership. */
3366 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3367
3368 led.which = which;
3369 led.unit = htole32(10000); /* on/off in unit of 100ms */
3370 led.off = off;
3371 led.on = on;
3372 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3373 }
3374
3375 /*
3376 * Set the critical temperature at which the firmware will stop the radio
3377 * and notify us.
3378 */
3379 static int
3380 iwn_set_critical_temp(struct iwn_softc *sc)
3381 {
3382 struct iwn_critical_temp crit;
3383 int32_t temp;
3384
3385 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3386
3387 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3388 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3389 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3390 temp = IWN_CTOK(110);
3391 else
3392 temp = 110;
3393 memset(&crit, 0, sizeof crit);
3394 crit.tempR = htole32(temp);
3395 DPRINTF(("setting critical temperature to %d\n", temp));
3396 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3397 }
3398
3399 static int
3400 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3401 {
3402 struct iwn_cmd_timing cmd;
3403 uint64_t val, mod;
3404
3405 memset(&cmd, 0, sizeof cmd);
3406 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3407 cmd.bintval = htole16(ni->ni_intval);
3408 cmd.lintval = htole16(10);
3409
3410 /* Compute remaining time until next beacon. */
3411 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
3412 mod = le64toh(cmd.tstamp) % val;
3413 cmd.binitval = htole32((uint32_t)(val - mod));
3414
3415 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3416 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3417
3418 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3419 }
3420
3421 static void
3422 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3423 {
3424 /* Adjust TX power if need be (delta >= 3 degC). */
3425 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3426 if (abs(temp - sc->temp) >= 3) {
3427 /* Record temperature of last calibration. */
3428 sc->temp = temp;
3429 (void)iwn4965_set_txpower(sc, 1);
3430 }
3431 }
3432
3433 /*
3434 * Set TX power for current channel (each rate has its own power settings).
3435 * This function takes into account the regulatory information from EEPROM,
3436 * the current temperature and the current voltage.
3437 */
3438 static int
3439 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3440 {
3441 /* Fixed-point arithmetic division using a n-bit fractional part. */
3442 #define fdivround(a, b, n) \
3443 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3444 /* Linear interpolation. */
3445 #define interpolate(x, x1, y1, x2, y2, n) \
3446 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3447
3448 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3449 struct ieee80211com *ic = &sc->sc_ic;
3450 struct iwn_ucode_info *uc = &sc->ucode_info;
3451 struct ieee80211_channel *ch;
3452 struct iwn4965_cmd_txpower cmd;
3453 struct iwn4965_eeprom_chan_samples *chans;
3454 const uint8_t *rf_gain, *dsp_gain;
3455 int32_t vdiff, tdiff;
3456 int i, c, grp, maxpwr;
3457 uint8_t chan;
3458
3459 /* Retrieve current channel from last RXON. */
3460 chan = sc->rxon.chan;
3461 DPRINTF(("setting TX power for channel %d\n", chan));
3462 ch = &ic->ic_channels[chan];
3463
3464 memset(&cmd, 0, sizeof cmd);
3465 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3466 cmd.chan = chan;
3467
3468 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3469 maxpwr = sc->maxpwr5GHz;
3470 rf_gain = iwn4965_rf_gain_5ghz;
3471 dsp_gain = iwn4965_dsp_gain_5ghz;
3472 } else {
3473 maxpwr = sc->maxpwr2GHz;
3474 rf_gain = iwn4965_rf_gain_2ghz;
3475 dsp_gain = iwn4965_dsp_gain_2ghz;
3476 }
3477
3478 /* Compute voltage compensation. */
3479 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3480 if (vdiff > 0)
3481 vdiff *= 2;
3482 if (abs(vdiff) > 2)
3483 vdiff = 0;
3484 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3485 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3486
3487 /* Get channel attenuation group. */
3488 if (chan <= 20) /* 1-20 */
3489 grp = 4;
3490 else if (chan <= 43) /* 34-43 */
3491 grp = 0;
3492 else if (chan <= 70) /* 44-70 */
3493 grp = 1;
3494 else if (chan <= 124) /* 71-124 */
3495 grp = 2;
3496 else /* 125-200 */
3497 grp = 3;
3498 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3499
3500 /* Get channel sub-band. */
3501 for (i = 0; i < IWN_NBANDS; i++)
3502 if (sc->bands[i].lo != 0 &&
3503 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3504 break;
3505 if (i == IWN_NBANDS) /* Can't happen in real-life. */
3506 return EINVAL;
3507 chans = sc->bands[i].chans;
3508 DPRINTF(("chan %d sub-band=%d\n", chan, i));
3509
3510 for (c = 0; c < 2; c++) {
3511 uint8_t power, gain, temp;
3512 int maxchpwr, pwr, ridx, idx;
3513
3514 power = interpolate(chan,
3515 chans[0].num, chans[0].samples[c][1].power,
3516 chans[1].num, chans[1].samples[c][1].power, 1);
3517 gain = interpolate(chan,
3518 chans[0].num, chans[0].samples[c][1].gain,
3519 chans[1].num, chans[1].samples[c][1].gain, 1);
3520 temp = interpolate(chan,
3521 chans[0].num, chans[0].samples[c][1].temp,
3522 chans[1].num, chans[1].samples[c][1].temp, 1);
3523 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3524 c, power, gain, temp));
3525
3526 /* Compute temperature compensation. */
3527 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3528 DPRINTF(("temperature compensation=%d (current=%d, "
3529 "EEPROM=%d)\n", tdiff, sc->temp, temp));
3530
3531 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3532 /* Convert dBm to half-dBm. */
3533 maxchpwr = sc->maxpwr[chan] * 2;
3534 if ((ridx / 8) & 1)
3535 maxchpwr -= 6; /* MIMO 2T: -3dB */
3536
3537 pwr = maxpwr;
3538
3539 /* Adjust TX power based on rate. */
3540 if ((ridx % 8) == 5)
3541 pwr -= 15; /* OFDM48: -7.5dB */
3542 else if ((ridx % 8) == 6)
3543 pwr -= 17; /* OFDM54: -8.5dB */
3544 else if ((ridx % 8) == 7)
3545 pwr -= 20; /* OFDM60: -10dB */
3546 else
3547 pwr -= 10; /* Others: -5dB */
3548
3549 /* Do not exceed channel max TX power. */
3550 if (pwr > maxchpwr)
3551 pwr = maxchpwr;
3552
3553 idx = gain - (pwr - power) - tdiff - vdiff;
3554 if ((ridx / 8) & 1) /* MIMO */
3555 idx += (int32_t)le32toh(uc->atten[grp][c]);
3556
3557 if (cmd.band == 0)
3558 idx += 9; /* 5GHz */
3559 if (ridx == IWN_RIDX_MAX)
3560 idx += 5; /* CCK */
3561
3562 /* Make sure idx stays in a valid range. */
3563 if (idx < 0)
3564 idx = 0;
3565 else if (idx > IWN4965_MAX_PWR_INDEX)
3566 idx = IWN4965_MAX_PWR_INDEX;
3567
3568 DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3569 c, ridx, idx));
3570 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3571 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3572 }
3573 }
3574
3575 DPRINTF(("setting TX power for chan %d\n", chan));
3576 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3577
3578 #undef interpolate
3579 #undef fdivround
3580 }
3581
3582 static int
3583 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3584 {
3585 struct iwn5000_cmd_txpower cmd;
3586
3587 /*
3588 * TX power calibration is handled automatically by the firmware
3589 * for 5000 Series.
3590 */
3591 memset(&cmd, 0, sizeof cmd);
3592 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3593 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3594 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3595 DPRINTF(("setting TX power\n"));
3596 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3597 }
3598
3599 /*
3600 * Retrieve the maximum RSSI (in dBm) among receivers.
3601 */
3602 static int
3603 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3604 {
3605 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3606 uint8_t mask, agc;
3607 int rssi;
3608
3609 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3610 agc = (le16toh(phy->agc) >> 7) & 0x7f;
3611
3612 rssi = 0;
3613 if (mask & IWN_ANT_A)
3614 rssi = MAX(rssi, phy->rssi[0]);
3615 if (mask & IWN_ANT_B)
3616 rssi = MAX(rssi, phy->rssi[2]);
3617 if (mask & IWN_ANT_C)
3618 rssi = MAX(rssi, phy->rssi[4]);
3619
3620 return rssi - agc - IWN_RSSI_TO_DBM;
3621 }
3622
3623 static int
3624 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3625 {
3626 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3627 uint8_t agc;
3628 int rssi;
3629
3630 agc = (le32toh(phy->agc) >> 9) & 0x7f;
3631
3632 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3633 le16toh(phy->rssi[1]) & 0xff);
3634 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3635
3636 return rssi - agc - IWN_RSSI_TO_DBM;
3637 }
3638
3639 /*
3640 * Retrieve the average noise (in dBm) among receivers.
3641 */
3642 static int
3643 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3644 {
3645 int i, total, nbant, noise;
3646
3647 total = nbant = 0;
3648 for (i = 0; i < 3; i++) {
3649 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3650 continue;
3651 total += noise;
3652 nbant++;
3653 }
3654 /* There should be at least one antenna but check anyway. */
3655 return (nbant == 0) ? -127 : (total / nbant) - 107;
3656 }
3657
3658 /*
3659 * Compute temperature (in degC) from last received statistics.
3660 */
3661 static int
3662 iwn4965_get_temperature(struct iwn_softc *sc)
3663 {
3664 struct iwn_ucode_info *uc = &sc->ucode_info;
3665 int32_t r1, r2, r3, r4, temp;
3666
3667 r1 = le32toh(uc->temp[0].chan20MHz);
3668 r2 = le32toh(uc->temp[1].chan20MHz);
3669 r3 = le32toh(uc->temp[2].chan20MHz);
3670 r4 = le32toh(sc->rawtemp);
3671
3672 if (r1 == r3) /* Prevents division by 0 (should not happen). */
3673 return 0;
3674
3675 /* Sign-extend 23-bit R4 value to 32-bit. */
3676 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3677 /* Compute temperature in Kelvin. */
3678 temp = (259 * (r4 - r2)) / (r3 - r1);
3679 temp = (temp * 97) / 100 + 8;
3680
3681 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3682 return IWN_KTOC(temp);
3683 }
3684
3685 static int
3686 iwn5000_get_temperature(struct iwn_softc *sc)
3687 {
3688 int32_t temp;
3689
3690 /*
3691 * Temperature is not used by the driver for 5000 Series because
3692 * TX power calibration is handled by firmware. We export it to
3693 * users through the sensor framework though.
3694 */
3695 temp = le32toh(sc->rawtemp);
3696 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3697 temp = (temp / -5) + sc->temp_off;
3698 temp = IWN_KTOC(temp);
3699 }
3700 return temp;
3701 }
3702
3703 /*
3704 * Initialize sensitivity calibration state machine.
3705 */
3706 static int
3707 iwn_init_sensitivity(struct iwn_softc *sc)
3708 {
3709 struct iwn_ops *ops = &sc->ops;
3710 struct iwn_calib_state *calib = &sc->calib;
3711 uint32_t flags;
3712 int error;
3713
3714 /* Reset calibration state machine. */
3715 memset(calib, 0, sizeof (*calib));
3716 calib->state = IWN_CALIB_STATE_INIT;
3717 calib->cck_state = IWN_CCK_STATE_HIFA;
3718 /* Set initial correlation values. */
3719 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3720 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3721 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3722 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3723 calib->cck_x4 = 125;
3724 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3725 calib->energy_cck = sc->limits->energy_cck;
3726
3727 /* Write initial sensitivity. */
3728 if ((error = iwn_send_sensitivity(sc)) != 0)
3729 return error;
3730
3731 /* Write initial gains. */
3732 if ((error = ops->init_gains(sc)) != 0)
3733 return error;
3734
3735 /* Request statistics at each beacon interval. */
3736 flags = 0;
3737 DPRINTF(("sending request for statistics\n"));
3738 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3739 }
3740
3741 /*
3742 * Collect noise and RSSI statistics for the first 20 beacons received
3743 * after association and use them to determine connected antennas and
3744 * to set differential gains.
3745 */
3746 static void
3747 iwn_collect_noise(struct iwn_softc *sc,
3748 const struct iwn_rx_general_stats *stats)
3749 {
3750 struct iwn_ops *ops = &sc->ops;
3751 struct iwn_calib_state *calib = &sc->calib;
3752 uint32_t val;
3753 int i;
3754
3755 /* Accumulate RSSI and noise for all 3 antennas. */
3756 for (i = 0; i < 3; i++) {
3757 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3758 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3759 }
3760 /* NB: We update differential gains only once after 20 beacons. */
3761 if (++calib->nbeacons < 20)
3762 return;
3763
3764 /* Determine highest average RSSI. */
3765 val = MAX(calib->rssi[0], calib->rssi[1]);
3766 val = MAX(calib->rssi[2], val);
3767
3768 /* Determine which antennas are connected. */
3769 sc->chainmask = sc->rxchainmask;
3770 for (i = 0; i < 3; i++)
3771 if (val - calib->rssi[i] > 15 * 20)
3772 sc->chainmask &= ~(1 << i);
3773 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3774 sc->rxchainmask, sc->chainmask));
3775
3776 /* If none of the TX antennas are connected, keep at least one. */
3777 if ((sc->chainmask & sc->txchainmask) == 0)
3778 sc->chainmask |= IWN_LSB(sc->txchainmask);
3779
3780 (void)ops->set_gains(sc);
3781 calib->state = IWN_CALIB_STATE_RUN;
3782
3783 #ifdef notyet
3784 /* XXX Disable RX chains with no antennas connected. */
3785 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3786 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3787 #endif
3788
3789 /* Enable power-saving mode if requested by user. */
3790 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3791 (void)iwn_set_pslevel(sc, 0, 3, 1);
3792 }
3793
3794 static int
3795 iwn4965_init_gains(struct iwn_softc *sc)
3796 {
3797 struct iwn_phy_calib_gain cmd;
3798
3799 memset(&cmd, 0, sizeof cmd);
3800 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3801 /* Differential gains initially set to 0 for all 3 antennas. */
3802 DPRINTF(("setting initial differential gains\n"));
3803 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3804 }
3805
3806 static int
3807 iwn5000_init_gains(struct iwn_softc *sc)
3808 {
3809 struct iwn_phy_calib cmd;
3810
3811 memset(&cmd, 0, sizeof cmd);
3812 cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
3813 cmd.ngroups = 1;
3814 cmd.isvalid = 1;
3815 DPRINTF(("setting initial differential gains\n"));
3816 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3817 }
3818
3819 static int
3820 iwn4965_set_gains(struct iwn_softc *sc)
3821 {
3822 struct iwn_calib_state *calib = &sc->calib;
3823 struct iwn_phy_calib_gain cmd;
3824 int i, delta, noise;
3825
3826 /* Get minimal noise among connected antennas. */
3827 noise = INT_MAX; /* NB: There's at least one antenna. */
3828 for (i = 0; i < 3; i++)
3829 if (sc->chainmask & (1 << i))
3830 noise = MIN(calib->noise[i], noise);
3831
3832 memset(&cmd, 0, sizeof cmd);
3833 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3834 /* Set differential gains for connected antennas. */
3835 for (i = 0; i < 3; i++) {
3836 if (sc->chainmask & (1 << i)) {
3837 /* Compute attenuation (in unit of 1.5dB). */
3838 delta = (noise - (int32_t)calib->noise[i]) / 30;
3839 /* NB: delta <= 0 */
3840 /* Limit to [-4.5dB,0]. */
3841 cmd.gain[i] = MIN(abs(delta), 3);
3842 if (delta < 0)
3843 cmd.gain[i] |= 1 << 2; /* sign bit */
3844 }
3845 }
3846 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3847 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3848 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3849 }
3850
3851 static int
3852 iwn5000_set_gains(struct iwn_softc *sc)
3853 {
3854 struct iwn_calib_state *calib = &sc->calib;
3855 struct iwn_phy_calib_gain cmd;
3856 int i, ant, div, delta;
3857
3858 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
3859 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3860
3861 memset(&cmd, 0, sizeof cmd);
3862 cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
3863 cmd.ngroups = 1;
3864 cmd.isvalid = 1;
3865 /* Get first available RX antenna as referential. */
3866 ant = IWN_LSB(sc->rxchainmask);
3867 /* Set differential gains for other antennas. */
3868 for (i = ant + 1; i < 3; i++) {
3869 if (sc->chainmask & (1 << i)) {
3870 /* The delta is relative to antenna "ant". */
3871 delta = ((int32_t)calib->noise[ant] -
3872 (int32_t)calib->noise[i]) / div;
3873 /* Limit to [-4.5dB,+4.5dB]. */
3874 cmd.gain[i - 1] = MIN(abs(delta), 3);
3875 if (delta < 0)
3876 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
3877 }
3878 }
3879 DPRINTF(("setting differential gains: %x/%x (%x)\n",
3880 cmd.gain[0], cmd.gain[1], sc->chainmask));
3881 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3882 }
3883
3884 /*
3885 * Tune RF RX sensitivity based on the number of false alarms detected
3886 * during the last beacon period.
3887 */
3888 static void
3889 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3890 {
3891 #define inc(val, inc, max) \
3892 if ((val) < (max)) { \
3893 if ((val) < (max) - (inc)) \
3894 (val) += (inc); \
3895 else \
3896 (val) = (max); \
3897 needs_update = 1; \
3898 }
3899 #define dec(val, dec, min) \
3900 if ((val) > (min)) { \
3901 if ((val) > (min) + (dec)) \
3902 (val) -= (dec); \
3903 else \
3904 (val) = (min); \
3905 needs_update = 1; \
3906 }
3907
3908 const struct iwn_sensitivity_limits *limits = sc->limits;
3909 struct iwn_calib_state *calib = &sc->calib;
3910 uint32_t val, rxena, fa;
3911 uint32_t energy[3], energy_min;
3912 uint8_t noise[3], noise_ref;
3913 int i, needs_update = 0;
3914
3915 /* Check that we've been enabled long enough. */
3916 if ((rxena = le32toh(stats->general.load)) == 0)
3917 return;
3918
3919 /* Compute number of false alarms since last call for OFDM. */
3920 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3921 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3922 fa *= 200 * 1024; /* 200TU */
3923
3924 /* Save counters values for next call. */
3925 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3926 calib->fa_ofdm = le32toh(stats->ofdm.fa);
3927
3928 if (fa > 50 * rxena) {
3929 /* High false alarm count, decrease sensitivity. */
3930 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3931 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
3932 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3933 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
3934 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3935
3936 } else if (fa < 5 * rxena) {
3937 /* Low false alarm count, increase sensitivity. */
3938 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3939 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
3940 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
3941 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
3942 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
3943 }
3944
3945 /* Compute maximum noise among 3 receivers. */
3946 for (i = 0; i < 3; i++)
3947 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3948 val = MAX(noise[0], noise[1]);
3949 val = MAX(noise[2], val);
3950 /* Insert it into our samples table. */
3951 calib->noise_samples[calib->cur_noise_sample] = val;
3952 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3953
3954 /* Compute maximum noise among last 20 samples. */
3955 noise_ref = calib->noise_samples[0];
3956 for (i = 1; i < 20; i++)
3957 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
3958
3959 /* Compute maximum energy among 3 receivers. */
3960 for (i = 0; i < 3; i++)
3961 energy[i] = le32toh(stats->general.energy[i]);
3962 val = MIN(energy[0], energy[1]);
3963 val = MIN(energy[2], val);
3964 /* Insert it into our samples table. */
3965 calib->energy_samples[calib->cur_energy_sample] = val;
3966 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3967
3968 /* Compute minimum energy among last 10 samples. */
3969 energy_min = calib->energy_samples[0];
3970 for (i = 1; i < 10; i++)
3971 energy_min = MAX(energy_min, calib->energy_samples[i]);
3972 energy_min += 6;
3973
3974 /* Compute number of false alarms since last call for CCK. */
3975 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3976 fa += le32toh(stats->cck.fa) - calib->fa_cck;
3977 fa *= 200 * 1024; /* 200TU */
3978
3979 /* Save counters values for next call. */
3980 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3981 calib->fa_cck = le32toh(stats->cck.fa);
3982
3983 if (fa > 50 * rxena) {
3984 /* High false alarm count, decrease sensitivity. */
3985 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
3986 calib->cck_state = IWN_CCK_STATE_HIFA;
3987 calib->low_fa = 0;
3988
3989 if (calib->cck_x4 > 160) {
3990 calib->noise_ref = noise_ref;
3991 if (calib->energy_cck > 2)
3992 dec(calib->energy_cck, 2, energy_min);
3993 }
3994 if (calib->cck_x4 < 160) {
3995 calib->cck_x4 = 161;
3996 needs_update = 1;
3997 } else
3998 inc(calib->cck_x4, 3, limits->max_cck_x4);
3999
4000 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4001
4002 } else if (fa < 5 * rxena) {
4003 /* Low false alarm count, increase sensitivity. */
4004 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4005 calib->cck_state = IWN_CCK_STATE_LOFA;
4006 calib->low_fa++;
4007
4008 if (calib->cck_state != IWN_CCK_STATE_INIT &&
4009 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4010 calib->low_fa > 100)) {
4011 inc(calib->energy_cck, 2, limits->min_energy_cck);
4012 dec(calib->cck_x4, 3, limits->min_cck_x4);
4013 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4014 }
4015 } else {
4016 /* Not worth to increase or decrease sensitivity. */
4017 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4018 calib->low_fa = 0;
4019 calib->noise_ref = noise_ref;
4020
4021 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4022 /* Previous interval had many false alarms. */
4023 dec(calib->energy_cck, 8, energy_min);
4024 }
4025 calib->cck_state = IWN_CCK_STATE_INIT;
4026 }
4027
4028 if (needs_update)
4029 (void)iwn_send_sensitivity(sc);
4030 #undef dec
4031 #undef inc
4032 }
4033
4034 static int
4035 iwn_send_sensitivity(struct iwn_softc *sc)
4036 {
4037 struct iwn_calib_state *calib = &sc->calib;
4038 struct iwn_sensitivity_cmd cmd;
4039
4040 memset(&cmd, 0, sizeof cmd);
4041 cmd.which = IWN_SENSITIVITY_WORKTBL;
4042 /* OFDM modulation. */
4043 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4044 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4045 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4046 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4047 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4048 cmd.energy_ofdm_th = htole16(62);
4049 /* CCK modulation. */
4050 cmd.corr_cck_x4 = htole16(calib->cck_x4);
4051 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4052 cmd.energy_cck = htole16(calib->energy_cck);
4053 /* Barker modulation: use default values. */
4054 cmd.corr_barker = htole16(190);
4055 cmd.corr_barker_mrc = htole16(390);
4056
4057 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4058 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4059 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4060 calib->energy_cck));
4061 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4062 }
4063
4064 /*
4065 * Set STA mode power saving level (between 0 and 5).
4066 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4067 */
4068 static int
4069 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4070 {
4071 struct iwn_pmgt_cmd cmd;
4072 const struct iwn_pmgt *pmgt;
4073 uint32_t maxp, skip_dtim;
4074 pcireg_t reg;
4075 int i;
4076
4077 /* Select which PS parameters to use. */
4078 if (dtim <= 2)
4079 pmgt = &iwn_pmgt[0][level];
4080 else if (dtim <= 10)
4081 pmgt = &iwn_pmgt[1][level];
4082 else
4083 pmgt = &iwn_pmgt[2][level];
4084
4085 memset(&cmd, 0, sizeof cmd);
4086 if (level != 0) /* not CAM */
4087 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4088 if (level == 5)
4089 cmd.flags |= htole16(IWN_PS_FAST_PD);
4090 /* Retrieve PCIe Active State Power Management (ASPM). */
4091 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4092 sc->sc_cap_off + PCIE_LCSR);
4093 if (!(reg & PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4094 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4095 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4096 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4097
4098 if (dtim == 0) {
4099 dtim = 1;
4100 skip_dtim = 0;
4101 } else
4102 skip_dtim = pmgt->skip_dtim;
4103 if (skip_dtim != 0) {
4104 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4105 maxp = pmgt->intval[4];
4106 if (maxp == (uint32_t)-1)
4107 maxp = dtim * (skip_dtim + 1);
4108 else if (maxp > dtim)
4109 maxp = (maxp / dtim) * dtim;
4110 } else
4111 maxp = dtim;
4112 for (i = 0; i < 5; i++)
4113 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4114
4115 DPRINTF(("setting power saving level to %d\n", level));
4116 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4117 }
4118
4119 int
4120 iwn5000_runtime_calib(struct iwn_softc *sc)
4121 {
4122 struct iwn5000_calib_config cmd;
4123
4124 memset(&cmd, 0, sizeof cmd);
4125 cmd.ucode.once.enable = 0xffffffff;
4126 cmd.ucode.once.start = IWN5000_CALIB_DC;
4127 DPRINTF(("configuring runtime calibration\n"));
4128 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4129 }
4130
4131 static int
4132 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4133 {
4134 struct iwn_bluetooth bluetooth;
4135
4136 memset(&bluetooth, 0, sizeof bluetooth);
4137 bluetooth.flags = IWN_BT_COEX_ENABLE;
4138 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4139 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4140
4141 DPRINTF(("configuring bluetooth coexistence\n"));
4142 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4143 }
4144
4145 static int
4146 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4147 {
4148 uint8_t prio_table[16];
4149
4150 memset(&prio_table, 0, sizeof prio_table);
4151 prio_table[ 0] = 6; /* init calibration 1 */
4152 prio_table[ 1] = 7; /* init calibration 2 */
4153 prio_table[ 2] = 2; /* periodic calib low 1 */
4154 prio_table[ 3] = 3; /* periodic calib low 2 */
4155 prio_table[ 4] = 4; /* periodic calib high 1 */
4156 prio_table[ 5] = 5; /* periodic calib high 2 */
4157 prio_table[ 6] = 6; /* dtim */
4158 prio_table[ 7] = 8; /* scan52 */
4159 prio_table[ 8] = 10; /* scan24 */
4160
4161 DPRINTF(("sending priority lookup table\n"));
4162 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4163 &prio_table, sizeof prio_table, 0);
4164 }
4165
4166 static int
4167 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4168 {
4169 int error;
4170 struct iwn_bt_adv1 d;
4171
4172 memset(&d, 0, sizeof d);
4173 d.basic.bt.flags = IWN_BT_COEX_ENABLE;
4174 d.basic.bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4175 d.basic.bt.max_kill = IWN_BT_MAX_KILL_DEF;
4176 d.basic.bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4177 d.basic.bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4178 d.basic.bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4179 d.basic.bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4180 d.basic.bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4181 d.basic.bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4182 d.basic.bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4183 d.basic.bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4184 d.basic.bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4185 d.basic.bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4186 d.basic.bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4187 d.basic.bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4188 d.basic.bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4189 d.basic.bt3_lookup_table[ 8] = htole32(0xc0004000);
4190 d.basic.bt3_lookup_table[ 9] = htole32(0x00004000);
4191 d.basic.bt3_lookup_table[10] = htole32(0xf0005000);
4192 d.basic.bt3_lookup_table[11] = htole32(0xf0005000);
4193 d.basic.reduce_txpower = 0; /* as not implemented */
4194 d.basic.valid = IWN_BT_ALL_VALID_MASK;
4195 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4196 d.tx_prio_boost = 0;
4197 d.rx_prio_boost = 0;
4198
4199 DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4200 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &d, sizeof d, 0);
4201 if (error != 0) {
4202 aprint_error_dev(sc->sc_dev,
4203 "could not configure advanced bluetooth coexistence\n");
4204 return error;
4205 }
4206
4207 error = iwn_config_bt_coex_prio_table(sc);
4208 if (error != 0) {
4209 aprint_error_dev(sc->sc_dev,
4210 "could not configure send BT priority table\n");
4211 return error;
4212 }
4213
4214 return error;
4215 }
4216
4217 static int
4218 iwn_config(struct iwn_softc *sc)
4219 {
4220 struct iwn_ops *ops = &sc->ops;
4221 struct ieee80211com *ic = &sc->sc_ic;
4222 struct ifnet *ifp = ic->ic_ifp;
4223 uint32_t txmask;
4224 uint16_t rxchain;
4225 int error;
4226
4227 error = ops->config_bt_coex(sc);
4228 if (error != 0) {
4229 aprint_error_dev(sc->sc_dev,
4230 "could not configure bluetooth coexistence\n");
4231 return error;
4232 }
4233
4234 if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4235 sc->hw_type == IWN_HW_REV_TYPE_6005) {
4236 /* Configure runtime DC calibration. */
4237 error = iwn5000_runtime_calib(sc);
4238 if (error != 0) {
4239 aprint_error_dev(sc->sc_dev,
4240 "could not configure runtime calibration\n");
4241 return error;
4242 }
4243 }
4244
4245 /* Configure valid TX chains for 5000 Series. */
4246 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4247 txmask = htole32(sc->txchainmask);
4248 DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4249 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4250 sizeof txmask, 0);
4251 if (error != 0) {
4252 aprint_error_dev(sc->sc_dev,
4253 "could not configure valid TX chains\n");
4254 return error;
4255 }
4256 }
4257
4258 /* Set mode, channel, RX filter and enable RX. */
4259 memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4260 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4261 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4262 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4263 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4264 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4265 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4266 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4267 switch (ic->ic_opmode) {
4268 case IEEE80211_M_STA:
4269 sc->rxon.mode = IWN_MODE_STA;
4270 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4271 break;
4272 case IEEE80211_M_MONITOR:
4273 sc->rxon.mode = IWN_MODE_MONITOR;
4274 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4275 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4276 break;
4277 default:
4278 /* Should not get there. */
4279 break;
4280 }
4281 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4282 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4283 sc->rxon.ht_single_mask = 0xff;
4284 sc->rxon.ht_dual_mask = 0xff;
4285 sc->rxon.ht_triple_mask = 0xff;
4286 rxchain =
4287 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4288 IWN_RXCHAIN_MIMO_COUNT(2) |
4289 IWN_RXCHAIN_IDLE_COUNT(2);
4290 sc->rxon.rxchain = htole16(rxchain);
4291 DPRINTF(("setting configuration\n"));
4292 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4293 if (error != 0) {
4294 aprint_error_dev(sc->sc_dev,
4295 "RXON command failed\n");
4296 return error;
4297 }
4298
4299 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4300 aprint_error_dev(sc->sc_dev,
4301 "could not add broadcast node\n");
4302 return error;
4303 }
4304
4305 /* Configuration has changed, set TX power accordingly. */
4306 if ((error = ops->set_txpower(sc, 0)) != 0) {
4307 aprint_error_dev(sc->sc_dev,
4308 "could not set TX power\n");
4309 return error;
4310 }
4311
4312 if ((error = iwn_set_critical_temp(sc)) != 0) {
4313 aprint_error_dev(sc->sc_dev,
4314 "could not set critical temperature\n");
4315 return error;
4316 }
4317
4318 /* Set power saving level to CAM during initialization. */
4319 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4320 aprint_error_dev(sc->sc_dev,
4321 "could not set power saving level\n");
4322 return error;
4323 }
4324 return 0;
4325 }
4326
4327 static int
4328 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4329 {
4330 struct ieee80211com *ic = &sc->sc_ic;
4331 struct iwn_scan_hdr *hdr;
4332 struct iwn_cmd_data *tx;
4333 struct iwn_scan_essid *essid;
4334 struct iwn_scan_chan *chan;
4335 struct ieee80211_frame *wh;
4336 struct ieee80211_rateset *rs;
4337 struct ieee80211_channel *c;
4338 uint8_t *buf, *frm;
4339 uint16_t rxchain;
4340 uint8_t txant;
4341 int buflen, error;
4342
4343 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4344 if (buf == NULL) {
4345 aprint_error_dev(sc->sc_dev,
4346 "could not allocate buffer for scan command\n");
4347 return ENOMEM;
4348 }
4349 hdr = (struct iwn_scan_hdr *)buf;
4350 /*
4351 * Move to the next channel if no frames are received within 10ms
4352 * after sending the probe request.
4353 */
4354 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4355 hdr->quiet_threshold = htole16(1); /* min # of packets */
4356
4357 /* Select antennas for scanning. */
4358 rxchain =
4359 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4360 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4361 IWN_RXCHAIN_DRIVER_FORCE;
4362 if ((flags & IEEE80211_CHAN_5GHZ) &&
4363 sc->hw_type == IWN_HW_REV_TYPE_4965) {
4364 /* Ant A must be avoided in 5GHz because of an HW bug. */
4365 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4366 } else /* Use all available RX antennas. */
4367 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4368 hdr->rxchain = htole16(rxchain);
4369 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4370
4371 tx = (struct iwn_cmd_data *)(hdr + 1);
4372 tx->flags = htole32(IWN_TX_AUTO_SEQ);
4373 tx->id = sc->broadcast_id;
4374 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4375
4376 if (flags & IEEE80211_CHAN_5GHZ) {
4377 hdr->crc_threshold = 0xffff;
4378 /* Send probe requests at 6Mbps. */
4379 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4380 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4381 } else {
4382 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4383 /* Send probe requests at 1Mbps. */
4384 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4385 tx->rflags = IWN_RFLAG_CCK;
4386 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4387 }
4388 /* Use the first valid TX antenna. */
4389 txant = IWN_LSB(sc->txchainmask);
4390 tx->rflags |= IWN_RFLAG_ANT(txant);
4391
4392 essid = (struct iwn_scan_essid *)(tx + 1);
4393 if (ic->ic_des_esslen != 0) {
4394 essid[0].id = IEEE80211_ELEMID_SSID;
4395 essid[0].len = ic->ic_des_esslen;
4396 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4397 }
4398 /*
4399 * Build a probe request frame. Most of the following code is a
4400 * copy & paste of what is done in net80211.
4401 */
4402 wh = (struct ieee80211_frame *)(essid + 20);
4403 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4404 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4405 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4406 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4407 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4408 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4409 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4410 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4411
4412 frm = (uint8_t *)(wh + 1);
4413 frm = ieee80211_add_ssid(frm, NULL, 0);
4414 frm = ieee80211_add_rates(frm, rs);
4415 #ifndef IEEE80211_NO_HT
4416 if (ic->ic_flags & IEEE80211_F_HTON)
4417 frm = ieee80211_add_htcaps(frm, ic);
4418 #endif
4419 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4420 frm = ieee80211_add_xrates(frm, rs);
4421
4422 /* Set length of probe request. */
4423 tx->len = htole16(frm - (uint8_t *)wh);
4424
4425 chan = (struct iwn_scan_chan *)frm;
4426 for (c = &ic->ic_channels[1];
4427 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4428 if ((c->ic_flags & flags) != flags)
4429 continue;
4430
4431 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4432 DPRINTFN(2, ("adding channel %d\n", chan->chan));
4433 chan->flags = 0;
4434 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4435 chan->flags |= htole32(IWN_CHAN_ACTIVE);
4436 if (ic->ic_des_esslen != 0)
4437 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4438 chan->dsp_gain = 0x6e;
4439 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4440 chan->rf_gain = 0x3b;
4441 chan->active = htole16(24);
4442 chan->passive = htole16(110);
4443 } else {
4444 chan->rf_gain = 0x28;
4445 chan->active = htole16(36);
4446 chan->passive = htole16(120);
4447 }
4448 hdr->nchan++;
4449 chan++;
4450 }
4451
4452 buflen = (uint8_t *)chan - buf;
4453 hdr->len = htole16(buflen);
4454
4455 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4456 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4457 free(buf, M_DEVBUF);
4458 return error;
4459 }
4460
4461 static int
4462 iwn_auth(struct iwn_softc *sc)
4463 {
4464 struct iwn_ops *ops = &sc->ops;
4465 struct ieee80211com *ic = &sc->sc_ic;
4466 struct ieee80211_node *ni = ic->ic_bss;
4467 int error;
4468
4469 /* Update adapter configuration. */
4470 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4471 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4472 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4473 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4474 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4475 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4476 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4477 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4478 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4479 switch (ic->ic_curmode) {
4480 case IEEE80211_MODE_11A:
4481 sc->rxon.cck_mask = 0;
4482 sc->rxon.ofdm_mask = 0x15;
4483 break;
4484 case IEEE80211_MODE_11B:
4485 sc->rxon.cck_mask = 0x03;
4486 sc->rxon.ofdm_mask = 0;
4487 break;
4488 default: /* Assume 802.11b/g. */
4489 sc->rxon.cck_mask = 0x0f;
4490 sc->rxon.ofdm_mask = 0x15;
4491 }
4492 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4493 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4494 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4495 if (error != 0) {
4496 aprint_error_dev(sc->sc_dev,
4497 "RXON command failed\n");
4498 return error;
4499 }
4500
4501 /* Configuration has changed, set TX power accordingly. */
4502 if ((error = ops->set_txpower(sc, 1)) != 0) {
4503 aprint_error_dev(sc->sc_dev,
4504 "could not set TX power\n");
4505 return error;
4506 }
4507 /*
4508 * Reconfiguring RXON clears the firmware nodes table so we must
4509 * add the broadcast node again.
4510 */
4511 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4512 aprint_error_dev(sc->sc_dev,
4513 "could not add broadcast node\n");
4514 return error;
4515 }
4516 return 0;
4517 }
4518
4519 static int
4520 iwn_run(struct iwn_softc *sc)
4521 {
4522 struct iwn_ops *ops = &sc->ops;
4523 struct ieee80211com *ic = &sc->sc_ic;
4524 struct ieee80211_node *ni = ic->ic_bss;
4525 struct iwn_node_info node;
4526 int error;
4527
4528 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4529 /* Link LED blinks while monitoring. */
4530 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4531 return 0;
4532 }
4533 if ((error = iwn_set_timing(sc, ni)) != 0) {
4534 aprint_error_dev(sc->sc_dev,
4535 "could not set timing\n");
4536 return error;
4537 }
4538
4539 /* Update adapter configuration. */
4540 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4541 /* Short preamble and slot time are negotiated when associating. */
4542 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4543 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4544 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4545 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4546 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4547 sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4548 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4549 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4550 if (error != 0) {
4551 aprint_error_dev(sc->sc_dev,
4552 "could not update configuration\n");
4553 return error;
4554 }
4555
4556 /* Configuration has changed, set TX power accordingly. */
4557 if ((error = ops->set_txpower(sc, 1)) != 0) {
4558 aprint_error_dev(sc->sc_dev,
4559 "could not set TX power\n");
4560 return error;
4561 }
4562
4563 /* Fake a join to initialize the TX rate. */
4564 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
4565 iwn_newassoc(ni, 1);
4566
4567 /* Add BSS node. */
4568 memset(&node, 0, sizeof node);
4569 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4570 node.id = IWN_ID_BSS;
4571 #ifdef notyet
4572 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4573 IWN_AMDPU_DENSITY(5)); /* 2us */
4574 #endif
4575 DPRINTF(("adding BSS node\n"));
4576 error = ops->add_node(sc, &node, 1);
4577 if (error != 0) {
4578 aprint_error_dev(sc->sc_dev,
4579 "could not add BSS node\n");
4580 return error;
4581 }
4582 DPRINTF(("setting link quality for node %d\n", node.id));
4583 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4584 aprint_error_dev(sc->sc_dev,
4585 "could not setup link quality for node %d\n", node.id);
4586 return error;
4587 }
4588
4589 if ((error = iwn_init_sensitivity(sc)) != 0) {
4590 aprint_error_dev(sc->sc_dev,
4591 "could not set sensitivity\n");
4592 return error;
4593 }
4594 /* Start periodic calibration timer. */
4595 sc->calib.state = IWN_CALIB_STATE_ASSOC;
4596 sc->calib_cnt = 0;
4597 callout_schedule(&sc->calib_to, hz/2);
4598
4599 /* Link LED always on while associated. */
4600 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4601 return 0;
4602 }
4603
4604 #ifdef IWN_HWCRYPTO
4605 /*
4606 * We support CCMP hardware encryption/decryption of unicast frames only.
4607 * HW support for TKIP really sucks. We should let TKIP die anyway.
4608 */
4609 static int
4610 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4611 struct ieee80211_key *k)
4612 {
4613 struct iwn_softc *sc = ic->ic_softc;
4614 struct iwn_ops *ops = &sc->ops;
4615 struct iwn_node *wn = (void *)ni;
4616 struct iwn_node_info node;
4617 uint16_t kflags;
4618
4619 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4620 k->k_cipher != IEEE80211_CIPHER_CCMP)
4621 return ieee80211_set_key(ic, ni, k);
4622
4623 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4624 if (k->k_flags & IEEE80211_KEY_GROUP)
4625 kflags |= IWN_KFLAG_GROUP;
4626
4627 memset(&node, 0, sizeof node);
4628 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4629 sc->broadcast_id : wn->id;
4630 node.control = IWN_NODE_UPDATE;
4631 node.flags = IWN_FLAG_SET_KEY;
4632 node.kflags = htole16(kflags);
4633 node.kid = k->k_id;
4634 memcpy(node.key, k->k_key, k->k_len);
4635 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4636 return ops->add_node(sc, &node, 1);
4637 }
4638
4639 static void
4640 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4641 struct ieee80211_key *k)
4642 {
4643 struct iwn_softc *sc = ic->ic_softc;
4644 struct iwn_ops *ops = &sc->ops;
4645 struct iwn_node *wn = (void *)ni;
4646 struct iwn_node_info node;
4647
4648 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4649 k->k_cipher != IEEE80211_CIPHER_CCMP) {
4650 /* See comment about other ciphers above. */
4651 ieee80211_delete_key(ic, ni, k);
4652 return;
4653 }
4654 if (ic->ic_state != IEEE80211_S_RUN)
4655 return; /* Nothing to do. */
4656 memset(&node, 0, sizeof node);
4657 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4658 sc->broadcast_id : wn->id;
4659 node.control = IWN_NODE_UPDATE;
4660 node.flags = IWN_FLAG_SET_KEY;
4661 node.kflags = htole16(IWN_KFLAG_INVALID);
4662 node.kid = 0xff;
4663 DPRINTF(("delete keys for node %d\n", node.id));
4664 (void)ops->add_node(sc, &node, 1);
4665 }
4666 #endif
4667
4668 /* XXX Added for NetBSD (copied from rev 1.39). */
4669
4670 static int
4671 iwn_wme_update(struct ieee80211com *ic)
4672 {
4673 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
4674 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
4675 struct iwn_softc *sc = ic->ic_ifp->if_softc;
4676 const struct wmeParams *wmep;
4677 struct iwn_edca_params cmd;
4678 int ac;
4679
4680 /* don't override default WME values if WME is not actually enabled */
4681 if (!(ic->ic_flags & IEEE80211_F_WME))
4682 return 0;
4683 cmd.flags = 0;
4684 for (ac = 0; ac < WME_NUM_AC; ac++) {
4685 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4686 cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4687 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4688 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4689 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
4690
4691 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4692 "txop=%d\n", ac, cmd.ac[ac].aifsn,
4693 cmd.ac[ac].cwmin,
4694 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4695 }
4696 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4697 #undef IWN_USEC
4698 #undef IWN_EXP2
4699 }
4700
4701 #ifndef IEEE80211_NO_HT
4702 /*
4703 * This function is called by upper layer when an ADDBA request is received
4704 * from another STA and before the ADDBA response is sent.
4705 */
4706 static int
4707 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4708 uint8_t tid)
4709 {
4710 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4711 struct iwn_softc *sc = ic->ic_softc;
4712 struct iwn_ops *ops = &sc->ops;
4713 struct iwn_node *wn = (void *)ni;
4714 struct iwn_node_info node;
4715
4716 memset(&node, 0, sizeof node);
4717 node.id = wn->id;
4718 node.control = IWN_NODE_UPDATE;
4719 node.flags = IWN_FLAG_SET_ADDBA;
4720 node.addba_tid = tid;
4721 node.addba_ssn = htole16(ba->ba_winstart);
4722 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4723 ba->ba_winstart));
4724 return ops->add_node(sc, &node, 1);
4725 }
4726
4727 /*
4728 * This function is called by upper layer on teardown of an HT-immediate
4729 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
4730 */
4731 static void
4732 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4733 uint8_t tid)
4734 {
4735 struct iwn_softc *sc = ic->ic_softc;
4736 struct iwn_ops *ops = &sc->ops;
4737 struct iwn_node *wn = (void *)ni;
4738 struct iwn_node_info node;
4739
4740 memset(&node, 0, sizeof node);
4741 node.id = wn->id;
4742 node.control = IWN_NODE_UPDATE;
4743 node.flags = IWN_FLAG_SET_DELBA;
4744 node.delba_tid = tid;
4745 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4746 (void)ops->add_node(sc, &node, 1);
4747 }
4748
4749 /*
4750 * This function is called by upper layer when an ADDBA response is received
4751 * from another STA.
4752 */
4753 static int
4754 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4755 uint8_t tid)
4756 {
4757 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4758 struct iwn_softc *sc = ic->ic_softc;
4759 struct iwn_ops *ops = &sc->ops;
4760 struct iwn_node *wn = (void *)ni;
4761 struct iwn_node_info node;
4762 int error;
4763
4764 /* Enable TX for the specified RA/TID. */
4765 wn->disable_tid &= ~(1 << tid);
4766 memset(&node, 0, sizeof node);
4767 node.id = wn->id;
4768 node.control = IWN_NODE_UPDATE;
4769 node.flags = IWN_FLAG_SET_DISABLE_TID;
4770 node.disable_tid = htole16(wn->disable_tid);
4771 error = ops->add_node(sc, &node, 1);
4772 if (error != 0)
4773 return error;
4774
4775 if ((error = iwn_nic_lock(sc)) != 0)
4776 return error;
4777 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
4778 iwn_nic_unlock(sc);
4779 return 0;
4780 }
4781
4782 static void
4783 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4784 uint8_t tid)
4785 {
4786 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4787 struct iwn_softc *sc = ic->ic_softc;
4788 struct iwn_ops *ops = &sc->ops;
4789
4790 if (iwn_nic_lock(sc) != 0)
4791 return;
4792 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
4793 iwn_nic_unlock(sc);
4794 }
4795
4796 static void
4797 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4798 uint8_t tid, uint16_t ssn)
4799 {
4800 struct iwn_node *wn = (void *)ni;
4801 int qid = 7 + tid;
4802
4803 /* Stop TX scheduler while we're changing its configuration. */
4804 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4805 IWN4965_TXQ_STATUS_CHGACT);
4806
4807 /* Assign RA/TID translation to the queue. */
4808 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
4809 wn->id << 4 | tid);
4810
4811 /* Enable chain-building mode for the queue. */
4812 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
4813
4814 /* Set starting sequence number from the ADDBA request. */
4815 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4816 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4817
4818 /* Set scheduler window size. */
4819 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
4820 IWN_SCHED_WINSZ);
4821 /* Set scheduler frame limit. */
4822 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
4823 IWN_SCHED_LIMIT << 16);
4824
4825 /* Enable interrupts for the queue. */
4826 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4827
4828 /* Mark the queue as active. */
4829 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4830 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
4831 iwn_tid2fifo[tid] << 1);
4832 }
4833
4834 static void
4835 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4836 {
4837 int qid = 7 + tid;
4838
4839 /* Stop TX scheduler while we're changing its configuration. */
4840 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4841 IWN4965_TXQ_STATUS_CHGACT);
4842
4843 /* Set starting sequence number from the ADDBA request. */
4844 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4845 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
4846
4847 /* Disable interrupts for the queue. */
4848 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
4849
4850 /* Mark the queue as inactive. */
4851 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
4852 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
4853 }
4854
4855 static void
4856 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
4857 uint8_t tid, uint16_t ssn)
4858 {
4859 struct iwn_node *wn = (void *)ni;
4860 int qid = 10 + tid;
4861
4862 /* Stop TX scheduler while we're changing its configuration. */
4863 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4864 IWN5000_TXQ_STATUS_CHGACT);
4865
4866 /* Assign RA/TID translation to the queue. */
4867 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
4868 wn->id << 4 | tid);
4869
4870 /* Enable chain-building mode for the queue. */
4871 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
4872
4873 /* Enable aggregation for the queue. */
4874 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4875
4876 /* Set starting sequence number from the ADDBA request. */
4877 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4878 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4879
4880 /* Set scheduler window size and frame limit. */
4881 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
4882 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
4883
4884 /* Enable interrupts for the queue. */
4885 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4886
4887 /* Mark the queue as active. */
4888 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4889 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
4890 }
4891
4892 static void
4893 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
4894 {
4895 int qid = 10 + tid;
4896
4897 /* Stop TX scheduler while we're changing its configuration. */
4898 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4899 IWN5000_TXQ_STATUS_CHGACT);
4900
4901 /* Disable aggregation for the queue. */
4902 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
4903
4904 /* Set starting sequence number from the ADDBA request. */
4905 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
4906 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
4907
4908 /* Disable interrupts for the queue. */
4909 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
4910
4911 /* Mark the queue as inactive. */
4912 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
4913 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
4914 }
4915 #endif /* !IEEE80211_NO_HT */
4916
4917 /*
4918 * Query calibration tables from the initialization firmware. We do this
4919 * only once at first boot. Called from a process context.
4920 */
4921 static int
4922 iwn5000_query_calibration(struct iwn_softc *sc)
4923 {
4924 struct iwn5000_calib_config cmd;
4925 int error;
4926
4927 memset(&cmd, 0, sizeof cmd);
4928 cmd.ucode.once.enable = 0xffffffff;
4929 cmd.ucode.once.start = 0xffffffff;
4930 cmd.ucode.once.send = 0xffffffff;
4931 cmd.ucode.flags = 0xffffffff;
4932 DPRINTF(("sending calibration query\n"));
4933 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
4934 if (error != 0)
4935 return error;
4936
4937 /* Wait at most two seconds for calibration to complete. */
4938 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
4939 error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
4940 return error;
4941 }
4942
4943 /*
4944 * Send calibration results to the runtime firmware. These results were
4945 * obtained on first boot from the initialization firmware.
4946 */
4947 static int
4948 iwn5000_send_calibration(struct iwn_softc *sc)
4949 {
4950 int idx, error;
4951
4952 for (idx = 0; idx < 5; idx++) {
4953 if (sc->calibcmd[idx].buf == NULL)
4954 continue; /* No results available. */
4955 DPRINTF(("send calibration result idx=%d len=%d\n",
4956 idx, sc->calibcmd[idx].len));
4957 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
4958 sc->calibcmd[idx].len, 0);
4959 if (error != 0) {
4960 aprint_error_dev(sc->sc_dev,
4961 "could not send calibration result\n");
4962 return error;
4963 }
4964 }
4965 return 0;
4966 }
4967
4968 static int
4969 iwn5000_send_wimax_coex(struct iwn_softc *sc)
4970 {
4971 struct iwn5000_wimax_coex wimax;
4972
4973 #ifdef notyet
4974 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
4975 /* Enable WiMAX coexistence for combo adapters. */
4976 wimax.flags =
4977 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
4978 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
4979 IWN_WIMAX_COEX_STA_TABLE_VALID |
4980 IWN_WIMAX_COEX_ENABLE;
4981 memcpy(wimax.events, iwn6050_wimax_events,
4982 sizeof iwn6050_wimax_events);
4983 } else
4984 #endif
4985 {
4986 /* Disable WiMAX coexistence. */
4987 wimax.flags = 0;
4988 memset(wimax.events, 0, sizeof wimax.events);
4989 }
4990 DPRINTF(("Configuring WiMAX coexistence\n"));
4991 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
4992 }
4993
4994 /*
4995 * This function is called after the runtime firmware notifies us of its
4996 * readiness (called in a process context).
4997 */
4998 static int
4999 iwn4965_post_alive(struct iwn_softc *sc)
5000 {
5001 int error, qid;
5002
5003 if ((error = iwn_nic_lock(sc)) != 0)
5004 return error;
5005
5006 /* Clear TX scheduler state in SRAM. */
5007 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5008 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5009 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5010
5011 /* Set physical address of TX scheduler rings (1KB aligned). */
5012 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5013
5014 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5015
5016 /* Disable chain mode for all our 16 queues. */
5017 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5018
5019 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5020 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5021 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5022
5023 /* Set scheduler window size. */
5024 iwn_mem_write(sc, sc->sched_base +
5025 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5026 /* Set scheduler frame limit. */
5027 iwn_mem_write(sc, sc->sched_base +
5028 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5029 IWN_SCHED_LIMIT << 16);
5030 }
5031
5032 /* Enable interrupts for all our 16 queues. */
5033 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5034 /* Identify TX FIFO rings (0-7). */
5035 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5036
5037 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5038 for (qid = 0; qid < 7; qid++) {
5039 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5040 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5041 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5042 }
5043 iwn_nic_unlock(sc);
5044 return 0;
5045 }
5046
5047 /*
5048 * This function is called after the initialization or runtime firmware
5049 * notifies us of its readiness (called in a process context).
5050 */
5051 static int
5052 iwn5000_post_alive(struct iwn_softc *sc)
5053 {
5054 int error, qid;
5055
5056 /* Switch to using ICT interrupt mode. */
5057 iwn5000_ict_reset(sc);
5058
5059 if ((error = iwn_nic_lock(sc)) != 0)
5060 return error;
5061
5062 /* Clear TX scheduler state in SRAM. */
5063 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5064 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5065 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5066
5067 /* Set physical address of TX scheduler rings (1KB aligned). */
5068 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5069
5070 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5071
5072 /* Enable chain mode for all queues, except command queue. */
5073 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5074 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5075
5076 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5077 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5078 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5079
5080 iwn_mem_write(sc, sc->sched_base +
5081 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5082 /* Set scheduler window size and frame limit. */
5083 iwn_mem_write(sc, sc->sched_base +
5084 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5085 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5086 }
5087
5088 /* Enable interrupts for all our 20 queues. */
5089 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5090 /* Identify TX FIFO rings (0-7). */
5091 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5092
5093 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5094 for (qid = 0; qid < 7; qid++) {
5095 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5096 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5097 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5098 }
5099 iwn_nic_unlock(sc);
5100
5101 /* Configure WiMAX coexistence for combo adapters. */
5102 error = iwn5000_send_wimax_coex(sc);
5103 if (error != 0) {
5104 aprint_error_dev(sc->sc_dev,
5105 "could not configure WiMAX coexistence\n");
5106 return error;
5107 }
5108 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5109 struct iwn5000_phy_calib_crystal cmd;
5110
5111 /* Perform crystal calibration. */
5112 memset(&cmd, 0, sizeof cmd);
5113 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5114 cmd.ngroups = 1;
5115 cmd.isvalid = 1;
5116 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5117 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5118 DPRINTF(("sending crystal calibration %d, %d\n",
5119 cmd.cap_pin[0], cmd.cap_pin[1]));
5120 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5121 if (error != 0) {
5122 aprint_error_dev(sc->sc_dev,
5123 "crystal calibration failed\n");
5124 return error;
5125 }
5126 }
5127 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5128 /* Query calibration from the initialization firmware. */
5129 if ((error = iwn5000_query_calibration(sc)) != 0) {
5130 aprint_error_dev(sc->sc_dev,
5131 "could not query calibration\n");
5132 return error;
5133 }
5134 /*
5135 * We have the calibration results now, reboot with the
5136 * runtime firmware (call ourselves recursively!)
5137 */
5138 iwn_hw_stop(sc);
5139 error = iwn_hw_init(sc);
5140 } else {
5141 /* Send calibration results to runtime firmware. */
5142 error = iwn5000_send_calibration(sc);
5143 }
5144 return error;
5145 }
5146
5147 /*
5148 * The firmware boot code is small and is intended to be copied directly into
5149 * the NIC internal memory (no DMA transfer).
5150 */
5151 static int
5152 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5153 {
5154 int error, ntries;
5155
5156 size /= sizeof (uint32_t);
5157
5158 if ((error = iwn_nic_lock(sc)) != 0)
5159 return error;
5160
5161 /* Copy microcode image into NIC memory. */
5162 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5163 (const uint32_t *)ucode, size);
5164
5165 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5166 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5167 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5168
5169 /* Start boot load now. */
5170 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5171
5172 /* Wait for transfer to complete. */
5173 for (ntries = 0; ntries < 1000; ntries++) {
5174 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5175 IWN_BSM_WR_CTRL_START))
5176 break;
5177 DELAY(10);
5178 }
5179 if (ntries == 1000) {
5180 aprint_error_dev(sc->sc_dev,
5181 "could not load boot firmware\n");
5182 iwn_nic_unlock(sc);
5183 return ETIMEDOUT;
5184 }
5185
5186 /* Enable boot after power up. */
5187 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5188
5189 iwn_nic_unlock(sc);
5190 return 0;
5191 }
5192
5193 static int
5194 iwn4965_load_firmware(struct iwn_softc *sc)
5195 {
5196 struct iwn_fw_info *fw = &sc->fw;
5197 struct iwn_dma_info *dma = &sc->fw_dma;
5198 int error;
5199
5200 /* Copy initialization sections into pre-allocated DMA-safe memory. */
5201 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5202 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5203 BUS_DMASYNC_PREWRITE);
5204 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5205 fw->init.text, fw->init.textsz);
5206 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5207 fw->init.textsz, BUS_DMASYNC_PREWRITE);
5208
5209 /* Tell adapter where to find initialization sections. */
5210 if ((error = iwn_nic_lock(sc)) != 0)
5211 return error;
5212 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5213 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5214 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5215 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5216 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5217 iwn_nic_unlock(sc);
5218
5219 /* Load firmware boot code. */
5220 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5221 if (error != 0) {
5222 aprint_error_dev(sc->sc_dev,
5223 "could not load boot firmware\n");
5224 return error;
5225 }
5226 /* Now press "execute". */
5227 IWN_WRITE(sc, IWN_RESET, 0);
5228
5229 /* Wait at most one second for first alive notification. */
5230 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5231 aprint_error_dev(sc->sc_dev,
5232 "timeout waiting for adapter to initialize\n");
5233 return error;
5234 }
5235
5236 /* Retrieve current temperature for initial TX power calibration. */
5237 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5238 sc->temp = iwn4965_get_temperature(sc);
5239
5240 /* Copy runtime sections into pre-allocated DMA-safe memory. */
5241 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5242 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5243 BUS_DMASYNC_PREWRITE);
5244 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5245 fw->main.text, fw->main.textsz);
5246 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5247 fw->main.textsz, BUS_DMASYNC_PREWRITE);
5248
5249 /* Tell adapter where to find runtime sections. */
5250 if ((error = iwn_nic_lock(sc)) != 0)
5251 return error;
5252 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5253 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5254 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5255 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5256 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5257 IWN_FW_UPDATED | fw->main.textsz);
5258 iwn_nic_unlock(sc);
5259
5260 return 0;
5261 }
5262
5263 static int
5264 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5265 const uint8_t *section, int size)
5266 {
5267 struct iwn_dma_info *dma = &sc->fw_dma;
5268 int error;
5269
5270 /* Copy firmware section into pre-allocated DMA-safe memory. */
5271 memcpy(dma->vaddr, section, size);
5272 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5273
5274 if ((error = iwn_nic_lock(sc)) != 0)
5275 return error;
5276
5277 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5278 IWN_FH_TX_CONFIG_DMA_PAUSE);
5279
5280 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5281 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5282 IWN_LOADDR(dma->paddr));
5283 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5284 IWN_HIADDR(dma->paddr) << 28 | size);
5285 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5286 IWN_FH_TXBUF_STATUS_TBNUM(1) |
5287 IWN_FH_TXBUF_STATUS_TBIDX(1) |
5288 IWN_FH_TXBUF_STATUS_TFBD_VALID);
5289
5290 /* Kick Flow Handler to start DMA transfer. */
5291 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5292 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5293
5294 iwn_nic_unlock(sc);
5295
5296 /* Wait at most five seconds for FH DMA transfer to complete. */
5297 return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5298 }
5299
5300 static int
5301 iwn5000_load_firmware(struct iwn_softc *sc)
5302 {
5303 struct iwn_fw_part *fw;
5304 int error;
5305
5306 /* Load the initialization firmware on first boot only. */
5307 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5308 &sc->fw.main : &sc->fw.init;
5309
5310 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5311 fw->text, fw->textsz);
5312 if (error != 0) {
5313 aprint_error_dev(sc->sc_dev,
5314 "could not load firmware %s section\n", ".text");
5315 return error;
5316 }
5317 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5318 fw->data, fw->datasz);
5319 if (error != 0) {
5320 aprint_error_dev(sc->sc_dev,
5321 "could not load firmware %s section\n", ".data");
5322 return error;
5323 }
5324
5325 /* Now press "execute". */
5326 IWN_WRITE(sc, IWN_RESET, 0);
5327 return 0;
5328 }
5329
5330 /*
5331 * Extract text and data sections from a legacy firmware image.
5332 */
5333 static int
5334 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5335 {
5336 const uint32_t *ptr;
5337 size_t hdrlen = 24;
5338 uint32_t rev;
5339
5340 ptr = (const uint32_t *)fw->data;
5341 rev = le32toh(*ptr++);
5342
5343 /* Check firmware API version. */
5344 if (IWN_FW_API(rev) <= 1) {
5345 aprint_error_dev(sc->sc_dev,
5346 "bad firmware, need API version >=2\n");
5347 return EINVAL;
5348 }
5349 if (IWN_FW_API(rev) >= 3) {
5350 /* Skip build number (version 2 header). */
5351 hdrlen += 4;
5352 ptr++;
5353 }
5354 if (fw->size < hdrlen) {
5355 aprint_error_dev(sc->sc_dev,
5356 "firmware too short: %zd bytes\n", fw->size);
5357 return EINVAL;
5358 }
5359 fw->main.textsz = le32toh(*ptr++);
5360 fw->main.datasz = le32toh(*ptr++);
5361 fw->init.textsz = le32toh(*ptr++);
5362 fw->init.datasz = le32toh(*ptr++);
5363 fw->boot.textsz = le32toh(*ptr++);
5364
5365 /* Check that all firmware sections fit. */
5366 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5367 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5368 aprint_error_dev(sc->sc_dev,
5369 "firmware too short: %zd bytes\n", fw->size);
5370 return EINVAL;
5371 }
5372
5373 /* Get pointers to firmware sections. */
5374 fw->main.text = (const uint8_t *)ptr;
5375 fw->main.data = fw->main.text + fw->main.textsz;
5376 fw->init.text = fw->main.data + fw->main.datasz;
5377 fw->init.data = fw->init.text + fw->init.textsz;
5378 fw->boot.text = fw->init.data + fw->init.datasz;
5379 return 0;
5380 }
5381
5382 /*
5383 * Extract text and data sections from a TLV firmware image.
5384 */
5385 static int
5386 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5387 uint16_t alt)
5388 {
5389 const struct iwn_fw_tlv_hdr *hdr;
5390 const struct iwn_fw_tlv *tlv;
5391 const uint8_t *ptr, *end;
5392 uint64_t altmask;
5393 uint32_t len;
5394
5395 if (fw->size < sizeof (*hdr)) {
5396 aprint_error_dev(sc->sc_dev,
5397 "firmware too short: %zd bytes\n", fw->size);
5398 return EINVAL;
5399 }
5400 hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5401 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5402 aprint_error_dev(sc->sc_dev,
5403 "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5404 return EINVAL;
5405 }
5406 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5407 le32toh(hdr->build)));
5408
5409 /*
5410 * Select the closest supported alternative that is less than
5411 * or equal to the specified one.
5412 */
5413 altmask = le64toh(hdr->altmask);
5414 while (alt > 0 && !(altmask & (1ULL << alt)))
5415 alt--; /* Downgrade. */
5416 DPRINTF(("using alternative %d\n", alt));
5417
5418 ptr = (const uint8_t *)(hdr + 1);
5419 end = (const uint8_t *)(fw->data + fw->size);
5420
5421 /* Parse type-length-value fields. */
5422 while (ptr + sizeof (*tlv) <= end) {
5423 tlv = (const struct iwn_fw_tlv *)ptr;
5424 len = le32toh(tlv->len);
5425
5426 ptr += sizeof (*tlv);
5427 if (ptr + len > end) {
5428 aprint_error_dev(sc->sc_dev,
5429 "firmware too short: %zd bytes\n", fw->size);
5430 return EINVAL;
5431 }
5432 /* Skip other alternatives. */
5433 if (tlv->alt != 0 && tlv->alt != htole16(alt))
5434 goto next;
5435
5436 switch (le16toh(tlv->type)) {
5437 case IWN_FW_TLV_MAIN_TEXT:
5438 fw->main.text = ptr;
5439 fw->main.textsz = len;
5440 break;
5441 case IWN_FW_TLV_MAIN_DATA:
5442 fw->main.data = ptr;
5443 fw->main.datasz = len;
5444 break;
5445 case IWN_FW_TLV_INIT_TEXT:
5446 fw->init.text = ptr;
5447 fw->init.textsz = len;
5448 break;
5449 case IWN_FW_TLV_INIT_DATA:
5450 fw->init.data = ptr;
5451 fw->init.datasz = len;
5452 break;
5453 case IWN_FW_TLV_BOOT_TEXT:
5454 fw->boot.text = ptr;
5455 fw->boot.textsz = len;
5456 break;
5457 default:
5458 DPRINTF(("TLV type %d not handled\n",
5459 le16toh(tlv->type)));
5460 break;
5461 }
5462 next: /* TLV fields are 32-bit aligned. */
5463 ptr += (len + 3) & ~3;
5464 }
5465 return 0;
5466 }
5467
5468 static int
5469 iwn_read_firmware(struct iwn_softc *sc)
5470 {
5471 struct iwn_fw_info *fw = &sc->fw;
5472 firmware_handle_t fwh;
5473 int error;
5474
5475 /* Initialize for error returns */
5476 fw->data = NULL;
5477 fw->size = 0;
5478
5479 /* Open firmware image. */
5480 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5481 aprint_error_dev(sc->sc_dev,
5482 "could not get firmware handle %s\n", sc->fwname);
5483 return error;
5484 }
5485 fw->size = firmware_get_size(fwh);
5486 if (fw->size < sizeof (uint32_t)) {
5487 aprint_error_dev(sc->sc_dev,
5488 "firmware too short: %zd bytes\n", fw->size);
5489 firmware_close(fwh);
5490 return EINVAL;
5491 }
5492
5493 /* Read the firmware. */
5494 fw->data = firmware_malloc(fw->size);
5495 if (fw->data == NULL) {
5496 aprint_error_dev(sc->sc_dev,
5497 "not enough memory to stock firmware %s\n", sc->fwname);
5498 firmware_close(fwh);
5499 return ENOMEM;
5500 }
5501 error = firmware_read(fwh, 0, fw->data, fw->size);
5502 firmware_close(fwh);
5503 if (error != 0) {
5504 aprint_error_dev(sc->sc_dev,
5505 "could not read firmware %s\n", sc->fwname);
5506 goto out;
5507 }
5508
5509 /* Retrieve text and data sections. */
5510 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
5511 error = iwn_read_firmware_leg(sc, fw);
5512 else
5513 error = iwn_read_firmware_tlv(sc, fw, 1);
5514 if (error != 0) {
5515 aprint_error_dev(sc->sc_dev,
5516 "could not read firmware sections\n");
5517 goto out;
5518 }
5519
5520 /* Make sure text and data sections fit in hardware memory. */
5521 if (fw->main.textsz > sc->fw_text_maxsz ||
5522 fw->main.datasz > sc->fw_data_maxsz ||
5523 fw->init.textsz > sc->fw_text_maxsz ||
5524 fw->init.datasz > sc->fw_data_maxsz ||
5525 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5526 (fw->boot.textsz & 3) != 0) {
5527 aprint_error_dev(sc->sc_dev,
5528 "firmware sections too large\n");
5529 goto out;
5530 }
5531
5532 /* We can proceed with loading the firmware. */
5533 return 0;
5534 out:
5535 firmware_free(fw->data, fw->size);
5536 fw->data = NULL;
5537 fw->size = 0;
5538 return error ? error : EINVAL;
5539 }
5540
5541 static int
5542 iwn_clock_wait(struct iwn_softc *sc)
5543 {
5544 int ntries;
5545
5546 /* Set "initialization complete" bit. */
5547 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5548
5549 /* Wait for clock stabilization. */
5550 for (ntries = 0; ntries < 2500; ntries++) {
5551 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5552 return 0;
5553 DELAY(10);
5554 }
5555 aprint_error_dev(sc->sc_dev,
5556 "timeout waiting for clock stabilization\n");
5557 return ETIMEDOUT;
5558 }
5559
5560 static int
5561 iwn_apm_init(struct iwn_softc *sc)
5562 {
5563 pcireg_t reg;
5564 int error;
5565
5566 /* Disable L0s exit timer (NMI bug workaround). */
5567 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5568 /* Don't wait for ICH L0s (ICH bug workaround). */
5569 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5570
5571 /* Set FH wait threshold to max (HW bug under stress workaround). */
5572 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5573
5574 /* Enable HAP INTA to move adapter from L1a to L0s. */
5575 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5576
5577 /* Retrieve PCIe Active State Power Management (ASPM). */
5578 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5579 sc->sc_cap_off + PCIE_LCSR);
5580 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5581 if (reg & PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
5582 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5583 else
5584 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5585
5586 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5587 sc->hw_type <= IWN_HW_REV_TYPE_1000)
5588 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5589
5590 /* Wait for clock stabilization before accessing prph. */
5591 if ((error = iwn_clock_wait(sc)) != 0)
5592 return error;
5593
5594 if ((error = iwn_nic_lock(sc)) != 0)
5595 return error;
5596 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5597 /* Enable DMA and BSM (Bootstrap State Machine). */
5598 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5599 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5600 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5601 } else {
5602 /* Enable DMA. */
5603 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5604 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5605 }
5606 DELAY(20);
5607 /* Disable L1-Active. */
5608 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5609 iwn_nic_unlock(sc);
5610
5611 return 0;
5612 }
5613
5614 static void
5615 iwn_apm_stop_master(struct iwn_softc *sc)
5616 {
5617 int ntries;
5618
5619 /* Stop busmaster DMA activity. */
5620 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5621 for (ntries = 0; ntries < 100; ntries++) {
5622 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5623 return;
5624 DELAY(10);
5625 }
5626 aprint_error_dev(sc->sc_dev,
5627 "timeout waiting for master\n");
5628 }
5629
5630 static void
5631 iwn_apm_stop(struct iwn_softc *sc)
5632 {
5633 iwn_apm_stop_master(sc);
5634
5635 /* Reset the entire device. */
5636 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5637 DELAY(10);
5638 /* Clear "initialization complete" bit. */
5639 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5640 }
5641
5642 static int
5643 iwn4965_nic_config(struct iwn_softc *sc)
5644 {
5645 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5646 /*
5647 * I don't believe this to be correct but this is what the
5648 * vendor driver is doing. Probably the bits should not be
5649 * shifted in IWN_RFCFG_*.
5650 */
5651 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5652 IWN_RFCFG_TYPE(sc->rfcfg) |
5653 IWN_RFCFG_STEP(sc->rfcfg) |
5654 IWN_RFCFG_DASH(sc->rfcfg));
5655 }
5656 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5657 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5658 return 0;
5659 }
5660
5661 static int
5662 iwn5000_nic_config(struct iwn_softc *sc)
5663 {
5664 uint32_t tmp;
5665 int error;
5666
5667 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5668 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5669 IWN_RFCFG_TYPE(sc->rfcfg) |
5670 IWN_RFCFG_STEP(sc->rfcfg) |
5671 IWN_RFCFG_DASH(sc->rfcfg));
5672 }
5673 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5674 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5675
5676 if ((error = iwn_nic_lock(sc)) != 0)
5677 return error;
5678 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5679
5680 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5681 /*
5682 * Select first Switching Voltage Regulator (1.32V) to
5683 * solve a stability issue related to noisy DC2DC line
5684 * in the silicon of 1000 Series.
5685 */
5686 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5687 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5688 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5689 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5690 }
5691 iwn_nic_unlock(sc);
5692
5693 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5694 /* Use internal power amplifier only. */
5695 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5696 }
5697 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
5698 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
5699 /* Indicate that ROM calibration version is >=6. */
5700 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5701 }
5702 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
5703 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
5704 return 0;
5705 }
5706
5707 /*
5708 * Take NIC ownership over Intel Active Management Technology (AMT).
5709 */
5710 static int
5711 iwn_hw_prepare(struct iwn_softc *sc)
5712 {
5713 int ntries;
5714
5715 /* Check if hardware is ready. */
5716 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5717 for (ntries = 0; ntries < 5; ntries++) {
5718 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5719 IWN_HW_IF_CONFIG_NIC_READY)
5720 return 0;
5721 DELAY(10);
5722 }
5723
5724 /* Hardware not ready, force into ready state. */
5725 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5726 for (ntries = 0; ntries < 15000; ntries++) {
5727 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5728 IWN_HW_IF_CONFIG_PREPARE_DONE))
5729 break;
5730 DELAY(10);
5731 }
5732 if (ntries == 15000)
5733 return ETIMEDOUT;
5734
5735 /* Hardware should be ready now. */
5736 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5737 for (ntries = 0; ntries < 5; ntries++) {
5738 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5739 IWN_HW_IF_CONFIG_NIC_READY)
5740 return 0;
5741 DELAY(10);
5742 }
5743 return ETIMEDOUT;
5744 }
5745
5746 static int
5747 iwn_hw_init(struct iwn_softc *sc)
5748 {
5749 struct iwn_ops *ops = &sc->ops;
5750 int error, chnl, qid;
5751
5752 /* Clear pending interrupts. */
5753 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5754
5755 if ((error = iwn_apm_init(sc)) != 0) {
5756 aprint_error_dev(sc->sc_dev,
5757 "could not power ON adapter\n");
5758 return error;
5759 }
5760
5761 /* Select VMAIN power source. */
5762 if ((error = iwn_nic_lock(sc)) != 0)
5763 return error;
5764 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5765 iwn_nic_unlock(sc);
5766
5767 /* Perform adapter-specific initialization. */
5768 if ((error = ops->nic_config(sc)) != 0)
5769 return error;
5770
5771 /* Initialize RX ring. */
5772 if ((error = iwn_nic_lock(sc)) != 0)
5773 return error;
5774 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5775 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5776 /* Set physical address of RX ring (256-byte aligned). */
5777 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5778 /* Set physical address of RX status (16-byte aligned). */
5779 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5780 /* Enable RX. */
5781 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5782 IWN_FH_RX_CONFIG_ENA |
5783 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
5784 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
5785 IWN_FH_RX_CONFIG_SINGLE_FRAME |
5786 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5787 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5788 iwn_nic_unlock(sc);
5789 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5790
5791 if ((error = iwn_nic_lock(sc)) != 0)
5792 return error;
5793
5794 /* Initialize TX scheduler. */
5795 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5796
5797 /* Set physical address of "keep warm" page (16-byte aligned). */
5798 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5799
5800 /* Initialize TX rings. */
5801 for (qid = 0; qid < sc->ntxqs; qid++) {
5802 struct iwn_tx_ring *txq = &sc->txq[qid];
5803
5804 /* Set physical address of TX ring (256-byte aligned). */
5805 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5806 txq->desc_dma.paddr >> 8);
5807 }
5808 iwn_nic_unlock(sc);
5809
5810 /* Enable DMA channels. */
5811 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5812 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5813 IWN_FH_TX_CONFIG_DMA_ENA |
5814 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5815 }
5816
5817 /* Clear "radio off" and "commands blocked" bits. */
5818 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5819 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5820
5821 /* Clear pending interrupts. */
5822 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5823 /* Enable interrupt coalescing. */
5824 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5825 /* Enable interrupts. */
5826 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5827
5828 /* _Really_ make sure "radio off" bit is cleared! */
5829 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5830 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5831
5832 /* Enable shadow registers. */
5833 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
5834 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
5835
5836 if ((error = ops->load_firmware(sc)) != 0) {
5837 aprint_error_dev(sc->sc_dev,
5838 "could not load firmware\n");
5839 return error;
5840 }
5841 /* Wait at most one second for firmware alive notification. */
5842 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5843 aprint_error_dev(sc->sc_dev,
5844 "timeout waiting for adapter to initialize\n");
5845 return error;
5846 }
5847 /* Do post-firmware initialization. */
5848 return ops->post_alive(sc);
5849 }
5850
5851 static void
5852 iwn_hw_stop(struct iwn_softc *sc)
5853 {
5854 int chnl, qid, ntries;
5855
5856 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5857
5858 /* Disable interrupts. */
5859 IWN_WRITE(sc, IWN_INT_MASK, 0);
5860 IWN_WRITE(sc, IWN_INT, 0xffffffff);
5861 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5862 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5863
5864 /* Make sure we no longer hold the NIC lock. */
5865 iwn_nic_unlock(sc);
5866
5867 /* Stop TX scheduler. */
5868 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
5869
5870 /* Stop all DMA channels. */
5871 if (iwn_nic_lock(sc) == 0) {
5872 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
5873 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
5874 for (ntries = 0; ntries < 200; ntries++) {
5875 if (IWN_READ(sc, IWN_FH_TX_STATUS) &
5876 IWN_FH_TX_STATUS_IDLE(chnl))
5877 break;
5878 DELAY(10);
5879 }
5880 }
5881 iwn_nic_unlock(sc);
5882 }
5883
5884 /* Stop RX ring. */
5885 iwn_reset_rx_ring(sc, &sc->rxq);
5886
5887 /* Reset all TX rings. */
5888 for (qid = 0; qid < sc->ntxqs; qid++)
5889 iwn_reset_tx_ring(sc, &sc->txq[qid]);
5890
5891 if (iwn_nic_lock(sc) == 0) {
5892 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
5893 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5894 iwn_nic_unlock(sc);
5895 }
5896 DELAY(5);
5897 /* Power OFF adapter. */
5898 iwn_apm_stop(sc);
5899 }
5900
5901 static int
5902 iwn_init(struct ifnet *ifp)
5903 {
5904 struct iwn_softc *sc = ifp->if_softc;
5905 struct ieee80211com *ic = &sc->sc_ic;
5906 int error;
5907
5908 mutex_enter(&sc->sc_mtx);
5909 if (sc->sc_flags & IWN_FLAG_HW_INITED)
5910 goto out;
5911 if ((error = iwn_hw_prepare(sc)) != 0) {
5912 aprint_error_dev(sc->sc_dev,
5913 "hardware not ready\n");
5914 goto fail;
5915 }
5916
5917 /* Check that the radio is not disabled by hardware switch. */
5918 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
5919 aprint_error_dev(sc->sc_dev,
5920 "radio is disabled by hardware switch\n");
5921 error = EPERM; /* :-) */
5922 goto fail;
5923 }
5924
5925 /* Read firmware images from the filesystem. */
5926 if ((error = iwn_read_firmware(sc)) != 0) {
5927 aprint_error_dev(sc->sc_dev,
5928 "could not read firmware\n");
5929 goto fail;
5930 }
5931
5932 /* Initialize interrupt mask to default value. */
5933 sc->int_mask = IWN_INT_MASK_DEF;
5934 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5935
5936 /* Initialize hardware and upload firmware. */
5937 KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
5938 error = iwn_hw_init(sc);
5939 firmware_free(sc->fw.data, sc->fw.size);
5940 sc->fw.data = NULL;
5941 sc->fw.size = 0;
5942 if (error != 0) {
5943 aprint_error_dev(sc->sc_dev,
5944 "could not initialize hardware\n");
5945 goto fail;
5946 }
5947
5948 /* Configure adapter now that it is ready. */
5949 if ((error = iwn_config(sc)) != 0) {
5950 aprint_error_dev(sc->sc_dev,
5951 "could not configure device\n");
5952 goto fail;
5953 }
5954
5955 ifp->if_flags &= ~IFF_OACTIVE;
5956 ifp->if_flags |= IFF_RUNNING;
5957
5958 if (ic->ic_opmode != IEEE80211_M_MONITOR)
5959 ieee80211_begin_scan(ic, 0);
5960 else
5961 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
5962
5963 sc->sc_flags |= IWN_FLAG_HW_INITED;
5964 out:
5965 mutex_exit(&sc->sc_mtx);
5966 return 0;
5967
5968 fail: mutex_exit(&sc->sc_mtx);
5969 iwn_stop(ifp, 1);
5970 return error;
5971 }
5972
5973 static void
5974 iwn_stop(struct ifnet *ifp, int disable)
5975 {
5976 struct iwn_softc *sc = ifp->if_softc;
5977 struct ieee80211com *ic = &sc->sc_ic;
5978
5979 if (!disable)
5980 mutex_enter(&sc->sc_mtx);
5981 sc->sc_flags &= ~IWN_FLAG_HW_INITED;
5982 ifp->if_timer = sc->sc_tx_timer = 0;
5983 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5984
5985 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
5986
5987 /* Power OFF hardware. */
5988 iwn_hw_stop(sc);
5989
5990 if (!disable)
5991 mutex_exit(&sc->sc_mtx);
5992 }
5993
5994 /*
5995 * XXX MCLGETI alternative
5996 *
5997 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
5998 * as long as there are available free buffers then it uses MEXTMALLOC.,
5999 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6000 * The MCLGET4K code is used for testing an alternative mbuf cache.
6001 */
6002
6003 static struct mbuf *
6004 MCLGETIalt(struct iwn_softc *sc, int how,
6005 struct ifnet *ifp __unused, u_int size)
6006 {
6007 struct mbuf *m;
6008 #ifdef IWN_USE_RBUF
6009 struct iwn_rbuf *rbuf;
6010 #endif
6011
6012 MGETHDR(m, how, MT_DATA);
6013 if (m == NULL)
6014 return NULL;
6015
6016 #ifdef IWN_USE_RBUF
6017 if (sc->rxq.nb_free_entries > 0 &&
6018 (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6019 /* Attach buffer to mbuf header. */
6020 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6021 m->m_flags |= M_EXT_RW;
6022 }
6023 else {
6024 MEXTMALLOC(m, size, how);
6025 if ((m->m_flags & M_EXT) == 0) {
6026 m_freem(m);
6027 return NULL;
6028 }
6029 }
6030
6031 #else
6032 #ifdef MCLGET4K
6033 if (size == 4096)
6034 MCLGET4K(m, how);
6035 else
6036 panic("size must be 4k");
6037 #else
6038 MEXTMALLOC(m, size, how);
6039 #endif
6040 if ((m->m_flags & M_EXT) == 0) {
6041 m_freem(m);
6042 return NULL;
6043 }
6044 #endif
6045
6046 return m;
6047 }
6048
6049 #ifdef IWN_USE_RBUF
6050 static struct iwn_rbuf *
6051 iwn_alloc_rbuf(struct iwn_softc *sc)
6052 {
6053 struct iwn_rbuf *rbuf;
6054 mutex_enter(&sc->rxq.freelist_mtx);
6055
6056 rbuf = SLIST_FIRST(&sc->rxq.freelist);
6057 if (rbuf != NULL) {
6058 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6059 sc->rxq.nb_free_entries --;
6060 }
6061 mutex_exit(&sc->rxq.freelist_mtx);
6062 return rbuf;
6063 }
6064
6065 /*
6066 * This is called automatically by the network stack when the mbuf to which
6067 * our RX buffer is attached is freed.
6068 */
6069 static void
6070 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
6071 {
6072 struct iwn_rbuf *rbuf = arg;
6073 struct iwn_softc *sc = rbuf->sc;
6074
6075 /* Put the RX buffer back in the free list. */
6076 mutex_enter(&sc->rxq.freelist_mtx);
6077 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6078 mutex_exit(&sc->rxq.freelist_mtx);
6079
6080 sc->rxq.nb_free_entries ++;
6081 if (__predict_true(m != NULL))
6082 pool_cache_put(mb_cache, m);
6083 }
6084
6085 static int
6086 iwn_alloc_rpool(struct iwn_softc *sc)
6087 {
6088 struct iwn_rx_ring *ring = &sc->rxq;
6089 struct iwn_rbuf *rbuf;
6090 int i, error;
6091
6092 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6093
6094 /* Allocate a big chunk of DMA'able memory... */
6095 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6096 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6097 if (error != 0) {
6098 aprint_error_dev(sc->sc_dev,
6099 "could not allocate RX buffers DMA memory\n");
6100 return error;
6101 }
6102 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6103 SLIST_INIT(&ring->freelist);
6104 for (i = 0; i < IWN_RBUF_COUNT; i++) {
6105 rbuf = &ring->rbuf[i];
6106
6107 rbuf->sc = sc; /* Backpointer for callbacks. */
6108 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6109 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6110
6111 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6112 }
6113 ring->nb_free_entries = IWN_RBUF_COUNT;
6114 return 0;
6115 }
6116
6117 static void
6118 iwn_free_rpool(struct iwn_softc *sc)
6119 {
6120 iwn_dma_contig_free(&sc->rxq.buf_dma);
6121 }
6122 #endif
6123
6124 /*
6125 * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6126 * Copyright (c) 2001 Atsushi Onoe
6127 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6128 * Copyright (c) 2007-2009 Damien Bergamini
6129 * All rights reserved.
6130 */
6131
6132 /*
6133 * Add an SSID element to a frame (see 7.3.2.1).
6134 */
6135 static u_int8_t *
6136 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6137 {
6138 *frm++ = IEEE80211_ELEMID_SSID;
6139 *frm++ = len;
6140 memcpy(frm, ssid, len);
6141 return frm + len;
6142 }
6143
6144 /*
6145 * Add a supported rates element to a frame (see 7.3.2.2).
6146 */
6147 static u_int8_t *
6148 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6149 {
6150 int nrates;
6151
6152 *frm++ = IEEE80211_ELEMID_RATES;
6153 nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6154 *frm++ = nrates;
6155 memcpy(frm, rs->rs_rates, nrates);
6156 return frm + nrates;
6157 }
6158
6159 /*
6160 * Add an extended supported rates element to a frame (see 7.3.2.14).
6161 */
6162 static u_int8_t *
6163 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6164 {
6165 int nrates;
6166
6167 KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6168
6169 *frm++ = IEEE80211_ELEMID_XRATES;
6170 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6171 *frm++ = nrates;
6172 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6173 return frm + nrates;
6174 }
6175
6176 /*
6177 * XXX: Hack to set the current channel to the value advertised in beacons or
6178 * probe responses. Only used during AP detection.
6179 * XXX: Duplicated from if_iwi.c
6180 */
6181 static void
6182 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6183 {
6184 struct ieee80211_frame *wh;
6185 uint8_t subtype;
6186 uint8_t *frm, *efrm;
6187
6188 wh = mtod(m, struct ieee80211_frame *);
6189
6190 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6191 return;
6192
6193 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6194
6195 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6196 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6197 return;
6198
6199 frm = (uint8_t *)(wh + 1);
6200 efrm = mtod(m, uint8_t *) + m->m_len;
6201
6202 frm += 12; /* skip tstamp, bintval and capinfo fields */
6203 while (frm < efrm) {
6204 if (*frm == IEEE80211_ELEMID_DSPARMS)
6205 #if IEEE80211_CHAN_MAX < 255
6206 if (frm[2] <= IEEE80211_CHAN_MAX)
6207 #endif
6208 ic->ic_curchan = &ic->ic_channels[frm[2]];
6209
6210 frm += frm[1] + 2;
6211 }
6212 }
6213
6214 #ifdef notyetMODULE
6215
6216 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6217
6218 #ifdef _MODULE
6219 #include "ioconf.c"
6220 #endif
6221
6222 static int
6223 if_iwn_modcmd(modcmd_t cmd, void *data)
6224 {
6225 int error = 0;
6226
6227 switch (cmd) {
6228 case MODULE_CMD_INIT:
6229 #ifdef _MODULE
6230 error = config_init_component(cfdriver_ioconf_if_iwn,
6231 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6232 #endif
6233 return error;
6234 case MODULE_CMD_FINI:
6235 #ifdef _MODULE
6236 error = config_fini_component(cfdriver_ioconf_if_iwn,
6237 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6238 #endif
6239 return error;
6240 case MODULE_CMD_AUTOUNLOAD:
6241 #ifdef _MODULE
6242 /* XXX This is not optional! */
6243 #endif
6244 return error;
6245 default:
6246 return ENOTTY;
6247 }
6248 }
6249 #endif
6250